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In (Combin. Probab. Comput. 9 (2000) 191–204), Aldous investigates a
symmetric Markov chain on cladograms and gives bounds on its mixing and
relaxation times. The latter bound was sharpened in (Random Structures Al-
gorithms 20 (2002) 59–70). In the present paper, we encode cladograms as
binary, algebraic measure trees and show that this Markov chain on clado-
grams with a fixed number of leaves converges in distribution as the number
of leaves tends to infinity. We give a rigorous construction of the limit as the
solution of a well-posed martingale problem. The existence of a continuum
limit diffusion was conjectured by Aldous, and we therefore refer to it as Al-
dous diffusion. We show that the Aldous diffusion is a Feller process with
continuous paths, and the algebraic measure Brownian CRT is its unique in-
variant distribution.

Furthermore, we consider the vector of the masses of the three subtrees
connected to a sampled branch point. In the Brownian CRT, its annealed law
is known to be the Dirichlet distribution. Here, we give an explicit expression
for the infinitesimal evolution of its quenched law under the Aldous diffusion.

1. Introduction. An N -cladogram is a semi-labelled, unrooted, binary tree with N ≥ 2
leaves labelled {1,2, . . . ,N} and with N − 2 unlabelled internal vertices. Cladograms are
particular phylogenetic trees for which no information on the edge lengths is available, and
which therefore only capture the tree structure. Reconstructing cladograms from DNA data
is of major interest in population genetics. An important ingredient for several algorithms are
Markov chains that move through a space of finite trees (see, e.g., [12] for a survey on Markov
chain Monte Carlo algorithms in maximum likelihood tree reconstruction). Usually, such
chains are based on a set of simple rearrangements that transform a tree into a “neighboring”
tree (see, e.g., [4, 6, 7, 12]).

The present paper considers (a continuous-time version of) the Aldous chain on clado-
grams, which is a Markov chain on the space CN of all N -cladograms. It has the following
transition rates: for each pair (u, e) consisting of a leaf and an edge, at rate 1, the Markov
chain jumps from its current state t to t(u,e), where that latter is obtained as follows (see
Figures 1 and 2). If u is not incident to e, then:

• Erase the unique edge (including the incident vertices) incident to u,
• split the remaining subtree at the edge e into two pieces, and
• reintroduce the above edge (including u and the branch point) at the split point.

Otherwise, if u is incident to e, we set t(u,e) = t. In total, these so-called Aldous moves from
t to t(u,e) happen at rate N(2N − 3), and the rate of actual jumps of the Markov chain (where
t(u,e) �= t) is N(2N − 6).
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FIG. 1. At rate N(2N − 3), (a) a leaf u and an edge e are picked at random, and if e and u are not adjacent,
(b) the edge incident to u is taken away, leaving behind a branch point of degree 2. (continued in Figure 2).

This Markov chain has the generator �N , acting on all functions φ : CN →R as follows:

(1.1) �Nφ(t) = ∑
(u,e)

(
φ

(
t(u,e)) − φ(t)

)
,

where the sum runs over all pairs (u, e) consisting of a leaf and an edge, and t ∈ CN . Ob-
viously, the Aldous chain is reversible, and the uniform distribution on CN is the stationary
distribution. It was shown in [3] that both mixing and relaxation time of the discrete-time
chain are of order at least O(N2), but at most of order O(N3). [27] verified that the relax-
ation time is of order O(N2). Therefore, our continuous-time version has relaxation time of
order 1.

As [1] shows that a random N -cladogram with uniform edge lengths 1√
N

converges weakly
to the Brownian Continuum Random Tree (CRT), Aldous conjectured the existence of a
CRT-symmetric diffusion limit of the Aldous chain on N -cladograms observed at time scale
of order O(N2) as N → ∞. This conjecture was presented in a talk in March 1999 given
at the Fields Institute, and is supported by the following calculation: suppose we start the
Markov chain in some initial N -cladogram, fix a branch point, and consider the relative sizes
(η1, η2, η3) of the three subtrees attached to this branch point. Then, as the Markov chain
runs, these proportions change as a certain Markov chain, until the branch point disappears.
On the proposed time-rescaling of N2, the N → ∞ limit is the diffusion with generator

(1.2) �f (η) = ∑
1≤i,j≤3

ηi(δi,j − ηi)∂
2
i,j f (η) − 1

2

3∑
i=1

(1 − 3ηi)∂if (η)
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FIG. 2. (c) The two edges containing the branch point of degree 2 are identified, the edge e is opened, and
(d) the free edge is reattached there.
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which records certain aspects of a diffusion on the continuum tree. Aldous raised the question
of how this diffusion should be constructed rigourously and what more can we calculate
from there? On Aldous’s open problem website, the construction was rated as straightforward
provided the right set-up is chosen.

The present paper is demonstrating that indeed a straightforward construction can be given
once we choose the right state space. A classical starting point would be to think of contin-
uum trees as real trees which are particular metric spaces. A metric space is called a real
tree if it is path connected and satisfies the so-called four-point condition. For convergence
results one would like to be in a position to treat the approximating discrete trees and their
path-connected scaling limits in a unified way. One therefore also considers metric trees (in-
troduced in [5]), which are metric spaces differing from a real tree by not necessarily being
path connected. A metric space is a metric tree if it can be embedded isometrically into a real
tree in such a way that for every choice of three points in the metric tree, the corresponding
branch point (defined in the real tree) belongs to the metric tree.

In many applications, it is useful to have metric trees equipped with a probability measure
as, for example, the definition of the discrete Aldous chain dynamics requires to sample leaves
according to some probability measure. One therefore considers the space M of isometry
classes of metric measure spaces and equips it with the Gromov-weak topology. In fact,
Aldous’s CRT arises as the Gromov-weak scaling limit of uniformly chosen N -cladograms
with the uniform distribution on the leaves and edge lengths scaled down by the factor 1√

N
.

One of the equivalent definitions of the Gromov-weak topology is by convergence of the
distance matrix distributions, that is, a sequence (xN)N∈N of metric measure spaces converges
to a metric measure space x ∈ M if and only if �(xN) −→N→∞ �(x ) for all test functions
� : M →R of the form

(1.3) �(x ) :=
∫

φ
((

r(ui, uj )
)
1≤i<j≤m

)
μ⊗m(du),

where x = (X, r,μ), m ∈ N, and φ ∈ Cb(R

(m
2

)
+ ) (see [18, 22]).

In this set-up, many tree-valued Markov processes have been constructed and in some
cases also the convergence of approximating discrete tree-valued dynamics has been estab-
lished (see, for example, [8, 11, 19, 21, 23]). One could think that metric (measure) trees
are the natural framework for rescaling the Aldous chain as well. However, the Aldous chain
resists this approach. An easy calculation shows that the quadratic variation of the averaged

distance process rescales at time scale N
3
2 . But how does it relate to the conjecture that the

Aldous chain rescales on the time scale N2? One reason might be that distances behave too
wildly for tightness on that time scale to hold. Which in turn might be a hint that the naively
used graph distance is not the notion of distance intrinsic to the Aldous chain dynamics. And
indeed, one can argue that two points are close if the mass branching off the line segment
connecting them is small rather than if the length of that line segment is small. The idea for
our new state space is to overcome the metric issue by focusing on the tree structure only.

In what follows, we refer to (T , c) as an algebraic tree if T �= ∅ is a set equipped with
a branch point map c : T 3 → T satisfying consistency conditions (see Definition 2.1). Even
though algebraic trees can be seen as metric trees where one has “forgotten” the metric (i.e.,
equivalence classes of metric trees), the branch point map is defined such that the notions of
leaves, branch points, degree, subtrees, line segments, etc. can be formalized without refer-
ence to a metric (and agree with the corresponding notions in the metric tree). The Aldous
diffusion takes values in the new state space T of (equivalence classes of) algebraic measure
trees introduced in [24] (see Section 2 for algebraic trees as topological spaces and for equiv-
alence classes of algebraic measure trees). An algebraic measure tree (T , c,μ) consists of an
algebraic tree (T , c) satisfying a separability condition, together with a probability measure
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μ on it (see Definition 2.2). For a notion of convergence in T, we first introduce the branch
point distribution on T ,

(1.4) ν(T ,c,μ) := μ⊗3 ◦ c−1,

and then associate an algebraic measure tree x = (T , c,μ) ∈ T with the metric measure tree
(T , rμ,μ) ∈ M. To this end, define the pseudometric

(1.5) rμ(x, y) := νx
([x, y]) − 1

2
νx

({x}) − 1

2
νx

({y}),
where x, y ∈ T , and [x, y] is the interval (“line segment”) from x to y. We define convergence
of the algebraic measure trees in T as Gromov-weak convergence of these associated metric
measure trees, that is, we say

(1.6) (TN, cN,μN)N∈N converges in T iff (TN, rμN
,μN)N∈N converges in M.

The space T equipped with the so-called branch point distribution distance Gromov-weak
topology (or, for short, bpdd-Gromov-weak topology) is introduced and further studied in
[24]. Because cladograms are by definition binary, it is for the purpose of the present paper
enough to consider the subspace of T consisting of binary trees. More precisely, we consider
the subspaces

(1.7) T2 := {
(T , c,μ) ∈ T : degrees at most 3, atoms of μ only at leaves

}
of binary trees with no atoms on the skeleton, and

(1.8) T
cont
2 := {

(T , c,μ) ∈ T2 : μ nonatomic
}

of continuum binary trees. It is shown in [24], Theorem 3, that both T2 and T
cont
2 are compact,

which is very convenient for showing tightness of the approximating processes. Furthermore,
on T2, we have equivalent formulations of bpdd-Gromov-weak convergence which we can
use to prove our limit statements (see Section 2 for more details).

Let Cm denotes the set of m-cladograms (see (2.9)). For an algebraic tree (T , c) and u =
(u1, . . . , um) ∈ T m, let s(T ,c)(u) denote the m-cladogram generated by the points u1, . . . , um

in (T , c) (see Definition 2.5 for a precise definition). For m ∈ N and t ∈ Cm, let �m,t be
the function which sends an algebraic measure tree to the probability that m points sampled
independently with μ generate the cladogram t, that is,

(1.9) �m,t(T , c,μ) := μ⊗m(
s
−1
(T ,c)(t)

)
,

where (T , c,μ) ∈ T2. We refer to μ⊗m ◦ s−1
(T ,c) as m-sample shape distribution, and to func-

tions in the linear span of functions of the form (1.9) as shape polynomials. One of the main
results of [24] is that �m,t ∈ Cb(T2), and moreover, the set of shape polynomials is conver-
gence determining for measures on T

cont
2 . Therefore, it is a convenient set of test functions.

We characterize the Aldous diffusion analytically as the unique solution of a martingale
problem. We use the following terminology (see Sections 4.3 and 4.4 of [9]). Let E be a
polish space, B(E) be the set of bounded, measurable, real-valued functions on E.

DEFINITION 1.1 (Martingale problem). Let A : D(A) → B(E) with D(A) ⊆ B(E) be a
linear operator, and P a probability measure on E.

1. A solution of the (A,D(A),P )-martingale problem is an E-valued, measurable
stochastic process X = (Xt)t≥0 such that P is the law of X0 and, for all � ∈ D(A), the
process M := (Mt)t≥0 given by

(1.10) Mt := �(Xt) −
∫ t

0
A�(Xs)ds

is a martingale (w.r.t. the natural, augmented filtration of X).
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2. The (A,D(A),P )-martingale problem is well-posed if there exists a unique (in finite
dimensional distribution) solution of it.

If the (A,D(A),P )-martingale problem is well-posed for every probability measure P on
E, the solution X is necessarily a Markov process by [9], Theorem 4.4.2. We sometimes call
the operator A pre-generator of X, because it is the restriction of the full generator to D(A).
As pre-generator of the Aldous diffusion, we introduce the operator �Ald acting on functions
of the form (1.9) as follows:

(1.11) �Ald�
m,t(T , c,μ) :=

∫
�m1t

(
s(T ,c)(u)

)
μ⊗m(du).

Obviously, �Ald can be extended linearly to the set of shape polynomials, that is, to

(1.12) D(�Ald) := span
{
functions �m,t of the form (1.9) with m ∈ N, t ∈ Cm

}
,

where span denotes the linear span of a set of functions. Our first main result is the following.

THEOREM 1 (The well-posed martingale problem). For all probability measures P0 on
T

cont
2 , the (�Ald,D(�Ald),P0)-martingale problem is well-posed. Its unique solution is a

Feller process with continuous paths, taking values in the compact state space T
cont
2 . In par-

ticular, it is a strong Markov process. Moreover, this solution is ergodic with the algebraic
measure Brownian CRT as unique invariant distribution.

We refer to the process from Theorem 1 as Aldous diffusion.

DEFINITION 1.2 (Aldous diffusion on binary algebraic measure trees). The unique so-
lution of the (�Ald,D(�Ald),P0)-martingale problem is called Aldous diffusion on binary
algebraic nonatomic measure trees, or simply Aldous diffusion, started in P0.

It is important to mention that the Aldous diffusion is dual to the Aldous chain, as for all
m ∈ N and m-cladograms t, the Aldous diffusion Xt = (Tt , ct ,μt ) started in X0 = (T , c,μ) ∈
T

cont
2 satisfies

(1.13) E(T ,c,μ)

[
μ⊗m

t

{
u ∈ T m

t : s(Tt ,ct )(u) = t
}] = Et

[
μ⊗m{

u ∈ T m : s(T ,c)(u) = Tt

}]
,

where (Tt )t≥0 denotes the Aldous chain on m-cladograms started in t.
The name Aldous diffusion is justified by the following convergence result. Here, we iden-

tify the CN -valued Aldous chain on N -cladograms with the T2-valued Markov chain obtained
by forgetting the labels of the cladograms and equipping it with the uniform distribution on
the leaves.

THEOREM 2 (Diffusion approximation). For each N ∈ N, let xN be an N -cladogram
with the uniform distribution on the leaves. Assume that xN → x ∈ T

cont
2 . Then the Aldous

chain XN starting in XN
0 = xN converges weakly in Skorokhod path space w.r.t. the bpdd-

Gromov-weak topology to the Aldous diffusion starting in x .

Our last result makes a connection to Aldous’s original calculation (1.2) of the evolution of
the relative sizes of the three subtrees attached to a fixed branch point until that branch point
disappears. Instead of fixing a branch point in the beginning, we take the average over branch
points w.r.t. the branch point distribution (1.4). Our topology on T2 turns out to be strong
enough for us to use the diffusion approximation from Theorem 2 to extend the martingale
problem for the Aldous diffusion to the corresponding test functions. Thus, we can do explicit
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calculations which show the missing term compensating for the disappearance of branch
points.

To state the result, we need some notation. For a branch point v ∈ br(T ), consider the
three subtrees (components) attached to v, and denote by Sv(u) the one containing u ∈ T

with u �= v (see (2.2) below for a precise definition). For u = (u1, u2, u3) ∈ T 3, let

(1.14) η(u) := (
ηi(u)

)
i=1,2,3 := (μ

(
Sc(u)(ui)

)
i=1,2,3

be the vector of the three masses of the components connected to the branch point c(u) of u.
We consider test functions of the following form, called mass polynomials of degree 3: For
f : [0,1]3 →R continuous define

(1.15) �f (T , c,μ) :=
∫

f
(
η(u)

)
μ⊗3(du),

where (T , c,μ) ∈ T2. One of the main results of [24] is that �f ∈ C(T2).
We can extend the domain of the pre-generator �Ald to the set of those mass polynomials

�f of degree 3 with f : [0,1]3 → R twice continuously differentiable. To this end, consider
the migration operators 	i,j : C2([0,1]3) → C1([0,1]3), i, j ∈ {1,2,3}, i �= j ,

(1.16) 	1,2f (x) := 1x1>0

x1

(
f (0, x2 + x1, x3) − f (x)

) + 1x1=0
(
∂2f (x) − ∂1f (x)

)
,

and 	i,jf defined analogously with the indices 1 and 2 replaced by i and j , respectively. Let
ei = (δij )j=1,2,3 be the ith unit vector and define

(1.17)

�Ald�
f (T , c,μ) :=

∫
T 3

dμ⊗3

(
2

3∑
i,j=1

ηi(δij − ηj )∂
2
ij f (η) + 3

3∑
i=1

(1 − 3ηi)∂if (η)

+ 1

2

3∑
i,j=1,i �=j

	i,j f (η) +
3∑

i=1

(
f (ei) − f (η)

))
.

THEOREM 3 (Extended martingale problem for subtree masses). Let X = (Xt)t≥0 be
the Aldous diffusion on T

cont
2 . Then for all test functions �f of the form (1.15) with f ∈

C2([0,1]3), the process Mf := (M
f
t )t≥0 given by

(1.18) M
f
t := �f (Xt) − �f (X0) −

∫ t

0
�Ald�

f (Xs)ds

is a martingale.

Related work. We note that a construction related to the Aldous diffusion has been recently
established independently in a sequence of papers [14–17]. A discussion of the differences
is therefore in order. Their construction was first sketched in [26]. Pal suggests to first take
a finite number of branch points, consider the cladogram spanned by them, and decompose
the lines connecting any two neighboring branch points of this cladogram into subtrees. Then
study the suitably rescaled subtree masses as partitions of an interval of random length while
relaxing the constrain that the total number of vertices must be preserved by letting removing
and inserting of edges happen independently. When applying the time change which reverses
the described Poissonization, on the proposed time scale the masses converge to an evolving
interval partition described by a family of diffusions indexed by N. However, if this chain
runs, then the mass branching off one of the external edges of the cladogram gets exhausted.
When this happens, the dynamics breaks down, and one needs to find a slightly different set
of branch points to proceed. To resolve the problem of disappearing vertices [15] suggests a
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smart way of swapping labels of the cladograms in such a way that the resulting dynamics
preserves stationarity when one starts from the uniform distribution.

Our construction is related in spirit but differs in some important aspects. First, rather than
sampling cladograms and describing their dynamics under the Aldous chain, we describe the
behavior of the average of the quantities of interest over uniformly sampled cladograms. This
allows us to give a nice characterization of the Aldous diffusion as a unique solution of some
martingale problem. As a consequence, we do not require the initial distribution for the Al-
dous diffusion to be uniform but can rather let it start in any deterministic continuum tree. We
can show that the Aldous chain converges weakly in path space to the Aldous diffusion, and
that the latter is a Feller process. Note that [17] never states explicitly that the R-tree-valued
diffusion constructed is a strong Markov process. Furthermore, we are also able to state a
duality relation, which allows us to conclude convergence to the uniform distribution for all
starting points as time tends to infinity. In [24], we put some effort in establishing with the
space of algebraic measure trees a new state space and invested in a detailed study of topolog-
ical aspects. As a result, we obtained equivalent formulations of our notion of convergence
on the subspace of binary trees which made martingale convergence statements very much
straightforward. Finally, the framework provided is not restricted to the construction of the
continuum limit of the Aldous Markov chain. It can also be applied to other (not necessarily
symmetric) sampling consistent tree dynamics. For example, in [25] a tree-valued dynamics
is constructed which has the algebraic measure Kingman tree as its stationary distribution.

Other approaches of encoding relatives of binary algebraic trees can be found in [13] and
[10]. The Rémy chain considered in [10] is a Markov chain of growing (ordered) trees that
is somewhat related to the Aldous chain: it is the process obtained by successively inserting
new leaves at randomly chosen edges without removing a leaf before.

Outline. The rest of the paper is organized as follows. In Section 2, we introduce our state
space of algebraic measure trees and recall its most important properties from [24].

In Section 3, we show tightness of the Aldous chains and existence of solutions of the
martingale problem from Theorem 1. We do so by using and proving uniform convergence
of (pre-)generators. In Section 4, we obtain the duality for the Aldous diffusion (Proposi-
tion 4.1), and use it to show uniqueness of solutions of the martingale problem. In Section 5,
we show that the Aldous diffusion has a unique invariant measure, namely the algebraic mea-
sure Brownian CRT, and that the Aldous diffusion converges to it in law as time goes to
infinity (Proposition 5.3). We also finish the proof of Theorems 1 and 2. In Section 6, we
prove Theorem 3 and apply it to calculate the annealed average distance of two points in the
Brownian CRT with respect to our intrinsic metric.

2. The state space of binary, algebraic measure trees. In this section, we introduce the
state space. The goal is to overcome the metric issue raised in the introduction by focusing
on the algebraic tree structure only. We encode the cladograms as binary, algebraic trees and
use the space of these trees together with the bpdd-Gromov-weak topology studied in [24].
All proofs can be found there.

DEFINITION 2.1 (Algebraic tree). An algebraic tree is a nonempty set T together with
a symmetric map c : T 3 → T satisfying the following:

(2pc) For all x1, x2 ∈ T , c(x1, x2, x2) = x2.
(3pc) For all x1, x2, x3 ∈ T , c(x1, x2, c(x1, x2, x3)) = c(x1, x2, x3).
(4pc) For all x1, x2, x3, x4 ∈ T ,

(2.1) c(x1, x2, x3) ∈ {
c(x1, x2, x4), c(x1, x3, x4), c(x2, x3, x4)

}
.
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We refer to the map c as branch point map. A tree isomorphism between two alge-
braic trees (Ti, ci), i = 1,2, is a bijective map φ : T1 → T2 with φ(c1(x1, x2, x3)) =
c2(φ(x1), φ(x2), φ(x3)) for all x1, x2, x3 ∈ T1.

For each point x ∈ T , we define an equivalence relation ∼x on T \ {x} such that for all
y, z ∈ T \ {x}, y ∼x z iff c(x, y, z) �= x. For y ∈ T \ {x}, we denote by

(2.2) Sx(y) := {
z ∈ T \ {x} : z ∼x y

}
the equivalence class w.r.t. x ∈ T which contains y. We also call Sx(y) the component of
T \ {x} containing y. An algebraic tree (T , c) allows for all kinds of notions which capture
the tree structure, for example:

• we say that S ⊆ T is a subtree of T iff c(S3) = S,
• we call the number of components of T \ {x} the degree of x ∈ T and write deg(x) =

#{Sx(y) : y ∈ T \ {x}},
• we say that u ∈ T is a leaf iff deg(u) = 1, and write lf(T ) for the set of leaves,
• we say that v ∈ T is a branch point iff deg(v) ≥ 3, or equivalently, v = c(x1, x2, x3) for

some x1, x2, x3 ∈ T \ {v}, and write br(T ) for the set of branch points,
• we write [x, y], x, y ∈ T , for the interval

(2.3) [x, y] := {
z ∈ T : c(x, y, z) = z

}
,

• and we say that {x, y} is an edge iff x �= y and [x, y] = {x, y}.
There is a natural topology on a given algebraic tree, namely the component topology

generated by the set of all components Sx(y) as defined in (2.2) with x �= y, x, y ∈ T . In
what follows, we refer to an algebraic tree (T , c) as order separable if it is separable w.r.t. this
topology and has at most countably many edges. We further equip order separable algebraic
trees with a probability measure on the Borel σ -algebra B(T ) of the component topology.
This so-called sampling measure allows to sample vertices from the tree.

DEFINITION 2.2 (Algebraic measure trees). A (separable) algebraic measure tree
(T , c,μ) is an order separable algebraic tree (T , c) together with a probability measure μ

on B(T ).

In what follows, we call two algebraic measure trees (Ti, ci,μi), i = 1,2, equivalent if
there exist subtrees Si ⊆ Ti with μi(Si) = 1, i = 1,2, and a measure preserving tree isomor-
phism φ from S1 onto S2, that is, c2(φ(x),φ(y),φ(z)) = φ(c1(x, y, z)) for all x, y, z ∈ S1,
and μ1 ◦ φ−1 = μ2. We define

(2.4) T := set of equivalence classes of algebraic measure trees.

With a slight abuse of notation, we will write x = (T , c,μ) for the algebraic tree as well as
the equivalence class. Note that deg(x), lf(T ), edge(T ), . . . are properties of the particular
representative and not preserved under equivalence, because we do not require the whole
trees to be isomorphic. For instance, every equivalence class contains a representative without
edges (informally, we can replace edges by line segments carrying no measure).

Recall the branch point distribution ν = νx = μ⊗3 ◦ c−1 and the pseudometric rμ from
Equations (1.4) and (1.5), respectively. For every equivalence class of algebraic measure
trees, a representative (T , c,μ) can be chosen such that rμ is a metric (by identifying points
of distance zero in any representative). One can check that in this case, rμ induces the com-
ponent topology, and (T , rμ) is a separable metric tree in the sense of [5] (i.e., isometric to a
subset of an R-tree containing all branch points) satisfying for all x, y, z ∈ T ,

(2.5) [x, y]rμ ∩ [x, z]rμ ∩ [y, z]rμ = {
c(x, y, z)

}
,
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where [x, y]rμ = {v ∈ T : rμ(x, y) = rμ(x, v) + rμ(v, y)} denotes the interval in (T , rμ). In
particular, [x, y]rμ = [x, y]. Note that any point which carries positive mass is an isolated
point in the metric space (T , rμ).

As in any metric tree, we can define for a fixed reference point (root) ρ ∈ T a unique mea-
sure �(T ,c,μ,ρ) on (T ,B(T )) which is characterized by the two properties �(T ,c,μ,ρ)((ρ, y]) :=
rμ(ρ, y) and �(T ,c,μ,ρ)(lf(T ) \ at(μ)) = 0, where at(μ) denotes the set of atoms of μ. The
measure �(T ,c,μ,ρ) is referred to as length measure w.r.t. ρ. Note that it depends on the choice
of the distinguished point ρ. However, the total mass of the length measure does not depend
on the choice of ρ and equals

(2.6)
∥∥�(T ,c,μ,ρ)

∥∥ := �(T ,c,μ,ρ)(T ) = 1

2

∫
T

deg(v)ν(dv).

We define convergence in T as follows.

DEFINITION 2.3 (Bpdd-Gromov-weak topology). We say that a sequence (xn)n∈N of
(equivalence classes of) algebraic measure trees xn = (Tn, cn,μn) ∈ T converges branch
point distribution distance Gromov-weakly (bpdd-Gromov-weakly) to the algebraic mea-
sure tree (T , c,μ) ∈ T iff the sequence (x̃n)n∈N of (equivalence classes of) metric measure
trees x̃n := (Tn, rμn,μn) ∈ M converges to the metric measure tree (T , rμ,μ) ∈ M Gromov-
weakly, that is, if for Un

1 ,Un
2 , . . . independent and μn-distributed, and U1,U2, . . . indepen-

dent and μ-distributed, for all m ∈ N,

(2.7)
(
rμn

(
Un

i ,Un
j

))
1≤i<j≤m =⇒

n→∞
(
rμ(Ui,Uj )

)
1≤i<j≤m.

In this paper, we are only considering binary algebraic measure trees with the property that
the measure has atoms only (if at all) on the leaves of the tree, that is, the subspace of T given
by

(2.8) T2 = {
(T , c,μ) ∈ T : deg(v) ≤ 3 ∀v ∈ T , at(μ) ⊆ lf(T )

}
(compare (1.7)). Even though the equivalence class x ∈ T2 contains algebraic measure trees
which are not binary, we will implicitly assume that the chosen representative (T , c,μ) satis-
fies deg(v) ≤ 3. In this subspace, it turns out that bpdd-Gromov-weak convergence is equiv-
alent to another very useful notion of convergence, namely the so-called sample shape con-
vergence, which we introduce next.

DEFINITION 2.4 (m-labelled cladogram). For m ∈ N, an m-labelled cladogram is a bi-
nary, finite tree (C, c) consisting only of leaves and branch points, together with a surjective
labelling map ζ : {1, . . . ,m} → lf(C).

Note that an m-labelled cladogram has at most m leaves (and m−2 branch points), but can
have less if a leaf has multiple labels. An m-labelled cladogram (C, c, ζ ) is an m-cladogram
if and only if ζ is injective. We call two m-labelled cladograms (C1, c1, ζ1) and (C2, c2, ζ2)

isomorphic if there exists a tree isomorphism φ from (C1, c1) onto (C2, c2) such that ζ2 =
φ ◦ ζ1. Furthermore, we denote the sets of isomorphism classes of m-labelled cladogram and
m-cladograms by Cm and Cm, respectively, that is,

(2.9) Cm := {isomorphism classes of m-labelled cladograms}
and

(2.10) Cm := {
(C, c, ζ ) ∈ Cm : ζ injective

}
.
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FIG. 3. A tree T and the shape s(T ,c)(u1, u2, u3, u4). The cladogram is not isomorphic to the subtree

c({u1, u2, u3, u4}3) because u3 ∈ ]u1, u4[.

DEFINITION 2.5 (The shape function). For a binary algebraic tree (T , c), m ∈ N, and
u1, . . . , um ∈ T \ br(T ) (not necessarily distinct), there exists a unique (up to isomorphism)
m-labelled cladogram

(2.11) s(T ,c)(u1, . . . , um) = (C, cC, ζ )

with lf(C) = {u1, . . . , um} and ζ(i) = ui , such that the identity on lf(C) extends to a tree
homomorphism π from C onto c({u1, . . . , um}3), that is, for all i, j, k = 1, . . . ,m,

(2.12) π
(
cC(ui, uj , uk)

) = c(ui, uj , uk).

We refer to s(T ,c)(u1, . . . , um) ∈ Cm as the shape of u1, . . . , um in (T , c).

Note that the shape need not be isomorphic to the generated subtree. This situation is
illustrated in Figure 3.

DEFINITION 2.6 (Sample shape convergence). We say that a sequence (xn)n∈N of (equiv-
alence classes of) binary algebraic measure trees (Tn, cn,μn) converges in sample shape to
the (equivalence class of the) algebraic measure tree (T , c,μ) iff for Un

1 ,Un
2 , . . . independent

and μn-distributed, and U1,U2, . . . independent and μ-distributed, for all m ∈ N,

(2.13) s(T ,c)

(
Un

1 , . . . ,Un
m

) =⇒
n→∞ s(T ,c)(U1, . . . ,Um).

To be later in a position to recover the calculations of Aldous and others concerning the
dynamics of subtree masses, we introduce yet another notion of convergence.

DEFINITION 2.7 (Sample subtree mass convergence). We say that a sequence (xn)n∈N
of (equivalence classes of) algebraic measure trees (Tn, cn,μn) converges in sample subtree
mass to the (equivalence class of the) algebraic measure tree (T , c,μ) iff for Un

1 ,Un
2 , . . .

independent and μn-distributed, and U1,U2, . . . independent and μ-distributed, for all m ∈ N,

(2.14)
(
μn

(
Scn(Un

i ,Un
j ,Un

k )

(
Un

i

)))
i,j,k=1,...,m =⇒

n→∞
(
μ

(
Sc(Ui,Uj ,Uk)(Ui)

))
i,j,k=1,...,m.

The following results are crucial for the construction of Aldous diffusion and stated in
[24], Proposition 2.32, Theorem 3, Corollary 5.21. On T2, all of the above notions of conver-
gence are equivalent. By (2.6), the total length of binary algebraic measure trees is uniformly
bounded by 3, and one can show that the space T2 is compact.

PROPOSITION 2.8. Let (xN = (TN, cN,μN))N∈N and x = (T , c,μ) be in T2. The fol-
lowing are equivalent:

(1) xN −→n→∞ x w.r.t. sample shape convergence.
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(2) For all m ∈ N and t ∈ Cm,

(2.15) μ⊗m
N

{
(u1, . . . , um) : s(TN ,cN )(u) = t

} −→
n→∞ μ⊗m{

(u1, . . . , um) : s(T ,c)(u) = t
}
.

(3) xN −→n→∞ x Gromov-weakly w.r.t. the branch point distribution distance.
(4) For all m ∈ N and φ ∈ Cb(R

m×m+ ),

(2.16)
∫

μ⊗m
N (du)φ

((
rμN

(ui, uj )
)
1≤i,j≤m

) −→
n→∞

∫
μ⊗m(du)φ

((
rμ(ui, uj )

)
1≤i,j≤m

)
.

(5) xN −→n→∞ x w.r.t. sample subtree mass convergence.
(6) For all m ∈ N with m ≥ 3 and f ∈ Cb([0,1]m3

),

(2.17)

∫
μ⊗m

N (du)f
((

μN

(
ScN (ui ,uj ,uk)(ui)

))
i,j,k=1,...,m

)

−→
n→∞

∫
μ⊗m(du)f

((
μ

(
Sc(ui ,uj ,uk)(ui)

))
i,j,k=1,...,m

)
.

In what follows, we will need the following two subspaces of T2. Let for each N ∈ N,

(2.18) T
N
2 :=

{
(T , c,μ) ∈ T2 : # lf(T ) = N and μ = 1

N

∑
u∈lf(T )

δu

}
,

and

(2.19) T
cont
2 := {

(T , c,μ) ∈ T2 : at(μ) = ∅
}
.

The Aldous chain on N -cladograms is naturally defined on T
N
2 : for x ∈ T

N
2 , there is a unique

(up to measure preserving tree isomorphism) minimal representative (T , c,μ) of x (i.e., no
subset with the restrictions of c and μ is an algebraic measure tree) with 2N − 2 vertices
and 2N − 3 edges. We identify x ∈ T

N
2 with this minimal representative and interpret it as

“N -caldogram without labels” with uniform distribution on the leaves. We define the Al-
dous chain on T

N
2 in the same way as the one on CN , via its generator �N in (1.1). With a

slight abuse of notation, we use the same notation for the generators of the T
N
2 -valued and of

the CN -valued chain. We will define the Aldous diffusion on the space T
cont
2 in view of the

following approximation result.

PROPOSITION 2.9 (Approximations with T
N
2 ). Let x ∈ T2. Then x ∈ T

cont
2 if and only

if there exists for each N ∈ N an xN ∈ T
N
2 such that xN → x in one (and thus all) of the

equivalent notions of convergence on T2 given above.

PROPOSITION 2.10 (Compactness and metrizability). T2 is a compact, metrizable
space. Both T

N
2 and T

cont
2 are closed subspaces of T2, and thus compact as well.

To deal with the Aldous chain and diffusions, it is convenient to introduce the following
set of test functions on T2.

DEFINITION 2.11 (Shape polynomials). A shape polynomial is a linear combination of
functions �m,t : T2 →R of the form

(2.20) �m,t(x ) := μ⊗m(
s
−1
(T ,c)(t)

)
,

where x = (T , c,μ), m ∈N and t ∈ Cm. Let �s be the set of all shape polynomials.

Apart from its combinatorial nature, the usefulness of shape polynomials stems from the
fact that every real-valued continuous function on T2 can be approximated by them.
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LEMMA 2.12. The set �s of shape polynomials is a uniformly dense sub-algebra of
C(T2).

PROOF. It is immediate from Propositions 2.8 and 2.10 that �s is contained in the space
C(T2) of continuous functions and separates the points of T2. To see that �s is multi-
plicatively closed, consider for k,m ∈ N, k < m the projection πm,k : Cm → Ck , mapping
t = (C, c, ζ ) ∈ Cm to the subcladogram spanned by ζ(1), . . . , ζ(k), as well as the projection
π̃m,k : Cm → Cm−k , mapping to the subcladogram spanned by ζ(k + 1), . . . , ζ(m) (relabelled
to have labels in {1, . . . ,m − k}). Because μ is a probability and the product measure is used
in (2.20), we have for m,n ∈N, t ∈ Cm, t̃ ∈ Cn

(2.21) �m,t · �n,t̃ = ∑
t′∈π−1

n+m,m(t)∩π̃−1
n+m,n(t̃)

�m+n,t′ ∈ �s.

Because T2 is compact by Proposition 2.10, �s is dense in C(T2) by the Stone–Weierstrass
theorem. �

Consider m ∈ N and t = (C, c, ζ ) ∈ Cm \ Cm, that is, there is at least one leaf in the
m-labelled cladogram t with multiple labels. Then s(T ,c)(u1, . . . , um) = t implies that the
u1, . . . , um are not distinct. Hence, �m,t(x ) = 0 for all x ∈ T

cont
2 . This is in fact the reason

why we restricted the domain of the pre-generator of the Aldous diffusion D(�Ald) to shape
polynomials using m-cladograms instead of m-labelled cladograms (see (1.12)). Note that
the set of restrictions to T

cont
2 of functions in D(�Ald) is dense in C(Tcont

2 ).

3. Convergence of generators, tightness and existence. In this section, we prepare the
proofs of our main results by showing the uniform convergence of the generators of the dis-
crete chains to the pre-generator (D(�Ald),�Ald), and deduce tightness of the Aldous chains
(provided tightness of initial conditions) as well as existence of solutions of the limiting mar-
tingale problem by general theory. We also obtain continuous paths of all limit processes.

A first simple observation about the pre-generator is that it maps D(�Ald) into itself.

LEMMA 3.1. For every � ∈ D(�Ald), we have �Ald� ∈ D(�Ald). In particular,
(�,�Ald�) ∈ C(T2) × C(T2).

PROOF. Both � and �Ald� are shape polynomials, hence continuous by definition of
sample shape convergence. �

For N ∈ N, recall from (1.1) the generator �N of the Aldous chain on N -cladograms and
from (2.18) the space T

N
2 of algebraic measure trees with N leaves and uniform distribution

on the leaves.

PROPOSITION 3.2 (Convergence of generators). For all � ∈ D(�Ald), we have

(3.1) lim
N→∞ sup

x ∈TN
2

∣∣�N�(x ) − �Ald�(x )
∣∣ = 0.

PROOF. Consider � ∈ D(�Ald). By linearity, we may assume w.l.o.g. that � = �m,t

for some m ∈ N and t ∈ Cm. In particular, t is such that no leaf has multiple labels, and
consequently for u ∈ T m, s(T ,c)(u) = t implies that u1, . . . , um are distinct.

Fix N ∈ N and x ∈ T
N
2 , and let (T , c,μ) be the unique (up to measure preserving tree

isomorphism) minimal representative (i.e., #T = 2N −2). Then # lf(T ) = N and # edge(T ) =
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FIG. 4. A finite algebraic tree (T , c) and the extended tree (T , c̄).

2N −3). In the following we abbreviate the inverse numbers of leaves and edges respectively,
by

(3.2) ε = εN := 1

N
, and δ = δN := 1

2N − 3
.

We extend the algebraic tree to allow for potential new branch points (due to inserting an
edge) and new leaves. To this end, for every edge e ∈ edge(T ), we introduce two additional
points xe, ye. Informally, xe is inserted in the middle of e, and ye is attached to xe as a leaf.
More precisely, we consider

(3.3) T = T � ⊎
e∈edge(T )

{xe, ye},

and extend c to c̄ : T
3 → T which is uniquely defined by the following. (T , c̄) is an algebraic

tree such that for e = {u, v} ∈ edge(T ), we have xe ∈ [u, v] in (T , c̄), and

(3.4) c̄(ye, xe, z) = xe ∀z ∈ T \ {ye}.
The construction is illustrated in Figure 4. Note that (T , c̄,μ) is a binary algebraic measure
tree equivalent to (T , c,μ).

For k ∈ {1, . . . ,m} and x ∈ T , let θk,x : T m → T
m

be the replacement operator which
replaces the kth-coordinate by x, that is,

(3.5) θk,x(u1, . . . , um) = (u1, . . . , uk−1, x, uk+1, . . . , um).

For z = (x, e) ∈ lf(T ) × edge(T ), let

(3.6) xz := (T , c̄,μ + εδye − εδx)

be the binary algebraic measure tree after the Aldous move with z. The difference between
sampling with the new and old measure is given by

(3.7)

(μ + εδye − εδx)
⊗m − μ⊗m

= ε

m∑
k=1

μ⊗(k−1) ⊗ (δye − δx) ⊗ μ⊗(m−k)

+ ε2
∑

1≤k<j≤m

μ⊗(k−1) ⊗ (δye − δx) ⊗ μ⊗(j−k−1) ⊗ (δye − δx) ⊗ μ⊗(m−j) + μ̃

= ε

m∑
k=1

(
μ⊗m ◦ θ−1

k,ye
− μ⊗m ◦ θ−1

k,x

) − ε2
m∑

j,k=1,j �=k

μ⊗m ◦ θ−1
k,ye

◦ θ−1
j,x + μ̃′,
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where μ̃, μ̃′ are signed measures on T
m

vanishing on {(u1, . . . , um) : u1, . . . , um distinct}.
Thus

(3.8) �N�m,t(x ) = ∑
z∈lf(T )×edge(T )

(
�m,t(xz) − �m,t(x )

) =
m∑

k=1

Ak −
m∑

j,k=1,j �=k

Bk,j ,

with

Ak := ε
∑

(x,e)∈lf(T )×edge(T )

∫
T m

μ⊗m(du)
(
1t

(
s(T ,c̄)(θk,yeu)

) − 1t
(
s(T ,c̄)(θk,xu)

))
,(3.9)

and

Bk,j := ε2
∑

(x,e)∈lf(T )×edge(T )

∫
T m

μ⊗m(du)1t
(
s(T ,c̄)(θk,ye ◦ θj,xu)

)
.(3.10)

We use the notation t∧k ∈ Cm−1 for the (m − 1)-cladogram obtained from t by deleting
the leaf with label k (and relabelling the labels j > k to j − 1), i.e., if t = s(T ,c̄)(u), then
t∧k = s(T ,c̄)(u∧k) with u∧k := (u1, . . . , uk−1, uk+1, . . . , um). Furthermore, for u ∈ T m, we
define

(3.11) Et,k(u) := {
v ∈ T : s(T ,c̄)(θk,vu) = t

}
.

Note that Et,k(u) does not depend on uk , contains no uj for j �= k, and that Et,k(u) �= ∅

only if s(T ,c)(u∧k) = t∧k . In this case, Et,k(u) “corresponds to” an edge of t∧k . Let � :=
δ

∑
e∈edge(T ) δye be the uniform distribution on {ye : e ∈ edge(T )}. By Fubini’s theorem and

using that εδ
∑

(x,e)∈lf× edge δx ⊗ δye = μ ⊗ �, we obtain

(3.12)

Ak = δ−1
∫
T

m
μ⊗m(du)

(
�
(
Et,k(u)

) − μ
(
Et,k(u)

))

=
∫
T m

μ⊗m(du)1t∧k

(
(s(T ,c̄)u∧k)

) · (
3μ

(
Et,k(u)

) + 1
)

= 3�m,t(x ) + �m−1,t∧k (x ),

where we have used in the second step that, because (T , c) is binary,

(3.13) #
{
e ∈ edge(T ) : c(

ye, z, z
′) ∈ (

z, z′)} = 2#
{
x ∈ lf(T ) : c(

x, z, z′) ∈ (
z, z′)} + 1

for every z, z′ ∈ T , and hence δ−1�(Et,k(u)) = 2Nμ(Et,k(u)) + 1 if s(T ,c̄)(u∧k) = t∧k . Sim-
ilarly,

(3.14)

Bk,j = ε

δ

∫
T

�(dy)

∫
T

μ(dx)

∫
T m

μ⊗m(du)1t
(
s(T ,c̄) ◦ θk,y ◦ θj,x(u)

)
= ε

δ
�m,t(x ) + εAk

= 2�m,t(x ) + εAk + 3ε�m,t(x ).

Combining (3.8), (3.12) and (3.14), we obtain that

(3.15)

�N�m,t(x ) =
m∑

k=1

�m−1,t∧k (x ) + (
3m − 2m(m − 1)

)
�m,t(x ) − ε(m − 1)

m∑
k=1

Ak

− 3εm(m − 1)�m,t(x )

=
m∑

k=1

�m−1,t∧k (x ) − m(2m − 5)�m,t(x ) − ε(m − 1)

m∑
k=1

�m−1,t∧k (x )

− 6εm(m − 1)�m,t(x ).
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For an edge e of t∧k , denote by t(k,e) the cladogram obtained by inserting a leaf labelled
k in t∧k at the edge e (and relabelling the labels j ≥ k to j + 1). In particular, t(k,e) is the
cladogram obtained from t by the Aldous move (k, e). For u ∈ T m, we have s(T ,c)(u∧k) = t∧k

if and only if there is an edge e of t∧k such that s(T ,c)(u) = t(k,e), and this e is unique. Hence,

(3.16)

m∑
k=1

�m−1,t∧k (x ) =
∫
T m

μ⊗m(du)

m∑
k=1

1t∧k

(
s(T ,c)(u∧k)

)

=
∫
T m

μ⊗m(du)

m∑
k=1

∑
e∈edge(t∧k)

1t(k,e)

(
s(T ,c)(u)

)

=
∫
T m

μ⊗m(du)�m1t
(
s(T ,c)(u)

) + m# edge(t∧k)�
m,t(x ).

Inserting this into (3.15) and using that # edge(t∧k) = 2m − 5, we see that

(3.17)
∣∣∣∣�N�m,t(x ) −

∫
T m

(�m1t) ◦ s(T ,c) dμ⊗m

∣∣∣∣ ≤ 7m(m − 1)ε,

which gives the claim. �

As T2 is compact by Proposition 2.10, we can immediately conclude the following from
the convergence of the generators.

COROLLARY 3.3 (The limiting martingale problem). Let (xN)N∈N be a sequence of ran-
dom binary algebraic measure trees with xN ∈ T

N
2 , such that

(3.18) xN ⇒ x as N → ∞,

where x is distributed according to P0 on T
cont
2 . Let XN = (XN

t )t≥0 be the Aldous chain
started in xN . Then the sequence (XN)N∈N is tight in Skorokhod path space. Any limit process
(Xt)t≥0 has continuous, Tcont

2 -valued paths, and satisfies the (�Ald,D(�Ald),P0)-martingale
problem.

PROOF. Tightness. Tightness follows, in view of the approximation result Proposition 2.9
and Lemma 3.1, with the exactly same proof as Theorems 3.9.1 and 3.9.4 in [9] (see also [9],
Remark 4.5.2).

Continuous paths. For � ∈ D(�Ald), let �(XN) = (�(XN
t ))t≥0. By definition, D(�Ald)

induces the topology of sample-shape convergence on T
cont
2 . Hence, continuity of the paths

of the limit process X = (Xt)t≥0 in T
cont
2 is equivalent to path-continuity of �(X) for all

� ∈ D(�Ald). Because �(X) is the limit of �(XN), this follows from the obvious estimate
|�(XN

t ) − �(XN
t−)| ≤ m

N
for � = �m,t.

Values in T
cont
2 . That any limit point has Tcont

2 -valued paths follows directly from the fact
that XN is TN

2 -valued, together with the approximation result Proposition 2.9.
Martingale problem. That all limit points satisfy the martingale problem follows with the

same proof as Lemma 4.5.1 in [9]. �

The following corollary is immediate from the previous corollary and the approximation
result Proposition 2.9.

COROLLARY 3.4 (Existence). For any probability measure P0 on T
cont
2 there exists a

solution in CTcont
2

(R+) of the (�Ald,D(�Ald),P0)-martingale problem.
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4. Duality, uniqueness and convergence. In this section, we first obtain a duality result
that in turn allows to conclude the uniqueness of the martingale problem. We also use duality
to show that the Aldous diffusion is a Feller process on T

cont
2 . For m ∈ N let Ym := (Ym

t )t≥0

be the Cm-valued Aldous chain with generator �m from (1.1). If Ym
0 = t ∈ Cm, then E

Y
t

denotes the corresponding expectation.

PROPOSITION 4.1 (Duality). Let P0 be an arbitrary probability measure on T
cont
2 and

let X := ((Tt , ct ,μt ))t≥0 be a solution of the (�Ald,D(�Ald),P0)-martingale problem in
DT

cont
2

(R+). For arbitrary m ∈ N and t ∈ Cm, let Ym := (Ym
t )t≥0 be the Cm-valued Aldous

chain with Ym
0 = t. Assume that Ym is independent of X. Then

(4.1)

E
X
P0

[
μ⊗m

t

{
u ∈ T m

t : s(Tt ,ct )(u) = t
}]

=
∫
T

cont
2

E
Y
t

[
μ⊗m{

u ∈ T m : s(T ,c)(u) = Ym
t

}]
P0

(
d(T , c,μ)

)
.

PROOF. Let m ∈ N. For x = (T , c,μ) ∈ T
cont
2 and t ∈ Cm, we define H(x , t) := μ⊗m{u ∈

T m : s(T ,c)(u) = t}. Then

(4.2) �AldH(·, t)(x ) =
∫
T m

μ⊗m(du)�m1t
(
s(T ,c)(u)

) = �mH(x , ·)(t).
By our assumptions on the test functions H and definitions of �Ald and �m, the result follows
by [9], Lemma 4.4.11, Corollary 4.4.13. �

COROLLARY 4.2 (Uniqueness of the martingale problem). Let P0 be an arbitrary proba-
bility measure on T

cont
2 . Then uniqueness holds for the (�Ald,D(�Ald),P0)-martingale prob-

lem in DT
cont
2

(R+).

PROOF. As the set of all shape polynomials is separating (for probability measures), the
result is immediate by the previous proposition and Proposition 4.4.7 from [9]. �

COROLLARY 4.3 (Feller process). For F ∈ C(Tcont
2 ), t ≥ 0, and x ∈ T

cont
2 , let

(4.3) StF (x ) := Ex
(
F(Xt)

)
,

where, under Ex , X = (Xt)t≥0 is the Aldous diffusion on T
cont
2 started in x . Then (St )t≥0 is a

Feller semi-group. In particular, the Aldous diffusion is a strong Markov process.

PROOF. (St )t≥0 is well-defined by existence and uniqueness shown in Corollaries 3.4
and 4.2. It is a semi-group on the set of bounded measurable functions on T

cont
2 by the Markov

property of X, which in turn follows from uniqueness and Theorem 4.4.2(a) in [9]. Recall
from Proposition 2.10 and Lemma 2.12 that the state space T

cont
2 is compact, and the set

D(�Ald) of shape polynomials is uniformly dense in C(Tcont
2 ). Hence, in order to show that

St maps C(Tcont
2 ) into itself, it is enough to show StF ∈ C(Tcont

2 ) for F = �m,t ∈ D(�Ald).
Using duality, we have St�

m,t(x ) = E[�m,Yt (x )] for the Cm-valued Aldous chain started in t.
Thus St�

m,t ∈ C(Tcont
2 ), because it is a finite linear combination of the continuous functions

�m,t′ for different t′ ∈ Cm.
We have shown that (St )t≥0 is a contraction semigroup on C(Tcont

2 ). Its weak continuity
follows directly from continuity of the sample paths of X. Weak continuity implies strong
continuity, for example, by Theorem 19.6 of [20]. Therefore, X is a Feller process. This also
implies the strong Markov property (see, e.g., [9], Theorem 4.2.7). �
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5. Long term behavior and the Brownian CRT. In this section, we define the algebraic
measure Brownian CRT, and provide the joint density of the cladogram shape spanned by a
sample of finite size together with the vector of subtree masses branching off the edges of the
cladogram. Moreover, we show that the algebraic measure Brownian CRT is invariant under
the Aldous diffusion and that for any initial x ∈ T

N
2 , the Aldous diffusion converges in law to

the algebraic measure Brownian CRT as time goes to infinity.
Recall the definition of the set Cm of m-cladograms (after Definition 2.4) and the shape

s(T ,c)(u1, . . . , um) spanned by the vector of m points u1, . . . , um ∈ T (Definition 2.5). We
define the following.

DEFINITION 5.1 (Algebraic measure Brownian CRT). The algebraic measure Brownian
CRT is the unique (in distribution) random binary algebraic measure tree XCRT = (T , c,μ)

with uniform annealed sample shape distribution, that is, for all m ∈ N, for all t ∈ Cm,

(5.1) ECRT
[
μ⊗m{

(u1, . . . , um) : s(T ,c)(u1, . . . , um) = t
}] = 1

#Cm

.

Note that there is a unique law on T2 satisfying (5.1) because the sample shape distribution
separates probability measures on T2, and it is realized through the well-known Brownian
CRT once we ignore the distances (compare, [1], Theorem 23).

Now we provide the analog of [1], Theorem 23, by considering, together with the sample
shape, the vector of masses of the subtrees branching off the edges of the shape cladogram.
As expected, under the annealed law of the Brownian CRT, we obtain that this vector is
Dirichlet distributed and independent of the shape. To state the result more precisely, for
u = (u1, . . . , um) ∈ T let T (u) = c({u1, . . . , um}3) be the generated subtree, and for e =
{ex, ey} ∈ edge(T (u)) let

(5.2) η(T ,c,μ)(u, e) := μ
({

v ∈ T : c(v, ex, ey) ∈ (ex, ey) ∪ ({ex, ey} ∩ lf
(
T (u)

))})
.

Let η(T ,c,μ)(u) = (η(T ,c,μ)(u, e))e∈edge(T (u)) be the vector of these 2m − 3 masses (assuming
u1, . . . , um are distinct). We obtain the following, which is proven in the special case m = 3
in [2], Theorem 2.

PROPOSITION 5.2 (Brownian CRT and Dir(1
2 , . . . , 1

2)). Let XCRT be the Brownian CRT,
m ∈ N, t ∈ Cm and f : �2m−3 → R bounded measurable, where �k is the k-simplex for
k ∈N, that is,

(5.3) �k := {
x ∈ [0,1]k : x1 + · · · + xk = 1

}
.

Then the following holds:

(5.4)

ECRT

[∫
μ⊗m(du)1t

(
s(T ,c)(u)

)
)f

(
η(T ,c,μ)(u)

)]

= 1

#Cm

∫
�2m−3

f (x)Dir
(

1

2
, . . . ,

1

2

)
(dx)

= �(m − 3
2)

#Cm�(1
2)2m−3

∫
�2m−3

f (x)(x1 · . . . · x2m−3)
− 1

2 dx,

where Dir(1
2 , . . . , 1

2) is the Dirichlet distribution and the last integral in (5.4) is w.r.t.
Lebesgue measure on �2m−3.
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PROOF. We follow Aldous’s proof of [2], Theorem 2, and show a local limit theorem
for the subtree mass distribution of a uniform N -cladogram (with uniform distribution on the
leaves) as N → ∞. Because the uniform N -cladogram converges to the Brownian CRT, this
implies the claim.

Fix m ∈ N and t ∈ Cm. Let N ≥ m. Denote by πN,m : CN → Cm the projection map which
sends an N -cladogram (T , c, ζ ) to the m-cladogram spanned by the first m leaves, that is, for
Tm := c(ζ({1, . . . ,m})3),

(5.5) πN,m(T , c, ζ ) := (
Tm, c�Tm

, ζ�{1,...,m}
)
.

For n = (ne)e∈edge(t) with
∑

e ne = N , let qN(n) be the probability that the first m leaves
of a uniform N -cladogram span the m-cladogram t, and the numbers of leaves of the N -
cladogram in the subtrees corresponding to the edges of t are given by the vector n, that
is,

(5.6)

qN(n) := 1

#CN

#
{
(T , c, ζ ) ∈ π−1

N,m(t) : N · η(T ,c,ζ )

(
ζ(1), . . . , ζ(m)

) = n
}

= 1

#CN

· (N − m)!∏e∈ex-edge(t) #Cne+1
∏

e∈in-edge(t) #Cne+2∏
e∈ex-edge(t)(ne − 1)!∏e∈in-edge(t) ne! .

The first factor in the numerator together with the denominator counts the number of possibil-
ities to distribute the N − m remaining leaves to the edges of the m-cladogram t (with quan-
tities specified by n), and the products in the numerator count the possibilities to give clado-
gram structure to the leaves associated to every edge of t. For an external edge e ∈ ex-edge(t),
this is the number of (ne + 1)-cladograms (identify the additional leaf with the branch point
of t it is attached to). For an internal edge, we need two additional leaves. Recall that

(5.7) #CN = (2N − 5)!! = (2N − 4)!
2N−2(N − 2)! ≈ (N − 2)! · 2(N−2)(π(N − 2)

)− 1
2 ,

where ≈ means that the quotient tends to 1 as N → ∞, and we have applied the Stirling
formula.

Fix η = (η1, . . . , η2m−3) ∈ �2m−3 with ηi > 0 for i = 1, . . . ,2m − 3. For ni = ni(N) with∑2m−3
i=1 ni = N and N−1ni → ηi (in particular ni → ∞), as N → ∞, we obtain (using the

convention that the first m edges are external)

(5.8)

qN(n) = 1

#CN

· (N − m)! ·
m∏

i=1

#Cni+1

(ni − 1)!
2m−3∏
i=m+1

#Cni+2

ni !

≈
√

π(N − 2)

(N − 2)! · 2N−2 · (N − m)!
m∏

i=1

2ni−1(
π(ni − 1)

)− 1
2

2m−3∏
i=m+1

2ni (πni)
− 1

2

= √
(N − 2) · (N − m)!

(N − 2)! · 22−mπ
1
2 − 2m−3

2

m∏
i=1

(ni − 1)−
1
2

2m−3∏
i=m+1

n
− 1

2
i

≈ N−(m− 5
2 ) · (2π)2−m · N−(m− 3

2 ) · (η1η2 · . . . · η2m−3)
− 1

2

= N−(2m−4) · 1

#Cm

· �(2m−3
2 )

�(1
2)2m−3

(η1η2 · . . . · η2m−3)
− 1

2 .

This gives the claimed Dirichlet density on the (2m − 3)-simplex in the limit. �
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PROPOSITION 5.3 (Convergence to the CRT). Let (Xt)t≥0 be the Aldous diffusion
started in x ∈ T

cont
2 , and XCRT the algebraic measure Brownian CRT. Then

(5.9) Xt =⇒
t→∞ XCRT.

In particular, the algebraic measure Brownian CRT is the unique invariant distribution of the
Aldous diffusion.

PROOF. Fix m ∈N and t ∈ Cm. Let (Yt )t≥0 be the Aldous chain on m-caldograms started
in Y0 = t. Then, for �m,t ∈D(�Ald) as in (2.20), we have by duality (Proposition 4.1)

(5.10) E
(
�m,t(Xt)

) = ∑
t′∈Cm

P
{
Yt = t′

}
�m,t′(x ).

Because the uniform distribution on Cm is the unique reversible distribution of the Aldous
chain (see [3]), limt→∞P{Yt = t′} = 1

#Cm
for every t′ ∈ Cm. Because

∑
t′∈Cm

�m,t′ = 1 on
T

cont
2 , this means

(5.11) lim
t→∞E

(
�m,t(Xt)

) = 1

#Cm

= E
(
�m,t(XCRT)

)
.

Because D(�Ald) is convergence determining for probability measures on T
cont
2 , this proves

(5.9). Invariance of the law of XCRT follows from the convergence (5.9) together with the
Feller property (Corollary 4.3). �

In summary, we have now proven the first two theorems.

PROOF OF THEOREMS 1 AND 2. Well-posedness of the martingale problem is shown
in Corollaries 3.4 and 4.2. Continuous paths and tightness of the sequence of Aldous chains
are shown in Corollary 3.3. Furthermore, every limit process satisfies the martingale problem
(Corollary 3.3) and this implies convergence because of the uniqueness shown in Corol-
lary 4.2. The Feller property is shown in Corollary 4.3, and unique ergodicity with the alge-
braic measure Brownian CRT as invariant distribution is shown in Proposition 5.3. �

6. On the dynamics of the sample subtree mass vector. In this section, we further
study the Aldous diffusion on binary, algebraic nonatomic measure trees and prove Theo-
rem 3. Recall from Proposition 5.2 that under the annealed law of the Brownian CRT, the
sample tree shape is uniform and independent of the vector of subtree masses branching of
the cladogram spanned by the sample. Furthermore, the vector of subtree masses is Dirich-
let distributed. Next, we study the infinitesimal evolution of the quenched law of this vector
under the dynamics of the Aldous diffusion in the case of sample size m = 3.

Recall the definition of the components Sv(u), u, v ∈ T , from (2.2), and from (1.14) that
η(u) with u = (u1, u2, u3) ∈ T 3 denotes the vector of the three masses of the components
connected to c(u), that is,

(6.1) η(u) = (
ηi(u)

)
i=1,2,3 = (

μ
(
Sc(u)(ui)

))
i=1,2,3.

With a slight abuse of notation, we also denote for v ∈ br(T ) by η(v) the μ-masses of the
three components of T \ {v} (ordered decreasingly for definiteness), so that η(u) = η(c(u))

up to a permutation of the entries of the vector. Also recall that for mass polynomials

(6.2) �f (x ) =
∫

f
(
η
(
c(u)

))
μ⊗3(du)
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with f ∈ C2([0,1]3) and x = (T , c,μ) ∈ T2, we define

(6.3)

�Ald�
f (T , c,μ) =

∫
T 3

dμ⊗3

(
2

3∑
i,j=1

ηi(δij − ηj )∂
2
ij f (η) + 3

3∑
i=1

(1 − 3ηi)∂if (η)

+ 1

2

3∑
i,j=1,i �=j

	i,j f (η) +
3∑

i=1

(
f (ei) − f (η)

));

see (1.15) and (1.17), and the definition of migration operators 	i,j in (1.16). Note that �f ∈
C(T2) by Proposition 2.8, and because the functions 	ijf are continuous due to continuous
differentiability of f , �Ald�

f is also a mass-polynomial. In particular, �Ald�
f ∈ C(Tcont

2 ).

REMARK 6.1.

1. If f ∈ C2([0,1]3) is symmetric, we can use the symmetry of the sampling procedure
and rewrite (6.3) as

�Ald�
f (x ) = 3

∫
T 3

dμ⊗3(
2η1(1 − η1)∂

2
11f (η) − 4η1η2∂

2
12f (η) + 3(1 − 3η1)∂1f (η)

+ 	1,2f (η) + f (1,0,0) − f (η)
)
.

(6.4)

This helps to reduce the number of terms in explicit calculations.
2. We can often assume f to be symmetric. If f is not necessarily symmetric, we use

that �f = �f̃ for the symmetrization f̃ of f defined as follows. Given a permutation π of
{1,2,3}, define fπ(x1, x2, x3) := f (xπ(1), xπ(2), xπ(3)). Then f̃ = 1

6
∑

π∈S3
fπ .

For the proof of Theorem 3, we do not use the martingale problem of Theorem 1, because
approximating the mass polynomial of degree three by shape polynomials, though possible
in theory, seems difficult in praxis. Instead, we show that uniform convergence of generators
holds also for mass polynomials of degree three, and use the diffusion approximation of
Theorem 2. For N ∈ N, recall the state space T

N
2 from (2.18) and the Aldous chain with

generator �N from (1.1).

PROPOSITION 6.2 (Subtree mass under the Aldous diffusion). For all test functions �f

of the form (1.15) with f : [0,1]3 →R twice continuously differentiable,

(6.5) lim
N→∞ sup

x ∈TN
2

∣∣�N�f (x ) − �Ald�
f (x )

∣∣ = 0.

From here, we can prove Theorem 3 by standard arguments.

PROOF OF THEOREM 3. Let X = (Xt)t≥0 be the Aldous diffusion on T
cont
2 . Due to

Proposition 2.9, there exist TN
2 -valued random variables XN

0 such that XN
0 converges in law to

X0. By Theorem 2, the Aldous chains XN started in XN
0 converge in law to X. Furthermore,

�Ald maps into C(T2). Hence, the same proof as Lemma 4.5.1 in [9] shows that (1.18) follows
from Proposition 6.2. �

Recall the intrinsic metric rμ on an algebraic measure tree (T , c,μ), as defined in (1.5).
Before proving Proposition 6.2, we show how to use the extended martingale problem from
Theorem 3 to calculate the annealed average rμ-distance in the algebraic measure Brownian
CRT.
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COROLLARY 6.3 (Mean average distance of the Brownian CRT). Let XCRT = (T , c,μ)

be the algebraic measure Brownian CRT. Then

(6.6) ECRT

[∫
T 2

rμ(x, y)μ⊗2(
d(x, y)

)] = 2

5
.

PROOF. First, we express the average distance �(x ) := ∫
rμ(x, y)μ⊗2(d(x, y)) for x =

(T , c,μ) ∈ T
cont
2 as mass polynomial of degree three. Recall the branch point distribution

ν = μ⊗3 ◦ c−1 used in the definition of rμ.

(6.7)

�(x ) =
∫ ∑

v∈br(T )∩(x,y)

ν
({v})μ⊗2(

d(x, y)
)

= ∑
v∈br(T )

ν
({v})μ⊗2({

(x, y) : v ∈ (x, y)
})

= 2
∑

v∈br(T )

ν
({v})(η1(v)η2(v) + η2(v)η3(v) + η1(v)η3(v)

)

= 2
∫ (

η1(u)η2(u) + η2(u)η3(u) + η1(u)η3(u)
)
μ⊗3(du),

that is, � = 2�f (on T
cont
2 ) with f (x, y, z) := xy+yz+xz. From here, we could obtain (6.6)

by a direct computation using Proposition 5.2. But it also follows easily from the invariance
of the CRT under the Aldous diffusion: Because f is symmetric, we obtain from Remark 6.1

�Ald�
f (x ) = 3

∫ (
−4η1η2 + 3(1 − 3η1)(η2 + η3) + (η1 + η2)η3 − f (η)

η1
− 3η1η2

)
dμ⊗3

= 3
∫

(5η1 − 25η1η2)dμ⊗3 = 5 − 25�f (x ).

(6.8)

Thus, ECRT[�Ald�
f ] = 0 implies ECRT[�f (x )] = 1

5 . �

To prove Proposition 6.2, fix N ∈ N and x = (T , c,μ) ∈ T
N
2 . We use some notation from

the proof of Proposition 3.2, in particular recall from (3.2) that ε and δ denote the inverse
numbers of leaves and edges, respectively, and the extended tree (T , c̄) which allows to rep-
resent one Aldous move on the same tree (see Figure 4). We consider μ, ν, and η to be defined
on (T , c̄) and, for z ∈ lf(T )×edge(T ), we denote by μz, νz, and ηz the corresponding objects
after the Aldous move z. Because our trees are binary, the relation between the fraction of
leaves and the fraction of edges in a subtree can be easily related as follows.

LEMMA 6.4 (Proportion of leaves versus edges). Let x = (T , c,μ) ∈ T
N
2 , and S = Sv(u)

for some v ∈ br(T ), u ∈ T \ {v} a component. Let �(S) be the fraction of the edges contained
in S (including the edge to v). Then

(6.9) �(S) = μ(S) · (1 + 3δ) − δ.

Recall the branch point distribution ν = μ⊗3 ◦ c−1. The next lemma shows the effect we
would see if the branch point distribution remained unchanged. This corresponds exactly to
Aldous’s original calculation (compare with (1.2) but notice that our chain runs at total rate
N(2N − 3) rather than N2 as in Aldous’s case). In what follows, we write O(ε) for terms
which divided by ε = εN are bounded uniformly in the tree (and N ), while the bound may
depend on f , and similarly for o(ε) and so on.
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LEMMA 6.5 (Wright–Fisher term with negative drift). Let f be as in Proposition 6.2.
Then

(6.10)

∑
z∈lf(T )×edge(T )

∑
v∈br(T )

ν{v}(f (
ηz(v)

) − f
(
η(v)

))

=
∫ (

2
3∑

i,j=1

ηi(δij − ηj )∂
2
ij f (η) −

3∑
i=1

(1 − 3ηi)∂if (η)

)
dμ⊗3 + o(1),

and the o(1)-term tends to zero as N → ∞ uniformly in the binary tree with N leaves.

PROOF. According to Remark 6.1, we may and do assume w.l.o.g. that f is symmetric
so that f (η(u)) depends on u ∈ T 3 only through v = c(η(u)). Fix v ∈ br(T ). To make the
calculation more readable, we abbreviate ηi = ηi(v) (ordered decreasingly) in the following
equations as long as v is fixed. Denote the three components of T \ {v} by Si(v), i = 1,2,3,
ordered such that ηi = μ(Si). For all z = (u, e) ∈ lf(T ) × edge(T ) with u ∈ Si(v) and e ∈
Sj (v), a Taylor expansion yields

(6.11) f
(
ηz(v)

) =
(

1 − ε(∂i − ∂j ) + 1

2
ε2(∂i − ∂j )(∂i − ∂j )

)
f (η) + o

(
ε2)

.

Using first this expansion and then Lemma 6.4, we obtain

(6.12)

Av := ∑
z∈lf(T )×edge(T )

(
f

(
ηz) − f (η)

)

=
3∑

i,j=1,i �=j

ηi

ε

�j

δ
ε

((
∂j − ∂i + ε

2
(∂ii + ∂jj − 2∂ij )

)
f (η) + o(ε)

)

=
3∑

i,j=1,i �=j

ηi

ηj (1 + 3δ) − δ

δ

((
∂j − ∂i + ε

2
(∂ii + ∂jj − 2∂ij )

)
f (η) + o(ε)

)
.

As the highest order term is anti-symmetric in i �= j , that is,
∑3

i �=j=1 ηiηj (∂j − ∂i)f (η) = 0,
and ε

δ
= 2 + O(ε), we obtain

(6.13)

Av = −
3∑

i,j=1,i �=j

ηi(∂j − ∂i)f (η) + ε

δ

3∑
i,j=1,i �=j

ηiηj (∂ii − ∂ij )f (η) + o(1)

= −
3∑

i=1

(1 − 3ηi)∂if (η) + 2
3∑

i=1

ηi(1 − ηi)∂iif (η)

− 2
3∑

i,j=1,i �=j

ηiηj ∂ijf (η) + o(1)

= −
3∑

i=1

(1 − 3ηi)∂if (η) + 2
3∑

i,j=1

ηi(δij − ηj )∂ijf (η) + o(1),

and the claim follows by (weighted) summation over v and Fubini’s theorem. �

Recall that, for e ∈ edge(T ), we introduced xe, ye ∈ T \T , where xe is “in the middle” of e

and ye is a leaf attached to xe. Because μ is supported by T and η(xe) is ordered decreasingly,
we always have η3(xe) = 0 and η1(xe)+ η2(x2) = 1. The following lemma is easily obtained
by associating a branch point to its three adjacent edges.
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LEMMA 6.6 (Matching lemma). Let g : [0,1]2 →R be symmetric. Then

(6.14)
∑

e∈edge(T )

g
(
η1(xe), η2(xe)

) = 1

2

∑
v∈br(T )

3∑
i=1

g
(
ηi(v),1 − ηi(v)

) + 1

2
Ng(1 − ε, ε).

PROOF. If e ∈ edge(T ) is adjacent to v ∈ br(T ), there is i ∈ {1,2,3}, j ∈ {1,2} with
ηj (xe) = ηi(v) and η3−j (xe) = 1 − ηi(v). The edge e is either adjacent to precisely two
branch points, or it is an external edge, that is, adjacent to a leaf of T . In the latter case, we
have (η1(xe), η2(xe)) = (1 − ε, ε), and there are N external edges. Therefore,

(6.15) 2
∑

e∈edge(T )

g
(
η1(xe), η2(xe)

) − Ng(1 − ε, ε) = ∑
v∈br(T )

3∑
i=1

g
(
ηi(v),1 − ηi(v)

)
as claimed. �

PROOF OF PROPOSITION 6.2. We assume w.l.o.g. that f is symmetric (see Remark 6.1).
Step 1. Recall that for z = (u, e) ∈ lf(T ) × edge(T ), νz and ηz are the branch point distri-

bution and mass vector after the Aldous move z, respectively. In the first step, we calculate
the effect of the branch point “created” by the Aldous move z due to the fact that νz({xe})
might be nonzero, whereas ν({xe}) = 0 for all e ∈ edge(T ). To this end, set

(6.16) Cxe := ∑
z∈lf(T )×edge(T )

νz{xe}f (
ηz(xe)

)
.

Recall that we order the entries of η decreasingly, so that η1(xe)+η2(xe) = 1 and η3(xe) = 0.
For (x, y, z) ∈ �3, let

(6.17)
hε(x, y, z) := (

1 − ε(2 + x∂1 + y∂2 − ∂3)
)
f (x, y, z),

gε(x, y) := 6xy · hε(x, y,0).

Then gε is a symmetric function. Let e ∈ edge(T ). For z = (u, e′) ∈ lf(T ) × edge(T ), we
have νz{xe} �= 0 if and only if e = e′, and hence, using symmetry of f ,

(6.18)

Cxe = ∑
u∈lf(T )

ν(u,e){xe}f (
η(u,e)(xe)

)

=
2∑

i=1

Nηi(xe) · 6ε
(
ηi(xe) − ε

)
η3−i(xe) · f (

ηi(xe) − ε, η3−i(xe), ε
)

= gε

(
η1(xe), η2(xe)

) + O
(
ε2)

,

where we used, in the last equality, a first order Taylor expansion of f and the identity
η1(xe) + η2(xe) = 1. For v ∈ br(T ) \ T , there is a unique edge e ∈ edge(T ) with v = xe.
Thus, using Lemma 6.6,

(6.19)

∑
v∈br(T )\T

Cv = ∑
e∈edge(T )

gε

(
η1(xe), η2(xe)

) + O(ε)

= 1

2

∑
v∈br(T )

3∑
i=1

gε

(
ηi(v),1 − ηi(v)

) + 1

2
Ngε(1 − ε, ε) + O(ε).

Now we use that ν{v} = 6η1(v)η2(v)η3(v) for v ∈ br(T ), and hence for any permutation
(i, j, k) ∈ S3, we have gε(ηi(v),1 − ηi(v)) = ν{v}( 1

ηj (v)
+ 1

ηk(v)
)hε(ηi,1 − ηi,0), and obtain

(6.20)
∑

v∈br(T )\T
Cv = 1

2

∑
v∈br(T )

ν{v}
3∑

i,j=1,i �=j

hε(ηi(v),1 − ηi(v),0)

ηj (v)
+ 3f (1,0,0) + O(ε).
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Step 2. In the second step, we calculate the effect of the change in ν{v} for the “old” branch
points. Fix v ∈ br(T ). To make the calculation more readable, we abbreviate ηi = ηi(v) as
long as v is fixed. We use Lemma 6.4 in the first transformation, and a first-order Taylor
expansion of f in the second:

Bv := ∑
z∈lf(T )×edge(T )

(
νz{v} − ν{v})f (

ηz(v)
)

= ∑
(i,j,k)∈S3

ηi

ε

ηj (1 + 3δ) − δ

δ
· ν{v}

(
(ηi − ε)(ηj + ε)ηk

ηiηjηk

− 1
)

× f (ηi − ε, ηj + ε, ηk)

= ν{v} ∑
(i,j,k)∈S3

(
1

δ
ηj (1 + 3δ) − 1

)
ηi − ηj − ε

ηj

times
(
f (η) + ε(∂j − ∂i)f (η) + O

(
ε2))

.

(6.21)

Cancelling all terms which are anti-symmetric in (i, j), we obtain

(6.22)

Bv = ν{v} ∑
(i,j,k)∈S3

(
ε

δ
(ηi − ηj )(∂j − ∂i)f (η) −

(
ηi − ε

ηj

− 1 + ε

δ

)
f (η)

− ε
ηi

ηj

(∂j − ∂i)f (η) + O(ε)

)
.

Using ε/δ = 2 + O(ε), that
∑

(i,j,k)∈S3
ηi

ηj
= ∑

(i,j,k)∈S3
( 1

2ηj
− 1

2), and

(6.23)

∑
(i,j,k)∈S3

ηi

ηj

(∂j − ∂i)f =
3∑

j=1

(
1 − ηj

ηj

∂j − ηi

ηj

∂i − ηk

ηj

∂k

)
f

= ∑
(i,j,k)∈S3

1

2ηj

(∂j − ηi∂i − ηk∂k)f + O(1),

we continue

Bv = ν{v} ∑
(i,j,k)∈S3

(
4(ηj − ηi)∂if (η)

−
(

1

2ηj

+ 1

2
− ε

ηj

+ ε

2ηj

(∂j − ηi∂i − ηk∂k)

)
f (η)

)

+ ν{v}O(ε)

= 4ν{v}
3∑

i=1

(1 − 3ηi)∂if (η) − ν{v} ∑
(i,j,k)∈S3

hε(ηi, ηj , ηk)

2ηk

− ν{v}(3f (η) + O(ε)
)
.

(6.24)

Step 3. Because f is twice continuously differentiable, 1
z
(2 + x∂1 + y∂2 − ∂3)(f (x, y +

z,0) − f (x, y, z)) is bounded and hence

(6.25)

1

z

(
hε(x, y + z,0) − hε(x, y, z)

) = 1

z

(
f (x, y + z,0) − f (x, y, z)

) + O(ε)

= 	3,2f (x, y, z) + O(ε).
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Therefore, using Fubini’s theorem and combining (6.19) with (6.24) yields

(6.26)

∑
z∈lf(T )×edge(T )

∑
v∈br(T )

(
νz{v} − ν{v})f (

ηz(v)
)

= ∑
v∈br(T )

Bv + ∑
v∈br(T )\T

Cv

= ∑
v∈br(T )

ν{v}
(

4
3∑

i=1

(1 − 3ηi)∂if
(
η(v)

) + 1

2

3∑
i,j=1,i �=j

	i,jf
(
η(v)

) + 3f (1,0,0)

− 3f
(
η(v)

)) + O(ε).

Together with Lemma 6.5 (and using symmetry of f ), we have obtained for x ∈ T
N
2

(6.27)

�N�f (x ) = ∑
z∈lf(T )×edge(T )

∑
v∈br(T )

(
νz{v}f (

ηz(v)
) − ν{v}f (

η(v)
))

= �Ald�
f (x ) + o(1),

which shows the claim of Proposition 6.2. �
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