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We introduce a new method for obtaining quantitative convergence rates
for the central limit theorem (CLT) in a high-dimensional setting. Using
our method, we obtain several new bounds for convergence in transporta-
tion distance and entropy, and in particular: (a) We improve the best known
bound, obtained by the third named author (Probab. Theory Related Fields
170 (2018) 821–845), for convergence in quadratic Wasserstein transporta-
tion distance for bounded random vectors; (b) we derive the first nonasymp-
totic convergence rate for the entropic CLT in arbitrary dimension, for general
log-concave random vectors (this adds to (Ann. Inst. Henri Poincaré Probab.
Stat. 55 (2019) 777–790), where a finite Fisher information is assumed);
(c) we give an improved bound for convergence in transportation distance un-
der a log-concavity assumption and improvements for both metrics under the
assumption of strong log-concavity. Our method is based on martingale em-
beddings and specifically on the Skorokhod embedding constructed in (Ann.
Inst. Henri Poincaré Probab. Stat. 52 (2016) 1259–1280).

1. Introduction. Let X(1), . . . ,X(n) be i.i.d. random vectors in Rd . By the central limit
theorem, it is well known that, under mild conditions, the sum 1√

n

∑n
i=1 X(i) converges to

a Gaussian. With d fixed, there is an extensive literature showing that the distance from
Gaussian under various metrics decays as 1√

n
as n → ∞, and this is optimal.

However, in high-dimensional settings, it is often the case that the dimension d is not fixed
but rather grows with n. It then becomes necessary to understand how the convergence rate
depends on dimension, and the optimal dependence here is not well understood. We present a
new technique for proving central limit theorems in Rd that is suitable for establishing quan-
titative estimates for the convergence rate in the high-dimensional setting. The technique,
which is described in more detail in Section 1.1 below, is based on pathwise analysis: we
first couple the random vector with a Brownian motion via a martingale embedding. This
gives rise to a coupling between the sum and a Brownian motion for which we can establish
bounds on the concentration of the quadratic variation. We use a multidimensional version of
a Skorokhod embedding, inspired by a construction of the first named author from [21], as a
manifestation of the martingale embedding.

Using our method, we prove new bounds on quadratic transportation (also known as “Kan-
torovich” or “Wasserstein”) distance in the CLT, and in the case of log-concave distributions,
we also give bounds for entropy distance. Let W2(A,B) denote the quadratic transportation
distance between two d-dimensional random vectors A and B . That is,

W2(A,B) =
√√√√ inf

(X,Y ) s.t.
X∼A,Y∼B

E
[‖X − Y‖2

2

]
,
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where the infimum is taken over all couplings of the vectors A and B . As a first demonstration
of our method, we begin with an improvement to the best known convergence rate in the case
of bounded random vectors.

THEOREM 1. Let X be a random d-dimensional vector. Suppose that E[X] = 0 and
‖X‖ ≤ β almost surely for some β > 0. Let � = Cov(X), and let G ∼ N (0,�) be a Gaussian
with covariance �. If {X(i)}ni=1 are i.i.d. copies of X and Sn = 1√

n

∑n
i=1 X(i), then

W2(Sn,G) ≤ β
√

d
√

32 + 2 log2(n)√
n

.

Theorem 1 improves a result of the third named author [46] that gives a bound of order
β
√

d logn√
n

under the same conditions. It was noted in [46] that when X is supported on a lattice

βZd , then the quantity W2(Sn,G) is of order β
√

d√
n

. Thus, Theorem 1 is within a
√

logn factor
of optimal.

When the distribution of X is isotropic and log-concave, we can improve the bounds guar-
anteed by Theorem 1. In this case, however, a more general bound has already been estab-
lished in [19]; see discussion below.

THEOREM 2. Let X be a random d-dimensional vector. Suppose that the distribution of
X is log-concave and isotropic. Let G ∼ N (0, Id) be a standard Gaussian. If {X(i)}ni=1 are
i.i.d. copies of X and Sn = 1√

n

∑n
i=1 X(i), then there exists a universal constant C > 0 such

that, if d ≥ 8,

W2(Sn,G) ≤ Cd3/4 ln(d)
√

ln(n)√
n

.

REMARK 3. We actually prove the slightly stronger bound

W2(Sn,G) ≤ Cκd ln(d)
√

d ln(n)√
n

,

where

(1) κd := sup
μ isotropic,
log-concave

∥∥∥∥
∫
Rd

x1x ⊗ xμ(dx)

∥∥∥∥
HS

,

as defined in [20]. Results in [20] and [35] imply that κd = O(d1/4), leading to the bound
in Theorem 2. If the thin-shell conjecture (see [2], as well [15]) is true, then the bound is
improved to κd = O(

√
ln(d)), which yields

W2(Sn,G) ≤ C
√

d ln(d)3 ln(n)√
n

.

By considering, for example, a random vector uniformly distributed on the unit cube, one can
see that the above bound is sharp up to the logarithmic factors.

REMARK 4. To compare with the previous theorem, note that if Cov(X) = Id , then
E‖X‖2 = d . Thus, in applying Theorem 1 we must take β ≥ √

d , and the resulting bound

is then of order at least d
√

logn√
n

.
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Next, we describe our results regarding convergence rate in entropy. If A and B are random
vectors such that A has density f with respect to the law of B , then relative entropy of A with
respect to B is given by

Ent(A||B) = E
[
ln
(
f (A)

)]
.

As a warm-up, we first use our method to recover the entropic CLT in any fixed dimension.
In dimension one this was first established by Barron [6]. The same methods may also be
applied to prove a multidimensional analogue. See [13] for a more quantitative version of the
theorem.

THEOREM 5. Suppose that Ent(X||G) < ∞. Then one has

lim
n→∞ Ent(Sn||G) = 0.

The next result gives the first nonasymptotic convergence rate for the entropic CLT, again
under the log-concavity assumption (other nonasymptotic results appear in previous works,
notably [19], but require additional assumptions; see below).

THEOREM 6. Let X be a random d-dimensional vector. Suppose that the distribution of
X is log-concave and isotropic. Let G ∼ N (0, Id) be a standard Gaussian. If {X(i)}ni=1 are
i.i.d. copies of X and Sn = 1√

n

∑n
i=1 X(i) then

Ent(Sn||G) ≤ Cd10(1 + Ent(X||G))

n

for a universal constant C > 0.

Our method also yields a different (and typically stronger) bound if the distribution is
strongly log-concave.

THEOREM 7. Let X be a d-dimensional random vector with E[X] = 0 and Cov(X) = �.
Suppose further that X is 1-uniformly log concave (i.e., it has a probability density e−ϕ(x)

satisfying ∇2ϕ � Id ) and that � � σ Id for some σ > 0.
Let G ∼ N (0,�) be a Gaussian with the same covariance as X and let γ ∼ N (0, Id) be

a standard Gaussian. If {X(i)}ni=1 are i.i.d. copies of X and Sn = 1√
n

∑n
i=1 X(i), then

Ent(Sn||G) ≤ 2(d + 2 Ent(X||γ ))

σ 4n
.

REMARK 8. The theorem can be applied when X is isotropic and σ -uniformly log con-
cave for some σ > 0. In this case, a change of variables shows that

√
σX is 1-uniformly log

concave and has σ Id as a covariance matrix. Since relative entropy to a Gaussian is invariant
under affine transformations, if G ∼ N (0, Id) is a standard Gaussian, we get

Ent(Sn||G) = Ent(
√

σSn||√σG) ≤ 2(d + 2 Ent(
√

σX||G))

σ 4n
.

1.1. An informal description of the method. Let Bt be a standard Brownian motion in Rd

with an associated filtration Ft . The following definition will be central to our method.

DEFINITION 9. Let Xt be a martingale satisfying dXt = �t dBt for some adapted pro-
cess �t taking values in the positive semidefinite cone and let τ be a stopping time. We say
that the triplet (Xt ,�t , τ ) is a martingale embedding of the measure μ if Xτ ∼ μ.



THE CLT IN HIGH DIMENSIONS 2497

Note that if �t is deterministic, then Xt has a Gaussian law for each t . At the heart of
our proof is the following simple idea: Summing up n independent copies of a martingale
embedding of μ, we end up with a martingale embedding of μ∗n whose associated covari-

ance process has the form
√∑n

i=1(�
(i)
t )2. By the law of large numbers, this process is well

concentrated and thus the resulting martingale is close to a Brownian motion.
This suggests that it would be useful to couple the sum process

∑n
i=1 X

(i)
t with the “av-

eraged” process whose covariance is given by E[
√∑n

i=1(�
(i)
t )2] (this process is a Brown-

ian motion up to deterministic time change). Controlling the error in the coupling naturally
leads to a bound on transportation distance. For relative entropy, we can reformulate the dis-
crepancies in the coupling in terms of a predictable drift and deduce bounds by a judicious
application of Girsanov’s theorem.

In order to derive quantitative bounds, one needs to construct a martingale embedding in
a way that makes the fluctuations of the process �t tractable. The specific choices of �t that
we consider are based on a construction introduced in [21]. This construction is also related
to the entropy minimizing process used by Föllmer ([29, 30], see also Lehec [36]) and to
the stochastic localization which was used in [20]. Such techniques have recently gained
prominence and have been used, among other things, to improve known bounds of the KLS
conjecture [20, 35], calculate large deviations of nonlinear functions [22] and study tubular
neighborhoods of complex varieties [34].

The basic idea underlying the construction of the martingale is a certain measure-valued
Markov process driven by a Brownian motion. This process interpolates between a given
measure and a delta measure via multiplication by infinitesimal linear functions. The Doob
martingale associated to the delta measure (the conditional expectation of the measure, based
on the past) will be a martingale embedding for the original measure. This construction is
described in detail in Section 2.3 below.

1.2. Related work. Multidimensional central limit theorems have been studied exten-
sively since at least the 1940s [8] (see also [10] and references therein). In particular, the
dependence of the convergence rate on the dimension was studied by Nagaev [38], Senatov
[44], Götze [31], Bentkus [7] and Chen and Fang [26], among others. These works focused
on convergence in probabilities of convex sets. We mention that in dimension 1, the picture
is much clearer and that tight estimates are known under various metrics ([9, 11, 12, 25, 42,
43]).

More recently, dependence on dimension in the high-dimensional CLT has also been stud-
ied for Wishart matrices (Bubeck and Ganguly [17], Eldan and Mikulincer [24]), maxima
of sums of independent random vectors (Chernozhukov, Chetverikov and Kato [18]), and
transportation distance ([46]). As mentioned earlier, Theorem 1 is directly comparable to an
earlier result of the third named author [46], improving on it by a factor of

√
logn (see also

the earlier work [45]). We refer to [46] for a discussion of how convergence in transportation
distance may be related to convergence in probabilities of convex sets.

As mentioned above, Theorem 2 is not new, and follows from a result of Courtade, Fathi
and Pananjady [19], Theorem 4.1. Their technique employs Stein’s method (see also [16], for
a different approach using Stein’s method) in a novel way which is also applicable to entropic
CLTs (see below). In a subsequent work [27], similar bounds are derived for convergence in
the pth-Wasserstein transportation metric.

Regarding entropic CLTs, it was shown by Barron [6] that convergence occurs as long as
the distribution of the summand has finite relative entropy (with respect to the Gaussian).
However, establishing explicit rates of convergence does not seem to be a straightforward
task. Even in the restricted setting of log-concave distributions, not much is known. One of
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the only quantitative results is Proposition 4.3 in [19], which gives near optimal convergence,
provided that the distribution has finite Fisher information. We do not know of any results
prior to Theorem 6 which give entropy distance bounds of the form poly(d)

n
to a sum of general

log-concave vectors.
A one-dimensional result was established by Artstein, Ball, Barthe and Naor [3] and in-

dependently by Barron and Johnson [33], who showed an optimal O(1/n) convergence rate
in relative entropy for distributions having a spectral gap (i.e., satisfying a Poincaré inequal-
ity). This was later improved by Bobkov, Chistyakov and Götze [13, 14], who derive an
Edgeworth-type expansion for the entropy distance which also applies to higher dimensions.
However, although their estimates contain very precise information as n → ∞, the given
error term is only asymptotic in n and no explicit dependence on the measure or on the di-
mension is given (in fact, the dependence derived from the method seems to be exponential
in the dimension d).

A related “entropy jump” bound was proved by Ball and Nguyen [5] for log-concave
random vectors in arbitrary dimensions (see also [4]). Essentially, the bound states that for
two i.i.d. random vectors X and Y , the relative entropy Ent(X+Y√

2
||G) is strictly less than

Ent(X||G), where the amount is quantified by the spectral gap for the distribution of X.
Repeated application gives a bound for entropy of sums of i.i.d. log-concave vectors in any
dimension, but the bound is far from optimal. It is not apparent to us whether the method of
[5] can be extended to provide quantitative estimates for convergence in the entropic CLT.

1.3. Notation. We work in Rd equipped with the Euclidean norm, which we denote by
‖·‖. For a positive semidefinite symmetric matrix A we denote by

√
A the unique positive

semidefinite matrix B , for which the relation B2 = A holds. For symmetric matrices A and
B we use A  B to signify that B − A is a positive semidefinite matrix. By A† we denote
the pseudo inverse of A. Put succinctly, this means that in A† every nonzero eigenvalue of
A is inverted. For a random matrix A, we will write E[A]†, for the pseudo inverse of its
expectation.

If Bt is the standard Brownian motion in Rd , then for any adapted process Ft we denote
by

∫ t
0 Fs dBs , the Itô stochastic integral. We refer by Itô’s isometry to the fact

E

[∥∥∥∥
∫ t

0
Fs dBs

∥∥∥∥2]
=

∫ t

0
E
[‖Fs‖2

HS
]
ds

when Ft is adapted to the natural filtration of Bt .
μ will always stand for a probability measure. To avoid confusion, when integrating with

respect to μ, on Rd , we will use the notation
∫

. . .μ(dx). For a measure-valued stochastic
process μt , the expression dμt refers to the stochastic derivative of the process. A measure
μ on Rd is said to be log-concave if it is supported on some subspace of Rd and, relative
to the Lebesgue measure of that subspace, it has a density ρ, twice differentiable almost
everywhere, for which

−∇2 log
(
ρ(x)

) � 0 for all x,

where ∇2 denotes the Hessian matrix, in the Alexandrov sense. If in addition there exists an
σ > 0 such that

−∇2 log
(
ρ(x)

) � σ Id for all x,

we say that μ is σ -uniformly log-concave. The measure μ is called isotropic if it is centered
and its covariance matrix is the identity, that is,∫

Rd
xμ(dx) = 0 and

∫
Rd

x ⊗ xμ(dx) = Id .

Finally, as a convention, we use the letters C,C′, c, c′ to represent positive universal constants
whose values may change between different appearances.
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2. Obtaining convergence rates from martingale embeddings. Suppose that we are
given a measure μ and a corresponding martingale embedding (Xt ,�t , τ ). The goal of this
section is to express bounds for the corresponding CLT convergence rates (of the sum of
independent copies of μ-distributed random vectors) in terms of the behavior of the process
�t and τ .

Throughout this section we fix a measure μ on Rd whose expectation is 0, a random
vector X ∼ μ, and a corresponding Gaussian G ∼ N (0,�), where Cov(X) = �. Also, the
sequence {X(i)}∞i=1 will denote independent copies of X, and we write Sn := 1√

n

∑n
i=1 X(i)

for their normalized sum. Finally, we use Bt to denote a standard Brownian motion on Rd

adapted to a filtration Ft .

2.1. A bound for Wasserstein-2 distance. The following is our main bound for conver-
gence in Wasserstein distance.

THEOREM 10. Let Sn and G be defined as above and let (Xt ,�t , τ ) be a martingale
embedding of μ. Set �t = 0 for t > τ , then

W2
2 (Sn,G) ≤

∫ ∞
0

min
(

1

n
Tr

(
E
[
�4

t

]
E
[
�2

t

]†)
,4 Tr

(
E
[
�2

t

]))
dt.

To illustrate how such a result might be used, let us assume, for simplicity, that �t ≺ kId
almost surely for some k > 0 and that τ has a subexponential tail, that is, there exist positive
constants C,c > 0 such that for any t > 0,

(2) P(τ > t) ≤ Ce−ct .

Under these assumptions,

W2
2 (Sn,G) ≤

∫ ∞
0

min
(

1

n
Tr

(
E
[
�4

t

]
E
[
�2

t

]†)
,4k2 dP(τ > t)

)
dt

≤ dk2
∫ log(n)

c

0

1

n
dt + 4C dk2

∫ ∞
log(n)

c

e−ct dt = d log(n)k2

cn
+ 4C dk2

n
.

Towards the proof, we will need the following technical lemma.

LEMMA 1. Let A,B be positive semidefinite matrices with ker(A) ⊂ ker(B). Then,

Tr
(
(
√

A − √
B)2) ≤ Tr

(
(A − B)2A†).

PROOF. Since A and B are positive semidefinite, ker(
√

A+√
B) ⊂ ker(

√
A−√

B).Thus,
we have that √

A − √
B = (

√
A − √

B)(
√

A + √
B)(

√
A + √

B)†

= (
A − B + [√A,

√
B])(√A + √

B)†.
(3)

So,

Tr
(
(
√

A − √
B)2) = Tr

(((
A − B + [√A,

√
B])(√A + √

B)†)2)
.

Note that for any symmetric matrices X and Y , by the Cauchy–Schwarz inequality,

Tr
(
(XY)2) ≤ Tr(XYXY) ≤ √

Tr(XYYX) · Tr(YXXY) = Tr
(
X2Y 2).

Applying this to the above equation shows

Tr
(
(
√

A − √
B)2) ≤ Tr

((
A − B + [√A,

√
B])2(

(
√

A + √
B)†)2)

.
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Note that the commutator [√A,
√

B] is an anti-symmetric matrix, so that (A − B) ×
[√A,

√
B] + [√A,

√
B](A − B) is anti-symmetric as well. Thus, for any symmetric matrix

C, we have that

Tr
((

(A − B)[√A,
√

B] + [√A,
√

B](A − B)
)
C
) = 0.

Also, since all eigenvalues of anti-symmetric matrices are purely imaginary, the square of
such matrices must be negative definite. And again, for any symmetric positive definite matrix
C, it holds that C1/2[√A,

√
B]2C1/2 is negative definite and Tr([√A,

√
B]2C) ≤ 0. Using

these observations we obtain

Tr
((

A − B + [√A,
√

B])2(
(
√

A + √
B)†)2) ≤ Tr

(
(A − B)2((√A + √

B)†)2)
.

Finally, if C,X,Y are positive definite matrices with X  Y then C1/2(Y −X)C1/2 is positive
definite which shows Tr(CX) ≤ Tr(CY ). The assumption ker(A) ⊂ ker(B) implies ((

√
A +√

B)†)2  A†, which concludes the claim by

Tr
(
(A − B)2((√A + √

B)†)2) ≤ Tr
(
(A − B)2A†) �

PROOF OF THEOREM 10. Recall that (Xt ,�t , τ ) is a martingale embedding of μ. Let
(X

(i)
t ,�

(i)
t , τ (i)) be independent copies of the embedding. We can always set �

(i)
t = 0 when-

ever t > τ (i), so that
∫ ∞

0 �
(i)
t dB

(i)
t ∼ μ. Define �̃t =

√
1
n

∑n
i=1(�

(i)
t )2. Our first goal is to

show

(4) W2
2 (G,Sn) ≤

∫ ∞
0

E
[
Tr

((
�̃t −

√
E
[
�2

t

])2)]
dt.

The theorem will then follow by deriving suitable bounds for E[Tr((�̃t −
√
E[�2

t ])2)] using

Lemma 1. Consider the sum 1√
n

∑n
i=1

∫ ∞
0 �

(i)
t dB

(i)
t , which has the same law as Sn. It may

be rewritten as

Sn =
∫ ∞

0
�̃t dB̃t ,

where dB̃t := 1√
n
�̃

†
t

∑
i �

(i)
t dB

(i)
t is a martingale whose quadratic variation matrix has

derivative satisfying

(5)
d

dt
[B̃]t = 1

n

∑
i

�̃
†
t

(
�

(i)
t

)2
�̃

†
t  Id

(in fact, as long as Rd is spanned by the images of �
(i)
t , this process is a Brownian motion).

We may now decompose Sn as

(6) Sn =
∫ ∞

0

√
E
[
�̃2

t

]
dB̃t +

∫ ∞
0

(
�̃t −

√
E
[
�̃2

t

])
dB̃t .

Observe that G := ∫ ∞
0

√
E[�̃2

t ]dB̃t has a Gaussian law and that E[�̃2
t ] = E[�2

t ]. By applying
Itô’s isometry, we may see that G has the “correct” covariance in the sense that

Cov(G) = E

[(∫ ∞
0

√
E
[
�̃2

t

]
dB̃t

)⊗2]
= E

[∫ ∞
0

�2
t dt

]
= E

[(∫ ∞
0

�t dBt

)⊗2]
= Cov(X).

The decomposition (6) induces a natural coupling between G and Sn, which shows, by an-
other application of Itô’s isometry, that

W2
2 (G,Sn) ≤ E

[∥∥∥∥
∫ ∞

0

(
�̃t −

√
E
[
�2

t

])
dB̃t

∥∥∥∥2] (5)≤ Tr
(
E

[∫ ∞
0

(
�̃t −

√
E
[
�2

t

])2
dt

])

=
∫ ∞

0
E
[
Tr

((
�̃t −

√
E
[
�2

t

])2)]
dt,
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where the last equality is due to Fubini’s theorem. Thus, (4) is established. Since (�̃t −√
E[�2

t ])2  2(�̃2
t +E[�2

t ]), we have

(7) Tr
(
E
[(

�̃t −
√
E
[
�2

t

])2]) ≤ 4 Tr
(
E
[
�2

t

])
.

To finish the proof, write Ut := 1
n

∑n
i=1(�

(i)
t )2, so that �̃t = √

Ut . Since �t is positive
semidefinite, it is clear that ker(E[�2

t ]) ⊂ ker(Ut ). By Lemma 1,

E
[
Tr

((√
Ut −

√
E
[
�2

t

])2)] ≤Tr
(
E
[(

Ut −E
[
�2

t

])2]E[
�2

t

]†)

= 1

n2 Tr

(
n∑

i=1

E
[((

�
(i)
t

)2 −E
[
�2

t

])2]E[
�2

t

]†

)

=1

n
Tr

((
E
[
�4

t

] −E
[
�2

t

]2)E[
�2

t

]†)

≤1

n
Tr

(
E
[
�4

t

]
E
[
�2

t

]†)
,

where we have used the fact E[(�(i)
t )2] = E[�2

t ] in the second equality. Combining the last
inequality with (7) and (4) produces the required result. �

2.2. A bound for the relative entropy. As alluded to in the Introduction, in order to estab-
lish bounds on the relative entropy we will use the existence of a martingale embedding to
construct an Itô process whose martingale part has a deterministic quadratic variation. This
will allow us to relate the relative entropy to a Gaussian with the norm of the drift term
through the use of Girsanov’s theorem. As a technicality, we require the stopping time asso-
ciated to the martingale embedding to be constant. Our main bound for the relative entropy
reads,

THEOREM 11. Let (Xt ,�t ,1) be a martingale embedding of μ. Assume that for every
0 ≤ t ≤ 1, E[�t ] � σt Id � 0 and that �t is invertible a.s. for t < 1. Then we have the following
inequalities:

Ent(Sn||G) ≤ 1

n

∫ 1

0

E[Tr((�2
t −E[�2

t ])2)]
(1 − t)2σ 2

t

(∫ 1

t
σ−2

s ds

)
dt

and

Ent(Sn||G) ≤
∫ 1

0

Tr(E[�2
t ] −E[�̃t ]2)

(1 − t)2

(∫ 1

t
σ−2

s ds

)
dt,

where

�̃t =
√√√√1

n

n∑
i=1

(
�

(i)
t

)2

and �
(i)
t are independent copies of �t .

The theorem relies on the following bound, whose proof is postponed to the end of the
subsection.
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LEMMA 2. Let �t be an Ft -adapted matrix-valued processes and let F : R × Rd →
Rd×d be almost surely invertible and locally Lipschitz. Denote Ft(x) := F(t, x) and let
Xt,Mt be defined by

Xt =
∫ t

0
�s dBs and Mt =

∫ t

0
Fs(Ms) dBs.

Define the process Yt by

Yt =
∫ t

0
Fs(Ys) dBs +

∫ t

0

∫ s

0

�r − Fr(Yr)

1 − r
dBr ds.

Then,

Ent(X1||M1) ≤ E

[∫ 1

0

∫ 1

s

∥∥∥∥F−1
t (Yt )

�s − Fs(Ys)

1 − s

∥∥∥∥2

HS
dt ds

]
.

Note that if the process Ft is deterministic, that is, it is a constant function, then M1 has a
Gaussian law, so that the lemma can be used to bound the relative entropy of X1 with respect
to a Gaussian.

PROOF OF THEOREM 11. Let (X
(i)
t ,�

(i)
t ,1) be independent copies of the martingale

embedding. Consider the sum process X̃t = 1√
n

∑n
i=1 X

(i)
t , which satisfies X̃t = ∫ t

0 �̃s dB̃s

where we define, as in the proof of Theorem 10,

�̃t :=
√√√√1

n

n∑
i=1

(
�

(i)
t

)2 and dB̃t = 1√
n
�̃−1

t

∑
�

(i)
t dB

(i)
t .

By assumption �̃t is invertible, which makes B̃t a Brownian motion. In this case, (X̃t , �̃t ,1)

is a martingale embedding for the law of Sn. For the first bound, consider the process

Mt =
∫ t

0

√
E
[
�2

s

]
dB̃s.

By Itô’s isometry, one has M1 ∼N (0,�). Also, by Jensen’s inequality,√
E
[
�2

t

] � E[�t ] � σt Id .

Using this observation and substituting
√
E[�2

t ] for a constant function Ft in Lemma 2 yields,

(8) Ent(Sn||G) ≤
∫ 1

0
E

[∥∥∥∥ �̃t −
√
E[�2

t ]
1 − t

∥∥∥∥2

HS

](∫ 1

t
σ−2

s ds

)
dt.

With the use of Lemma 1, we obtain

E
∥∥�̃t −

√
E
[
�2

t

]∥∥2
HS = E

[
Tr

((
�̃t −

√
E
[
�2

t

])2)]

≤ E

[
Tr

((
1

n

n∑
i=1

(
�

(i)
t

)2 −E
[
�2

t

])2

E
[
�2

t

]−1

)]

≤ 1

nσ 2
t

E
[
Tr

((
�2

t −E
[
�2

t

])2)]
.

Plugging the above into (8) shows the first bound. To see the second bound, we define a
process M ′

t , which is similar to Mt , and is given by the equation

M ′
t :=

∫ t

0
E[�̃s]dB̃s.
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Let Gn denote a Gaussian which is distributed as M ′
1. For any s, we now have the following

Cauchy–Schwarz-type inequality:

n

(
n∑

i=1

(
�(i)

s

)2

)
�

(
n∑

i=1

�(i)
s

)2

.

Since the square root is monotone with respect to the order on positive definite matrices, this
implies

E[�̃s] � 1

n
E

[
n∑

i=1

�(i)
s

]
� σsId .

Thus,

Ent(Sn||Gn) ≤ E

[∫ 1

0

∫ 1

t

∥∥∥∥E[�̃s]−1 �̃t −E[�̃t ]
1 − t

∥∥∥∥2

HS
ds dt

]

≤
∫ 1

0
E

[∥∥∥∥ �̃t −E[�̃t ]
1 − t

∥∥∥∥2

HS

](∫ 1

t
σ−2

s ds

)
dt

=
∫ 1

0

Tr(E[�2
t ] −E[�̃t ]2)

(1 − t)2

(∫ 1

t
σ−2

s ds

)
dt.

Since Cov(G) = Cov(Sn), it is now easy to verify that Ent(Sn||G) ≤ Ent(Sn||Gn), which
concludes the proof. �

A key component in the proof of the theorem lies in using the norm of an adapted process
in order to bound the relative entropy. The following lemma embodies this idea. Its proof is
based on a straightforward application of Girsanov’s theorem. We provide a sketch and refer
the reader to [36], where a slightly less general version of this lemma is given, for a more
detailed proof.

LEMMA 3. Let F : R × Rd → Rd×d be almost surely invertible and locally Lipschitz.
Denote Ft(x) := F(t, x) and let Mt = ∫ t

0 Fs(Ms) dBs . For ut , an adapted process, set Yt :=∫ t
0 Fs(Ys) dBs + ∫ t

0 us ds. Then

Ent(Y1||M1) ≤ 1

2

∫ 1

0
E
[∥∥F−1

t (Yt )ut

∥∥2]
dt.

PROOF. Since Mt is an Itô diffusion, by Girsanov’s theorem ([39], Theorem 8.6.5), the
density of {Yt }t∈[0,1] with respect to that of {Mt }t∈[0,1] on the space of paths is given by

E := exp
(
−

∫ 1

0
Ft(Yt )

−1ut dBt − 1

2

∫ 1

0

∥∥Ft(Yt )
−1ut

∥∥2
dt

)
.

If f is the density of Y1 with respect to M1, this implies

1 = E
[
f (Y1)E

]
.

By Jensen’s inequality,

0 = ln
(
E
[
f (Y1)E

]) ≥ E
[
ln
(
f (Y1)E

)] = E
[
ln
(
f (Y1)

)] +E
[
ln(E)

]
.

But,

E
[
ln(E)

] = −1

2

∫ 1

0
E
[∥∥F−1

t (Yt )ut

∥∥2]
dt,
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and

E
[
ln
(
f (Y1)

)] = Ent(Y1||M1),

which concludes the proof. �

The proof of Lemma 2 now amounts to invoking the above bound with a suitable construc-
tion of the drift process ut .

PROOF OF LEMMA 2. By definition of the process Yt , we have the following equality:

Y1 =
∫ 1

0
Ft(Yt ) dBt +

∫ 1

0

∫ t

0

�s − Fs(Ys)

1 − s
dBs dt

=
∫ 1

0
Ft(Yt ) dBt +

∫ 1

0

(
�t − Ft(Yt )

)
dBt = X1,

(9)

where we have used Fubini’s theorem in the penultimate equality. Now, consider the adapted
process

ut =
∫ t

0

�s − Fs(Ys)

1 − s
dBs,

so that,

dYt = Ft(Yt ) dBt + ut dt.

Applying Lemma 3 and using Itô’s isometry, we get

Ent(X1||M1) ≤
∫ 1

0
E
[∥∥F−1

t (Yt )ut

∥∥2]
dt =

∫ 1

0
E

[∥∥∥∥
∫ t

0
F−1

t (Yt )
�s − Fs(Ys)

1 − s
dBs

∥∥∥∥2]
dt

= E

[∫ 1

0

∫ t

0

∥∥∥∥F−1
t (Yt )

�s − Fs(Ys)

1 − s

∥∥∥∥2

HS
ds dt

]

= E

[∫ 1

0

∫ 1

s

∥∥∥∥Ft(Yt )
−1 �s − Fs(Ys)

1 − s

∥∥∥∥2

HS
dt ds

]
,

where last equality follows from another use of Fubini’s theorem. �

2.3. A stochastic construction. In this section, we introduce the main construction used
in our proofs, a martingale process which meets the assumptions of Theorems 10 and 11. The
construction in the next proposition is based on the Skorokhod embedding described in [21].
Most of the calculations in this subsection are very similar to what is done in [21], except that
we allow some inhomogeneity in the quadratic variation according to the function Ct below.
In particular, Ct will be a symmetric matrix almost surely, and we will denote the space of
d × d symmetric matrices by Symd .

PROPOSITION 1. Let μ be a probability measure on Rd with smooth density and
bounded support. For a probability measure-valued process μt , let

at =
∫
Rd

xμt(dx), At =
∫
Rd

(x − at )
⊗2μt(dx)

denote its mean and covariance.
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Let C : R × Symd → Symd be a continuous function. Then, we can construct μt so that
the following properties hold:

1. μ0 = μ,
2. at is a stochastic process satisfying dat = AtC(t,A

†
t ) dBt , where Bt is a standard

Brownian motion on Rd , and
3. for any continuous and bounded ϕ :Rd →R,

∫
Rd ϕ(x)μt (dx) is a martingale.

REMARK 12. We will be mainly interested in situations where μt converges almost
surely to a point mass in finite time. In this case, we obtain a martingale embedding
(at ,AtC(t,A

†
t ), τ ) for μ, where τ is the first time that μt becomes a point mass.

In the sequel, we abbreviate Ct := C(t,A
†
t ). We first give an informal description of how

μt+ε is constructed from μt for ε → 0. Consider a stochastic process {Xs}0≤s≤1 in which we
first sample X1 ∼ μt and then set

Xs = (1 − s)at + sX1 + C−1
t Bs,

where Bs is a standard Brownian bridge. We can write Xε = at +√
εC−1

t Z, where Z is close
to a standard Gaussian. We then take μt+ε to be the conditional distribution of X1 given Xε .
This immediately ensures that property 1 holds and that at is a martingale.

It remains to see why property 1 holds. A direct calculation with conditioned Brownian
bridges gives a first-order approximation

μt+ε(dx) ∝ e− 1
2 (

√
εC−1

t Z−ε(x−at ))
T C2

t (
√

εC−1
t Z−ε(x−at ))μt (dx)

∝ e
√

ε〈CtZ,x−at 〉+O(ε)μt (dx)

≈ (
1 + √

ε〈CtZ,x − at 〉)μt(dx).

Then, to highest order, we have

at+ε − at ≈ √
ε

∫
Rd

〈CtZ,x − at 〉(x − at )μt (dx)= √
εAtCtZ,

which translates into property 1 as ε → 0.
Observe that the procedure outlined above yields measures μt that have densities which

are proportional to the original density μ times a Gaussian density. (This applies at least
when At is nondegenerate; something similar also holds when At is degenerate, as we will
see shortly.) Let us now perform the construction formally. We will proceed by iterating the
following preliminary construction, which handles the case when At remains nondegener-
ate.

LEMMA 4. Let μ be a measure on Rd with smooth density and bounded support, and
let C :R× Symd → Symd be a continuous map. Then, there is a measure-valued process μt

and a stopping time T such that μt satisfies the properties in Proposition 1 for t < T and
the affine hull of the support of μT has dimension strictly less than d . Moreover, if μT is
considered as a measure on this affine hull, it has a smooth density.

PROOF. We will construct a (Rd × Symd)-valued stochastic process (ct , �̃t ) started at
(c0, �̃0) = (0, Id). Let us write

Qt(x) = 1

2

〈
x − ct , �̃

−1
t (x − ct )

〉
,
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and let μ̃ be the probability measure satisfying dμ̃
dμ

(x) ∝ e
1
2 ‖x‖2

. We will then take μt to be
μt(dx) = Ft(x)μ̃(dx), where

Ft(x) = 1

Zt

e−Qt(x), Zt =
∫
Rd

e−Qt(x)μ̃(dx).

Note that since �̃0 = Id , we have μ0 = μ.1

In order to specify the process, it remains to construct (ct , �̃t ). We take it to be the solution
to the SDE

dct = �̃tCt dBt + �̃tC
2
t (at − ct ) dt, d�̃t = −�̃tC

2
t �̃t dt.

Note that the coefficients of this SDE are continuous functions of (ct , �̃t ) so long as �̃t � 0.
By standard existence and uniqueness results, this SDE has a unique solution up to a stopping
time T (possibly T = ∞), at which point At (and hence �̃t ) becomes degenerate. Observe
that, for every t , �̃t  Id and so, the matrix process is continuous on the interval [0, T ].

By a limiting procedure, it is easy to see that μT has a smooth density when considered as a
measure on the affine hull of its support. (Indeed, its density is proportional to the conditional
density of μ̃ times a Gaussian density.) It remains to verify that μt is a martingale and dat =
AtCt dBt .

By direct calculation, we have

d
(
�̃−1

t

) = C2
t dt,

d
(
�̃−1

t ct

) = C2
t ct dt + C2

t (at − ct ) dt + Ct dBt

= C2
t at dt + Ct dBt ,

dQt(x) =
〈
x,

(
1

2
C2

t x − C2
t at

)
dt − Ct dBt

〉
,

d
(
e−Qt(x)) = −e−Qt(x)dQt(x) + 1

2
e−Qt(x)d

[
Qt(x)

]
= e−Qt(x)〈x,Ct dBt + C2

t at dt
〉
.

Integrating against μ̃(dx), we obtain

dZt = Zt

〈
at ,Ct dBt + C2

t at dt
〉
,

dZ−1
t = − 1

Z2
t

dZt + 1

Z3
t

d[Zt ] = 1

Zt

〈at ,−Ct dBt 〉,

dFt (x) = e−Qt(x)dZ−1
t + Z−1

t d
(
e−Qt(x)) + d

[
Z−1

t , e−Qt(x)]
= Ft(x) · 〈x − at ,Ct dBt 〉.

Thus, Ft(x) is a martingale for each fixed x, and furthermore,

dat = d

∫
Rd

xμt (dx) =
∫
Rd

xdμt(dx) =
∫
Rd

x(x − at )Ctμt (dx) dBt = AtCt dBt . �

PROOF OF PROPOSITION 1. We use the process given by Lemma 4, which yields a
stopping time T1 and a measure μT1 with a strictly lower-dimensional support. If μT is a
point mass, then we set μt = μT for all t ≥ T .

1Conceptually, one can replace all instances of μ̃ with μ if we think of the initial value �̃0 as being an “infinite”
multiple of identity. However, to avoid issues with infinities, we have expressed things in terms of μ̃ instead.
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Otherwise, by the smoothness properties of μT1 guaranteed by Lemma 4, we can recur-
sively apply Lemma 4 again on μT1 conditioned on the affine hull of its support. Repeating
this procedure at most d times gives us the desired process. �

2.4. Properties of the construction. We record here various formulas pertaining to the
quantities at , At and μt constructed in Proposition 1.

PROPOSITION 2. Let μ, Ct and μt be as in Proposition 1. Then, there is a Symd -valued
process {�t }t>0 satisfying the following:

• For all t , there is an affine subspace L = Lt ⊂ Rd and a Gaussian measure γt on Rd ,
supported on L, with covariance �t such that μt is absolutely continuous with respect to γt ,
and

dμt

dγt

(x) ∝ μ(x) ∀x ∈ L.

• �t is continuous and for almost every t obeys the differential equation

d

dt
�t = −�tC

2
t �t .

• limt→0+ �−1
t = 0.

PROOF. For 1 ≤ k ≤ d , let Tk denote the first time the measure μt is supported in a
(d −k)-dimensional affine subspace, and denote by Lt the affine hall of the support of μt . We
will define �t inductively for each interval [Tk−1, Tk]. Recall from the proof of Proposition
1 that μt is constructed by iteratively applying Lemma 4 to affine subspaces of decreasing
dimension d, d − 1, d − 2, . . . ,1. Let �̃k,t denote the quantity �̃t , from the k-th application
of Lemma 4, so that �̃k,t is a linear operator on the subspace LTk

.
For the base case 0 < t ≤ T1, take �t = (�̃−1

0,t −Id)−1. A straightforward calculation shows

that over this time interval, dμt

dμ
is proportional to the density of a Gaussian with covariance

�t . Note that since �̃−1
0,0 = Id , we also have limt→0+ �−1

t = 0.
Now suppose that �t has been defined up until time Tk ; we will extend it to time Tk+1. Let

Lk denote the affine hull of the support of μTk
, so that dim(Lk) = d − k (if dim(Lk) < d − k,

then we simply have Tk+1 = Tk). Then, for 0 ≤ t ≤ Tk+1 − Tk , we may set

�Tk+t := (
�̃−1

k,t + �−1
Tk

− Id
)−1

,

where the quantities involved are matrices over the subspace parallel to Lk but may also be
regarded as degenerate bilinear forms in the ambient space Rd . First, observe that continuity
of the processes �̃k,t implies the same for �t . Once again, a straightforward calculation
shows that for Tk ≤ t < Tk+1, dμt

dμ
is proportional to the density of a Gaussian with covariance

�t , where we view μt and μ as densities on Lk (for μ, we take its conditional density on Lk).
It remains only to show that �t satisfies the required differential equation. From our con-

struction, we see that �t always takes the form (�̃−1
t − H)−1, where H  Id and

d

dt
�̃t = −�̃tC

2
t �̃t .

Then, we have
d

dt
�t = −(

�̃−1
t − H

)−1
(

d

dt
�̃−1

t

)(
�̃−1

t − H
)−1

= −�t

(
−�̃−1

t

(
d

dt
�̃t

)
�̃−1

t

)
�t = −�tC

2
t �t ,

as desired. �
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PROPOSITION 3. dAt = ∫
Rd (x − at )

⊗3μt(dx)Ct dBt − AtC
2
t At dt .

PROOF. We consider the Doob decomposition of At = Mt + Et , where Mt is a local
martingale and Et is a process of bounded variation. By the previous two propositions and
the definition of At , we have on one hand

dAt = d

∫
Rd

x⊗2μt(dx) − da⊗2
t = d

∫
Rd

x⊗2μt(dx) − at ⊗ dat − dat ⊗ at − AtC
2
t At dt.

Clearly the first 3 terms are local martingales, which shows, by the uniqueness of the Doob
decomposition, dEt = −AtC

2
t At dt . On the other hand, one may also rewrite the above as

dAt = d

∫
Rd

(x − at )
⊗2μt(dx) =

∫
Rd

d
(
(x − at )

⊗2μt(dx)
)

= −
∫
Rd

dat ⊗ (x − at )μt (dx) −
∫
Rd

(x − at ) ⊗ datμt (dx) +
∫
Rd

(x − at )
⊗2dμt(dx)

− 2
∫
Rd

(x − at ) ⊗ d
[
at ,μt (dx)

]
t +

∫
Rd

d[at , at ]tμt (dx).

Note that the first 2 terms are equal to 0, since, by definition of at ,∫
Rd

dat ⊗ (x − at )μt (dx) = dat ⊗
∫
Rd

(x − at )μt (dx) = 0.

Also, the last 2 terms are clearly of bounded variation, which shows

dMt =
∫
Rd

(x − at )
⊗2dμt(dx) =

∫
Rd

(x − at )
⊗3Ctμt(dx) dBt . �

Define the stopping time τ = inf{t |At = 0}. Then, at time τ , μτ is just a delta mass located
at aτ and μs = μτ for every s ≥ τ . A crucial is observation is the following proposition.

PROPOSITION 4. Suppose that there exists constants t0 ≥ 0 and c > 0 such that a.s. one
of the following happens:

1. for every t0 < t < τ , Tr(AtC
2
t At ) > c,

2.
∫ t0

0 λmin(C
2
t ) dt = ∞, where λmin(C

2
t ) is the minimal eigenvalue of C2

t ,

then τ is finite a.s. and in the second case τ ≤ t0. Moreover, if τ is finite a.s. then aτ has the
law of μ.

PROOF. Consider the process Rt = At + ∫ t
0 AsC

2
s Asds. For the first case, the previous

proposition shows that the real-valued process Tr(Rt ) a positive local martingale; hence, a
super-martingale. By the martingale convergence theorem Tr(Rt ) converges to a limit almost
surely. By our assumption, if τ = ∞ then∫ ∞

0
Tr

(
AtC

2
t At

)
dt ≥

∫ ∞
t0

Tr
(
AtC

2
t At

)
dt ≥

∫ ∞
t0

c dt = ∞.

This would imply that limt→∞ Tr(At ) = −∞ which clearly cannot happen.
For the second case, under the event {τ > t0}, by continuity of the process At there exists

a > 0 such that for every t ∈ [0, t0], there is a unit vector vt ∈ Rd for which 〈vt ,Atvt 〉 ≥ a.
We then have,∫ t0

0
Tr

(
AtC

2
t At

)
dt ≥

∫ t0

0

〈
Atvt ,C

2
t Atvt

〉
dt ≥ a2

∫ t0

0
λmin

(
C2

t

)
dt = ∞,

which implies limt→t0 Tr(At ) = −∞. Again, this cannot happen and so P(τ > t0) = 0.
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To understand the law of aτ , let ϕ : Rd → R be any continuous bounded function. By
Property 1 of Proposition 1

∫
Rd ϕ(x)μt (dx) is a martingale. We claim that it is bounded.

Indeed, observe that since μt is a probability measure for every t , then∫
Rd

ϕ(x)μt (dx) ≤ max
x

∣∣ϕ(x)
∣∣.

τ is finite a.s., so by the optional stopping theorem for continuous time martingales ([39]
Theorem 7.2.4)

E

[∫
Rd

ϕ(x)μτ (dx)

]
=

∫
Rd

ϕ(x)μ(dx).

Since μτ is a delta mass, we have that
∫
Rd ϕ(x)μτ (dx) = ϕ(aτ ) which finishes the proof. �

We finish the section with an important property of the process At .

PROPOSITION 5. The rank of At is monotonic decreasing in t , and ker(At ) ⊂ ker(As)

for t ≤ s.

PROOF. To see that rank(At ) is indeed monotonic decreasing, let v0 be such that
At0v0 = 0 for some t0 > 0, we will show that for any t ≥ t0, Atv0 = 0. In a similar fashion
to Proposition 4, we define the process 〈v0,Atv0〉 + ∫ t

0 〈v0,AsC
2
s Asv0〉ds, which is, using

Proposition 3, a positive local martingale and so a super-martingale. This then implies that
〈v0,Atv0〉 is itself a positive super-martingale. Since 〈v0,At0v0〉 = 0, we have that for any
t ≥ t0, 〈v0,Atv0〉 = 0 as well. �

3. Convergence rates in transportation distance.

3.1. The case of bounded random vectors: Proof of Theorem 1. In this subsection, we fix
a measure μ on Rd and a random vector X ∼ μ with the assumption that ‖X‖ ≤ β almost
surely for some β > 0. We also assume that E[X] = 0.

We define the martingale process at along with the stopping time τ as in Section 2.3, where
we take Ct = A

†
t , so that at = ∫ t

0 AsA
†
s dBs . We denote Pt := AtA

†
t , and remark that since At

is symmetric, Pt is a projection matrix. As such, we have that for any t < τ , Tr(Pt ) ≥ 1. By
Proposition 4, aτ has the law μ.

In light of the remark following Theorem 10, our first objective is to understand the expec-
tation of τ .

LEMMA 5. Under the boundedness assumption ‖X‖ ≤ β , we have E[τ ] ≤ β2.

PROOF. Let Ht = ‖at‖2. By Itô’s formula and since Pt is a projection matrix,

dHt = 2〈at ,Pt dBt 〉 + Tr(Pt ) dt = 2〈at ,Pt dBt 〉 + rank(Pt ) dt.

So, d
dt
E[Ht ] = E[rank(Pt )]. Since E[H∞] ≤ β2,

β2 ≥ E[H∞] −E[H0] =
∫ ∞

0
E
[
rank(Pt )

]
dt ≥

∫ ∞
0

P(τ > t) dt = E[τ ]. �

The above claim gives bounds on the expectation of τ , however in order to use Theorem 10,
we need bounds for its tail behavior in the sense of (2). To this end, we can use a bootstrap
argument and invoke the above lemma with the measure μt in place of μ, recalling that
X∞|Ft ∼ μt and noting that ‖X∞|Ft‖ ≤ β almost surely. Therefore, we can consider the
conditioned stopping time τ |Ft − t and get that

E[τ |Ft ] ≤ t + β2.

The following lemma will make this precise.
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LEMMA 6. Suppose that, for the stopping time τ , it holds that for every t > 0, E[τ |Ft ] ≤
t + β2 a.s., then

(10) ∀i ∈N, P
(
τ ≥ i · 2β2) ≤ 1

2i
.

PROOF. Denote ti = i · 2β2. Since μt is Markovian, and by the law of total probability,
for any i ∈ N we have the relation

P(τ ≥ ti+1) ≤ P(τ > ti) ess sup
μti

(
P
(
τ − ti ≥ 2β2|Fti

))
,

where the essential supremum is taken over all possible states of μti . Using Markov’s in-
equality, we almost surely have

P
(
τ − ti ≥ 2β2|Fti

) ≤ E[τ − ti |Fti ]
2β2 ≤ 1

2
,

which is also true for the essential supremum. Clearly P(τ ≥ 0) = 1 which finishes the proof.
�

PROOF OF THEOREM 1. Our objective is to apply Theorem 10, defining Xt = at and
�t = Pt so that (Xt ,�t , τ ) becomes a martingale embedding according to Proposition 4. In
this case, we have that �t is a projection matrix almost surely. Thus,

Tr
(
E
[
�4

t

]
E
[
�2

t

]†) ≤ d

and

Tr
(
E
[
�2

t

]) ≤ dP(τ > t).

Therefore, if G and Sn are defined as in Theorem 10, then

W2
2 (Sn,G) ≤

∫ 2β2 log2(n)

0

d

n
dt +

∫ ∞
2β2 log2(n)

4dP(τ > t) dt

≤ 2dβ2 log2(n)

n
+ 4d

∫ ∞
2β2 log2(n)

P

(
τ >

⌊
t

2β2

⌋
2β2

)
dt

(10)≤ 2dβ2 log2(n)

n
+ 4d

∫ ∞
2β2 log2(n)

(
1

2

)� t

2β2 �
dt

≤ 2dβ2 log2(n)

n
+ 8dβ2

∞∑
j=�log2(n)�

1

2j
≤ 2dβ2 log2(n)

n
+ 32dβ2

n
.

Taking square roots, we finally have

W2(Sn,G) ≤ β
√

d
√

32 + 2 log2(n)√
n

,

as required. �

3.2. The case of log-concave vectors: Proof of Theorem 2. In this section, we fix μ to
be an isotropic log concave measure. The processes at = a

μ
t ,At = A

μ
t are defined as in

Section 2.3 along with the stopping time τ . To define the matrix process Ct , we first define a
new stopping time

T := 1 ∧ inf
{
t |‖At‖op ≥ 2

}
.
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Ct is then defined in the following manner:

Ct =
{

min
(
A

†
t , Id

)
if t ≤ T ,

A
†
t otherwise,

where, again, A
†
t denotes the pseudo-inverse of At and min(A

†
t , Id) is the unique matrix

which is diagonalizable with respect to the same basis as A
†
t and such that each of its eigen-

values corresponds to an an eigenvalue of A
†
t truncated at 1. Since Tr(AtA

†
t ) ≥ 1 whenever

t ≤ τ , then the conditions of Proposition 4 are clearly met for t0 = 1 and aτ has the law of μ.
In order to use Theorem 10, we will also need to demonstrate that τ has subexponential

tails in the sense of (2). For this, we first relate τ to the stopping time T .

LEMMA 7. τ < 1 + 4
T

.

PROOF. Let �t be as in Proposition 2. As described in the proposition, μt is proportional
to μ times a Gaussian of covariance �t , on an appropriate affine subspace. In this case, an
application of the Brascamp-Lieb inequality (see [32] for details) shows that At = Cov(μt ) 
�t . In particular, this means that for t > T , when restricted to the orthogonal complement of
ker(At ), the following inequality holds:

d

dt
�t = −�tC

2
t �t  −Id .

So, τ ≤ T + ‖�T ‖op.
It remains to estimate ‖�T ‖op. To this end, recall that for 0 < t ≤ T , we have ‖At‖op ≤ 2,

which implies

d

dt
�t = −�tC

2
t �t  −1

4
�2

t .

Now, consider the differential equation f ′(t) = −1
4f (t)2 with f (T ) = ‖�T ‖op, which has

solution f (t) = 4
t−T + 4

‖�T ‖op

. By Gronwall’s inequality, f (t) lower bounds ‖�t‖op for 0 <

t ≤ T , and so, in particular, f (t) must remain finite within that interval. Consequently, we
have

4

‖�T ‖op
> T =⇒ ‖�T ‖op <

4

T
.

We conclude that

τ ≤ T + ‖�T ‖op < 1 + 4

T
,

as desired. �

LEMMA 8. There exist universal constants c,C > 0 such that if s > C · κ2
d ln(d)2 and

d ≥ 8 then

P(τ > s) ≤ e−cs,

where κd is the constant defined in (1).

PROOF. First, by using the previous claim, we may see that for any s ≥ 5,

P(τ > s) ≤ P

(
1

T
≥ s − 1

4

)
≤ P

(
1

T
≥ s

5

)
= P

(
5s−1 ≥ T

) = P
(

max
0≤t≤5s−1

‖At‖op ≥ 2
)
.
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Recall from Proposition 3,

dAt =
∫
Rd

(x − at ) ⊗ (x − at )
〈
Ct(x − at ), dBt

〉
μt(dx) − AtC

2
t At dt.

Since we are trying to bound the operator norm of At , we might as well just consider the
matrix Ãt = At + ∫ t

0 AsC
2
s Asds. Note that, by definition of T , for any t ≤ T ,∫ t

0
AsC

2
s Asds  Id .

Thus, for t ∈ [0, T ],
(11) 3Id � At + Id � Ãt � At .

Also, Ãt can be written as,

(12) dÃt =
∫
Rd

(x − at ) ⊗ (x − at )
〈
Ct(x − at ), dBt

〉
μt(dx), Ã0 = Id .

The above shows

P
(

max
0≤t≤5s−1

‖At‖op ≥ 2
)

≤ P
(

max
0≤t≤5s−1

‖Ãt‖op ≥ 2
)
.

We note than whenever ‖Ãt‖op ≥ 2 then also Tr(Ã4 ln(d)
t )

1
4 ln(d) ≥ 2, so that

P
(

max
0≤t≤5s−1

‖Ãt‖op ≥ 2
)

≤ P
(

max
0≤t≤5s−1

Tr
(
Ã

4 ln(d)
t

) 1
4 ln(d) ≥ 2

)

≤ P
(

max
0≤t≤5s−1

ln
(
Tr

(
Ã

4 ln(d)
t

)) ≥ 2 ln(d)
)

= P
(

max
0≤t≤5s−1

(Mt + Et) ≥ 2 ln(d)
)
,

(13)

where Mt and Et form the Doob-decomposition of ln(Tr(Ã4 ln(d)
t )). That is, Mt is a local

martingale and Et is a process of bounded variation. To calculate the differential of the Doob-
decomposition, fix t , let v1, . . . , vn be the unit eigenvectors of Ãt and let αi,j = 〈vi, Ãtvj 〉
with

dαi,j =
∫
Rd

〈x, vi〉〈x, vj 〉〈Ctx, dBt 〉μt(dx + at ),

which follows from (12). Also define

ξi,j = 1√
αi,iαj,j

∫
Rd

〈x, vi〉〈x, vj 〉Ctxμt(dx + at ).

So that

dαi,j = √
αi,iαj,j 〈ξi,j , dBt 〉, d

dt
[αi,j ]t = αi,iαj,j‖ξi,j‖2.

Now, since vi is an eigenvector corresponding to the eigenvalue αi,i , we have

ξi,j =
∫
Rd

〈
Ã

−1/2
t x, vi

〉〈
Ã

−1/2
t x, vj

〉
Ctxμt(dx + at ).

If we define the measure μ̃t (dx) = det(Ãt )
1/2μt(Ã

1/2
t dx + at ), then μ̃t has the law of a

centered log-concave random vector with covariance Ã
−1/2
t At Ã

−1/2
t  Id . By making the

substitution y = Ã
−1/2
t x, the above expression becomes

ξi,j =
∫
Rd

〈y, vi〉〈y, vj 〉CtÃ
1/2
t yμ̃t (dy).
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By (11) and the definition of T , Ct , for any t ≤ T , Ã
1/2
t  2Id and Ct  Id . So,

‖CtÃ
1/2
t ‖op ≤ 2. Under similar conditions, it was shown in [20], Lemma 3.2, that there exists

a universal constant C > 0 for which:

• for any 1 ≤ i ≤ d , ‖ξi,i‖2 ≤ C,
• for any 1 ≤ i ≤ d ,

∑d
j=1‖ξi,j‖2 ≤ Cκ2

d .

Furthermore, in the proof of Proposition 3.1 in the same paper it was shown

d Tr
(
Ã

4 ln(d)
t

) ≤ 4 ln(d)

d∑
i=1

α
4 ln(d)
i,i 〈ξi,i , dBt 〉 + 16Cκ2

d ln(d)2 Tr
(
Ã

4 ln(d)
t

)
dt.

So, using Itô’s formula with the function ln(x) we can calculate the differential of the Doob
decomposition (13). Specifically, we use the fact that the second derivative of ln(x) is negative
and get

dEt ≤ 16Cκ2
d ln(d)2 Tr(Ã4 ln(d)

t )

Tr(Ã4 ln(d)
t )

= 16Cκ2
d ln(d)2, E0 = ln(d),

and

(14)
d

dt
[M]t ≤ 16C2 ln(d)2

(
Tr(Ã4 ln(d)

t )

Tr(Ã4 ln(d)
t )

)2
= 16C2 ln(d)2.

Hence, Et ≤ t · 16Cκ2
n ln(d)2 + ln(d), which together with (13) gives

P(τ > s) ≤ P
(

max
0≤t≤5s−1

Mt ≥ 2 ln(d) − ln(d) − 80s−1Cκ2
d ln(d)2

)
∀s ≥ 5.

Under the assumption s > 80Cκ2
d ln(d)2, and since d ≥ 8, the above can simplify to

(15) P(τ > s) ≤ P

(
max

0≤t≤5s−1
Mt ≥ 1

2
ln(d)

)
.

To bound this last expression, we will apply the Dubins–Schwarz theorem to write

Mt = W[M]t ,
where Wt is some Brownian motion. Combining this with (15) gives

P(τ > s) ≤ P

(
max

0≤t≤5s−1
W[M]t ≥ ln(d)

2

)
.

An application of Doob’s maximal inequality ([41] Proposition I.1.8) shows that for any
t ′,K > 0,

P
(

max
0≤t≤t ′

Wt ≥ K
)

≤ exp
(
−K2

2t ′
)
.

We now integrate (14) and use the above inequality to obtain

P

(
max

0≤t≤5s−1
W[M]t ≥ ln(d)

2

)
≤ e−cs,

where c > 0 is some universal constant. �

PROOF OF THEOREM 2. By definition of T and Ct , we have that for any t ≤ T , AtCt 
2Id and for any t > T , AtCt = AtA

†
t  Id . We now invoke Theorem 10, with �t = AtCt , for

which

Tr
(
E
[
�4

t

]
E
[
�2

t

]†) ≤ 4d
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and, by Lemma 8

Tr
(
E
[
�2

t

]) ≤ 4dP(τ > t) ≤ 4de−ct ∀t > C · κ2
d ln(d)2.

If G is the standard d-dimensional Gaussian, then the theorem yields

W2
2 (Sn,G) ≤

∫ C·κ2
d ln(d)2 ln(n)

0
4
d

n
dt +

∫ ∞
C·κ2

d ln(d)2 ln(n)
16dP(τ > t)

≤ 4
dC · κ2

d ln(d)2 ln(n)

n
+ 16d

∫ ∞
C·κ2

d ln(d)2 ln(n)
e−ct dt

≤ C′ d · κ2
d ln(d)2 ln(n)

n
.

Thus

W2(Sn,G) ≤ Cκd ln(d)
√

d ln(n)√
n

, �

4. Convergence rates in entropy. Throughout this section, we fix a centered measure μ

on Rd with an invertible covariance matrix � and G ∼ N (0,�). Let {X(i)} be independent
copies of X ∼ μ and Sn := 1√

n

∑n
i=1 X(i).

Our goal is to study the quantity Ent(Sn||G). In light of Theorem 11, we aim to construct
a martingale embedding (Xt ,�t ,1) such that X1 ∼ μ and which satisfies appropriate bounds
on the matrix �t . Our construction uses the process at from Proposition 1 with the choice
Ct := 1

1−t
Id . Property 1 in Proposition 1 gives

at =
∫ t

0

As

1 − s
dBs.

Thus, we denote

�t := At

1 − t
.

Since
∫ 1

0 λmin(C
2
t ) = ∞, Proposition 4 shows that the triplet (at ,�t ,1) is a martingale em-

bedding of μ. As above, the sequence �
(i)
t will denote independent copies of �t and we define

�̃t :=
√∑n

i=1(�
(i)
t )2.

4.1. Properties of the embedding. The martingale embedding has several useful proper-
ties which we record in this section. First, we give an alternative description of the process
which will be of use for us. Define the random process

v := arg min
u

1

2

∫ 1

0
E
[‖ut‖2],

where u varies over all Ft -adapted drifts such that B1 + ∫ 1
0 ut dt ∼ μ. Denote

Yt := Bt +
∫ t

0
vsds.

In [23] (Section 2.2) it was shown that the density of the measure Y1|Ft has the same dynam-
ics as the density of μt . Thus, almost surely Y1|Ft ∼ μt and since at is the expectation of μt ,
we have the identity

(16) at = E[Y1|Ft ],
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and in particular we have a1 = Y1. Moreover, the same reasoning implies that At =
Cov(Y1|Ft ) and

(17) �t = Cov(Y1|Ft )

1 − t
.

The process Yt goes back at least to the works of Föllmer [29, 30]. In a later work, by Lehec
[36], it is shown that vt is a martingale and that

(18) Ent(Y1||γ ) = 1

2

∫ 1

0
E
[‖vt‖2]dt,

where γ denotes the standard Gaussian.

LEMMA 9. It holds that d
dt
E[Cov(Y1|Ft )] = −E[�2

t ].
PROOF. From (16), we have

Cov(Y1|Ft ) = E
[
Y⊗2

1 |Ft

] −E[Y1|Ft ]⊗2 = E
[
Y⊗2

1 |Ft

] − a⊗2
t .

at is a martingale, hence

(19)
d

dt
E
[
Cov(Y1|Ft )

] = − d

dt
E
[[a]t ] = −E

[
�2

t

]
. �

Our next goal is to recover vt from the martingale at .

LEMMA 10. The drift vt satisfies that identity vt = ∫ t
0

�s−Id
1−s

dBs . Furthermore,

(20) E
[‖vt‖2] =

∫ t

0

Tr(E[(�s − Id)2])
(1 − s)2 ds.

PROOF. We begin by writing

dat = dBt + (�t − Id) dBt .

Using Fubini’s theorem then yields∫ 1

0
(�s − Id) dBs =

∫ 1

0

∫ 1

s

�s − Id
1 − s

dt dBs =
∫ 1

0

∫ t

0

�s − Id
1 − s

dBs dt.

Therefore, defining ṽt = ∫ t
0

�s−Id
1−s

dBs we have that ṽt is a martingale, and that B1 +∫ 1
0 ṽt dt =

a1. It follows that vt − ṽt is a martingale and that
∫ 1

0 (vt − ṽt ) dt = 0. We will now show that if
a martingale Qt satisfies Q0 = 0 and

∫ 1
0 Qt dt = 0 a.s., then Qt = 0 for every t ∈ [0,1]. From

this, it will follow that vt = ṽt . Indeed, write Qt = ∫ t
0 Q′

s dBs , for some adapted process Q′
t .

Using Fubini’s theorem, a calculation similar to the one above gives the identity

0 =
∫ 1

0
Qt dt =

∫ 1

0
(1 − t)Q′

t dBt .

Considering the martingale
∫ ·

0(1 − t)Q′
t dBt , we now have, for any s ∈ [0,1)

0 = E

[∫ 1

0
(1 − t)Q′

t dBt

∣∣∣Fs

]
=

∫ s

0
(1 − t)Q′

t dBt .

Thus, Q′ = 0 almost surely, which implies, for every t ∈ [0,1], Qt = Q0 = 0. Therefore
vt = ṽt , or in other words

vt =
∫ t

0

�s − Id
1 − s

dBs.

Finally, equation (20) follows from a direct application of Itô’s isometry. �
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A combination of equations (18) and (20) gives the useful identity,

Ent(Y1||γ ) = 1

2

∫ 1

0

∫ t

0

Tr(E[(�s − Id)2])
(1 − s)2 ds dt = 1

2

∫ 1

0

Tr(E[(�t − Id)2])
1 − t

dt.(21)

The above lemma also affords a representation of E[Tr(�t )] in terms of E[‖vt‖2].
LEMMA 11. It holds that

E
[
Tr(�t )

] = d − (1 − t)
(
d − Tr(�) +E

[‖vt‖2]).
PROOF. The identity can be obtained through integration by parts. By Lemma 10,

E
[‖vt‖2] (20)=

∫ t

0

Tr(E[(�s − Id)2])
(1 − s)2 ds

=
∫ t

0

Tr(E[�2
s ])

(1 − s)2 ds − 2
∫ t

0

Tr(E[�s])
(1 − s)2 ds +

∫ t

0

Tr(Id)

(1 − s)2 ds.

Since, by Lemma 9, d
dt
E[Cov(Y1|Ft )] = −E[�2

t ] integration by parts shows
∫ t

0

Tr(E[�2
s ])

(1 − s)2 ds = −Tr(E[Cov(Y1|Fs)])
(1 − s)2

∣∣∣∣t
0
+ 2

∫ t

0

Tr(E[Cov(Y1|Fs)])
(1 − s)3 ds

= Tr(�) − Tr(E[�t ])
1 − t

+ 2
∫ t

0

Tr(E[�s])
(1 − s)2 ds,

where we have used (17) and the fact Cov(Y1|F0) = Cov(Y1) = �. Plugging this into the
previous equation shows

E
[‖vt‖2] = Tr(�) − Tr(E[�t ])

1 − t
+ d

1 − t
− d,

or equivalently

E
[
Tr(�t )

] = d − (1 − t)
(
d − Tr(�) +E

[‖vt‖2]). �

Next, as in Theorem 11, we define σt to be the minimal eigenvalue of E[�t ], so that

E[�t ] � σt Id .

Note that by Jensen’s inequality we also have

(22) E
[
�2

t

] � σ 2
t Id .

LEMMA 12. Assume that Ent(Y1||γ ) < ∞. Then �t is almost surely invertible for all
t ∈ [0,1) and, moreover, there exists a constant m = mμ > 0 for which

σt ≥ m ∀t ∈ [0,1).

PROOF. We will show that for every 0 ≤ t < 1, σt > 0 and that there exists c > 0 such
that σt > 1

8 whenever t > 1 − c. The claim will then follow by continuity of σt . The key to
showing this is identity (21), due to which,

Ent(Y1||γ ) = 1

2

∫ 1

0

Tr(E[(�t − Id)2])
1 − t

dt.

Recall that, by Equation (17), �t = Cov(Y1|Ft )
1−t

and observe that, by Proposition 5, if
Cov(Y1|Fs) is not invertible for some 0 ≤ s < 1 then Cov(Y1|Ft ) is also not invertible for
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any t > s. Under this event, we would have that
∫ 1
s

Tr((�t−Id )2)
1−t

dt = ∞ which, using the
above display, implies that the probability of this event must be zero. Therefore, �t is almost
surely invertible and σt > 0 for all t ∈ [0,1).

Suppose now that for some t ′ ∈ [0,1], σt ′ ≤ 1
8 . By Jensen’s inequality, we have

Tr
(
E
[
(�t − Id)2]) ≥ Tr

(
E[�t − Id ]2) ≥ (1 − σt )

2 ≥ 1 − 2σt .

Since, by Lemma 9, E[Cov(Y1|Ft )] is nonincreasing, for any t ′ ≤ t ≤ t ′ + 1−t ′
2 ,

σt ≤ σt ′(1 − t ′)
1 − t

≤ 1 − t ′

8(1 − t ′ − 1−t ′
2 )

= 1

4
.

Now, assume by contradiction that there exists a sequence ti ∈ (0,1) such that σti ≤ 1
8 and

limi→∞ ti = 1. By passing to a subsequence we may assume that ti+1 − ti ≥ 1−ti
2 for all i.

The assumption Ent(Y1||γ ) < ∞ combined with Equation (21) and with the last two displays
finally gives

∞ >

∫ 1

0

Tr(E[(�t − Id)2])
1 − t

dt ≥
∫ 1

0

1 − 2σt

1 − t
dt ≥

∞∑
i=1

∫ ti+ 1−ti
2

ti

1

2

1

1 − t
dt ≥ log 2

∞∑
i=1

1

2
,

which leads to a contradiction and completes the proof. �

4.2. Proof of Theorem 5. Thanks to the assumption Ent(Y1||G) < ∞, an application of
Lemma 12 gives that �t is invertible almost surely, so we may invoke the second bound in
Theorem 11 to obtain

Ent(Sn||G) ≤
∫ 1

0

Tr(E[�2
t ] −E[�̃t ]2)

(1 − t)2

(∫ 1

t
σ−2

s ds

)
dt.

The same lemma also shows that for some m > 0 one has∫ 1

t
σ−2

s ds ≤ 1 − t

m2 .

Therefore, we attain that

Ent(Sn||G) ≤ 1

m2

∫ 1

0

Tr(E[�2
t ] −E[�̃t ]2)

1 − t
dt.(23)

Next, observe that, by Itô’s isometry,

Cov(X) =
∫ 1

0
E
[
�2

t

]
dt.

Hence, as long as Cov(X) is finite, E[�2
t ] is also finite for all t ∈ A where [0,1] \ A is a set

of measure 0. We will use this fact to show that

(24) lim
n→∞ Tr

(
E
[
�2

t

] −E[�̃t ]2) = 0 ∀t ∈ A.

Indeed, by the law of large numbers, �̃t almost surely converges to
√
E[�2

t ]. Since (�
(i)
t )2 are

integrable, we get that the sequence 1
n

∑n
i=1(�

(i)
t )2 is uniformly integrable. We now use the

inequality

�̃t 
√√√√1

n

n∑
i=1

(
�

(i)
t

)2 + Id  1

n

n∑
i=1

(
�

(i)
t

)2 + Id,
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to deduce that �̃t is uniformly integrable as well. An application of Vitali’s convergence
theorem (see, e.g., [28]) implies (24).

We now know that the integrand in the right hand side of (23) convergence to zero for
almost every t . It remains to show that the expression converges as an integral, for which
we intend to apply the dominated convergence theorem. It thus remains to show that the
expression

Tr(E[�2
t ] −E[�̃t ]2)

1 − t

is bounded by an integrable function, uniformly in n, which would imply that

lim
n→∞ Ent(Sn||G) = 0,

and the proof would be complete. To that end, recall that the square root function is concave
on positive definite matrices (see, e.g., [1]), thus

�̃t � 1

n

n∑
i=1

�
(i)
t .

It follows that

Tr
(
E
[
�2

t

] −E[�̃t ]2) ≤ Tr
(
E
[
�2

t

] −E[�t ]2) ≤ Tr
(
E
[
(�t − Id)2]).

So we have

1

m2

∫ 1

0

Tr(E[�2
t ] −E[�̃t ]2)

1 − t
dt ≤ 1

m2

∫ 1

0

Tr(E[(�t − Id)2])
1 − t

dt

(21)= 2

m2 Ent(Y1||γ ) < ∞.

This completes the proof.

4.3. Quantitative bounds for log concave random vectors. In this section, we make the
additional assumption that the measure μ is log concave. Under this assumption, we show
how one can obtain explicit convergence rates in the central limit theorem. Our aim is to use
the bound in Theorem 11 for which we are required to obtain bounds on the process �t . We
begin by recording several useful facts concerning this process.

LEMMA 13. The process �t has the following properties:

1. If μ is log concave, then for every t ∈ [0,1], �t  1
t
Id , almost surely.

2. If μ is also 1-uniformly log concave, then for every t ∈ [0,1], �t  Id almost surely.

PROOF. Denote by ρt the density of Y1|Ft with respect to the Lebesgue measure with
ρ := ρ0 being the density of μ. By Proposition 2 with Ct = Id

1−t
, we can calculate the ratio

between ρt and ρ. In particular, we have

d

dt
�−1

t = −�−1
t

(
d

dt
�t

)
�−1

t = 1

(1 − t)2 Id .

Solving this differential equation with the initial condition �−1
0 = 0, we find that �−1

t =
t

1−t
Id .

Since the ratio between ρt and ρ is proportional to the density of a Gaussian with covari-
ance �t , we thus have

−∇2 log(ρt ) = −∇2 log(ρ) + t

1 − t
Id .
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Now, if μ is log concave then Y1|Ft is almost surely t
1−t

-uniformly log-concave. By the

Brascamp-Lieb inequality (as in [32]) we get Cov(Y1|Ft )  1−t
t

Id and, using (17),

�t  1

t
Id .

If μ is also 1-uniformly log-concave then −∇2 log(ρ) � Id and almost surely

−∇2 log(ρt ) � 1

1 − t
Id .

By the same argument this implies

�t  Id . �

The relative entropy to the Gaussian of a log concave measure with nondegenerate co-
variance structure is finite (it is even universally bounded, see [37]). Thus, by Lemma 12, it
follows that �t is invertible almost surely. This allows us to invoke the first bound of Theo-
rem 11,

(25) Ent(Sn||G) ≤ 1

n

∫ 1

0

E[Tr((�2
t −E[�2

t ])2)]
(1 − t)2σ 2

t

(∫ 1

t
σ−2

s ds

)
dt.

Attaining an upper bound on the right-hand side amounts to a concentration estimate for the
process �2

t and a lower bound on σt . These two tasks are the objective of the following two
lemmas.

LEMMA 14. If μ is log concave and isotropic, then for any t ∈ [0,1),

Tr
(
E
[(

�2
t −E

[
�2

t

])2]) ≤ 1 − t

t2

(
d(1 + t)

t2 + 2E
[‖vt‖2])

and

Tr
(
E
[(

�2
t −E

[
�2

t

])2]) ≤ C
d4

(1 − t)4

for a universal constant C > 0.

PROOF. The isotropicity of μ, used in conjunction with the formula given in Lemma 11,
yields

Tr
(
E
[
�2

t

]) ≥ 1

d
Tr

(
E[�t ])2 ≥ d − 2(1 − t)E

[‖vt‖2],
where the first inequality follows by convexity. Since μ is log concave, Lemma 13 ensures
that, almost surely, �t  1

t
Id . Therefore,

Tr
(
E
[(

�2
t −E

[
�2

t

])2]) ≤ Tr
(
E

[(
�2

t − 1

t2 Id

)2])

= 1

t4 Tr
(
E
[(

Id − t2�2
t

)2])

≤ 1

t4 Tr
(
E
[
Id − t2�2

t

])

≤ 1 − t

t2

(
d(1 + t)

t2 + 2E
[‖vt‖2]).
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Which proves the first bound. Towards the second bound, we use (17) to write

�2
t  1

(1 − t)2E
[
Y⊗2

1 |Ft

]2
.

So,

E
[∥∥�2

t

∥∥2
HS

] ≤ 1

(1 − t)4E
[∥∥‖Y1‖2Y⊗2

1

∥∥2
HS

] ≤ 1

(1 − t)4E
[‖Y1‖8].

For an isotropic log concave measure, the expression E[‖Y1‖8] is bounded from above by
Cd4 for a universal constant C > 0 (see [40]). Thus,

Tr
(
E
[(

�2
t −E

[
�2

t

])2]) = E
[∥∥�2

t −E
[
�2

t

]∥∥2
HS

] ≤ 2E
[∥∥�2

t

∥∥2
HS

] ≤ C
d4

(1 − t)4 . �

LEMMA 15. Suppose that μ is log concave and isotropic, then there exists a universal
constant 1 > c > 0 such that:

1. For any, t ∈ [0, c
d2 ], σt ≥ 1

2 .
2. For any, t ∈ [ c

d2 ,1], σt ≥ c
td2 .

PROOF. By Lemma 9, we have

d

dt
E
[
Cov(Y1|Ft )

] = −E
[
�2

t

] (17)= −E[Cov(Y1|Ft )
2]

(1 − t)2 .

Moreover, by convexity,

E
[
Cov(Y1|Ft )

2]  E
[
E
[
Y⊗2

1 |Ft

]2]  E
[‖Y1‖4]Id .

It is known (see [40]) then when μ is log concave and isotropic there exists a universal
constant C > 0 such that

E
[‖Y1‖4] ≤ Cd2.

Consequently, d
dt
E[Cov(Y1|Ft )] � − Cd2

(1−t)2 Id , and since Cov(Y1|F0) = Id ,

E
[
Cov(Y1|Ft )

] �
(

1 − Cd2
∫ t

0

1

(1 − s)2 ds

)
Id =

(
1 − Cd2t

1 − t

)
Id .

By increasing the value of C, we may legitimately assume that 1
Cd2 ≤ 1, thus for any t ∈

[0, 1
3Cd2 ] we get that

E
[
Cov(Y1|Ft )

] � 1

2
Id,

which implies σt ≥ 1
2 and completes the first part of the lemma. In order to prove the second

part, we first write

d

dt
E[�t ] = d

dt

E[Cov(Y1|Ft )]
1 − t

(Lemma 9)= E[Cov(Y1|Ft )] − (1 − t)E[�2
t ]

(1 − t)2

= E[�t ] −E[�2
t ]

1 − t
.

(26)

Since, by Lemma 13, �t  1
t
Id , we have the bound

E[�t ] −E[�2
t ]

1 − t
� 1 − 1

t

1 − t
E[�t ] = −1

t
E[�t ].
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Now, consider the differential equation f ′(t) = −f (t)
t

, f ( 1
3Cd2 ) = 1

2 . Its unique solution is

f (t) = 1
6Cd2t

. Thus, Gromwall’s inequality shows that σt ≥ 1
6Cd2t

, which concludes the proof.
�

PROOF OF THEOREM 6. Our objective is to bound from above the right-hand side of
Equation (25). As a consequence of Lemma 15, we have that, for any t ∈ [0,1),∫ 1

t
σ−2

s ds ≤ Cd4(1 − t),

for some universal constant C > 0. It follows that the integral in (25) admits the bound

∫ 1

0

E[Tr((�2
t −E[�2

t ])2)]
(1 − t)2σ 2

t

(∫ 1

t
σ−2

s ds

)
dt ≤ Cd4

∫ 1

0

E[Tr((�2
t −E[�2

t ])2)]
(1 − t)σ 2

t

dt.

Next, there exists a universal constant C ′ > 0 such that

Cd4
∫ cd−2

0

E[Tr((�2
t −E[�2

t ])2)]
(1 − t)σ 2

t

dt ≤ C′
∫ cd−2

0

d8

(1 − t)5 dt ≤ C′d8,

where we have used the second bound of Lemma 14 and the first bound of Lemma 15. Also,
by applying the second bound of Lemma 15 when t ∈ [cd−2, d−1] we get

Cd4
∫ d−1

cd−2

E[Tr((�2
t −E[�2

t ])2)]
(1 − t)σ 2

t

dt ≤ C′
∫ d−1

cd−2

d12t2

(1 − t)5 dt ≤ C′d9.

Finally, when t > d−1, we have

Cd4
∫ 1

d−1

E[Tr((�2
t −E[�2

t ])2)]
(1 − t)σ 2

t

dt ≤ C′d8
∫ 1

d−1

t2E[Tr((�2
t −E[�2

t ])2)]
1 − t

dt

≤ 2C ′d9
∫ 1

d−1

(
1

t2 +E
[‖vt‖2])dt

(18)≤ 4C′d10(1 + Ent(Y1||G)
)
,

where the first inequality uses Lemma 15 and the second one uses Lemma 14. This establishes

Ent(Sn||G) ≤ Cd10(1 + Ent(Y1||G))

n
. �

Finally, we derive an improved bound for the case of 1-uniformly log concave measures,
based on the following estimates.

LEMMA 16. Suppose that μ is 1-uniformly log concave, then for every t ∈ [0,1):

1. Tr(E[(�2
t −E[�2

t ])2]) ≤ 2(1 − t)(d − Tr(�) +E[‖vt‖2]).
2. σt ≥ σ0.

PROOF. By Lemma 13, we have that �t  Id almost surely. Using this together with the
identity given by Lemma 11, and proceeding in similar fashion to Lemma 14 we obtain

Tr
(
E
[
�2

t

]) ≥ 1

d
Tr

(
E[�t ])2 ≥ d − 2(1 − t)

(
d − Tr(�) +E

[‖vt‖2])
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and

Tr
(
E
[(

�2
t −E

[
�2

t

])2]) ≤ Tr
(
E
[(

�2
t − Id

)2]) ≤ Tr
(
E
[
Id − �2

t

])
≤ 2(1 − t)

(
d − Tr(�) +E

[‖vt‖2]).
Also, recalling (26) and since �t  Id we get

d

dt
E[�t ] = E[�t ] −E[�2

t ]
1 − t

≥ 0,

which shows that σt is bounded from below by a nondecreasing function and so σt ≥ σ0
which is the minimal eigenvalue of �. �

PROOF OF THEOREM 7. Plugging the bounds given in Lemma 16 into equation (25)
yields

Ent(Sn||G) ≤ 1

n

∫ 1

0

E[Tr((�2
t −E[�2

t ])2)]
(1 − t)2σ 2

t

(∫ 1

t
σ−2

s ds

)
dt

≤ 2(d + ∫ 1
0 E[‖vt‖2]dt)

σ 4
0 n

(18)= 2(d + 2 Ent(X||γ ))

σ 4
0 n

,

which completes the proof. �
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