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LIMITING ENTROPY OF DETERMINANTAL PROCESSES
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We extend Lyons’s tree entropy theorem to general determinantal mea-
sures. As a byproduct we show that the sofic entropy of an invariant determi-
nantal measure does not depend on the chosen sofic approximation.

1. Introduction. Let P = (p;;) be an orthogonal projection matrix, where rows and
columns are both indexed with a finite set V. Then, there is a unique probability measure np
on the subsets of V such that, for every F' C V, we have

np({B|F C BC V})=det(p;j)i,jer-

The measure np is called the determinantal measure corresponding to P [13]. Let Bf be a
random subset of V with distribution 1 p. In this paper we investigate the asymptotic behavior
of the Shannon entropy of BY, defined as

H(B")= > —P(B" = A)logP(B" = A).

Let Py, P>, ... be a sequence of orthogonal projection matrices. Assume that rows and
columns of P, are both indexed with the finite set V,,. Let G, be a graph on the vertex set V,,.
Throughout the paper we assume that the degrees of graphs are at most D for some fixed
finite D. Our main theorem is the following.

THEOREM. Assume that the sequence of pairs (G, P,) is Benjamini—Schramm conver-
gent and tight. Then,

. H(B™)

lim ——

exists.

Note that this theorem will be restated in a slightly more general and precise form as
Theorem 2.5 in the next section. We will also give a formula for the limit.

We define Benjamini—Schramm convergence of (G,,, P,) along the lines of [6] and [2] via
the following local sampling procedure. Fix any positive integer r; this will be our radius of
sight. For a vertex o € V,,, let B, (G, o) be the r-neighborhood of o in the graph G, and let
M, ., be the submatrix of P, determined by rows and columns with indices in B, (G, 0).
Then, the outcome of the local sampling at o is the pair (B,(G,, 0), M, ,,). Of course, we
are only interested in the outcome up to rooted isomorphism. Now, if we pick o as a uniform
random element of V,,, we get a probability measure p, » on the set of isomorphism classes
of pairs (H, M), where H is a rooted r-neighborhood and M is a matrix where rows and
columns are indexed with the vertices of H. We say that the sequence (G, P,) converges if
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for any fixed r the measures p, , converge weakly, as n tends to infinity. See the next section
for more details including the description of the limit object.

To define the notion of tightness, we introduce a measure v, on N U {oo} for each pair
(Gp, Py), as follows. Given k € N U {oo}, we set

_ 2
va((K) =1Val™" Y0 [Patu, )|,
u,vevVy,
d, (u,v)=k
where d,, is the graph metric on V,, = V(G,,). Then, the sequence (G,, P,) is tight if the
family of measures v, is tight, that is, for each ¢ > 0 we have a finite R such that

vi(fR+1,R+2,...}U{o0}) <e¢

for all n. Tightness makes sure that the local sampling procedure from the previous paragraph
detects most of the significant matrix entries for large enough r.

Note that a related convergence notion of operators was introduced by Lyons and Thom
[15]. We expect that their notion is slightly stronger but were unable to clarify this.

The idea of the proof of the main theorem is the following. Consider a uniform random
ordering of V,,. Then, using the chain rule for conditional entropy, we can write H (B*") as the
sum of |V,,| conditional entropies. We show that in the limit we can control these conditional
entropies. This method in the context of local convergence first appeared in [7].

Now, we describe a special case of our theorem. Consider a finite connected graph G, and
consider the uniform measure on the set of spanning trees of G. This measure turns out to be
a determinantal measure; the corresponding projection matrix Py (G) is called the transfer-
current matrix [9]. Since this is a uniform measure, the Shannon entropy is simply log t(G),
where 7(G) is the number of spanning trees in G. A theorem of Lyons [14] states that if G,
is a Benjamini—Schramm convergent sequence of finite connected graphs, then

log t(Gy)
im ————
n=oo |V(Gy)l

exists. This theorem now follows from our results, because it is easy to see that the sequence
(L(Gp), Py (Gp)) is convergent and tight in our sense, where L(G,) is the line graph of G,;
see Section 7. Note that we need to take the line graph of G, because the uniform spanning
tree measure is defined on the edges of G, rather than the vertices of G,. We also obtain a
formula for limit which is different from Lyons’s original formula. However, in practice it
seems easier to evaluate Lyons’s original formula.

Another application comes from ergodic theory. Let I be a finitely generated countable
group, and let 7 be an invariant positive contraction on £2(I"). Here, a linear operator is called
a positive contraction if it is positive semidefinite and has operator norm at most 1. Invariance
means that, for any y, g1, g2 € I', we have

(Tg1,8)=(T(v 'g1). v 'g)

Note that here we identify elements of I" with their characteristic vectors. Then, the determi-
nantal measure /17 corresponding to 7' gives us an invariant measure on {0, 1}'". Note that
there is a natural graph structure on I". Namely, we can fix a finite generating set S, and
consider the corresponding Cayley-graph Cay(I', §). When I" belongs to the class of sofic
groups, one can define the so-called sofic entropy of this invariant measure [1]. This is done
by first considering an approximation of Cay(I", §) by a sequence of finite graphs G, and
then investigating how we can model w7 on these finite graphs. In general, it is not known
whether sofic entropy depends on the chosen approximating sequence G, or not, apart from
certain trivial examples. However, in our special case our results allow us to give a formula
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for the sofic entropy which only depends on the measure w7, but not on the finite approxi-
mations. This shows that in this case the sofic entropy does not depend on the chosen sofic
approximation.

Observe that in our main theorem the graphs G,, do not play any role in the definition of the
random subsets B or the Shannon entropy H (B?"); they are only there to help us define our
convergence notion. This suggests that there might be a notion of convergence of orthogonal
projection matrices without any additional graph structure such that the normalized Shannon
entropy of B is continuous.

Structure of the paper. In Section 2 we explain the basic definitions and state our results.
In Section 3 we investigate what happens if we condition a Benjamini—Schramm convergence
sequence of determinantal measures in a Benjamini—Schramm convergent way. In Sections 4,
5 and 6 we prove the theorems stated in Section 2. In Section 7 we explain the connections
of our results and Lyons’s tree entropy theorem. The proof of a technical lemma about the
measurability of the polar decomposition is given in the Appendix.

2. Definitions and statements of the results.

2.1. The space of rooted graphs and sofic groups. Fix a degree bound D. A rooted graph
is a pair (G, 0) where G is a (possibly infinite) connected graph with degrees at most D;
0 € V(G) is a distinguished vertex of G called the root. Given two rooted graphs (G1, o)
and (G3, 07), their distance is defined to be the infimum over all ¢ > O such that, for r =
le~1], there is a root preserving graph isomorphism from B, (G, 01) to B,(G2,03). Let G
be the set of isomorphism classes of rooted graphs. With the above defined distance, G is
a compact metric space. Therefore, the set of probability measures P(G) endowed with the
weak* topology is also compact. A sequence of random rooted graphs (G, 0,) Benjamini—
Schramm converges to the random rooted graph (G, o), if their distributions converge in
P(G). Given any finite graph G, we can turn it into a random rooted graph U (G) = (G,, 0)
by considering a uniform random vertex o of G and its connected component G,,. A sequence
of finite graphs G, Benjamini—Schramm converges to the random rooted graph (G, o) if the
sequence U (G,) Benjamini—Schramm converges to (G, 0).

Let S be a finite set; an S-labeled Schreier graph is a graph where each edge is oriented and
labeled with an element from S. Moreover, for every vertex v of the graph and every s € §
there is exactly one edge labeled with s entering v, and there is exactly one edge labeled
with s leaving v. For example, if I" is a group with generating set S, then its Cayley-graph
Cay(I', §) is an S-labeled Schreier-graph. The notion of Benjamini—Schramm convergence
can be extended to the class of S-labeled Schreier-graphs with the modification that graph
isomorphisms are required to respect the orientation and labeling of the edges. Let I" be a
finitely generated group. Fix a finite generating set S, and consider the Cayley-graph Gr =
Cay(I', S). Let er be the identity of I'. We say that I" is sofic if there is a sequence of finite
S-labeled Schreier-graphs G, such that G, Benjamini—Schramm converges to (G, er).

2.2. The space of rooted graph-operators. Fix a degree bound D, and let K be a
nonempty finite set.

A rooted graph operator (RGO) is a triple (G, o, T), where (G, o) is a rooted graph and T
is a bounded operator on £2(V (G) x K). In this paper we will use real Hilbert spaces, but the
results can be generalized to the complex case as well. Note that to prove our main theorem
it suffices to only consider the case | K| = 1. The usefulness of allowing | K| > 1 will be only
clear in Section 5, where we extend our results to positive contractions.
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Given two RGOs (G, 01, T1) and (G2, 02, T»), their distance d((G1, o1, T1), (G2, 03, T»))
is defined as the infimum over all & > 0 such that, for » = [¢~!], there is a root preserving
graph isomorphism ¥ from B,(G1, 01) to B, (G2, 02) with the property that

(D (T2 (v, &), (', &) = (T2(¥ (), &), (¥ (v), K))| <&

for every v, v’ € V(B,(G1,01)) and k, k’ € K. Here, we identified elements of V(G;) x K
with their characteristic vectors in £2(V (G;) x K).

Two RGOs (G1, 01, T1) and (G2, 02, T») are called isomorphic if their distance is O or,
equivalently, if there is a root preserving graph isomorphism y from (G, 01) to (G2, 02)
such that

(11w, B, (', &) = (T2 (¥ (v), k), (¥ (v'), K))

for every v, v' € V(G1) and k, k' € K. Let RGO be the set of isomorphism classes of RGOs.
For any 0 < B < 00, we define

RGO(B) ={(G,0,T) e RGO||T| < B}.

One can prove that RGO(B) is a compact metric space with the above defined distance d.
Let P(RGO(B)) be the set of probability measures on RGO(B) endowed with the weak*
topology; this is again a compact space. Often, it will be more convenient to consider an
element P(RGO) as a random RGO.

A RGO (G, o, T) is called a rooted graph-positive-contraction (RGPC) if T is a selfadjoint
positive operator with norm at most 1. Then, the set RGPC of isomorphism classes of RGPCs
is a compact metric space. Therefore, P(RGPC) with the weak* topology is compact.

We need a slight generalization of the notion of RGO. An h-decorated RGO is a tu-
ple (G,o,T, AWM A(z),...,A(h)), where G, o and T are like above, AV, A@ . A®
are subsets of V(G) x K. Given two h-decorated RGOs (G, 01, Tj, A(ll), A(lz), cee Agh))

and (G, 02, T, Ag), Aéz), R Aéh) ), their distance is defined as the infimum over all ¢ > 0
such that for r = [¢~!] there is a root preserving graph isomorphism ¥ from B, (G, 01) to
B, (G, 0») satisfying the property given in (1). Fori =1,2,..., h, we have

¥ (AY N (B (G1,01) x K)) =AY N (B, (G2, 02) x K),

where ¥ (v, k) = (¥ (v), k).

Two h-decorated RGOs (Gy, o1, T1, Ail), e AY’)) and (Ga, 02, T3, Agl), e Aéh)) are
called isomorphic if their distance is 0. Let RGO, be the set of isomorphism classes of
h-decorated RGOs. We also define RGOy, (B) and RGPC), the same way as their nondeco-
rated versions were defined. With the above defined distance they are compact metric spaces.
Similarly as before, P(RGOp(B)) and P(RGPC;), endowed with the weak* topology, are
compact spaces. Whenever the value of / is clear from the context, we omit it and simply use
the term “decorated RGO.”

A finite graph-positive-contraction is a pair (G, T'), where G is finite graph with degrees
at most D and T is a positive contraction on 2(V(G) x K). It can be turned into a random
RGPC,

U(Ga T) = (G()a o, TO),

by choosing o as a uniform random vertex of G.

Note that all the definitions above depend on the choice of the finite set K. In most of the
paper we can keep K as fixed. Whenever we need to emphasize the specific choice of K, we
will refer to K as the support set of RGOs. Unless stated otherwise, the support set is always
assumed to be K. Let L C K, and let (G, o, T) be a RGO with support set K. Let Py, be the
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orthogonal projection from 2(V(G) x K) to £2(V(G) x L) C £2(V(G) x K). We define the
operator resty (7)) on 2(V(G) x L) asrest;(T) = P.T r£2(V(G)XL). So (G, o, rest;(T)) is
an RGO with support set L.

Sometimes, we need to consider more than one operator on a rooted graph. A double
RGO will mean a tuple (G, o, T1, T) where (G, o) is a rooted graph and 77, 7> are bounded
operators on £2(V (G) x K). We omit the details how the set of isomorphism classes of double
RGOs can be turned into a metric space. It is also clear what we mean by a decorated double
RGO, a triple RGO or a double RGPC.

2.3. Determinantal processes. Let E be a countable set and T be a positive contraction
of £2(E). Then, there is a random subset BT of E with the property that, for each finite subset
F of E, we have

P[F C BT]=det({Tx, ), yep
where we identify an element x € E with its characteristic vector in £2(E). The distribution
of BT is uniquely determined by these constraints, and it is called the determinantal measure
corresponding to 7' [13].

Using the definition of the random subset B”, we can define a map 7 : RGPC —
P(RGPC1) by ©(G,0,T) = (G,o0,T,BT). This induces a map t, : P(RGPC) —
P(P(RGPC1)). Taking expectation, we get the map Et, : P(RGPC) — P(RGPCy). So,
given a random RGPC (G, o, T), the meaning of (G, o, T, BT)is ambiguous. Unless stated
otherwise, (G, o, T, BT) will mean a random decorated RGPC, that is, its distribution is an
element of P(RGPC)).

PROPOSITION 2.1. The maps t, t, and Et, are continuous.

2.4. Trace and spectral measure. Given a random RGO (G, o, T), we define

Tr(G,0,T)=E Y (T(0,k), (0,k)).
keK

We extend the definition to the decorated case in the obvious way.
Given a random RGPC (G, o, T) its spectral measure is the unique measure L = [L(G,0,T)
on [0, 1] with the property that, for any integer n > 0 we have

1
Tr(G, o0, T") =f x"du.
0
Note that u ([0, 1]) = |K|. Also, if T is a projection with probability 1, then we have
w="Tr(G,o0,T)81 + (IK| — Tr(G, 0, T))o.

If (G, T) is a finite graph-positive-contraction, then the spectral measure of U (G, T') can be
obtained as

1 [V(G)xK]|

Sx; s
V)

where A1, A2, ..., Ay (G)x k| are the eigenvalues of 7" with multiplicity.
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2.5. An equivalent characterization of tightness. We already defined the notion of tight-
ness in the Introduction. Here, we repeat the definition in a slightly more general setting.
For a finite graph-positive-contraction (G, T')) we define the measure v, 1) on N U {oo} by
setting

ven () =V 3 T (v, k1), (2 k)
(v1,k1),(v2,k2)eV(G)x K
dg (vi,v2)=t

for all t e NU {oo}. A sequence (G, T,,) of finite graph-positive-contractions is tight if the
family of measures v(g,,7,,) is tight, that is, for each ¢ > 0 we have a finite R such that

V(G,l,Tn)({R +1,R+2,...}U {OO}) <é&

for all n. The next lemma gives an equivalent characterization of tightness.

LEMMA 2.2. Let (G, P,) be a Benjamini—Schramm convergent sequence of finite
graph-positive-contractions with limit (G, o, T). Assume that P1, P», ... are orthogonal pro-
Jjections. Then, the following are equivalent:

(1) The sequence (G, P,) is tight.
(i1) The limit T is an orthogonal projection with probability 1 and v, p,)({00}) = 0 for
every n.

PROOF. (i) = (ii): Recall the following well-known result.

PROPOSITION 2.3. Let E be a countable set, and let T be a positive contraction on
02(E). Then, for all e € E we have (T?e,e) < (Te,e). Moreover, if for all e € E we have
(T?e,e) = (Te,e), then T is an orthogonal projection.

Let (H,, 0,, T,) =U(G,, P,). Then,
(G, py(NU {00}) = | V(G| Te(PFP,) = |V(Gp) |~ Te(Py) = Te(Hy, 04, T}).

Combining this with the definition of tightness, we get that, for any ¢ > 0, we have an R such
that

) E 3 (T (0n, k), (v, k)| > Te(Hy, 00, Ty) — €
keK (v,k'YeBgr(H,,0,)x K

for every n.
Using the convergence of (H,, o,, T,;), we get that

lim Tr(H,,o0,,T,) =Tr(G,0,T)
n—>oo

and

JmEY 3T . (K

keK (v,k’)eBr(H,,0,)xK
2
=E). )N UCNONCNS)
keK (v,k')eBr(G,0)xK
Combining these with inequality (2), we get that

(G, 0. T =EY. Y [Tk, (v.K))

keK (v,k")eV(G)xK

>E ) 3 (T (0. k), (v.K'))|* = Tr(G, 0, T) —e.

keK (v,k')eBr(G,0)xK
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Tending to 0 with ¢, we get that
Tr(G, 0, T?) > Tr(G, 0, T).

Combining this with the first statement of Proposition 2.3, we get that with probability 1 we
have (Tz(o, k), (0,k)) = (T (0, k), (0, k)) for every k € K. But then it follows from the uni-
modularity of (G, o, T) that, with probability 1, we have (Tz(v, k), (v, k)) = (T (v, k), (v, k))
for any (v, k) € V(G) x K. See [2] and Section 3, Lemma 2.3 (Everything Shows at the
Root). Then, Proposition 2.3 gives us that T is a projection with probability 1. From the
definition of tightness, it is clear that v, ({oo}) = O for every n.

(i) = (i): Pick any & > 0. From the monotone convergence theorem and the fact that T is
a projection with probability 1, we have

Tr(G, 0, T) = Tr(G, 0, T?)

=EY, Y TR, k)]

keK (v,keV(G)xK

= lim E)" 3 (T (0, k), (v, K'))|>.

R
T keK (v,k)eBRr(G,0)xK

Thus, if we choose a large enough Ry, then we have

TG, 0, T) —E Y Y [Tk, k) < %

keK (v,k)eBgy(G.0)xK

Then, from the convergence of (H,, o,, T,,) we get that there is an N such thatif n > N, we
have

V(Gp Py ({R0 4 1, Ry 42, ...} U {o0})

= Tr(Hy, 00, T,) —E Y. 3 (T (0n. k), (v, K))[* <e.
keK (v,k/)eBRo(Hn,o,,)xK

Using the condition that v, p,)({oc}) = 0 for all n and the definition of v, p,), We get
that the support of the measure v(g,, p,) is contained in {0, 1, ..., |V (G,)[}. Thus, the choice
R =max(Ry, |V(G)|, [V(G2)I,...,|V(Gn)|) is good for e.

2.6. Sofic entropy. Let C be a finite set, and let I" be a finitely generated group. Let f be
arandom coloring of I" with C, that is, a random element of C". (The measurable structure of
C' comes from the product topology on C''.) Given a coloring f € CI and y € I, we define
the coloring f, by f,(g) = f (y~!g) forall g € I". This notation extends to random colorings
in the obvious way. A random coloring f is invariant if, for every y € I', the distribution of
fy 1s the same as the distribution of f.

Now, assume that I is a finitely generated sofic group, and f is an invariant random color-
ing of I". Let S be a finite generating set, and let G1, G,, ... be a sequence of S-labeled
Schreier-graphs Benjamini—Schramm converging to the Cayley-graph Gr = Cay(T, S).
Now, we define the so-called sofic entropy of f. There are many slightly different ver-
sions of this notion [3, 8]; we will follow Abért and Weiss [1]. Let G be a finite S-labeled
Schreier graph and g be a random coloring of V(G). Given ¢ > 0 and a positive inte-
ger r, we say that g is an (g, r) approximation of f on the graph G, if there are at least
(1 —¢)|V(G)] vertices v € V(G), such that B, (G, v) is isomorphic to B.(Gr, er). More-
over, drv(f | B,(Gr,er), g | B-(G,v)) < ¢, where drv is the total variational distance, and
it is meant that we identify B, (Gr, er) and B, (G, v). Let us define

H(g)
V(G|

H(G,¢e,r)= sup{ ‘g is an (e, r) approximation of f on G}.
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Here, H(g) is the Shannon entropy of g. Let H (e, r) be the supremum of H(G, ¢, r), over
all finite S-labeled Schreier graphs G. We define two versions of sofic entropy. The first one

h(f) =inflimsup H(Gy, ¢, r).
&7 p—oo

Note that this might depend on the chosen sofic approximation. Another option is to define
sofic entropy as

W (f)=inf H(e,r).

Observe that A'(f) > h(f). It is open whether h'(f) = h(f) for any sofic approximation
apart from trivial counterexamples. We can also express these quantities as

h(f)=inflimsup H(Gy. e, [¢7']) and A'(f)=infH (e, [¢7']).

The quantities A (f) and 4’ (f) are isomorphism invariants in the abstract ergodic theoretic
sense.

REMARK. Sofic entropy can be defined in a more general setting. Namely, let O be
a locally finite vertex transitive graph. Let o be any vertex of it. Assume that (Q,0) is a
Benjamini—Schramm limit of finite graphs. Let f be a random coloring of V (Q) with C such
that the distribution of f is invariant under all automorphisms of Q. We would like to de-
fine the sofic entropy of f the same way as above. The only problematic point is that in the
definition of (¢, r)-approximation we need to identify B, (G, v) with B, (Q, 0). But B,(Q, o)
might have nontrivial automorphisms, in which case there are more than one possible identi-
fications and it is not clear which we should choose. If all the automorphisms B, (Q, o) can
be extended to an automorphism of Q, then we can choose any identification because they all
give the same total variation distance. But if B, (Q, 0) has other automorphisms, then things
get more complicated. However, one can overcome these difficulties and get a sensible no-
tion of sofic entropy [1]. Here, we do not give the details; we just mention that Theorem 2.6,
stated in the next subsection, can be extended to this more general setting.

2.7. Our main theorems. Let E be a countable set and 7 be a positive contraction on
2(E). Let cbe a [0, 1] labeling of E. For e € E, let I (e) be the indicator of the event that
e € BT . For e € E, we define

he.c.T)=H(I@WI(Nle(f) <c(e)}).
Here, H is the conditional entropy, that is, with the notation
g(x)=—xlogx — (1 —x)log(1 — x),
we have
H(I@{I(NHle(f) <cle)}) =EgE[I(HI(Hle(f) <c(e)}]).
Moreover, we define
h(e,T) =Eh(e,c,T),

where c is an i.i.d. uniform [0, 1] labeling of E.
For a random RGPC (G, o, T') we define

h(G,0,T)=E > h((0,k),T).
keK

If L C K and (G, T) is a finite graph-positive-contraction, we define A7 (G, T) to be the
Shannon entropy of BT N(V(G) x L).
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THEOREM 2.4. Let (G,, P,) be a sequence of finite graph-positive-contractions, such
that lim,_, ., U(Gy, P,) = (G, o0, P) for some random RGPC (G,o, P). Assume that
Py, P, ... are orthogonal projections, and P is an orthogonal projection with probability 1.

hi(G,, P, 7
im LGP 6 rest(P)),

Using Lemma 2.2, we immediately get the following theorem.

THEOREM 2.5. Let (G, P,) be a tight sequence of finite graph-positive-contractions
such that lim,—. o U(Gy,, P,) = (G, o, P) for some random RGPC (G, o, P). Assume that
P1, Pa, ... are orthogonal projections. Let L C K. Then,

hp(Gy, P, -
im 2L(Cn Fu) h(G, o0, rest, (P)).
n=oo V(G|
Let I be a finitely generated sofic group. A positive contraction 7 on £2(I" x K) is called
invariant, if for any y, g1, g2 € I" and k1, k» € K we have

(T(g1.81), (g2, k) = (T (v 'g1, k1), (v ' g2, k2)).

For an invariant positive contraction if we regard the random subset B as a random col-
oring with {0, I}K , we see that BT is an invariant coloring. Thus, we can speak about its sofic
entropy.

As before let S be a finite generating set of I', let er be the identity of I' and Gr =
Cay(T", S) be the Cayley-graph of I".

THEOREM 2.6. Let I' be a finitely generated sofic group. If T is an invariant positive
contraction on £*(I' x K), then we have

h(BT) =1 (B") =h(Gr,er, T)

for any sofic approximation of I.

Note that we can easily generalize the definition of / to any invariant random coloring f.
It is known that, even in this more general setting, / is an upper bound on the sofic entropy.
However, / is not an isomorphism invariant in the ergodic theoretic sense. See [18].

The random ordering idea above was used by Borgs, Chayes, Kahn and Lovasz [7] to give
the growth of the partition function and entropy of certain Gibbs measures at high temperature
on Benjamini—Schramm convergent graph sequences. See also [4].

2.8. An example: Why tightness is necessary. We consider two connected graphs Hj
and H,. Let H; be the complete graph on four vertices, and let H> be the graph that is
obtained from a star with three edges by doubling each edge. Both have four vertices and
six edges. Let T; be a uniform random spanning tree of H;, and let P; be the correspond-
ing 6 x 6 transfer-current matrix. It is straightforward to check that, for any e € E(H;), we
have P(e € T;) = % Thus, in both P; and P, all the diagonal entries are equal to % Now, let
G; be the empty graph on the vertex set E(H;). Then, the pairs (G, P1) and (G», P») are
indistinguishable by local sampling, that is, U (G, P1) and U(G,, P>) have the same distri-
bution. On the other hand, H; has 16 spanning trees, and H; has only eight spanning trees. So
|V(G1)|_1H(BP1) #* |V(G2)|_1H(BP2). This shows that the condition of tightness can not
be omitted in Theorem 2.5. One could think that this only works because the graphs G and
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G, are not connected. But Theorem 2.5 still fails without the assumption of tightness, even
if we assume that all the graphs are connected. We sketch the main idea. Let i € {1, 2}. For
each n we consider a block diagonal matrix B; ,, where we have n diagonal blocks each of
which equal to P;. Then, we take a connected graph G; , on V; , (the set of columns of B; ;)
in such a way that if two columns are in the same block, then they must be at least at distance
d(n) in the graph G; , for some d(n) tending to infinity. Moreover, we can choose G; , such
that the sequences (G1,,) and (G2 ,) have the same Benjamini—Schramm limit (G, o). Then,
both of the sequences (G ,, B1,,) and (G2, ,, B2 ,) have the same limit, namely, (G, o, %1).
But their asymptotic entropy is different.

3. Unimodularity and conditional determinantal processes.

3.1. Unimodularity. We define birooted graph operators as tuples (G, o, o', T), where G
is a connected graph with degree bound D, 0,0’ € V(G) and T is a bounded operator on
2(V(G) x K). Let biRGO be the set of isomorphism classes of birooted graph operators.
We omit the details how to endow this space with a measurable structure. A random RGO
(G, 0, T) is called unimodular, if for any nonnegative measurable function f : biRGO — R
we have

E > f(G,ov,T)=E > f(G,v0,T).

veV(G) veV(G)
The next lemma gives some examples of unimodular random RGOs. The proof goes like

the one given in [6].

LEMMA 3.1. If (G, T) is a finite graph-positive-contraction, then U (G, T) is unimodu-
lar. The limit of unimodular random RGOs is unimodular.

Of course the notion of unimodularity can be extended to double/triple (decorated) RGOs.
We will use the following consequence of unimodularity.

LEMMA 3.2. Let (G,0,T,S) be a unimodular random double RGO. Assume that there
is a finite B such that ||T||, ||S|| < B with probability 1. Then,

Tr(G,0,TS) =Tr(G, o, ST).
PROOF. The proof is the same as in [2], Section 5. [J
It has the following consequences.

LEMMA 3.3. In the following statements we always assume that P and P; are all or-
thogonal projections with probability 1:

1. Let (G, 0, P1, P2, U) be a unimodular random triple RGO, such that with probability 1
we have U | ker P =0, and U | Im Py is an isomorphism between Im Py and Im P,. Then,

Tr(G, 0, P) = Tr(G, 0, P»).

2. Let (G, 0, P1, P2, T) be a unimodular random triple RGO, such that with probability 1
we have ImT Py =Im P, and T is injective on Im Py. Then,

Tr(G, o, P1) =Tr(G, o0, P).
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3. (Rank-nullity theorem) Let (G, o, P, Py, P, T) be a unimodular random quadruple
RGO, such that with probability 1 we have that Py is the orthogonal projection to ker(T |
Im P) and P, is the orthogonal projection to Im(T | Im P). Then,

Tr(G, o, P) =Tr(G, o, P) + Tr(G, o, P»).

PROOF. To prove part 1, observe that PiU*U = P; and U P{U* = P,. Note that all
operators have norm at most 1, so from Lemma 3.2

T(G, 0, P1) = Tr(G, 0, (PLU*)U) = Tr(G, 0, U(PiU*)) = Tr(G, 0, P2).

To prove part 2, let TPy = UH be the unique polar decomposition of 7 Py; then,
(G, o, P1, P, U Py) satisfies the conditions in part 1, so the statement follows. The rather
technical details why the polar decomposition is measurable are given in the Appendix. Note
that once we established the measurability of U, unimodularity follows from the uniqueness
of the decomposition.

To prove part 3, let H =Im P N (ker T | Im P)*. Let Py be the orthogonal projection
to H; then, we have P = Py + Py. Therefore, Tr(G, o, P) = Tr(G, o, P) + Tr(G, o, Pg).
It is also clear that ImT P = Im(7T | H) and T is injective on H. Thus, part 2 gives us
Tr(G, o, Py) =Tr(G, o, P>). Putting everything together, we obtain that

Tr(G, 0, P) =Tr(G, 0, P1) + Tr(G, o, Py) =Tr(G, o, P;) +Tr(G, 0, P>). O

3.2. Conditional determinantal processes. Let P be an orthogonal projection to a closed
subspace H of £2(E). Given C C E, let [C] be the closed subspace generated by ¢ € C, and
let [C]* be the orthogonal complement of it. Note that [C - =I[E \C]. We define P,c as the
orthogonal projection to the closed subspace (H N[C]+) 4 [C], and Py ¢ as the orthogonal
projection to the closed subspace H N [C]+. We also define P_c =1 — I —-P)c.

PROPOSITION 3.4.  We have P;c = Pxc + P|c), where P|c) is the orthogonal projection
to [C]. In other words, P/ce = e for e € C and P;ce = Pyce for e € E\C. Moreover, if C,
is an increasing sequence of subsets of E and C = UCy, then P,c, converges to P;c in the
strong operator topology. Furthermore, the sequence (Pxc,e, e) is monotone decreasing.

PROOF. The first statement is trivial. To prove the second statement, observe that Py,
is a sequence of orthogonal projections to a monotone decreasing sequence of closed sub-
spaces with intersection Im Py ¢, so Pxc, converge to Py c in the strong operator topology.
It is also clear that Pic,) converge to Picy, so from P,c, = Pxc, + Pic,) the statement fol-
lows. To prove the third statement, observe that (Pyxc,e, e) = ||chne||%. So the statement
follows again from the fact that Py, is a sequence of orthogonal projections to a monotone
decreasing sequence of closed subspaces. [l

For C, D C E we define P/c_p = (P/c)-p, and we define P_p,c = (P_p),c. We only
include the next lemma here to make it easier to compare formulas in [13] with our formulas.

LEMMA 3.5. Let P be an orthogonal projection to a closed subspace H. Then, for any
D C E we have

ImP_p=H + [D]N[D]".

Moreover, if C and D are disjoint subsets of E, then

ImP/c_p=(HN[C]Y)+[CUDIN[DI*
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and
Im P_p,c = (H +[DIN[C U DI*) +[C].

If C and D are finite, then the above formulas are true even if we omit the closures.

PROOF. We only prove the first statement. The other statements can be easily deduced
from it. Unpacking the definitions, we need to prove that

(H-N[D1Y) + D) =H +[DIN[D]*.

As a first step observe that H 4+ [D]N [D]+ = Im(Ppye I H).Indeed, if x € (Im PipjL I H),
then x = limx,, where for all n we have x,, € [D]* and there is an vn € [D] such that
Xn + yn € H. But then x,, = (x,, + y») — y» € H + [D] which implies that x € H + [D].
Clearly, x € [D]*, sox € H+[D]N[D]* .

To prove the other containment, let x € H + [D] N [D]+, then x = limx, where x, =
Yn + zn With y, € H and z,, € [D]. Since PpyL is continuous, we have

X = Ppjix =lim Pipyy1 (v + 20) = lim Pipyy1y, € Im(Pypye | H).
Now, it is easy to see that we need to prove that
(H-N[DI*) +[D]= (Im Ppy0 | H)..
First, let x € (Im P[D]L i H)l. Then, for any & € H we have
0= (x, Ppjrh) = (PpjLx, h)

which implies that Py x € H- N[D]*+. Thus, x = Ppjx + Pipx € (H-N[D]H) + [D].
To show the other containment, let us consider x = y + z such that y € H+ N [D]+ and
z € [D]. Then, for any & € H we have

(.x, P[D]J_h> = (P[D]J_x, h) = <y, h) = O,

because y € H.
For the last statement, see the discussion in the paper [13] after the proof of Corollary 6.4.
O

We have the following lemma; see [13], equation (6.5).

LEMMA 3.6. Let C and D be disjoint finite subsets of E such that P[BY N (C U D) =
Cl > 0. Then, P/c—p = P_p,c and, conditioned on the event, BP n(CuD)=C, the
distribution of B is the same as that of B¥/¢-D.

The lemma above shows why the pairs (C, D) of finite disjoint sets with the property that
P[B N (C U D) = C] > 0 are interesting for us. The next proposition gives an equivalent
characterization of these pairs:

PROPOSITION 3.7. Let C and D be disjoint finite subsets of E. Then, we have P[BF N
(CUD)=C]>0ifand only if Im Pic)P = [C] and Im Pp;({ — P) =[D].

This motivates the following definitions. A (not necessary finite) subset C of E is called
independent (with respect to P) if Im Pjc1P = [C]. A subset D of E is called dually inde-
pendent (with respect to P) if Im P;pj(I — P) =[D]. A pair (C, D) of subsets of E is called
permitted (with respect to P) if C and D are disjoint, C is independent and D is dually
independent.
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We will need the following theorem of Lyons [13], Theorem 7.2.
THEOREM 3.8. The pair (BY', E\B?) is permitted with probability 1.
We will also need the following statements.

PROPOSITION 3.9. If (C, D) is permitted, C' C C and D' C D, then (C’, D) is permit-
ted.

PROPOSITION 3.10. Assume (C, D) is a permitted pair. Then, D is dually independent
with respect to P;c, or, equivalently, D is independent with respect to I — Pc.

PROOF. By the definition of a permitted pair Im P;pj(/ — P) = [D], so it is enough to
show that Im Pip)(/ — P) C Im Pp|(I — P/c). Take any r € Im P;p)(I — P), then there is x
such that r = Pip)(I — P)x. Let y = P (I — P)x. We claim that y € Im(/ — P¢), or, in
other words, y is orthogonal to any element w € Im P,c. We can write w as w = wg + wi,
where wg € Im P N [C]+ and w; € [C]. We have

(v, wo) = (Pici (I = P)x, wo) = ((I — P)x, Picjwo) = ((I — P)x, wo) =0,

since wo € Im P. Moreover, (y, wi) = 0, because y € [C]* and w; € [C]. Thus, (y, w) =0,
so y is indeed in the image of I — P,c; then, P[p;y is in the image of P pj(/ — P/c). Using
that C and D are disjoint, Pip)y = Pp1Pjc1o(I — P)x = Ppj({ — P)x=r. [

Assume for a moment that E is finite, then |B”| = dimIm P with probability 1. If (C, D)
is a permitted pair, then the distribution of B*/¢-P is the same as that of B”, conditioned on
the event that BY N (C U D) = C. So |BY/¢-P| = dimIm P with probability 1. In particular,
E|BP| =E|Bf/c-P|. The next lemma extends this statement to the more general unimodular
setting.

LEMMA 3.11. Let (G, o, P, C, D) be a unimodular random decorated RGPC where P
is an orthogonal projection and the pair (C, D) is permitted with probability 1. Then,

Tr(G, 0, P) =Tr(G, 0, P/c—p) =Tr(G, 0, P_p/c)-
This can be obtained from combining Proposition 3.10 and the following lemma.

LEMMA 3.12. Let (G, o0, P, C) be a unimodular random decorated RGPC where P is
an orthogonal projection and C is independent with probability 1. Then,

Tr(G, 0, P) =Tr(G, 0, P/c).

We also have the corresponding dual statement, that is, let (G, o0, P, D) be a unimodular
random decorated RGPC where P is an orthogonal projection and D is dually independent
with probability 1. Then,

Tr(G, 0, P) =Tr(G, 0, P_p).

PROOF. We only need to prove the first statement, because the second one can be ob-
tained by applying the first statement to / — P.

Observe that ker(Picy [ ImP) = Im Pyxc from the definition of Pyc; moreover,
Im(Pic) [ Im P) = [C], because C is independent. Applying the rank nullity theorem
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(Lemma 3.3.3) and then using the fact P/c = Pxc + Pic] from Proposition 3.4, we get
that

Tr(G, 0, P) =Tr(G, 0, Pxc) + Tr(G, o, P[C])
=Tr(G, o, ch—I—P[C]):Tr(G,o, P/C)- O

The next lemma gives an extension of Lemma 3.6:

LEMMA 3.13. Let F C E, and assume that

(P/gprp—p\gre,€) =(P_p\pr/pPnre.e)
for all e € E with probability 1. Then, for any finite A C E we have

]P’(A C BP|BP [F) =IP’(A C BP/BPF\F—F\BP)‘

PROOF. Let Fy, F>, ... be an increasing sequence of finite sets such that their union is F'.
The crucial step in the proof is the following lemma.

LEMMA 3.14. Let (C, D) be a permitted pair, such that CUD = F.Then, (P;c_pe, e) <
(P_p/ce,e) for all e € E. Now, assume that (P/c_pe,e) = (P_p,ce,e) forall e € E. Let
us define P, = P;cnF,—pnF,. Then, BFYic-p js the weak limit of B'.

PROOF. Let A be a finite set such that A N F = &. Moreover, let A be an upwardly
closed subset of 24; thatis, if X CY C A and X € A, then Y € A. Using that determinantal
measures have negative associations ([13], Theorem 6.5), we get the following inequality for
m>n:

P[B"" N A e Al =P[BF/crm-r0in A € A] > P[BF/cnin-0rn 0 A € A.
Tending to infinity with m, we get that
3) P[B"" N A e A]>P[Bf/c-rrinn A e Al

To justify this last statement, let I/ be the set of orthogonal projections R such that D N F,, is
dually independent with respect to R. Combining Proposition 3.9 and Proposition 3.10, we
obtain that P,cng, and P,c are all contained in U. For R € U, the probability P[ B R-pnFn
A € A] is a continuous function of ({Re, f))., reaupnF,)- As we proved in Proposition 3.4,
P/cnF,, tends to P/c in the strong operator topology. Thus,
lim P[BY/cfn-00fn 0 A € A]=P[BY/c-P0 0 A € A
m— 00
This gives us Inequality (3).
Tending to infinity with n, we get that

liminfP[Bf" N A € A] > lim P[BY/c-P0fnn A e A]=P[BY/c-P N A € A.
n— 00 n— oo
A similar argument gives that

limsupP[Bf"N A e A] <P[BF-?/c N A e A

n—oQo
Therefore,
P[BP-2/c N A e A] > limsupP[BF" N A € A]
n—oo
4) > liminfP[Bf" N A € A]
n— oo

>P[BF/c-PnAe A
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These inequalities are, in fact, true without the assumption A N F = &. Indeed, let A C E be
finite and A be an upwardly closed subset of 24. We define A’ = A\ F and

A'={XCAIXUANC) e A}

Note that A’ is upwardly closed subset of 24,

Then, P[BY/c-P N A € A] =P[Bf/c-P N A’ € A’]. Moreover, for any large enough 7, we
have P[B” N A € A]=P[Bf» N A’ € A']. Clearly, A’ N F = @, so we reduced the problem
to the already established case.

Choosing A = {e} and A = {{e}} in (4), we get that (P,c_pe,e) < (P_p/ce,e) for all
e € E. Inequality (4) tells us that BP-P/c stochastically dominates BY/c-P. But if
(P/c—pe,e) =(P_p,ce,e) for all e € E, then the distribution of BP/c-p and BP-p/c must
be the same. Then, inequality (4) gives the statement. []

Let A be any finite set. We define the martingale X, by
X, =P[A c B"|B” | F,]=P[A c B"/sP0r-rnsP],

Combining the previous lemma with our assumptions on B”, we get that, with probability 1,
we have lim X,, =P[A C BP/BP”F*F\BP]. On the other hand, we have

lim X, =P[A c BY|B” | F].

The statement follows. [

LEMMA 3.15. Let (G,o0, P, F) be a unimodular random decorated RGPC where P is
an orthogonal projection with probability 1. Then, with probability 1, we have that, for any
finite set A C V(G) x K,

P(A C BY|B? | F) =P(A C B /sPor-rsP),

PROOF. From Lemma 3.14 we have that, foralle € V(G) x K,

(P/gprp—p\pre.€) < (P_p\pP/gPnFe,€).

From Lemma 3.11, we have Tr(G, o, P/grnp_p\gr) = Tt(G, 0, P_p\gr prap), Which im-
plies that, with probability 1, we have (P, grnp_p\gre, e) = (P_p\gr prape, e) for any
e € {o} x K, but then it is true for any e from unimodularity. (See [2], Lemma 2.3 (Every-
thing Shows at the Root).) Therefore, Lemma 3.13 can be applied to get the statement. [

The lemma above establishes Conjecture 9.1 of [13] in the special unimodular case. Note
that this conjecture is false, in general, as it was pointed out to the author by Russel Lyons.
Indeed, it follows from the results of Heicklen and Lyons [11] that for the WUSF on certain
trees, conditioning on all edges, but one does not (a.s.) give a measure corresponding to an
orthogonal projection because the probability of the remaining edge to be present is in (0, 1)
a.s.

3.3. Limit of conditional determinantal processes.

THEOREM 3.16. Let (Gp,o0p, Py, Cy, Dy) be a convergent sequence of unimodular
random decorated RGPCs with limit (G, o, P,C, D). Assume that P, and P are orthog-
onal projections and (C,, D,) and (C, D) are all permitted with probability 1. Then,
(Gn,on, (Py)/c,—D,) converges to (G,o, P/c—p).
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This will follow from applying the next lemma twice—first, for the sequence P,, then for
I — (P,),c with Dy in place of C,. At the second time, we need to use Proposition 3.10 to
show that the conditions of the lemma are satisfied.

LEMMA 3.17. Let (G,,o0n, Py, Cy, D) be a convergent sequence of unimodular ran-
dom decorated RGPCs with limit (G, o, P, C, D). Assume that P, and P are orthogonal
projections and Cy, C are all independent with probability 1. Then, (G, on, (Py);c,, Dn)
converges (G, o0, P;c, D).

PROOF. The presence of D, does not not add any extra difficulty to the problem, so, for
simplicity of notation, we will prove the following statement instead:

Let (G, 0n, Py, Cy,) be a convergent sequence of unimodular random decorated RGPCs
with limit (G, o, P, C). Assume that P, and P are orthogonal projections, C,, and C are all
independent with probability 1. Then, (G, on, (Py)/c,) converges to (G, o, P/c).

We start by the following lemma.

LEMMA 3.18. Let (G, 0p, Py, Cy) be a convergent sequence of decorated RGPCs with
limit (G, o0, P, C). Assume that P, and P are orthogonal projections, C,, and C are all in-
dependent and there is an r such that C,, C V(B,(G,,0,)) x K and C C V(B,(G,0)) x K.
Then, (G, on, (Py)xc,) converges to (G, o0, Pxc).

PROOF. Let us choose an orthogonal projection IT from a small neighborhood U of P.
If this neighborhood is small enough, then C is independent with respect to I1. For ¢ € C, we

have Iy e = e — Egizg Ic. Indeed, clearly TTe — ngfi [Ic € ImI1 N [{c}]+; moreover,
(Ie,c)

with the notation o = for any w € Im IT N [{c}]*, we have

(e, c)
(w, e — (TTe — aIlc)) = (w, (I — Me) + (w, allc) = (Mw, ac) = (w, ac) = 0.

By induction we get that

[Myce=1Ile — Z acllc.

ceC
Here, o, . is a continuous function of ({Ilx, y))x,yecufe} in the neighborhood U. The state-
ment can be deduced using this. [J

From compactness every subsequence of (G, 0y, Py, (Py)/c,, Cn) has a convergent sub-
sequence, so it is enough to prove the following lemma.

LEMMA 3.19. Let (Gy,o0p, Py, Cy) be a convergent sequence of unimodular random
decorated RGPCs with limit (G, o, P, C). Assume that P, and P are orthogonal projections,
Cyn and C are all independent with probability 1. If (G, on, Py, (Py)/c,, Cn) converges to
(G,0,P,Q,C),then (G, 0, Q) has the same distribution as (G, 0, P;c).

PROOF. Using Skorokhod’s representation theorem, we can find a coupling of (G, 0y,
Py, (Py)/c,,Cn) and (G, o0, P, Q, C) such that lim,, (G, 04, Py, (Pn)/c,. Cn) = (G, 0,
P, O, C) with probability 1. By definition there is a random sequence ri, rp, ... such that
lim,,_ 5o ', = 00 with probability 1, and there is a root preserving graph isomorphism v,
from B, (G, o) to B, (G, 0,) such that U (CN (B, (G,0)xK)) =C,N(B,,(Gn,0,) xK),
where ¥, (v, k) = (Y, (v), k) and, with probability 1 for each e, f € V(G) x K, we have

nliné.lO(Pnl}nev &nf) = (Pe, f)
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and
nll)IIgo((Pn)/C,, '&nes &nf) = (Qea f>

Of course, ¥,e only makes sense if 7 is large enough.
Let us define C,,(r) = C, N (B, (G,,0,) x K)and C(r) = C N (B, (G, 0) x K).
Lemma 3.18 gives us that, for any », we have

(3) nli)ngo((Pn)ch(r)lﬁn(e), lpn(f)) = (Pxce, f)-

Note that Im Py ¢ () is a decreasing sequence of subspaces with intersection Im Py c. So
Py c(r) converges to Py in the strong operator topology.
In particular, for any e, f € V(G) x K, we have

©) Jim (Pxcee. f) = (Puce. f)
and
(7 Jim ((Po) s,y ¥ (@), Yn () = ((Pa) xc, ¥n(€), ¥n (f)).

We need the following elementary fact.

LEMMA 3.20. Let a(r,n) be nonnegative real numbers such that, for any fixed n, the
sequence a(r, n) is monotone decreasing in r. Let A, =lim,_, oo a(r, n); assume that for any
fixed r the limit B, = limy,_,  a(r, n) exists. Then, limy,_, o A, < lim,_, o By, if these limits
exist.

Note that if e = f, then the limits in (6) and (7) are decreasing limits, as we observed in
Proposition 3.4. So the previous lemma combined with equation (5), gives us that, for any
e e V(G) x K, we have

nlingo«Pn)xC,ﬂLne, lﬁne) <(Pxce,e).
Combining this with Proposition 3.4, we get that
(8) (Qe,e) = nli}go((Pn)/c,, Une, Yne) < (Pjce, e).
On the other hand, from Lemma 3.12 we know that

E Y (0(0.k), (0,k))=Tt(G, 0, Q) = lim Tr(Gp,0n. (Pa)/c,)
keK
= nlirgoTr(Gn, On, Py) =Tr(G, 0, P) =Tr(G, 0, P/c)
=E > (P/c(0.k), (0,k)).
keK

From this and inequality (8) we get that (Q (0, k), (0, k)) = (P/c(0,k), (0, k)) forallk € K
with probability 1, so from unimodularity ([2], Lemma 2.3 (Everything shows at the root)) it
follows that

©) (Qe,e) = lim ((Pu)/c, ¥ne, Yne) = (P/ce, €)

for all e € V(G) x K with probability 1.
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Now, we prove that with probability 1 for every e, f € V(G) x K we have (Qe, f) =
(P/ce, f). This is clear if e € C, because in that case P;ce = Qe = e. So assume thate ¢ C,
then

[(Pice, ) —(Qe, f)| =|(Pxce. f) — (Qe, f)]
< [(Pxce, f) = (Pxcme f)]
+ [(Pxciye, £) = (P xc, i ¥ne, ¥u f)|
+ (P xcu ) ¥ne, Yn f) — ((Pa)xc, ¥nes ¥n £ )]
+[((Pa)xc, Wne, vin f) = (Qe, f].

Pick any ¢ > 0. If we choose a large enough r, then [(Pxce, f) — (Pxc@e, f)|l < €
and [(Pxc(re,e) — (Pxce,e)| < & from equation (6). Fix such an r. Then, if n is
large enough |( xcre f) — ((Pn)ch(r)lﬁ,,e, 1},,f)| < ¢ from equation (5), and also
[{(Py )chwne U f) — (Qe, f)| < ¢, because of Proposition 3.4 and the fact that e ¢ C.
Finally, observing that (P,)xc, ) — (Pn) xc, 1s an orthogonal projection, we have

|((Pn)><Cn(r)¢nea 1ﬁnf) - <(Pn)><C,, 1ﬁnea &nf)‘
= H(Pn)xcn(r)l/_/ne - (Pn)anl/_/neuz
= \/((Pn)xcn(r)&ne - (Pn)an &nev 1;_”ne>

= (|<(Pn)><C,l(r)1}ne, 1ﬁ}'z‘e) - (PXC(r)e, e>|
+ [(Pxcrye, e) — (Pxce, )|

T |(Pce,e) — ((Pa)cy imes Bnel]) .

Now, for a large enough n we haV_e {(Pn)xc, (r)xﬁne, 1/_/,,e) — (Pxcne,e)l <e from equa-
tion (5) and |[(Pxce, e) — ((Pn)xc, ¥ne, Yne)l = [(P/ce, e) — ((Pn)/c,¥ne, Yne)| < € from
line (9). Finally, [(Pxc (e, e) — (Pxce, e)| < & follows from the choice of r. Putting every-
thing together, [(P/ce, f) — (Qe, f)| < 3e + /3¢, so Lemma 3.19 follows. []

This completes the proof of Lemma 3.17 and Theorem 3.16. [

4. The proof of Theorem 2.4. First, we observe that we may assume that |V (G,,)| — oo.
If not, then we can take a large m = m(n) and replace G, with m disjoint copies of G, and
P, with the m fold direct sum of copies of P,.

Let (G, P) be a finite graph-positive-contraction, where P is an orthogonal projection.
Let m = |V(G) x L|. Fix an ordering e1, e3, ..., e, of the element of V(G) x L. Let E; =
{e1,e,...,e;}. For e € V(G) x L, let I(e) be the indicator of the event that ¢ € BY. Let
g(x) =—xlogx — (1 — x)log(1l — x). Using the chain rule for the conditional entropy and
Lemma 3.6, we obtain that

hi(G,P)y=H(I(e1),I(e2),...,I(en))

Z (IeisDI(e1). I(e2). ..., I(e)))

Il
||M|_ IL

Z P[BP N E; = C)g(Plei+1 € BY|IBP NE; =C))
CCE
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|
_

m
Eg(]ID[ei+1 = BP/(EiﬁBP)_(Ei\BP)])
0

i

—_

m

Eg(<P/(E,ﬂBP)—(E,-\BP)ei-l-l’ ei+1))-

Il
=}

i
Here, expectation is over the random choice of B

Instead of a fixed ordering of V (G) x L, we can choose a uniform random ordering. Taking
expectation, we get that

m—1

hL(G, P) = Z ]Eg((P/(EiﬂBP)—(E[\BP)ei"‘l’ ei+1>)7
i=0
where expectation is over the random choice of E; = {ej,e3,...,¢;} and BP. Note that

g(0)=g()=0,s0
g((P/(E,ﬂBP)—(Ei\BP)e, e)) =0

whenever e € E;. Also, note that ¢; 1 is a uniform random element of (V (G) x L)\ E;. From
these it follows that if e is a uniform random element of V (G) x L independent of E;, then

m
Ee((P, ». , &) =Eg((P) i1 ngPy_(F. i1, €
(10) m—i g((Pye,ner)—E\8 e €) =E8((P)E,npP)—(E\BP)€it1, €i+1)
<log?2.
Thus,
m—1 m
(G P) =) ——Eg((Pnpr)—E)\B7)e €)-
i=0

Let (G,o0, P)=U(G, P). Then,

m—1
m 1

hi(G.P)y= 3 ———TF3 g(Pygnsr-,5r)©.0). (0.0).

izom—iILl G
So

hi(G,P) "1

= E Y ¢((Pginpr)—(gn57) (0, 0), (0, D).
VG|  m—i EEZE (Przinsr)—en\87) )

For t € [0, 1), we define
Hi (G, P)=EY_ g((P/g,npr)—£5P) 0. ). (0, D)),
lel

where i = [tm], and E; is a uniform random i element subset of V (G) x L independent of
BP ando.Fori =0,1,...,m — 1, we have

i ) , , (+Dh/m HG. PVd
. . ’ ’ ’ = Ut | ’ t.
— g;g(( onry-eun© 0. 0.0) = [ m— L) )
Therefore
hi(G, P 1
an M:f — "™ H(G.P)dt.
IV (G)| 0o m— [tm]

Letm, = |V(G,) x L|. Recall that we observed at the beginning of the proof that we may
assume that |V (G, )| — oo. So we assume this.
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LEMMA 4.1. Let (G, P,) be the sequence given in the statement of the theorem. For
any t €10, 1) we have

nli)né.lo Ht(G”, Pn) =K Zg«P/(EtﬂBP)—(E[\BP)(O’ E), (0, E))),
tel

where E; is a Bernoulli(z) percolation of the set V (G) x L independent of B . Consequently,

lim —— " H,(Gp. Py) = —IE§ (P (0,0), (0, 0))).
im s = o, 0,
=00 m, — tmy] " 1 ZeLg /(ENBP)—(E/\BP)

PROOF. From Proposition 2.1 we have (G, 0,, Py, BP") — (G,o0, P, BP). It is straight-
forward to show that (G, on, Py, E|tm,|) — (G, 0, P, E;); here m,, = |V(G) x L| and
E\tm,| i1s a uniform [tm,]| element subset of V(G) x L independent of BFr. Then,
it follows that (G, on, Py, Ejsm,|» Bf") — (G,o0, P, E;, BY). But then with the no-
tations C, = Eym,] N B, C = E, N BY, D, = E\y,\B" and D = E\B?, we
have (G, on, Py, Cy, D) — (G, 0, P,C, D). It follows from Theorem 3.8 and Propo-
sition 3.9 that (C,, D,) and (C, D) are all permitted with probability 1. It is also
clear that (G,, oy, Py, Cp, D) are unimodular. Thus, applying Theorem 3.16 we get
that (G, on, (Py)/c,—D,) converge to (G, o0, P/c—p). We define the continuous map f :
RGPC — Ras f(G,0,P)=> 41 8(P(0, %), (0,£))). Then, from the definition of weak*
convergence we get that

nlggoEf(Gn, on, (Pp)/c,—p,) =Ef(G,0, P/c—p),

and this is exactly what we needed to prove. [J

From (10) we have 7H, (G, P) <log2 for any n and t. So combining equation (11)
L
and Lemma 4.1 with the dominated convergence theorem, we get that

hL(Gn, Pn) . 1 my
im —— = lim  —
n—o00 |V (Gp)l n—>00 Jo m, — [tmy]

1
= [ 1im —"  _H(G,. P,)dt
0 "= my, — [tmy]

1

1
“Jo 11 Zg P e,nBPy—(E\BP) (0, ), (0, 0))) dt

(12) Lel
1

= ! [P L E
0: [(0,0) ¢ E;]

H (Gp, Py)dt

X E[ ((P/(E[ﬂBP)—(Et\BP)(O’ 6), (0, £)>)|(0, E) ¢ Et]d[

/0 8({P/g,nBPY—(E\BP) (0, 0), (0, D)))[(0, ) ¢ E(]dt
LeL

Here, we used the law of total expectation and the fact that g((BPﬂErﬂBP —ENBP) (0, 1),
(0,2))) = 0 whenever (o0, £) € E;. Let ¢ be an i.i.d. uniform [0, 1] labeling of V(G) x L.
Observe that, conditioned on the event (o, £) ¢ E;, the distribution of E; is the same as the
distribution of {¢ € V(G) x L|c(e) < c(o, £)} conditioned on c(o, £) =t. Let I(e) be the
indicator of the event e € B™* . From Lemma 3.15 we get for £ € L

1
‘/(; E[g((P/(E,ﬂBP)—(E,\BP)(0’ E), (0, Z)))l(O, E) ¢ Et]dt

—f E(I (0, OI{I(F)If € Ei))l(0. 0) ¢ E/]dr
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1
= /0 E[g(E(I (0, OUI()lec(f) < c(o,0)}))lc(o, £) =t]dt

=E[g(E(I (0, O{I()lc(f) <c(o,D)}))] = Eh((o, £), resty, P).
Combining this with equation (12) we get Theorem 2.4.

5. Extension of Theorem 2.4 to positive contractions. To state the extension of The-
orem 2.4, we need another tightness notion. Let Ko D K be finite. A random RGPC
(Go, 0o, Tp) with support set Ko is called an Kq-extension of the random RGPC (G, 0, T)
with support set K, if (Go, 0g, restx (Tp)) has the same distribution as (G, o, T'). We say that
the extension is tight if Ty is an orthogonal projection with probability 1. A finite graph-
positive-contraction (Gg, Tp) with support set K is called an Kg-extension of the finite
graph-positive-contraction (G, T') with support set K, if G = G and restg To = T. We say
that the extension is tight, if Tp is an orthogonal projection.

Given a sequence of finite graph-positive-contractions (G, T,) with support K and a ran-
dom RGPC (G, o, T') with support set K, we say that lim U (G,, T,)) = (G, 0, T) p-tightly, if
there is a finite K9 D K and there are tight Ky-extensions (G, P,) of (G,, T,,) and a tight
Ko-extension (G, o, P) of (G, 0, T) such that imU (G, P,) = (G, o, P).

With these definitions we have the following extension of Theorem 2.4.

THEOREM 5.1. Let (G, T,) be a sequence of finite graph-positive-contractions such
that imU(G,, T;)) = (G, o0, T) p-tightly for some random RGPC (G, o0, T). Then,

hL(Gna Tn)

im =h1(G,o0,T).
nsoe V(G| ¢

PROOF. By the definition of tight convergence, there is a finite K9 D K, and there are
tight Kg-extensions (G, P,) of (G,,T,) and a tight Kg-extension (G, o, P) of (G,0,T)
such that limU (G, P,) = (G, o, P). Note that the distribution of B”» is the same as B N
(V(G) x K). S0 hp.(Gy, Ty) = hi(Gp, Py). Similarly, i1 (G,0,T) = h(G, 0, P). So from
Theorem 2.4

hL(Gn,Zn) . hL(Gnaln) T T
=1 =h;(G,0,P)=h;(G,o0,T).
Lam VG| = am V(G =hi(G,0,P)=hp(G,0,T) 0

We do not know whether the condition of p-tightness can be replaced with tightness in the
theorem above.
Later we will need the following proposition.

PROPOSITION 5.2. Let K C Ko, such that |Ko| = 2|K|. Any finite graph-positive-
contraction (G, T) has a tight Ky-extension (G, P).

PROOF. This is well known; see, for example, [13], Chapter 9. We include the proof for
the reader’s convenience. Let g (x) = /x(1 — x) on the interval [0, 1] and O otherwise. Using
functional calculus, we can define g (T') for every positive contraction. Then, the block matrix

p_( T a@
S \g(M) 1-T
gives the desired operator. [J

The Kp-extension given in the previous lemma will be called the standard Kg-extension
of (G, T). The standard Ky-extension of a random RGPC is defined in the analogous way.
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6. Sofic entropy: The proof of Theorem 2.6. Note that, for any graph G, the set of
random {0, 1}¥ colorings of V(G) can be identified with the set of random subsets of
V(G) x K. In this proof we use the random subset terminology.

As we mentioned in Section 2.7, the inequality A’ (BT) < l_z(Gp, er, T) is well known, but
we give the proof for completeness.

Let G be a graph and F be a random subset of V(G) x K. Let ¢ be a [0, 1] labeling
of V(G) x K. For e € V(G) x K, let I(e) be the indicator of the event that ¢ € F. For
(v, k) € V(G) x K, we define

h((v,k),¢e, F) = H(I (v, {I(V,K)]|c(v/, k) <c(v,k)}).
We also define
h((v, k), F) =Eh((v,k),c, F),

where c is an i.i.d. uniform [0, 1] labeling of V(G) x K.
Moreover, if r is an integer, then we define

hy((v, k), ¢, F) = H(I (v, )|{1(v,k)|c(v', k) < c(v,k) and (v, k') € B, (G, v) x K})
and
hy((v, k), F) =Eh,((v, k), ¢, F),

where c is an i.i.d. uniform [0, 1] labeling of V(G) x K.

Comparing these definitions with the definitions given in Section 2.7, we see that if F =
BT for some positive contraction T, then (v, k), F) = h((v, k), T). Thus, it is justified the
use the same symbol in both cases.

If ¢ is a [0, 1]-labeling such that the labels are pairwise distinct and G is finite, the chain
rule of conditional entropy gives us

H(F)= Y. h((.k),c,F).
w,k)eV(G)xK
Taking expectation over c, we get that
HF)= Y  «((.k),F).
W,keV(G)xK
Or, alternatively,
H(F)
V(G

=E > h((0,k), F),

keK

where o is a uniform random vertex of V(G).
Combining this with the well known monotonicity properties of conditional entropies, for
any integer » we have
H(F)
IV(G)I

=E > h((0.k), F) <E > hy((0.k), F).

keK keK

Note that &, ((0, k), F) only depends on the distribution of F N (B, (G, 0) x K). Therefore,
if F is an (g, r) approximation, then we have

HE) B S (o) F) < S hn((era 0. BT) 40y (o).
|V(G)| keK keK
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where 7, (¢) does not depend on G and 1, (¢) — 0 as € — 0. In particular,

H(e,r) < Y h((er.k). BT) +1,(e)
keK

tending to 0 with ¢ we obtain that

inf H(e,r) < > h((er. k), B).
¢ keK

But we have

lim > "y ((er. k), BY) =) h((er.k), BT).

keK keK
Thus, tending to infinity with r we get

h'(BT) <) h((er.k), B") =h(Gr,er,T).
keK
Now, let G1,G2,... be a sequence of finite S-labeled Schreier graphs Benjamini—
Schramm converging to (Gr, er). Let K C Ko such that |Kg| = 2|K|. Let P be the standard
Kp-extension of 7. Then, it is clear that P is an invariant operator on 2(V(Gr) x Kop).

LEMMA 6.1. There is a sequence of positive contractions R, on 2(V(G,) x Ko) such
that lim,_, oo U(Gy, Ry) = (Gr, er, P). Moreover, the spectral measures [, = [Ly(G,.R,)
weakly converge to |0 = (G er,P) = | K [(80 + 81).

PROOF. One can easily define a metric d’ on P(RGPC) such that for any sequence
of positive contractions R; on Ez(V(G,,) x Ko), we have that lim,_, o d' (U (G, R,),
(Gr, er, P)) =0 if and only if lim;,—,oc U (G, R,) = (Gr, er, P) and u, weakly converge
to w.

Thus, if the required sequence does not exist, then there is an ¢ > 0 and an infinite se-
quence ny <np < --- such that d'(U(Gp,;, Ry;), (Gr, er, P)) > ¢ for any i and any positive
contractions R, on KZ(V(Gni) x Kop).

We will now use the results of Lyons and Thom [15]. In their paper they are using ultra-
limits. However, by passing to a subsequence we may replace ultralimits by actual limits.
Thus, [15], Proposition 4.4, Lemma 4.7 and Remark 4.3, provide us a subsequence (m;) of
(n;) and positive contractions R,,; on EQ(V(Gmi) x Ko) such that lim; o U(Gp;, Ri;) =
(Gr,er, P) and u,,, weakly converge to w. Indeed, [15], Proposition 4.4, gives us the con-
vergence lim; oo U(Gp;, Ry;) = (Gr, er, P), and [15], Proposition 4.7, is used to make
sure R, is indeed a positive contraction. Finally, the convergence of spectral measures fol-
lows from [15], Remark 4.3.

Then, lim; oo d'(U(Gm;, Rp;), (Gr, er, P)) = 0 which contradicts to the choice of the
subsequence (n;).

Finally, observe that

Tr(Gr,er, P)=Tr(Gr,er,T) + Tr(Gr,er, I — T) = [K],
so the spectral measure u is indeed equal to |K|(6g + 61). U

Note that R, is not necessarily an orthogonal projection. Now, we modify R, slightly to
get an orthogonal projection. Let us define

1

X forO0<x < —,
w(x) = 2
x—1 forifxfl.
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Note that w is not continuous, but w? is continuous. Let (vi)l.‘;(lG") *Kol he an orthonormal
basis of EZ(V(G,,) x Ky), consisting of eigenvectors of R,, such that R,v; = A;v;. Let w(R,;)
be the unique operator such that w(R,)v; = w(i;)v; fori =1,2,...,|V(G,) x Ky|.

Then, P, = R, — w(R,) will be the orthogonal projection to the span of {v;|A; > %}.
Moreover,

lim E " [w(Ry)(o, k)||§: lim E Y (w(Ry)*(0,k), (0, k)
n—o00 keKo n—o0o KeKo

1 1
(13) = lim wzdunzf w?du
0 0

= |K|(w*(0) + w*(1)) =0.

Here, the expectation is over a uniform random vertex o of V(G,). This easily implies that
U(G,, R,) and U(G,,, P,) have the same limit, that is, lim U (G,,, P,,) = (Gr, er, P). (Note
that in the language of [15] the vanishing limit in (13) means that (R,) and (P,) represent
the same operator.) Now, using Theorem 2.4 we get that

H(BrestK (Py,))

N VGl Jim hg (Gn, Po)

=h(Gr, er,restg (P)) =h(Gr,er, T).

Now, for any ¢ and r for large enough 7, we have that B« (P2) is an (¢, r)-approximation
of BT because limy,— oo U (G, rest(P,)) = (Gr, er, T). So h(Gr, er, T) < h(BT) follows.

Putting everything together, we get that h(Gr,er,T) <h(BT) <h/ (BT) <h(Gr,er,T).
So Theorem 2.6 follows.

7. Tree entropy. Let G =(V, E) be alocally finite connected graph. Choose an orienta-
tion of each edge to obtain the oriented graph G. The vertex-edge incidence matrix A = (aye)
of G is a V x E matrix such that

1 if e enters v,
ave =3 —1 if e leaves v,
0 otherwise.

Let % = *(é) be the closed subspace of ¢>(E) generated by the rows of A, and let Py
be the orthogonal projection from ¢2(E) to %. If G is finite, then the determinantal measure
corresponding to Py is the uniform measure on the spanning trees of G [9]. Let 7(G) be the
number of spanning trees of G, then H(B"*) =logt(G). If G is infinite, the corresponding
determinantal measure is the so-called wired uniform spanning forestt WUSF) [5, 10, 12, 17].
Note that, in both cases, the resulting measure does not depend on the chosen orientation
of G.

Given a rooted graph (G, 0) and a nonnegative integer k, let px(G, o) be the probability
that a simple random walk starting at o is back at o after k steps.

The following theorem was proved by Lyons [14].

THEOREM 7.1. Let G, be a sequence of finite connected graphs such that |V (G,)| —
oo and their Benjamini—Schramm limit is a random rooted graph (G, 0). Then,

logt(Gy) _ B s 1
ninéom _E(logdeg(o) ; kpk(G,0)>.
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Using our results, we can give another expression for the limiting quantity. Let G be a
connected locally finite infinite graph; let § be the WUSF of G. For e € E(G), let I (¢) be the
indicator of the event that e € §. Given a [0, 1] labeling ¢ of E(G) and an edge e € E(G), we
define

h(G,e,c)=H(IEUI(lc(f) <cle)})
and
h(G,e) =Eh(G,e,c),

where the expectation is over the i.i.d. uniform random [0, 1] labeling of G. Now, we state
our version of the tree entropy theorem.

THEOREM 7.2. Let G, be a sequence of finite connected graphs such that |V (G,)| —
oo and their Benjamini—Schramm limit is a random rooted graph (G, o). Then,

logt(G,) . 1

im ——2 = _EY h(G,e),
n—=o0 |V(G,)| 2 ;

where the summation is over the edges e incident to the root o.

PROOF. Let (é 0) be the random rooted oriented graph obtained from (G, o) by orient—
ing each edge independently and uniformly to one of the two possible directions. Let L(G)
be the line graph of G that is, the vertex set_ of L(G) is V(G) and two vertices of L(G)
are connected if the corresponding edges in G are adjacent. Let (G/ ') be obtained from
(G, 0) by blasmg by the degree of the root. Let e be a uniform random edge incident to o'.
Then, (L(G ), e, *(G )) will be a random RGPC, which we denote by (L, e, P). (Here, the

support set K of (L, e, P) is a one elem§nt set.LNow, there is an orientation én of G, such
that the Benjamini—Schramm limit of G, is (G, 0). This can be proved by choosing ran-
dom orientations and using concentration results. We omit the details. Let (L, P,) be the
finite-graph-contraction (L(G,,) % (G )) We have the following lemma.

LEMMA 7.3. We have lim,, oo U(L,, P,) = (L, e, P).

PROOF. This can be proved by slightly modifying the argument of the proof of [2],
Proposition 7.1. [J

The proof can be finished using Theorem 2.4. [

Both Lyons’s and our theorem can be extended to edge weighted graphs, but in this case
they are about two different quantities. However, these two quantities are closely related, as
we explain now. Let G be a connected finite graph, and assume that each edge e has a positive
weight w(e). The weight of a spanning tree 7 is defined as w(T) =[],y w(T). Let

Z(G,w) = > w(T)

T is a spanning tree

be the sum of the weights of the spanning trees of G. Let § be a random spanning tree of
G such that, for any spanning tree 7', we have P(§ =T) = Z(G, w) 'w(T). This is again
a determinantal process; the only difference compared to the uniform case is that, for each
edge e, we need to multiply the corresponding column of the vertex-edge incidence matrix
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by w(e). In fact, this is the way we define the weighted version of the WUSF for infinite
graphs. The Shannon entropy H (§) of § is related to Z(G, w) by the identity

(14) H(F) =log Z(G, w) — Elogw(g).

Let (G,,w,) be a Benjamini—-Schramm convergent sequence of weighted connected
graphs such that |V (G,)| — oo and their Benjamini—Schramm limit is a random rooted
weighted graph (G, o, w). Assume that the weights are uniformly bounded away from zero
and infinity, that is, there are 0 < C| < Cy < 0o such that all the weight are from the interval
[C1, Ca]. Then, the generalization of Lyons’s theorem states that

. log Z(Gp, wy) 1
lim —=—2" " R logn(0) = Y.~ prw(G,0) |,
%0 V(G & L

where 7 (v) is total weight of the edges incident to v and py (G, 0) is defined using the ran-
dom walk with transition probabilities p(x, y) = 7)) wx y) instead of the simple random
walk. On the other hand, our theorem states that

HG) -
1 =-K h(G,e, ,
00 [V(Gp)l 2 ;0 (G, e, w)

where 1(G, e, w) is defined as above but using the weighted version of the WUSFE.

These two statements above together with equation (14) of course imply that
limy, s oo |V(Gn)|_1IElog w(§y) exists. However, there is a more direct proof. It is based
on the observation that

Elogw(§y) 1
= IFD ; 1
[V(Gn)l V(G| EGEX(;;") (e € §n)logw(e)
- %EZP@ € §n)logw(e),

e~o

where the last expectation is over a uniform random o € V(G,,). Since we know that the limit
of §, is §, where § is the WUSF of the random rooted weighted graph (G, o, w) (see [2],

Proposition 7.1), we get that
Elogw(§,) 1
im ——————=-E ) P(eeF)logw(e).

A VGl T2 ®
Using equation (14), this provides us another formula for the limit lim,,_, V(G| x
log Z(G,, wy). Namely,
log Z (G, wy) . 1

R AT 5IE;U(P(e e 3 logw(e) +h(G, e, w)).

QUESTION 7.4. We have seen that if (G, o) is an infinite random rooted graph which is
the limit of finite connected graphs, then

] 1 _
E(logdeg(o) -y ;pk(G, 0)) = 5EZh(G, e).
k=1

e~o

Is this true for any infinite unimodular random rooted graph?
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APPENDIX: MEASURABILITY OF THE POLAR DECOMPOSITION

The key idea is that we can realize every operator on a single fixed Hilbert-space. This
can be done by using the canonical representatives defined by Aldous and Lyons in a slightly
different setting; see Section 2 of [2]. Now, we give the details. Let us call a RGO (G, 0, T)
half-canonical if the following hold. If G is finite, then V(G) = [0, |[V(G)| — 1] C N;if G is
infinite, then V (G) = N. The root o is equal to 0; moreover, B, (G, 0) = [0, | B (G, 0)| — 1]
for all r. If G is infinite, then T is an operator on the Hilbert space H = 2(N x K). If
G is finite, we will still consider T as an operator on H by setting 7 (v, k) to be O for all
(v, k) € N\V(G)) x K. Let HC be the set of half-canonical RGOs. We endow HC with a
metric as follows. Given two elements (G, 0, T;) and (G», 0, T5) of HC, their distance is
defined as the infimum of ¢ > 0 such that for » = [¢~!] we have that G| and G are the same
restricted to the vertices [0, r]; moreover,

(Ti(v, k), (v, K)) = (Ta(u, k), (v, K))| < &

for every v, v’ € [0, r] and k, kK’ € K. Then, the obvious map g : HC — RGO is continuous.
The next lemma shows that we can go the other direction too:

LEMMA A.1. There is a measurable map from f : RGO — HC such that for any
(G,0,T) € RGO we have that (G,o0,T) and f(G, o0, T) are isomorphic as RGOs. In other
words, g o f =id.

PROOF. The construction given in Section 2 of [2] can be adopted to this situation. [

Let B(H) be the set of bounded linear operators on H. We endow B(H ) with a measurable
structure by considering the coarsest o-algebra such that all the B(H) — R maps T —
(Te, f) are measurable for e, f € N x K. We also endow H with the measurable structure
coming from the norm || - ||>.

LEMMA A.2. Let T be a B(H)-valued measurable map and x be an H-valued mea-
surable map defined on the same measurable space. Then, T x is an H-valued measurable
map.

PROOF. Letey,es,... be an enumeration of N x K. Then, Tx is the pointwise limit of
n n
Yn = Z(Z(X, ej)(Tej, ei)>€i-
i=1\j=1

Since y, is measurable, T x is measurable too. [
This also has the following consequence.

LEMMA A.3. Let S and T be B(H)-valued measurable maps. Then, ST is a B(H)-
valued measurable map.

PROOF. Lete, f € Nx K. Then, STe = S(Te); here, Te is an H-valued measurable
map, so S(Te) is an H-valued measurable map. So (STe, f) is measurable. [

Given a B(H)-valued measurable map T, let T be its generalized inverse. Note that T+
is not necessarily bounded. We need the following theorem.

THEOREM A.4 ([16]). For any x € H, the map TV x is an H-valued measurable map.
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From this we obtain the following lemma.

LEMMA A.5. Let T be a B(H)-valued measurable map, and let T = U P be its unique
polar decomposition, that is, P = v/ A*A and U = T PT. Then, U is a B(H)-valued mea-
surable map.

PROOF. From Lemma A.3 (A*A)" is a measurable map for all n. Approximating the
square root function by polynomials, we get that P is a B(H)-valued measurable map. The
statement follows by combining Theorem A.4 and the argument of the proof of Lemma A.3.

O

Then, it is not difficult to prove the following.

LEMMA A.6. Foran RGO (G,0,T),let T = U P be the polar decomposition of T, then
the map (G,o0,T) — (G, 0, U) is measurable.
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