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In this work we focus on the two-dimensional anisotropic KPZ (aKPZ)
equation, which is formally given by

∂th = ν

2
�h + λ

(
(∂1h)2 − (∂2h)2) + ν

1
2 ξ,

where ξ denotes a noise which is white in both space and time, and λ and ν are
positive constants. Due to the wild oscillations of the noise and the quadratic
nonlinearity, the previous equation is classically ill posed. It is not possible to
linearise it via the Cole–Hopf transformation and the pathwise techniques for
singular SPDEs (the theory of regularity structures by M. Hairer or the para-
controlled distributions approach of M. Gubinelli, P. Imkeller, N. Perkowski)
are not applicable. In the present work we consider a regularised version of
aKPZ which preserves its invariant measure. We prove the existence of sub-
sequential limits once the regularisation is removed, provided λ and ν are
suitably renormalised. Moreover, we show that, in the regime in which ν is
constant and the coupling constant λ converges to 0 as the inverse of the
square root logarithm, any limit differs from the solution to the linear equa-
tion obtained by simply dropping the nonlinearity in aKPZ.

1. Introduction. The KPZ equation is a (singular) stochastic partial differential equation
(SPDE), whose formal expression is

(1.1) ∂th = ν�h + 〈∇h,Q∇h〉 + √
Dξ,

where ξ is a space-time white noise in spatial dimension d , Q is a d × d-matrix and ν and D

are positive constants. The importance of this equation stems from the fact that it describes
(via Q, ν and D) universal features of randomly evolving surfaces and it is supposed to arise
as the limit of a large class of properly rescaled particle systems. The difficulty in establishing
its universality is already on the level of the equation since, from an analytic viewpoint, it is
ill posed in any dimension. This is due to the fact that the noise ξ is too irregular for the
nonlinear term to be canonically defined.

The only dimension in which a rigorous solution theory has been established (for any
value of the constants ν, Q and D) and the universality claim corroborated, is d = 1. There
are by now different approaches that lead to well posedness: the Cole–Hopf transformation
that turns (1.1) into the linear multiplicative stochastic heat equation [2]; the martingale ap-
proach which leads to the notion of energy solution [20, 23]; pathwise techniques, namely,
rough paths [25], regularity structures [26] and paracontrolled calculus [19, 22]. In particular,
the theory of regularity structures and paracontrolled calculus, additionally, apply to a much
larger class of equations, and, since their introduction, the field of (singular) SPDEs has expe-
rienced a tremendous growth. That said, their applicability is restricted to those equations that
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are locally subcritical which heuristically means that, at small scales, the nonlinearity does
not matter much and the solution behaves (regularitywise) as the linear part of the equation.
For (1.1) this is the case only for d = 1, while in d = 2 and d ≥ 3 (which are said to be the
critical and supercritical regimes, respectively), the pathwise approaches break down.

Only recently, the first mathematically rigorous results in the critical and supercritical
regimes have been obtained. In the latter case physicists (see [29]) predict that, for the
parameters ν, Q and D in a suitable window, the nonlinearity should not matter much at
large scales, so that, taking a smooth noise, rescaling the height function h according to

hε(t, x)
def= ε

d
2 h(t/ε2, x/ε) and subtracting the average growth, the fluctuations should be the

same as those of the solution of the linear stochastic heat equation. Partial results in this di-
rection have been established in the case Q = λIdd , for Idd being the d × d identity matrix
and the coupling constant λ > 0 sufficiently small, first by [33] via renormalisation group
techniques and later by [12–14] (see also [18] for the case of the multiplicative stochastic
heat equation).1

The picture in the critical case, d = 2, is more subtle. Indeed, already from the physics per-
spective this regime is more delicate since finer details of the equation, and, in particular, the
sign of detQ, might influence its large scale dynamics. The importance of the matrix Q can
be understood from a microscopic viewpoint. Indeed, heuristically speaking, it is expected
that the macroscopic average behaviour of a microscopic surface is given by the solution of
a PDE of the form

(1.2) ∂tu = v(∇u),

where v is a deterministic scalar valued map depending on the specific (microscopic) fea-
tures of the model at hand. Now, since (1.1) should represent the (universal) fluctuations
of the surface around its hydrodynamic limit, a second order expansion of (1.2) leads to
the identification of Q with the Hessian of v. Through (nonrigorous) renormalisation group
techniques, Wolf showed in [38] that (1.1) gives rise to two different universal behaviours
depending on the sign of detQ. If detQ > 0, the so-called isotropic KPZ class, then the fluc-
tuations should grow in time as tβ for some β > 0, and the spatial correlation should grow
as the distance to the power 2β

(β+1)
, (see [29]) while for detQ ≤ 0, the anisotropic KPZ class,

the nonlinearity should morally play no role and the behaviour should be the same as the so-
lution to the stochastic heat equation in dimension 2. Note that the latter, in particular, means
that the value of β mentioned above should be equal to zero, and the correlations explode
logarithmically. We emphasise that it is nowhere stated that the anisotropic KPZ equation
coincides with the stochastic heat equation, only the correlations should be of the same order.
Though this is expected. Indeed, in the works [3, 4] the authors obtained space-time corre-
lations analogous to that of the solution to the stochastic heat equation, for the scaling limit
of a certain interacting particle system. That said, such a scaling limit is obtained via a limit
transition, namely, a first limit reduces the models to a system of linear SDEs and, thanks to
a second limit, the linear stochastic heat equation is derived.

Numerically, the conjecture for the isotropic case was, for instance, confirmed in [36] for
two specific models where it turned out that β ≈ 0.24, while that for the anisotropic case is
supported by [27].

Mathematically, an even deeper structure has been found for detQ > 0. Indeed, upon

choosing Q = λId2, and λ ∼
√

λ̂/ logN , where N is a regularisation parameter, the work
of Caravenna, Sun and Zygouras [7] shows that there is a phase transition (for the one point

1In the supercritical regime, a phase transition is expected, depending on λ, but the exact value at which the
transition happens is still unknown.
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distribution) at λ̂ = 2π . Later in [10], for λ̂ > 0 sufficiently close to 0, it was shown that
a sequence of approximations of (1.1) is tight. The result was then improved in [8], where
not only tightness but also uniqueness and characterisation of the limit were obtained in the
whole interval λ̂ ∈ (0,2π). They proved that the limit is given by the solution of a stochastic
heat equation, different from the one obtained by simply dropping the nonlinear term in (1.1)
(see also [17]).

In the present paper, we will focus on the anisotropic KPZ class. For numerous (discrete)
models the Hessian of v appearing in (1.2) has been computed (see, e.g., [5, 6, 37]) and its
determinant proven to be negative. Precise results were obtained concerning the hydrody-
namic behaviour and the convergence of the invariant measure to the Gaussian free field (see
[5, 32]). What hinders still the progress is that the statements mentioned so far on the fluctu-
ations have been established at fixed time and it is not clear how one can show that the time
fluctuations are really of the logarithmic order, as expected (some advances have been made
in [11, 37] where a log t upper bound has been obtained for the time increment).

To shed some light on the behaviour as a process for a model belonging to the anisotropic
KPZ class, we will be working directly at the level of the equation (1.1). We make a specific
choice of the matrix Q, that is, Q = λdiag(1,−1), and of initial condition, that is, we start
from the invariant measure, that with this choice of Q can be shown to exist (see Lemma 3.1
below). The aforementioned paper of Wolf suggests that, in order to see the universal fluctu-
ations, it is necessary to renormalise the coupling constants. Therefore, we were led to study
the following family of approximations:

∂th
N = νN

2
�hN + λN
N

((

N∂1h

N )2 − (

N∂2h

N )2) + ν
1
2
Nξ, hN

0 = η̃(1.3)

in which:

– η̃ is a Gaussian free field on T2, that is, a Gaussian field whose covariance function is

E
[
η̃(ϕ)η̃(ψ)

] = 〈
(�)−1ϕ,ψ

〉
L2(T2), for all ϕ,ψ ∈ H−1(

T
2)

,

and it is assumed that the 0 Fourier mode of ϕ and ψ is 0.
– ξ is a space-time white noise on R+ × T2 independent of η̃ whose 0th Fourier mode is 0,

that is, a Gaussian field whose covariance function is

E
[
ξ(ϕ)ξ(ψ)

] =
〈
ϕ −

∫
T2

ϕ(x)dx,ψ −
∫
T2

ψ(x)dx

〉
L2(R+×T2)

for all ϕ,ψ ∈ L2(R+ ×T2),
– 
N is the operator acting in Fourier space by cutting the modes higher that N , that is,

(
Nw)k
def= wk1|k|∞≤N

and wk is the kth Fourier component of w,
– νN and λN are positive constants allowed to depend on the regularisation parameter N .

In Theorem 1.1, which is a consequence of Theorem 4.5 and Theorem 4.8 below, we identify
a family of different scalings for λN and νN for which the sequence hN admits subsequential
limits in the space of (Hölder-)continuous functions with values in Besov–Hölder spaces of
suitable regularity (see (1.11) and below for a precise definition of these spaces).

THEOREM 1.1. For N ∈ N, let hN be the solution of (1.3) started from the invariant
measure, given by the Gaussian free field hN(0) = η̃. Then, provided that there exists a con-
stant C > 0 such that

(1.4) lim
N→∞

√
logNλNν

− 1
2

N = C,
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the sequence {hN }N is tight in C
γ
T Cα for any γ < 1/2 and α < −1. Moreover, if νN = 1 for

all N ∈N, then tightness holds for any α < 0 and γ = 0.

Let us point out some aspects of the previous theorem which mark the difference from the
results mentioned above on critical SPDEs. Notice that, for the equation we are considering,
there is no Cole–Hopf transform which could turn (1.3) into a linear SPDE and, therefore, no
explicit representation of the solution is available. Hence, we are forced to work directly with
the equation itself and make sense of its nonlinearity. Moreover (at least in the case νN = 1
and λN satisfies (1.4)), we obtain tightness for the sequence in the space with optimal regular-
ity. This can be seen by power counting since ξ has regularity at most −2 and the regularising
effect of the Laplacian gains 2. At last, notice that, according to (1.4), we are allowed to take
λN = νN = (logN)−1. The reason why such a scaling is worthy of consideration is the fol-
lowing. Assume for a moment (we will never do in the present work), that we are looking
at the smoothened version of the anisotropic KPZ equation on the full space, obtained by
convolving the nonlinearity (only in space) with a smooth compactly supported function. To
be more precise, let ϕ be such a function. Then, let h̃ be the solution to the equation

(1.5) ∂t h̃ = 1

2
�h̃ + ϕ ∗ (

(∂1ϕ ∗ h̃)2 − (∂2ϕ ∗ h̃)2) + ξ.

Consider now the rescaled version of h̃, defined via h̃N (t, x) = h̃(N2t/ logN,Nx). It then
turns out to be the case that h̃N solves

(1.6) ∂t h̃ = 1

2 logN
�h̃ + 1

logN
ϕN ∗ ((

∂1ϕ
N ∗ h̃

)2 − (
∂2ϕ

N ∗ h̃
)2) + 1√

logN
ξ̃,

with ϕN(x) = ϕ(Nx) and ξ̃ having the same law as ξ . The analog of Theorem 1.1 on R2

would then imply that the sequence h̃N is tight. If one now were able to show that any limit
point of the above sequence is not simply a function that is constant in time, then one would
have identified the relevant time scale for which a natural smoothing of the original equation
shows an interesting behaviour. Although we do not address this problem here, it is currently
being investigated by the authors. 2

The previous statement does not rule out the possibility that the subsequential limits are
trivial, that is, simply constant in time or coincide with the solution of an equation in which
the summands containing a vanishing factor disappear which would mean that the strength at
which they converge to 0 is too strong.

Upon choosing νN = 1, we are indeed able to show that any limit point has finite nonzero
energy which, in particular, implies that it is not trivial. Here, we say that a stochastic process
{Yt }t∈[0,T ] has finite energy if

(1.7) sup
π={ti}i

E

[∑
i

(Yti+1 − Yti )
2
]

< ∞,

where the supremum is over all the partitions π of [0, T ].
THEOREM 1.2. In the setting of Theorem 1.1, assume that νN = 1. Then, for any test

function ϕ any limit point of the sequence{∫ t

0
λN
N

((

N∂1h

N )2 − (

N∂2h

N )2)
(s, ϕ)ds

}
t

is a process with finite nonzero energy.

2Instead of mollifying the nonlinearity, one may also mollify the noise to work with a well-defined object. We
expect the same to hold in that case.
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Theorem 1.2 is proved in Proposition 5.5 and Theorem 5.7, where it is actually shown
more. In particular, our results suggest that any subsequential limit of {hN }N will contain a
new noise which is produced by the dynamics itself. Understanding the nature of this new
noise (and its relation to the original one) will be crucial in the characterisation of the limit
points and is currently being investigated by the authors.

1.1. Strategy. Using tools from Malliavin calculus, we show in Lemma 3.1 that the in-
variant measure of hN is given by a Gaussian free field η̃. Starting from the invariant measure,
we use ideas from [20] (established in the study of energy solutions in the one-dimensional
case) to show that in the scaling regime (4.16) the sequence of solutions is tight; see Theo-
rem 4.5. The crucial observation (4.9) is that there exists an explicit functional of hN , called
HN , with the property that the nonlinearity at hN equals LN

0 HN , where LN
0 denotes the gen-

erator of the underlying linear equation (3.6). Using martingale techniques, we are able to
obtain bounds which are strong enough to control the nonlinearity and to establish tightness
of the sequence of solutions (see Lemmas 4.1 and 4.3).

We rule out triviality by establishing a nonvanishing lower bound on the second moment
of the integral in time of the nonlinearity; see Corollary 5.4. Inspired by the analysis of the
generator for the one-dimensional KPZ equation in [24] and of the diffusion coefficient for the
asymmetric simple exclusion process in d = 1,2 of [31], we show that its Laplace transform
is nonzero in the limit, as N tends to infinity. The main tool we use for this is the variational
formula presented in Lemma 5.2.

REMARK 1.3. We want to stress that, in principle, the techniques we adopt are suffi-
ciently flexible to be used for other equations at criticality for which the invariant measure is
explicitly known (e.g., the equations in [20], Sections 6 and 7, but not (1.1) with Q different
from that considered above; see Remark 3.2). Moreover, since they were inspired by tools
introduced in the particle systems context, we think that our approach might prove useful
in establishing existence of subsequential limits for particle systems and improve our under-
standing of their large scale behaviour (e.g., the time evolution).

1.2. Structure of the article. In Section 2 we recall basic facts from Malliavin calculus,
which we use in Section 3 to show that the Gaussian free field is indeed invariant for hN

and to analyse the generator of the Markov process {hN(t)}t . In Section 4 we then establish
tightness of hN and prove Theorem 1.1. In Section 5 we show nontriviality of the nonlinearity
and prove Theorem 1.2. We conclude the paper with Section 6, in which we explore further
consequences of the bounds established in Section 4. In particular, we shed some further
light on the behaviour of the nonlinearity by determining the large N limit of the martingales
appearing in Section 4.

Notations and function spaces. The notation Z2
0 always refers to Z2 \ {0}, and T2 denotes

the two-dimensional torus of side length 2π . We equip the space L2(T2;C) with the Fourier

basis {ek}k∈Z2 , defined via ek(x)
def= 1

2π
eιk·x , where ι is the imaginary unit. The basis functions

ek can be decomposed in their real and imaginary parts, so that ek = ak + ibk and the system
{√2ak}k∈Z2

diag
� {√2bk}k∈Z2

diag\{0} forms a real valued orthonormal basis of L2(T2), where

Z2
diag = {(k1, k2) ∈ Z2 : k1 ≥ k2}. The Fourier transform, denoted by F and at times also by ·̂,

is given by the formula

(1.8) F(ϕ)(k)
def= ϕk =

∫
T2

ϕ(x)e−k(x)dx.
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For any real valued distribution η ∈ D′(T2) and k ∈ Z2, its Fourier transform is given by the
(complex) pairing

(1.9) ηk
def= η(e−k) = η(ak) − ιη(bk),

so that η(ek) = η(e−k). Moreover, we recall that the Laplacian � on T2 has eigenfunctions
{ek}k∈Z2 with eigenvalues {−|k|2 : k ∈ Z2}, and, for θ > 0, we define the operator (−�)θ by
its action on the basis elements

(1.10) (−�)θek(x)
def= |k|2θ ek(x),

for k �= 0 and (−�)θe0(x)
def= 0.

We will work mostly in Besov spaces. For a thorough exposition on these spaces and their
properties, we refer the interested reader to [1]; see also [19], Appendix A, for a review of
the results which we will need below. Besov spaces are defined via a dyadic partition of unity
(χ,�) ∈ D, that is, χ and � are nonnegative radial functions such that:

• the supports of χ and � are, respectively, contained in a ball and an annulus,
• χ(x) + ∑

j≥0 �(2−j x) = 1 for all x ∈ Rd ,
• supp(χ)∩ supp�(2−j ·) = ∅ for all j ≥ 1 and supp(�(2−j ·)∩ supp�(2−i ·)) = ∅ whenever

|i − j | > 1.

For any distribution u ∈D′(T2), the Littlewood–Paley blocks are defined as

�−1u = F−1(
χF(u)

)
, and �ju = F−1(

�jF(u)
)
, j ≥ 1,

where �j
def= �(2−j ·). Since Kj

def= F−1�j is a smooth function, so is �ju = Kj ∗ u. Given
α ∈ R, p,q ∈ [1,+∞), the Besov space Bα

p,q is given by

(1.11) Bα
p,q

(
T

2) def=
{
u ∈ D′(

T
2) : ‖u‖q

Bα
p,q

def= ∑
j≥−1

2αjq‖�ju‖q

Lp(T2)
< ∞

}
.

In the special case p = q = ∞, the norm is

‖u‖Bα∞,∞
def= sup

j≥−1
2αj‖�ju‖L∞(T2),

and, since this is the space with which we will mainly work, we set Cα def= Bα∞,∞ and denote

the corresponding norm by ‖u‖α
def= ‖u‖Bα∞,∞ . This notation is justified by the fact that, for

α > 0, α /∈ N, the space Bα∞,∞ coincides with the usual space of α-Hölder continuous func-
tions. We also point out that for p = q = 2 and α ∈ R, Bα

2,2 = Hα , where the latter is the
usual Sobolev space of regularity index α, whose norm (on the torus) can be written as

‖u‖2
α,2

def= ‖u‖2
Hα

def= ∑
k∈Z2

(
1 + |k|2)α|uk|2.

Restricted to the subspace of distributions u with u0 = 0, one may replace 1 + |k|2 by |k|2.
We will need to follow classical embedding theorem for Besov spaces (see, e.g., [19],

Lemma A.2).

LEMMA 1.4. For any α ∈R, 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞, one has

(1.12) Bα
p1,q1

(
T

2)
↪→ B

α−2( 1
p1

− 1
p2

)

p2,q2

(
T

2)
.

In particular, one has ‖u‖α−2/p ≤ ‖u‖Bα
p,p

.
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We will denote the space of γ -Hölder continuous functions on [0, T ] with values in a
Banach space B by C

γ
T B .

Throughout the paper we will write a � b, if there exists a constant C > 0 such that a ≤
Cb, a ∼ b if a � b and b � a, and for sequences {an}n∈N, {bn}n∈N, an ≈ bn, if an = bn +o(1).

2. A primer on Wiener space analysis and Malliavin calculus. We recall basic tools
from Malliavin calculus which we will use below. Most of this is taken from [35], Chapter 1,
to which we refer the interested reader (see also [21, 24]).

Let (�,F,P) be a complete probability space and H a real separable Hilbert space with
scalar product 〈·, ·〉. A stochastic process {η(h) : h ∈ H } is called isonormal Gaussian pro-
cess if η is a family of centred jointly Gaussian random variables whose correlations are given
by E[η(h)η(g)] = 〈h,g〉. Given an isonormal Gaussian process η on H and n ∈ N, we de-

fine Hn as the closed linear subspace of L2(η)
def= L2(�) generated by the random variables

Hn(η(h)), where Hn is the nth Hermite polynomial, and h ∈ H is such that ‖h‖H = 1. For
m �= n, Hn and Hm are orthogonal, and L2(η) coincides with the direct orthogonal sum of
the Hn’s, that is, L2(η) = ⊕

nHn (see [35], Theorem 1.1.1). The subspace Hn is called the
nth homogeneous Wiener chaos.

When the Hilbert space H is of the form L2(T ), for (T ,B,μ) a measure space with a σ -
finite and atomless measure μ, the decomposition above can be refined. Namely, for every n ∈
N there exists a canonical contraction I : ⊕

n≥0 L2(T n) → L2(η), called (iterated) Wiener–
Itô integral with respect to η, which restricts to an isomorphism I : �L2 → L2(η) on the Fock
space �L2 := ⊕

n≥0 �L2
n, where �L2

n denotes the space L2
sym(T n) of functions in L2(T n)

which are symmetric with respect to permutation of variables. Moreover, the restriction of I

to �L2
n, denoted by In, is an isomorphism onto the nth homogenous Wiener chaos Hn, which

satisfies by [35], Proposition 1.1.4,

(2.1) n!Hn

(
η(h)

) = In

( n⊗
h

)
, for all h ∈ H such that ‖h‖H = 1,

where
⊗n h is the tensor product of n copies of h. We also recall [35], Proposition 1.1.3, that,

for f ∈ L2
sym(T n) and g ∈ L2

sym(T m), one has

(2.2) In(f )Im(g) =
m∧n∑
p=0

p!
(
n

p

)(
m

p

)
Im+n−2p(f ⊗p g),

where

(f ⊗p g)(x1:m+n−2p)
def=

∫
T p

μ(dy1) . . .μ(dyp)f (x1:n−p, y1:p)g(xn−p+1:m+n−2p, y1:p).

Here, we adopted the shorthand notation (x1:n) def= (x1, . . . , xn).
We call a function F : D′ → R a cylinder function if there exist ϕ1, . . . , ϕn ∈ D and

a smooth function f : Rn → R with all partial derivatives growing at most polynomi-
ally at infinity such that F(u) = f (u(ϕ1), . . . , u(ϕn)). Given a cylinder function F as

above, we define its “directional derivative” in the direction of ψ ∈ L2(T2) by DψF(u)
def=∑n

i=1 ∂if (u(ϕ1), . . . , u(ϕn))〈ϕi,ψ〉. If {ϕi}i≤n forms an orthonormal system in L2(Rn), one
has the simplified formula Dϕi

F (u) = ∂if (u(ϕ1), . . . , u(ϕn)).
Similarly, given Hilbert space H and an isonormal Gaussian process η on H , we call a

random variable X ∈ L2(η) “smooth” (compare [35], (1.28)), if there exist h1, . . . , hn ∈ H

and a smooth function f : Rn → R with all derivatives growing at most polynomially, such
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that X = f (η(h1), . . . , η(hn)) almost surely. For a smooth random variable F , we define the
Malliavin derivative (see [35], Definition 1.2.1) of X by

(2.3) DX
def=

n∑
i=1

Dhi
X(η)hi =

n∑
i=1

∂if
(
η(h1), . . . , η(hn)

)
hi.

In order to manipulate Malliavin derivatives, an important property is the analog of the
integration by parts formula, the so-called Gaussian integration by parts given in [35],
Lemma 1.2.2. Let F and G be smooth random variables on �, then

(2.4) E
[
G〈DF,h〉] = E

[−F 〈DG,h〉 + FGη(h)
]
,

where E is the expectation with respect to the law of η.
Throughout the rest of the paper, the isonormal Gaussian process η we will consider is the

zero-mean spatial white noise on the two-dimensional torus T2. To be more precise, η is a

centred isonormal Gaussian process on H
def= L2

0(T
2), the space of square-integrable functions

with zero total mass, whose covariance function is given by

(2.5) E
[
η(ϕ)η(ψ)

] = 〈ϕ,ψ〉
for any two functions ϕ,ψ ∈ H , where 〈·, ·〉 is the usual scalar product in L2(T2). We will
mainly work with the Fourier representation of η, given by the family of complex valued,
centred Gaussian random variables {ηk}k∈Z2 , where η0 = 0, ηk = η−k and E[ηkηj ] = δk+j=0.
Since for k ∈ Z2 the random variable ηk is complex valued, before proceeding we want to
show how the definition of Malliavin derivative can be extended to the complex setting.

Clearly, any complex-valued function f on Cn can be split into its real and imaginary parts,
that is, f = �f + ι�f , each of which can be analogously treated, so that we can assume f

is real valued. Moreover, for any such f , there exists gf :R2n →R for which

(2.6) f (x1 + ιy1, . . . , xn + ιyn) = gf (x1, y1, . . . , xn, yn)

and, for any j = 1, . . . , n, we have

(2.7) ∂2j−1gf = ∂jf and ∂2j gf = ι∂jf.

Similarly to what has been done above, we say that a random variable X in L2(η) is smooth
if X = f (ηk1, . . . , ηkn), for some k1, . . . , kn ∈ Z2 and f : Cn → R such that gf is smooth
on R2n and all its partial derivatives grow at most polynomially at infinity (if f is complex
valued, we require the same to hold for both its real and imaginary parts). Thanks to the
identification in (2.6), we can define the complex Malliavin derivative of X by using (2.3) on
X = gf (η(ak1), . . . , η(bkn)), that is,

(2.8) DX
def=

n∑
j=1

∂2j−1gf

(
η(ak1), . . . , η(bkn)

)
akj

+
n∑

j=1

∂2j gf

(
η(ak1), . . . , η(bkn)

)
bkj

.

For h ∈ L2(T2,C), we extend definition (2.8) by linearity, so we set

(2.9) DhX
def= D�hX + ιD�hX = 〈DX,�h〉 + ι〈DX,�h〉.

LEMMA 2.1. 3In the above setting, for any i ∈ {1,2, . . . , n},
(2.10) Dki

X
def= Dēki

X = ∂if
(
η(ek1), . . . , η(ekn)

)
,

where ēki
= e−ki

.

3Personal communication by Nicolas Perkowski.
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PROOF. Notice that, by definition (2.8), we have

DX
def=

n∑
j=1

∂2j−1gf

(
η(ak1), . . . , η(bkn)

)
akj

+
n∑

j=1

∂2j gf

(
η(ak1), . . . , η(bkn)

)
bkj

=
n∑

j=1

∂jf (ηk1, . . . , ηkn)akj
+ ι

n∑
j=1

∂jf (ηk1, . . . , ηkn)bkj

=
n∑

j=1

∂jf (ηk1, . . . , ηkn)ekj
,

where the passage from the first to the second line is a consequence of (2.6). Hence, the result
follows immediately from the definition (2.9). �

For future use, we remark that, for any (complex- or real-valued) smooth random variable
F in L2(η) and k ∈ Z2, the integration by parts formula reads

(2.11) E[GDkF ] = E
[
G〈DF,ek〉L2(T2;C)

] = E[−FDkG + FGηk].

3. Properties of the approximating equations. In order to simplify our analysis below,

we will be working with uN def= (−�)
1
2 hN , which solves

(3.1) ∂tu
N = νN

2
�uN + λNNN [

uN ] + ν
1
2
N(−�)

1
2 ξ,

where the nonlinearity NN is given by

(3.2) NN [
uN ] def= (−�)

1
2 
N

((

N∂1(−�)−

1
2 uN )2 − (


N∂2(−�)−
1
2 uN )2)

.

By definition of the Hölder–Besov spaces (1.11), the fractional Laplacian (1.10) is a con-

tinuous and continuously invertible linear bijection (−�)
1
2 : Cα

0 → Cα−1
0 , for any α ∈ R,

where Cα
0 denotes the closed subspace of Cα spanned by distributions with vanishing 0th

Fourier component. Theorem 1.1 therefore reduces to showing tightness of the sequence uN

in C
γ
T Cα−1 (see Theorem 4.5), for α as in the statement and of the 0th Fourier mode (see The-

orem 4.8). As part of this argument, we also show that the anisotropic KPZ equation (1.3)
requires no renormalisation other than the coupling constant renormalisation introduced in
Theorem 1.1 (see Remark 4.9).

Passing to Fourier variables, we see that equation (3.1) can be equivalently written as an
infinite system of (complex-valued) SDEs

(3.3) duN
k =

(
−νN

2
|k|2uN

k + λNNN
k

[
uN ])

dt + ν
1
2
N |k|dBk(t), k ∈ Z

2
0,

where the complex-valued Brownian motions Bk are defined via Bk(t)
def= ∫ t

0 ξk(s)ds, ξk

being the kth Fourier mode of the space-time white noise ξ which, in particular, implies
that Bk = B−k . Hence, their quadratic covariation is given by d〈Bk,B�〉t = 1{k+�=0} dt for
k, l �= 0. The kth Fourier component of the nonlinearity is

NN
k

[
uN ] def= NN [

uN ]
(e−k) = ∑

�+m=k

KN
�,muN

� uN
m,(3.4)

KN
�,m

def= 1

2π
|� + m|c(�,m)

|�||m| J
N
�,m,�+m,(3.5)
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where, for � = (�1, �2), m = (m1,m2) ∈ Z2
0, c(�,m)

def= �2m2 − �1m1 and JN
a,b,... is an abbre-

viation for 1|a|∞≤N,|b|∞≤N,....
This approximation scheme has the advantage that it completely decouples the equations

for {uN
k : |k|∞ ≤ N} and {uN

k : |k|∞ > N}. The latter is an infinite family of independent
Ornstein–Uhlenbeck processes, while the first is a finite-dimensional system of SDEs inter-
acting via a quadratic nonlinearity. Local existence and uniqueness is classical (since the
coefficients are locally Lipschitz continuous), and the process t �→ {uN

k (t)}k∈Z2
0

is clearly
strong Markov. At this point we refrain from being more specific about the state space for
this process. As long as we are working with fixed N , any “reasonable” choice could be used
for the sake of the current section (one could take, e.g., Hα , α < −1, if one wants to deal with
(3.1) directly or CZ2

0 with the product topology, if instead one focuses on the system (3.3)).
We postpone a detailed discussion of the spaces we actually want to work in to the proof of
tightness in Section 4.

Returning to equation (3.1), we can easily determine the generator LN for the dynamics of
uN (e.g., by applying Itô’s formula to a cylinder function, singling out the drift part (see (4.2)
below) and taking the Fourier transform). Let F be a real-valued cylinder function acting on
distributions v ∈ D′(T2) and decompose the generator into LN = LN

0 +AN , where the action
of LN

0 and AN can be written in Fourier as

(
LN

0 F
)
(v)

def= νN

2

∑
k∈Z2

|k|2(−v−kDk + D−kDk)F (v),(3.6)

(
ANF

)
(v) = λN

∑
m,l∈Z2

0

KN
m,lvmvlD−m−lF (v).(3.7)

As a first step of our analysis, we show that the spatial white noise η on T2 is invariant for
the Markov process uN for all N ∈ N.

LEMMA 3.1. For any N ∈ N, the spatial white noise η, defined in (2.5), is invariant
for the solution uN = {uN

k }k∈Z2
0

of (3.3). Moreover, with respect to L2(η) the symmetric and

antisymmetric part of LN are given by LN
0 and AN , respectively.

PROOF. According to [15], for the first statement it is enough to prove that E[LNG(η)] =
0 for all C2-cylinder functions, and we will prove the above relation for LN

0 and AN sepa-
rately, beginning with the first. Let G be a cylinder function. In the Gaussian integration by
parts formula (2.11) set F = DkG and G ≡ 1, so that we have

E
[
D−kDkG(η)

] = E
[
DkG(η)η−k

]
,

from which ELN
0 G(η) = 0 follows. For the operator AN we use again Gaussian integration

by parts (this time with F = G and G(η) = g(ηm,η�) = ηmη� in the notation of (2.11)) to
obtain

E
[
ηmη�D−m−�G(η)

] = E
[
ηmη�η−m−�G(η) − G(η)D−m−�(ηmη�)

]
= E

[
ηmη�η−m−�G(η)

]
,

(3.8)

where the last passage is a consequence of the choice η(e0) = 0. Now, the function G on
the right-hand side does not depend on either m or �. We claim that the following stronger
statement holds; for any {ηk}k∈Z2

0
, we have

(3.9)
∑

m,�∈Z2
0

KN
m,�ηmη�η−m−� = 0.
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Assuming (3.9), upon multiplying by KN
m,l and summing over all � and m ∈ Z2

0 on both sides
of (3.8), we obtain EANG(η) = 0 and thus conclude the proof of invariance of white noise
for the dynamics of uN .

Let us prove (3.9) (an alternative proof is provided in Appendix A). Observe that

f (m,�)
def= ηmη�η−m−� satisfies the symmetry relation f (m,�) = f (−m − �, �) =

f (m,−m − �), so that it suffices to check that KN
m,� is antisymmetric once we sum over

all permutations of m, � and −m − �. We compute

2πKN
m,l = − (m1 + �1)

2m1�1

|m + �||m||�| + (m2 + �2)
2m2�2

|m + �||m||�|

+ (m1 + �1)
2m2�2

|m + �||m||�| − (m2 + �2)
2m1�1

|m + �||m||�| ,

(3.10)

where �1, �2 and m1, m2 are the components of � and m, respectively. Denote these sum-
mands by KN

m,�,(i), i = 1,2,3,4. Then, for i = 1,2, KN
m,�,(i)+KN−m−�,�,(i)+KN

m,−m−�,(i) = 0,
while

2π
(
KN

m,�,(3) +KN−m−�,�,(3) +KN
m,−m−�,(3)

) = 2m1�1m2�2 − m2
1�

2
2 − �2

1m
2
2

which cancels the corresponding term coming from KN
m,l,(4).

We next show that (3.6) and (3.7) are indeed the symmetric and antisymmetric part of LN .
The first claim follows directly from

E
[
D−kDkF (η)G(η)

] = E
[
DkF(η)G(η)η−k

] −E
[
DkF(η)D−kG(η)

]
,

which is a consequence of Gaussian integration by parts (see (2.11)), so that

E
[
LN

0 F(η)G(η)
] = −νN

2

∑
k∈Z2

|k|2E[
DkF(η)D−kG(η)

]

and the latter is clearly symmetric. For the antisymmetric part we compute

E
[
ηmη�D−m−�F (η)G(η)

] = E
[
ηmη�η−m−�F (η)G(η)

] −E
[
F(η)D−m−�

(
G(η)ηmη�

)]
.

Notice that, summing up over �,m ∈ Z2
0, the first term on the right-hand side drops out for

the same reason as in the proof of stationarity. We can apply the Leibniz rule to the second
and, recalling that we chose η(e0) = 0, we get

E
[
ANF(η)G(η)

] = −λN

∑
m,�∈Z2

KN
m,�E

[
ηmη�F (η)D−m−�G(η)

] = −E
[
F(η)ANG(η)

]
,

so that the proof is concluded. �

REMARK 3.2. Let us point out that the reason why the invariant measure is a spatial
white noise is hidden in the algebraic identity (3.9). In particular, if Q where of any form
different from λdiag(1,−1), for some λ ∈ R, the proof above fails, and an explicit invariant
measure is currently unknown.

REMARK 3.3. The previous lemma provides the second advantage of our approximation
scheme, namely, the fact that the invariant measure of uN is independent of N . If we decided,
in addition to smoothing the nonlinearity, to cut the high-Fourier modes of the space-time
white noise ξ appearing in (3.1) (i.e., replace ξ by 
Nξ ), so that uN

k ≡ 0 for every k with
|k|∞ ≥ N , then the same proof shows that the invariant measure would be 
Nη.

Global in-time solutions to (3.1) are a consequence of the following proposition.
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PROPOSITION 3.4. For any deterministic initial condition uN(0) = {uN
k (0)}k∈Z2

0
, the

solution t �→ uN(t) = {uN
k (t)}k∈Z2

0
of (3.3) exists globally in time.

PROOF. For |k|∞ > N , this is obvious. For |k|∞ ≤ N , (3.3) is a system of coupled SDEs
driven by complex Brownian motions. Since the drift is locally Lipschitz continuous, local
existence and uniqueness is classical, and we only need to guarantee that the solution does
not explode for any deterministic initial condition. For this we can proceed as in [20], Sec-
tion 4. Let {uN

k (0)}|k|∞≤N ⊆ R be the initial condition and {uN
k (t)}|k|∞≤N be the local in

time solution to the system (3.3). By applying Itô’s formula to AN(t)
def= ∑

|k|≤N |uN
k (t)|2, we

obtain

dAN(t) =
(
− ∑

|k|≤N

|k|2∣∣uN
k (t)

∣∣2 + λN

∑
|k|≤N

NN
k

[
uN(t)

]
uN−k(t) + CN

)
dt

+ ν
1
2
N

∑
|k|≤N

|k|uN
k (t)dB−k(t),

where CN
def= νN

2
∑

|k|∞≤N |k|2 ≤ N4. Since the first term on the right-hand side is nonpositive
and the second vanishes by (3.4), we can conclude that the process t �→ ∑

|k|∞≤N |uN
k (t)|2 is

almost surely bounded on compact time intervals. Hence, we can conclude. �

Similarly to [24], we want to improve our understanding of the generator associated to uN .
More specifically, we would like to know how LN acts on elements of L2(η) and ensure
that LN is reasonably well behaved when applied to elements belonging to a homogeneous
Wiener chaos.

For that, recall that the Fourier transform F maps �L2
n = L2

sym(T2n) (isometrically) into

�2((Z2)n), i.e. F(·) = ·̂ : L2
sym(T2n) → �2((Z2)n). Moreover, if O is an operator acting on (a

subspace of) L2(η), we will denote by O the operator on �L2 such that, for all ϕ ∈ �L2, one
has OI (ϕ) = I (Oϕ).

LEMMA 3.5. For any n ∈ N, the operator LN
0 leaves Hn invariant, AN maps Hn into

Hn−1 ⊕Hn+1 and one has, for any K ∈ �L2
n, the identity

LN
0 InK = νN

2
In�K.(3.11)

Moreover, one can write AN =AN+ +AN− , where AN+ increases and AN− decreases the order
of the Wiener chaos by one, that is, AN+ : Hn → Hn+1 and AN− : Hn → Hn−1, and their
action in Fock space representation, denoted by AN+ and AN− , respectively, satisfy

F
(
AN+K

)
(k1:n+1) = nλNKN

k1,k2
K̂(k1 + k2, k3:n+1),(3.12)

F
(
AN−K

)
(k1:n−1) = 2n(n − 1)λN

∑
�+m=k1

KN
k1,−�K̂(�,m, k2:n−1),(3.13)

where we used the shorthand notation k1:n+1 = (k1, . . . , kn+1). Finally, the operator −AN+ is
the adjoint of AN− in L2(η).

PROOF. It suffices to show (3.11), (3.12) and (3.13) for a kernel of the type K = ⊗n h

for some h ∈ H , since symmetric functions in L2(T2n) can always be written as a linear
combination of functions of the previous type. As a consequence of (2.1) and the fact that
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Hermite polynomials satisfy H ′
n = Hn−1 (see [35], equation (1.2)), the Malliavin derivatives

of stochastic integrals of such kernels can be written as

DkIn

( n⊗
h

)
= nIn−1

(n−1⊗
h

)
hk,

D−kDkIn

( n⊗
h

)
= n(n − 1)In−2

(n−2⊗
h

)
hkh−k.

We start by analysing LN
0 . To show (3.11), first note that

(3.14) I1(�h) = I1

(
− ∑

k∈Z2

|k|2hkek

)
= − ∑

k∈Z2

|k|2hkI1(ek) = − ∑
k∈Z2

|k|2hkη−k,

where the last equality follows from (2.1), and the fact that H1 is the identity. Using the above
observations and (2.2), we thus see that

− ∑
k∈Z2

|k|2η−kDkIn

( n⊗
h

)

= nIn−1

(n−1⊗
h

)
I1(�h)

= nIn

(n−1⊗
h ⊗ �h

)
+ n(n − 1)In−2

(n−2⊗
h

)
〈h,�h〉.

(3.15)

On the other hand, a similar calculation shows

∑
k∈Z2

|k|2DkD−kIn

( n⊗
h

)
= −n(n − 1)In−2

(n−2⊗
h

)
〈h,�h〉.

Hence, the second summand in (3.15) drops out, and we obtain the identity (3.11). For the
operator AN , proceeding as above, we see that

ANIn

( n⊗
h

)
= λNn

∑
�,m∈Z2

0

KN
�,mη�ηmIn−1

(n−1⊗
h

)
h−m−�

= λNnI2

( ∑
�,m∈Z2

0

KN
�,mh−m−�e−m ⊗ e−�

)
In−1

(n−1⊗
h

)
.

By the product rule (2.2), we get

ANIn

( n⊗
h

)
= λNnIn+1

(∑
�,m

KN
l,mh−�−m

(
e−l ⊗ e−m ⊗

n−1⊗
h

))

+ λN2n(n − 1)In−1

(∑
�,m

KN
�,mh�h−�−m

(
e−m ⊗

n−2⊗
h

))

+ λNn(n − 1)(n − 2)

(∑
�,m

KN
�,mh�hmh−�−m

)
In−3

(n−3⊗
h

)
.

Notice at first that the third summand disappears thanks to (3.9). Moreover, the first and sec-
ond summand, corresponding, respectively, to AN+In(

⊗n h) and AN−In(
⊗n h), live in Hn+1
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and Hn−1, respectively, and, upon taking the Fourier transform of the integrands, we imme-
diately obtain (3.12) and (3.13).

At last, AN− and −AN+ are adjoint to each other since AN =AN− +AN+ is an antisymmetric
operator on L2(μ) and, as noted above, one has AN− : Hn → Hn−1 and AN+ : Hn → Hn+1.
Indeed, if F(η) = ∑

n In(fn) and G(η) = ∑
n In(gn), then

E
[
AN+F(η)G(η)

] = ∑
n

E
[
AN+In(fn)In+1(gn+1)

]

= ∑
n

E
[
ANIn(fn)In+1(gn+1)

]

= −∑
n

E
[
In(fn)ANIn+1(gn+1)

]

= −∑
n

E
[
In(fn)AN−In+1(gn+1)

]

= −E
[
F(η)AN−G(η)

]
,

and the proof is concluded. �

4. Upper bounds and tightness of the approximating sequence. In this section we
want to show how to obtain suitable bounds (depending on the coupling constants λN and
νN ) on the time integral of (nonlinear) functionals of the solution uN of (3.1). The point we
want to make is that the technique exploited in [20] is sufficiently flexible to be able to handle
even cases in which the limiting equation is critical.

To get a feeling of the procedure followed in the aforementioned paper, consider a generic
functional F in the domain of the generator LN of the Markov process {uN(t)}t∈R+ solving
(3.3), whose symmetric and antisymmetric part, with respect to the invariant measure η, are
LN

0 and AN , respectively (see Lemma 3.1). The main idea is that the relation between the
forward and the backward processes (uN(t) and uN(T − t)) can be used in the representation
of F(uN) given by Dynkin’s (or Itô’s) formula (see (4.2) and (4.5)) in order to get rid of
both the boundary terms and the terms containing ANF(uN). In this way the time average
of LN

0 F(uN) can be expressed as the sum of two martingales (see (4.6)) which in turn can
be controlled via their quadratic variation. The latter is explicit and depends only on uN

evaluated at a single point in time. The knowledge of the invariant measure for the process is
then the key to obtain a bound on (moments of) the quadratic variation of these martingales
(see Lemma 4.1). At last, once estimates for quantities of the form

∫ T
0 LN

0 F(uN(s))ds are
available, analogous estimates for

∫ T
0 V (uN(s))ds, for more general functionals V , can be

consequently achieved if one is able to determine a solution F to the Poisson equation given
by

(4.1) LN
0 F = V.

In what follows we will first describe in more detail the strategy outlined above and then
show how we can take advantage of these techniques in the context of the anisotropic KPZ
equation.

Let F = F(t, ·) be a real-valued cylinder function depending smoothly on time. Thanks to
Itô’s formula (and the Fourier representation of uN given in (3.3)), we can write

(4.2) F
(
t, uN(t)

) = F
(
0, uN(0)

) +
∫ t

0

(
∂s +LN )

F
(
s, uN(s)

)
ds + ν

1
2
NMN

t (F ),
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where MN· (F ) is the martingale (depending on F ) defined by

(4.3) dMN
t (F ) = ∑

k∈Z2

(DkF )
(
t, uN(t)

)|k|dBk(t)

whose quadratic variation is

d
〈
MN(F)

〉
t = EN(F )

(
t, uN(t)

)
dt

def= ∑
k∈Z2

|k|2∣∣DkF
(
t, uN(t)

)∣∣2 dt,(4.4)

where the equality above is due to the fact that F is real valued.4 For fixed T > 0, it follows

from Lemma 3.1 that the backward process ūN (t)
def= uN(T − t) is itself a Markov process

whose generator is given by the adjoint of LN , (LN)∗ = LN
0 − AN . In particular, apply-

ing again Itô’s formula but this time on G(t, ūN(t)) for some cylinder function depending
smoothly on time, we get

G
(
t, ūN (t)

) = G
(
0, ūN(0)

) +
∫ t

0

(
∂s +LN

0 −AN )
G

(
s, ūN(s)

)
ds

+ ν
1
2
NM̄N

t (G),

(4.5)

where M̄N(G) is a martingale with respect to the backward filtration, generated by the pro-
cess ūN , and its quadratic variation is given by d〈M̄N(G)〉t = EN(G)(t, uN(T − t))dt . Sum-
ming up (4.2) and (4.5) with G(t, x) = F(T − t, x), one obtains the following analog of [20],
equation (10):

(4.6) 2
∫ t

0
LN

0 F
(
s, uN(s)

)
ds = ν

1
2
N

(−MN
t (F ) + M̄N

T −t (G) − M̄N
T (G)

)
.

The right-hand side of (4.6) can be bounded by the Burkholder–Davis–Gundy inequality; this
yields [20], Lemma 2, (which in turn was inspired by [9], Lemma 4.4) that we here recall.

LEMMA 4.1 (Itô-trick). For any p ≥ 2, T > 0 and cylinder function F = F(t, ·)
smoothly depending on time, the following estimate holds:

E
[
sup
t≤T

∣∣∣∣
∫ t

0
LN

0 F
(
s, uN(s)

)
ds

∣∣∣∣p
] 1

p

� ν
1
2
NT

1
2 sup

s∈[0,T ]
E

[∣∣EN(F )(s, η)
∣∣p

2
] 1

p .(4.7)

Moreover, in the specific case in which F(t, x) = ∑
i∈I eai(T −t)F̃i(x) where I is an index set,

ai ∈ R and Fi is a cylinder function for every i ∈ I , we have

E
[∣∣∣∣

∫ T

0

∑
i∈I

eai(T −s)LN
0 F̃i

(
uN(s)

)
ds

∣∣∣∣p
] 1

p

� ν
1
2
N

(∑
i∈I

(
e2aiT − 1

2ai

)
E

[∣∣EN(F̃i)(η)
∣∣p

2
] 2

p

) 1
2
.

(4.8)

In both cases the proportionality constant hidden in � is independent of both N and F . Here
and below, we use the symbol E to denote expectations with respect to the law of {uN(t)}t∈R+
and E for expectations with respect to the law of η.

4In case F were complex valued, then, instead of |DkF(t, uN (t))|2, we would have DkF(t, uN (t))D−kF (t,

uN (t)).
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REMARK 4.2. The crucial aspect of the previous lemma is that we are able to bound the
expectation of functionals of uN with respect to the space-time law of uN in terms of the
expectation with respect to the sole invariant measure, so that explicit computations become
indeed possible.

PROOF. The proof of (4.7) is that of equation (11) in [20], Lemma 2. The second bound
can be obtained following the proof of [20], Lemma 2, equation (12), and we provide the
details for completeness. Notice that, given t ∈ [0, T ] and F as in the statement, the left-hand
side of (4.8) is bounded from above by

E
[

sup
t≤T

∣∣∣∣
∫ t

0

∑
i∈I

eai(T −s)LN
0 F̃i

(
uN(s)

)
ds

∣∣∣∣p
] 1

p

= E
[
sup
t≤T

∣∣∣∣
∫ t

0
LN

0 F
(
s, uN(s)

)
ds

∣∣∣∣p
] 1

p

� ν
1
2
NE

[∣∣∣∣
∫ T

0
EN (

F(s, ·))(uN(s)
)

ds

∣∣∣∣
p
2
] 1

p

= ν
1
2
NE

[∣∣∣∣
∫ T

0

∑
i∈I

e2ai(T −s)EN(F̃i)
(
uN(s)

)
ds

∣∣∣∣
p
2
] 1

p

,

where for the first equality we used the fact that LN
0 acts only on the spatial variable, the

subsequent bound follows by Burkholder–Davis–Gundy inequality and the last comes from
the fact that d〈M·(F )〉t = ∑

i∈I e2ai(T −t)EN(F̃i)(u
N(t))dt . The right-hand side of the latter

is trivially bounded by
(∫ T

0

∑
i∈I

e2ai(T −s)E
[∣∣EN(F̃i)

(
uN(s)

)∣∣p
2
] 2

p ds

) 1
2

= ν
1
2
N

(∑
i∈I

∫ T

0
e2ai(T −s) dsE

[∣∣EN(F̃i)(η)
∣∣p

2
] 2

p

) 1
2
.

The equality comes from the fact that uN appears only evaluated at a single point in time,
and its law is that of η. By evaluating the integral we obtain (4.8). �

For any test function φ we are interested in uniform bounds of the linear and the nonlinear
part of (3.1) tested against φ, that is, on νN

2 η(�ϕ) and λNNN [η](ϕ), respectively. As men-
tioned above, they will be obtained by combining the Itô-trick, Lemma 4.1, with an explicit
solution of the Poisson equation.

Thanks to the Fourier representation of the nonlinearity given in (3.4), we can write
NN [η](ϕ) as a second order Wiener–Itô integral of the form

NN [η](ϕ) = ∑
�,m∈Z2

0

KN
�,mηlηmϕ−�−m = I2

( ∑
�,m∈Z2

0

KN
�,mϕ−�−me−� ⊗ e−m

)
.

Using (3.11), it is easy to see that the solution of the Poisson equation LN
0 HN [η](ϕ) =

λNNN [η](ϕ) is the cylinder function (clearly, depending on N ) given by

(4.9) HN [η](ϕ)
def= 2λNν−1

N

∑
�,m∈Z2

0

KN
�,m

|�|2 + |m|2 ηlηmϕ−�−m.
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On the other hand, the solution KN [η](ϕ) of LN
0 KN [η](ϕ) = νN

2 η(�ϕ) is, again by (3.11),
simply KN [η](ϕ) = η(ϕ). We are now ready to state and prove the following lemma.

LEMMA 4.3 (Energy estimates). Let T > 0 be fixed, ϕ ∈ H 1 and uN be the solution to
(3.1). Let NN be defined according to (3.2). Then, for any p ≥ 2, the following estimates
hold:

E
[

sup
t≤T

∣∣∣∣
∫ t

0
λNNN [

uN(s)
]
(ϕ)ds

∣∣∣∣p
] 1

p

�p T
1
2 λNν

− 1
2

N (logN)
1
2 ‖ϕ‖1,2,(4.10)

E
[
sup
t≤T

∣∣∣∣
∫ t

0

νN

2
uN(s,�ϕ)ds

∣∣∣∣p
] 1

p

�p T
1
2 ν

1
2
N‖ϕ‖1,2,(4.11)

where in both cases the implicit constant does not depend on ϕ, T and N .

PROOF. Let ϕ be a test function in H 1, and recall the solutions HN(ϕ) and KN(ϕ) of the
Poisson equations defined in (and directly below of) (4.9), so that with the aid of Lemma 4.1
the proof of (4.10) and (4.11) boils down to bounding the moments of EN(HN(ϕ))(η) and
EN(KN(ϕ))(η) with respect to the white noise measure. Since this measure is Gaussian and
both HN(ϕ) and KN(ϕ) live in a homogeneous Wiener chaos (of order 2 and 1, respectively),
by Gaussian hypercontractivity [28], Theorem 3.50, it suffices to bound the first moment of
EN(HN(ϕ))(η) and EN(KN(ϕ))(η). Let us begin with the former. Notice that

D�H
N [η](ϕ) = 2λNν−1

N

∑
k,j∈Z2

0

K̃N
j,k−jD�(ηjηk−j )ϕ−k,

where we set K̃N
�,m

def= (|�|2 + |m|2)−1KN
�,m. Now, D�(ηjηk−j ) = ηk−� in two cases, namely,

j = � and k − j = �, while if j = k − j = �, then D�(ηjηk−j ) = 2η� = 2ηk−�. Putting these
together, we get

D�H
N [η](ϕ) = 4λNν−1

N

∑
k∈Z2

0

K̃N
�,k−�ηk−�ϕ−k = 4λNν−1

N

∑
m∈Z2

0

K̃N
�,mηmϕ−�−m;

therefore,

EN (
HN(ϕ)

)
(η) = 16λ2

Nν−2
N

∑
�∈Z2

0

|�|2
∣∣∣∣ ∑
m∈Z2

0

K̃N
�,mηmϕ−�−m

∣∣∣∣2,

where we set K̃N
�,m

def= (|�|2 + |m|2)−1KN
�,m. Upon taking expectation, we get

E
∣∣EN (

HN(ϕ)
)
(η)

∣∣ = 16λ2
Nν−2

N

∑
�,m∈Z2

0

|�|2∣∣K̃N
l,m

∣∣2|ϕ−�−m|2

= 16λ2
Nν−2

N

∑
k∈Z2

0

|k|2
( ∑

�∈Z2
0

|�|2
|k|2

∣∣K̃N
�,k−�

∣∣2)
|ϕk|2,

(4.12)

where the first equality is a consequence of the fact that {ηm}m is a family of standard complex
valued Gaussian random variables such that E[ηmη�] = 1�+m=0 for l,m �= 0. In order to
bound the quantity in the parenthesis, recall (3.5), and set

(4.13) fk(z)
def= 1

4π2

c(z, k̃ − z)2

(|z|2 + |k̃ − z|2)2|k̃ − z|2 , k̃
def= k

|k| ,
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for z ∈ R2 and k ∈ Z2
0, and notice that |fk(z)| � g(z)

def= 1
|z|2 1|z|>1 + 1|z|≤1 uniformly in

k ∈ Z2
0 and z ∈ R2. Now, plugging in the definition of KN

�,k−�, we have

∑
�∈Z2

0

|�|2
|k|2

∣∣K̃N
�,k−�

∣∣2 = ∑
�∈Z2

0

1

|k|2 fk

(
�

|k|
)

�
∫
|z|≤N

g(z)dz � logN.

Therefore, we conclude that

E
[∣∣EN (

HN(ϕ)
)
(η)

∣∣p] 1
p � λ2

Nν−2
N logN‖ϕ‖2

1,2(4.14)

from which (4.10) follows.
The proof of (4.11) is straightforward, since in this case the quadratic variation of

M·(KN(ϕ)) is deterministic, and we have EN(KN(ϕ))(η) = ‖ϕ‖2
1,2. �

REMARK 4.4. At first sight, estimate (4.11) might come as a surprise. Indeed, if we take
νN ≡ 1 it shows that no matter how λN behaves as N ↑ ∞, the bound would provide tightness
for the sequence of approximations {uN }N in a suitable space of space-time distributions
(replace �ϕ with any ψ smooth in (4.11)). To understand this behaviour, consider, as an
example, the family of SDEs

dXN
t = −XN

t + CN

(
0 1

−1 0

)
XN

t dt + dBt,

where B is a two-dimensional Brownian motion. Thanks to the Itô trick, it is easy to see
that the time average of XN stays uniformly bounded, independently of the value of CN ,
thus giving tightness of XN in a space of distributions. That said, the time integral of XN

represents a poor description of its actual behaviour since, in case CN goes to ∞, XN is
oscillating increasingly fast, and the time integral simply converges to its average.

Lemma 4.3 suggests that, in order to control the nonlinearity in (3.1) uniformly in N , we
need to tune λN and νN in such a way that the logarithmic factor on the right-hand side of
(4.10) disappears. Let us define the integral in time of λNNN [uN ] as

(4.15) BN
t

[
uN ]

(ϕ)
def=

∫ t

0
λNNN [

uN(s)
]
(ϕ)ds

for any test function ϕ ∈ H 1. In the following theorem we show that, under this scaling,
the couple {(uN,BN [uN ])}N admits subsequential limits in a (product) space of continuous
functions in time with values in a space of distributions of suitable regularity.

THEOREM 4.5. Let T > 0; for N ∈ N, let uN be the stationary solution of (3.1) and BN

be the functional defined in (4.15). Let C > 0, and assume that λN and νN satisfy

(4.16) lim
N→∞

√
logN

4π2C
λNν

− 1
2

N = 1.

Then, the sequence {(uN,BN [uN ])}N is tight in C
γ
T Cα ×C

γ
T Cα for any γ < 1/2 and α < −2.

Moreover, if νN = 1 for all N ∈N, then the sequence {(uN,BN [uN ])}N is tight in CT Cα ×
CT Cβ for any α < −1 and β < −2.

REMARK 4.6. It is not surprising that, in case νN goes to 0, we can prove tightness only
in the same space where the space-time white noise lives. Indeed, although in this scenario
the noise disappears in the limit, we also lose the smoothing effect of the Laplacian, so that
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we cannot expect any regularisation coming from it. Since we are starting from a space white
noise η whose regularity is −1 − ε for any ε > 0, then, heuristically, power-counting sug-
gests that the regularity of the nonlinearity (and, consequently, of the limit of uN ) should be
−2 − 2ε.

PROOF OF THEOREM 4.5. Choose sequences of coupling constants λN and νN such
that (4.16) holds, let uN be the stationary solution of (3.1) and let BN be given by (4.15).
A natural way to establish tightness for a sequence of random processes is Kolmogorov’s
criterion which, in the present context, requires a uniform control over the moments of the
Cα × Cβ -norm of the time increments of (uN,BN [uN ]). Thanks to the Markov property and
the fact that uN is stationary for any N ∈ N, we have

E
[∥∥uN(t) − uN(r)

∥∥p
α

] = E
[
E

[∥∥uN(t) − uN(r)
∥∥p
α |Gr

]]
= E

[
EuN(r)[∥∥uN(t − r) − uN(0)

∥∥p
α

]]
= E

[∥∥uN(t − r) − uN(0)
∥∥p
α

]
,

where {Gr}r is the filtration generated by uN and the previous holds for all 0 ≤ r < t ≤ T .
An analogous computation can be carried out for BN [uN ], so that, for both, we can simply
focus on the case r = 0.

Now, in order to obtain uniform bounds on (uN(t) − uN(0),BN
t [uN ]) (clearly, BN

0 [uN ] =
0) in a Besov space we need to understand the behaviour of their Littlewood–Paley blocks.
For BN [uN ], we can immediately exploit Lemma 4.3 and, in particular, (4.10). Indeed, it
suffices to choose ϕ to be j th Littlewood–Paley kernel (j ≥ −1), so that

E
[∥∥�jBN

t

[
uN ]∥∥p

Lp(T2)

] =
∫
T2

E
[∣∣BN

t

[
uN ](

Kj(x − ·))∣∣p]
dx � t

p
2 λ

p
Nν

−p
2

N (logN)
p
2 22jp,

where Kj was defined above (1.11) and we used that ‖Kj‖2
1,2 ∼ ∑

|k|∼2j |k|2 ∼ 24j . Hence,
by Besov embedding (1.12) we have

E
[∥∥BN

t

[
uN ]∥∥p

α

]
� E

[∥∥BN
t

[
uN ]∥∥p

B
α+d/p
p,p

]
= ∑

j≥−1

2(α+d/p)jpE
[∥∥�jBN

t

[
uN ]∥∥p

Lp(T2)

]

� t
p
2 λ

p
Nν

−p
2

N (logN)
p
2

∑
j≥−1

2(α+d/p+2)jp,

and the latter sum converges if and only if α < −2 − d/p. Since the previous bound holds
for any p ≥ 2, by choosing the renormalisation constants λN and νN , according to (4.16),
Kolmogorov implies that {BN [uN ]}N is tight in C

γ
T Cα for any α < −2 and γ < 1/2.

We now focus on uN . By writing (3.1) in its mild formulation and convolving both sides
of the resulting expression with the j th Littlewood–Paley kernel (j ≥ −1), we obtain

�j

(
uN(t) − η

) = �j

(
P Nη(t) − η

) + λN�jP
NNN [

uN ]
(t)

+ ν
1
2
N(−�)

1
2 �jP

Nξ(t),

(4.17)

where P N is the fundamental solution of (∂t − νN

2 �)P N = 0 and, for any space-time distri-
bution f , P Nf denotes the space-time convolution between P N and f . At first we want to
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determine bounds on the pth moment of the Lp norm of the three summands on the right-
hand side. For the first, using Gaussian hypercontractivity of η, we have

E
[∥∥�j

(
P Nη(t) − η

)∥∥p

Lp(T2)

] =
∫
T2

E
[∣∣�j

(
P Nη(t) − η

)
(x)

∣∣p]
dx

�
∫
T2

E
[∣∣�j

(
P Nη(t) − η

)
(x)

∣∣2]p
2 dx

�
( ∑

k∈Z2
0

�j (k)
(
e− νN

2 |k|2t − 1
)2

)p
2

� t
κ
2 pν

κ
2 p

N 2jp(1+κ),

where the last bound is a consequence of the fact that �j is supported on those k ∈ Z2

such that |k| ∼ 2j and the geometric interpolation inequality, that is, 1 − e−νN |k|2t ≤
min{1, νN |k|2t} � (νN |k|2t)κ , valid for any κ ∈ [0,1] (applied above for κ̃

def= κ/2, κ ∈
[0,2]).

To treat the second summand in (4.17), we want to rewrite it in such a way that Lemma 4.1
is applicable. This is indeed possible since

λN�jP
NNN [

uN ]
(t, x) =

∫ t

0
LN

0 H̃N
(t,x)

(
s, uN(s)

)
ds,

where H̃N
(t,x) is the cylinder function depending smoothly on time defined by

H̃N
(t,x)(s, η)

def= ∑
k∈Z2

0

e− νN
2 |k|2(t−s)HN

k (η)�j (k)ek(x)

and HN
k is the kth Fourier component of the solution of the Poisson equation, that is,

HN
k = 2λNν−1

N

∑
�+m=k

KN
�,m

|�|2 + |m|2 ηlηm.

Hence, the Lp norm of the Littlewood–Paley block is controlled by

E
[∥∥λN�jP

NNN [
uN ]

(t, ·)∥∥p

Lp(T2)

]
=

∫
T2

E
[∣∣∣∣

∫ t

0
LN

0 H̃N
(t,x)

(
s, uN(s)

)
ds

∣∣∣∣p
]

dx

� ν
p
2
N

( ∑
k∈Z2

0

�j (k)

(
1 − e−νN |k|2t

νN |k|2
)
E

[∣∣EN (
HN

k

)
(η)

∣∣p
2
] 2

p

)p
2

� ν
p
2
N

( ∑
|k|∼2j

(
1 − e−νN |k|2t

νN |k|2
)
λ2

Nν−2
N logN |k|2

)p
2

� t
κ
2 p(

λNν
−1+ κ

2
N (logN)

1
2
)p2jp(1+κ),

where we went from the first to the second line via (4.8). We subsequently bounded the p/2-
moment of the energy through (4.14), and, in the last line, we used the same interpolation
inequality as above.



142 G. CANNIZZARO, D. ERHARD AND P. SCHÖNBAUER

For the last term in (4.17), we can apply once more Gaussian hypercontractivity, but this
time for the space-time white noise ξ , to get

E
[∥∥ν 1

2
N�jP

Nξ(t, ·)∥∥p

Lp(T2)

] =
∫
T2

E
[∣∣ν 1

2
N�jP

Nξ(t, x)
∣∣p]

dx

�
∫
T2

E
[∣∣ν 1

2
N�jP

Nξ(t, x)
∣∣2]p

2 dx

�
( ∑

|k|∼2j

(
1 − e−νN |k|2t ))p

2
� t

κ
2 pν

κ
2 p

N 2jp(1+κ),

where the last passage is again a consequence of the interpolation inequality.
Putting these three bounds together and applying the Besov embedding (1.12), we see that,

for any t > 0 and p ≥ 2, we have

E
[∥∥uN(t) − uN(0)

∥∥p
α

]
� E

[∥∥uN(t) − uN(0)
∥∥p

B
α+d/2
p,p

]
= ∑

j≥−1

2(α+d/p)jpE
[∥∥�j

(
uN(t) − uN(0)

)∥∥p
Lp

]

= t
κ
2 pν

κ
2 p

N

(
2 + (

λNν−1
N (logN)

1
2
)p) ∑

j≥−1

2jp(α+d/p+1+κ).

Now, notice that the last sum converges as soon as α < −1 − κ − d/p. Hence, if νN is a con-

stant independent of N and λN ∼ (logN)− 1
2 , we can conclude, by Kolmogorov’s criterion,

that the sequence {uN }N is tight in the space CT Cα , with α arbitrarily close to (but strictly
smaller than) −1. Otherwise, to take advantage of condition (4.16), we are forced to choose
κ = 1, and the sequence {uN }N is tight in C

γ
T Cα for all γ < 1/2 and α < −2. �

REMARK 4.7. The previous theorem guarantees that if λN and νN satisfy (4.16), then
the couple (uN,BN) converges (at least along a subsequence) to some limit (u,B). In case
that νN → 0, the energy estimate (4.11) of Lemma 4.3 implies that, for any test function
ϕ ∈ H 1, one has

ut(ϕ) − u0(ϕ) = Bt [u](ϕ).

Hence, a characterisation of the limit u is connected to a deeper understanding of the pro-
cess B. We are currently neither able to show that B is 0 nor are we able to define its law, so
we leave its study to future investigations.

We define the integral in time of the nonlinearity of the solution hN of (1.3), as

(4.18) B̃N
t

[
hN ]

(ϕ)
def=

∫ t

0
λNÑN [

hN(s)
]
(ϕ)ds.

Above, ϕ is a generic test function, and

(4.19) ÑN [
hN ] def= 
N

((

N∂1h

N )2 − (

N∂2h

N )2)
.

In the following theorem we prove joint tightness for the sequence {(hN, B̃N [hN ])}N .

THEOREM 4.8. Let T > 0, and, for N ∈ N, let hN be the solution of (1.3) started at 0

from η̃, where for all k ∈ Z2
0, η̃k

def= |k|−1ηk , η a space white noise and η̃0 = 0, and B̃N [hN ]
be defined according to (4.18). Let C > 0, and assume λN and νN satisfy (4.16).

Then, the sequence {(hN, B̃N [hN ])}N is tight in C
γ
T Cα+1 × C

γ
T Cα+1 for any γ < 1/2 and

α < −2. Moreover, if (4.16) is satisfied with νN (a constant that is independent of N), then
the sequence {(hN, B̃N [hN ])}N is tight in CT Cα+1 × CT Cβ+1 for any α < −1 and β < −2.
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PROOF. For α ∈ R, define Cα
0 as the set of functions in Cα whose 0th Fourier mode is 0.

Then, �1/2 is a homeomorphism between Cα
0 and Cα−1

0 . Since by definition (uN,BN [uN ]) =
(�1/2hN,�1/2B̃N [hN ]) and by Theorem 4.5 (uN,BN [uN ]) is tight in C

γ
T Cα ×C

γ
T Cα for any

γ < 1/2 and α < −2 (resp., CT Cα ×CT Cβ for any α < −1 and β < −2, if νN constant), then
the sequence (hN − hN(e0), B̃N [hN ] − B̃N [hN ](e0)) is tight in C

γ
T Cα+1 × C

γ
T Cα+1 (resp.,

CT Cα+1 × CT Cβ+1). Therefore, it suffices to focus on (hN(e0), B̃N [hN ](e0)). Notice also
that, since we chose η̃0 = 0, hN

t (e0) = B̃N
t [hN ](e0).

In order to show tightness for the 0th Fourier mode of hN , we want to again apply
Lemma 4.1. To do so, we need to solve the Poisson equation LN

0 H̃N
0 = λNÑN

0 . Notice that

ÑN
0 [η] = ∑

�∈Z2
0

c(�,−�)|η�|2

= ∑
�∈Z2

0

c(�,−�)
(|η�|2 − 1

) + ∑
�∈Z2

0

c(�,−�)

= I2

( ∑
�∈Z2

0

KN
�,−�e−� ⊗ e�

)
,

where, both here and below, the sum in � is restricted to |�| ≤ N and the last passage is a
consequence of the fact that, for every N ∈ N, we have

(4.20)
∑

�=(�1,�2)

c(�,−�) = − ∑
�=(�1,�2)

�2
2 + ∑

�=(�1,�2)

(�1)
2 = 0.

We can now proceed as in (4.9), so that we get

(4.21) H̃N
0 [η] = 2

2π
λNν−1

N

∑
�,m∈Z2

0
�+m=0

c(�,m)

(|�|2 + |m|2)|�||m|η�ηm

and

E
[
EN (

H̃N
0

)
(η)

] = ∑
k∈Z2

0

|k|2E[∣∣DkH̃
N
0 [η]∣∣2] = 16

4π2 λ2
Nν−2

N

∑
|k|≤N

c(k,−k)2

|k|6

which, by (4.7), implies

E
[∣∣hN

t (e0)
∣∣p] 1

p = E
[∣∣B̃N

[
hN ]

(e0)
∣∣p] 1

p � t
1
2 λ2

Nν−1
N logN

and tightness follows. �

REMARK 4.9. As opposed to the isotropic KPZ equation treated in [8], [17] and [10], in
the present context there is no average growth that needs to be subtracted in order to guarantee
the convergence of the approximation. This is due to the fact that the nonlinearity in (1.3) is
antisymmetric with respect to the change of variables R2 � (x1, x2) �→ (x2, x1), as can be
seen in (4.20).

5. Lower bounds and nontriviality. Throughout this section we will be assuming that,
for every N ∈ N, νN = 1, so that the only renormalisation constant that we allow to vanish
is λN . Notice that in this case the symmetric part of the generator LN , LN

0 , does not depend
on N , so we will simply denote it by L0.

We aim at obtaining lower bounds on functionals of the solution uN to (3.1) and to show
that any subsequential limit u is not trivial. By “trivial,” here we mean that u is the solution
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of the original equation without the nonlinearity, a scenario that could materialise in case λN

converges to 0 too fast.
To do so, we apply a technique, coming from particle systems (see [31]), which consists

in determining (and bounding) a variational formula for the Laplace transform of the integral
in time of a suitable functional of our process. We begin with the following lemma.

LEMMA 5.1. Let {uN(t)}t≥0 be the stationary solution to (3.1) and F ∈ L2(η). Then, for
every λ > 0, the following equality holds:

(5.1)
∫ ∞

0
dte−λtE

[(∫ t

0
F

(
uN(s)

)
ds

)2]
= 2

λ2E
[
F(η)

(
λ −LN )−1

F(η)
]
.

PROOF. Notice that we can rewrite the expectation at the left-hand side of (5.1) as

E
[(∫ t

0
F

(
uN(s)

)
ds

)2]
= 2

∫ t

0
ds

∫ s

0
drE

[
F

(
uN(r)

)
F

(
uN(s)

)]

= 2
∫ t

0
ds

∫ s

0
drE

[
F

(
uN(r)

)
E

[
F

(
uN(s)

)|Gr

]]
,

where G denotes the natural filtration of the process {uN(t)}t≥0. Now, uN is a Markov pro-
cess; it generates a semigroup, which we denote by {etLN }t≥0, and at any fixed time is dis-
tributed according to the law of η. Therefore, the right-hand side of the previous is equal
to

2
∫ t

0
ds

∫ s

0
drE

[
F(η)Eη[

F
(
uN(s − r)

)]] = 2
∫ t

0
ds

∫ s

0
drE

[
F(η)e(s−r)LN

F (η)
]

= 2
∫ t

0
dr(t − r)E

[
F(η)erLN

F (η)
]
.

Here, we use the symbol Eη to denote the expectation with respect to the law of the process
{uN(t)}t≥0 conditioned to start at t = 0 from η. Notice that the expectation in the last term
above does not depend on t , hence the Laplace transform of the last integral above equals

2
∫ ∞

0
dt

∫ t

0
dr(t − r)e−λ(t−r)

E
[
F(η)e−r(λ−LN)F (η)

]

= 2

λ2E

[
F(η)

∫ ∞
0

dre−r(λ−LN)F (η)

]
,

where the equality is obtained by simply changing the order of integration. The conclusion
now follows by applying the equality

∫ ∞
0 dre−r(λ−LN) = (λ −LN)−1. �

The advantage of the previous statement is twofold. At first, notice that, while in principle
the expectation at the left-hand side of (5.1) depends on the distribution of the solution at
different (at least two) points in time the right-hand side only depends on the law of the
invariant measure which is explicitly known. Moreover, even though it is hard, in general, to
invert the full generator (which is what seems to be required in order to exploit Lemma 5.1),
the expression on the right-hand side of (5.1) allows for a variational formulation which turns
out to be easier to manipulate.

This variational formula is given in [30], Theorem 4.1, and, below, we state it in the way
in which we will use it in the remainder of the section.
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LEMMA 5.2 (Variational formula). Let LN be the generator of the Markov process
{uN(t)}t≥0, and let L0 and AN , defined in (3.6) and (3.7), be its symmetric and antisym-
metric parts with respect to the white noise measure η. Let F ∈ L2(η), and denote by 〈·, ·〉η
the scalar product in L2(η). Then, for every λ > 0, one has〈

F,
(
λ −LN )−1

F
〉
η = sup

G

{
2〈F,G〉η − 〈

(λ −L0)G,G
〉
η

− 〈
ANG, (λ −L0)

−1ANG
〉
η

}
,

(5.2)

where G ranges over a fixed core of LN .

PROOF. The lemma is a direct consequence of [30], Theorem 4.1. Indeed, it suffices to
apply the first equality in [30], Theorem 4.1, twice so as to simplify the term ‖Ag‖2−1,λ (in
the notation of the reference). �

Thanks to the variational formula above, in order to obtain the lower bounds we are looking
for, it suffices to find one G for which the quantity in brackets in (5.2) is bounded from below
by a positive constant uniformly in N . The functional F , to which we will apply Lemmas 5.1
and 5.2, is the nonlinearity λNNN which, for fixed N , is a cylinder function belonging to a
fixed (the second) Wiener chaos.

Using the explicit expressions for LN
0 and AN and the decomposition of AN from

Lemma 3.5, we are indeed able to determine such a function G and, consequently, prove
the following proposition.

PROPOSITION 5.3. Let ϕ ∈ H 1 and NN be defined according to (3.2). Let C > 0, and
assume

(5.3) lim
N→∞

√
logN

4π2C
λN = 1.

Then, there exists a constant δ > 0 independent of N and ϕ, such that

(5.4) E
[
λNNN [η](ϕ)

(
λ −LN )−1

λNNN [η](ϕ)
] ≥ Cπδ‖ϕ‖2

1,2

for all λ > 0.

PROOF. First, we obtain a lower bound of the right-hand side of (5.2) by restricting the
supremum to (smooth) random variables living in H2, the second homogeneous Wiener chaos
of η. With this choice, since, by Lemma 3.5, AN =AN+ +AN− and AN+ maps H2 to H3 while
AN− maps H2 to H1, the quantity inside the brackets can be rewritten as

2
〈
λNNN(ϕ),G

〉 − 〈
(λ −L0)G,G

〉
η − ∥∥(λ −L0)

− 1
2AN+G

∥∥2
η

− ∥∥(λ −L0)
− 1

2AN−G
∥∥2
η,

(5.5)

where ‖ · ‖η
def= ‖ · ‖L2(η). Denote by (I), (II), (III), (IV) each of the summands in (5.5), so

that it equals 2(I) − (II) − (III) − (IV).
Notice that (I) is linear in G while the others are quadratic. In order to take advantage of

this fact, it suffices to determine a function GN , allowed to depend on N , such that, under the
scaling (5.3), (II)–(IV) are bounded uniformly, while (I) is bounded uniformly from below
by a positive constant.
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Hence, let δ > 0 be a constant to be fixed later, and take G to be the solution of the Poisson

equation (4.9) with νN = 1, multiplied by δ, that is, G(η)
def= δHN [η](ϕ). Then, we have

(I) = 〈
λNNN(ϕ), δHN(ϕ)

〉
η = 4δ

∑
k∈Z2

0

|k|2
(
λ̃2

N

∑
�+m=k

1

|k|2
(KN

�,m)2

|�|2 + |m|2
)
|ϕ−k|2,

where λ̃N
def= λN/2π . Now, the quantity in brackets can be analysed with the same tools used

in the proof of (6.2), so we address the reader to the section below for the details and, here,
limit ourselves to outline the procedure and highlight the main steps. By a Riemann sum
approximation we have

λ̃2
N

∑
�+m=k

1

|k|2
(KN

�,m)2

|�|2 + |m|2

= λ̃2
N

∑
|�|,|k−�|≤N

c(�, k − �)

|�|2|k − �|2(|�|2 + |k − �|2)

= λ̃2
N

∑
|�|,|k−�|≤N

1

|k|2 f̃k

(
�

|k|
)

≈ λ̃2
N

∫
5
2 ≤|x|≤ N

|k|

c(x, k̃ − x)2

|x|2|k̃ − x|2(|x|2 + |k̃ − x|2) dx,

where f̃k(x) coincides with the integrand in the last term of the previous equality and k̃ =
k/|k|. Since k̃ has norm one, let θk ∈ [0,2π) be such that k̃ = (cos θk, sin θk). Then, passing
to polar coordinates and neglecting all terms in the integral which are uniformly bounded in
N (since they are then killed by the vanishing constant λ̃N ), the previous is approximated by

λ̃2
N

4

∫ 2π

0

∫ N
|k|

5
2

r cos2(2θ)

(r − cos(θ − θk))2 dr dθ

≈ 1

4

∫ 2π

0
cos2(2θ)

(
λ̃2

N log
(

N/|k| − cos(θ − θk)

5/2 − cos(θ − θk)

))
dθ

N→∞−→ C
π

4
,

which implies that, as N goes to ∞,

(5.6) (I) ∼ δC(I)‖ϕ‖2
1,2,

where C(I)
def= Cπ . For (II), notice that, by definition of HN(ϕ), as N → ∞ we have

(5.7) (II) = δ2〈
(λ −L0)H

N(ϕ),HN(ϕ)
〉
η = λδ2∥∥HN(ϕ)

∥∥2
η − δ(I) ≈ −δ2C(I)‖ϕ‖2

1,2

locally uniform in λ. The last passage will be justified in detail in the proof of Corollary 6.3
where we will see that the L2(η)-norm of HN(ϕ) converges to 0 as N → ∞ (see (6.4)).

We can now focus on (III). By Lemma 3.5 the Fourier transform of the kernel (in Fock

space representation) of (λ −L0)
− 1

2AN+HN(ϕ) is given by

F
(
(λ −L0)

− 1
2AN+HN

ϕ

)
(�,m,n) = 4λ2

N

KN
�,mKN

�+m,nϕ−�−m−n

(λ + 1
2(|�|2 + |m|2 + |n|2)) 1

2 (|� + m|2 + |n|2)
,

where we denoted by HN
ϕ the kernel of HN(ϕ). Hence, we get

∥∥(λ −L0)
− 1

2AN+HN(ϕ)
∥∥2
η

�
∑
k∈Z2

0

(
λ4

N

∑
�+m+n=k

(KN
�,mKN

�+m,n)
2

(λ + 1
2(|�|2 + |m|2 + |n|2))(|� + m|2 + |n|2)2

)
|ϕ−k|2.
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By bounding brutally (KN
�,mKN

�+m,n)
2 � |k|2|n|−2, the quantity in brackets above can be

treated as

λ4
N

∑
�+m+n=k

(KN
�,mKN

�+m,n)
2

(λ + 1
2(|�|2 + |m|2 + |n|2))(|� + m|2 + |n|2)2

� |k|2λ2
N

∑
|n|≤N

1

|n|2 λ2
N

∑
|�|≤N

1

λ + 1
2(|�|2 + |m|2 + |n|2) ≤ |k|2

(
λ2

N

∑
|�|≤N

1

|�|2
)2

,

and the choice of λN guarantees that the previous is uniformly bounded by |k|2. Therefore,
there exists a constant C(III) > 0 independent of N , λ, ϕ, such that

(5.8) (III) ≤ δ2C(III)‖ϕ‖2
1,2.

It remains to study (IV). Again, by Lemma 3.5 the Fourier transform of the kernel (in Fock
space representation) of AN−HN(ϕ) is given by

F
(
AN−HN

ϕ

)
(k) = 4λN

∑
�+m=k

KN
k,−�F

(
HN

ϕ

)
(�,m) = 8λ̃2

N

∑
�+m=k

c(k,−�)c(�,m)

|�|2(|�|2 + |m|2)ϕ−k,

where, again, λ̃N
def= λN/2π . Let us observe the inner sum more carefully. Define K(�,m)

def=
c(�,m)(|�|2 + |m|2)−1 which is clearly symmetric in � and m. Then, by changing variables
in the sum (� → k − �) and using the fact that c is a symmetric bilinear form in its arguments
(the antisymmetry is only by swapping the coordinates of both variables) so that in particular
c(�,−m) = −c(�,m), we have

∑
�+m=k

c(k,−�)

|�|2 K(�, k − �)

= 1

2

∑
|�|,|k−�|≤N

(
c(k,−�)

|�|2 − c(k, k − �)

|k − �|2
)
K(�, k − �)

= −c(k, k)

2

∑
|�|,|k−�|≤N

K(�, k − �)

|k − �|2

+ 1

2

∑
|�|,|k−�|≤N

c(k, �)

(
1

|k − �|2 − 1

|�|2
)
K(�, k − �).

Now, since for any �, m, |K(�,m)| � 1 and |c(�,m)| ≤ |�||m|, it is immediate to see that the
first summand is bounded by |k|2 logN . For the second, by Taylor’s formula (holding at least
for |�| large enough, say |�| > 2|k|) we have∣∣∣∣ ∑

|�|,|k−�|≤N

c(k, �)

(
1

|k − �|2 − 1

|�|2
)
K(�, k − �)

∣∣∣∣ � |k|2 ∑
|�|≤N

1

|�|2 � |k|2 logN.

Exploiting (5.3) to get rid of the log divergence, it follows that there exists a constant C(IV) >

0 for which

∥∥(λ −L0)
− 1

2AN−HN(ϕ)
∥∥2
η = ∑

k∈Z2
0

|F(AN−HN
ϕ )(k)|2

λ + |k|2 ≤ C(IV)

∑
k∈Z2

0

|k|4|ϕ−k|2
λ + |k|2 ≤ C(IV)‖ϕ‖2

1,2

and, consequently,

(5.9) (IV) ≤ δ2C(IV)‖ϕ‖2
1,2.
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Collecting (5.6), (5.7), (5.8), (5.9), we see that (5.5) is bounded below by δC(I)(2 −
δC̃)‖ϕ‖2

1,2, where C̃
def= 2C−1

(I) max{C(I),C(III),C(IV)} − 1 and therefore, for any δ ∈ (0,

2C̃−1), (5.4) holds. �

As an immediate consequence of the previous proposition, we can show that the Laplace
transform of the integral in time of the (rescaled) nonlinearity of (3.1) is (uniformly) bounded
from above and below.

COROLLARY 5.4. For any N ∈ N, let uN be the solution of (3.1) and NN be the func-
tional defined by (3.2). Assume νN = 1 for all N , and the sequence of positive constants λN

satisfies the scaling relation (5.3). Then, there exists a constant δ > 0 such that, for any λ > 0,
ϕ ∈ H 1 and N ∈ N we have

(5.10)
δ

λ2 ‖ϕ‖2
1,2 ≤

∫ ∞
0

e−λtE
[(∫ t

0
λNNN [

uN(s)
]
(ϕ)ds

)2]
dt ≤ δ−1

λ2 ‖ϕ‖2
1,2.

PROOF. The proof of the lower bound in (5.10) is a direct consequence of Lemma 5.1
and Proposition 5.3. The upper bound instead follows by (4.10) in Lemma 4.3, upon taking
p = 2 and evaluating the Laplace transform of f (t) = t . �

In the following proposition we collect the results obtained so far and provide a description
of the limit points of the sequence uN .

PROPOSITION 5.5. For N ∈ N, let uN be the stationary solution of (3.1). Assume νN =
1, and the sequence of constants λN satisfies (5.3). Then, any subsequential limit (u,BN [u])
of {(uN,BN [uN ])}N satisfies

(5.11) ut(ϕ) − u0(ϕ) = 1

2

∫ t

0
us(�ϕ)ds +Bt [u](ϕ) + Bt(ϕ)

for any ϕ ∈ H 1, and Bt [u](ϕ) is a stationary stochastic process such that

(5.12) E
[
Bt [u](ϕ)2] ∼ t, as t → 0.

In particular, it has nonzero finite energy, as defined in (1.7).

PROOF. The validity of (5.11) is a consequence of Theorem 4.5, hence the only thing to
prove is that the process {Bt [u](ϕ)}t≥0 satisfies (5.12). Once the latter is established, we can
immediately conclude that the process has nonzero energy, and the fact that it is finite follows
by (4.10).

Now, for (5.12) we need the estimate (5.10), which clearly holds also for B·(ϕ), that is,

δ

λ2 ‖ϕ‖2
1,2 ≤

∫ ∞
0

e−λtE
[
Bt (ϕ)2]

dt ≤ δ−1

λ2 ‖ϕ‖2
1,2

and (4.10). Lemma B.1, whose proof is provided in Appendix B, allows us to conclude. �

REMARK 5.6. The previous proposition marks the difference between the one− and the
two-dimensional cases. Indeed, for d = 1, [20] shows that the solution of the KPZ equation
(or stochastic Burgers) is a Dirichlet process, that is, the sum of a martingale and a zero-
quadratic variation process. In particular, the integral in time of the nonlinearity converges
to a zero-quadratic variation process. In the two dimensional anisotropic case instead, the
relation (5.12) suggests that the integral in time of the nonlinearity should morally contain a
martingale part (hence, in particular, if it admitted quadratic variation, it would be nonzero)
whose understanding would represent the main step in the characterisation of the limit points.
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We conclude this section by stating (and proving) an analogous result at the level of the
anisotropic KPZ equation. In this context we show that, assuming the noise to have zero
average, the time increment of the average of the solution does not vanish, thus distinguishing
it from the solution of the stochastic heat equation X defined in (6.3).

THEOREM 5.7. For N ∈ N, let hN be the solution of the smoothened anisotropic KPZ
equation (1.3) and X̃ be the solution of the stochastic heat equation obtained by setting
λN = 0 in (1.3), both started at 0 from η̃, defined as in the statement of Theorem 4.8. Assume
that the constants νN and λN are such that νN = 1 and λN satisfies (5.3).

Then, any limit point {h(t, ·)}t≥0 of the sequence {hN }N is a stochastic processes different
in law from {X̃(t, ·)}t≥0.

PROOF. Let h be a limit point of the sequence {hN }N∈N and X̃ be the solution of the
stochastic heat equation. In order to prove the statement, it suffices to exhibit any observable
which is different for h and X̃. An observable easy to treat, considered also in [10], is the 0th
Fourier mode h0 and X̃0 of h and X, that is, their spatial average. Notice that, by construction
X̃0 = 0, while, by (1.3), one has hN

0 (t) = ∫ t
0 λNÑN

0 [hN(s)]ds. In Theorem 4.8 we have
shown that the right-hand side of the latter has finite moments of any order; therefore, by
[10], Lemma 9.7, (applied taking Bn = 0 for all n) it is enough to determine the existence of
a δ > 0 (a priori depending on t) for which

(5.13) E
[(∫ t

0
λNÑN

0
[
hN(s)

]
ds

)2]
> δ.

For this we will exploit the same strategy as in the proof of Proposition 5.3 and Corollary 5.4.
To be more precise, we consider the Laplace transform of E[(∫ t

0 λNÑN
0 [hN(s)]ds)2], to

which we apply Lemmas 5.1 and 5.2. In the variational problem we take G to be θH̃N
0 , where

θ is a positive constant and H̃N
0 is the solution of the Poisson equation L0H̃

N
0 (η) = λNNN [η]

obtained in (4.21). We now need to control the four terms in the brackets of the right-hand
side of (5.2). We treat the second summand as in (5.7), and, since AN−H̃N

0 = 0, we are left to
consider the first and the third, which give

〈
λNÑN

0 , H̃N
0

〉 = 2θλ̃2
N

∑
|�|≤N

c(�, �)2

|�|6
N→∞−→ 2θCπ

for λ̃N = λN/2π , while

∥∥(λ −L0)
− 1

2AN+H̃N
0

∥∥2
L2(η) = θ2λ̃4

N

∑
�+m=n

c(n,n)2

|n|6
c(�,m)2

(λ + 1
2(|�|2 + |m|2 + |n|2)|m|2|�|2

� θ2λ4
N

( ∑
|n|≤N

1

|n|2
)2

� θ2.

Hence, following the same steps as in the proof of Proposition 5.3, we conclude that there
exists t > 0 and δ > 0 (a priori depending on t) for which (5.13) holds and the proof is
concluded. �

6. Further consequences of the Itô trick. In this section we want to make some further
observation on the martingales appearing on the right-hand side of (4.6). This is done in order
to shed some light on the behaviour we might expect for these limit points and could represent
a starting point for their characterisation.
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We want to analyse the martingale associated to the solution of the Poisson equation (4.1)
for V given by λNNN [η](ϕ), where ϕ is some test function, say ϕ ∈ H 1. We define

(6.1) MN
t (ϕ)

def= ν
1
2
NMN

t

(
HN [

uN ]
(ϕ)

)
,

where the definition of the martingale MN on the right-hand side and HN(ϕ) can be found
in (4.3) and (4.9), respectively. In the following proposition we show that, upon choosing the
renormalising constants in such a way that the right-hand side of (4.10) is uniformly bounded
in the limit as N → ∞, MN

t (ϕ) converges to a Brownian motion.

PROPOSITION 6.1. Let ϕ ∈ H 1 and, for any N ∈ N, {MN
t (ϕ)}t≥0 be the martingale

defined in (6.1). Let C > 0 be a real constant for which (4.16) holds. Then, the sequence
of martingales {MN(ϕ)}N converges in distribution to a Brownian motion whose quadratic
variation is given by tQ(ϕ), where Q(ϕ) is defined as

(6.2) Q(ϕ) = 4Cπ‖ϕ‖2
1,2.

PROOF. According to [16], Theorem 7.1.4, since for every N the martingale MN(ϕ)

is continuous, the proof of the statement follows once we show that its quadratic variation
converges in probability to a deterministic function of time. Now, the quadratic variation of
MN(ϕ) is explicit and can be deduced by (4.4). The choice of the renormalisation constants
in (4.16) and (4.14) imply that 〈MN· (ϕ)〉 has bounded moments of all orders, so we are left
to prove that its variance vanishes in the limit N → ∞ and show (6.2). Notice that, by (4.12),
we have

E
[〈
MN· (ϕ)

〉
t

] = tνNE
[
EN (

HN(ϕ)
)
(η)

]
and

E
[〈
MN· (ϕ)

〉2
t

] 1
2 = νNE

[(∫ t

0
EN (

HN [
uN(s)

]
(ϕ)

)
ds

)2] 1
2

� tνNE
[
EN (

HN(ϕ)
)
(η)2] 1

2 ,

and we can compute the last expectation explicitly. Wick’s theorem for the product of Gaus-
sian random variables [28], Theorem 1.36, gives

ν2
NE

[
EN (

HN(ϕ)
)
(η)2] = ν2

N

(
E

[
EN (

HN(ϕ)
)
(η)

])2 + RN(ϕ),

where the remainder RN(ϕ) is given by

RN(ϕ)
def= 44λ4

Nν−2
N

∑
�1,�2∈Z2

0
k1,...,k4∈Z2

0

( ∏
i=1,2

j=1,...,4

|�i |K̃N
�i,kj−�i

)
ϕk1ϕ−k2ϕk3ϕ−k4(1A + 1B)

and, to shorten the notation, we set K̃N
�,m

def= (|�|2 +|m|2)−1KN
�,m, KN as in (3.5); the two sets

appearing at the right-hand side are A = {�1, �2, k1, . . . , k4 ∈ Z2
0 : k1 − �1 + k3 − �2 = 0 =

�1 −k2 +k4 −�2} and B = {�1, �2, k1, . . . , k4 ∈ Z2
0 : k1 −�1 +�2 −k4 = 0 = �1 −k2 +k3 −�2}.

The two terms can the treated similarly, so we will focus on the second. Brutally bounding
|K̃N

�i,kj−�i
| � |kj |(|�i ||kj − �i |)−1 and using that, when restricted to B , we can express �2 and
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k4 in terms of �1 and k1, k2, k3, respectively, we can estimate the above sum by

λ4
Nν−2

N

∑
k1,k2,k3∈Z2

0
k4=k3+k2−k1

4∏
i=1

|ki |
( ∑

�∈Z2
0

1

|k1 − k2 + �|2|�|2
)
ϕk1ϕ−k2ϕk3ϕ−k4

� λ4
Nν−2

N

∑
k1,k2,k3∈Z2

0
k4=k3+k2−k1

4∏
i=1

|ki |ϕk1ϕ−k2ϕk3ϕ−k4

� λ4
Nν−2

N ‖ϕ‖4
1,2,

where the passage from the first to the second line is due to the fact that the inner sum
converges while the second is a consequence of Young’s convolution inequality.

Therefore, collecting the observations made so far, we have

Var
[〈
MN· (ϕ)

〉
t

] = E
[〈
MN· (ϕ)

〉2
t

] − E
[〈
MN· (ϕ)

〉
t

]
� t2λ4

Nν−2
N ‖ϕ‖4

1,2.

Now, by (4.16), the right-hand side converges to 0 as N tends to ∞, for every t > 0. In
particular, by dominated convergence this means that 〈MN· (ϕ)〉t converges to the limit of
its expectation (i.e., to a deterministic function of time). Therefore, it remains to identify
limN E[〈MN· (ϕ)〉t ] for which we need to refine the estimates in the proof of Lemma 4.3. In
(4.12) we showed the following identity:

νNE
[
EN (

HN(ϕ)
)
(η)

] = 42
∑
k∈Z2

0

|k|2
(
λ2

Nν−1
N

∑
�∈Z2

0

|�|2
|k|2

∣∣K̃N
�,k−�

∣∣2)
|ϕk|2

and the part to control is the one in brackets. By Riemann-sum approximation we can rewrite
the latter (for k ∈ Z2

0 fixed such that |k| ≤ N ) as

λ2
Nν−1

N

∑
�∈Z2

0

|�|2
|k|2

∣∣K̃N
�,k−�

∣∣2 = λ̃2
Nν−1

N

∑
|�|,|k−�|≤N

c(�, k − �)2

|�|2(|�|2 + |k − �|2)

= λ̃2
Nν−1

N

∑
|�|,|k−�|≤N

1

|k|2 fk

(
�

|k|
)

≈ λ̃2
Nν−1

N

∫
3
2 ≤|x|≤ N

|k|

c(x, k̃ − x)2

|x|2(|x|2 + |k̃ − x|2)2
dx,

where fk was defined in (4.13) and k̃ = k/|k|, while λ̃N = λN/2π . Since k̃ has Euclidean
norm 1, let θk ∈ [0,2π) be such that k̃ = (cos θk, sin θk), so that, by passing to polar coordi-
nates (and exploiting basic trigonometric identities), the integral becomes

λ̃2
Nν−1

N

∫ 2π

0

∫ N
|k|

3
2

(r cos(2θ) − cos(θ + θk))
2

(2r2 − 2r cos(θ − θk) + 1)2 r dr dθ

≈ λ̃2
Nν−1

N

∫ 2π

0

∫ N
|k|

3
2

r cos2(2θ)

4(r − cos(θ − θk))2 dr dθ,

and the last approximation holds since the integrals, in which at the numerator r is raised to a
power smaller than 2, are uniformly bounded in N and therefore they converge to 0 because
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of the prefactor λ2
Nν−1

N . Now, adding and subtracting cos(θ − θk) cos2(2θ) at the numerator
and arguing, as above, we can further approximate the quantity above by

λ̃2
Nν−1

N

∫ 2π

0

∫ N
|k|

3
2

cos2(2θ)

4(r − cos(θ − θk))
dr dθ

= 1

4

∫ 2π

0
cos2(2θ)

(
λ̃2

Nν−1
N log

(
N/|k| − cos(θ − θk)

3/2 − cos(θ − θk)

))
dθ

N→∞−→ C
π

4
,

where in the last passage we used dominated convergence theorem and the proportionality
constant C > 0 in (4.16). Hence, we conclude that

E
[〈
MN· (ϕ)

〉
t

] N→∞−→ 4πCt‖ϕ‖2
1,2

which completes the proof. �

REMARK 6.2. Notice that the previous proposition allows to understand the behaviour
of the two martingales on the right-hand side of (4.2). In order to obtain a characterisation of
the limit points of the nonlinearity, we would need to understand the joint correlation between
them. The problem is not easy and out of reach of the techniques of the present paper.

As an easy corollary of the previous proposition, we show how to construct the time aver-
age of nonlinear unbounded functionals of the solution to the stochastic heat equation, purely
by martingale techniques. The stochastic heat equation we have in mind is the stochastic
PDE, whose expression is given by

(6.3) ∂tX = 1

2
�X + (−�)

1
2 ξ, X(0, ·) = η,

where ξ and η are, respectively, a space-time and a space white noise on T2. Existence and
uniqueness of a probabilistically strong solution is well known and a martingale characteri-
sation can be found, for example, in [34], Appendix D. We are now ready to state and prove
the following.

COROLLARY 6.3. Let X be the unique stochastic process solving the stochastic heat
equation (6.3) started at 0 from the stationary measure η, a space white noise on T2. As-
sume there exists C > 0 such that λN satisfies (5.3). Then, for any ϕ ∈ H 1, {BN

t [XN ](ϕ)}t≥0

converges in distribution to a Brownian motion independent from Bt(ϕ)
def= ∫ t

0 (−�)
1
2 ξ(ds, ϕ)

whose quadratic variation is given in (6.2).

PROOF. Let ϕ ∈ H 1 and HN [η](ϕ) be the solution of the Poisson equation determined
in (4.9). Notice that the generator of the process XN is L0 which coincides with LN

0 once
we choose νN = 1. HN(ϕ) is a cylinder function and, therefore (for N fixed), belongs to the
domain of L0. By Dynkin’s formula we have

HN [
X(t)

]
(ϕ) = HN [

X(0)
]
(ϕ) +

∫ t

0
L0H

N [
X(s)

]
(ϕ)ds + MN

t (ϕ),

where the martingale MN
t (ϕ) equals the right-hand side of (6.1) upon replacing uN by XN

(to see this, apply Itô’s formula to HN [X(t)](ϕ)). From the previous we deduce∫ t

0
λNNN [

X(s)
]
(ϕ)ds = HN [

X(0)
]
(ϕ) − HN [

X(t)
]
(ϕ) − MN

t (ϕ),



2D ANISOTROPIC KPZ AT STATIONARITY 153

so that it suffices to study the terms appearing on the right-hand side. Since the proof of
Proposition 6.1 does not depend on the law of uN as a process, but only on its invariant
measure, we conclude that {MN

t (ϕ)}t≥0 converges to a Brownian motion with the covariance
prescribed by the statement. Concerning the boundary conditions, notice that

E
[
HN [

X(t)
]
(ϕ)2] = E

[
HN [

X(0)
]
(ϕ)2] = E

[
HN [η](ϕ)2]

since X is started at the invariant measure. But now, by Wick’s theorem we have

(6.4) E
[
HN [η](ϕ)2]

� λ2
N

∑
k

|k|2 ∑
�+m=k

1

(|�|2 + |m|2)2 |ϕk|2 � λ2
N‖ϕ‖2

1,2

which converges to 0. Collecting the observations made so far, we see that {BN
t [XN ](ϕ)}t≥0

converges to a Brownian motion with the covariance prescribed by the statement.
Independence is a consequence of the fact that, for any N , BN

t [XN ](ϕ) belongs to the
second homogeneous Wiener chaos associated to ξ and η together. Hence, BN

t [XN ](ϕ) and
ξ are uncorrelated, and, since the former is bounded in Lp , their covariance also converges
to 0. Since the limit of BN

t [XN ](ϕ) is Gaussian and it is uncorrelated from ξ , the two are
independent. �

REMARK 6.4. The interest in the previous corollary is twofold. First, it provides an
example of a situation in which a deterministic ill-posed operation (in this case the AKPZ
nonlinearity NN ) when suitably rescaled and evaluated at a Gaussian measure, produces
a new noise independent from the one with which we started. Similar phenomena are ob-
served in situations in which the nonlinearity becomes critical (in terms of regularity) for
the equation and have been observed also in the context of the Isotropic KPZ equation; see
[8, 17].

On a different note, Corollary 6.3, provides a purely probabilistic construction of the first
(relevant) stochastic process one would need to analyse in the context of regularity structures
[26], also informally referred to as “cherry,” namely, ∂x(X

2), and (one of) the reason why the
theory is not expected to work if applied to the two-dimensional (A)KPZ. Indeed, without
entering the details, the approach is based on the ability of performing a partial expansion of
the solution around the solution of the linearised equation, in which the terms appearing can
be obtained via a Picard iteration and are increasingly more regular. The expansion is partial
since from some point on there is no more gain in regularity and a deterministic argument
needs to be invoked in order to conclude the fixed point argument.

Now, the problem here is that the Picard iteration does not provide any gain in regularity,
and, consequently, there is also no point where one could stop. Hence, one would end up with
an infinite series of stochastic processes, each of which could, in principle (as it happens for
the cherry), converge to a new white noise, potentially independent of the others, and there is
no hope for such a series to be summable.

APPENDIX A: AN ALTERNATIVE PROOF OF THE INVARIANCE OF THE SPATIAL
WHITE NOISE

In this section we give an alternative proof of Lemma 3.1 which boils down to give an
alternative proof of (3.9). To that end, it suffices to notice that the right-hand side of (3.9) is
simply the scalar product of the nonlinearity evaluated at η, that is, NN(η) and η itself. Let
�N be a function, such that �N

k = 1 for all k �= 0 such that |k| ≤ N and 0 elsewhere. Setting
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μN def= (−�)− 1
2 �N ∗ η, we have∑

m,l∈Z2
0

KN
m,lηmηlη−m−l = 〈

NN(η), �N ∗ η
〉

= 〈
(−�)

((
∂1μ

N )2 − (
∂2μ

N )2)
,μN 〉

=
2∑

i=1

〈
∂i

(
∂iμ

N )2
, ∂iμ

N 〉 + ∑
i,j∈{1,2}

i �=j

(−1)i
〈
∂i

(
∂jμ

N )2
, ∂iμ

N 〉

= 1

3

2∑
i=1

〈
∂i

(
∂iμ

N )3
,1

〉 + 2
∑

i,j∈{1,2}
i �=j

(−1)i
〈
∂iμ

N∂jμ
N∂i,jμ

N),1
〉
,

from which we see that the first sum is 0, since each summand is, while the second sum
vanishes because the two summands are the same but they have opposite sign.

APPENDIX B: LAPLACE TRANSFORM AND SHORT-TIME BEHAVIOUR

In this appendix we provide a proof of the following lemma.

LEMMA B.1. Let f : R+ → R+ be a continuous nonnegative function. Assume there
exist two strictly positive constants, c < C, such that

f (t) ≤ Ct for all t ≥ 0,(B.1) ∫ ∞
0

e−λtf (t)dt ≥ c

λ2 for all λ > 0,(B.2)

then, f (t) ∼ t as t converges to 0.

PROOF. Notice that it suffices to prove that lim supt→0 t−1f (t) > 0. We argue by contra-
diction. Assume limt→0 t−1f (t) = 0, so that for every ε > 0 there exists δ(ε) > 0 such that
for all t ≤ δ(ε), f (t) < εt . Let ε > 0 (to be fixed later) and a,λ > 0 be such that a/λ ≤ δ(ε).
Then, an easy computation shows that

∫ a/λ

0
e−λtf (t)dt ≤ ε

∫ a/λ

0
e−λt t dt = ε(1 − ae−a − e−a)

λ2 ≤ ε

λ2 ,

while, by (B.1), we have

∫ ∞
a/λ

e−λtf (t)dt ≤ C

∫ ∞
a/λ

e−λt t dt = C
(a + 1)e−a

λ2

which implies

∫ ∞
0

e−λtf (t)dt ≤ ε + C(a + 1)e−a

λ2 .

But now, if we choose ε = c/4, where c is the constant in (B.2), and a and λ sufficiently
large so that a/λ < δ(c/4) and C(a + 1)e−a < c/4, then, by (B.2), we obtain the desired
contradiction. �
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