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Causal analysis of observational studies requires data that comprise a set
of covariates, a treatment assignment indicator and the observed outcomes.
However, data confidentiality restrictions or the nature of data collection
may distribute these variables across two or more datasets. In the absence
of unique identifiers to link records across files, probabilistic record linkage
algorithms can be leveraged to merge the datasets. Current applications of
record linkage are concerned with estimation of associations between vari-
ables that are exclusive to one file and not causal relationships. We propose
a Bayesian framework for record linkage and causal inference where one file
comprises all the covariate and observed outcome information, and the sec-
ond file consists of a list of all individuals who receive the active treatment.
Under certain ignorability assumptions, the procedure properly propagates
the error in the record linkage process, resulting in valid statistical inferences.
To estimate the causal effects, we devise a two-stage procedure. The first
stage of the procedure performs Bayesian record linkage to multiply-impute
the treatment assignment for all individuals in the first file, while adjustments
for covariates’ imbalance and imputation of missing potential outcomes are
performed in the second stage. This procedure is used to evaluate the effect
of Meals on Wheels services on mortality and healthcare utilization among
homebound older adults in Rhode Island. In addition, an interpretable sensi-
tivity analysis is developed to assess potential violations of the ignorability
assumptions.

1. Introduction. Meals on Wheels (MOW) programs are community-based social-
service organizations that provide home-delivered meals to homebound older adults in or-
der to reduce hunger and food insecurity, promote socialization and encourage community
independence. Providing home-delivered meals to these populations is associated with bene-
ficial nutritional outcomes, decreased risk of falls and improved mental health (Thomas and
Mor (2013), Campbell et al. (2015), Thomas, Akobundu and Dosa (2015), Thomas et al.
(2018a, 2018b)). However, healthcare payers, providers and policy makers are also inter-
ested in the effects of community based organizations, like MOW, on premature mortality
and healthcare utilization, such as hospitalizations, emergency department visits and nursing
home placement.

One major challenge to performing such research is that MOW, by the nature of the ser-
vices provided, does not submit medical claims or maintain clients’ health records. Medicare
enrollment records and claims data contain comprehensive information on patients’ demo-
graphics, diagnoses, healthcare utilization and long-term health outcomes but exclude infor-
mation about receipt of social services, such as MOW. In order to estimate the effects of
MOW services on the healthcare utilization of its clients, linkage of Medicare claims data
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to MOW client data is required. However, data confidentiality restrictions prevent unique
identifiers to be available for linking.

Many studies seek to draw causal conclusions about the impact of an intervention.
Randomized experiments are the gold standard for inferring causality; however, they are
sometimes infeasible because of logistical, ethical or financial considerations. In these in-
stances, researchers are limited to use nonrandomized observational studies to estimate
the causal effects. Causal analysis of observational studies requires data that comprise
a set of covariates, a treatment assignment indicator and the observed outcome (Rubin
(1973a, 1973b, 1978, 1979)). In some studies, because of confidentiality restrictions or the
nature of the data collection, the covariates, treatment assignment and outcome information
are distributed across two or more data sources without unique identifiers to link records that
belong to the same entity. One way to overcome this limitation is to incorporate an initial
record linkage step in the design phase of the study.

Record linkage is a set of statistical procedures that identifies individuals or entities that
are shared across datasets (Jaro (1989), Winkler (1993)). Record linkage techniques can be
classified into two broad classes, deterministic and probabilistic. Deterministic record link-
age methods identify records that represent the same entity based on deterministic agreement
functions between data elements common to both records. Probabilistic methods calculate
probabilities or weights that a pair of records represents the same entity. The Fellegi–Sunter
procedure estimates the probabilities of observed agreement patterns of data elements be-
tween a pair of records if these records were true links or false links (Fellegi and Sunter
(1969)). These probabilities are commonly used in an iterative algorithm that classifies the
pair of records with the highest probability as a link and then removes these records from the
pool of possible links. This process continues until a certain threshold is reached (Larsen and
Rubin (2001)). The remaining records are either sent for clerical review or are declared non-
links. Deterministic methods are used widely in practice and are reported to yield a higher
proportion of true links than probabilistic methods (Gomatam et al. (2002), Campbell, Deck
and Krupski (2008)). However, when the data elements are subject to variations in spelling,
data entry inaccuracies or incompleteness, deterministic methods may miss more true links
than probabilistic linking methods (Gomatam et al. (2002), Campbell, Deck and Krupski
(2008)). In applications involving large public health datasets, these missed links may limit
the practicality of deterministic linking methods (Newman et al. (2009)). Probabilistic linkage
methods are less sensitive to errors among the identifying fields, and some of these methods,
such as hit-miss models, can account for measurement error or missingness within records
(Copas and Hilton (1990)).

Both probabilistic and deterministic methods may suffer from incorrectly linked entities.
Neter, Maynes and Ramanathan (1965) noted that, in finite population sampling, a small
amount of incorrectly linked records can lead to biased regression estimates and inflated
variances. Multiple methods have been developed to reduce bias and propagate linkage er-
rors using linear and generalized linear models (Scheuren and Winkler (1993, 1997), Lahiri
and Larsen (2005), Chambers et al. (2009), Hof and Zwinderman (2012)). However, these
methods are model specific and assume that the linkage probabilities are known or estimable.
Furthermore, all of these methods rely on the noninformative linkage assumption, which
states that the outcome of interest is conditionally independent from the linkage process,
given the variables that appear in both files.

Bayesian file linkage procedures are probabilistic record linkage techniques that were pro-
posed as possible solutions to overcome some of these limitations (Fortini, Liseo and Nuc-
citelli (2001), Larsen (2005), Tancredi and Liseo (2011), Gutman, Afendulis and Zaslavsky
(2013), Steorts (2015), Steorts, Hall and Fienberg (2016), Sadinle (2017)). These methods
introduce a latent structure indicating the pairing of records from one file with records from
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another file. By generating multiple samples from the posterior distribution of the latent link-
ing structure, Bayesian record linkage procedures account for the uncertainty in the linkage
process.

The objective of the previously mentioned Bayesian and Frequentist methods is to estimate
marginal and conditional associations and not causal effects. Wortman and Reiter (2018) pro-
posed a method for estimating causal effects using linked observational data sources and de-
scribed the possible effects of errors in linkage when estimating causal effects. The proposed
method incorporates record pair selection strategies that can improve treatment effect estima-
tion when using propensity score subclassification. However, this method does not adjust for
error in the linkage process, is limited to the application of propensity score subclassification
and only applies to settings in which the treatment assignment and covariates are in one file
and the outcomes are in another.

Based on the potential outcome framework originally proposed by Neyman (1923) in
the context of randomization-based inference in randomized experiments and generalized
to other settings in Rubin (1978), we propose a joint Bayesian framework for record linkage
and causal inference, where one file comprises all of the covariates and observed outcome
information and the second file consists of a list of all individuals who receive the active
treatment. To estimate the causal effects, we propose a computationally efficient two-stage
procedure that accounts for the uncertainty in the linkage process and the unobserved poten-
tial outcomes under certain ignorability assumptions. Bayesian record linkage is performed in
the first stage to inform the treatment assignment for all units in the first file. Adjustments for
covariates’ imbalance and imputation of the unobserved potential outcomes are performed in
the second stage. In addition, we develop a procedure to examine the sensitivity of our results
to the ignorability assumptions. We apply this procedure to estimate the effect of MOW ser-
vices on mortality and healthcare utilization among homebound older adults in Rhode Island
and find that MOW receipt does not have a significant effect on 30 day hospitalization rates
or nursing home stays.

2. Framework.

2.1. Notation. The potential outcomes framework posits that, for a population of size
N , where N can be infinite, the effect of a binary treatment W on outcome Y for unit i

(i = 1, . . . ,N ) is the comparison of two “potential” outcomes, Yi(0) and Yi(1), which cor-
respond to the two possible levels of W : Wi = 1 indicates the receipt of the active level of
the treatment, and Wi = 0 indicates the receipt of the control level. We assume the stable unit
treatment value assumption (SUTVA) (Rubin (1980, 1990)) so that this notation is function-
ally well defined. For each unit i, there is also a vector of P covariates that are unaffected by
Wi , Xi = (Xi1, . . . ,XiP ).

We assume that the observed data is distributed across two files, A and B, which comprise
nA and nB records, respectively. The P covariates are partitioned into P1 covariates that
only appear in file A, XA = (X1, . . . ,XP1), P2 covariates that only appear in file B, XB =
(XP1+1, . . . ,XP1+P2) and P3 covariates that appear in both files and can be used as semi-
identifying information ZA = ZB = (XP1+P2+1, . . . ,XP ), where P1 + P2 + P3 = P . Record
l ∈ {1, . . . , nA} in file A comprise XAl , ZAl and the observed outcome Y obs

l . Record j ∈
{1, . . . , nB} in file B comprise XBj and ZBj . We further assume that file B represents a list
of records that all receive the active treatment, such that Wj = 1, ∀j = 1 . . . , nB , and that all
records receiving the active treatment in file A also appear in file B, or {l ∈ A : Wl = 1} ∈ B.

We introduce a latent structure C = (C1, . . . ,CnA
), which represents the link designations

in file B for each record in file A,

(1) Cl =
{
j if record l ∈ A is linked with record j ∈ B;
0 if record l ∈ A is not linked with any record from file B.
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An immediate consequence of this definition is that all records in A with Cl > 0 receive
the active treatment (Wl = 1), and the remaining records with Cl = 0 receive the control
treatment (Wl = 0). The observed potential outcomes are defined as Yobs = {Y obs

l }, where
Y obs

l = 1(Cl > 0)Yl(1) + 1(Cl = 0)Yl(0). Note that the information in XB for the units with
Cl = 0 is missing. We define XB = (Xobs

B ,Xmis
B ), where Xobs

B represents the observed infor-
mation for records in A with Cl > 0 and the records in B with j /∈ C that do not link with any
record in A, and Xmis

B represents the unobserved information for records in A with Cl = 0
that do not link with any record in B.

To summarize, XA, ZA and Yobs are observed in A, and XB , ZB and W are observed
in B. The additional unobserved variables are C and Ymis = {Y mis

l }, where Y mis
l = 1(Cl =

0)Yl(1) + 1(Cl > 0)Yl(0). The joint distribution of the observed and unobserved data across
both files is

(2)

f
(
XA,XB,ZA,ZB,Y(0),Y(1),C,W

)
= f (XA,XB,ZA,ZB)f

(
Y(0),Y(1)|XA,XB,ZA,ZB

)
× f

(
C|XA,XB,ZA,ZB,Y(0),Y(1)

)
f

(
W|XA,XB,ZA,ZB,Y(0),Y(1),C

)
.

2.2. Causal estimand. Causal treatment effects are commonly summarized by esti-
mands, τ = τ(Y(0),Y(1),W) = τ(Yobs,Ymis,W), which are functions of the unit level po-
tential outcomes of all units on a common subset of N units (Rubin (1978)). A Bayesian
inference for the effects of an exposure using linked data source considers the observed val-
ues XA, Xobs

B , ZB , ZA and Yobs as a realization of random variables and Xmis
B , Ymis, C and

W to be unobserved random variables. This perspective explicitly confronts the observed and
missing random variables by conditioning on the observed variables in A and sampling from
the posterior distribution of τ ,

(3)

f
(
τ |XA,Xobs

B ,ZA,ZB,Yobs)
=

∫
f

(
τ |XA,XB,ZA,ZB,Yobs,Ymis,C,W

)
× f

(
Xmis

B ,Ymis,C,W|XA,Xobs
B ,ZA,ZB,Yobs)d

(
Xmis

B ,Ymis,C,W
)
.

Equation (3) shows that obtaining the posterior distribution of τ involves integrating over

(4)

f
(
Xmis

B ,Ymis,C,W|XA,Xobs
B ,ZA,ZB

)
= f (XA,XB,ZA,ZB,Y(0),Y(1),C,W)∫

f (XA,XB,ZA,ZB,Y(0),Y(1),C,W) d(Xmis
B ,Ymis,C,W)

.

2.3. Simplifying assumptions. To perform the integration in equation (3), we make the
following simplifying assumptions. Some of these assumptions are made explicitly in many
applications and some are made implicitly.

ASSUMPTION 1. The covariates that are unique to file B are independent from the po-
tential outcomes given XA and ZA. Formally,

(5) f
(
Y(0),Y(1),XB,ZB |XA,ZA

) = f
(
Y(0),Y(1)|XA,ZA

)
f (XB,ZB |XA,ZA).

This assumption implies that only the covariates in A are required to predict the potential
outcomes and that XB and ZB may only be informative for the linkage process. This assump-
tion is valid in our application, because ZB represents the same covariates as ZA, and XB is
only composed of administrative variables that are not influencing the health outcomes given
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the clinical and demographic covariates defined in XA. It is possible to incorporate additional
covariate information in XB by using values of Xobs

B for linked records in A with Cl > 0 and
imputing Xmis

B for records with Cl = 0.

ASSUMPTION 2. The treatment assignment mechanism is a deterministic function of the
linkage structure.

Because file B comprises all units that received the active treatment, the treatment as-
signment for units l ∈ A can be derived as a deterministic function of their linkage status,
Wl = g(Cl), where

(6) Wl =
{

1 if Cl > 0;
0 if Cl = 0.

This implies that f (W|XA,XB,ZA,ZB,Y(0),Y(1),C) is a degenerate distribution that is
completely defined by C and that τ = τ(Y(0),Y(1),W) = τ(Yobs,Ymis,C).

ASSUMPTION 3. The linkage is strongly noninformative.

This assumption states that C is conditionally independent from the potential outcomes
and any unobserved data components. Formally,

(7) f
(
C|XA,XB,ZA,ZB,Y(0),Y(1)

) = f
(
C|XA,Xobs

B ,ZA,ZB

)
.

This is a modified version of the noninformative linkage assumption commonly made when
estimating noncausal associations using linked data. The implicit noninformative linkage as-
sumption in the Fellegi–Sunter record linkage model implies that the linkage structure is
conditionally independent from Yobs, XA and XB , given ZA and ZB (Harron, Goldstein and
Dibben (2015)). Equation (7) also implies that the treatment assignment is unconfounded
(Rubin (1990)).

By combining Assumptions 1–3, equation (2) can be expressed as

(8)
f

(
XA,XB,ZA,ZB,Y(0),Y(1),C,W

)
= f (XA,XB,ZA,ZB)f

(
Y(0),Y(1)|XA,ZA

)
f

(
C|XA,Xobs

B ,ZA,ZB

)
.

These assumptions simplify equation (3) to

(9)
f

(
τ |XA,Xobs

B ,ZA,ZB,Yobs)
=

∫
f

(
τ |Yobs,Ymis,C

)
f

(
Ymis,C|XA,Xobs

B ,ZA,ZB,Yobs)d
(
Ymis,C

)
.

2.4. Parametric models. Given the linkage structure C, we can assume the distributions
of XAl , XBl , ZAl , ZBl , Yl(0) and Yl(1) are row exchangeable. Using de-Finetti’s theorem,
equation (8) can be written as a product of independent random variables, given the param-
eters � = (θX, θY ·X, θC), where θX = (θXA, θXB, θZA, θZB), θY ·X = (θY1·X, θY0·X) and
θC = (θCM, θCU). When the parameters θX , θY ·X , and θC are a priori independent with
prior distribution p(�) = p(θX)p(θY ·X)p(θC), equation (8), for linked and unlinked data,
can be expressed as

f
(
XA,XB,ZA,ZB,Y(0),Y(1),C,W

)
=

∫ [ ∏
l:Cl>0

f
(
XAl,Xobs

Bl ,ZAl,ZBl|θX

)
f

(
Yl(0), Yl(1)|XAl,ZAl, θY ·X

)]
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×
[ ∏
l:Cl=0

f
(
XAl,Xmis

Bl ,ZAl,ZBl|θX

)
f

(
Yl(0), Yl(1)|XAl,ZAl, θY ·X

)]
(10)

×
[ ∏
j :j /∈C

f
(
Xobs

Bj ,ZBj |θXB, θZB

)]

× f
(
C, θC |XA,Xobs

B ,ZA,ZB

)
p(θX, θY ·X)d�.

The information in the second line in equation (10) represents the data components for linked
records in A, the third line reflects the information for unlinked records in A and the last prod-
uct represents the unlinked records in B. The integrals over θX pass through the distributions
for Yl(0), Yl(1) and C such that the marginal distribution f (XA,XB,ZA,ZB) is irrelevant
for θY ·X and θC .

We will make the assumption of no contamination of imputation across treatments (Rubin
(2008)).

ASSUMPTION 4. The conditional distribution of potential outcomes for the exposed and
unexposed units are independent, given baseline covariates, and the parameters governing
their distributions are a priori independent:

(11)
f

(
Yl(0), Yl(1)|XAl,ZAl, θY ·X

) = f
(
Yl(0)|XAl,ZAl, θY0·X

)
f

(
Yl(1)|XAl,ZAl, θY1·X

)
,

p(θY ·X) = p(θY0·X)p(θY1·X).

Based on this assumption, the conditional distribution for the potential outcomes is

f
(
Y(0),Y(1)|XA,ZA

)

=
∫ nA∏

l=1

f
(
Yl(0), Yl(1)|XAl,ZAl, θY ·X

)
p(θY ·X)dθY ·X

(12a)

=
∫ ∏

l:Cl>0

f
(
Yl(0)|XAl,ZAl, θY0·X

)

× ∏
l:Cl=0

f
(
Yl(0)|XAl,ZAl, θY0·X

)
p(θY0·X)dθY0·X

(12b)

×
∫ ∏

l:Cl=0

f
(
Yl(1)|XAl,ZAl, θY1·X

)

× ∏
l:Cl>0

f
(
Yl(1)|XAl,ZAl, θY1·X

)
p(θY1·X)dθY1·X

(12c)

∝
∫

f
(
Y(0)mis|XA,ZA, θY0·X

)
p

(
θY0·X|XA,ZA,Y(0)obs)dθY0·X(12d)

×
∫

f
(
Y(1)mis|XA,ZA, θY1·X

)
f

(
θY1·X|XA,ZA,Y(1)obs)dθY1·X.(12e)

The first factor in equation (12d) and the first factor in equation (12e) are the posterior pre-
dictive distributions of the unobserved potential outcomes and the remaining terms in each
line are the posterior distributions of θY0·X and θY1·X , respectively.
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By combining equation (9) with equations (10–12), the causal estimand is

(13)

f
(
τ |XA,Xobs

B ,ZA,ZB,Yobs)
=

∫
f

(
τ |Yobs,Ymis,C

)
f

(
Y(0)mis|XA,ZA, θY0·X

)
p

(
θY0·X|XA,ZA,Y(0)obs)

× f
(
Y(1)mis|XA,ZA, θY1·X

)
p

(
θY1·X|XA,ZA,Y(1)obs)

× f
(
C, θC |XA,Xobs

B ,ZA,ZB

)
d
(
θC,C, θY0·X, θY1·X,Y(0)mis,Y(1)mis).

2.5. Record linkage models. To model f (C, θC |XA,Xobs
B ,ZA,ZB), we will rely on the

record linkage framework initially proposed by Fellegi and Sunter (1969). This framework
considers the set of all possible nA × nB pairs of records from A and B as the union of two
disjoint sets of links M = {(l, j) : l ∈ A, j ∈ B,Cl = j} and non-links U = {(l, j) : l ∈ A, j ∈
B,Cl �= j}. Without a loss of generality, assume nA ≥ nB . To ensure that each record in file A
is linked to, at most, one record in file B and vice versa, we introduce the following constraint
on C:

∑nA

l=1 1{Cl = j} ≤ 1, ∀j = 1, . . . , nB (Larsen (2005), Sadinle (2017)).
For records l ∈ A and j ∈ B, let �(ZAl,ZBj ) = (γlj1, . . . , γljP3) be an agreement vec-

tor for the k = 1, . . . ,P3 identifying variables that exist in both files. The agreement of
field k between two values can be evaluated on an ordinal scale with rk = 1, . . . ,Rk levels,
where 1 represents complete disagreement and Rk represents complete agreement (Winkler
(1990), Sadinle (2017)). Let θCM = {θCMk} and θCU = {θCUk} represent the parameters
governing the distributions of the comparison functions for record pairs in M and U, respec-
tively, such that θCMk = {θCMkr}, where θCMkr = Pr(γljk = r|Cl = j) for k = 1, . . . ,P3 and
r = 1, . . . ,Rk and, similarly, θCUk = {θCUkr} and θCUkr = Pr(γljk = r|Cl �= j).

Mixture models have been proposed to estimate θCM , θCU and C based on �(ZAl,ZBj )

(Jaro (1989), Larsen and Rubin (2001)),

(14)

�(ZAl,ZBj )|Cl = j ∼ f
(
�(ZAl,ZBj )|θCM

)
,

�(ZAl,ZBj )|Cl �= j ∼ f
(
�(ZAl,ZBj )|θCU

)
,

C ∼ p(C, nm),

where nm = ∑nA

l=1
∑nB

j=1 1(Cl = j) represents the number of true links.
Let π represent the expected proportion of records that represent the same entities in both

files, such that nm ∼ Binomial(nB,π) and π ∼ Beta(απ ,βπ) a priori. Sadinle (2017) pro-
poses a Beta-Binomial prior for C and nm that marginalizes over π ,

(15) p(C, nm|απ,βπ) = (nA − nm)!
nA!

�(απ + βπ)

�(απ)�(βπ)

�(nm + απ)�(nB − nm + βπ)

�(nm + απ)
.

A simplifying assumption that is frequently made in the Fellegi and Sunter record link-
age model is that each of the comparison functions are conditionally independent given C
(Winkler (1988), Jaro (1989)). Under this assumption, the likelihood for C, θCM , and θCU is

(16) L(C, θCM, θCU |ZA,ZB) =
nA∏
l=1

nB∏
j=1

K∏
k=1

Rk∏
rk=1

[
θ
1(γljk=r)

CMkr

]1(Cl=j)[
θ
1(γljk �=r)

CUkr

]1(Cl �=j)
.

Independent conjugate priors θCMk ∼ Dirichlet(αMk1, . . . , αMkRk
) and θCUk ∼

Dirichlet(αUk1, . . . , αUkRk
) for k = 1, . . . ,K can be specified to complete the Bayesian

model.
To sample from f (C, θC |ZA,ZB) ∝ p(C)p(θC)L(C, θC |Z), we will use the data aug-

mentation algorithm (Tanner and Wong (1987)). The I-Step involves drawing C[t+1] from
f (C|ZA,ZB, θ

[t]
C ) and the P-step will update values of θ

[t+1]
C from f (θC |ZA,ZB,C[t+1])

(see Appendix A for a detailed description).
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2.6. Causal treatment effect estimation. The record linkage facilitates the identification
of the exposed and unexposed units, but it does not guarantee that units are similar across
treatment groups. When the distribution of covariates between the treatment and control
groups are different, simple comparison of the two groups may result in biased estimates
of the treatment effect (Rubin (1973a, 1973b)). Several types of procedures have been pro-
posed to address this issue when the treatment effect is unconfounded (Imbens and Rubin
(2015), Gutman and Rubin (2017)).

Matching is a design phase causal estimation technique that reduces bias by identify-
ing units with similar covariate values between the two treatment groups (Stuart (2010)).
With a single covariate it is often easy to identify a match. This task is more complicated
with multiple covariates (Stuart (2010)). Matching on the propensity score (Rosenbaum and
Rubin (1983)), which is the probability of Wl = 1 given the covariates, was proposed as
a possible solution. Formally, the propensity score for unit l is defined as e(XAl,ZAl) ≡
f (Wl|XAl,ZAl,φ), where φ are the parameters governing this distribution. Point estimates
of τ , using matching, have been shown to be consistent but may underestimate its sampling
variance when ignoring the variability in the matching procedure (Abadie and Imbens (2011),
Gutman and Rubin (2017)). In addition, because matching on e(XAl,ZAl) is not exact, some
covariates may still suffer from minor imbalances, which is often addressed using regression
adjustments (Imbens and Rubin (2015)).

A different approach to estimate τ is to combine matching with a Bayesian imputation
framework (Rubin (2008), Gutman and Rubin (2013, 2015)). This combination reduces the
bias resulting from minor covariate imbalances and increases precision by using modeling
to impute Ymis. Under the Bayesian causal inference framework, the missing potential out-
comes are taken to be unobserved random variables that can be sampled from their posterior
predictive distribution. Because sampling from a posterior distribution is complex, we use
a multiple imputation procedure as an approximation of the posterior distribution of Ymis

(Gutman and Rubin (2013, 2015)).

2.7. Two-stage multiple imputation estimation procedure. Equation (13) suggests a two-
step estimation procedure. In the first step the record linkage structure is sampled. Using this
linkage structure, the potential outcomes are imputed in the second step.

We now explicate and summarize this two-stage multiple imputation approach (Shen
(2000), Rubin (2003)) to estimate τ :

1. Sample C(m) from f (C, θC |XA,Xobs
B ,ZA,ZB) for m = 1, . . . ,M random draws (Ap-

pendix A).
2. For C(m),m = 1, . . . ,M :

(a) Perform nearest neighbor matching using the estimated the propensity score
ê(XA,ZA)(m) to obtain a sample of exposed and unexposed units with similar covariate
distributions. Let G(m) = 1 represent the units in this matched sample.

(b) For the units with G(m)
l = 1, partition Y(0) and Y(1) into Yobs(m) and Ymis(m).

(c) Sample θ
(m,q)
Y0·X , q = 1, . . . ,Q, from p(θY0·X|XA,ZA,Y(0)obs(m),G(m) = 1) and

θ
(m,q)
Y1·X , from p(θY1·X|XA,ZA,Y(1)obs(m),G(m) = 1).

(d) For each q = 1, . . . ,Q, use θ
(m,q)
Y0·X and θ

(m,q)
Y1·X to independently impute the miss-

ing potential outcomes for each unit in G(m) = 1 from the posterior predictive distri-
butions f (Y(0)mis|XA,ZA,G(m) = 1, θ

(m,q)
Y0·X ) and f (Y(1)mis|XA,ZA,G(m) = 1, θ

(m,q)
Y1·X ).

This will result in Q datasets with imputed Y(0)mis and Y(1)mis for the matched units.

3. For each of the M × Q imputations, estimate the treatment effect τ̂ (m,q) and the within
imputation sampling variance, U(m,q).
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FIG. 1. Two-Stage Multiple Imputation Procedure.

4. The point estimate of the treatment effect τ is calculated as τ̂ = 1
MQ

∑M
m=1

∑Q
q=1 τ̂ (m,q).

The total variance can be derived, according to Shen (2000), as T = Û + (1 + M−1)B +
(1−Q−1)W , where Û = 1

MQ

∑M
m=1

∑Q
q=1 U(m,q), B = 1

M−1
∑M

m=1(τ̄
(m.) − τ̂ )2 and W =

1
M

∑M
m=1

1
Q−1

∑Q
q=1(τ̂

(m,q) − τ̄ (m.))2. Inference for τ̂ is based on a t-distribution (τ −
τ̂ )/

√
T ∼ tν with ν−1 = 1

M−1(
(1+1/M)B

T
)2 + 1

M(Q−1)
(
(1−1/Q)W

T
)2.

An illustration of this two-stage multiple imputation procedure is presented in Figure 1.

3. Application to meals on wheels data. We applied the proposed procedure to estimate
the effects of Meals on Wheels (MOW) programs on mortality and healthcare utilization
among Medicare beneficiaries. We compared the difference in mortality rate after 30 days
of initiating meal delivery service and the difference in the frequency of acute inpatient,
emergency department (ED) and nursing home (NH) events between MOW recipients and
nonrecipients who were alive after 30 days of enrollment in both the observed treatment
and predicted control arms. Because we do not expect MOW receipt to influence mortality,
identification of such an effect may indicate potential violations of the unconfoundedness
assumption.

3.1. Data description. A comprehensive list of all clients who received home-delivered
meals between January 1, 2010 and December 31, 2013 was submitted by Meals on Wheels
Rhode Island (MOWRI), which serves the entire State of Rhode Island. This list contained
information on each client’s sex, date of birth, start and end date of service and the nine-digit
ZIP code corresponding to the address where their meal was delivered. While MOW serves
clients of a variety of ages, we restricted the analysis only to individuals older than 65 at
enrollment in MOW, because only those individuals are expected to be enrolled in Medicare.
This resulted in a total of nB = 3916 MOW recipients.

The Medicare Master Beneficiary Summary File (MBSF) is a comprehensive database that
contains demographic information on all Medicare enrollees including gender, date of birth,
date of death and the nine-digit ZIP code corresponding to their mailing address. In addition,
the MBSF identifies preexisting chronic medical conditions including congestive heart fail-
ure, kidney failure, diabetes, pelvic fracture, stroke, dementia or Alzheimer’s disease, chronic
obstructive pulmonary disease, coronary artery disease and various types of cancer. Using
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unique identifiers, the MBSF is linked to Medicare inpatient, outpatient, skilled nursing fa-
cility and home health claims as well as the nursing home Minimum Data Set (MDS) between
calendar years 2009 and 2014. These claims and assessment data were used to calculate the
frequency and cost of inpatient events, emergency department visits, nursing home stays and
home health utilization in the 30, 90 and 180 days prior to enrollment in MOW as well as the
frequency of acute inpatient, ED and NH events 30 days following MOW enrollment. A total
of nA = 179,269 Medicare beneficiaries over the age of 65 resided in the five-digit ZIP codes
serviced by MOWRI.

3.2. Record linkage of MOW and Medicare data. Comparison of all possible record
pairs, where one record appears in the MOW file and another record in the Medicare file
would result in over 700 million possible record pairs. “Blocking” is a common record link-
age to reduce the computational complexity by only considering record pairs that agree on
specific blocking fields (Newcombe et al. (1959), Newcombe (1988)). We generated blocks
based on five-digit ZIP codes and gender (Herzog, Scheuren and Winkler (2007)). We as-
sumed that θCM and θCU do not differ across blocks, and we restricted record pairs such
that the MOW enrollment date precedes the date of death in the Medicare file. These criteria
reduced the total number of possible record pairs to 13,786,172. A sensitivity analysis of our
results to this blocking criteria is provided in Appendix D.

A recipient’s date of birth (DOB) and nine-digit ZIP code were used as linking variables
to classify record pairs into links and non-links. Ordinal agreement patterns were used for
both linking variables, whose levels of agreement are described in Table 1. In addition, we
modeled the interaction between agreement on DOB and ZIP code (Winkler (1989)). The
resulting record linkage likelihood is

(17)

L
(
C, θCM, θCU |�(ZA,ZB)

)

=
nA∏
l=1

nB∏
j=1

4∏
rD=1

5∏
rZ=1

[
θ
1(γljD=rD)

CMDrD
θ
1(γljZ=rZ,γljD=rD)

CMZrZ |rD
]1(Cl=j)1(Blj=1)

× [
θ
1(γljD=rD)

CUDrD
θ
1(γljZ=rZ,γljD=rD)

CUZrZ |rD
]1(Cl �=j)1(Blj=1)

,

where Blj is an indicator that record pair (l, j) was successfully blocked and met the MOW
enrollment date constraint, and θCM = {θCMD, θCMZ} and θCU = {θCUD, θCUZ} are the
parameters governing the distribution of agreement functions, such that θCMD = {θCMDrD },
θCMZ = {θCMZrZ |rD }, θCUD = {θCUDrD }, θCUZ = {θCUZrZ |rD }. Each θCMDrD = Pr(γljD =
rD|Cl = j,Blj = 1), θCMZrZ |rD = Pr(γljZ = rZ|γljD = rD,Cl = j,Blj = 1), θCUDrD =

TABLE 1
Linking variable description and agreement level

Agreement type Level

Disagreement on DOB rD = 1
Agree on DOB Year only rD = 2
Agree on DOB Year and Month only rD = 3
Agree on DOB Year, Month, and Day rD = 4
Agree on first 5 digits of ZIP code only rZ = 1
Agree on first 6 digits of ZIP code only rZ = 2
Agree on first 7 digits of ZIP code only rZ = 3
Agree on first 8 digits of ZIP code only rZ = 4
Agree on all 9 digits of ZIP code rZ = 5
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Pr(γljD = rD|Cl �= j,Blj = 1) and θCUZrZ |rD = Pr(γljZ = rZ|γljD = rD,Cl �= j,Blj = 1)

for rD = 1, . . . ,4 and rZ = 1, . . . ,5. A total of M = 100 different linkage structures were
imputed from the linkage algorithm.

3.3. Propensity score matching. Each of the m = 1, . . . ,M linked datasets identifies
Medicare beneficiaries who received MOW and those who did not. Prior research suggested
that MOW programs target older adults who have higher social and economic needs and are
at higher risk for institutional care (Lloyd and Wellman (2015), Lee, Shannon and Brown
(2015)). Thus, enrollment in MOW programs may be confounded with preexisting health
conditions or prior healthcare utilization. To reduce covariates’ imbalances, matching on the
estimated propensity score was performed.

Prior to matching, all linked individuals who were enrolled in a Medicare Advantage (MA)
program in the six months prior to receiving MOW or were enrolled in MA during the month
they began MOW were removed. This truncation was implemented because MA plans are not
required to submit claims, and it was not possible to fully observe the prior history of chronic
conditions or healthcare utilization for these individuals. A start date for individuals who are
not enrolled in MOW programs is not available. Instead, for individuals who were not linked
to MOW records, we calculated the medical history and prior healthcare utilization at the start
of each quarter for every year in our study period. This resulted in 16 sets of pretreatment
covariates calculated at different potential enrollment dates for each unlinked individual.

Matching was implemented by enforcing exact agreement on patients’ gender, race, age
categories and whether the patients had any inpatient, ER or SNF claim in the 90 days
prior to enrollment. The remaining covariates were balanced using propensity score mod-
els that included preexisting medical conditions, prior healthcare utilization frequency and
prior healthcare costs. We selected nearest pair matches without replacement based on the
propensity score within each quarter (Stuart (2010)). This process was replicated on each of
the M = 100 linked datasets to identify beneficiaries that resemble MOW recipients but did
not enroll in the program.

3.4. Imputation of unobserved outcomes. To assess the impact of MOW on mortality,
we examine the average treatment effect on the treated (ATT) among linked MOW clients
who are matched to a control individual. Let Dl(1) and Dl(0) represent the potential 30-
day mortality for individual l had they received meals or not, respectively. The estimand
of interest is τATT = E(D(1) − D(0)|W = 1,G = 1), which can be estimated within each
imputation as

(18) τ̂
(m,q)
ATT = 1

n
(m)
G

∑
l:C(m)

l >0,G
(m)
l =1

(
Dl(1)(m) − Dl(0)(m,q)),

where n
(m)
G represents the number of linked MOW clients matched with a control. To pre-

dict the unobserved 30-day mortality for MOW clients had they not received meals, we
used a Bayesian logistic regression model that included the covariates used in matching,
XAl1, . . . ,XAlP 1, and all of their two-way interactions,

(19) logit
(
P

(
Dl(0) = 1

)) = β0 +
P1∑

p=1

βpXAlp +
P1∑

p=1

p−1∑
s=1

δpsXAlpXAls.

A one-level hierarchical normal-gamma shrinkage prior (Griffin and Brown (2017)) was
constructed for the coefficients of the main effect and interaction terms such that βp

i.i.d.∼
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N(0,�1), �1 ∼ Gamma(1,1), δps
i.i.d.∼ N(0,�2), and �2 ∼ Gamma(1,2). These prior

distributions attenuate interaction terms more aggressively. We also assumed that β0 ∼
N(0,10,000).

To examine the impact of MOW on healthcare utilization, we estimate the survivor av-
erage treatment effect on the treated (SATT), which compares the effect of MOW receipt
among MOWRI clients who would be alive 30 days after their enrollment date, irrespective
of whether they received services from MOW or not (Frangakis and Rubin (2002), Rubin
(2006), Frangakis et al. (2007)). The SATT is defined as τSATT = E(H(1) − H(0)|W =
1,D(0) = D(1) = 0,G = 1), where H(1) and H(0) denote the potential utilization fre-
quency among MOW clients and controls, respectively. The SATT is estimated within each
imputation as

(20) τ̂
(m,q)
SATT = 1

n
(m,q)
S

∑
l:C(m)

l >0,G
(m)
l =1,

Dl(1)(m)=Dl(0)(m,q)=0

(
Hl(1)(m) − Hl(0)(m,q)),

where n
(m,q)
S is the number of linked individuals who were matched to a control and are

alive after 30 days following enrollment, according to their observed and predicted mortality
status.

Bayesian zero-inflated negative binomial models were fitted to impute the frequency of
inpatient admissions, emergency department visits and nursing home stays among MOW
clients had they not received meals within each imputed linkage structure. The zero-inflated
negative binomial distribution for count response Hl(0) is given by

(21)

P
(
Hl(0) = h

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

πl + (1 − πl)

(
α

μl + α

)α

, Hl(0) = 0,

(1 − πl)
�(Hl(0) + α)

�(Hl(0) + 1)�(α)

(
μl

μl + α

)Hl(0)( τ

μl + α

)α

, Hl(0) > 0,

where α represents the shape parameter

(22) log(μl) = ζ0 +
P1∑

p=1

ζpXAlp +
P1∑

p=1

p−1∑
s=1

ηpsXAlpXAls

and

(23) logit(πl) = ψ0 +
P1∑

p=1

ψpXAlp +
P1∑

p=1

p−1∑
s=1

ξpsXAlpXAls.

The negative binomial component is modeled in equation (22) and equation (23) models
the zero inflation. To complete the Bayesian model, we assumed that ζp

i.i.d.∼ N(0,�3),

�3 ∼ Gamma(1,1), ηps
i.i.d.∼ N(0,�4), �4 ∼ Gamma(1,2), ψp

i.i.d.∼ N(0,�5), �5 ∼
Gamma(1,1), ξps

i.i.d.∼ N(0,�6) and �6 ∼ Gamma(1,2). Lastly, τ ∼ U(0,1000), ζ0 ∼
N(0,10,000) and ψ0 ∼ N(0,10,000). All models were fit using Rstan version 2.17.2 (Stan
Development Team (2018)). All outcomes were imputed for 100 datasets within each of the
100 linked datasets, resulting in M × Q = 10,000 complete datasets.
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4. Results. Of the nB = 3916 MOW clients eligible for linkage to Medicare data, an
average of n̄m = 3608.02 records (95% CI: 3570.91, 3645.14) were linked over M = 100
imputations. Among the Medicare beneficiaries who were linked to MOW clients, an average
of 1748.35 (95% CI: 1735.28, 1761.44) individuals had at least one month of MA coverage
in the six months prior to enrollment and were excluded from our analysis. Of the remaining
linked individuals, an average of 1859.67 (95% CI: 1835.63, 1883.70) treated units were
matched to a control unit that did not receive meals.

Figure 2 displays the median and range of absolute standardized differences for each of the
pretreatment variables between the MOW and control samples before and after matching for
the M = 100 linked datasets. The absolute standardized difference exceeded 0.25 in 22 out of
the 40 covariates prior to matching. After matching, all absolute standardized differences are
less than 0.25 for all covariates which suggests that the covariates are adequately balanced
(Rosenbaum and Rubin (1985, 2015)).

The observed and imputed potential outcomes for MOW clients and the estimated treat-
ment effects are provided in Table 2. The estimated ATT on mortality using our two-stage
multiple imputation procedure is 0.008 (95% CI: −0.067, 0.083). This indicates that there
is no significant difference between the observed and predicted mortality rate among the
linked and matched MOW clients. An average of 51.21 individuals died within 30 days of
their MOW enrollment or were predicted to die within 30 days without MOW services. This
results in an average of 1808.46 individuals who are alive whether they received MOW or
not across imputations. Among these individuals the estimated SATTs are 0.010 (95% CI:
−0.174, 0.194) on acute inpatient admissions, −0.013 (95% CI: −0.236, 0.209) on ED visits,
and 0.003 (95% CI: −0.268, 0.274) for NH stays. This suggests that among MOW recipients,

FIG. 2. Covariate balance before and after propensity score matching for M = 100 linked datasets. The points
represent the median absolute standardized differences, while the horizontal lines represent the range between the
minimum and maximum absolute standardized difference for each covariate.
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TABLE 2
Estimated causal treatment effects on MOW recipients

30 day outcome n̄G D̄(1) D̄(0) τ̂ATT 95% CI

Mortality 1859.67 0.023 (0.001) 0.015(0.004) 0.008 (−0.067,0.083)

30 day outcome n̄S H̄(1) H̄(0) τ̂SATT 95% CI

Acute Inpatient 1808.46 0.085 (0.002) 0.075 (0.010) 0.010 (−0.174,0.194)

Emergency Care 1808.46 0.073 (0.002) 0.088 (0.012) −0.013 (−0.236,0.209)

Nursing Home 1808.46 0.078 (0.003) 0.075 (0.015) 0.003 (−0.268,0.274)

n̄G is the average sample size of MOW individuals linked and matched to a control individual across M = 100
imputations. n̄S is the average number of linked and matched MOW individuals who are observed and predicted
to be alive irrespective of their treatment, across M × Q = 10,000 imputations. D̄(1) and D̄(0) represent the
mortality rates for linked and matched MOW individuals if they received MOW or not, respectively. H̄(1) and
H̄(0) are the estimated healthcare utilization rates for linked and matched individuals who are alive for 30 days
irrespective of whether they received MOW or not, respectively. τ̂ATT is the estimated average treatment effect on
the treated and τ̂SATT is the survivor average treatment effect on the treated.

who would be alive 30 days after enrollment irrespective of whether they received MOW or
not, no significant differences in the number of acute inpatient admissions, ED visits or NH
stays are detected.

5. Sensitivity analysis.

5.1. Sensitivity of the strongly noninformative linkage assumption. We examine the sen-
sitivity of our results to the strongly noninformative linkage assumption (Assumption 3).
Under Assumption 3, errors in the linkage only depend on comparisons of semi-identifying
information that exists in both files. Thus, the probability of record l ∈ A forming a link with
record j ∈ B given C(−l) = {Cl′ : l′ �= l} is (see Appendix B for additional details)

(24) P
(
Cl = j |�(ZAl,ZBj ), θCM, θCU,C(−l)

) ∝ f (�(ZAl,ZBj )|θCM)

f (�(ZAl,ZBj )|θCU)
1(j /∈ C(−l)).

To examine the impact of potential violations of the strongly noninformative linkage as-
sumption on the estimation of the treatment effect, we assume that the errors in the linkage
model depend on 30-day mortality status. Let Dobs

lj be an indicator that is equal to 1 if indi-
vidual l ∈ A died within 30 days of the start date indicated by record j ∈ B. Let λM and λU

represent parameters governing the distribution of Dobs
lj for links and non-links, respectively.

We assume that the distribution of Dobs
lj is

f
(
Dobs

lj |Cl,λM,λU

) =
⎧⎪⎨
⎪⎩

λ
Dobs

lj

M if Cl = j,

λ
Dobs

lj

U if Cl �= j .

The posterior probability of individual l ∈ A linking with individual j ∈ B given C(−l) will
then take the form

(25)

P
(
Cl = j |�(ZAl,ZBj ),D

obs
lj , θCM, θCU,λM,λU,C(−l)

)

∝ f (�(ZAl,ZBj )|θCM)

f (�(ZAl,ZBj )|θCU)

f (Dobs
lj |λM)

f (Dobs
lj |λU)

1(j /∈ C(−l)).
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A violation of the strongly noninformative linkage assumption influences the likelihood of

record pairs by a sensitivity factor of � = (λM
λU

)
Dobs

lj . When � = 1, Assumption 3 is valid. Val-
ues of � > 1 suggest that MOWRI was more likely to enroll individuals who may die shortly
after enrollment. Values of � < 1 represent scenarios where MOWRI may have selectively
avoided enrolling individuals who may die shortly after enrollment.

To estimate the effect of the sensitivity parameter on the outcomes, we implement the
algorithm in Section 2.7 after replacing f (C, θC |XA,Xobs

B ,ZA,ZB) in Step 1 with equation
(25).

5.2. Sensitivity analysis results. The average number of records linked for different val-
ues of � is presented in Table 3. Because a small proportion of the linked individuals die
within 30 days after enrollment when � = 1, decreasing the sensitivity parameter does not
yield significantly lower amounts of linked records. However, increasing the sensitivity pa-
rameter significantly increases the number of linked records, specifically record pairs that
indicate death within 30 days of enrollment. At � = 100, the narrow confidence interval in-
dicates the linkage algorithm links almost all of the MOW records to the Medicare enrollment
file.

The difference in 30-day mortality rate and inpatient acute utilization rate for the various
sensitivity levels are presented in Table 4. The estimated mortality difference is similar for
values of � ≤ 1. While the difference in mortality between MOW clients and controls is
negative when � = 1/100, this effect is small and insignificant. When � ≥ 50, the mortal-
ity difference is significant and MOW is estimated to increase mortality among their clients.
This results from clients who die within 30 days being added to the linked sample and, sub-
sequently, being removed from the potential control cohort to be matched. When � = 100,
the sensitivity parameter trumps the linkage likelihood such that many MOW clients are
linked to Medicare records indicating 30 day mortality despite major disagreements between
the linking information in ZA and ZB . Assuming that MOW beneficiaries are 50–100 times
more likely to die within 30 days of enrollment is highly implausible. The SATT of MOW
on inpatient acute admission frequency does not significantly differ across the sensitivity
scenarios. These results imply that our analysis is robust to the strongly noninformative link-
age assumption with regards to mortality. Similar results were observed for inpatient acute
hospitalization (data not shown).

TABLE 3
Sensitivity analysis linkage results

� n̄m 95% CI

1/100 3566.74 (3521.15,3612.33)

1/50 3571.50 (3529.74,3613.26)

1/10 3580.75 (3537.22,3624.29)
1/5 3589.74 (3549.78,3629.70)

1/2 3607.69 (3563.14,3652.24)

1 3608.02 (3570.91,3645.14)

2 3610.76 (3575.98,3645.54)

5 3662.55 (3621.70,3703.40)

10 3714.30 (3677.96,3750.64)

50 3844.21 (3821.23,3867.19)

100 3874.40 (3860.50,3888.31)
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TABLE 4
Sensitivity analysis causal treatment effect estimates

30 day mortality 30 day acute inpatient

� τ̂ATT 95% CI τ̂SATT 95% CI

1/100 −0.006 (−0.055,0.044) 0.006 (−0.125,0.137)

1/50 0.004 (−0.070,0.078) 0.009 (−0.178,0.197)

1/10 0.005 (−0.070,0.081) 0.009 (−0.178,0.195)

1/5 0.006 (−0.068,0.081) 0.009 (−0.177,0.196)

1/2 0.007 (−0.067,0.082) 0.010 (−0.178,0.197)

1 0.008 (−0.067,0.083) 0.010 (−0.176,0.196)

2 0.010 (−0.066,0.086) 0.010 (−0.174,0.194)

5 0.016 (−0.059,0.092) 0.010 (−0.173,0.193)

10 0.025 (−0.052,0.102) 0.010 (−0.175,0.194)

50 0.086 (0.002,0.170) 0.014 (−0.170,0.198)

100 0.549 (0.412,0.686) 0.079 (−0.120,0.277)

6. Discussion. We have proposed a novel Bayesian framework to estimate causal treat-
ment effects using linked data sources. We examine a linkage scenario that combines covari-
ate information and outcome information from one file with the treatment assignment defined
by a second file. Under a series of conditional independence and ignorability assumptions,
we provide a two-stage multiple imputation procedure to obtain statistically valid treatment
effect point and interval estimates. This procedure accounts for both the errors in the linkage
and the unobserved outcomes. The first stage of the procedure imputes the linkage structure,
and the missing potential outcomes are imputed in the second stage. Because the strong non-
informative linkage assumption cannot be examined using observed data, we developed a
sensitivity analysis to assess its violations.

In the linkage setting that we considered, all of the records in file B receive the active
treatment. This allows us to derive the treatment assignment as a deterministic function of
the linkage status for records in file A. More research and, possibly, stronger assumptions
are required to estimate treatment effects in different linkage scenarios, such as when one file
contains the treatment assignment and some of the covariates, while the other file includes the
rest of the covariates and the observed outcomes. In addition, the proposed linkage algorithm
is based on the Fellegi–Sunter framework which does not account for relationships between
variables that are exclusive to one file. A possible extension would be to incorporate such
relationships as described in Gutman, Afendulis and Zaslavsky (2013). The modularity of
our procedure allows for adjustment of the record linkage algorithm without the need to
adjust the causal inference component.

We applied our framework to estimate the effect of receiving services from a MOW pro-
gram in Rhode Island on mortality and healthcare utilization for its clients. Our analysis sug-
gested that MOW does not have a significant impact on reducing 30 day mortality among its
clients. Furthermore, among clients who would be alive after 30 days, irrespective of MOW
services, no significant differences in the frequency of acute inpatient admissions, ED visits
or NH stays are observed. A sensitivity analysis that examined the strong noninformative
linkage assumption showed that our analysis is robust against potential violations of this as-
sumption. However, this assumption may not be valid in different applications, and designing
procedures that relax this assumption is an area for future research.

A major limitation of Bayesian record linkage procedures is that they are computation-
ally intensive, and commonly require specialized programming that most nontechnical re-
searchers cannot implement. We have addressed these issues by utilizing two-stage multiple
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imputation and blocking. Both of these techniques reduce the computational complexity and
enable nontechnical researchers to perform the causal inference analyses while scaling down
the record linkage complexity. Multiple imputation has been widely used in other missing
data applications and was shown to provide valid inferences (Rubin (1996)). We have ex-
amined the performance of our proposed two-stage imputation in simulation analyses (Ap-
pendix C). The results show that the procedure provides valid statistical inference but that the
coverage is higher than nominal. This implies that the proposed procedure may overestimate
the sampling variance. Increased efficiency of such procedures is a future area of research.

Using blocking increases the computational efficiency and scalability of the record linkage
procedure. However, it may exclude true links and influence subsequent inferences (Murray
(2015)). We have examined the performance of our two-stage procedure with stricter and
looser blocking criteria (Appendix D). Using a single CPU, the current runtime of our linkage
algorithm was, approximately, 18 days. Loosening the blocking criteria such that the number
of record pairs was more than four times larger resulted in a runtime of approximately 30
days. The point estimates were relatively similar for the stricter and loosened blocking crite-
ria, but the stricter criteria had larger sampling variance because less record pairs were linked.
This shows that our algorithm is relatively efficient and that inferences were robust to block-
ing. Use of parallel computing, more efficient programming languages and improvement of
the MCMC sampling procedure based on ideas proposed by Zanella (2020) may improve the
scaling of the proposed algorithm to even larger settings.

In conclusion, this manuscript describes a statistical framework to estimate causal effects
using linked datasets where one file contains the covariates and the observed outcome and
the second file contains the treatment assignment. Under the strongly noninformative linkage
assumption, we develop a two stage multiple imputation procedure that provides statistically
valid treatment effect estimates, and we describe a sensitivity analysis for this assumption.

APPENDIX A: RECORD LINKAGE GIBBS SAMPLING ALGORITHM

A Gibbs sampling algorithm proposed by Sadinle (2017) can be used to iterate be-
tween sampling the posterior distributions of the linking parameters and the linking con-
figuration given the observed data. Starting with initial values for C, we sample from
f (C, θC |XA,Xobs

B ,ZA,ZB) using the following procedure:

1. Sample new values of θ
[t+1]
CMk from

(26)

θ
[t+1]
CMk |C[t],�(ZAlk,ZBjk) ∼ Dirichlet

(
αMk1 +

nA∑
l=1

nB∑
j=1

1(Cl = j)1(γljk = 1), . . . ,

αMkRk
+

nA∑
l=1

nB∑
j=1

1(Cl = j)1(γljk = Rk)

)

and θ
[t+1]
CUk from

(27)

θ
[t+1]
CUk |C[t],�(ZAlk,ZBjk) ∼ Dirichlet

(
αUk1 +

nA∑
l=1

nB∑
j=1

1(Cl �= j)1(γljk = 1), . . . ,

αUkLk
+

nA∑
l=1

nB∑
j=1

1(Cl �= j)1(γljk = Rk)

)
.

2. Sample a new state of C[t+1] by iterating through each entry and proposing updates one
entry at a time. Define C[t+1]

(−l) = (C
[t+1]
1 , . . . ,C

[t+1]
l−1 ,C

[t+1]
l+1 , . . . ,C[t+1]

nA
) as the collection of
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link designations without the lth entry, and let n
[t+1]
m(−l) = ∑nB

j=1 1(j ∈ C[t+1]
(−l) ) be the number

of designated links at iteration [t +1], excluding the lth entry. The posterior distribution of Cl

given C(−l) is a multinomial distribution where the labels are {j : j /∈ C,0}. The probability
for l ∈ A to pair with the unlinked record j ∈ B and increase the total number of links by 1 is

(28)

P
(
C

[t+1]
l = j |�(ZA,ZB), θ

[t+1]
CM , θ

[t+1]
CU ,C(−l)

)

=
f (�(ZAl,ZBj )|θ [t+1]

CM )

f (�(ZAl,ZBj )|θ [t+1]
CU )

1(j /∈ C[t+1]
(−l) )

∑nB

j ′=1
f (�(ZAl,ZBj ′ )|θ [t+1]

CM )

f (�(ZAl,ZBj ′ )|θ [t+1]
CU )

1(j ′ /∈ C[t+1]
(−l) ) + (nA−nm(−l))(nB−nm(−l)+βπ−1)

nm(−l)+απ

.

Similarly, the probability for l ∈ A not pairing with any record from B and n[t+1]
m = n

[t+1]
m(−l) is

(29)

P
(
C

[t+1]
l = 0|�(ZA,ZB), θ

[t+1]
CM , θ

[t+1]
CU ,C(−l)

)

=
(nA−nm(−l))(nB−nm(−l)+βπ−1)

nm(−l)+απ∑nB

j ′=1
f (�(ZAl,ZBj ′ )|θ [t+1]

CM )

f (�(ZAl,ZBj ′ )|θ [t+1]
CU )

1(j ′ /∈ C[t+1]
−l ) + (nA−nm(−l))(nB−nm(−l)+βπ−1)

nm(−l)+απ

.

APPENDIX B: DERIVATION OF POSTERIOR LINKAGE PROBABILITIES

The posterior distribution of Cl and nm, given the remaining link designations C(−l), is

(30)

f
(
Cl, nm|�(ZA,ZB), θCM, θCU,C(−l)

)

∝ p(C, nm)

nB∏
j=1

f
(
�(ZAl,ZBj )|θCM

)1(Cl=j)1(C(−l) �= j)

× f
(
�(ZAl,ZBj )|θCU

)1(Cl �=j)
,

where p(C, nm) takes the form of equation (15).
The marginal posterior probability for record l ∈ A to form a true link with j ∈ B, given

C(−l), is

(31)

P
(
Cl = j |�(ZA,ZB), θCM, θCU ,C(−l)

)
= (

f
(
Cl = j, nm = nm(−l) + 1|�(ZA,ZB), θCM, θCU,C(−l)

))
/(

nB∑
j=1

f
(
Cl = j, nm = nm(−l) + 1|�(ZA,ZB), θCM, θCU,C(−l)

)

+ f
(
Cl = 0, nm = nm(−l)|�(ZA,ZB), θCM, θCU,C(−l)

))
,

and the marginal posterior probability for record l ∈ A to remain unlinked, given C(−l), is

(32)

P
(
Cl = 0|�(ZA,ZB), θCM, θCU,C(−l)

)
= (

f
(
Cl = 0, nm = nm(−l)|�(ZA,ZB), θCM, θCU,C(−l)

))
/(

nB∑
j=1

f
(
Cl = j, nm = nm(−l) + 1|�(ZA,ZB), θCM, θCU,C(−l)

)

+ f
(
Cl = 0, nm = nm(−l)|�(ZA,ZB), θCM, θCU,C(−l)

))
.
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Dividing the numerator and denominator of equation (31) by

(33) p(C, nm = nm(−i) + 1)

nB∏
j=1

f
(
�(ZAl,ZBj )|θCU

)

results in equation (28). Similarly, dividing the numerator and denominator of equation (32)
by equation (33) results in equation (29). Therefore, we see that

P
(
Cl = j |�(ZA,ZB), θCM, θCU,C(−l)

) ∝ f (�(ZAl,ZBj )|θCM)

f (�(ZAl,ZBj )|θCU)
1(j /∈ C(−l)),

and

P
(
Cl = 0|�(ZA,ZB), θCM, θCU,C(−l)

) ∝ (nA − nm(−l))(nB − nm(−l) + βπ − 1)

nm(−l) + απ

.

APPENDIX C: SIMULATION STUDY FOR TWO-STAGE MULTIPLE IMPUTATION
PROCEDURE

We examine the operating characteristics of a t-distribution approximation for inference of
the treatment effect in our two-stage multiple imputation procedure, described in Section 2.7,
using a simulation study. We consider a simulation setting with nA = 20,000 records in file
A, nB = 2000 records in file B, and nm = 1600 true links between both files. The treatment
effect is simulated for continuous, count and binary outcomes. Appendix Table 5 depicts the
linking variables, covariates and response surfaces used to generate the simulations. Linking
variables for true-links were simulated according to f (ZA). No errors were simulated among
the linking variables, such that ZA and ZB took the same values among true-links in both files.
When the intervention has no effect, we assumed that f (Y(0)|XA,ZA) = f (Y(1)|XA,ZA).
When the treatment effect exists, we assumed that it is constant on the linear, logarithm or
logistic scale for continuous, binary and count outcomes. The response surfaces were cali-
brated such that E(Y(0)) is equal to 10 for the continuous outcome, 2 for the count outcome
and 0.3 for the binary outcome. A total of 100 simulated sets of data were generated from
this simulation configuration.

To conduct record linkage of the pairs of simulated files, an individual’s continuous age
values were converted to a date of birth (DOB) with a year, month and day value. Four levels
of similarity are used to compare the elements of DOB: no agreement on DOB year, agree-
ment on DOB year only, agreement on DOB year and month only and agreement on all ele-
ments of DOB. Five levels of similarity are used to compare ZIP codes: disagreement on the
first ZIP digit, agreement on the first ZIP digit only, agreement on the first and second ZIP dig-
its only, agreement on the first through third ZIP digits only, and agreement on all ZIP digits.
Exact agreement is used to compare values of gender. Conditional independence is assumed
between agreement on the three linking variables, and equation (16) is used as the record
linkage likelihood. Independent Dirichlet(1, . . . ,1) prior distributions are used for each θCM

and θCU . M = 100 imputations of the linkage structure was taken for each simulated dataset.
Propensity score models were fitted on linked and unlinked records in A using patients’

age, gender, prior hospitalization and prior log-healthcare cost. Nearest neighbor matching
without replacement was performed based on the propensity score to identify a set of controls
with similar covariate distributions as the linked records. We calculated the average treatment
effect on the treated for the continuous, count and binary outcomes by fitting Bayesian lin-
ear, Poisson and logistic regression models using the set of matched records. Each Bayesian
model contained the covariates used in matching and all of their two-way interactions similar
to the model specified in equation (19). This results in all of the imputation models being mis-
specified, but there is no unmeasured confounding. Noninformative prior distributions were
placed on all of the parameters in each model.
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TABLE 5
Simulated linking variables, covariates and outcomes

Linking variables f (ZA) f (ZB)

Age N(50,52) N(45,102)

Gender Bernoulli(0.5) Bernoulli(0.5)

ZIP code 1st Digit ∼ Discrete Uniform(6) 1st Digit ∼ Discrete Uniform(6)
2nd Digit ∼ Discrete Uniform(7) 2nd Digit ∼ Discrete Uniform(7)
3rd Digit ∼ Discrete Uniform(7) 3rd Digit ∼ Discrete Uniform(7)
4th Digit ∼ Discrete Uniform(7) 4th Digit ∼ Discrete Uniform(7)

f (XA) l : Cl > 0 l : Cl = 0

Prior hospitalization Poisson(1) Poisson(0.75)

Prior log-healthcare cost N(10,32) N(6,42)

Outcome type τATT f (Y(1)|XA,ZA)

Continuous 0 N(7.95 − 0.7 ∗ Gender + 0.4 ∗ PriorHosp + 0.2 ∗ PriorCost,0.1)

Continuous 0.05 N(8.00 − 0.7 ∗ Gender + 0.4 ∗ PriorHosp + 0.2 ∗ PriorCost,0.1)

Continuous 0.10 N(8.05 − 0.7 ∗ Gender + 0.4 ∗ PriorHosp + 0.2 ∗ PriorCost,0.1)

Count 0 Poisson(exp(0.3431 − 0.7 ∗ Gender + 0.2 ∗ PriorHosp + 0.05 ∗ PriorCost))
Count 0.15 Poisson(exp(0.4155 − 0.7 ∗ Gender + 0.2 ∗ PriorHosp + 0.05 ∗ PriorCost))
Count 0.20 Poisson(exp(0.4384 − 0.7 ∗ Gender + 0.2 ∗ PriorHosp + 0.05 ∗ PriorCost))
Binary 0 Bernoulli(expit(−1.1973 − 0.7 ∗ Gender + 0.2 ∗ PriorHosp + 0.05 ∗ PriorCost))
Binary 0.04 Bernoulli(expit(−1.0132 − 0.7 ∗ Gender + 0.2 ∗ PriorHosp + 0.05 ∗ PriorCost))
Binary 0.08 Bernoulli(expit(−0.8395 − 0.7 ∗ Gender + 0.2 ∗ PriorHosp + 0.05 ∗ PriorCost))

Appendix Table 6 displays the τ , Bias, SE and coverage over the 100 simulated datasets
for the different types of outcomes and treatment effect sizes. In settings where n̄m and n̄G are
approximately 1600, our proposed two-stage procedure can accurately estimate linear, count
and binary treatment effects with minimal bias. Interval estimates according to a t-distribution
approximation provides nominal type 1 error and valid statistical inference for true treatment
effect for all three types of outcomes and across different treatment effect sizes. However,

TABLE 6
Average bias, SE, coverage and type I error or power for different

outcome distributions and treatment effect sizes

Outcome type τATT Estimate SE Bias Coverage

Linear 0 0.0006 0.0041 0.0006 1
0.05 0.0695 0.0102 0.0195 1
0.10 0.1187 0.0102 0.0187 1

Count 0 0.0296 0.0608 0.0296 1
0.15 0.1688 0.0606 0.0188 1
0.20 0.2608 0.0611 0.0608 1

Binary 0 0.0005 0.0182 0.0005 1
0.04 0.0410 0.0182 0.0010 1
0.08 0.0784 0.0182 −0.0016 1
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these intervals seem to be too wide, because the coverage probabilities are close to 1 and are
not around the expected nominal coverage of 0.95.

APPENDIX D: SENSITIVITY ANALYSIS OF BLOCKING CRITERIA

In our linkage of MOW clients to Medicare enrollment records, blocks were generated
based on clients’ gender and the first five digits of ZIP code to reduce the number of possi-
ble record pairs and increase the efficiency of the linkage procedure. Sadinle and Fienberg
(2013) demonstrate that blocking can significantly increase the accuracy of the linkage and
subsequent inference, even when record linkage is computationally feasible without blocking,
especially when the linking variables are limited or prone to error. However, Murray (2015)
notes that blocking on variables that may be recorded with error can exclude true matches
and influence the subsequent inference on the linked data. We examine the sensitivity of our
results to different blocking criteria based on ZIP code digits.

Let nZ represent the number of ZIP code digits used in the blocking criteria, where nZ = 5
in our application. To examine the potential impact of different blocking restraints on the esti-
mation of the causal treatment effect, we consider different values of nZ = (4,6,7). Altering
the blocking criteria shifts the number of ZIP code digits available as linking variables. The
record linkage likelihood in equation (17) can be reexpressed in terms of nZ as

(34)

L
(
C, θCM, θCU |�(ZA,ZB)

)

=
nA∏
l=1

nB∏
j=1

4∏
rD=1

9−nZ+1∏
rZ=1

[
θ
1(γljD=rD)

CMDrD
θ
1(γljZ=rZ,γljD=rD)

CMZrZ |rD
]1(Cl=j)1(Blj=1)

× [
θ
1(γljD=rD)

CUDrD
θ
1(γljZ=rZ,γljD=rD)

CUZrZ |rD
]1(Cl �=j)1(Blj=1)

.

Treatment effects were estimated according to the algorithm in Section 2.7 after replacing the
record linkage likelihood under each blocking scenario with equation (34).

D.1. Sensitivity analysis results. A comparison of the computational complexity of the
linkage for different blocking scenarios and the linkage results are shown in Appendix Ta-
ble 7. While increasing the number of ZIP digits used for blocking significantly reduces the
computational complexity, there is also a significant decrease in the number of records that are
linked. This is likely due to potential errors or discrepancies in how the six to nine ZIP code
digits are recorded across both files. When blocking on these error-prone ZIP code digits,
many true links are classified as non-links. Increasing the blocking constraints also reduces
the number of available linking variables, which increases the efficiency of the computation

TABLE 7
Blocking sensitivity analysis linkage complexity and results

Blocking criteria nA nAnB n̄m 95% CI Run time

4 digit ZIP 251,285 56,706,359 3829.67 (3814.40,3844.94) 30 days
5 digit ZIP 247,724 13,786,172 3608.02 (3570.91,3645.14) 18 days
6 digit ZIP 234,331 2,666,450 2807.21 (2728.63,2885.79) 2 days
7 digit ZIP 144,230 436,049 2767.80 (2543.67,2991.93) <1 day

nA represents the number of unique records in the Medicare data, nAnB represents the total number of possible
record pairs that are partitioned into a gender and ZIP code block, n̄m represents the average number of linked
records over M = 100 imputations and run time reflects the approximate time in days our Bayesian record linkage
algorithm required to complete 500 iterations using a single CPU core on a Linux system.
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TABLE 8
Blocking sensitivity analysis causal treatment effect estimates

30 day mortality 30 day acute inpatient

Blocking criteria τ̂ATT 95% CI τ̂SATT 95% CI

First 4 digits 0.005 (−0.067,0.077) 0.007 (−0.168,0.182)

First 5 digits 0.008 (−0.067,0.083) 0.010 (−0.174,0.194)

First 6 digits 0.010 (−0.074,0.094) 0.016 (−0.180,0.213)

First 7 digits 0.007 (−0.083,0.096) 0.009 (−0.203,0.222)

as well. Loosening the blocking criteria to the first four ZIP code digits results in more than a
four-fold increase in the number of possible record pairs as well as an increase in the number
of records linked.

The estimates of the causal treatment effects for mortality and acute inpatient admissions
for different blocking criteria are presented in Appendix Table 8. Overall, we see that the
use of blocking on the first five ZIP code digits in our application provides similar results
compared to less strict blocking criteria. Gender and the first five digits of ZIP code are
well defined and unlikely to be reported with errors which would not result in biased point
estimates or suboptimal interval estimates if used as blocking criteria. Using stricter blocking
criteria generally results in fewer false links but, possibly, more true links missed. The point
estimates for the stricter criteria were practically the same, but the interval estimates were
larger because of the smaller number of true links that were identified.
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SUPPLEMENTARY MATERIAL

Supplemental code: A multiple imputation procedure for record linkage and causal
inference to estimate the effects of home-delivered meals (DOI: 10.1214/20-AOAS1397
SUPP; .zip). We provide supplemental code (Shan, Thomas and Gutman (2021)) to demon-
strate the implementation of the Bayesian Record Linkage algorithm, propensity score match-
ing, imputation of the missing potential outcomes, and calculation of the two-stage multiple
imputation treatment effects as proposed in this manuscript.
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