
The Annals of Applied Statistics
2021, Vol. 15, No. 1, 323–342
https://doi.org/10.1214/20-AOAS1399
© Institute of Mathematical Statistics, 2021

SPATIAL DISTRIBUTED LAG DATA FUSION FOR ESTIMATING AMBIENT
AIR POLLUTION

BY JOSHUA L. WARREN1, MARIE LYNN MIRANDA2, JOSHUA L. TOOTOO3,*,
CLAIRE E. OSGOOD3,† AND MICHELLE L. BELL4

1Department of Biostatistics, Yale University, joshua.warren@yale.edu
2Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, mlm@nd.edu

3Children’s Environmental Health Initiative, University of Notre Dame, *jtootoo@nd.edu; †cosgood@nd.edu
4School of Forestry and Environmental Studies, Department of Environmental Health Sciences, Yale University,

michelle.bell@yale.edu

We introduce spatial (DLfuse) and spatiotemporal (DLfuseST) dis-
tributed lag data fusion methods for predicting point-level ambient air pol-
lution concentrations, using, as input, gridded average pollution estimates
from a deterministic numerical air quality model. The methods incorporate
predictive information from grid cells surrounding the prediction location of
interest and are shown to collapse to existing downscaling approaches when
this information adds no benefit. The spatial lagged parameters are allowed to
vary spatially/spatiotemporally to accommodate the setting where surround-
ing geographic information is useful in one area/time but not in another. We
apply the new methods to predict ambient concentrations of eight-hour max-
imum ozone and 24-hour average PM2.5 at unobserved spatial locations and
times, and compare the predictions with those from several state-of-the-art
data fusion approaches. Results show that DLfuse and DLfuseST often pro-
vide improved model fit and predictive accuracy when the lagged informa-
tion is shown to be beneficial. Code to apply the methods is available in the
R package DLfuse.

1. Introduction. Obtaining accurate estimates of ambient air pollutant concentrations at
locations outside of those where data collection routinely occurs is vital to investigations of
associations between exposure and adverse human health outcomes. This is especially true
for rural areas which are consistently understudied and where reliable data are notably scarce.
In addition, interpretations of associations between modeled air pollution data and health out-
comes should, but often do not, take underlying uncertainty in the modeled exposure data into
account. A number of methods for spatial/ spatiotemporal interpolation of air pollution con-
centrations have been previously used in this context, including inverse-distance weighting,
land use regression and geostatistical approaches such as kriging (e.g., Berman et al. (2019),
Gurung, Levy and Bell (2017), Hsu et al. (2019), Jin et al. (2019), Xu et al. (2019), Yu et al.
(2019)).

More recently, advanced statistical techniques have been developed for combining multi-
ple sources of air pollution information, potentially at different spatial scales, to obtain es-
timates of air pollution concentrations with improved accuracy and appropriate measures of
uncertainty (e.g., Berrocal, Gelfand and Holland (2010a, 2010b, 2012), Fuentes and Raftery
(2005), Guan et al. (2019), McMillan et al. (2010), Paciorek (2012), Reich, Chang and Fo-
ley (2014)). In order to model and to predict pollutant concentrations at locations and times
without an active monitor, these methods typically use directly measured concentrations in
combination with alternative pollutant estimates which have improved spatial/spatiotemporal
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coverage but which may be biased and/or produced at different spatial scales (e.g., grid av-
erages). By estimating the associations between measured data and alternative sources of
information, the methods leverage the full space-time coverage of the estimates to predict the
measured concentrations at previously unobserved spatiotemporal locations.

The methods differ in how the auxiliary information is incorporated, with some specifying
a joint model for measured and estimated concentrations (e.g., Fuentes and Raftery (2005)),
some using the estimated concentrations directly as predictors along with spatially/spatio-
temporally-varying regression coefficients (e.g., Berrocal, Gelfand and Holland (2010a,
2010b, 2012)) and others using spectral methods to describe the associations (e.g., Guan et al.
(2019), Reich, Chang and Foley (2014)). In a recent review, statistical data fusion techniques
were shown to perform favorably to advanced machine learning algorithms with respect to
predictive performance under the specified study settings (Berrocal et al. (2019)).

Regardless of how the auxiliary information is incorporated, the majority of these statis-
tical models connect measured air pollutant concentrations with the closest unit of auxiliary
information during model building (e.g., the grid cell that contains the air pollution monitor).

In this work we improve upon this limitation by introducing a spatial distributed lag data
fusion model that incorporates potentially important auxiliary information from spatial loca-
tions surrounding the pollution monitor, not just the closest information. How much auxiliary
information is used is determined by the data and allowed to vary spatially. This approach
accommodates the notion that lagged predictors may be informative in some locations but
uninformative in others. The model also includes spatially/ spatiotemporally-varying regres-
sion parameters to flexibly model complex biases in the auxiliary information and is shown
to collapse to similar downscaling models (e.g., Berrocal, Gelfand and Holland (2010a)) in
the setting where lagged information is not predictive of measured concentrations. We also
extend the spatially static version of our model to the spatiotemporal setting.

Berrocal, Gelfand and Holland (2012) introduced a model that incorporated auxiliary in-
formation from surrounding locations with the goal of improving predictions of measured
concentrations. However, their model included each unit of auxiliary information (e.g., every
grid cell estimate was used as a predictor) and spatially/spatiotemporally-varying regression
parameters which allowed the set of important predictors to vary across space and time. With
a large spatial domain and/or small grid cells, the number of predictors will be very large. As
a result, a computationally efficient approximation was implemented during model fitting.

We avoid these computational issues by using spatially-lagged predictors, defined by tak-
ing the average of grid cell average concentrations in squares surrounding the grid cell con-
taining the pollution monitor, similar to the spatial lags used in recent work from Baek et al.
(2016). In Figure 1 an ambient air pollution monitor lies in the grid cell marked zero. Grid
cells with the same number are used to calculate the corresponding lagged average of the
auxiliary pollution information and are used as predictors in our newly developed model.

FIG. 1. Example of community multiscale air quality grid cells where the air quality system monitoring lo-
cation is assumed to lie within the grid cell marked by 0. Grid cells with a shared number are included in the
corresponding lagged average of pollution estimates and used as predictors in (3.1).
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We assume the larger the lag number (i.e., the further the distance from the index monitor
grid cell), the lower the regression weight on the lagged average, reflecting the assumption
that auxiliary information closer to the monitor are likely more reliably predictive than those
further away. As a result, our method only introduces a new parameter for a grid cell that
contains an active air pollution monitor, not for every grid cell as in Berrocal, Gelfand and
Holland (2012). Due to the sparsity of pollution monitors with respect to the grid cells, this
formulation leads to a drastic reduction in the number of unique predictors included in the
model, avoiding the need for computational approximations and offering an intuitive and
flexible framework for incorporating auxiliary information.

In Section 2 we describe the air pollution data sources used for modeling, predicting, and
validating our new approaches. Section 3 introduces the spatial and spatiotemporal distributed
lag data fusion methods with applications to eight-hour maximum ozone and 24-hour aver-
age particulate matter ≤ 2.5 micrometers (PM2.5) given in Section 4. Also in Section 4, we
include several state-of-the-art competing methods to compare predictive accuracy. We close
in Section 5 with discussion and conclusions.

2. Data. We analyze measured daily ambient concentrations of ozone (daily eight-hour
maximum) and PM2.5 (24-hour average) across the eastern United States (U.S.) during June
1–August 31, 2013. These data come from the air quality system (AQS) maintained by the
U.S. Environmental Protection Agency (EPA) (https://www.epa.gov/aqs) and include the lat-
itude and longitude of each monitoring location along with measured concentrations on each
day where the monitor was active for a particular pollutant. For ozone we used the daily
eight-hour maximum, and for PM2.5 we used the 24-hour average to correspond to health-
based regulations. The locations of the ozone and PM2.5 AQS monitors that were active at
any point during the study period are shown in Figure 2 along with time series plots of the
number of active monitors for each pollutant.

Additionally, comparable daily estimates of each pollutant produced by the Commu-
nity Multiscale Air Quality (CMAQ) modeling system are obtained from the U.S. EPA
(https://www.epa.gov/hesc/rsig-related-downloadable-data-files). The CMAQ model is a re-
gional deterministic numerical air quality model that inputs information such as emissions
and meteorology to produce estimates of a number of different pollutants across space and

FIG. 2. Air quality system active monitor locations (left panel) and time series plots of the number of daily
active monitors from June 1–August 31, 2013 (right panel) for ozone and PM2.5.

https://www.epa.gov/aqs
https://www.epa.gov/hesc/rsig-related-downloadable-data-files
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time. Whereas the AQS monitoring network can be sparse in space and time, CMAQ es-
timates have excellent space-time coverage and can be extremely useful when evaluating
different air pollution scenarios (e.g., new emission regulations) (US EPA (2019)). Notably,
the CMAQ concentrations are modeled and not measured; they can be biased, and this bias
can differ by pollutant and across space and time. The daily CMAQ estimates we used are
available on a 12-by-12 kilometer grid across the entire study region for both pollutants. The
information at each grid cell includes the latitude, longitude of the grid centroid and the esti-
mated average pollutant concentration within the grid cell. Unlike the AQS data, the CMAQ
estimates are available on all days and at each grid cell during the study period.

3. Methods. We develop spatial distributed lag data fusion methods for predicting pol-
lutant concentrations at: (i) unobserved spatial locations based on data analyzed from a single
day (spatial downscaler) and (ii) unobserved spatiotemporal locations/times based on data an-
alyzed across multiple days (spatiotemporal downscaler). Improved predictions in space and
time are made possible by incorporating CMAQ pollutant estimates from spatial lags sur-
rounding each AQS monitor during modeling while computational efficiency is maintained
through use of the distributed lag framework.

3.1. Distributed lag data fusion: Spatial downscaler. We first introduce a data fusion
model for air pollutant concentrations obtained from AQS monitors that were active during a
single day. The model is given as

(3.1) Y(sij ) = β̃0(sij ) + β̃1(sij )

L∑
l=0

x̄Bi,l

(
πBi,l∑L

k=0 πBi,k

)
+ ε(sij ),

where ε(sij )|σ 2
ε

iid∼ N(0, σ 2
ε ); Y(sij ) is the pollutant concentration (possibly transformed)

measured at spatial location sij , representing the location of AQS monitor j (j = 1, . . . , ni)
that resides within CMAQ grid cell i (Bi ; i = 1, . . . ,m); ni is the number of active AQS
monitors in Bi ; m is the number of unique CMAQ grid cells that contain an active AQS mon-
itor; n = ∑m

i=1 ni is the total number of observed AQS concentrations, and L is the number
of included spatial lags for the CMAQ estimates (fixed at a large value). The average of the
individual CMAQ estimates comprising spatial lag l surrounding CMAQ grid cell Bi (see
Figure 1) is denoted as x̄Bi,l , where x̄Bi,0 represents the single CMAQ estimate from the grid
cell containing the AQS monitor. The spatially-varying weight and regression parameters are
described in Sections 3.1.1 and 3.1.2, respectively.

3.1.1. Spatially-varying regression weights. We use spatially-varying regression weights
to describe the importance of average CMAQ estimates at different spatial lags in explain-
ing patterns in the measured concentrations. The weight corresponding to the lag l average
CMAQ estimate is given as

(3.2)
πBi,l∑L

k=0 πBi,k

,

where the weights across all lags sum to one. We specify that πBi,l is decreasing as one
moves further away from the central CMAQ grid cell containing the AQS monitor (i.e., as
l increases) to reflect the belief that CMAQ estimates closer to the AQS monitor are likely
more predictive of Y(sij ) than those further away. In addition, we allow these weights to
vary spatially to account for the possibility that the relative importance of the lagged average
CMAQ estimates may differ due to spatially-varying bias in CMAQ. This specification results
in a unique set of weights for each CMAQ location and the ability to spatially expand (i.e.,



SPATIAL DISTRIBUTED LAG DATA FUSION 327

large weights even at large lags) and constrict (i.e., large weights only at small lags) the
amount of CMAQ information that is used in (3.1).

The corresponding model for πBi,l is given as

πBi,l = �(μ + αBi
)l, l = 0, . . . ,L,

where �(·) is the cumulative distribution function (CDF) of the standard normal distribution,
μ represents the global spatial lag structure common to all CMAQ locations and αBi

is the
deviation from the global lag structure specific to CMAQ grid cell Bi . The model is anchored
at one for the CMAQ grid cell that contains the AQS monitor (i.e., πBi,0 = 1) with values
decreasing as the lag order increases. Additionally, we consider a second model for πBi,l

based on the spherical spatial isotropic correlation function such that

πBi,l =
{

1.00 − 1.50
(

l

exp{μ + αBi
}
)

+ 0.50
(

l

exp{μ + αBi
}
)3}

,

when l < exp{μ + αBi
} and πBi,l = 0 when l ≥ exp{μ + αBi

}. Unlike the CDF-defined
weights, this formulation allows for the weights to exactly equal zero after some estimated
distance.

The αBi
parameters are modeled using an intrinsic conditional autoregressive (ICAR)

model (Besag (1974)) such that

(3.3) αBi
|α−Bi

, τ 2 ind∼ N
(∑m

j=1 zijαBj∑m
j=1 zij

,
τ 2∑m

j=1 zij

)
, i = 1, . . . ,m,

where α−Bi
is the vector of all αBj

parameters with αBi
excluded and zij describes the spatial

similarity between Bi and Bj . Because there is not an active AQS monitor in every CMAQ
grid cell, we opt not to define zij based on shared common borders between CMAQ grid cells
as is most common (i.e., many “islands” would be present across the spatial domain). Instead,
we define zij as the inverse distance between Bi and Bj , with zii = 0 for all i representing the
only zero entries in the full matrix (i.e., inverse distance computed for all pairs, not just those
that are connected). We note that a Gaussian process could be used to model these parameters
and would likely yield similar performance overall. However, we prefer the ICAR model for
two reasons. First, even though we are using inverse distance to describe proximity, the αBi

parameters arise on the CMAQ grid and not continuously over the spatial domain as the
Gaussian process assumes. Therefore, the ICAR model more naturally accommodates this
gridded setting from a conceptual perspective. Second, the conditional form of the ICAR
model often provides computational benefits compared to working with a Gaussian process.
Similarly, the ICAR model only introduces a single variance parameter where the GP includes
a variance parameter and additional correlation parameter(s) that need to be estimated.

This model for the regression weights allows for different CMAQ areas to have unique lag
structures that are spatially correlated, reflecting the idea that the bias in CMAQ estimation
may be spatially smooth. Use of the final summation from (3.2) in (3.1) results in a weighted
average of the lagged average CMAQ estimates. Critically, if πBi,k = 0 for all k > 0, then our
model collapses to the original static downscaler method of Berrocal, Gelfand and Holland
(2010a).

3.1.2. Spatially-varying regression parameters. We allow for spatial variability in the
regression parameters to account for the setting where multiple AQS monitors are located
within a single CMAQ grid cell, similar to Berrocal, Gelfand and Holland (2010a). In
that case the lag structure from (3.2) is not changing, leading to the exact same value of∑L

l=0 x̄Bi,l(
πBi ,l∑L

k=0 πBi ,k
) for those AQS concentrations. However, it may be important to con-

sider that spatially-structured variability could remain with respect to the intercept and slope
parameters for those concentrations.



328 J. L. WARREN ET AL.

Utilizing the linear model of coregionalization to allow for flexibility in each set of param-
eters as well as a general cross-covariance structure (Wackernagel (2013)), the joint model
for the regression parameters is given as

β̃k(sij ) = βk + βk(sij ), k = 0,1,

where

(3.4)
(
β0(sij )

β1(sij )

)
= A

(
w0(sij )

w1(sij )

)
; A =

(
A11 0
A21 A22

)
.

βk represents the global intercept (k = 0) or slope (k = 1) parameter, and βk(sij ) is the
location-specific deviation from the global value. The spatially-correlated random effects are
then modeled using a Gaussian process with spatially-structured correlation matrix such that

wk = {
wk(s11), . . . ,wk(smnm)

}T|φk
ind∼ MVN

{
0,
k(φk)

}
, k = 0,1,

where 
k(φk) describes the spatial correlation between entries of wk such that Corr{wk(sij ),

wk(si′j ′)} = gk(‖sij − si′j ′‖;φk); gk(·;φk) is an isotropic spatial correlation function, ‖ · ‖
represents the Euclidean distance function and φk > 0 describes the level of spatial correla-
tion between parameters. The specification in (3.4) induces flexible correlation between the
intercept and slope parameters (e.g., Warren et al. (2020)).

3.1.3. Prior specification. We finalize the model by assigning prior distributions to the
unknown parameters. The variance parameters are given weakly informative inverse gamma
prior distributions such that σ 2

ε ∼ Inverse Gamma(ασ 2
ε
, βσ 2

ε
) and τ 2 ∼ Inverse Gamma(ατ 2,

βτ 2) where ασ 2
ε
, βσ 2

ε
, ατ 2 and βτ 2 are fixed at small values. The nonspatial components

of the regression parameters are assigned weakly informative Gaussian priors such that

βk
iid∼ N(0, σ 2

β ), k = 0,1 with σ 2
β fixed at a large value. Similarly, the entries of A are as-

signed log-normal and Gaussian priors such that ln(A11), ln(A22), A21
iid∼ N(0, σ 2

A), with σ 2
A

fixed. The nonspatial parameter of the regression weight definition is assigned an informa-
tive prior such that μ ∼ N(0,1) due to identifiability concerns caused by use of �(·) and the
summation in (3.2). To explore the impact of this prior choice, we display 100 realizations of
the weights across different lags generated by μ ∼ N(0,1) (assuming all αBi

= 0) for both
weight definitions in Figure S1 of the Supplementary Material (Warren et al. (2021)). The
results suggest that the informative prior for μ does not have a large impact on the range
of behavior of the weights at different lags for either weight definition. Both definitions al-
low realizations at the extremes, with weights close to (or equal to) zero almost immediately
(i.e., at small lags) and with weights almost constant across all considered lags. Lastly, the
spatial correlation hyperparameters are given weakly informative gamma priors such that

φk
iid∼ Gamma(αφk

, βφk
), k = 0,1 with αφk

and βφk
fixed at small values.

3.1.4. Spatial prediction. The main purpose of the proposed model is for predicting pol-
lutant concentrations at unobserved spatial locations. Due to the spatially-varying lag struc-
ture, this prediction requires additional considerations outside of the typical geostatistical
prediction setting. We are interested in obtaining samples from the posterior predictive dis-
tribution (ppd) of the measured concentration at a new spatial location, Y(s0), where this ppd
is defined as

f
{
Y(s0)|y} =

∫
. . .

∫
f

{
Y(s0)|�,y

}
f (�|y) d�
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where � represents the collection of all previously described model parameters, y is the
complete vector of measured concentrations and f (�|y) is the joint posterior distribution of
all model parameters.

There are two different scenarios for predicting at a new spatial location and each results
in a different predictive density. First, the desired prediction location may be located within
a CMAQ grid cell where a measured concentration is already located, say Bi . In this case,
f {Y(s0)|�,y} can be written as∫ ∫

f
{
Y(s0)|σ 2

ε , β̃0(s0), β̃1(s0),μ,αBi

} ×
1∏

k=0

f
{
wk(s0)|wk, φk

}
dwk(s0)

due to conditional independence, where each component represents a Gaussian distribution
based on the likelihood in (3.1) and conditional properties of a multivariate Gaussian distri-
bution (Banerjee, Carlin and Gelfand (2015)).

Second, the prediction location may fall within a previously unobserved CMAQ grid cell,
say B0. In this case, f {Y(s0)|�,y} can be written as∫ ∫ ∫

f
{
Y(s0)|σ 2

ε , β̃0(s0), β̃1(s0),μ,αB0

}
× f

(
αB0 |α, τ 2) ×

[ 1∏
k=0

f
{
wk(s0)|wk, φk

}
dwk(s0)

]
dαB0,

where, again, each component represents a Gaussian distribution but now prediction of αB0 is
also required. In either case we can collect samples from the ppd of interest using composition
sampling based on the samples collected from the joint posterior distribution (Tanner (1996)).

3.2. Distributed lag data fusion: Spatiotemporal downscaler. Next, we extend the spa-
tial version of the data fusion model to the spatiotemporal setting by allowing for a
spatiotemporally-varying lag structure and regression parameters. This model allows for a
unified framework of prediction across space and time and the potential to not only predict
at new spatial locations but at future time points as well. Similar to (3.1), the spatiotemporal
model is given as

(3.5) Yt (sij ) = β̃0t (sij ) + β̃1t (sij )

L∑
l=0

x̄Bi,t,l

(
πBi,t,l∑L

k=0 πBi,t,k

)
+ εt (sij )

for t = 1, . . . , d days of measured concentrations where εt (sij )|σ 2
ε

iid∼ N(0, σ 2
ε ). The average

of the individual CMAQ estimates comprising spatial lag l surrounding CMAQ grid cell Bi

on day t is denoted as x̄Bi,t,l . Every AQS monitor is not active on each day of data collection
and therefore, every CMAQ grid cell is not represented on each day. The full set of unique
CMAQ grid cells that contain an active AQS monitor during any day of the study is denoted as
D = {B1, . . . ,Bm}. The subset of these grid cells that contain an active AQS monitor during
day t is defined as Ct ⊆ D where m∗

t = |Ct | is the number of CMAQ grid cells that contain
an active AQS monitor during day t and

⋃d
t=1 Ct = D.

The full set of unique active AQS monitoring locations within CMAQ grid cell Bi across
all time periods is given as Fi = {si1, . . . , sini

} where the total number of these locations is
given as n = ∑m

i=1 ni . The subset of unique active AQS monitoring locations within Bi dur-
ing time period t is given as Eti ⊆ Fi where n∗

t i = |Eti | is the number of these locations in
Bi during time period t and

⋃d
t=1 Eti = Fi . Therefore, the total number of measured concen-

trations on day t is given as n∗
t = ∑

i∈Ct
n∗

t i and the total number of measured concentrations
in the entire dataset is described by n∗ = ∑d

t=1 n∗
t . The spatiotemporally-varying weight and

regression parameters are described in Sections 3.2.1 and 3.2.2, respectively.
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3.2.1. Spatiotemporally-varying regression weights. The regression weights are now ex-
tended to accommodate additive changes across space and time such that

πBi,t,l = �(μ + αBi
+ μt)

l, 0 = 1, . . . ,L

and

πBi,t,l =
{

1.00 − 1.50
(

l

exp{μ + αBi
+ μt }

)
+ 0.50

(
l

exp{μ + αBi
+ μt }

)3}
when l < exp{μ + αBi

+ μt } and πBi,t,l = 0 when l ≥ exp{μ + αBi
+ μt }, where μ is the

global spatial lag structure parameter and αBi
is described in (3.3). The neighborhood adja-

cency matrix for the αBi
parameters is defined based on the complete set of unique CMAQ

grid cells that contain an active AQS monitor during any day of the study (i.e., D). The μt

parameters are modeled using an autoregressive structure to allow for the lagged weights to
change across time such that

μt = κμt−1 + δt , t = 1, . . . , d,

where κ ∈ (0,1), δt |σ 2
δ

iid∼ N(0, σ 2
δ ), and μ0 ≡ 0.

3.2.2. Spatiotemporally-varying regression parameters. Similarly, the regression param-
eters are allowed to evolve across space and time such that

β̃kt (sij ) = βk + βk(sij ) + βkt , k = 0,1,

where βk are the global intercept/slope parameters, βk(sij ) are the spatial deviations from
these global parameters, previously described by (3.4) and βkt represent temporal deviations
from the global parameters. They are modeled using a multivariate autoregressive framework
such that

(3.6)
(
β0t

β1t

)
= �

(
β0,t−1
β1,t−1

)
+ ηt , t = 1, . . . , d,

where � is a two-by-two diagonal matrix with �ii = ρi and ρi ∈ (0,1); ηt |V iid∼ MVN(02,V ),
02 is a column vector of length two with each entry equal to zero and V a two-by-two covari-
ance matrix describing potential correlation between the intercept and slope deviations, and
(β00, β10)

T = 02.

3.2.3. Prior distributions. For the parameters shared across the spatial and spatiotempo-
ral models, the prior specifications remain the same (see Section 3.1.3 for full details). For
the parameters specific to the spatiotemporal model, we opt for weakly informative prior dis-

tributions when possible such that κ , ρ1, ρ2
iid∼ Uniform(0,1), σ 2

δ ∼ Inverse Gamma(3,2) and
V −1 ∼ Wishart(I2,3) (Gelman et al. (2014)).

3.2.4. Spatiotemporal prediction. Prediction within the spatiotemporal modeling frame-
work can also fall under a few different categories: prediction at a previously unobserved
spatial location on a previously observed day or prediction at a previously unobserved spatial
location during a day in the future. We assume here that the spatial location for prediction
falls within one of the previously observed CMAQ grid cells, say B0 ∈ D, but this can easily
be extended; see Section 3.1.4 for further discussion on this point.

The posterior predictive distribution of interest is given as

f
{
Yt0(s0)|Y } =

∫
. . .

∫
f

{
Yt0(s0)|�,Y

}
f (�|Y ) d�,
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where Yt0(s0) is the pollutant concentration of interest at unobserved spatial location s0
and potentially unobserved day t0. The remaining terms have been previously described
in Section 3.1.4. When predicting at a previously observed day such that t0 ∈ {1, . . . , d},
f {Yt0(s0)|�,Y } can be written as∫ ∫

f
{
Yt0(s0)|σ 2

ε , β̃0t0(s0), β̃1t0(s0),μ,αB0,μt0

}
×

1∏
k=0

f
{
wk(s0)|wk, φk

}
dwk(s0).

(3.7)

Similarly, when predicting for a new day, say t0 = d + 1, f {Yd+1(s0)|�,Y } maintains the
same form from (3.7) with the following additional terms included in the multiplication:∫ ∫ ∫

f (βd+1|ρ1, ρ2,βd,V ) × f
(
μd+1|κ,μd, σ 2

δ

)
dβd+1 dμd+1.

Similar to the spatial prediction solution, we can generate samples from the ppd using com-
position sampling, given that these densities are all Gaussian (or multivariate Gaussian) with
known mean and variance/covariance.

4. Daily ozone and PM2.5 data fusion.

4.1. Creating lagged predictors. To implement the newly developed methods, we begin
by linking each AQS monitor that was active during the study period (June 1–August 31,
2013, see Figure 2) with the corresponding CMAQ grid cell in which it was located (Bi).
This CMAQ estimate represents the lag-zero predictor from (3.1) (x̄Bi,0). Next, we average
the CMAQ estimates from the grid cells that immediately surround Bi and define this to be
the lag-one predictor (x̄Bi,1). We repeat this process, each time averaging the CMAQ grid cell
estimates contained in the square surrounding the previous lagged average grid cell estimates,
until we the obtain the lag-10 predictor (x̄Bi,10; i.e., L = 10 in (3.1)); see Figure 1 for an
example.

4.2. Spatial downscaler: June–August, 2013. We first apply the distributed lag data fu-
sion model in (3.1), hereafter referred to as DLfuse, to three different days of data: June 3,
July 3 and August 2, 2013. These days were the first day in each month where the number of
active PM2.5 monitors was high in comparison to surrounding days (see Figure 2), allowing
for a large number of concentrations with which to validate the model. We randomly select
64, 128 and 192 of the monitors for three separate analyses on each day. The random selec-
tion of monitors is done separately for each day, pollutant and sample size. The remaining
nonselected AQS locations are used to validate the model predictions. We select these sample
sizes for analysis because 192 represents the median number of active PM2.5 monitors across
this spatial domain on the “low monitoring” activity days across the entire month of June
2013. Additionally, we select one- and two-thirds of 192 (64, 128) and apply the model to
see how predictive performance changes when significantly less data are used. In Table S1
of the Supplementary Material, we summarize the number of uniquely observed CMAQ grid
cells (i.e., those that contain an active AQS monitor) with respect to the total number of AQS
observations in each dataset (Warren et al. (2021)).

4.2.1. Competing methods. We consider several competing methods in the study. These
methods vary greatly in complexity and include: (i) raw CMAQ model estimates, (ii) ordinary
kriging (OK), (iii) the original static downscaler (DS) from Berrocal, Gelfand and Holland
(2010a), (iv) the spatially-varying random weights smoothed downscaler (DS-Smooth) from
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Berrocal, Gelfand and Holland (2012) and (v) the spectral spatial downscaling method (DS-
Spectral) of Reich, Chang and Foley (2014).

The raw CMAQ approach simply uses the lag zero CMAQ estimate (x̄Bi,0) as the predic-
tion of the AQS concentration at a new spatial location residing within CMAQ grid cell Bi .
This method will perform well if CMAQ is unbiased for the measured concentrations and if
there is no variability in the measured concentrations within a CMAQ grid cell. Next, we con-
sider the geostatistical prediction approach of OK which is a special case of (3.1). OK does
not include any CMAQ estimates in the regression model but does incorporate a spatially
structured intercept term such that

(4.1) Y(sij ) = β0 + A11w0(sij ) + ε(sij ),

where each of the terms have been previously described. OK will predict well if the measured
concentrations are spatially correlated across the domain and the correlation can be accurately
described by the specified isotropic correlation model.

DS is also a special case of (3.1) when the lag structure is ignored (i.e., L = 0) and is given
as

(4.2) Y(sij ) = β̃0(sij ) + β̃1(sij )x̄Bi,0 + ε(sij ),

where each of the terms have been previously described. DS allows for spatially varying bias
adjustment through the intercepts and slopes but does not consider lagged CMAQ predictors.

For full details on DS-Smooth, see Section 3.1.3 of Berrocal, Gelfand and Holland (2012).
Unlike the previously described competing methods, DS-Smooth is not a special case of DL-
fuse, but its goals are similar. DS-Smooth attempts to utilize information from more than just
a single CMAQ grid cell when modeling/predicting the pollutant concentrations. Instead of
considering lagged CMAQ estimates, however, DS-Smooth includes a weighted average of
all CMAQ grid cell estimates within the regression model where the weights are AQS loca-
tion specific, defined by an exponential kernel function and a spatially-structured Gaussian
process and sum to one. DS-Smooth also includes spatially-correlated intercept terms, while
the slope is constant due to identifiability issues. The weighted CMAQ average, defined by
(3.1), can be written as

x̃(sij ) = x̃(Bi) =
L∑

l=0

x̄Bi,l

(
πBi,l∑L

k=0 πBi,k

)
and only depends on two parameters, μ and αBi

. Therefore, a new αBi
parameter is only

introduced when it appears in the data (i.e., when an AQS monitor is located in CMAQ grid
cell Bi). The weighted CMAQ average of DS-Smooth is defined as

x̃(sij ) =
g∑

k=1

x(Bk)ηk(sij ),

where x(Bk) is the CMAQ estimate from grid cell Bk and g represents the total number of
CMAQ grid cells across the entire spatial domain. Each weight parameter, ηk(sij ), is defined
by one shared parameter and a unique spatial parameter that varies by CMAQ grid cell.
Therefore, for a single AQS observation the full set of g spatial parameters is needed to
define this weighted average. For reference, in the spatial domain considered here we have
g = 31,722 total CMAQ grid cells while the number of grid cells that contain an active
AQS monitor is significantly smaller for both pollutants (see Figure 2). The introduction of
such a large number of individual CMAQ predictors and accompanying regression weights
results in a model which is computationally difficult to fit in this setting. As a result, Berrocal,
Gelfand and Holland (2012) implemented the predictive process modeling idea of Banerjee
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et al. (2008) to reduce the computational burden, and we do the same in this application.
While the weights defined by Berrocal, Gelfand and Holland (2012) are more flexible than
those defined by DLfuse, it is important to note that use of the spatially-varying intercepts
and slopes in DLfuse helps to increase modeling and prediction flexibility overall.

Finally, we consider DS-Spectral which is also not a special case of DLfuse but, instead,
uses a computationally efficient spectral method to model complex associations between
measured concentrations and CMAQ estimates. Using code from Reich, Chang and Foley
(2014), we calculate K = 20 spectral covariates at each CMAQ grid cell (x̃i), assign them to
the measured observations that are located in each grid cell and enter them as predictors into
a regression model with spatially-varying intercepts such that

Y(sij ) = β0 + A11w0(sij ) +
20∑

j=1

θj x̃i + ε(sij ),

where θj |μθ , σ 2
θ

iid∼ N(μθ , σ
2
θ ), j = 1, . . . ,20 and the other terms have been previously de-

scribed.
For methods OK and DS, we use the prior distributions, as specified in Section 3.1.3, given

that these methods are subsets of DLfuse. Specifically, ασ 2
ε

= βσ 2
ε

= 0.01, ατ 2 = 3, βτ 2 = 2,

σ 2
β = 1002, σ 2

A = 1 and αφk
= 1, βφk

= 5 for k = 0,1. For DS-Smooth, we use the prior spec-
ifications, as described in Section 4.1 of Berrocal, Gelfand and Holland (2012), with minor
adjustments to the choice of prior distribution hyperparameters. For the predictive process
approximation we randomly selected 400 knot locations from the full set of CMAQ centroids
that contained an AQS monitor on the selected day of analysis. This random selection was
carried out separately for each pollutant and day. Similar to Section A.1 of Berrocal, Gelfand
and Holland (2012), we also use a Metropolis block-updating algorithm for the spatially-
structured Gaussian process parameters with a chosen block size of 50. For DS-Spectral,
μθ ∼ N(0,1002), σ 2

θ ∼ Inverse Gamma(0.01,0.01) and A2
11 ∼ Inverse Gamma(3,2).

For all models with spatially-correlated intercepts and/or slope parameters, we imple-
ment a sum-to-zero constraint on the fly (Berrocal, Gelfand and Holland (2012), Besag et al.
(1995)), separately for each set of parameters, to improve identifiability (other than for DS-
Spectral where the spatial random effects were marginalized out prior to model fitting). For
similar reasons and for the spatial parameters corresponding to the lag weights (see (3.3)),
we impose the constraint that the parameters sum to zero and have unit variance and enforce
it on the fly.

4.2.2. Model comparison metrics. We apply each competing method to each of the sub-
sampled datasets for both pollutants across all days and predict at the validation locations
based on results in Section 3.1.4. We log-transform the AQS concentrations prior to model
fitting to achieve approximate normality. In order to compare the predictive results between
the competing methods, we calculate the predictive mean absolute error (PMAE), average
empirical coverage of the 95% equal tailed, quantile-based credible intervals (CIs) and av-
erage length of those CIs. Posterior medians are used as point estimates for the predictions.
Runtimes for each method are also recorded.

In addition to predictive accuracy, we also calculate Watanabe–Akaike information criteria
(WAIC) (Watanabe (2010)) for each fitted model. In practice, a user may not have access to
a hold-out sample of validation data that can be used to compare predictive performances.
However, if a model comparison metric like WAIC, which balances model fit and complexity
(pWAIC), can be used to identify the “best” model among the competitors, and this choice
aligns with the method that also has the optimal predictive performance, then it may be useful
in practice for determining which method to use for prediction. Given the lack of statistical
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modeling, we note that WAIC cannot be calculated for the raw CMAQ method. To make the
comparisons more fair across the various methods which have different regression forms, we
calculate WAIC based on a marginalized version of the likelihood of the data for each method.
We integrate over all of the spatial “random effect” parameters (in the intercept and slopes,
not the lagged predictors) so that each method’s likelihood has a fixed-effect regression trend
and spatially correlated error terms, if present.

4.2.3. Results. From each model we collect 450,000 posterior samples after removing
the first 50,000 as a burn-in period. We thin the remaining samples by a factor of 45 to re-
duce posterior autocorrelation and the dimension of our results, leading to 10,000 posterior
samples with which to make posterior inference. Convergence was assessed using individual
parameter trace plots and by calculating the Geweke diagnostic (Geweke (1992)) for each
relevant parameter across the different models, with no obvious signs of nonconvergence
being observed. The runtimes from the June 3rd analyses are shown in Table S2 of the Sup-
plementary Material with OK and DS-Smooth consistently reporting the shortest and longest
runtimes, respectively (Warren et al. (2021)).

We first describe the PM2.5 results shown in Table 1. The WAIC findings suggest that
DLfuse and DS-Smooth provide improved fits across each dataset, even when accounting for
the additional complexity of the methods. Their WAIC values are often similar to each other
while typically being smaller than the other methods. These findings are encouraging but do
not necessarily suggest that these models are providing improved predictions at the validation
sites. However, the PM2.5 prediction results often align with the WAIC findings, suggesting
that WAIC may be a useful tool for determining which model to use for prediction in the
absence of validation data.

While DLfuse and DS-Smooth have similar WAIC values, DLfuse typically produces im-
proved predictions. Out of the nine total PM2.5 analyses, some version of DLfuse produces
the smallest PMAE value six times, with no other method producing the smallest value more
than once. In head-to-head comparisons with DS-Smooth and DS-Spectral, DLfuse produces
smaller PMAE values seven out of nine times each. All methods generally provide CI cover-
age near 95% with DS-Smooth and DS-Spectral consistently providing shorter intervals. The
DLfuse results based on the weights defined by the CDF of the standard normal distribution
are generally superior to those based on the spherical spatial correlation function.

In the first column of Figure 3, we present the posterior predictive means at 1000 randomly
selected CMAQ grid cells (with inverse distance weighting used to interpolate between those
1000 grid cells for presentation purposes) of the spatially varying lag structure parameters
(μ+αBi

), based on both versions of DLfuse being fitted to the 192 sample size PM2.5 dataset
from June 3. The plots corresponding to July 3 and August 2 are shown in Figures S2 and S3
of the Supplementary Material, respectively (Warren et al. (2021)). The positively estimated
lag component suggests that the lag structure may be important to consider when predicting
PM2.5 concentrations—something clearly supported by Table 1. Recall from (3.1) that if μ+
αBi

is large and positive, both versions of the lag weights for l > 0 will be nonzero, indicating
that surrounding CMAQ information may be useful for improved prediction. Figure 3 and
Figures S2–S3 of the Supplementary Material also show that the spatial pattern of the lag
structure is similar across both weight definitions (Warren et al. (2021)).

The ozone results in Table 2 are more variable across analyses and methods, with DS
performing better than it did in the PM2.5 analyses. We see that DL-Smooth and DLfuse
most often produce smaller WAIC values, as in the PM2.5 analyses. The PMAE results are
mixed, with DLfuse producing the smallest value in four out of the nine total analyses and
DS, DS-Spectral producing the smallest values twice each (only once for DS-Smooth). In
head-to-head comparisons with DS-Smooth and DS-Spectral, DLfuse once again produces



SPATIAL DISTRIBUTED LAG DATA FUSION 335

TABLE 1
Results from the 24-hour average PM2.5 data analyses in 2013. EC: Empirical coverage; Length: Average

credible interval length; VSS: Sample size of the validation data; VSD: Standard deviation of the validation data.
PMAE and VSD are multiplied by 100 for presentation purposes

June 3 July 3 August 2

Metric Method 64 128 192 64 128 192 64 128 192

WAIC OK 11.85 67.14 118.78 38.62 84.85 109.96 17.70 −28.05 15.79
DS 3.73 62.31 106.47 38.54 70.03 93.66 17.47 −36.51 −38.50
DS-Smooth −4.92 48.23 94.94 30.35 64.88 77.98 10.61 −39.10 −19.18
DS-Spectral 10.24 66.00 108.67 36.26 70.83 95.09 16.89 −33.12 −6.81
DLfusea −1.66 47.75 94.03 36.09 67.46 78.59 13.31 −48.46 −61.63
DLfuseb 3.67 57.20 102.27 37.53 67.71 91.57 19.83 −36.15 −60.60

PMAE CMAQ 39.75 39.60 37.75 53.12 58.59 59.44 27.90 29.58 30.35
OK 23.15 21.53 19.39 23.50 20.52 18.35 16.40 17.11 15.75
DS 21.92 19.63 18.73 21.69 20.15 18.92 15.51 16.01 16.56
DS-Smooth 20.58 19.48 18.04 20.49 20.18 18.67 15.82 16.07 16.52
DS-Spectral 21.26 19.81 18.47 21.73 20.20 18.15 15.66 16.25 16.03
DLfusea 20.51 18.72 18.01 20.89 19.98 19.30 15.35 15.83 16.54
DLfuseb 21.03 18.82 18.11 21.36 20.06 19.08 15.37 15.77 16.73

EC OK 0.89 0.95 0.97 0.93 0.94 0.97 0.95 0.92 0.96
DS 0.92 0.96 0.97 0.96 0.95 0.97 0.96 0.92 0.95
DS-Smooth 0.91 0.96 0.97 0.95 0.96 0.97 0.96 0.92 0.94
DS-Spectral 0.91 0.96 0.97 0.95 0.95 0.97 0.96 0.92 0.94
DLfusea 0.90 0.96 0.97 0.96 0.96 0.97 0.97 0.93 0.94
DLfuseb 0.91 0.96 0.97 0.96 0.95 0.97 0.96 0.93 0.93

Length OK 0.96 1.12 1.16 1.10 1.13 1.13 0.90 0.78 0.87
DS 0.98 1.13 1.18 1.17 1.13 1.12 0.96 0.79 0.84
DS-Smooth 0.88 1.07 1.14 1.06 1.11 1.07 0.91 0.77 0.81
DS-Spectral 0.94 1.11 1.15 1.07 1.11 1.10 0.89 0.76 0.82
DLfusea 0.92 1.11 1.16 1.18 1.14 1.09 0.92 0.81 0.84
DLfuseb 0.95 1.11 1.17 1.17 1.13 1.10 0.95 0.82 0.83

VSS 491 427 363 515 451 387 512 448 384
VSD 39.41 38.24 37.96 53.54 53.65 51.22 39.63 40.80 38.99

aWeights defined by the CDF of the standard normal distribution.
bWeights defined by the spherical spatial correlation function.

smaller PMAE values seven out of nine times each. Each method performs well with respect
to coverage of the CIs with no consistent trend for the average CI lengths. The results suggest
that, in this case, the included lag structure is less helpful in predicting measured concentra-
tions and, as a result, the DLfuse results closely resemble those from DS in many analyses,
with other methods also performing well. Posterior predictive means of the spatially-varying
lag parameters displayed in the second columns of Figure 3 and Figures S2–S3 of the Supple-
mentary Material provide evidence to further support these findings (Warren et al. (2021)).
The negative estimates for the lag parameters indicate that the lag structure is less important
for ozone. Given the chemistry of ozone formation, which tends to occur over larger geo-
graphic areas, compared to that of PM2.5 where levels tend to fall off with distance from the
emitting source, this result is not surprising.

The third columns of Figure 3 and Figures S2–S3 of the Supplementary Material allows
us to better understand the estimated lag structure (Warren et al. (2021)). For both versions of
DLfuse fit to the 192 sample size PM2.5 and ozone datasets, we display the posterior means
of (3.2) across all lags, where each plotted line represents a uniquely observed CMAQ grid
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FIG. 3. Posterior means from the distributed lag data fusion model fit to the 192 sample size, June 3, 2013
dataset for the lag parameters (μ + αBi

) for 24-hour average PM2.5 (first column), daily eight-hour maximum
ozone (second column) and of the weights in (3.2) (third column). The first row uses weights defined by the CDF
of the standard normal distribution while the second row uses weights defined by the spherical spatial correlation
function.

cell. Regardless of which weight definition is used, the PM2.5 results suggest a slow decrease
in the weights as the lag degree increases, further indicating that the average lagged CMAQ
estimates are useful in predicting pollutant concentrations. The ozone results suggest that the
lagged CMAQ estimates are less useful when predicting, as the regression weights decrease
much more quickly. The figure also suggests that there is not a lot of spatial variability in the
lag structure for either pollutant. These features of the lags are generally consistent across
all days of analysis. Overall, the results for both pollutants remain fairly consistent across all
considered sample sizes and days.

4.3. Spatiotemporal downscaler: June–August 2013. Next, we apply the spatiotemporal
version of the newly developed model, hereafter referred to DLfuseST, to three datasets of
different lengths: June 1–June 30, June 1–July 31 and June 1–August 31, 2013. For each
analysis we remove the measured concentrations from the final day and use it as validation
data. For computational purposes we first select 128 AQS monitors that were active at some
point during the study period (separately for each pollutant and dataset) and use these as the
measured concentrations. Therefore, on each day of the study we use measured concentra-
tions from the subset of those 128 selected monitors which were active to fit the model. Using
results from Section 3.2.4, we then predict at all active monitor locations on the final day of
each dataset.

4.3.1. Competing methods. Similar to the spatial data application, we consider a number
of competing spatiotemporal methods. These methods represent special cases of (3.5) and in-
clude spatiotemporal versions of the competing models previously described in Section 4.2.1,
though we do not include the spatiotemporal versions of DS-Smooth and DS-Spectral in the
comparisons. The raw CMAQ procedure has already been described. For the spatiotemporal
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TABLE 2
Results from the eight-hour maximum ozone data analyses in 2013. EC: Empirical coverage; Length: Average

credible interval length; VSS: Sample size of the validation data; VSD: Standard deviation of the validation data.
PMAE and VSD are multiplied by 100 for presentation purposes

June 3 July 3 August 2

Metric Method 64 128 192 64 128 192 64 128 192

WAIC OK −37.72 0.54 −19.65 33.49 −12.86 −14.71 −35.18 56.86 19.18
DS −48.59 −5.53 −31.64 24.80 −39.94 −48.05 −52.64 −31.53 −82.62
DS-Smooth −50.39 −7.30 −32.45 20.19 −39.43 −45.91 −54.30 23.90 −22.04
DS-Spectral −37.37 4.96 −18.06 34.86 −24.68 −32.21 −40.49 48.06 2.67
DLfusea −48.85 −5.18 −32.16 25.06 −40.66 −45.45 −54.19 −32.52 −82.96
DLfuseb −49.01 −5.55 −32.12 24.88 −40.72 −47.51 −53.24 −30.50 −77.48

PMAE CMAQ 22.63 22.17 21.82 27.86 28.22 27.97 20.08 20.13 19.27
OK 14.86 13.29 13.04 16.39 13.44 13.11 15.18 14.50 13.68
DS 11.82 12.35 11.76 14.79 13.16 13.20 11.67 11.96 11.22
DS-Smooth 12.03 12.07 11.76 17.35 13.63 13.39 11.87 12.36 11.18
DS-Spectral 12.27 12.48 11.88 15.11 13.07 13.06 12.72 12.52 11.47
DLfusea 11.74 12.34 11.86 14.82 13.12 13.13 11.32 11.89 11.08
DLfuseb 11.81 12.29 11.80 14.80 13.16 13.15 11.59 11.92 11.08

EC OK 0.91 0.95 0.98 0.98 0.96 0.97 0.94 0.99 0.98
DS 0.95 0.96 0.98 0.98 0.96 0.96 0.95 0.96 0.96
DS-Smooth 0.93 0.98 0.98 0.98 0.96 0.97 0.94 0.98 0.99
DS-Spectral 0.93 0.97 0.98 0.98 0.96 0.97 0.93 0.99 0.98
DLfusea 0.94 0.97 0.98 0.98 0.96 0.97 0.95 0.96 0.96
DLfuseb 0.95 0.96 0.98 0.98 0.96 0.97 0.95 0.96 0.96

Length OK 0.64 0.83 0.82 1.10 0.80 0.83 0.69 1.14 0.96
DS 0.61 0.82 0.80 1.08 0.75 0.78 0.59 0.85 0.78
DS-Smooth 0.60 0.83 0.81 1.12 0.77 0.79 0.60 1.10 0.88
DS-Spectral 0.59 0.84 0.81 1.05 0.75 0.78 0.59 1.03 0.88
DLfusea 0.61 0.83 0.81 1.08 0.76 0.79 0.57 0.85 0.77
DLfuseb 0.60 0.83 0.80 1.08 0.75 0.78 0.58 0.87 0.79

VSS 770 706 642 786 850 914 780 844 908
VSD 28.30 26.82 27.59 42.67 42.53 41.77 24.79 23.13 23.49

aWeights defined by the CDF of the standard normal distribution.
bWeights defined by the spherical spatial correlation function.

version of DS (DS-ST), we now include temporally-varying regression parameters such that
β̃k(sij ), k = 0,1, in (4.2) is replaced by βk +βk(sij )+βkt for DS-ST. The temporally-varying
intercepts and slopes are described in (3.6). Similarly, for the spatiotemporal version of OK
(OK-ST), we include a temporally-varying intercept parameter such that β0 in (4.1) is re-
placed by β0 + β0t and β0t follows a univariate version of the autoregressive model detailed
in (3.6). Each of the prior distributions have been previously described in Sections 3.1.3,
3.2.3 and 4.2.1. We implement a sum-to-zero constraint on the fly for the β0t , β1t and μt

parameters separately and further impose that the μt parameters have unit variance.

4.3.2. Results. All methods were applied to the same datasets (log-transformed mea-
sured concentrations) where we collected 100,000 posterior samples after removing the first
10,000 as a burn-in period. We thinned the samples by a factor of 10, resulting in 10,000 pos-
terior samples used for posterior inference. There were no obvious signs of nonconvergence
based on trace plots and the Geweke diagnostic analysis.

The results shown in Table 3 suggest that one of the versions of DLfuseST always yields
improved predictions and shorter CIs across both pollutants and all temporal periods. Similar
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TABLE 3
Results from the spatiotemporal data analyses in 2013. EC: Empirical coverage; Length: Average credible

interval length; VSS: Sample size of the validation data; VSD: Standard deviation of the validation data. PMAE
and VSD are multiplied by 100 for presentation purposes

June 30 July 31 August 31

Metric Method PM2.5 Ozone PM2.5 Ozone PM2.5 Ozone

PMAE CMAQ 67.24 19.48 41.06 29.20 33.84 25.38
OK-ST 49.02 30.65 51.21 26.62 56.26 18.56
DS-ST 48.66 18.19 28.57 18.58 34.26 13.55
DLfuseSTa 44.99 16.81 25.52 17.98 25.18 12.82
DLfuseSTb 45.04 16.89 25.59 17.99 25.41 12.82

EC OK-ST 0.90 1.00 0.97 0.99 0.93 1.00
DS-ST 0.76 0.89 0.94 0.88 0.94 0.96
DLfuseSTa 0.79 0.91 0.92 0.88 0.94 0.96
DLfuseSTb 0.79 0.91 0.92 0.89 0.94 0.96

Length OK-ST 1.87 2.07 2.13 1.83 2.05 1.62
DS-ST 1.33 0.77 1.41 0.77 1.30 0.77
DLfuseSTa 1.28 0.76 1.32 0.75 1.24 0.75
DLfuseSTb 1.28 0.76 1.32 0.75 1.24 0.75

VSS 529 835 199 841 200 836
VSD 37.75 22.96 48.02 27.95 47.36 22.80

aWeights defined by the CDF of the standard normal distribution.
bWeights defined by the spherical spatial correlation function.

to the spatial results, larger differences between competing methods are often seen for the
PM2.5 applications, indicating that the lagged CMAQ predictors may play a larger role. To
better understand the changes in the lag parameters across time, Figure 4 and Figures S4–
S5 of the Supplementary Material display the posterior means of the temporal components
of the lag structures (μt ) from both versions of DLfuseST, plotted across the days of the
analyses, with more variability (and less smoothness across time) generally seen in the ozone
results and similar behavior observed across both weight definitions (Warren et al. (2021)).

FIG. 4. Posterior means of the time series components of the lags (μt ) from the DLfuse model fit to the June
1–29, 2013, dataset. The first panel uses weights defined by the CDF of the standard normal distribution while
the second panel uses weights defined by the spherical spatial correlation function.



SPATIAL DISTRIBUTED LAG DATA FUSION 339

The higher variability in the temporal component of the lag structure for ozone makes sense
given the higher dependence of ozone formation on temperature.

5. Discussion. We introduced distributed lag data fusion methods for the analysis of
spatial (DLfuse) and spatiotemporal (DLfuseST) ambient air pollution data that resulted in
improved predictive performances over existing state-of-the-art approaches in the majority
of analyses. Importantly, other than DS-Smooth (Berrocal, Gelfand and Holland (2012))
and DS-Spectral (Reich, Chang and Foley (2014)), these existing approaches were shown
to be special cases of the more general method developed here, including the original down-
scaler from Berrocal, Gelfand and Holland (2010a). This indicates that this new methodol-
ogy should be used in most applications, given that it can collapse to resemble the competing
methods when needed. In fact, in the spatial ozone data application we saw evidence of this
behavior, while for PM2.5, use of the lagged CMAQ predictors resulted in improved predic-
tive performance. Additionally, we provided evidence to suggest that WAIC may be a useful
tool in the spatial prediction setting to determine which method will produce more accu-
rate predictions. In addition to WAIC, future users of DLfuse and DLfuseST can analyze the
spatially-varying estimated weights (see Figure 3 and Figures S2–S3 of the Supplementary
Material) to determine if there are locations that are benefiting from the inclusion of lagged
CMAQ information (Warren et al. (2021)). If there are not, however, DLfuse will likely per-
form similarly to DS, given the connection between both methods.

In comparison to DS-Smooth, DLfuse represents a more parsimonious and less compu-
tationally intensive model. While both aim to incorporate CMAQ information from sur-
rounding spatial locations, DS-Smooth introduces a unique parameter for every CMAQ grid
cell in the spatial domain while DLfuse only introduces a parameter for those grid cells
that contain an active AQS monitor. In Figures S6–S7 of the Supplementary Material, we
present trace plots from randomly selected spatial locations of the weighted CMAQ covari-
ate (

∑L
l=0 x̄Bi,l(

πBi ,l∑L
k=0 πBi ,k

)) and the location-specific slope (β̃1(s)) from DLfuse (weights de-

fined by the CDF of the standard normal distribution) applied to the June 3 datasets for
both pollutants. Similar plots corresponding to DLfuseST are shown in Figures S8–S9 of the
Supplementary Material (Warren et al. (2021)). The results suggest that there are no major
identifiability concerns caused by modeling spatial variation in the weights and slopes. This
is likely due to a few factors. First, when there are multiple active AQS monitors located in
the same CMAQ grid cell, this results in replications of the αBi

parameter across multiple
observations. This is because two locations in the same CMAQ grid cell have the exact same
set of weights (πBi,l/

∑L
k=0 πBi,k) (see Table S1 of the Supplementary Material for how of-

ten this happens in our case studies) (Warren et al. (2021)). Second, a single αBi
parameter

is used to define the weighted CMAQ covariate for a selected spatial location. Also, because
each of the weights are bounded between zero and one and sum to one, the slope and weight
parameters are better identified in this setting. DS-Spectral offers great computational im-
provements over DLfuse and DS-Smooth, since it can be fit in the mixed model framework
and it predicts the validation data well with respect to many of the methods. However, it is
consistently outperformed by DLfuse with respect to predictive accuracy in our specific ap-
plications, particularly for the PM2.5 analyses where surrounding auxiliary information may
be more beneficial.

Environmental health disparities are typically conceived as problems of differences in ex-
posure or differences in effect. Another important dimension, however, is differences in ac-
cess to information on those exposures and, therefore, on the expressed toxic effects. Our
method provides improved estimation of pollutant levels across both space and time, includ-
ing for those areas where pollutant levels are sparsely measured, if at all. We focused on the
eastern U.S. to be comparable with past work in this area but note that extensions to include
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the western U.S. will require additional considerations, given the relatively poor spatial cov-
erage of the air pollution monitors as well as differing atmospheric conditions and transport
phenomena.

In addition to being run for retrospective studies, the CMAQ model can also be used for
future time periods under different projections of what future meteorological conditions may
look like. For example, recent climate change studies have used CMAQ output to describe
air pollution levels under different future scenarios (e.g., Nolte et al. (2018)). Therefore, it is
possible that downscaling methods that can predict future values (potentailly on aggregated
time scales) could be useful in this context. Based on our experiences, future studies that plan
to utilize DLfuseST will likely benefit from focusing on a smaller spatial domain and includ-
ing more time periods, a larger spatial domain with fewer time periods or a larger spatial
domain with a fixed set of AQS monitors that does not change over time (as we have done in
our study) and more time periods. Computationally, DLfuseST becomes slower as the num-
ber of unique AQS locations across all time periods of data increases, and we recommend
its use when prediction of future pollution concentrations is of interest. When spatial predic-
tion on a previously observed day is the primary goal of an analysis, we recommend DLfuse
which can be implemented at a reduced computational cost. Users of DLfuseST should also
think carefully about the assumptions being made for the temporal components of the model.
In particular, we opt for a rather simple additive space-time specification for many of the pa-
rameters in order to ease the computational burden associated with modeling potentially large
datasets. While this form does appear to perform well in our specific case studies, particularly
with respect to the raw CMAQ baseline approach, it may be restrictive for applications that
anticipate an interaction between space and time or some other complex relationship between
the two.

The introduced framework can also be extended to include alternative estimates of pollu-
tant concentrations, such as satellite data. In the case of multiple, possibly correlated auxiliary
information, new distributed lag methodology may be needed to account for joint modeling
and interactions. Another future extension of the framework would be to allow the CMAQ
estimates corresponding to a specific lag to be differentially weighted before being averaged
and used as a predictor in the model. Currently for DLfuse, all CMAQ estimates from the
same lag receive the same weight, whereas Berrocal, Gelfand and Holland (2012) overcome
this by allowing for a unique parameter at every CMAQ grid cell. This feature could be im-
portant to consider for pollutants where wind speed and direction could impact measured
concentrations. New methodology may be required to incorporate this into the distributed
lag setting. However, with increased flexibility comes the inclusion of potentially many ad-
ditional parameters; so future work should balance this effort with practical computing con-
siderations. While the focus of this work is on spatial distributed lag models, extensions to
include temporal lagged pollution information may also be useful in producing accurate pre-
dictions of pollution concentrations at new spatial locations and time periods. Including both
spatial and temporal lags (and their possible interaction) would require a careful considera-
tion of correlation patterns across parameters with an emphasis on computational aspects of
the modeling.

In practice, a potential drawback of DLfuse is that it does require the creation of the lagged
covariates not only at the location of the AQS monitors but also at locations where predictions
are to be made. This covariate construction process requires more effort than simply using the
CMAQ estimate from the grid cell containing the AQS monitor, but our results suggest that
this additional effort may be warranted in terms of prediction accuracy. Code to implement
DLfuse and DLfuseST is available at https://github.com/warrenjl/DLfuse and also in Warren
et al. (2021).

https://github.com/warrenjl/DLfuse
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SUPPLEMENTARY MATERIAL

Supplement A: Supplement to “Spatial distributed lag data fusion for estimating am-
bient air pollution” (DOI: 10.1214/20-AOAS1399SUPPA; .pdf). Supplemental tables and
figures.

Supplement B: Supplement to “Spatial distributed lag data fusion for estimating am-
bient air pollution” (DOI: 10.1214/20-AOAS1399SUPPB; .zip). This package implements
a hierarchical Bayesian spatially-varying (and spatiotemporally-varying) distributed lag re-
gression analysis to predict ambient air pollution concentrations at new spatial locations and
times.
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