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We consider an extension to discrete-space, continuous-time models for
animal movement that have previously been presented in the literature. The
extension from a continuous-time Markov formulation to a continuous-time
semi-Markov formulation allows for the inclusion of temporally dynamic
habitat conditions as well as temporally changing movement responses by
animals to that environment. We show that, with only a little additional con-
sideration, the Poisson likelihood calculation for the Markov version can still
be used within the multiple imputation framework commonly employed for
analysis of telemetry data. In addition, we consider a Bayesian model se-
lection methodology within the imputation framework. The model selection
method uses a Laplace approximation to the posterior model probability to
provide a computationally feasible approach. The full methodology is then
used to analyze movements of 15 weaned northern fur seal (Callorhinus ursi-
nus) pups with respect to surface winds, geostrophic currents and sea sur-
face temperature. The highest posterior model probabilities belonged to those
models containing only winds and current; SST was not a significant factor
for modeling their movement.

1. Introduction. Studying the movement of animals has become ubiquitous in the eco-
logical literature in the past decade. One traditionally thorny issue for developing statistical
models for telemetry data is relating spatial habitat conditions to movement processes. This
difficulty arises because of the mismatch in support for the telemetry data (continuous spatial
domain) and the observed habitat variables (usually a spatial grid or raster) and the often ran-
dom times when location is observed. Because the habitat variables are the coarsest spatial
resolution of the two types, it makes sense to bring the telemetry data to the level of the habi-
tat data, so to speak. We propose a generalization of the spatially-discrete, continuous-time
movement models of Hanks, Hooten and Alldredge (2015), so researchers can now relate
animal movement to a dynamically changing environment.

In recent years there have been several methodologies based on translations of continuous-
space telemetry data to a discrete space and modeling movement between discrete locations
based on temporally static habitat variables (see Hooten et al. (2010); Hanks, Hooten and
Alldredge (2015); Hanks and Hughes (2016), and Avgar et al. (2016)). In addition, Johnson,
Hooten and Kuhn (2013) illustrated that, for static environments, spatial point process models
could also be used by collapsing over the temporal index of the telemetry data.

The continuous-time Markov chain (CTMC) movement model of Hanks, Hooten and All-
dredge (2015) is especially appealing due to the fact that the continuous-time formulation
means that the model interpretation is not subject to the choice of time discretization. In
addition, the CTMC model can be fitted with GLM or GAM software for efficient parame-
ter estimation. The CTMC model has been used to analyze mountain lion (Puma concolor)
and northern fur seal movements (Callorhinus ursinus) (e.g., Buderman et al. (2018), Hanks,
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Hooten and Alldredge (2015), Hanks and Hughes (2016)). However, there are some limita-
tions in the CTMC model that prohibit use of temporally indexed covariates. We propose a
generalization of the CTMC to a continuous-time semi-Markov chain (CTSMC) movement
model for which habitat can vary in time.

The inspiration for this research is the migratory movements of northern fur seal pups in re-
lation to space and time-dependent physical environmental conditions, namely, ocean surface
currents, marine surface winds and sea surface temperature (SST). These variables were cho-
sen based on previous evidence of their influence on migratory movements or physiological
processes in this or other similar pinniped species. Ream, Sterling and Loughlin (2005) found
evidence in satellite-tagged adult female northern fur seals of migratory movement alignment
with mesoscale oceanographic surface currents. Anecdotal evidence and traditional knowl-
edge of the influence of marine winds on the migratory trajectories of northern fur seal pups
extends back millennia, as documented in testimonials of Aleut hunters to U.S. government
officials during study of the Bering Sea northern fur seal population in the late 1800s (Hooper
(1895)). These hunters were in agreement that seals always traveled with the wind and sea
currents at their back pushing them forward. Widespread satellite tagging has provided the
opportunity to confirm and quantify these effects; Lea et al. (2009) found differing departure
and dispersal patterns of Pribilof Islands northern fur seal pups in years of contrasting atmo-
spheric forcing and evidence of more rapid movement in the presence of a tailwind. Sterling
et al. (2014) and Pelland et al. (2014) found statistical evidence that surface winds influence
adult northern fur seals during migration, with high winds associated with linear, directed
movement, though directionality in relation to the wind was not explored.

In this paper our objectives are to develop the CTSMC model such that we do not need to
rely on the distributional assumptions of Hanks, Hooten and Alldredge (2015) with respect
to cell residence time (Section 2). Because the habitat can change before the animal moves
cells, we can not rely on a constant rate of movement while the animal remains in a cell.
Following CTSMC development, in Section 3 we show that, with only slight modification,
the two-stage imputation and GLM approach of Hanks, Hooten and Alldredge (2015) can
still be used for parameter inference. In addition to model fitting, we develop methodology
for Bayesian model selection using this two-stage method. In Section 4 we illustrate the full
methodology for fitting and model selection using migration data from 15 northern fur seal
pups tagged in Alaska, U.S.A.

2. Continuous-time semi-Markov model for movement. In a continuous-time,
discrete-space movement model the geographical study domain is partitioned into a cells
indexed by C = {1, . . . , n}. Each cell, i, has a set of neighboring cells Ci = {j ∈ C : i ∼ j},
where j ∼ i means that cells i and j are directly connected and the animal can go from
cell i to cell j in one move. For example, neighboring cells might share a border in a raster
partition, but cells might also represent spatially separate patches. As with all semi-Markov
models, the complete path of the animal, P , can decomposed into the times at which cell
transitions are made (jump times), τ = {τ0, τ1, . . . , τM, τM+1}, and the sequence of cells vis-
ited (embedded Markov chain), G = {g0, . . . , gM}, such that P = {(τm, gm) : m = 0, . . . ,M}.
We will assume that τ0 = 0, τM = T is the known end of the telemetry deployment, and
g0 is the known starting cell. We will use Pt to denote the history of the path up to time t ,
that is, Pt = {t, (τ0, g0), . . . , (τm, gm) : τm < t}. In a similar style we also use the location
and neighborhood notation gt and Ct (i.e., indexed by continuous time, t) to represent the
location and neighborhood of the animal for any time in [0, T ], that is, gt = gm and Ct = Cgm

for t ∈ [τm, τm+1). It is apparent which context is being used in a particular situation.
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2.1. General likelihood formulation. The heart of the CTSMC model is the emigration
rate function

(1) λij (t |Pt) = lim
h→0

[gt+h = j |Pt ]/h,

where we use the notation ‘‘[A|B]” to represent the probability density (distribution) function
of A given B . Therefore, [gt+h = j |Pt ] is the probability that gt+h = j , given the path up to
time t . The total rate of emigration from cell i at time t is

(2) �i(t |Pt) = ∑
j∈Ci

λij (t |Pt).

Using the total rate of emigration from a cell i at time t , we can obtain the distribution of
τm, given the animal moved to cell i at time τm−1. Using standard results from temporal
point process methodology (see Hooten et al. (2017), Section 3.1.6), where the emigration
rate function is mathematically equivalent to a point process intensity function, the density
function of next movement time is

(3) [τm|Pτm] = �i(τm|Pτm) exp
{
−

∫ τm

τm−1

�i(u|Pu)du

}
.

If one conditions on the fact that the next move is at time τm, then the cell, to which the move
is made, is a categorical variable with distribution

(4) [gm = j |τm,Pτm] = λij (τm|Pτm)

�i(τm|Pτm)

(Norris (1998)). If we now assume that the emigration hazard function, λij (t |Pt), is also
a function of a parameter vector, say θ , then, given an observed path P , the likelihood is
calculated as a product of all the conditional move and transition time probability density
functions,

(5) [P |θ ] =
{

K∏
m=1

λgm−1,gm(τm|Pτm)

}
× exp

{
−

∫ T

0

∑
j∈Cu

λgu,j (u|Pu)du

}
.

See Section A.1 of the Supplementary Material (Johnson, Pelland and Sterling (2021)) for
more details on derivation of the likelihood function.

2.2. A proportional rate model. Now that we have a general form for the likelihood of the
movement process, we can consider specifying a model that includes the external variables
which might be thought to influence movement. Here, we generalize the model form given by
Hanks, Hooten and Alldredge (2015) and Hanks and Hughes (2016) to accommodate a time-
varying structure. In the CTSMC movement context, for gt = i and j ∈ Ci , a proportional
rates (hazards) model (Cox and Oakes (1984)) with a time-varying covariate is given by

(6) λij (t |Pt) = exp
{
b0(t |Pt) + x′

ij tβ t

}
,

where b0(t |Pt) a a baseline log-hazard function, xij t is a covariate vector associated with
transition from cell i to j at time t and β t are time-indexed regression coefficients associated
with the respective covariates. If a covariate is only indexed by i and t , then they are known
as motility drivers. They only affect the rate at which the animal will leave a cell; they have
no influence on whether an animal is attracted to another cell; they disappear in equation
(4). Whereas, the variables, which are indexed by j as well, influence rate of movement by
drawing (repelling) animals to (from) other neighboring cells.
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There are some notable differences between the model in (6) and that considered by Hanks
and Hughes (2016). First and most obvious, the covariates are potentially time varying. Sec-
ond, the baseline transition rate need not be constant over time. The transition hazard can
change with time since the last transition, hereafter, rt (residence time in cell gt ). This leads
to clustered (or regular) transition times with respect to those that are exponentially dis-
tributed in the CTMC model. A more important difference is how temporal dynamics affect
movement. In the CTMC model the rate function can change through time, but only when
an animal transitions between cells (see Hoover et al. (2019)). In the CTSMC model the rate
function can change while the animal remains in the cell, potentially triggering movement.

In addition to the obvious link between the CTSMC model and its CTMC special case,
there is also a similarity with the continuous-space and time-point process analysis of move-
ment data presented by Johnson, Hooten and Kuhn (2013). The spatiotemporal point process
likelihood is very similar to the CTSMC likelihood in (5), with the exception that the summa-
tion in the right-hand side is replaced with an integration over the continuous spatial domain
of a neighboring region. If we allow the cells to shrink in area while simultaneously increasing
the number of neighbors to maintain equal neighborhood area, the summation will become
an integral in the limit. Therefore, we can think of the CTSMC model as a spatially discrete
approximation of the spatiotemporal point process of Johnson, Hooten and Kuhn (2013).
The benefit of the CTSMC model is that, by defining transitions between a small number of
neighboring cells, the computation of the likelihood becomes much less demanding.

3. Statistical inference.

3.1. Likelihood calculation. The log-likelihood function in equation (5) is often chal-
lenging to evaluate in general. Under the CTMC assumption of a constant rate function while
the animal remains in a cell, Hanks, Hooten and Alldredge (2015) show that practitioners
can formulate the exact likelihood as a Poisson regression to obtain maximum likelihood es-
timates using standard GLM software. In the case of the CTSMC model, this is not possible
to calculate the exact likelihood using this trick. However, an approximate likelihood can
be calculated with this same method. Moreover, this approximation can be made as accu-
rate as desired. In the context of survival analysis, this same approach was used by Holford
(1980) and Laird and Olivier (1981) for temporally varying individual covariates. Following
the same development, we can form an approximation for calculating the CTSMC movement
model likelihood using a Poisson regression model.

To begin the approximation, we first select a set of quadrature points, qn, n = 0, . . . ,N ,
to numerically evaluate the integral in (5). These quadrature points include times when cell
transitions occurred, τ = {τ0, . . . , τK}, times where dynamic covariates changed values and
any additional points that the practitioner feels necessary to approximate the integral in (4).
For example, in Section 4 a 15-minute grid of times was also included in the quadrature set
to model seal movement. For the augmented quadrature times we maintain the same end
points, q0 = τ0 and qN = T . Then, the approximation assumes λ(t |Pt) = λ(qn−1|Pqn−1) for
t ∈ (qn−1, qn]. To ease some of the notational burden and eliminate excess subscripts, we
further set

(7) λnj = λgqn−1 ,j (qn−1|Pqn−1) for n = 1, . . . ,N and j in Cqn−1 .

Now, the integral is approximated with the summation

(8)
∫ T

0

∑
j∈Cu

λgu,j (u|Pu) ≈
N∑

n=1

∑
j∈Cqn−1

δnλnj ,



SEMI-MARKOV MOVEMENT MODEL 801

where δn = qn − qn−1. After placing the approximation (8) into (4), one obtains the approxi-
mate likelihood function (up to a proportional constant),

(9) [P |θ ] ≈
N∏

n=1

∏
j∈Cqn−1

λ̃
znj

nj exp{−λ̃nj },

where λ̃nj = δnλnj and znj = 1 if qn is a transition time and j is the cell transitioned to at
time qn, else znj = 0. The likelihood function formed by (9) is proportional to a Poisson
likelihood function where znj are the “data” and λ̃nj are the rate parameters. The only differ-
ence between this formulation and that of Hanks, Hooten and Alldredge (2015) is that there
are times, qn where znj = 0 for all j , that is, there was no movement to a cell, but the λij

have changed. This likelihood approximation can be made as accurate as desired by simply
increasing the temporal resolution of the quadrature points. Or, it will be exact if the rate
function actually is constant between quadrature points, for example, covariates only change
values on a temporal grid of times.

3.2. GLM/GAM and the proportional rate model. Using the Poisson approximation (9),
one can gain powerful computational assistance if the proportional hazards model (6) is used.
Because of the linear structure on the log scale, standard GLM software can be used to fit the
CTSMC movement model. On the log scale, the Poisson rate used for the znj data is

(10) log λ̃nj = log δn + b0(rqn |Pqn) + x′
gqn ,j,qn

βqn
,

where log δn takes the form of a known offset. Note that we have now assumed that the
baseline rate function is parameterized by the residence time. Assuming b0 is constant (we
will discuss this momentarily), the parameters are all linear on the log scale, so any GLM
fitting software can be used. One may also estimate time-varying coefficients using a “varying
coefficients” model, as illustrated in the present analysis of northern fur seal migration in
Section 4.

We now examine the baseline rate function, b0. To begin, if one models b0(rqn) =
β0 + β1 log rqn , then the proportional rate model is still in a log-linear form, so standard
GLM software can be used. This log-linear model for b0 implies the waiting times between
cell transitions follow a Weibull distribution when covariates are not considered (Cox and
Oakes (1984)). If β1 < 0, then the rate function decreases with time since last transition, and
the times of transition will tend to be clustered in time (Hooten et al. (2017)). The reverse is
true for β1 > 0; transitions will occur at more regular intervals. For β1 = 0 the residence times
will be exponentially distributed, as in the CTMC model (Hanks and Hughes (2016)). If rqn

is used instead of log rqn , the residence times will be distributed according to the Gompertz-
Makeham distribution (Cox and Oakes (1984)). However, if neither of these simple models
are useful, it is straightforward to model b0 nonparametrically using a GAM to directly esti-
mate b0 treating rqn as a covariate to smooth.

3.3. Path uncertainty and the process imputation approach. Until this point we have
constructed the model and likelihood as if, in practice, we would observe P as data. This
may be the case in the future as satellite telemetry devices improve, for example; see Liu
et al. (2016) for path reconstruction at subsecond intervals using accelerometer tags. How-
ever, for the most part, locations are observed sparsely and irregularly throughout the course
of deployment. Therefore, we recommend the use of an imputation approach (Scharf, Hooten
and Johnson (2017)) for analysis of traditional telemetry data in this framework. The impu-
tation approach in movement analysis was initially proposed by Hooten et al. (2010) and is
also the used by Hanks, Hooten and Alldredge (2015) for the Markov version of the discrete
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space movement model. Although not necessarily proposed for fully Bayesian inference, we
take that approach here because it provides a coherent method of analysis from estimation to
model selection.

The process imputation approach proceeds by considering the true quasi-continuous (in
space and time) path of the animal, μ(t). If μ(t) were observed for all t (μ from here on),
then we could summarize it into the data we desire, namely, P = P(μ). However, locations
are usually only observed sporadically in time with error, say, y = {yτ�

1
, . . . ,yτ�

n
}, where τ �

is an observation time in [0, T ]. To obtain the correct Bayesian posterior distribution for the
movement parameters, θ , the posterior distribution must be marginalized over the missing μ
process, that is,

(11) [θ |y] =
∫

[θ |μ][μ|y]dμ ∝
∫ [P(μ)|θ)][θ ]

[P(μ)] [μ|y]dμ.

In the movement modeling context, however, the true distribution, [μ|y] and thus [θ |y], can
virtually never be evaluated or even sampled from (Scharf, Hooten and Johnson (2017)).
Therefore, in practice, a two-step procedure is used to describe [θ |y] by first selecting an ap-
proximation to μ, say μ∗, that is sufficiently similar such that samples from [μ∗|y] are simi-
lar to samples from [μ|y]. The approximation [μ∗|y] is known as the imputation distribution.
Then, a sample is drawn from the imputation distribution μk ∼ [μ∗|y], k = 1, . . . ,K , comput-
ing the discrete space path from the imputed data, P (k) = P(μk), then summarizing [θ |P (k)]
in some way, depending on the inference desired. From hereafter, we will just use [μ|y]
to denote the imputation distribution while recognizing this is not the exact distribution. In
addition, we also note that, because P(μ) is a deterministic function of μ, [θ |P(μ)] = [θ |μ].

With imputation approaches in general, calculating interval estimates is not always
straightforward (Rubin and Schenker (1986)), as there are many ways one may combine
first-stage analyses to obtain unconditional intervals. We propose an approach based on ap-
proximating the posterior with a stochastic sample from the marginal posterior. Because the
the imputed paths were drawn from [μ|y], a sample from [θ |y] can be obtained by drawing
samples from each [θ |μk] and collecting them into one large sample. Then, one can simply
calculate a credible interval from the joint sample. This of course also applies to any function
of the parameters, as with any posterior sample. If GLM or GAM software is used to fit the
model, one could easily approximate [θ |μk] ≈ N(θ̂k, �̂k), the large sample MLE or posterior
distribution (see Section 4.2).

Another aspect of movement model inference using process imputation that has received
little attention is that of model selection. There have been previous proposals to perform
model selection using ad hoc AIC weighting (Nakagawa and Freckleton (2011)). However,
we propose maintaining the Bayesian paradigm inspiring the imputation approach and use
posterior model probabilities to perform selection and model averaging.

To begin formulating Bayesian model selection, we suppose that there is a set of L mod-
els, M = {M1, . . . ,ML} for the movement rate, λij (t |Pt ,Ml) from which the likelihoods,
[P |θ l ,Ml], are formed. The posterior model probabilities are given by

(12) [Ml|y] =
∫

[Ml|P ][μ|y]dμ,

where

(13) [Ml|P ] ∝ [P |Ml][Ml] =
{∫

[P |θ l ,Ml][θ l|Ml]dθp

}
[Ml],

[θ l|Ml] is the parameter prior distribution under model Ml and [Ml] is the prior model prob-
ability. Bayesian model selection has a large volume of literature devoted to its methodology.
However, for application within the imputation framework, we seek a method to evaluate
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[P |Ml] that is computationally efficient, even if it is approximate, as the whole model selec-
tion procedure needs to be replicated for each μk . Therefore, we propose using the Laplace
approximation (Kass and Raftery (1995)) to equation (13),

(14)

log
[
P (k)|Ml

] ≈ B
(
Ml|P (k))

= log
[
θ̂kl|P (k),Ml

] + log[θ̂kl|Ml]
− log |Ĥkl|/2 + dl log(2π)/2,

where θ̂kl is the posterior mode of [θ l|P (k),Ml], Ĥkl is the Hessian matrix of the negative
log posterior density and dl is the dimension of θ l . Kass and Raftery (1995) also note that the
approximation is still of the same order if the MLE of θ is used, provided the prior exerts little
influence on the posterior relative to the likelihood. The benefit of that is one can use standard
GLM software to fit the model without worrying about the prior distribution. However, proper
priors are still necessary (highly advised) for terms that are being selected over (Bayarri et al.
(2012)).

Placing all the pieces back together, we obtain an approximation for the posterior model
probability that we can use for model selection

(15) [Ml|y] ≈ mean
(

exp{B(Ml|P (k))}[Ml]∑
l′ exp{B(Ml′ |P (k))]}[Ml′ ]

)
,

where the mean is over the K imputations. The Laplace approximation allows us to have a
coherent approach to averaging an information criterion within the imputation framework.

4. Northern fur seal pup migration. To demonstrate analysis of movement data, we
analyzed telemetry locations from 15 female northern fur seal pups tagged in the Pribilof
Is., Alaska, prior to their annual migration. Female “355” from this data set was previously
analyzed by Johnson et al. (2008) using a continuous time random walk. We will highlight
its results here; results for the remaining animals can be viewed in Section A.2 of the Sup-
plementary Material. Source code and data for reproducing this analysis are available in the
Supplementary Material (Sections B and C; Johnson, Pelland and Sterling (2021)). These
data were analyzed using the R Statistical Environment (R Core Team (2019)) due to the
availability of all necessary spatial, data manipulation, movement modeling; and GLM fitting
functions; however, nothing precludes development in other software.

4.1. A dynamic environment. Environmental covariates were defined on a hexagonal spa-
tial grid covering the domain of the pup tracks that departed during fall 2005. For the process
imputation, 20 tracks were generated using draws from the posterior distribution of loca-
tions every 15 minutes from a continuous-time correlated random walk model with a corre-
lated random drift process (Johnson, London and Kuhn (2011)) using the R package crawl
(Johnson and London (2018)). A regular hexagonal lattice, with 40 km center point lateral
separation, and associated hexagonal polygons (“cells”) were generated. Figure 1 illustrates
the imputed tracks and hex grid for animal 355. Notice that only hex cells in the neighbor-
hood around the tracks are necessary for fitting the CTSMC model. So, we only need the
habitat covariates for those cells. Model covariates were projected onto the hexagonal grid
using environmental variables obtained from remote sensing observations or atmospheric re-
analysis.

Estimates of geostrophic ocean surface currents—slowly varying oceanic motions (cm/s)
forced by mesoscale (∼10–200 km) gradients of sea surface height (Vallis (2006))—were
obtained from the AVISO All-Satellite Absolute Dynamic Topography (ADT) product
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FIG. 1. Area of deployment for the northern fur seal 355. Blue points indicate the observed locations recorded
from the telemetry device. Dark red lines indicate the paths used for the process imputation methodology. The hex
grid are the discrete locations used for CTSMC movement analysis.These hexes are all the ones used for animal
355. Not all of these are used for each imputation run. For this animal, and all the others, the tracks begin in the
Pribilof Islands, Alaska in the northwest portion of the map.

(https://www.aviso.altimetry.fr/en/home.html). At each grid point, s, the surface geostrophic
current xcurr(s, t) = (ucurr(s, t), vcurr(s, t))

′ has a component ucurr in the east direction along
unit vector and vcurr in the north direction. Current measurements varied daily at midnight
UTC.

Atmospheric surface (10 m height) wind vector estimates xwind(s, t) (m/s) were obtained
from the National Centers for Environmental Prediction/National Center for Atmospheric
Research Reanalysis 1 (R1) product (http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.
reanalysis.html). This product gives estimates of atmospheric variables at six-hour resolution.

Sea surface temperature (◦C) estimates, xsst(s, t), were obtained from the NOAA Optimal
Interpolation V2 High Resolution dataset (http://www.esrl.noaa.gov/psd/data/gridded/data.
noaa.oisst.v2.highres.html). This product varies daily at midnight UTC as well.

Each of the environmental variables described above was spatially interpolated to the
hexagonal grid cells at six-hourly intervals. If a cell overlapped a raster grid border, the
weighted average value was used based the areas contained in the hex. The six-hour interval
corresponds to the shortest resolved interval among the available variables (surface wind); for
variables obtained at daily resolution, values are repeated in multiple time intervals in each
cell. For the gradient based variables the covariates for cell transitions were defined by the
projection of the gradient vector to neighboring cell centroids. That is,

(16) windij t = xwind(si, t)
′wij and currij t = xcurr(si, t)

′wij ,

where si is the location of the ith hex centroid and wij is a unit length vector pointing from the
hex i centroid to the hex j centroid (Hanks, Hooten and Alldredge (2015)). SST was treated
as a motility covariate to test whether pups might adjust speed if they encounter favorable
conditions with respect to SST, sstit = xsst(si, t).

In addition to wind and current, we defined three additional “kinematic” covariates to
account for the possible effects of any background drift/movement tendency independent of
environmental variables:

• log rt (time since last transition),
• previousij t = w′

twij ,

https://www.aviso.altimetry.fr/en/home.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html
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• northij = (0,1)′wij ,
• eastij = (1,0)′wij ,

where wt is the unit vector of the last transition prior to t . north and east were included
to account for pup migration tendency. The covariate previousij t was added to reflect
correlated movement on a finer scale than general migration patterns and is the direction of
the previous cell transition. It is typical of animal movement that individuals tend to move in
the same direction for some time in a correlated fashion.

In addition to the cell transition times and covariate changing times, locations on each im-
puted path, μk , were generated at 15-minute intervals to approximate the likelihood integral.
Thus, for each quadrature time, qn, n = 0, . . . ,N , on each imputed path, a six row data set
(j = 1 . . . ,6) was created where the j th row contains: znj , δn, qn, rqn , previousgqn ,j,qn ,
northgqn ,j , eastgqn ,j , sstgqn ,qn , windgqn ,j,qn and currgqn ,j,qn . The data set was then
concatenated over all qn within an imputation; this forms the model data for the kth imputa-
tion. From this data all models can be fitted using a GLM (or GAM) using a standard Poisson
family with log-link function.

4.2. Model formulation, estimation, and selection. For the analysis of the fur seal migra-
tion data, we will use the log-linear form represented in equations (6) and (10).

Further, we break the model into two pieces for model section purposes. The “Base” por-
tion of the model contains all the kinetic variables described in the previous section, and the
“Habitat” portion contains all the environmental variables, that is,

logλij (t |Pt) = x′
Base,ij tβBase,t + x′

Habitat,ij tβHabitat,t ,

where xBase,ij t includes: log rt , previousij t , northij , eastij , plus an intercept and
interaction term log rt × previousij t and xHabitat,ij t includes: windij t , currij t and
sstit . In addition to log rt , the base rate function, b0(t |Pt), in equation (6) is modeled with
a log rt×previous interaction effect to account for the synergistic effect of kinetic move-
ment on the base residence time within a cell. That is, if there is a strong relationship between
the previous movement and the current one, then the residence time is likely to be longer be-
cause the animal is probably transiting the entire cell. However, if the animal is going back
and forth across a border, residence time will likely be short and relationship to the previ-
ous movement will likely be negative. Because of the length of deployment, it is natural to
inquire whether an individual’s movement in response to the environment changes over the
course of time. The previous and log rt terms were modeled as constant due to the fact
that initial investigation showed no improvement by allowing their effect to vary over time.
All other model terms were modeled as time varying. To accomplish this, we used a radial
basis function model for the coefficients. That is, for a general covariate v, the coefficient is
modeled as

(17) βvt = b′
tθv,

where bt = (exp{(t − κ1)
2/φ2, . . . , exp{(t − κM)2/φ2})′ is a vector of radial basis functions,

κm is a knot in [0, T ], θv is a vector of basis weights and φ is a basis scaling parameter.
We chose three equally spaced interior knots plus two additional end knots at equal spacing
before and after [0, T ] for a five basis model. The scalar φ set to the knot spacing interval. If
the covariate is not modeled with a time-varying coefficient, simply set bt ≡ 1. In practice,
one combines the basis vectors and covariates by x′

ij t ⊗ b′
t to form the rows of the full design

matrix X such that in vector form notation logλ = Xθ , where θ is all the θv concatenated
into a single vector.

For each model, l and imputation, k, we used the g-prior distribution

(18) [θkl|Ml] = N
(
0,

(
ξklX′

klXkl

)−1)
,
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where Xkl is the design matrix for imputation k and model l and ξkl is a scalar. A flat prior
distribution was used for ξkl in each model.

The R package mgcv (Wood (2011)) and the gam function was used to estimate the poste-
rior mode θ̂ and to obtain the Hessian matrix Ĥ for the Laplace approximation in the posterior
model probability (PMP) calculation and approximating the posterior

(19)
[
θkl|P (k),Ml

] ≈ N
(
θ̂kl,−Ĥ−1

kl

)
for effect inference. GAMs have a Bayesian interpretation in which the traditional penalty
can be thought of as a Gaussian prior distribution over the coefficients (Miller (2019)). The
mgcv::gam function allows the user to provide their own penalty, which we use the g-prior
precision matrix, X′

klXkl and ξ−1
kl is estimated as the GAM penalty parameter. To increase

computational efficiency, for each animal fits were completed in parallel over the 20 imputed
paths. This was accomplished with use of the R packages: future (Bengtsson (2018)),
doFuture (Bengtsson (2017)), and foreach (Microsoft and Weston (2017)).

4.3. Results. There was strong evidence for an influence of surface winds on movement
with an average posterior probability of 0.714 (over animals; Table 1) for the model with only
wind and 0.275 for the model with wind and current effects. When broken down to individual
animals the PMP of the wind only model was close or equal to one for 10 of 15 animals. Of
those animals in which the wind-only model was not the maximum a posteri model, the model
with wind and current effects was the maximum PMP model for three of the remaining five.
Finally, the remaining two animals were basically split between models with wind only and
wind plus current effects. Table A.1 of the Supplementary Material provides full PMP results
for all animals. Thus, at a population level, surface winds are a primary driver of movement
for fur seal pups. There was only one animal that did not have all PMP mass on models with
wind effects included and that animal had only 0.09 PMP mass on nonwind effect models.
For some pups in addition to wind effects, geostrophic current plays a secondary driver of
movement, but this was not the case for all animals. The pups may use it opportunistically,
that is, if the current is going where they want to go, they may use it to their advantage.
Finally, sea surface temperature does not significantly affect the residency time for pups at a
given location. None of the pups had more than 0.05 PMP mass on models containing SST
effects, and only two pups had any mass on SST containing models. Therefore, pups do not
select warmer SST in the range of temperatures they experienced during migration.

We will now take a look at the temporally varying effects of animal “355.” Here, we will
examine the effects for model 8 (Table 1; full model) even though model 2 was the highest

TABLE 1
Model set and population average posterior model probabilities. The model column list the models in the model
set considered for this analysis. The base model contains effects for: log rt , previousij t , northij , eastij ,

plus an intercept and interaction term log rt × previousij t . PMP column is the average PMP over all 15
animals. The range column is the range of PMP values over animals

Model No. Covariates Avg. PMP Range

1 base 0.003 [0.000–0.040]
2 base+ windij t 0.714 [0.028–1.000]
3 base+ currij t 0.004 [0.000–0.053]
4 base+ sstit

5 base+ windij t + currij t 0.275 [0.000–0.961]
6 base+ windij t + sstit 0.004 [0.000–0.049]
7 base+ currij t + sstit

8 base+ windij t + currij t + sstit 0.001 [0.000–0.011]
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FIG. 2. Time varying coefficient estimates for the CTSMC model fit to individual 355. Estimates and credible
intervals were calculated using the process imputation methodology presented in Section 3.3 using a normal
approximation to the posterior for each imputation. The black lines represent the effect estimates for each of the
20 imputations. The transparent gray envelopes are the 95% credible intervals for each imputation. The red lines
represent the estimate and credible interval when marginalizing over the imputations.

PMP model for this animal (Model 2: 0.99 and model 5: 0.01). However, it is instructive to
see the general pattern of all covariates (Figure 2). For animal 355 the wind effect is overall
positive throughout the course of the deployment implying that the animal generally travels
with the prevailing winds, although the strength of this effect varies with time. There is also
a generally positive effect of geostrophic current on the rate of movement, although for only
a small fraction of the deployment is it significantly positive according to the 95% credible
interval. This small interval is not enough to make the covariate overall significant, as the
wind only model has PMP = 0.99. SST has a negative but insignificant effect meaning that
the animal slows in warmer seas, but the conclusion is highly uncertain. The kinetic nuisance
effects, north and east are also illustrated and describe the general trend in movement, as
expected—first, southerly movement followed by generally easterly movement. Closer ex-
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amination of Figure 2 shows the variation in covariate effect inference for each of the 20 path
imputations, P (k). Use of any single imputation would have given us, heuristically, the same
inference with respect to the effect of each covariate on movement. But there is noticeable
variation in estimates caused by path uncertainty.

We now turn our attention to the base rate of transition, b0(t |Pt). We wanted to assess
whether a constant base rate was appropriate for this data, that is, without covariate effects is
the residence time approximately exponential distributed. Here, we examine the full model
(model 8) again to see, if we account for all covariates, do the data support a constant base
rate function, b0(t |Pt) = β0. For this analysis the fitted base rate model is

b0(t |Pt) = β0 + (β1 + β3previousij t ) · log rt .

For residence times to be exponential distributed, β̃1,ij = (β1 + β3previousij ) ≈ 0 for a
given previousij . For animal 355, when traveling in the same direction as the previous
move (previousij = 1), β̃1,ij = 1.49 [95% CI: 1.28, 1.71], significantly > 0. This implies
that transitions are significantly more regular than would be expected for an exponential resi-
dence time. When moving in the opposite direction, β̃1,ij = −1.00 [95% CI: −1.07, −0.94],
significantly < 0, which means that transitions will be more clustered than an exponential
distribution. Diagonal moves are slightly moderated toward zero, but all are significantly dif-
ferent from zero in the respective relative directions. Table A.2 in Supplement A shows that
this same pattern holds for all 15 animals. These results make sense because an animal travel-
ing in the same direction for multiple moves is probably traveling at relatively the same speed
as it is transitioning. Thus, it would transition out of cells at a more regular schedule. The op-
posite is true for reversing direction. Speed and direction are more variable, indicative of an
area restricted search pattern. Therefore, a constant exponential base rate is inappropriate for
these data.

In addition to the CTSMC analysis here, for the focal animal 355 we also fitted CTMC
version of the models. This was done to examine the level of improvement that is obtained by
dropping the Markov movements assumption. To accomplish this, the covariates were altered
such that the conditions the animal experiences upon first entering a cell are maintained till
the animal leaves the cell, regardless of how it changes in the meantime. Also, log rt is not
part of the base model, as this is not part of the CTMC model. Finally, the time index is
also held constant when the animal first enters a cell for the basis function modeling of the
coefficients. The results of this extra analysis are presented in Section A.3 of Supplementary
Material A. In summary, the PMP of the CTMC models were virtually zero compared to the
CTSMC models.

5. Discussion. Herein, we have presented an extension to the CTMC model of Hanks,
Hooten and Alldredge (2015) for animal movement modeling. In addition to the ability to
handle dynamic habitat covariates, the semi-Markov version (CTSMC) relaxes the assump-
tion of exponentially distributed residence times for each cell. However, even after the ex-
tensions, the Poisson GLM method for likelihood calculation can still be used; however, it is
now an approximation of the true likelihood. The only difference is that for quadrature times
when no movement is made, all znj = 0. It can be thought of as the absence of movement at
that time. An important distinction we would like to emphasize, is that while changes in rate
parameters and covariates are permissible in CTMC model over the course of deployment,
they are only permissible at times of cell transitions. As we have done in Supplementary Ma-
terial A.3, one can approximate the CTSMC model with a CTMC model by only allowing
changes at cell transitions, but the degree of approximation of the continuous-time dynamics
is controlled by the animal and how often it moves. On the other hand, the level of approx-
imation in the CTSMC model is entirely under the control of the researcher. The level of
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approximation can be made as small as desired by simply creating a finer scale quadrature
time grid. In addition, the CTSMC models can also capture clustered (or regular) residence
time distributions.

In the fur seal analysis the CTSMC model proved to be a better fit to the data. For all 15
animals the parameters associated with the base rate function of log rt proved to be signifi-
cantly different from zero, implying clustered or regular times of transition depending on the
movement of the animal. For animal 355 none of the CTMC approximations to the CTSMC
model possessed any posterior model weight. This may be due to the more accurate represen-
tation of the covariate effects in time or the nonexponential residence times of the CTSMC
model. However, either one illustrates the additional benefits obtainable without increased
effort on the part of the researcher for fitting models.

To fully account for path uncertainty in the analysis, we used a very similar two-stage
imputation approach used by Hanks, Hooten and Alldredge (2015). For the data from an-
imal 355, we would not come to different ecological conclusions using only one of these
imputations, but there is nonzero variation due to complete path uncertainty that should be
accommodated for more accurate effect inference. Because of the large spatial extent of this
analysis, combined with the amount of data collected relative to the cell size, our results
changed little, but for higher resolution spatial covariates and courser scale telemetry ob-
servations there may be more notable differences between imputations. An alternative to the
imputation method used here is to use a “stacked” likelihood (e.g., Hanks and Hughes (2016),
White, Royston and Wood (2011)). One can make inference using this weighted likelihood
and avoid having to recombine separate model inferences. However, the large model data
sets built using the methodology of Section 4.1 might preclude this, as the complete data set
might become too large to deal with efficiently. It would be more efficient to analyze each
imputed data set separately and recombine the results in a buffered fashion. In this way the
separate fits can can be parallelized for increased computational speed, as we have done for
the analysis in Section 4. Similarly, the two-stage method of Hooten et al. (2016) and Hooten,
Johnson and Brost (2019) can be used to recombine separately fitted models for each animal
if population-level inference is desired.

In addition to extension of the CTMC model to a semi-Markov version, we have also ex-
plored model selection in the context of a two-stage imputation approach. This method is
not only applicable to this analysis but also to any multiple imputation studies. To our knowl-
edge, this general topic has not been explored outside of Nakagawa and Freckleton (2011) and
only with respect to AIC model averaging therein. Here, we propose a fully Bayesian model
section approach in an imputation setting using an approximated version of the posterior
model probability (PMP). PMPs can then be averaged over imputations in accordance with
the Bayesian interpretation of multiple imputation to account for path uncertainty in selection.
The Laplace approximation used in the PMP calculations allows for computational efficiency
over all of the imputed paths. One might question whether the approximation provides values
close enough to the true marginal distribution [Ml|P (k)]. While there is no definitive way to
know whether it is the case for any particular data set, Kass and Raftery (1995) note that sam-
ple sizes < 5dl are worrisome, while those > 20dl should be sufficiently accurate. Volinsky
et al. (1997) note that the appropriate way to quantify sample size for proportional hazard
models is the number of observed events in the data. For CTSMC models this would be the
number of observed cell transitions

∑
znj for each P (k). In the fur seal example the largest

model (model 8) contains dl = 30 parameters, thus sample sizes > 600 should cause little
worry for any of the models fitted here. For the fur seal data, only one animal fell below this
threshold, and its minimum was 560 transitions over all 20 imputed paths. So, we believe that
sample size was sufficient in all animals for this analysis. However, this is something to keep
in mind for other data.
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The CTSMC model presents a computationally feasible approach for making inference
with respect to the influence of dynamically changing habitat on animal movement. Based on
the Markov (CTMC) analysis of animal 355, we would not have a drastic difference in the
overall effect of wind on movement, but here we have a long deployment with undoubtedly
spatially correlated observational covariates. Other areas of movement analysis, where these
models might be very useful, is the analysis of dose-response in marine mammal disturbance
studies (Booth, Sinclair and Harwood (2020)). In that instance, timing of changes in direc-
tional movement rates immediately following a known noise disturbance are the quantity of
interest.

From a biological perspective, the ratio λij /�i represents a discrete choice resource selec-
tion model (McCracken, Manly and Vander Heyden (1998)) with the additional inference on
rate of movement modeled as well. The imputation methodology allows one to disentangle
the selection from the rate of movement by regularizing the modeled locations of the ani-
mal. Thus, we recommend the CTSMC approach as a general purpose resource selection and
movement analysis tool.
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SUPPLEMENTARY MATERIAL

Supplement A: Additional details and results (DOI: 10.1214/20-AOAS1408SUPPA;
.pdf). This supplement provides additional details of the likelihood derivation and Poisson
approximation as well as additional results in the fur seal analysis.

Supplement B: R code (DOI: 10.1214/20-AOAS1408SUPPB; .zip). This supplement pro-
vides all R code used in the fur seal migration analysis.

Supplement C: Data (DOI: 10.1214/20-AOAS1408SUPPC; .zip). This supplement pro-
vides all data used in the fur seal migration analysis.
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