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Complex tissues are composed of a large number of different types of
cells, each involved in a multitude of biological processes. Consequently, an
important component to understanding such processes is understanding the
cell-type composition of the tissues. Estimating cell-type composition using
high-throughput gene expression data is known as cell-type deconvolution. In
this paper we first summarize the extensive deconvolution literature by iden-
tifying a common regression-like approach to deconvolution. We call this ap-
proach the unified deconvolution-as-regression (UDAR) framework. While
methods that fall under this framework all use a similar model, they fit us-
ing data on different scales. Two popular scales for gene expression data are
logarithmic and linear. Unfortunately, each of these scales has problems in
the UDAR framework. Using log-scale gene expressions proposes a biologi-
cally implausible model and using linear-scale gene expressions will lead to
statistically inefficient estimators. To explore ways to address these issues,
in this paper we consider how deconvolution methods may use an adjusted
model that is a hybrid of the two scales. In analysis on simulations as well as
a collection of eleven real benchmark datasets, we find a prototypical hybrid-
scale adjustment to the UDAR framework improves statistical efficiency and
robustness. More broadly, we believe these hybrid-scale modeling principles
may be incorporated into many existing deconvolution methods.

1. Introduction. The tissues of multicellular organisms are typically comprised of a
combination of many types of cells. As each cell type has its own set of functions and behav-
iors, the composition and interaction of different cell types is integral to the function and be-
havior of the tissues. Thus, studying cell-type composition has long been of broad biological
interest. Examples of the importance of cell-type composition abound from the biological lit-
erature. In the study of infectious diseases, the composition of white blood cells is important,
as it is indicative of many types of dysfunctions (George and Panos (2007)). For example, the
number of T-cells among human peripheral blood mononuclear cells (PBMCs) spikes after
a Lyme infection (Bouquet et al. (2016)). In neuroscience the composition of brain cells has
long been a subject of study. For example, studying the relative composition of microglia in
human brains is of interest for those studying developmental dynamics (Ayana, Singh and
Pati (2018)). Similarly, understanding changes in the number of neuron and glial cells has
been the subject of extensive study with regards to Alzheimer’s disease (Mohammadi et al.
(2015)).

For this reason, methods to estimate cell-type proportions from high-throughput genomics
data have been extensively studied over the past two decades (for comprehensive literature
reviews, see Gaujoux (2013) or Mohammadi et al. (2015)). Estimating cell-type proportions
is known as cell-type deconvolution. Given gene expression data from samples comprised of
a mixture of cell types, deconvolution methods estimate the proportions of the constituent cell
types. These cell-type proportions may be of interest in their own right, for example, to track
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the changes in cell-type composition over time (Newman et al. (2015)). In other cases the
estimated cell-type proportions are used as a means of deconfounding differential expression
analysis (Capurro et al. (2015)). In this case the cell-type proportions can help explain ob-
served gene-expression differences across samples. By including the estimated proportions in
a model, one can separate differences coming from within-cell-type changes in gene expres-
sion and those differences coming purely from cell-type-compositional differences among
samples (Hagenauer et al. (2016)).

In this paper we present a critique of existing cell-type deconvolution methods and then
explore ways to adjust the traditional approach to address the issues we raise. First, in Sec-
tion 2 we characterize existing deconvolution literature, proposing a new unified deconvo-
lution framework called the unified deconvolution-as-regression (UDAR) framework. The
UDAR framework summarizes much of the existing deconvolution literature, including many
popular deconvolution methods. It demonstrates that these methods employ a common uni-
fied model of the data and, mainly, differ in how their parameter estimates are fit. One impor-
tant fitting consideration is data scale. Broadly, methods either fit using linear-transformed or
log-transformed gene expression data. Unfortunately, each of these scales has problems. We
will show that using log-scale gene expressions proposes a biologically implausible model
and that using linear-scale gene expressions will lead to statistically inefficient estimators.
Using the UDAR framework as a point of comparison, in Section 3 we consider how this
framework may be modified to take advantage of the beneficial aspects of fitting on a hybrid
of the two scales. Subsequently, in Section 4 we explore the differences between existing
approaches and an example prototypical hybrid-scale model. We do this across a wide range
of simulated data as well as 11 real benchmark datasets. Here, we see that models using an
adjusted hybrid scale have improved statistical efficiency and robustness.

2. A unified framework for existing deconvolution models. Let Y ∈ R
N be the mea-

surements of N gene expressions in a mixture sample of K types of cells and R ∈ R
N×K be

reference expressions of these N genes across the K constituent cell types. Furthermore, let
p = (p1, . . . , pK) be the proportions of the K cell types in the mixture sample. Implicit in
being proportions is that p must satisfy the sum-to-one (STO) constraint:

∑K
k=1 pk = 1 and

the nonnegativity (NN) constraint: pk ≥ 0 for k = 1, . . . ,K . That is, p ∈ �K−1, the (K − 1)

probability simplex �K−1 = {x ∈ R
K : xk ≥ 0 and

∑K
k=1 xk = 1}.

The deconvolution problem is that p is unknown, and we want to estimate it. In this
section we introduce a new unified model for cell-type deconvolution called the unified
deconvolution-as-regression (UDAR) framework. The UDAR framework posits that Y , R

and p are related through the linear model

(1) Y = Rp + ε

for a random error ε. Estimating p under this model is equivalent to solving a constrained
regression of Y on R where the coefficients p must live in �K−1. Hence, using this model is
treating deconvolution as regression. Note that we only consider problems where Y and R are
known, and we are interested in estimating p. We do not consider the related problem where
R is also unknown. For a discussion of this problem, see Gaujoux (2013), Mohammadi et al.
(2015) or Wang et al. (2016).

What differs among existing deconvolution methods is the approach by which p is es-
timated. There are common themes among how estimates of p̂ are fit. Typically, methods
specify: (1) a loss function L : RK → R+ that determines model fit L(p) for putative pro-
portions p, (2) an optimization space � ⊆ R

K for p and (3) a post hoc adjustment function
ϕ : � → �K−1 mapping from the optimization space � to the desired simplex �K−1. They
then estimate p by minimizing L over � and applying ϕ. This approach is described in Al-
gorithm 1. The idea behind this approach is that, while, ideally, p̂ is the minimizer of L over
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Algorithm 1 UDAR Fitting
Step 1: Minimize L over � to get p∗:

p∗ = arg minp∈�L(p)

Step 2: Apply ϕ to p∗ to get p̂:

p̂ = ϕ
(
p∗)

.

�K−1, solving such a constrained minimization problem is difficult. Thus, UDAR methods
solve an easier relaxation of this problem, minimizing L over � ⊇ �K−1 and then making
post hoc adjustments to p∗ to produce a final estimate p̂ ∈ �K−1.

A large number of existing deconvolution methods fit into this framework under appro-
priate choices of L, � and ϕ. The most common choice of loss is the squared-error loss
(Abbas et al. (2009), Gong and Szustakowski (2013), Gong et al. (2011), Lu, Nakorchevskiy
and Marcotte (2003), Qiao et al. (2012), Racle et al. (2017), Wang, Master and Chodosh
(2006)). Other loss functions used include an elastic net penalized loss (Altboum et al.
(2014)), a support-vector regression approach, which is equivalent to using an ε-insensitive
loss (Newman et al. (2015)), a Bayesian-likelihood approach based on latent Dirichlet al-
location that is equivalent to letting L be a likelihood-based loss (Blei, Ng and Jordan
(2003), Qiao et al. (2012)), a negative binomial likelihood (Du, Carey and Weiss (2019)), KL-
divergence based method (Li (2019)), robust regression approaches (Finotello et al. (2019))
and a gene-set-based component merging approach (Wang et al. (2018)). The optimization
space � is typically one of three spaces: (1) �K−1 (Du, Carey and Weiss (2019), Finotello
et al. (2019), Gong and Szustakowski (2013), Gong et al. (2011)), (2) RK+ , the positive or-
thant of R

K (Li (2019), Qiao et al. (2012), Racle et al. (2017)) or (3) R
K (Abbas et al.

(2009), Lu, Nakorchevskiy and Marcotte (2003), Newman et al. (2015), Wang, Master and
Chodosh (2006)). In the first case, where � = �K−1, no post hoc adjustments are neces-
sary and so ϕ is the identity function. In the second case where � = R

K+ , since p∗ already
satisfies the NN constraint, ϕ re-normalizes p∗ to enforce the STO constraint and hence
p̂k = ϕ(p∗)k = p∗

k/
∑K

t=1 p∗
t (Qiao et al. (2012), Racle et al. (2017)). Finally, in the first case

of unconstrained optimization where � = R
K , ϕ zeros out negative coefficients and then

renormalizes so that p̂k = ϕ(p∗)k = (p∗
k )+/

∑K
t=1(p

∗
t )+ where (·)+ = max(·,0) is the posi-

tive part (Abbas et al. (2009), Lu, Nakorchevskiy and Marcotte (2003), Newman et al. (2015),
Wang, Master and Chodosh (2006)). We call this latter post hoc adjustment the “zero-then-
renormalize” adjustment.

2.1. Scale considerations for deconvolution. An important question for the UDAR
framework is the appropriateness of this model for the deconvolution problem. One im-
portant modeling consideration is data scale. Typically, gene expressions are either linearly
transformed, for example, TPM (Conesa et al. (2016)), or logarithmically transformed, for
example, RMA, (Irizarry et al. (2003)). In the former case we say the data is on the linear
scale and in the latter we say the data is on the log scale. Some deconvolution methods as-
sume linear-scale expressions, like in Newman et al. (2015), some methods assume log-scale
expressions, as in Qiao et al. (2012); most make no explicit assumptions about data scale
at all. In the following sections we will consider the appropriate data scale for the UDAR
model. This will primarily concern the two major components of the model: (1) the linear
mean structure Rp and (2) the additive error structure ε.
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2.1.1. Mean modeling. Assume we have a mixture sample comprised of cell types k =
1, . . . ,K in proportions p1, . . . , pK . First, notice that if ηn is the amount of mRNA in our
mixture sample coming from gene n and ηnk is the amount of that mRNA in the sample
coming from type k cells, then

(2) ηn =
K∑

k=1

ηnk.

Now, assume we also have some reference sample of type k cells. Let the amount of mRNA
from gene n in the reference sample be η∗

nk . Since the mixture sample is comprised of a
proportion pk of type k cells and the reference sample is 100% type k cells, then we expect
that

(3) ηnk ≈ pkη
∗
nk,

assuming the same abundance of cells between the reference samples and the mixture. Es-
sentially, this assumes that type k cells in the mixture behave as if they were a random sample
of the type k reference cells. We assume that this relationship is only approximate because
the type k reference cells may not exactly mimic the type k mixture cells. For example, the
microenvironment of the cells in the mixture may modify gene expression.

Combining equations (2) and (3), we get that

(4) ηn =
K∑

k=1

ηnk ≈
K∑

k=1

pkη
∗
nk.

Now, assume that the linear scale measured gene expressions are proportional to the amount
of mRNA so that Yn ≈ γαnηn and Rnk ≈ αnη

∗
nk for constants γ and {αn}. The proportionality

constants αn capture gene-specific effects like probe affinity (for microarray data) or length
biases (for RNA-seq). The multiplier γ captures global differences between the mixture and
references. This includes effects like sequencing depth or amount of mRNA. Again, we as-
sume approximate equality because the measurement process may introduce random errors.
Combining with equation (4) we now get that

Yn ≈ γαnηn ≈ γαn

K∑
k=1

pkη
∗
nk = γ

K∑
k=1

pkαnη
∗
nk ≈ γ

K∑
k=1

pkRnk.

As is customary, assume that Y and R have been normalized to account for global expression
differences, for example, by TPM (Conesa et al. (2016)), so that γ = 1. Then, the above
equation shows that the linear model Y ≈ Rp, proposed by UDAR, is correctly specified for
linear-scale gene expression measurements since Yn ≈ ∑K

k=1 pkRnk .
However, even if γ = 1, the linear mean structure is misspecified for log-scale gene ex-

pressions as

log(Yn) ≈ log(αnηn) ≈ log

(
K∑

k=1

αnpkη
∗
nk

)
	≈

K∑
k=1

pk log
(
αnη

∗
nk

) ≈
K∑

k=1

pk log(Rnk)

since we can’t interchange a sum and a log. Thus, log(Yn) 	≈ ∑K
k=1 pk log(Rnk), and so a

linear mean structure, as proposed by UDAR, does not make sense on the log scale. For a toy
example of this principle, see Figure 1.
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FIG. 1. The mixture sample is 50% of A and 50% of B. The orange ovals represent mRNA from a specific gene.
Since the reference of type A typically has four mRNA, we expect 4 × .5 = 2 mRNA in the mixture to come from
ref. A. Similarly, since ref. B typically has six mRNA, we expect 6 × .5 = 3 mRNA in the mixture to have come
from ref. B. In total, we get 5 = 4 × .5 + 6 × .5 mRNA in the mixture. Thus, the amount of mRNA in the mixture
is a linear mixture of the amount of mRNA. This does not work if we logarithmically transform the counts. In that
case we would expect, on the log scale, to get log(4) × .5 + log(6) × .5 ≈ 1.6 mRNA. Exponentiating back to the
linear scale, this is ≈ 4.9, thus under-counting the true amount of mRNA.

2.1.2. Error modeling. In contrast to the mean structure, error assumptions are most rea-
sonable for log-scale expressions. While most methods simply note that Y ≈ Rp and do not
explicitly include an error term ε in their models, their loss functions are optimal for typical
regression-like error assumptions about ε. For example, deconvolution methods minimizing

the squared-error loss are are optimal when εn
iid∼ N(0, σ 2) with some constant error vari-

ance σ 2 > 0. Such regression assumptions are most appropriate on the log scale. Indeed, it
has been widely noted that errors are well modeled as normal with approximately constant
variance across expression levels for log-scale gene expression data (Qiao et al. (2012)).
Conversely, error for linear-scale expression data are right-skewed, and the variance tends to
increase with increasing mean expression (Hardin and Wilson (2009), Qiao et al. (2012), Tu,
Stolovitzky and Klein (2002), Weng et al. (2006), Zwiener, Frisch and Binder (2014)).

3. A hybrid model for deconvolution. The previous two sections present a problem for
many existing deconvolution methods. If they follow the UDAR model on the log scale, they
will have a misspecified mean. Conversely, if they propose the UDAR model with linear-scale
expressions, the error assumptions are unrealistic. While nearly all existing methods model
deconvolution on one of these two scales, two exceptions exist: Hunt et al. (2019) and Wilson
et al. (2020). These methods attempt to deal with the scale considerations by proposing lin-
ear mixing with log-scale errors. In this section we distill the central ideas of all of these
approaches and explore a straightforward way to augment the UDAR model in a way that
avoids the problems of scale while not making restrictive assumptions. In Section 4 we will
use simulations and real data to examine the performance of this prototypical hybrid approach
alongside other log-scale, linear-scale, and the two existing hybrid-scale approaches.

As a prototypical example of a hybrid-scale method, we will work with the following
model:

(5) log(Yn) = θ + log

(
K∑

k=1

Rnkpk

)
+ εn,

where εn
iid∼ N(0, σ 2). Again, Yn and Rnk denote the linear-scale gene expression. This model

proposes additive Gaussian error after a log transformation and thus uses an appropriate scale
for errors. Furthermore, the mean structure in equation (5) implies log(Y ) ≈ θ + log(Rp), or,
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equivalently, Y ≈ eθRp. Thus, it proposes a plausible linear-mixing structure on the linear
scale, as discussed in Section 2.1.1. The term eθ plays the same role as the term γ men-
tioned in the previous section and accounts for systematic differences between the mixture
and reference expressions, such as differences in sequencing depth or total RNA content.

To estimate p under this model, we let p̂ be the MLE so that

(6)
(
p̂, σ̂ 2, θ̂

) = arg minp∈�K−1,σ
2∈R+,θ∈R�

(
p,σ 2, θ

)
and � is the joint log-likelihood function of p, σ 2, and θ . In the next subsection we present a
novel way to find the MLE for this model by minimizing a variance-based loss. Thus, the op-
timization problem in equation (6) can be solved using an approach analogous to the UDAR
fitting procedure. However, more generally, one could use the model in equation (5) and esti-
mate p by minimizing other loss functions. For example, one might consider an L2-penalized
loss if there are high correlations among cell types (Altboum et al. (2014)). Alternatively, one
might use an L1 penalized loss if one believes many of the cell types to not be truly present
in the sample. Other losses, like the SVR-based approaches used in Newman et al. (2015)
and Fernández et al. (2019), have similar advantages by promoting sparsity in the solutions.
This can prove useful when there are many potential cell types to include in the analysis but
reason to believe that only a few of the cell types are actually present. By promoting a sparse
solution and forcing certain estimates to be exactly zero, such losses can help determine the
true number of cell types present and more accurately estimate the constituent proportions.
Broadly, estimation under a hybrid-scale framework, like that in equation (5), is general and
extensible in many of the same ways as the UDAR framework while allowing proper mod-
eling of the mean and error structures. Thus, we believe that many of these other innovative
approaches could compatibly be incorporated into this hybrid-scale model in future work.

3.1. A method for finding the MLE. For this hybrid model there is a UDAR-like
procedure analogous to Algorithm 1 to find the MLE p̂. Define λn(p) = log(Yn) −
log(

∑K
k=1 Rnkpk) as the intercept-free residual (i.e., the residual ignoring θ ), and let S2(p)

be the sample variance of the λn(p), S2(p) = N−1 ∑N
n=1(λn(p) − λ̄(p))2 where λ̄(p) =

N−1 ∑N
n=1 λn(p). It can be shown (see Supplementary Material, Section 1) that p̂ is the

minimizer of S2 so that

p̂ = arg minp∈�K−1
S2(p).

Furthermore, since S2 is invariant under scaling so that S2(cp) = S2(p) for any c ∈ R+,
we do not need to optimize over �K−1 directly. Instead, we can solve this optimization
problem over any positive set containing �K−1 and simply renormalize. Let p∗ be any
minimum of S2(p) over p ∈ � where � is any set satisfying �K−1 ⊆ � ⊆ R

K+ so that
p∗ = arg minp∈� S2(p). (Notice that this minimum is not unique since if p∗ minimizes S2

then so does cp∗.) Then, if T ∗ = ∑K
k=1 p∗

k is the sum of the elements of p∗, the MLE for
p is p̂ = p∗/T ∗ since p̂ ∈ �K−1. This is summarized in Algorithm 2, a straight-forward
procedure to estimate p̂.

This procedure allows us to find the MLE without trying to minimize � over p, σ 2 and θ

simultaneously. Furthermore, like the UDAR model, this procedure also allows us to optimize
p over a relaxation � = [0,1]K ⊇ �K−1 instead of having to directly search over �K−1.
Also, like Algorithm 1, we renormalize p∗ to form a p̂ that is in �K−1. However, while for
the UDAR framework the post hoc adjustments were a heuristic to enforce constraints on p̂,
our renormalization is not heuristic. The two steps in Algorithm 2 precisely recover the MLE
of the hybrid model without solving a difficult optimization problem over �K−1. While we
could have optimized S2(p) over any space � where �K−1 ⊆ � ⊆ R

K+ , letting � = [0,1]K
greatly simplifies the optimization problem and allows us to use standard global optimization
routines with box constraints to find p̂.
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Algorithm 2 Hybrid Fitting Procedure

Step 1: Minimize S2 over the parameter space � = [0,1]K ⊇ �K−1 to get p∗:

p∗ = arg min
p∈�

S2(p)

Step 2: Form p̂ by modifying p∗ to ensure it satisfies the sum-to-one (STO) constraint by
defining

p̂ = p∗/T ∗

where T ∗ = ∑K
t=1 p∗

t .

3.2. References, marker genes and weights. Reference data is typically obtained from
online gene expression repositories, like GEO (Edgar (2002)), or from specific profiles com-
plied for cell-type deconvolution. Such reference data is used in two major ways (Gaujoux
(2013)). First, the reference data is used to create the reference matrix R so that Rnk is the
typical expression of gene n in a sample purely of cells of type k. If there exists more than
one reference sample for a particular cell type, one typically averages the profiles. If one has
νk reference profiles of cell type k, then Rnk is typically average expression across the pro-
files so that Rnk = (νk)

−1 ∑νk

r=1 Rnkr where Rnkr is the gene expression of gene n in the r th
reference of cell type k.

In addition to using reference data to form the reference matrix R, this reference data
is often used to find marker genes. Marker genes are genes that are particularly highly ex-
pressed in one cell type but not the others. Typically, marker genes are identified by compar-
ing gene expression across cell types in the reference data using, for example, a t-test. Once
identified, deconvolution methods typically fit using only the subset of marker genes. Let
M ⊆ {1, . . . ,N} be the set of marker genes. Then, the use of marker genes can be viewed
as variable selection where we only fit using those n ∈ M. Alternatively, we can view the
marker genes as a weighting of the loss function. Under the UDAR model, fitting using M
is equivalent to using a weighted loss function with weights wn = 1(n ∈ M).

In the case where we have more than one reference of each cell type, we may also do so in a
weighted fashion, weighting inversely with estimated variance. This enables incorporation of
variance information from the reference data if it is available. Hybrid-scale models can also
encompass marker genes as variable selection or a weighted loss. For example, optimizing
the loss over only those n ∈ M.

4. Results.

4.1. Comparison of methods on simulated data. To explore the properties of hybrid mod-
els, as compared to the UDAR model, we first consider simulated mixtures data. We simulate
mixtures using reference RNA-seq profiles of brain, liver and muscle cells from Parsons et al.
(2015). Let R ∈ R

N×K as the reference profile matrix of the N = 23,459 genes profiled in the
K = 3 reference samples so that R is comprised of linear scale (untransformed) read counts.
We generate mixture proportions p uniformly from �K−1 and form a simulated mixture
profile Y ∈R

N so that

(7) log(Yn)
iid∼ N

(
log

(
(Rp)n

)
, τD2)

,

where D2 ≈ 1.2 is the median within-gene sample variance in the reference data and τ is a
variance multiplier parameter we are free to choose.

In this section we consider five approaches to deconvolution. We use the hybrid model
following Algorithm 2, two example OLS-based UDAR approaches (one on the linear-scale
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TABLE 1
Five Methods compared in this section. The Hybrid scale, two OLS UDAR approaches, two existing UDAR

approaches from the literature

Method Scale Loss �

Hybrid Hybrid Variance �K−1
Regression Linear L2 R

K

Log. Regression Log L2 R
K

cibersort Linear ε-insensitive R
K

deconvSeq Log Neg. Bin. Likelihood �K−1

and log-scale, respectively) and two recent methods from the literature: a linear-scale support-
vector regression approach called cibersort (Newman et al. (2015)) and a log-scale negative
binomial regression called deconvSeq (Du, Carey and Weiss (2019)). All but the hybrid ap-
proach follow the UDAR framework to solve the regression problem. The OLS approaches
minimize a squared-error loss L, optimizing over � = R

K , and apply the simple zero-then-
renormalize post hoc adjustments. We call the linear-scale version a “Regression” approach
because it is equivalent to letting p̂k = (p∗

k )+/
∑K

t=1(p
∗
t )+ where p∗ are the coefficients ob-

tained from regressing Y on R. We call the log-scale version approach “Log Regression”
because it is equivalent to the regression approach, but where the p∗ are the coefficients ob-
tained from regressing log(Y ) on log(R), cibersort falls under the UDAR framework using
an ε-insensitive loss (i.e., using support-vector regression) and optimizing over � = R

K . It
then applies the zero-then-renormalize post hoc adjustment. deconvSeq minimizes a negative
binomial likelihood loss over � = �K−1. In application of deconvSeq to continuous data,
linear-scale expressions were necessarily rounded. For all methods we subset Y and R to a
set of marker genes chosen by an ANOVA on the reference data. We will let M denote the
number of marker genes used for each cell type. The exact same set of marker genes are used
to fit the methods. These methods are summarized in Table 1.

In Figure 2 we plot scatter plots of the estimates against the truth for each of the methods.
There are four subplots for three different simulation settings. In each we set τ = 1

2 (low
noise) and then vary the number of markers over M = 10,100 and 1000. For each setting and
method we estimate the proportions for 50 simulated samples. From these plots we can see
that the hybrid-scale approach generally out-performs the other approaches. The log regres-
sion and deconvSeq do comparatively poorly because they have a misspecified mean, and thus
an obvious bias manifested in the S-shaped relationship between the truth and the estimates.
The other three approaches do not exhibit this bias. On average, their estimates generally track
the true mixing proportions. Nonetheless, linear-scale regression and cibersort both perform
worse than the hybrid approach because they have higher variance. Thus, the estimates for
the hybrid approach are typically closer to the truth than for the other two linear-scale meth-
ods (regression and cibersort). The linear-scale regression used by regression and cibersort
produce statistical inefficiencies evidenced by the higher variance. In the Supplementary Ma-
terial Figure 1 we display plots for the four methods over a larger range of simulation settings
and more methods including robust regression, weighted regression, constrained regression, a
negative-binomial GLM and other methods from the literature. We also include similar plots
in the Supplementary Material Figure 2 using as reference 22 white blood cell types from
(Newman et al. (2015)). This demonstrates a scenario with many closely-related cell types.
These plots show largely the same story observed in Figure 2.

To explore the role of the Gaussianity assumption on performance, in Figure 3 we construct
similar scatter plots for data simulated using a negative binomial model for the expressions.
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FIG. 2. Evaluation of methods on simulated mixture data with Gaussian noise for number of marker genes (per
cell type) (M). (A) M = 10, (B) M = 100, (C) M = 1000.

The simulations are similar to those in equation (7); however, we let

Yn
iid∼ NegBinom

(
mean = (Rp)n, size = 1

ψ

)

so that Yn has mean μ = E[Yn] = (Rp)n and variance Var(Yn) = μ + μ2ψ where ψ is a
parameter we are free to choose. In Figure 3 we consider simulation settings for ψ = 1

2 (low
noise) and vary M over 10, 100, 1000 markers. We see similar behavior for the negative
binomial simulations as in the Gaussian case. The hybrid approach outperforms the other
approaches, suggesting that the model is relatively insensitive to an exact Gaussian error
assumption. The hybrid-scale approach performs better than the other approaches because it
uses reasonable scales for both the mean structure and the errors. This leads to both a lower
bias and lower variance than the other methods. In the Supplementary Material Figure 3 we
display plots of errors for the negative binomial simulations over a wider range of simulation
settings. As previously, we also include similar plots in the Supplementary Material Figure 4
using as reference the 22 white blood cell types from (Newman et al. (2015)) to demonstrate
efficacy in a setting with many closely-related cell types. These figures tell much the same
story.

4.2. Comparison to other hybrid-scale approaches. To date, two existing approaches try
to model deconvolution as a hybrid of the linear and log-scale expressions. These methods
include previous work of the authors developing a method called dtangle (Hunt et al. (2019))
as well as work by Wilson et al. (2020) developing an approach called ICeD-T. Broadly,
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FIG. 3. Evaluation of methods on simulated mixture data with negative binomial noise for number of marker
genes (per cell type) (M): (A) M = 10, (B) M = 100, (C) M = 1000.

these methods attempt to deal with the scale considerations by proposing linear mixing with
log-scale errors. To solve the resulting model for p, each method makes simplifying approx-
imations which place limitations on the applicability of the methods. For dtangle a simpli-
fying assumption is made with regard to marker genes. The working approximation is that
the expression of marker genes is exactly zero in all but the cell type they mark. This yields
a simple, closed-form analytical estimator of cell-type proportion. This method works well
when the assumption is true, that is, as long as not too many genes are included in analysis
that do not follow this definition of a marker gene.

The ICeD-T method follows primarily from two modeling choices. First, it approximates
the sum of log-normally distributed random variables as log normal. This allows approximate
computation of an otherwise nonanalytical likelihood. Second, ICeD-T deals with marker
genes by modeling the likelihood as a mixture of two likelihoods: one for genes whose vari-
ance is reasonably small and one for genes with abberantly high variance. These two mod-
eling choices ultimately produce a method that incorporates estimates of the error variance
for each gene into the parameter updates of an EM algorithm. We will show that this method
works well so long as these error variances are low. Note that ICeD-T often fails to con-
verge for many simulations and real datasets. To get ICeD-T to run in as many scenarios as
possible, we have made slight modifications to the code to better handle missing values and
nonconvergent likelihood optimization. These changes can be summarized in Section 3 of the
Supplementary Material.

To compare dtangle and ICeD-T to the hybrid approach introduced in this paper, we gener-
ate simulation data to investigate performance on data comprised of highly similar cell types.
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FIG. 4. Evaluation of hybrid methods on simulated mixture data with Gaussian noise for different using (A)
M = 10, (B) M = 100, (C) M = 1000. The error variance multiplier is set to τ = .5.

We generate the data similarly to Figure 2 but we: (1) limit the true number differentially ex-
pressed marker genes across the cell types and (2) limit the amount of differential expression
of markers across cell types. To begin, we let all of the cell types have an identical expression
profile. We then generate marker genes by setting the expression in two of the cell types as
the median expression across all genes and then set the expression in the third type as twice
this median (on the linear scale). For each cell type we generate 20 marker genes in this way.
In total, there are thus 60 marker genes each with a log2-fold change of one. All other genes
in the simulated data are identically expressed. In Figure 4 we explore the performance of
the hybrid approach, dtangle and ICeD-T on this data using M = 10,100 and 1000 putative
marker genes (per cell type).

This simulation demonstrates a difficult deconvolution problem due to the similarity of the
cell types. There are only 60 marker genes in total, and the difference in expression across
the markers is only two-fold. We can see from this figure that both dtangle and ICeD-T
are very sensitive to the quality of marker genes. As we increase the number of nonmarker
genes included in the analysis, both dtangle and ICeD-T converge to estimating all cell types
as equally abundant. Since there are three cell types, they predict 1

3 for each type in each
sample. Notice that the hybrid method is relatively insensitive to including genes that are
poor quality markers. Its performance does not deteriorate by including nonmarker genes like
dtangle or ICeD-T. Importantly, the hybrid method also does not require the marker genes to
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be expressed in only one cell type, with zero expression in the other cell types. All that is
required is that the marker genes are differentially expressed between the cell types.

4.3. Supplementary simulations. In the Supplementary Material, Figures 1 and 3, we plot
Gaussian and negative binomial simulations similar to Figures 2 and 3 but over all simulation
settings τ = 1

5 ,1,5, number of markers M = 10,100,1000 (per cell type) and include more
methods in the analysis. We also make these plots in Figures 2 and 3 of the Supplementary
Material using as reference 22 types of white blood cells for comparison on many closely-
related cell types. Similarly, in Supplementary Material Figure 5 we plot simulations similar
to Figure 4 but over all simulation settings and more methods. Broadly, we see that the hybrid-
scale approach performs competitively with existing approaches.

4.4. Comparison of methods on real data. To explore deconvolution performance on real
data, we use a collection of existing deconvolution benchmark datasets (see Supplementary-
Material Table 1). In all, these 11 datasets cover a range of realistic deconvolution settings.
Across the datasets there is a range of cell types, number of cell types, organisms (human
and rat) and technologies (RNA-seq and microarrays). Some datasets contain reference data
created as part of the same sequencing experiment, while other datasets contain third-party
references. For most of the datasets, the true mixing proportions are known because the cells
were mixed in known proportions before expressions were assayed. However, for three of
the datasets the true proportions are the cell-type proportions reported by a physical sort-
ing technique applied after the gene expression assays. Over the past 20 years more than 60
deconvolution methods have been developed (Li (2019)). To broaden the scope of our anal-
ysis and in addition to the methods above, we include an additional three recent and popular
linear-scale UDAR approaches: deconRNAseq, EPIC and MOMF (Gong and Szustakowski
(2013), Li (2019), Racle et al. (2017)) as well as a simplex-constrained regression approach
(Constr. Reg.), robust regression approach (RLM), weighted regression approach (Wtd. Reg.)
and a negative binomial GLM.

The choice of marker genes is an extremely important component in the application of
cell-type deconvolution methods, as accuracy is strongly influenced by the choice of mark-
ers. For example, consider Figure 5. In this figure we plot the error for the dataset from Gong
et al. (2011) for the four methods. Error is measured as absolute value of the difference be-
tween the true proportions and their predictions. We use the exact same marker genes for
each method but estimate the cell-type proportions using a range of different numbers of
markers per cell type (M). We let M vary following an approximate exponential sequence
M = 1,2,5,10,20,50,100,200,500,1000,2000,5000, approximately doubling the num-
ber of marker genes (per cell type) at each step. We can see from this figure that estimation
performance depends heavily on the number of marker genes used. For example, cibersort
does poorly for a small number of markers but sees improvement for a large number of
markers until it hits a point of diminishing returns and starts to become less accurate for too
many markers. Conversely, methods like dtangle, deconRNAseq, EPIC and MOMF (gener-
ally) have increased accuracy as the number of marker genes increases.

Importantly, the optimal number of marker genes depends as much on the particular dataset
as on the particular method. As an example, consider accuracy as a function of number of
marker genes in Figure 6 for the data from Liu et al. (2015). Here, we see that, generally,
methods like deconvSeq, dtangle and MOMF have worse error as the number of marker
genes increases. Conversely, for methods like cibersort and deconRNAseq we see that the
accuracy is increasing as the number of markers increases for this dataset. We display similar
plots for the other datasets in the Supplementary Material, Figures 6–14. These show that the
optimal number of marker genes varies widely from dataset to dataset and method to method.



282 G. J. HUNT AND J. A. GAGNON-BARTSCH

FIG. 5. Error for methods for the Gong dataset over a varying number of markers (M). Error is measured as
the absolute value of the truth less the estimate. (A) displays the plots by number of markers. (B) displays the exact
same data but separating by method.

Unfortunately, while deconvolution performance is greatly affected by the choice of
marker genes, there is no general consensus on an approach to find the optimal number
of marker genes for all possible datasets. Nonetheless, modeling using the hybrid-scale ap-
proach maintains an error competitive with existing methods and, generally, has estimates
that are less sensitive to the number of marker genes. To see this, in Figure 7 we plot a meta-
analysis of all methods across all datasets and number of markers. In addition to the methods
previously mentioned, we also include a robust regression and weighted regression approach.
Each point in this figure is the MAD (median absolute-deviation) error for each dataset for
a particular method. A separate subplot is made for each choice of number of markers (per
cell type). The boxplots summarize the performance of each method across all the datasets.
From this figure we see that the hybrid-scale modeling reduces the grand median absolute
error in comparison with other modeling approaches. This is most evident when the number
of marker genes (per cell type) is in a middling range between about 20 and 200 (per cell
type). In Figure 8 we plot the 1st quartile, median and 3rd quartile of the error across datasets
for each method. We vary the number of markers over the x-axis. Again, we see the hybrid
approach finds its lowest median error for middling values of number of markers. Indeed,

FIG. 6. Error for methods for the Liu dataset over a varying number of markers (M). Error is measured as the
absolute value of the truth less the estimate. (A) displays the plots by number of markers. (B) displays the exact
same data but separating by method.
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FIG. 7. MAD error meta-analysis of all methods across all number of markers and datasets.

the lowest overall error for any method is obtained by this approach in this region. We also
similarly see that this approach yields 1st and 3rd quartiles of its error commensurate with
the best other approaches.

5. Conclusion. Understanding cell-type heterogeneity among complex biological tis-
sues is a problem with broad and persistent biological interest. Furthermore, an increase
in high-quality cell-type reference data from bulk and single-cell sequencing technolo-
gies makes cell-type deconvolution an increasingly important tool for the analysis of high-
throughput data. Many existing deconvolution approaches estimate cell-type proportions us-
ing modified regression approaches, as described in the UDAR framework. However, fit-
ting such a model using either linear-scale or log-scale gene expressions will be suboptimal.
Log-transforming gene expressions before fitting under a UDAR model biases the estimates.

FIG. 8. Meta-analysis of all error for all methods across all datasets plotted by number of markers.
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However, a regression-like fit using linear-scale gene expressions assumes an unrealistic error
model for gene expression measurements. Conversely, a hybrid scale model uses a plausible
mean structure while also maintaining reasonable error assumptions. The prototypical hybrid-
scale approach we explore in this paper has implications likely applicable to many existing
deconvolution methods. We showed that such a model can help improve estimates of cell-type
proportions in a robust manner. In simulations the hybrid model reduced estimation variance
without introducing a bias and was robust to violations of distributional assumptions. This
allowed a broad range of applicability to normalized and unnormalized sequencing data, mi-
croarray data and combinations of different technologies. In an analysis of real data, it was
shown that cell-type deconvolution is sensitive to choice of marker genes. Unfortunately, this
is compounded by the fact that, for real data, there is often no easy way to find an optimal
set of marker genes. This is consequential when compared to previous work like dtangle, a
method which makes strict assumptions about marker genes, in particular that they are ex-
pressed in only one cell type and have zero expression in all other cell types. The hybrid-scale
approach does not make the same restrictive assumptions and thus out-performs dtangle when
such assumptions are unlikely to hold, for example, when there are many highly-correlated
cell types.

More broadly, the model proposed in this paper opens the door to many extensions and
generalizations. While we estimate the proportions p in equation (5) using a maximum-
likelihood approach, one could combine this model with some of the other insights in the
deconvolution literature and fit p using more sophisticated loss functions. For example, one
could use L2 penalized losses if there are many highly-correlated cell types (Altboum et al.
(2014)). Alternatively, L1 penalties or ε-insensitive losses can be used to induce sparsity
which may be beneficial if there are many potential cell types but only a subset that are ex-
pected to be present (Fernández et al. (2019), Newman et al. (2015)). Such additions could
easily be incorporated into our framework, and, thus, the approach we describe has the po-
tential to be the basis for many new, hybrid-scale, approaches to deconvolution.

6. Software. An implementation of the hybrid approach called hspe (Hybrid-Scale
Proportion Estimation) and examples of how to use the method can be found online at
gjhunt.github.io. A docker image with code to reproduce all results in this pa-
per may be found at hub.docker.com/r/gjhunt/hybriddeconv. Source code for
reproducibility can be found in the Supplementary Materials (Hunt and Gagnon-Bartsch
(2021)).
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Supplement to “The role of scale in the estimation of cell-type proportions” (DOI:
10.1214/20-AOAS1395SUPPA; .pdf). A proof of the MLE and figures for simulation and
real-data analysis.

Source code for “The role of scale in the estimation of cell-type proportions” (DOI:
10.1214/20-AOAS1395SUPPB; .zip). R source code for reproducibility.
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SZCZEŚNIAK, M. W., GAFFNEY, D. J., ELO, L. L. et al. (2016). A survey of best practices for RNA-seq
data analysis. Genome Biol. 17 13. https://doi.org/10.1186/s13059-016-0881-8

DU, R., CAREY, V. and WEISS, S. T. (2019). DeconvSeq: Deconvolution of cell mixture distribution in sequenc-
ing data. Bioinformatics 35 5095–5102. https://doi.org/10.1093/bioinformatics/btz444

EDGAR, R. (2002). Gene expression omnibus: NCBI gene expression and hybridization array data repository.
Nucleic Acids Res. 30 207–210. https://doi.org/10.1093/nar/30.1.207

FERNÁNDEZ, E., MAHMOUD, Y., VEIGAS, F., ROCHA, D., BALZARINI, M., LUJAN, H., RABINOVICH, G. and
GIROTTI, M. R. (2019). MIXTURE: An improved algorithm for immune tumor microenvironment estimation
based on gene expression data. BioRxiv 726562. https://doi.org/10.1101/726562

FINOTELLO, F., MAYER, C., PLATTNER, C., LASCHOBER, G., RIEDER, D., HACKL, H., KROGSDAM, A.,
LONCOVA, Z., POSCH, W. et al. (2019). Molecular and pharmacological modulators of the tumor im-
mune contexture revealed by deconvolution of RNA-seq data. Gen. Med. 11 34. https://doi.org/10.1186/
s13073-019-0638-6

GAUJOUX, R. (2013). An introduction to gene expression deconvolution and the CellMix package. 1–45.
GEORGE, E. L. and PANOS, A. (2007). Does a high WBC count always signal infection? Nursing 37 56hn15–

56hn16. https://doi.org/10.1097/01.NURSE.0000268785.73612.5c
GONG, T. and SZUSTAKOWSKI, J. D. (2013). DeconRNASeq: A statistical framework for deconvolution of

heterogeneous tissue samples based on mRNA-seq data. Bioinformatics 29 1083–1085. https://doi.org/10.
1093/bioinformatics/btt090

GONG, T., HARTMANN, N., KOHANE, I. S., BRINKMANN, V., STAEDTLER, F., LETZKUS, M., BONGIO-
VANNI, S. and SZUSTAKOWSKI, J. D. (2011). Optimal deconvolution of transcriptional profiling data using
quadratic programming with application to complex clinical blood samples. PLoS ONE 6. https://doi.org/10.
1371/journal.pone.0027156

HAGENAUER, M. H., LI, J. Z., WALSH, D. M., VAWTER, M. P., THOMPSON, R. C., TURNER, C. A., BUN-
NEY, W. E., MYERS, R. M., BARCHAS, J. D. et al. (2016). Inference of cell type composition from human
brain transcriptomic datasets illuminates the effects of age, manner of death, dissection, and psychiatric diag-
nosis. BioRxiv.

HARDIN, J. and WILSON, J. (2009). A note on oligonucleotide expression values not being normally distributed.
Biostatistics 10 446–450. https://doi.org/10.1093/biostatistics/kxp003

HUNT, G. J. and GAGNON-BARTSCH, J. A. (2021). Supplement to “The Role of Scale in the Es-
timation of Cell-type Proportions.” https://doi.org/10.1214/20-AOAS1395SUPPA, https://doi.org/10.1214/
20-AOAS1395SUPPB

HUNT, G. J., FREYTAG, S., BAHLO, M. and GAGNON-BARTSCH, J. A. (2019). dtangle: Accurate and robust
cell type deconvolution. Bioinformatics 35 2093–2099. https://doi.org/10.1093/bioinformatics/bty926

IRIZARRY, R. A., HOBBS, B., COLLIN, F., BEAZER-BARCLAY, Y. D., ANTONELLIS, K. J., SCHERF, U. and
SPEED, T. P. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe
level data. Biostatistics 4 249–264. https://doi.org/10.1093/biostatistics/4.2.249

SUN, X., SUN, S. and YANG, S. (2019). An efficient and flexible method for deconvoluting bulk RNA-seq data
with single-cell RNA-seq data. Cells 8 1161. https://doi.org/10.3390/cells8101161

LIU, R., HOLIK, A. Z., SU, S., JANSZ, N., CHEN, K., LEONG, S., BLEWITT, M. E., SMYTH, G. K. and
RITCHIE, M. E. (2015). Why weight ? Modelling sample and observational level variability improves power
in RNA-seq analyses 43. https://doi.org/10.1093/nar/gkv412

LU, P., NAKORCHEVSKIY, A. and MARCOTTE, E. M. (2003). Expression deconvolution: A reinterpretation of
DNA microarray data reveals dynamic changes in cell populations. Proc. Natl. Acad. Sci. USA 100 10370–
10375. https://doi.org/10.1073/pnas.1832361100

https://doi.org/10.1002/msb.134947
https://doi.org/10.3389/fneur.2018.00266
https://doi.org/10.1128/mBio.00100-16.Editor
https://doi.org/10.3389/fnins.2014.00441
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.1093/bioinformatics/btz444
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1101/726562
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1097/01.NURSE.0000268785.73612.5c
https://doi.org/10.1093/bioinformatics/btt090
https://doi.org/10.1371/journal.pone.0027156
https://doi.org/10.1093/biostatistics/kxp003
https://doi.org/10.1214/20-AOAS1395SUPPA
https://doi.org/10.1214/20-AOAS1395SUPPB
https://doi.org/10.1093/bioinformatics/bty926
https://doi.org/10.1093/biostatistics/4.2.249
https://doi.org/10.3390/cells8101161
https://doi.org/10.1093/nar/gkv412
https://doi.org/10.1073/pnas.1832361100
https://doi.org/10.1002/msb.134947
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1093/bioinformatics/btt090
https://doi.org/10.1371/journal.pone.0027156
https://doi.org/10.1214/20-AOAS1395SUPPB


286 G. J. HUNT AND J. A. GAGNON-BARTSCH

MOHAMMADI, S., ZUCKERMAN, N., GOLDSMITH, A. and GRAMA, A. (2015). A Critical Survey of Deconvo-
lution Methods for Separating cell-types in Complex Tissues. arXiv 1–20.

NEWMAN, A. M., LONG LIU, C., GREEN, M. R., GENTLES, A. J., FENG, W., XU, Y., HOANG, C. D.,
DIEHN, M. and ALIZADEH, A. (2015). Robust enumeration of cell subsets from tissue expression profiles.
Nat. Methods 12 193–201. https://doi.org/10.1016/j.molmed.2014.11.008.Mitochondria

PARSONS, J., MUNRO, S., PINE, P. S., MCDANIEL, J., MEHAFFEY, M. and SALIT, M. (2015). Using mix-
tures of biological samples as process controls for RNA-sequencing experiments. BMC Genomics 1–13.
https://doi.org/10.1186/s12864-015-1912-7

QIAO, W., QUON, G., CSASZAR, E., YU, M., MORRIS, Q. and ZANDSTRA, P. W. (2012). PERT: A method
for expression deconvolution of human blood samples from varied microenvironmental and developmental
conditions. PLoS Comput. Biol. 8. https://doi.org/10.1371/journal.pcbi.1002838

RACLE, J., DE JONGE, K., BAUMGAERTNER, P., SPEISER, D. E. and GFELLER, D. (2017). Simultaneous
enumeration of cancer and immune cell types from bulk tumor gene expression data. eLife 6. https://doi.org/10.
7554/eLife.26476

TU, Y., STOLOVITZKY, G. and KLEIN, U. (2002). Quantitative noise analysis for gene expression microarray ex-
periments. Proc. Natl. Acad. Sci. USA 99 14031–14036. MR1944414 https://doi.org/10.1073/pnas.222164199

WANG, M., MASTER, S. R. and CHODOSH, L. A. (2006). Computational expression deconvolution in a complex
mammalian organ. BMC Bioinform. 7 328. https://doi.org/10.1186/1471-2105-7-328

WANG, N., HOFFMAN, E. P., CHEN, L., CHEN, L., ZHANG, Z., LIU, C., YU, G., HERRINGTON, D. M.,
CLARKE, R. et al. (2016). Mathematical modelling of transcriptional heterogeneity identifies novel markers
and subpopulations in complex tissues. Sci. Rep. 6 18909. https://doi.org/10.1038/srep18909

WANG, Z., CAO, S., MORRIS, J. S., AHN, J., LIU, R., TYEKUCHEVA, S., GAO, F., LI, B., LU, W. et al. (2018).
Transcriptome deconvolution of heterogeneous tumor samples with immune infiltration. IScience 9 451–460.
https://doi.org/10.1016/j.isci.2018.10.028

WENG, L., DAI, H., ZHAN, Y., HE, Y., STEPANIANTS, S. B. and BASSETT, D. E. (2006). Rosetta error model
for gene expression analysis. Bioinformatics 22 1111–1121. https://doi.org/10.1093/bioinformatics/btl045

WILSON, D. R., JIN, C., IBRAHIM, J. G. and SUN, W. (2020). ICeD-T provides accurate estimates of immune
cell abundance in tumor samples by allowing for Aberrant gene expression patterns. J. Amer. Statist. Assoc.
115 1055–1065. MR4143449 https://doi.org/10.1080/01621459.2019.1654874

ZWIENER, I., FRISCH, B. and BINDER, H. (2014). Transforming RNA-seq data to improve the performance of
prognostic gene signatures. PLoS ONE 9 e85150. https://doi.org/10.1371/journal.pone.0085150

https://doi.org/10.1016/j.molmed.2014.11.008.Mitochondria
https://doi.org/10.1186/s12864-015-1912-7
https://doi.org/10.1371/journal.pcbi.1002838
https://doi.org/10.7554/eLife.26476
http://www.ams.org/mathscinet-getitem?mr=1944414
https://doi.org/10.1073/pnas.222164199
https://doi.org/10.1186/1471-2105-7-328
https://doi.org/10.1038/srep18909
https://doi.org/10.1016/j.isci.2018.10.028
https://doi.org/10.1093/bioinformatics/btl045
http://www.ams.org/mathscinet-getitem?mr=4143449
https://doi.org/10.1080/01621459.2019.1654874
https://doi.org/10.1371/journal.pone.0085150
https://doi.org/10.7554/eLife.26476

	Introduction
	A uniﬁed framework for existing deconvolution models
	Scale considerations for deconvolution
	Mean modeling
	Error modeling


	A hybrid model for deconvolution
	A method for ﬁnding the MLE
	References, marker genes and weights

	Results
	Comparison of methods on simulated data
	Comparison to other hybrid-scale approaches
	Supplementary simulations
	Comparison of methods on real data

	Conclusion
	Software
	Acknowledgments
	Supplementary Material
	References

