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ANISOTROPIC BOOTSTRAP PERCOLATION IN THREE DIMENSIONS

BY DANIEL BLANQUICETT

Department of Mathematics, University of California, Davis, drbt@math.ucdavis.edu

Consider a p-random subset A of initially infected vertices in the discrete
cube [L]3, and assume that the neighborhood of each vertex consists of the
ai nearest neighbors in the ±ei -directions for each i ∈ {1,2,3}, where a1 ≤
a2 ≤ a3. Suppose we infect any healthy vertex x ∈ [L]3 already having a3 +1
infected neighbors, and that infected sites remain infected forever. In this
paper, we determine the critical length for percolation up to a constant factor
in the exponent, for all triples (a1, a2, a3). To do so, we introduce a new
algorithm called the beams process and prove an exponential decay property
for a family of subcritical two-dimensional bootstrap processes.

1. Introduction. The study of bootstrap processes on graphs was initiated in 1979 by
Chalupa, Leath and Reich [12], and is motivated by problems arising from statistical physics,
such as the Glauber dynamics of the zero-temperature Ising model, and kinetically con-
strained spin models of the liquid-glass transition (see, e.g., [5, 15, 18, 19], and the recent
survey [20]). The r-neighbor bootstrap process on a locally finite graph G is a monotone cel-
lular automata on the configuration space {0,1}V (G) (we call vertices in state 1 “infected”),
evolving in discrete time in the following way: 0 becomes 1 when it has at least r neighbors
in state 1, and infected vertices remain infected forever. Throughout this paper, A denotes the
initially infected set, and we write 〈A〉 = G if the state of each vertex is eventually 1.

We will focus on anisotropic bootstrap models, which are d-dimensional analogues of
a family of (two-dimensional) processes studied by Duminil-Copin, van Enter and Hulshof
[13, 14, 23]. In these models, the graph G has vertex set [L]d , and the neighborhood of each
vertex consists of the ai nearest neighbors in the −ei and ei-directions for each i ∈ [d], where
a1 ≤ · · · ≤ ad and ei ∈ Z

d denotes the ith canonical unit vector. In other words, u, v ∈ [L]d
are neighbors if (see Figure 1 for d = 3)

(1) u − v ∈ Na1,...,ad
:= {±e1, . . . ,±a1e1} ∪ · · · ∪ {±ed, . . . ,±aded}.

We also call this process the N a1,...,ad
r -model. Our initially infected set A is chosen according

to the Bernoulli product measure Pp = ⊗
v∈[L]d Ber(p), and we are interested in the so-called

critical length for percolation, for small values of p,

(2) Lc

(
N a1,...,ad

r , p
) := min

{
L ∈ N : Pp

(〈A〉 = [L]d) ≥ 1/2
}
.

The analysis of these bootstrap processes for a1 = · · · = ad = 1 was initiated by Aizen-
man and Lebowitz [1] in 1988, who determined the magnitude of the critical length up to
a constant factor in the exponent for the N 1,...,1

2 -model (in other words, they determined
the ‘metastability threshold’ for percolation). In the case d = 2, Holroyd [17] determined
(asymptotically, as p → 0) the constant in the exponent (this is usually called a sharp metasta-
bility threshold), proving that

Lc

(
N 1,1

2 ,p
) = exp

(
π2/18 + o(1)

p

)
.
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FIG. 1. The neighborhood Na,b,c with a = 1, b = 2 and c = 4. The e1-axis is towards the reader, the e2-axis is
vertical and the e3-axis is horizontal.

For the general N 1,...,1
r -model with 2 ≤ r ≤ d , the threshold was determined by Cerf and

Cirillo [10] and Cerf and Manzo [11], and the sharp threshold by Balogh, Bollobás and Morris
[4] and Balogh, Bollobás, Duminil-Copin and Morris [3]: for all d ≥ r ≥ 2, there exists a
computable constant λ(d, r) such that, as p → 0,

Lc

(
N 1,...,1

r , p
) = exp(r−1)

(
λ(d, r) + o(1)

p1/(d−r+1)

)
.

In dimension d = 2, we write a1 = a, a2 = b, and the N a,b
r -model is called isotropic when

a = b and anisotropic when a < b. Hulshof and van Enter [23] determined the threshold for
the first interesting anisotropic model given by the family N 1,2

3 , and the corresponding sharp
threshold was determined by Duminil-Copin and van Enter [13]: for b ≥ 2, as p → 0,

Lc

(
N 1,b

b+1,p
) = exp

((
(b − 1)2

4(b + 1)
+ o(1)

)
(logp)2

p

)
.

The threshold was also determined in the general case r = a +b by van Enter and Fey [22]
and the proof can be extended to all b + 1 ≤ r ≤ a + b: as p → 0,

(3) logLc

(
N a,b

r ,p
) =

{
�

(
p−(r−b)) if b = a,

�
(
p−(r−b)(logp)2)

if b > a.

1.1. Anisotropic bootstrap percolation on [L]3. In this paper, we consider the three-
dimensional analogue of the anisotropic bootstrap process studied by Duminil-Copin, van
Enter and Hulshof. In dimension d = 3, we write a1 = a, a2 = b and a3 = c. These models
were studied by van Enter and Fey [22] for r = a + b + c; they determined the following
bounds on the critical length, as p → 0:

(4) log logLc

(
N a,b,c

a+b+c,p
) =

⎧⎪⎨
⎪⎩

�
(
p−a)

if b = a,

�

(
p−a

(
log

1

p

)2)
if b > a.

Note that by (4) the critical length is doubly exponential in p when r = a + b + c. It is not
difficult to show that the critical length is polynomial in p if r ≤ c.

On the other hand, the critical length is singly exponential in the case r = c + 1; indeed,
we determine the magnitude of the critical length up to a constant factor in the exponent, for
all triples (a, b, c).

The following is our main result.

THEOREM 1.1. As p → 0:

(i) if c = b = a, then

(5) logLc

(
N a,b,c

c+1 ,p
) = �

(
p−1/2)

,
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(ii) if c = b > a, then

(6) logLc

(
N a,b,c

c+1 ,p
) = �

(
p−1/2

(
log

1

p

)1/2)
,

(iii) if c ∈ {b + 1, . . . , a + b − 1} with a ≥ 2, then

(7) logLc

(
N a,b,c

c+1 ,p
) = �

(
p−1/2

(
log

1

p

)3/2)
,

(iv) if c = a + b, then

(8) logLc

(
N a,b,c

c+1 ,p
) = �

(
p−1)

,

(v) if c > a + b, then

(9) logLc

(
N a,b,c

c+1 ,p
) = �

(
p−1

(
log

1

p

)2)
.

We highlight that to deal with the lower bounds in the cases (iv) and (v) (corresponding to
c ≥ a + b), it is necessary to introduce a new algorithm which we call the beams process, and
to develop new tools in subcritical bootstrap percolation (see Theorem 1.2 below).

1.2. The BSU model. The model we study here is a special case of the following ex-
tremely general class of d-dimensional monotone cellular automata, which were introduced
by Bollobás, Smith and Uzzell [9].

Let U = {X1, . . . ,Xm} be an arbitrary finite family of finite subsets of Zd \ {0}. We call U
the update family, each X ∈ U an update rule and the process itself U -bootstrap percolation.
Let � be either Zd or Zd

L (the d-dimensional torus of sidelength L). Given a set A ⊂ � of
initially infected sites, set A0 = A, and define for each t ≥ 0,

At+1 = At ∪ {x ∈ � : x + X ⊂ At for some X ∈ U}.
The set of eventually infected sites is the closure of A, denoted by 〈A〉U = ⋃

t≥0 At , and we
say that there is percolation when 〈A〉U = �.

Let Sd−1 be the unit (d − 1)-sphere and denote the discrete half-space orthogonal to u ∈
Sd−1 as H

d
u := {x ∈ Z

d : 〈x,u〉 < 0}. The stable set S = S(U) is the set of all u ∈ Sd−1

such that no rule X ∈ U is contained in H
d
u. Let μ denote the Lebesgue measure on Sd−1.

The following classification of families was proposed in [9] for d = 2 and extended to all
dimensions in [7]: A family U is:

• subcritical if for every hemisphere H ⊂ Sd−1 we have μ(H ∩ S) > 0;
• critical if there exists a hemisphere H ⊂ Sd−1 such that μ(H ∩ S) = 0, and every open

hemisphere in Sd−1 has nonempty intersection with S ;
• supercritical otherwise.

Subcritical families exhibit a behaviour which resembles models in classical site perco-
lation (see, e.g., [2, 16]). For a certain class of subcritical models, we have succeeded in
proving an exponential decay property about the cluster size (see Section 4): denote by K the
connected component containing 0 in 〈A〉U .

THEOREM 1.2. Assume that d = 2. Consider U -bootstrap percolation with S(U) = S1

and A ∼ ⊗
v∈Z2 Ber(p). If p is small enough, then

(10) Pp

(|K| ≥ n
) ≤ e−�(n),

for every n ∈ N.
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For dimension d = 2, Bollobás, Duminil-Copin, Morris and Smith proved a universality
result in [7], determining the critical length (with A ∼ ⊗

v∈Z2
L

Ber(p)),

Lc(U,p) := min
{
L ∈N : Pp

(〈A〉U = Z
d
L

) ≥ 1/2
}
,

up to a constant factor in the exponent for all two-dimensional critical families U , which we
can briefly state as follows.

THEOREM 1.3 (Universality). Let U be a critical two-dimensional family. There exists a
computable positive integer α = α(U) such that, as p → 0, either

(11) logLc(U,p) = �
(
p−α)

,

or

(12) logLc(U,p) = �

(
p−α

(
log

1

p

)2)
.

Proving a universality result of this kind for three (or higher) dimensions is a challenging
open problem. However, there is a weaker conjecture concerning all critical families and all
d ≥ 3, stated by the authors in [7]; here for simplicity we state only the case d = 3.

CONJECTURE 1.4. Let U be a critical three-dimensional family. As p → 0, either

(13) logLc(U,p) = p−�(1),

or

(14) log logLc(U,p) = p−�(1).

Let us say that U is 2-critical if it satisfies condition (13), and is 3-critical if it satisfies
condition (14). Observe that we can also think of our N a,b,c

r -model as N a,b,c
r -bootstrap per-

colation, where N a,b,c
r is the family consisting of all subsets of size r of the neighborhood

Na,b,c in (1). It is easy to check that the family N a,b,c
r is critical if and only if

r ∈ {c + 1, . . . , a + b + c}.
Moreover, it turns out that the family N a,b,c

r is 2-critical for all r ∈ {c+1, . . . , c+b} (see Re-
mark A.2). On the other hand, the family N a,b,c

a+b+c is 3-critical by (4); it is natural to conjecture
that this is the case for all r ∈ {c + b + 1, . . . , c + b + a}.

1.3. Outline of the proof. The proofs of all upper bounds are obtained by adapting stan-
dard arguments in bootstrap percolation (see Section 2); the same is true for the lower bounds
in the cases c < a + b (see Section 3).

We deal with the lower bounds in the cases c ≥ a + b by introducing an algorithm that
we call the beams process, which will allow us to control the size of the components that
can be created in the intermediate steps of the bootstrap dynamics, the trick will be to cover
such components with beams (a beam is a finite three-dimensional set of the form H × [w],
where w is taken in the left-right direction, H ⊂ Z

2 is connected and 〈H 〉N a,b
a+b+1

= H ; see

Definition 5.1). All initially infected sites are beams, and at every step we merge beams that
are within some constant distance, to create a bigger one, then repeat this algorithm and stop it
at some finite time; each beam created during the process we call covered. When we observe
the induced process along the e3-direction, it looks like subcritical two-dimensional N a,b

a+b+1-
bootstrap percolation, thus we can couple the original process and apply the exponential
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decay property (Theorem 1.2) to bound the probability of a beam been covered; all details
are given in Section 5.

Theorem 1.2 provides new machinery in subcritical bootstrap percolation, we prove it in
Section 4 and here we summarize the core idea. First, we need to guarantee the existence
of inwards stable droplets, which are basically, discrete polygons that cannot be infected
from outside; it is possible to show the existence of such droplets by considering families U
such that S(U) = S1. After that, we combine ideas used by Bollobás–Riordan in classical
percolation models to prove that, when the density of initially infected sites is small enough,
then the size of the cluster containing the origin decays exponentially fast, in distribution.

2. Upper bounds. To prove upper bounds, it is enough to give one possible way of
growing from A step by step until we fill the whole of [L]3. The case c > a + b will be
deduced in the Appendix as a particular case of Proposition A.1 (see Remark A.2), and the
proof of case c = b = a is similar to the proof given in [1]; thus we will omit it here. However,
we now provide heuristics describing a brief sketch for all 5 cases, in this order: (i), (iii), (ii),
(v) and (iv).

Heuristics. Roughly speaking, the typical growth patterns in all 5 cases of Theorem 1.1
run as follows: In (i), one has growing cubes starting from [c]3, similar to the growing rect-
angles in d = 2, and when the 6 boundary squares have size C1/

√
p, where C1 is a large

constant, the cube keeps growing as with high probability one finds an occupied site on all
6 sides. In (iii), we can start with [c]3 and grow first in the two directions e1 and e2 at the

same time until we get a block of the form [cp− 1
2 (log 1

p
)

1
2 ]2 × [c], then it becomes easy to

grow in the e3-direction, and finally in all directions. In (ii), we can start with a tiny block of

the form [l] × [l log 1
p
]2, where l = p−ε(log 1

p
)− 1

2 , and alternate between growing along the
e1-direction and growing in the e2 and e3-directions simultaneously, until we get a block of

the form [C2p
−1/2(log 1

p
)− 1

2 ] × [p−1/2(log 1
p
)

1
2 ]2; the latter will then easily grow.

In (v), we can start with a larger block of the form [C3p
− 1

2 (log 1
p
)

1
2 ]2 ×[c]; the probability

of such a block being initially infected is exp(−cC3p
−1(log 1

p
)2). This block easily grows

along the e3-direction, and finally in all directions. In (iv), start with a tiny block and alternate
between growing k steps along the e1 and e2-directions simultaneously and growing k2 steps
in the e3-direction, until we get a block of the form [C4/

√
p]2 × [p−1] which will grow with

high probability.

DEFINITION 2.1. A rectangular block is a set of the form R = [x]× [y]× [w] ⊂ Z
3. We

say that a rectangular block R is internally filled if R ⊂ 〈A ∩ R〉N a,b,c
r

, and denote this event
by I •(R).

In this section, we will only focus on the upper bounds for cases (iii), (iv) and (ii). More
precisely, we will give a full proof of the case c ∈ {b + 1, . . . , a + b − 1} in Section 2.1, then
we will only sketch the cases c = a + b and c = b > a in Sections 2.2 and 2.3, respectively,
by pointing out the small differences between these cases.

2.1. Case c ∈ {b + 1, . . . , a + b − 1}. In this section, we consider the families N a,b,c
c+1 ,

with c ∈ {b + 1, . . . , a + b − 1} (here a > 1, otherwise this case does not exist). As usual in
bootstrap percolation, we actually prove a stronger proposition.
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PROPOSITION 2.2. Fix c ∈ {b + 1, . . . , a + b − 1} and consider N a,b,c
c+1 -bootstrap perco-

lation. There exists a constant 	 = 	(c) > 0 such that, if

L = exp
(
	p−1/2

(
log

1

p

)3/2)
,

then Pp(I •([L]3)) → 1, as p → 0.

When h,w ≥ c, for simplicity we denote the event

I (h,w) := I •([h]2 × [w]).
LEMMA 2.3. If p is small enough, then

Pp

(
I (h,w + 1)|I (h,w)

) ≥ 1 − e−ph2
,

under N a,b,c
c+1 -bootstrap percolation.

PROOF. If R1 := [h]2 × [w] is completely infected, we just need to infect the right-most
face Q := [h]2 × {w + 1}, and since we have c already infected vertices in R1, then it is
enough to find 1 infected vertex in Q (see Figure 2(a) below). Thus,

Pp

(
I •([h]2 × [w + 1])|I •(R1)

) ≥ 1 − ∏
v∈Q

(
1 − Pp(v ∈ A)

) ≥ 1 − e−ph2
.

�

Lemma 2.3 tells us the cost of growing one step along the (easiest) e3-direction, and we
are also interested in computing the cost of growing along the e1 and e2 (harder) directions.
To do so, we will consider general values of r : let us first consider the regime r ≤ a + b; this
implies that given any rectangular block R, all three induced two-dimensional processes in
the faces of R, namely, N a,b

r−c, N a,c
r−b and N b,c

r−a , are supercritical.

LEMMA 2.4 (Supercritical faces). If r ≤ a + b, and p is small enough, then

Pp

(
I (h + 1,w)|I (h,w)

) ≥ (
1 − e

−
(c
2

)−1
p

(c
2

)
wh)2

,

under N a,b,c
r -bootstrap percolation.

PROOF. For s = a, b, let 
s be the discrete right-angled triangle whose legs are [r − s]×
{1} and {1} × [r − s]. Once R1 = [h]2 × [w] is completely full, to get R2 = [h + 1]2 × [w]
internally filled it is enough to have one copy of 
a in A∩ ({h+ 1}× [h]× [w]) (front face),
and one copy of 
b in A ∩ ([h] × {h + 1} × [w]) (top face, see Figure 2(a) below).

Since |
s | = (r − s)(r − s + 1)/2 and a ≥ 2, then |
b| ≤ |
a| ≤ (c
2

)
. Hence, by indepen-

dence between the front and top faces,

Pp

(
I •(R2)|I •(R1)

) ≥ (
1 − e−|
a |−1p|
a |wh)(

1 − e−|
b|−1p|
b |wh)

≥ (
1 − e

−
(c
2

)−1
p

(c
2

)
wh)2

. �

The next step is to determine the size of a rectangular block (usually called critical droplet)
such that, once it is internally filled, then it can grow until [L]3 with high probability.
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FIG. 2. A single vertex on the right-most side, one copy of 
a on the front side, and one copy of 
b on the top
side.

LEMMA 2.5. Let 	 > 0 be a large constant and set h = cp− 1
2 (log 1

p
)

1
2 , R1 := [h]2 × [c]

and

L = exp
(
	p− 1

2

(
log

1

p

) 3
2
)
.

Conditionally on I •(R1), the probability of I •([L]3) goes to 1, as p → 0.

PROOF. Consider the rectangular blocks R2 ⊂ R3 ⊂ R4 ⊂ R5 := [L]3 containing R1,
defined by

R2 := [h]2 ×
[
c2p

−
(c
2

)
+ 1

2

(
log

1

p

) 1
2
]
,

R3 := [
h2]2 ×

[
c2p

−
(c
2

)
+ 1

2

(
log

1

p

) 1
2
]
,

R4 := [
h2]2 × [L].

Note that Pp(I •([L]3)|I •(R1)) ≥ ∏4
k=1 Pp(I •(Rk+1)|I •(Rk)). We apply Lemma 2.3 to de-

duce

Pp

(
I •(R2)|I •(R1)

) ≥ (
1 − e−ph2)c2p

−
(c
2

)
+ 1

2 (log 1
p
)

1
2 ≥ e−2p

c2
2 −

(c
2

)
→ 1,

and by Lemma 2.4,

Pp

(
I •(R3)|I •(R2)

) ≥ (
1 − e

−�(p

(c
2

)
p

−
(c
2

)
+ 1

2 (log 1
p
)

1
2 ·h))2h2 ≥ exp

(−4h2p2c) → 1.

We apply these lemmas again and the fact that ph4 ≥ p−1  	p− 1
2 (log 1

p
)

3
2 to get

Pp(I •(R4)|I •(R3)) → 1, and also Pp(I •(R5)|I •(R4)) → 1. So, Pp(I •([L]3)|I •(R1)) → 1,
as p → 0. �

Now, we are ready to show the upper bound.

PROOF OF PROPOSITION 2.2. Set L = exp(	p− 1
2 (log 1

p
)

3
2 ), where 	 > 0 is a large con-

stant to be chosen. Consider the rectangular block

R :=
[
cp− 1

2

(
log

1

p

) 1
2
]2

× [c] ⊂ [L]3,
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and the events FL := {∃ an internally filled copy of R in [L]3}, and GL := {〈A∪R〉 = [L]3}.
It follows that Pp(I •([L]3)) ≥ Pp(FL)Pp(GL|I •(R)), and Pp(GL|I •(R)) → 1, as p → 0,
by the previous lemma. Therefore, it remains to show that Pp(FL) → 1, too.

Indeed, we claim that there exists a constant C′ > 0 such that

(15) Pp

(
I •(R)

) ≥ exp
(
−C′p− 1

2

(
log

1

p

) 3
2
)
,

so using the fact that there are roughly L3/|R| disjoint (therefore independent) copies of R

(which we label Q1, . . . ,QL3/|R|), and |R| ≤ p−3, (15) immediately gives

Pp

(
Fc

L

) ≤ Pp

(⋂
i

I •(Qi)
c

)
≤ [

1 − Pp

(
I •(R)

)]L3/|R|

≤ exp
(−e

3 logL−3 log(1/p)−C′p− 1
2 (log 1

p
)

3
2 )

.

Since logL = 	p− 1
2 (log 1

p
)

3
2 , by taking 	 > C′/3 we conclude Pp(FL) → 1, as p → 0. To

finish, it is only left to prove inequality (15).
In fact, note that a way to make R be internally filled is the following: start with [c]3 ⊂ A,

and then grow from Rk = [k]2 × [c] to Rk+1, for k = c, . . . ,m := cp− 1
2 (log 1

p
)

1
2 . This gives

us

Pp

(
I •(R)

) ≥ Pp

([c]3 ⊂ A
) m∏
k=c

Pp

(
I •(Rk+1)|I •(Rk)

) ≥ pc3
m∏

k=c

(
1 − e

−
(c
2

)−1
p

(c
2

)
ck)2

≥ pc3+c2m ≥ exp
(
−C′p− 1

2

(
log

1

p

) 3
2
)
,

for C′ > c3, as we claimed. �

2.2. Case c = a + b. In this section, we consider the families N a,b,a+b
a+b+1 , corresponding

to the case r = a + b + 1. To do so, we first compute the cost of growing for all cases
a + b < r ≤ a + c, where, the induced N a,b

r−c process is still supercritical, but the induced
processes N a,c

r−b and N b,c
r−a are critical.

LEMMA 2.6 (Critical faces). If r ∈ {a + b + 1, . . . , a + c} and p is small, then

Pp

(
I (h + 1,w)|I (h,w)

) ≥ (
1 − e− 1

r−a
pr−aw)r(1 − e− 1

m
pmw)2h

,

under N a,b,c
r -bootstrap percolation, with m := r − (a + b).

PROOF. Once [h]2 × [w] is completely full, to fill [h + 1]2 × [w] it is enough to have
the occurrence of the events F

e1
h and F

e2
h defined as follows: F

e1
h as (growing along the

e1-direction) there exist r − a adjacent vertices in A ∩ ({h + 1} × {1} × [w]), r − (a + 1)

adjacent vertices in A ∩ ({h + 1} × {2} × [w]), . . . , r − (a + b − 1) adjacent vertices in
A∩ ({h+ 1}× {b}× [w]), and for each i = b + 1, . . . , h, there exist m = r − (a +b) adjacent
vertices in A ∩ ({h + 1} × {i} × [w]):

Pp

(
F

e1
h

) ≥
r−a∏

k=m+1

(
1 − (

1 − pk)w
k
) h∏
i=1

(
1 − (

1 − pm)w
m

)

≥ (
1 − e− 1

r−a
pr−aw)b(

1 − e− 1
m

pmw)h
.
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FIG. 3. m vertices in each of the lines along the e3-direction (m = 2).

F ′
h is defined analogously, this time growing along the e2-direction (see Figure 3), thus

Pp

(
F

e2
h

) ≥ (
1 − e− 1

r−b
pr−bw)a(

1 − e− 1
m

pmw)h
.

Finally, pr(h+,w) ≥ Pp(F
e1
h )Pp(F

e2
h ). �

REMARK 2.7. In the regime a+c < r ≤ a+b+c, all three the induced two-dimensional
processes N a,b

r−c, N a,c
r−b and N b,c

r−a are critical.

As before, we need to set the size of a critical droplet.

LEMMA 2.8. Fix ε > 0 and let 	 be a large constant. Set h = p−1/2−ε , R1 := [h]2 ×[h2]
and

L = exp
(
	p−1)

.

Conditionally on I •(R1), the probability of I •([L]3) goes to 1, as p → 0.

The proof of this lemma is very similar to that of Lemma 2.5, thus we omit it. Finally, to
deduce the upper bound, we proceed in the same way that we used to prove Proposition 2.2,
this time by showing that the critical droplet R1 satisfies

(16) Pp

(
I •(R1)

) ≥ exp
(−C′p−1)

,

for some constant C′ > 0, depending on the integral of the function f1 : (0,∞) → (0,∞),
defined by f1(z) = − log(1 − e−z) (see, e.g., [1] and [17]).

2.3. Case c = b > a. In this section, we sketch the proof of the last case. Consider the
families

N a,c,c
c+1 .

We follow the same steps, taking into account that the way to grow is slightly different: in
this case, to grow along the e2-direction is as easy as grow along the e3-direction, so that it is
enough to find a single infected vertex on the right-most and top sides, while to grow along
the e1-direction we still need to find one copy of 
a on the front side (see Figure 2(b) above).

LEMMA 2.9. Fix l,w ≥ c and let I = I •([l] × [w]2). If p is small enough, then:

(i) Pp(I •([l] × [w + 1]2)|I ) ≥ (1 − e−plw)2.

(ii) Pp(I •([l + 1] × [w]2)|I ) ≥ 1 − e−�(pc(c+1)/2w2).

PROOF. Similar to the proof of Lemmas 2.3 and 2.4. �

The size of the critical droplet is given by the following lemma, again, we omit the proof.
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LEMMA 2.10. Let 	 be a large constant. Set R1 := [p−1/2(log 1
p
)− 1

2 ] × [2	p−1 log 1
p
]2

and

L = exp
(
	p−1/2

√
log

1

p

)
.

Conditionally on I •(R1), the probability of I •([L]3) goes to 1, as p → 0.

Finally, to deduce the upper bound, we proceed as before, this time by showing that

(17) Pp

(
I •(R1)

) ≥ exp
(
−C′p− 1

2

√
log

1

p

)
,

for some constant C′ > 0, depending on c and the function f2(z) = − log(1 − e−z2
).

3. Lower bounds via components process. In this section, we only prove the lower
bounds corresponding to the cases c < a + b, since the proof is an application of the com-
ponents process (see Definition 3.8 below), a variant of an algorithm introduced Bollobás,
Duminil-Copin, Morris, and Smith [7]. The lower bound in the case a = b = c = 1 was
proved in [1], and the general case a = b = c follows by using the same arguments. Thus, we
will omit this case, and prove the following.

PROPOSITION 3.1. If c > a, there is a constant γ = γ (c) > 0 such that, for

L < exp
(
γp−1/2

(
log

1

p

)1/2)
,

Pp(I •([L]3)) → 0, as p → 0, under N a,c,c
c+1 -bootstrap percolation.

PROPOSITION 3.2. If c ∈ {b+1, . . . , a +b−1}, there exists γ = γ (c) > 0 such that, for

L < exp
(
γp−1/2

(
log

1

p

)3/2)
,

Pp(I •([L]3)) → 0, as p → 0, under N a,b,c
c+1 -bootstrap percolation.

NOTATION 3.3. Throughout this paper, when U = N a,b,c
r we will omit the subscript in

the closure and simply write 〈·〉 instead of 〈·〉N a,b,c
r

.

Aizenman and Lebowitz [1] obtained the matching lower bound for the family N 1,1,1
2 by

using the so-called rectangles process, and they exploited the fact that for this model, the
closure 〈A〉 is a union of rectangular blocks which are separated by distance at least 2.

In our case, the closure 〈A〉 is more complicated. Thus, we need to introduce a notion
about rectangular blocks which is an approximation to being internally filled, and this no-
tion requires a strong concept of connectedness; we define both concepts in the following.
Consider the superset of Na,b,c (see (1)) given by

N̄a,b,c := {
(u1, u2, u3) ∈ Z

3 : |u1| ≤ a, |u2| ≤ b, |u3| ≤ c and u1u2u3 = 0
}
.

DEFINITION 3.4. Let G = (V ,E) be the graph with vertex set [L]3 and edge set given
by E = {(u, v) : u − v ∈ N̄a,b,c}. We say that a set S ⊂ [L]3 is strongly connected if it is
connected in the graph G.
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DEFINITION 3.5. We say that the rectangular block R ⊂ [L]3 is internally spanned by
A, if there exists a strongly connected set S ⊂ 〈A∩R〉 such that R is the smallest rectangular
block containing S. We denote this event by I×(R).

Note that when a rectangular block is internally filled then it is also internally spanned,
therefore, Propositions 3.1 and 3.2 are consequences of the following results.

PROPOSITION 3.6. If c > a, there is a constant γ = γ (c) > 0 such that, for

L < exp
(
γp−1/2

(
log

1

p

)1/2)
,

Pp(I×([L]3)) → 0, as p → 0, under N a,c,c
c+1 -bootstrap percolation.

PROPOSITION 3.7. If c ∈ {b+1, . . . , a +b−1}, there exists γ = γ (c) > 0 such that, for

L < exp
(
γp−1/2

(
log

1

p

)3/2)
,

Pp(I×([L]3)) → 0, as p → 0, under N a,b,c
c+1 -bootstrap percolation.

We will prove them in Sections 3.2 and 3.3, respectively.

3.1. The components process. The following is an adaptation of the spanning algorithm
in [7], Section 6.2. We will use it to show an Aizenman–Lebowitz-type lemma, which says
that when a rectangular block is internally spanned, then it contains internally spanned rect-
angular blocks of all intermediate sizes (see Lemmas 3.12 and 3.13 below).

DEFINITION 3.8 (The components process). Let A = {v1, . . . , v|A|} ⊂ [L]3 and fix r ≥
c + 1. Set R := {S1, . . . , S|A|}, where Si = {vi} for each i = 1, . . . , |A|. Then repeat the
following steps until STOP:

1. If there exist distinct sets S1, S2 ∈ R such that

S1 ∪ S2

is strongly connected, then remove them from R, and replace by 〈S1 ∪ S2〉.
2. If there do not exist such sets in R, then STOP.

REMARK 3.9. We highlight two properties that are due to the way the algorithm evolves:

• At any stage of the component process, any set S = 〈S1 ∪ S2〉 added to the collection R
satisfies S = 〈A∩ S〉 = 〈S〉 ⊂ [L]3 (since r ≥ c + 1). In particular, the smallest rectangular
block containing S is internally spanned.

• Since G is finite, the process stops in finite time; so that we can consider the final collection
R′ and set V (R′) = ⋃

S∈R′ S.

LEMMA 3.10. V (R′) = 〈A〉.
PROOF. Clearly, A ⊂ V (R′) ⊂ 〈A〉, and to prove that 〈A〉 ⊂ V (R′) we argue by con-

tradiction. Suppose this is not the case, since A ⊂ V (R′), there would exist vertices v ∈
〈A〉 \ V (R′) and v1, . . . , vr ∈ V (R′) such that v − vi ∈ Na,b,c, for i = 1, . . . , r . Let us say
that vi ∈ S′

i for some sets S′
i ∈R′.

Since S′
1 = 〈S′

1〉, vk /∈ S′
1 for some k �= 1, so that S′

k �= S′
1. In particular, S′

1 ∪ S′
k is strongly

connected via v1, v, vk and 〈S′
1 ∪ S′

k〉 /∈ R′; this contradicts the definition of R′. �

NOTATION 3.11. From now on, we allow some abuse of notation by denoting as [x] ×
[y] × [z] any translate of the rectangular block R = [x] × [y] × [z] located at the origin.
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3.2. Case c = b > a. The following is a variant of the Aizenman–Lebowitz lemma in
[1].

LEMMA 3.12. Consider N a,b,c
r -bootstrap percolation with r ≥ c + 1. If [L]3 is inter-

nally spanned then, for every h, k ≤ L there exists an internally spanned block [x]× [y]× [z]
inside [L]3 satisfying (y + z)/2 ≤ 2ck, and either:

(a) x ≥ h, or
(b) x < h and (y + z)/2 ≥ k.

PROOF. Let S be the first set that appears in the components process such that, the small-
est block Q := [x] × [y] × [z] containing S satisfies either x ≥ h or (y + z)/2 ≥ k (such a
set exists since V (R′) = 〈A〉 and [L]3 is internally spanned). Since Q is internally spanned,
it only remains to show that the semiperimeter (y + z)/2 is at most 2ck.

In fact, we know that S = 〈S1 ∪ S2〉 for some sets St such that, for each t = 1,2, the
smallest block [xt ] × [yt ] × [zt ] containing St satisfies (yt + zt )/2 ≤ k − 1/2. Since S is
strongly connected, the new semiperimeter is

y + z

2
≤ 2 max

t=1,2

{
yt + zt

2

}
+ b + c

2
≤ 2c

(
k − 1

2

)
+ c = 2ck. �

PROOF OF PROPOSITION 3.6. Fix a small δ > 0 and take L < exp(γp−1/2(log 1
p
)1/2),

where γ = γ (δ) > 0 is another small constant to be chosen. Let us show that Pp(I×([L]3))

goes to 0, as p → 0. Set

h = δp− 1
2

(
log

1

p

)− 1
2
, k = p− 1

2

√
log

1

p
.

If [L]3 is internally spanned, by Lemma 3.12, the following event occurs: there exists an
internally spanned rectangular block Q = [x] × [y] × [z] ⊂ [L]3 satisfying (y + z)/2 ≤ 2ck,
and either x ≥ h, or x < h and (y + z)/2 ≥ k.

Suppose first that x < h and (y + z)/2 ≥ k, thus, either y or z is at least k, by symmetry
(b = c), we can assume z ≥ k. Since Q is internally spanned, every copy of the slab [x] ×
[y] × [2c] must contain at least 1 element of A. Consider only the z/2c disjoint slabs that
partition Q; since xy = O(hk), if δ is small, the probability of this event is at most(

O(pxy)
)z/2c ≤ (

O(phk)
)k/2c = (

O(δ)
)k/2c ≤ e−k.

On the other hand, if x ≥ h we use the fact that a ≤ (c + 1) − 2, thus, since Q is internally
spanned, every copy of the slab [3a] × [y] × [z] must contain at least 2 elements u, v ∈ A

such that u − v ∈ N̄a,c,c. Since x ≥ h, the probability of this event is at most

(
O

(
p2yz

))x/3a ≤ (
O

(
p2k2))h/3a ≤

(
O

(
p2p−1 log

1

p

))h/3a

≤ e−�(δk).

Therefore, the probability that Q is internally spanned is at most e−c(δ)k for some small
constant c(δ) > 0. Finally, denoting by Rk the collection of blocks [x] × [y] × [z] ⊂ [L]3

satisfying y + z ≤ 4ck, it follows by union bound that

Pp

(
I×([L]3)) ≤ ∑

Q∈Rk

Pp

(
I×(Q)

) ≤ |Rk|e−c(δ)k ≤ L7 exp
(
−c(δ)p−1/2

(
log

1

p

)1/2)
→ 0,

as p → 0, for 7γ < c(δ), and we are finished. �
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3.3. Case c ∈ {b + 1, . . . , a + b − 1}. In this case, the corresponding analogue of the
Aizenman–Lebowitz lemma is as follows.

LEMMA 3.13. Consider N a,b,c
r -bootstrap percolation with r ≥ c + 1. If [L]3 is inter-

nally spanned then, for every h, k ≤ L there exists an internally spanned block [x] × [y] ×
[z] ⊂ [L]3 satisfying (x + y)/2 ≤ rh, and either:

(a) z ≥ k, or
(b) z < k and (x + y)/2 ≥ h.

The proof of this lemma is identical to that of Lemma 3.12; we therefore omit it and
proceed to the proof of the lower bound.

PROOF OF PROPOSITION 3.7. Take L < exp(γp− 1
2 (log 1

p
)

3
2 ), where γ > 0 is some

small constant. Fix δ > 0 and set

h = δp− 1
2

(
log

1

p

) 1
2
, k = p−1.

If [L]3 is internally spanned, by Lemma 3.13, there is an internally spanned rectangular block
Q = [x] × [y] × [z] satisfying (x + y)/2 ≤ rh, and either z ≥ k, or z < k and (x + y)/2 ≥ h.

In the case that z ≥ k, we also know that xy = O(h2). As before, every copy of the slab
S := [x] × [y] × [r] intersects A. Thus, by considering the z/r disjoint slabs; if δ is small,
the probability of this event is at most

Pp(S ∩ A �= ∅)z/r ≤ (
1 − e−�(ph2))k/r = (

1 − p�(δ2))p−1/r ≤ e−p−3/4
.

In the case that z < k and (x + y)/2 ≥ h, we can assume w.l.o.g. that y ≥ h and use the
fact that b ≤ c − 1 = r − 2. This time there is no gap along the e2-direction, so, every copy of
the slab [x] × [2r] × [z] must contain at least 2 elements of A within constant distance. The
probability of this event is at most(

O
(
p2xz

))y/2r ≤ (
O

(
p2hk

))h/2r ≤ e
−�(h log 1

p
)
.

Therefore, the probability that Q is internally spanned is at most e
−c(δ)p

− 1
2 (log 1

p
)

3
2

, for some
small constant c(δ) > 0. Denote by R′

h the collection of blocks [x] × [y] × [z] ⊂ [L]3 satis-
fying x + y ≤ 2rh, it follows by union bound that

Pp

(
I×([L]3)) ≤ ∑

Q∈R′
h

Pp

(
I×(Q)

) ≤ ∣∣R′
h

∣∣e−c(δ)p
− 1

2 (log 1
p
)

3
2 → 0,

as p → 0, if γ > 0 is small. �

4. Exponential decay for subcritical families. In this section, we develop new machin-
ery for U -bootstrap percolation in Z

2 with U subcritical. The first paper studying these fami-
lies in such generality is [2], it turns out that these families exhibit a behavior which resembles
models in classical site percolation, for instance, in [2] it is proved that pc(Z

2,U) > 0, for
every subcritical family U , where

pc

(
Z

2,U
) := inf

{
p : Pp

(〈A〉U = Z
2) = 1

}
.

We will only deal with subcritical families U satisfying pc(Z
2,U) = 1; the authors of

[2] proved that this condition is equivalent to S(U) = S1. Our aim is to show that for such
families, if we choose the initial infected set A to be ε-random with ε small enough, then the
size of the cluster in 〈A〉U containing the origin decays exponentially fast. More precisely,
we have the following.
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DEFINITION 4.1. We define the component (or cluster) of 0 ∈ Z
2 as the connected com-

ponent containing 0 in the graph induced by 〈A〉U , and we denote it by K = K(U,A). If
0 /∈ 〈A〉U , then we set K = ∅.

The following is the main result in this section. It will be essential to prove the remaining
lower bounds (cases c ≥ a + b) in Section 5.

THEOREM 4.2. Consider U -bootstrap percolation with S(U) = S1. If p is small enough,
then

Pp

(|K| ≥ n
) ≤ e−�(n),

for every n ∈ N.

In order to prove this theorem, first we need to guarantee the existence of inwards stable
droplets, which are basically discrete polygons that can not be infected from outside, it is
possible to do so by using the condition S(U) = S1. After that, we introduce the dilation
radius, which is a constant depending on U , used to obtain an extremal lemma that gives us
a quantitative measure of the ratio |〈A〉U |/|A|. Finally, we combine ideas used by Bollobás
and Riordan in classical percolation models to conclude.

4.1. Inwards stable droplets and the dilation radius. Given x, y ∈ R
2 we denote the usual

euclidean distance between x and y by ‖x−y‖, and Bρ(x) is the ball of radius ρ > 0 centered
at x:

(18) Bρ(x) := {
y ∈ R

2 : ‖x − y‖ ≤ ρ
}
.

For simplicity, we denote Bρ := Bρ(0). Imagine for a moment that we have a convex set D

in the plane and suppose it is inscribed in Bρ , then we know that any other ball with radius
ρ and center outside B3ρ is disjoint from D. This simple remark will be important to prove
Theorem 4.2 (see Lemma 4.9).

DEFINITION 4.3. Let us define a rounded droplet D as the intersection of Z
2 with a

bounded convex set in the plane. We say that D ⊂ Z
2 is inwards stable for U if

(19)
〈
Z

2 \ D
〉
U = Z

2 \ D.

We need to guarantee the existence of inwards stable (rounded) droplets, note that they are
finite; this is the only point where we use the hypothesis S(U) = S1.

LEMMA 4.4 (Existence, [2]). If S(U) = S1 then, there exist an inwards stable droplet D

such that 0 ∈ D.

The origin 0 ∈ Z
2 has no special role here, it is just a reference point to locate the

droplet D. Any translate of D is inwards stable as well.
There are several choices for the shape of inwards stable droplets. The following proof is

included in [2], and shows that D could be a polygon or not; this fact justifies the rounded
term in the definition.

SKETCH OF PROOF OF LEMMA 4.4. Suppose that Bρ is initially healthy. If ρ is large
enough, then every rule X ∈ U can only infect sites in disjoint circular segments ‘cut off’
from Bρ using chords of length at most

∇(U) := max
X∈U max

x,y∈X
‖x − y‖,
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FIG. 4. Set of disjoint circular segments cut off from Bρ using chords perpendicular to directions π/4, π/2 and
7π/8.

and parallel to the sides of Hull(X) (see Figure 4), and these segments are all either disjoint
or contained in each other for different rules, since ρ is large. No additional infection takes
place in Bρ , therefore D = Bρ \ 〈Z2 \ Bρ〉U is inwards stable. �

Now, given ρ > 0 we denote the discrete ball as

B ′
ρ := Z

2 ∩ Bρ.

An immediate consequence of the above lemma is the fact that every vertex which is eventu-
ally infected should be within some constant distance from an initially infected vertex.

COROLLARY 4.5. If S(U) = S1, there exists ρ̂ > 0 such that, for every x ∈ 〈A〉U ,

(20) A ∩ B ′
ρ̂ (x) �= ∅.

PROOF. Let D be an inwards stable droplet with 0 ∈ D, and ρ̂ > 0 such that D ⊂ Bρ̂ .
Given x ∈ 〈A〉U , the translation x + D is also inwards stable and x ∈ 〈A〉U ∩ (x + D). Thus

A ∩ Bρ̂(x) ⊃ A ∩ (x + D) �=∅. �

DEFINITION 4.6 (Dilation radius). We define the dilation radius β := β(U) to be the
smallest radius ρ̂ ≥ 1 satisfying the conclusion in Corollary 4.5.

Note that

(21)
∣∣B ′

3β

∣∣ ≤ 30β2.

4.2. Exponential decay. We will use a specific collection of finite subtrees of Z2.

DEFINITION 4.7. For n ≥ 0, we let T0,n to be the collection of all trees T ⊂ Z
2 contain-

ing the origin 0 ∈ Z
2 and other n vertices (so that |T | = n + 1). We also define the collection

of all trees containing 0 and having at most n vertices (|T | ≤ n) by

(22) T≤n :=
n⋃

k=1

T0,k−1.

A key ingredient to prove the exponential decay theorem is an upper bound for |T≤n|.
The following proposition is a particular case of a beautiful problem in the book The art of
mathematics: Coffee time in Memphis (see Problem 45 in [6]).

PROPOSITION 4.8. For every n ≥ 1, we have |T0,n| ≤ (3e)n. As a consequence, we also
have |T≤n| ≤ (3e)n.
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Consider U -bootstrap percolation with initially infected set A ⊂ Z
2, where S(U) = S1 and

let β be the dilation radius.

LEMMA 4.9 (Extremal lemma for K). If |K| ≥ n then, there exists a tree T ∈ T≤n such
that

(23) |A ∩ T | ≥ (
30β2)−1

n.

PROOF. In fact, let us suppose that |K| ≥ 30β2n, and recursively find n distinct vertices
x′

1, . . . , x
′
n ∈ A ∩ T , for some tree T ∈ T≤30β2n.

By definition of β , for x1 = 0 ∈ 〈A〉U there exists x′
1 ∈ A∩B ′

β(x1). Then set K1 = B ′
3β(x1),

and since |K1| ≤ 30β2 we can find a vertex x2 ∈ K \K1, which is at distance 1 from K1; now
we apply Corollary 4.5 to x2 ∈ 〈A〉U and find a new vertex x′

2 ∈ A ∩ B ′
β(x2). Proceed in this

way, for i ≤ n, assume we have found vertex x′
i ∈ A ∩ B ′

β(xi−1), then set

Ki = B ′
3β(xi) ∪ Ki−1.

Since |Ki | ≤ 30β2i, for i = 1, . . . , n − 1, we have

|K \ Ki | ≥ 30β2n − 30β2i ≥ 1,

so we can find a vertex xi+1 ∈ K \ Ki , which is at distance 1 from Ki . Observe that at step
n − 1 we still have |K \ Kn−1| ≥ 30β2 ≥ 1, so for xn ∈ K \ Kn−1 we can apply the corollary
one more time to get our last vertex x′

n ∈ A. For i = 1, . . . , n, the vertices x′
i are all distinct

because all balls B ′
β(xi) are pairwise disjoint by construction.

Finally, consider a spanning tree T of Kn, and note that xi, x
′
i ∈ T for all i = 1, . . . , n. In

particular, |A ∩ T | ≥ n, and the fact that T ∈ T≤30β2n follows from 0 = x1 ∈ T and |T | ≤
|Kn| ≤ 30β2n. �

The same proof allows us to deduce another similar extremal lemma.

LEMMA 4.10. There exists a constant λ ∈ (0,30β2] such that, if 〈A〉U is connected then,

(24)
∣∣〈A〉U

∣∣ ≤ λ|A|.

PROOF. If A is infinite, we have nothing to show. Assume A is finite, then it is contained
in a big rectangle R ⊂ Z

2, since ±e1,±e2 ∈ S , so 〈A〉U ⊂ R is also finite. Since 〈A〉U is
connected, the above proof shows that |〈A〉U | > 30β2n implies |A| > n. In other words,
|A| = n implies |〈A〉U | ≤ 30β2n = 30β2|A|. �

The following is a quantitative reformulation of Theorem 4.2, whose proof is inspired by
lines through the book Percolation of Bollobás and Riordan (see page 70 in [8]).

THEOREM 4.11 (Exponential decay for the cluster size). Consider subcritical U -
bootstrap percolation on Z

2 with S(U) = S1 and let β ≥ 1 be the dilation radius. If
0 < ε < e−150β2

and C = C(ε) := − 1
60β2 log(ε), then

(25) Pε

(|K| ≥ n
) ≤ ε

1
60β2 n = e−Cn,

for every n ∈ N.
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PROOF. By Lemma 4.9 and Proposition 4.8, with δ = (30β2)−1, we obtain

Pε

(|K| ≥ n
) ≤ Pε

( ⋃
T ∈T≤n

{|A ∩ T | ≥ δn
}) ≤ ∑

T ∈T≤n

Pε

(|A ∩ T | ≥ δn
) ≤ ∑

T ∈T≤n

(
n

δn

)
εδn

≤ ∑
T ∈T≤n

(
eδ−1ε

)δn ≤ ([3e][eδ−1ε
]δ)n ≤ e−Cn,

and we are done. �

5. Lower bounds via beams process. To deal with the cases c ≥ a + b, we introduce
a new tool which we call the beams process. This time, instead of covering the infected
vertices step by step with components, we cover them with beams, so that when we observe
this induced process along the e3-direction it looks like subcritical two-dimensional bootstrap
percolation.

Consider the family N a,b
m given by the collection of all subsets of size m of

(26) Na,b = {
a′e1 : ±a′ ∈ [a]} ∪ {

b′e2 : ±b′ ∈ [b]}.
Observe that S(N a,b

m ) = S1 if and only if m ≥ a + b + 1, in particular, our exponential decay
result (Theorem 4.11) holds for these families. From now on, we set

(27) m := a + b + 1.

DEFINITION 5.1. A beam is a finite subset of Z3 of the form H ×[w], where H ⊂ Z
2 is

connected and 〈H 〉N a,b
m

= H .

It will be important for us to have an upper bound on the number of beams of a given size,
which are contained in [L]3. The following lemma is another consequence of Proposition 4.8.

LEMMA 5.2 (Counting beams). Let Bn1,n2 be the collection of all copies of the beam
H × [w] contained in [L]3 satisfying w ≤ n1 and |H | ≤ n2. Then

|Bn1,n2 | ≤ n1L
3(3e)n2 .

PROOF. The number of segments inside [L] with at most n1 vertices, is at most n1L.
Now we give an upper bound for the number of H ’s. Let Hh denote the collection of all

connected sets H ⊂ [L]2 such that |H | = h, so we can write

h|Hh| =
∑

H∈Hh

|H | = ∑
x∈[L]2

∑
H∈Hh

1{x∈H } = ∑
x∈[L]2

cs(x),

where cs(x) is the number of connected subsets of [L]2 with size h + 1, containing a fixed
point x. To each of such sets, we can associate an spanning tree in an injective fashion, so by
Proposition 4.8, |Hh| ≤ L2(3e)h−1. It follows that the number of H ’s is at most

n2∑
h=1

|Hh| ≤ L2
n2∑

h=1

(3e)h−1 ≤ L2(3e)n2 .
�
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5.1. The beams process.

DEFINITION 5.3. Given finite connected sets S1, S2 ⊂ Z
3, we say that a beam H × [w]

is generated by (S1, S2) if it can be constructed in the following way: by translating S1 ∪ S2
if necessary, we can assume that the smallest rectangular block containing it is R × [w], then
consider the connected sets H1,H2 ⊂ Z

2 given by

Ht := {
x ∈ R : ({x} × [w]) ∩ St �= ∅

}
, t = 1,2.

If 〈H1 ∪ H2〉N a,b
m

is connected, then we take H := 〈H1 ∪ H2〉N a,b
m

. Otherwise, we let P ⊂ R

be any path with minimal size connecting H1 to H2 and then set H := 〈H1 ∪ H2 ∪ P 〉N a,b
m

.

In this definition 〈S1 ∪ S2〉 ⊂ H × [w] for each r ≥ m, and generated beams could depend
on the choice of the path P . However, such minimal paths are not relevant for our purposes.

NOTATION 5.4. We will denote any fixed beam generated by (S1, S2) as B(S1 ∪ S2),
regardless the choice of P .

We want to track the process of infection by covering all possible infected sites with beams,
we do that step by step in order to get some control over the sizes. The following algorithm
is a variation of the components process. We will use it to show an Aizenman–Lebowitz-type
lemma which says that when [L]3 is internally filled, then it contains covered beams of all
intermediate sizes (see Lemma 5.7 below).

DEFINITION 5.5 (The beams process). Let A = {x1, . . . , x|A|} ⊂ [L]3 and fix r ≥ c + 1.
Set B := {S1, . . . , S|A|}, where Si = {xi} for each i = 1, . . . , |A|, and repeat until STOP:

1. If there exist distinct beams S1, S2 ∈ B such that

S1 ∪ S2

is strongly connected, then remove it from B, and replace by B(S1 ∪ S2).
2. If there do not exist such a family of sets in B, then STOP.

We call any beam S = B(S1 ∪ S2) ⊂ [L]3 added to the collection B a covered beam, and
denote the event that S is covered by I #(S).

Again, there are two properties that are due to the way the algorithm evolves:

• Any covered beam S satisfies 〈A ∩ S〉 ⊂ 〈S〉 = S.
• The process stops in finite time, thus, we can consider the final collection B′ and set

V (B′) := ⋃
S∈B′ S. By using the same arguments in the proof of Lemma 3.10, it follows

that 〈A〉 ⊂ V (B′).

5.2. Case c = a + b. In this section, we prove the following.

PROPOSITION 5.6. Under N a,b,a+b
m -bootstrap percolation, there is a constant γ =

γ (a, b) > 0 such that, if

L < exp
(
γp−1)

,

then Pp[I •([L]3)] → 0, asp → 0.

The beams process and Lemma 4.10 allow us to prove a beams version of the Aizenman–
Lebowitz lemma for this case. Let λ > 0 be the constant in Lemma 4.10 associated to the
subcritical two-dimensional family N a,b

m .
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LEMMA 5.7. Consider N a,b,c
r -bootstrap percolation with r ≥ c + 1. If [L]3 is internally

filled, then there is a constant κ ∈ N such that for every k = κ, . . . ,L, there exists a covered
beam H × [w] satisfying w, |H | ≤ 3λk, and either w ≥ k or |H | ≥ k.

PROOF. Let S = H × [w] be the first beam that appears in the beam process satisfying
either w ≥ k or |H | ≥ k (such a set exists since V (B′) = [L]3). Then it is enough to show
that w ≤ rk and |H | ≤ 3λk.

We know that S = B(S1 ∪S2) for some beams St = Ht ×[wt ] such that S1 ∪S2 is strongly
connected. Moreover, by definition of S, wt ≤ k − 1 for t = 1,2, so

(28) w ≤ 2 max
t=1,2

{wt } + r ≤ r(k − 1) + r ≤ rk.

Analogously, |Ht | ≤ k − 1, and we know that H = 〈H1 ∪ H2 ∪ P 〉N a,b
m

for some path P with
bounded (or zero) size, H is connected, so by Lemma 4.10,

(29) |H | ≤ λ · 2 max
t=1,2

{|Ht |} + λ|P | ≤ 2λ(k − 1) + O(1) ≤ 3λk. �

Now, let us prove the lower bound in the case c = a + b.

PROOF OF PROPOSITION 5.6. Take L < exp(γp−1), where γ > 0 is some small con-
stant. Let us show that Pp(I •([L]3)) goes to 0, as p → 0. Fix ε > 0.

If [L]3 is internally filled, by Lemma 5.7 there exists a covered beam S = H ×[w] ⊂ [L]3

satisfying w, |H | ≤ ε/p, and moreover, either w ≥ ε/3λp or |H | ≥ ε/3λp, hence, by union
bound, Pp[I •([L]3)] is at most∑

S∈B ε
p , ε

p

(
Pp

[
I #(S) ∩ {w ≥ ε/3λp}] + Pp

[
I #(S) ∩ {|H | ≥ ε/3λp

}])
.

To bound the first term, we use the fact that H × [w] is covered; this implies that there is
no gap of size r along the e3-direction. Therefore, by considering the w/r disjoint slabs, if ε

is small, then there exists some c1 = c1(ε, r) > 0 such that

Pp

[
I #(

H × [w]) ∩ {w ≥ ε/3λp}] ≤ (
1 − e−�(p|H |))w/r = (

1 − e−�(ε))ε/2rλp ≤ e−c1/p.

To bound the second term, for each S ∈ B ε
p
, ε
p

consider the set

A′ := {
x ∈ [L]2 : ({x} × [w]) ∩ 〈A ∩ S〉 �= ∅

}
.

In other words, x ∈ A′ if and only if there exists v ∈ {x}×[w] such that either v ∈ A, or v ∈ S

got infected by using at least m infected neighbors in v + Na,b × {0}, where Na,b is given by
(26). Now, by applying Markov’s inequality,

Pp

(
A ∩ ({x} × [w]) �= ∅

) = O(wp) ≤ ε.

Therefore, by monotonicity we can couple the process on [L]2 × [w] having initial infected
set A, with N a,b

m -bootstrap percolation on [L]2 × {0} ⊂ Z
2 where the initial infected set is

chosen to be ε-random.
In particular, under N a,b

m -bootstrap percolation there should exist a connected component
of size at least |H | ≥ ε/3λp inside [L]2. On the other hand, there are at most L2 possible
ways to place the origin in H , so if K denotes the cluster of 0, Theorem 4.11 implies

Pp

[
I #(S) ∩ {|H | ≥ ε/3λp

}] ≤ ∑
x∈[L]2

Pε

({|K| > ε/3λp
} ∩ {x = 0}) ≤ L2

Pε

(|K| ≥ ε/3λp
)

≤ e2γ /pe−Cε/3λp = e−(Cε/3λ−2γ )/p,
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where C = − 1
60β2 log ε and we choose ε > 0 such that Cε > 0 and γ < Cε/6λ at first. By

Lemma 5.2, we conclude that

Pp

[
I •([L]3)] ≤ ∑

S∈B ε
p , ε

p

(
e−c1/p + e−(Cε/3λ−2γ )/p) ≤ ε

p
L3(3e)ε/pe−c2/p

≤ e4γ /peε log(3e)/pe−c2/p → 0,

for c2, γ > 0 small enough. �

5.3. The coarse beams process. In this section, we study the last case c ≥ a + b + 1. The
lower bound will be proved by using a coupling with subcritical two-dimensional bootstrap
percolation again, as we did in the previous section, however, this time we infect squares
instead of single vertices. The trick now is to consider the following coarser process.

DEFINITION 5.8 (Coarse bootstrap percolation). Assume that b + 1 divides L and we
partition [L]2 as L2/(b + 1)2 copies of � := [b + 1]2 in the obvious way, and think of � as a
single vertex in the new scaled grid [L/(b+1)]2. Given a two-dimensional family U , suppose
we have some fully infected copies of � ∈ [L/(b + 1)]2 and denote this initially infected set
by A, then we define coarse U -bootstrap percolation to be the result of applying U -bootstrap
percolation to the new rescaled vertices. We denote the closure of this process by 〈A〉b.

To avoid trivialities, we assume that b + 1 divides L. Set

m := a + b + 1 < c + 1 = r.

DEFINITION 5.9. A coarse beam is a finite set of the form H × [w], where H ⊂ Z
2 is

connected and 〈H 〉b = H under coarse N a,b
m -bootstrap percolation.

NOTATION 5.10. Given finite connected sets S1, S2 ⊂ [L]2 × [L], we partition [L]2 as
in Definition 5.8 and denote by Bb(S1 ∪ S2) the coarse beam generated by (S1, S2) which
is constructed in the (coarse) analogous way, as we did in Definition 5.3, using coarse paths
when needed. Note that every coarse beam is a beam in the sense of the previous section.

The following algorithm is a refinement of that one given in Definition 5.5.

DEFINITION 5.11 (The coarse beams process). Let A = {x1, . . . , x|A|} ⊂ [L]3 and fix
r ≥ c + 1. Set B := {S1, . . . , S|A|}, where Si = {xi} for each i = 1, . . . , |A|, and repeat until
STOP:

1. If there exist distinct beams S1, S2 ∈ B such that

S1 ∪ S2

is strongly connected, and 〈S1 ∪ S2〉 �= S1 ∪ S2, then choose a minimal such family, remove
it from B, and replace by a coarse beam Bb(S1 ∪ S2).

2. If there do not exist such a family of sets in B, then STOP.

We call any beam S = Bb(S1 ∪ S2) added to the collection B a covered beam, and denote the
event that S is covered by I #

b (S).

The two highlighted usual properties are preserved for this algorithm, too:

• Any covered beam S satisfies 〈A ∩ S〉 ⊂ 〈S〉 = S.
• There is a final collection B′ and we can set V (B′) := ⋃

S∈B′ S. Then we also have 〈A〉 ⊂
V (B′).
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5.4. Case c > a + b. In this section, we prove the lower bound corresponding to the last
case.

PROPOSITION 5.12. Under N a,b,c
c+1 -bootstrap percolation with c > a + b, there exists a

constant γ = γ (c) > 0 such that, if

L < exp
(
γp−1(logp)2)

,

then Pp[I •([L]3)] → 0, asp → 0.

We state an analogue of Lemma 5.7 for the coarse beams setting without proof because
the arguments are exactly the same. However, we obtain slightly different constants since the
number of vertices of the form � in a coarse beam H equals |H |/(b + 1)2.

Consider N a,b,c
r -bootstrap percolation with r ≥ c+1, and let κ0 be a large positive integer

depending on a, b, c and r .

LEMMA 5.13. If [L]3 is internally filled then for every h, k = κ0, . . . ,L, there exists a
covered (coarse) beam H × [w] ⊂ [L]3 satisfying w ≤ rk, |H | ≤ 2(b + 1)2λh, and either
w ≥ k or |H | ≥ h.

Finally, we prove the lower bound for the remaining case.

PROOF OF PROPOSITION 5.12. Take L < exp(γp−1(logp)2), where γ > 0 is some
small constant. Let us show that Pp(I •([L]3)) goes to 0, as p → 0. Fix δ > 0 and set

h = δp−1 log
1

p
, k = p− 3

2 .

If [L]3 is internally filled, by Lemma 5.13 there exists a covered beam S = H × [w] ⊂ [L]3

satisfying w ≤ k, |H | ≤ (b + 1)2h, and either w ≥ k/2λ or |H | ≥ h/2λ (as we said, the
cardinality of H viewing S as a beam equal (b + 1)2|H | viewing S as a coarse beam), hence
Pp[I •([L]3)] is at most∑

S∈B
k,(b+1)2h

(
Pp

[
I #
b (S) ∩ {w ≥ k/2λ}] + Pp

[
I #
b (S) ∩ {|H | ≥ h/2λ

}])
.

To bound the first term, we use the fact that A ∩ (H × {rk + 1, . . . , rk + r}) �= ∅ for all
k = 0, . . . ,w/r − 1, since H × [w] is covered. Therefore, for some c1 > 0,

Pp

[
I #
b

(
H × [w]) ∩ {w ≥ k/2λ}] ≤ (

1 − (1 − p)rh
)w/r ≤ (

1 − e
−2rε log 1

p
)k/2rλ

≤ (
1 − p2rε)k/2rλ ≤ e−p2rε−3/2/2rλ = e

−c1p
−1(log 1

p
)2

.

To bound the second term, we use the fact that r = c + 1 ≥ a + b + 2. More precisely, if [L]3

is internally filled, then every copy of [b + 1]2 × [L] should contain at least 2 vertices of A

within some constant distance, otherwise, there is no way to infect such a copy.
Then, given S = H × [w] ∈ Bk,(b+1)2h consider the set A′ consisting of all copies of � ⊂

[L]2 (as in Definition 5.8) such that the rectangular block � × [w] ⊂ S contains at least 2
vertices of A within distance r . By union bound, the probability of finding such vertices is at
most ∑

x∈�×[w]

∑
0<‖y−x‖≤r

Pp(x, y ∈ A) ≤ C̃wp2 ≤ p
1
3 .
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Therefore, by monotonicity we can couple the process in [L]2 ×[w] having initial infected set
A, with coarse N a,b

m -bootstrap percolation on [L/(b + 1)]2 and initial infected set ε-random
with ε = ε(p) := p1/3.

In particular, under N a,b
m (coarse) there should exist a connected component of size at least

|H | ≥ h/2λ inside [L]2. Once more, there are at most L2 possible ways to place the origin in
H , so if K denotes the (coarse) cluster of 0, Theorem 4.11 implies

Pp

[
I #
b (S) ∩ {|H | ≥ h/2λ

}] ≤ ∑
�⊂[L]2

Pε

({|K| > h/2λ
} ∩ {�= 0}) ≤ L2

Pε

(|K| ≥ h/2λ
)

≤ e
2γp−1(log 1

p
)2

e−Ch/2λ = e
−(c′−2γ )p−1(log 1

p
)2

,

for some constant c′ = c′(β,λ) > 0 (recall that C ∼ − logp asymptotically, by Theo-
rem 4.11). Take γ < c′/2 at first; by Lemma 5.2 we conclude that

Pp

[
I •([L]3)] ≤ ∑

S∈B
k,(b+1)2h

(
e
−c1p

−1(log 1
p
)2 + e

−(c′−2γ )p−1(log 1
p
)2)

≤ kL3(3e)(b+1)2he
−c3p

−1(log 1
p
)2 ≤ e

4γp−1(log 1
p
)2

e
−c3p

−1(log 1
p
)2 → 0,

as p → 0, for c3, γ > 0 small enough, and we are finished. �

6. Future work. All proofs in this paper extend to the case r = c + 2, and can be used
to determine logLc(N a,b,c

c+2 ,p) up to a constant factor, for all triples (a, b, c), except for
c = a + b − 1 which is a new interesting case to be studied separately.

In general, a problem which remains open is the determination of the threshold for other
values of r . We believe that the techniques used to prove Theorem 1.1 can be adapted to
cover all c + 1 < r ≤ b + c (though significant technical obstacles remain); in this case, by
Proposition A.1 below, the critical length is singly exponential. However, to deal with the
cases b + c < r < a + b + c, the techniques required are likely to be more similar to those of
[10] and [22], and the critical length should be doubly exponential.

Finally, Theorem 4.11 can be generalized to all dimensions d ≥ 3 and all families U such
that S(U) = Sd−1. However, we do not know if this property holds for subcritical families U
satisfying S(U) �= Sd−1. In order to determine the critical lengths for general critical models,
it could be useful to extend this result to a wider class of subcritical families.

PROBLEM 6.1. Characterize the subcritical d-dimensional update families U such that
K has the exponential decay property.

APPENDIX: A GENERAL UPPER BOUND

In this Appendix, we assume that r ≤ b + c and show that the critical length is at most
singly exponential in this case, as we claimed above. Consider N a,b,c

r -bootstrap percolation.

PROPOSITION A.1. Given r ∈ {c + 1, . . . , c + b}, there exists 	 = 	(c) > 0 such that, if
L > Lc(N b,c

r ,p)	 , then Pp(〈A〉N a,b,c
r

= [L]3) → 1, as p → 0. Thus,

logLc

(
N a,b,c

r , p
) = O

(
logLc

(
N b,c

r ,p
)) = O

(
p−(r−c)(logp)2)

.

REMARK A.2. This proposition, in particular, already gives us the upper bound in the
case c > a + b of our main Theorem 1.1. It also shows that N a,b,c

r is 2-critical for all r ∈
{c + 1, . . . , c + b}; in fact, since Lc(N a,b,c

r , p) is increasing in r , by Proposition A.1,

logLc

(
N a,b,c

r , p
) ≤ logLc

(
N a,b,c

c+b ,p
) ≤ O

(
p−b

(
log

1

p

)2)
.
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Moreover, by Theorem 1.1 we also have

logLc

(
N a,b,c

r , p
) ≥ logLc

(
N a,b,c

c+1 ,p
) ≥ �

(
p−1/2)

.

To prove this proposition, we will use dimensional reduction by means of a renormaliza-
tion argument, and show that filling the whole of [L]3 is at most as hard as filling L disjoint
copies of [L]2 which are orthogonal to the e1-direction.

To do so in this regime, we will compare the family N a,b,c
r with the two-dimensional fam-

ily N b,c
r consisting of all subsets of size r of the set Nb,c given by (26). It turns out that N b,c

r

is critical if and only if r belongs to this regime, and in this case S(N b,c
r ) = {±e1,±e2}. The

key step is to refine the upper bounds in (3), by using standard renormalization techniques.

LEMMA A.3 (Renormalization). Fix r ∈ {c + 1, . . . , c + b}. Under N b,c
r -bootstrap per-

colation, there exists a constant 	′ > 0 depending on c such that

(30) Pp

(〈A〉N b,c
r

= [L]2) ≥ 1 − exp
(−L1/2)

,

for all p small enough and L > Lc(N b,c
r ,p)	

′
.

PROOF. See, for example, [21]. �

Now, we prove the general upper bound.

PROOF OF PROPOSITION A.1. Decompose [L]3 as L consecutive copies of [L]2 all of
them orthogonal to the e1-direction, and call those copies Ri := {i} × [L]2.

Now, we couple the original process with the reduced two-dimensional processes; if for
each i ∈ {1, . . . ,L}, 〈A ∩ Ri〉N b,c

r
= Ri in the N b,c

r -bootstrap process, then [L]3 is internally
filled. Therefore, by Lemma A.3 we have

Pp

(〈A〉N a,b,c
r

= [L]3) ≥ Pp

(
L⋂

i=1

{〈A ∩ Ri〉N b,c
r

= Ri

}) =
L∏

i=1

Pp

(〈A ∩ Ri〉N b,c
r

= Ri

)

≥ [
1 − exp

(−L1/2)]L −−−→
p→0

1,

if L > exp(	′p−(r−c)(logp)2·1{c>b}). �
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