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The Vaccine Adverse Event Reporting System (VAERS) plays a vital
role in vaccine safety surveillance. One of the main missions of VAERS is
to monitor increases in reporting rate of adverse events, as such signals can
indicate safety issues caused by update of vaccines or change in vaccine prac-
tices. Existing methods can rarely be used to monitor the temporal variation
of reporting adverse events. In this paper we propose a composite likelihood
based variance component model to study the temporal variation of reporting
adverse events using VAERS data. The proposed method is devised to iden-
tify safety signals by testing the heterogeneity of reporting rates of adverse
events across years. The proposed method accounts for the well-known un-
derreporting of adverse events and the zero-inflation observations in passive
surveillance reporting systems. We applied the proposed method to VAERS
reports of trivalent influenza virus vaccine and identified 14 adverse events
with significantly heterogeneous reporting rates over years and two of them
have increasing trend of reporting rates from 1990 to 2013. Our findings pro-
vide early warning signals that can be more rigorously investigated in future
studies of the vaccine.

1. Introduction. Vaccine safety is a critically important public health issue. Public con-
fidence in vaccines depends greatly on public confidence in the government’s safety surveil-
lance. The Vaccine Adverse Event Reporting System (VAERS) is a national postmarketing
passive safety surveillance program coadministered by the Centers for Disease Control and
Prevention (CDC) and the Food and Drug Administration (FDA) to collect spontaneous re-
ports of adverse events (AEs, possible side effects) that occur after the administration of any
vaccine licensed in the United States. Reports are submitted by vaccine manufacturers, health
care professionals, vaccine recipients and the public. From 1990 to the present, VAERS re-
ceives up to 30,000 reports annually (Centers for Disease Control and Prevention (2017c)).
Like other passive surveillance systems, VAERS is subject to multiple limitations, includ-
ing underreporting, recall bias, reporting errors and lack of denominator data and unbiased
control groups (Ellenberg and Chen (1997)). Despite these limitations, VAERS contributes
to public health in critical ways (Chen et al. (1994), Shimabukuro et al. (2015)). Because of
the high number of reports and increasing national coverage, VAERS provides a unique op-
portunity in monitoring vaccine adverse events that might occur too rarely to be detected in
prelicensure clinical trials or even postmarketing active surveillance programs (Ellenberg and

Received March 2020; revised August 2020.
Key words and phrases. Composite likelihood, heterogeneity, signal detection, underreporting, vaccine safety

outcome.

252

https://imstat.org/journals-and-publications/annals-of-applied-statistics/
https://doi.org/10.1214/20-AOAS1393
http://www.imstat.org
mailto:jing14@upenn.edu
mailto:sellenbe@pennmedicine.upenn.edu
mailto:hennessy@pennmedicine.upenn.edu
mailto:ychen123@upenn.edu
mailto:yc010@att.com
mailto:jingcheng.Du@uth.tmc.edu
mailto:cui.Tao@uth.tmc.edu
mailto:Ruosha.Li@uth.tmc.edu


MONITORING VACCINE SAFETY USING VAERS 253

Chen (1997), Thompson et al. (2018)). Effective analysis of VAERS data is vital to assuring
the safety of vaccines.

One of the main missions of VAERS as well as an important aspect of vaccine safety
surveillance is to monitor changes in known adverse events. Such changes can be due to
many factors, for example, update of vaccines (changes in ingredients of vaccines), change in
vaccine practices (addition of vaccines to existing immunization schedule, presence of newly
licensed vaccines) and publicity (Chen et al. (1994), Eberth et al. (2014)). If a change (or
temporal variation) of reporting AEs is identified through VAERS, investigators may con-
duct further studies to figure out whether the signal represents an actual risk and identify the
factors that are associated with the signal. For example, a change from separate to simulta-
neous immunization of DTP (diphtheria, tetanus and acellular pertussis) and MMR (measles,
mumps and rubella) vaccines for children at age of 15 months old could potentially change
the types of AEs reported (Centers for Disease Control and Prevention (1991)). Using data
from VAERS and MSAEFI (the Monitoring System for Adverse Events Following Immu-
nization), the CDC surveillance program that preceded VAERS, investigators found that the
rates of reported hospitalizations and deaths following DTP vaccine remained constant from
1985 to 1992, despite the addition of Haemophilus influenzae Type B vaccine to the routine
infant immunization schedule (Chen, Haber and Mullen (1995)). These results provided some
reassurance that, by adding vaccines to the recommended immunization schedules, gains in
protection from disease were not offset by an increased burden of AEs caused by the addi-
tional vaccines. Another example is the change of ingredients in the manufacture of MMR
in 2006, that is, human derived serum albumin was replaced by recombinant human albu-
min which eliminated the use of any human-derived substances (Lievano et al. (2012)). Such
changes may cause the variation of reporting AEs across years. Studying temporal variation
of reporting AEs is important in helping identify meaningful variation in composition of a
vaccine that requires more safety analysis.

Currently, several methods have been proposed to monitor safety outcomes using data from
passive surveillance programs, and these methods could potentially be applied to VAERS,
given the similarity of the data structure and the research questions among the databases. For
example, similar to VAERS, the FDA Adverse Event Reporting System (FAERS) is a pas-
sive postmarketing safety surveillance program that accepts AE and medication error reports
for drugs and therapeutic biologic products. Methods proposed to detect safety signals using
FAERS data (Greenwood and Nikulin (1996), Bate et al. (1998), DuMouchel (1999), Evans,
Waller and Davis (2001), Rothman, Lanes and Sacks (2004), Huang, Zalkikar and Tiwari
(2011), Huang et al. (2017), Zhao, Yi and Tiwari (2018)) can be applied to VAERS in identi-
fying new AE signals that are associated with a given vaccine. Specifically, the proportional
reporting ratios (Evans, Waller and Davis (2001)) and reporting odds ratios (Rothman, Lanes
and Sacks (2004)) methods evaluate the safety of a certain vaccine/drug by calculating the
proportion ratio or odds ratio of a particular AE to all the other AEs for the vaccine/drug.
The Chi-square test (Pearson (1900)) can be used to test the dependence between a particular
AE and the vaccination/drug (Greenwood and Nikulin (1996)). Bayesian methods were also
proposed. For example, the multiitem gamma poisson shrinker method (DuMouchel (1999))
uses empirical Bayes method to test the significance of relative reporting rates of a sets of AEs
by assigning a common prior to the predefined relative reporting rates. The Bayesian confi-
dence propagation neural network method (Bate et al. (1998)) is similar to the the multiitem
gamma poisson shrinker, but it uses a full Bayesian methodology.

In a recent article published at the Journal of the American Statistical Association, Huang,
Zalkikar and Tiwari (2011) proposed a novel zero-inflated Poisson model with a likelihood
ratio test to detect safety signals using FAERS data. This method has the advantage of prop-
erly accounting for the passive collection of safety reports in the surveillance program and
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was shown to be powerful in identifying safety signals with well-controlled Type I errors.
However, all of the aforementioned methods are effective in comparing the overall reporting
rate of a particular AE to other AEs for a given vaccine/drug or comparing the overall report-
ing rate of a given AE for a particular vaccine/drug to other vaccines/drugs to identify safety
signals. None of them aims to monitor the temporal variation of reporting AEs which is a
critical question in monitoring vaccine safety.

To study the temporal variation of reporting AEs using VAERS data, several aspects need
to be considered. First, the total number of vaccine recipients and the total number of vaccine
recipients who are willing to report in VAERS cannot be determined from VAERS data. The
changes in number of reported AEs can be caused by the fluctuation of the unknown pop-
ulation over time and among many other reasons (Chen et al. (1994), Haber et al. (2004)).
For example, number of reports for a new vaccine are always large when it is first put on
the market and may diminish over time. This pattern is also known as the “Weber effect”
(Weber (1984)). Public events and social media reports that raise publicity can also lead to
a burst of new reports which is also known as “stimulated reporting” (Eberth et al. (2014)).
In addition, if the indication for a vaccine is expanded to a broader population group (e.g., a
vaccine approved in toddlers later approved in infants), the number of reported events tends
to increase (Ellenberg and Chen (1997)). Second, VAERS data can rarely provide definitive
evidence of causal relationships between a vaccine and a particular AE due to underreport-
ing, recall bias, reporting errors and lack of denominator data and unbiased control groups
(Singleton et al. (1999), Zhou et al. (2003)). However, this type of national reporting system
can rapidly document the possibility of unexpected AEs, generating early warning signals
that can then be more rigorously investigated in focused studies, including Vaccine Safety
Datalink (Chen et al. (1997), McNeil et al. (2014)). In a sense, VAERS is the front line of
vaccine safety surveillance, so methods developed for VAERS should give sensitivity prece-
dence over specificity.

In this paper, built upon the work of Huang, Zalkikar and Tiwari (2011), we propose a
composite likelihood variance component model to study the temporal variation of reporting
AEs with the goal of detecting safety signals using VAERS data. To the best of our knowl-
edge, the proposed method is the first to study the temporal variation of reporting AEs using
VAERS data. Our method accounts for the unique features of VAERS data and has several
advantages. First, we model the likelihood of reporting a given AE conditional on the total
number of reports observed in each year. Such a conditional likelihood method alleviates the
impact of fluctuation of the vaccinated population in comparing reported AEs across years.
Second, we use a parsimonious composite likelihood method to reduce the complexity of the
model which was devised to be sensitive to signals in fluctuation in time. Such a compos-
ite likelihood method also has better computational performance and model robustness; for
examples, see Chen et al. (2014, 2015). For further discussion of the composite likelihood
method and its applications, we refer to a review paper by Varin, Reid and Firth (2011) and
the references therein. Moreover, the proposed method accounts for the zero-inflated feature
of VAERS data.

The rest of this paper is organized as follows. In Section 2 we introduce a motivating
example of using the VAERS dataset for monitoring the safety signals for trivalent influenza
virus vaccine (FLU3). In Section 3 we describe the proposed composite likelihood ratio test.
The asymptotic distribution of the proposed likelihood ratio test is derived. In Section 4 we
conduct simulation studies to compare the performance of the proposed test with existing
tests in terms of Type I errors and power. In Section 5 we apply the proposed method to
the VAERS FLU3 dataset to detect safety signals. Finally, we provide a discussion on the
strengths and limitations of the proposed method in Section 6.
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2. Monitoring FLU3 safety using VAERS data. Influenza is a highly contagious viral
respiratory infection that affects 5–20% of the U.S. population each year (Centers for Dis-
ease Control and Prevention (2016a)). More than 140,000 individuals are hospitalized and
12,000–56,000 die from influenza-related complications in the United States for the 2015–
2016 influenza season (Centers for Disease Control and Prevention (2017a)). The best way
to prevent influenza is to receive an annual influenza vaccination (Centers for Disease Con-
trol and Prevention (2017b), Grohskopf et al. (2015)). The CDC recommend that everyone at
six months of age and older to receive influenza vaccination every year (Centers for Disease
Control and Prevention (2017b)).

Among all the VAERS reports, FLU3 is the most common vaccine type reported, account-
ing for nearly 12% of the entire VAERS database. Thus, VAERS is potentially a very impor-
tant data source for monitoring FLU3 safety. FLU3 is a synthetic influenza vaccine consisting
of three inactivated influenza viruses, including an influenza A H1N1 virus, an influenza A
H3N2 virus and a B virus (Centers for Disease Control and Prevention (2016b)). Influenza
vaccine safety using VAERS data has been studied extensively (Haber et al. (2004), Vellozzi
et al. (2009)), but none of this work has taken into account an important feature of influenza
vaccines: most influenza vaccines are formulated annually based on influenza strains pro-
jected to be prevalent in the upcoming flu season which can lead to changes in types and
numbers of reported AEs. As we will demonstrate later, the VAERS reports for FLU3 are of
high prevalence and with substantial variations over the years.

Upon searching the AE database for FLU3 in the United States from 1990 to 2013,
we extracted 6813 reports with at least one of the following serious reactions: death, life-
threatening illness, hospitalization, prolonged hospitalization or permanent disability. All
of these reports were manually coded using Medical Dictionary for Regulatory Activities
(MedDRA) vocabulary by domain experts (MedDRA (2017)). The VAERS reports of FLU3
from 1990 to 2013 include 3784 unique Preferred Terms (PTs). Each PT is “a distinct descrip-
tor (single medical concept) for a symptom, sign, disease diagnosis, therapeutic indication,
investigation, surgical or medical procedure and medical social or family history characteris-
tic” (MedDRA (2017)). Based on the hierarchical structure of MedDRA, we mapped the PTs
to 26 System Organ Classes (SOCs), which is the highest level of the hierarchy in MedDRA
that comprises grouping by etiology, manifestation site and medical purpose, using a method
developed by Du et al. (2016).

A primary analysis of the data showed, in Figure 1, that the total number of occurrence of
AEs reported to VAERS for FLU3 ranged from 162 to 11,760 each year. The overall trend

FIG. 1. Total number of AEs reported to VAERS for FLU3 from 1990 to 2013 by the category of SOCs.
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is increasing from 1990 to 2013, especially after 2005, potentially due to the increasing na-
tional publicity of VAERS and public awareness of reporting AEs. In 2009 and 2010, VAERS
received a peak of AE reports for FLU3, partially due to the emergence of the 2009 H1N1 in-
fluenza virus in the spring of 2009 and an increasing number of vaccinated people during the
2009–2010 influenza season (Goldman (2013)). Given this variability, monitoring of AEs for
FLU3 using VAERS data presents a particular challenge that the number of AE reports varies
from year to year due to the fluctuation in total number of vaccinated population, the length
and severity of influenza seasons and publicity factors. It is hence of substantial interest to
develop a model that can effectively use VAERS data to monitor any temporal variation of
AE reporting rates for vaccine safety.

3. Proposed method.

3.1. Notations, proposed models and model assumptions. To study the temporal varia-
tion of reporting AEs, VAERS reports from multiple years for a particular vaccine, for ex-
ample, FLU3, can be structured as an I × J table with a total of I reporting years being the
rows and J types of AE being the columns. The count for the (i, j)th cell, nij , is the number
of events reported for the j th AE in the ith year for the vaccine. The total number of reported
events in the ith year is the marginal total of the ith row denoted as ni., the total number of
reported events for the j th AE over all the I years is the marginal total of the j th column,
denoted as n.j , and the total number of all reported AEs for the vaccine over all the years is
the grand total, denoted as n...

As mentioned earlier, one limitation of VAERS data is that the total number of vaccine
recipients, the total number of vaccine recipients who are willing to report to VAERS and
the total number of events that actually occurred are unknown. Thus, a simple comparison of
numbers of events reported across years is confounded by the fluctuation of unknown popu-
lation size over time. To circumvent this problem, we model the number of events reported
for the j th AE in the ith year, nij , conditioning on the total number of events reported in the
ith year, ni., which can be assumed to follow a Binomial distribution, even though the total
underlying population in each year is unknown, that is, nij ∼ binomial(ni., pij ), where pij is
the rate of reporting the j th AE to all the AEs in the ith year.

Another feature of the VAERS data, as well as data from most surveillance reporting sys-
tems, is that they are usually sparse, that is, ni. is large and nij is small, and contain a large
number of zero-count cells, that is, nij = 0 for many (i, j) pairs. In the VAERS database
with more than 4000 types of AEs, the percentage of vaccines that have more than 90% of
observed zero-count cells is as large as 88%. The percentage of zero values ranges from 57%
to 99%. To account for these features, we use a Poisson approximation to the binomial distri-
bution with computational advantage and propose a zero-inflated Poisson model as follows:

(3.1) nij =
{

0 with probability wj ,

∼ Poisson(ni.pij ) with probability 1 − wj ,

where wj is the probability of excess zeros for the j th AE. The model assumes that the
observed zero counts can be generated from two different mechanisms, that is, one follows a
Bernoulli distribution with probability wj and the other follows a Poisson distribution with
mean ni.pij . The two parameters, wj and pij , are estimated simultaneously. Given wj , ni.

and pij , the observation nij follows a zero-inflated Poisson distribution.
In order to study the temporal variation of reporting rate of the j th AE over years, we

further assume a variance component model to allow the heterogeneity of reporting rates,
such that

(3.2)
logit(pij ) ∼ N

(
β0j , τ

2
j

)
, i = 1, . . . , I,

β0j = logit(p0j ),
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where β0j is the average reporting rate of the j th AE across all years in the logit scale and
τ 2
j quantifies the heterogeneity of reporting rates of the j th AE across years.

3.2. A composite likelihood-based variance component test for studying temporal varia-
tion of reporting AEs. Given the proposed model (3.1) and (3.2), our primary interest is to
identify AEs with increased reporting rates at certain years for a particular vaccine. Statisti-
cally, this can be done by testing the heterogeneity of reporting rates across years, which is
equivalent to testing the null hypothesis, H0 : τ 2

j = 0, for the j th AE.
To construct a likelihood function for the proposed model (3.1) and (3.2), a major chal-

lenge is that the numbers of events reported for the j th AE for the same vaccine across years
are correlated and the correlation structure is usually complicated and unknown, as a group
of people can get vaccinated in consecutive years and may have similar AEs postvaccination.
Given such complex correlations in AEs across years, instead of formulating a joint distri-
bution on AEs over years, we propose to construct a composite likelihood by multiplying
individual conditional likelihood together across years (Lindsay (1988)). Such a modeling
strategy is parsimonious by avoiding modeling the complex correlations among AEs across
years. Specifically, under the null hypothesis, H0 : τ 2

j = 0, a composite likelihood function
using data related to the j th AE can be written as

(3.3)

L0(wj ,p0j ;nij , ni.)

=
I∏

i=1

{
wj + (1 − wj) exp(−ni.p0j )

}ui

× {
(1 − wj) exp(−ni.p0j )(ni.p0j )

nij /nij !}1−ui ,

where ui = I (nij = 0). Notably, the marginal densities of n1j , . . . , nIj are multiplied to-
gether without accounting for the correlation among them to construct a composite likeli-
hood function (Cox and Reid (2004), Lindsay (1988), Varin, Reid and Firth (2011)). Under
the alternative hypothesis, Ha : τ 2

j > 0, a composite likelihood function can be constructed as

(3.4)

La

(
wj ,β0j , τ

2
j ;nij , ni.

)

=
I∏

i=1

∫ 1

0
p(nij |ni.;pij ,wj )p

(
pij |p0j , τ

2
j

)
dpij

=
I∏

i=1

∫ 1

0

{
wj + (1 − wj) exp(−ni.pij )

}ui

× {
(1 − wj) exp(−ni.pij )(ni.pij )

nij /nij !}1−ui

× {
pij (1 − pij )τj

√
2π

}−1 exp
[
−{logit(pij ) − β0j }2

2τ 2
j

]
dpij .

Denoting the maximum composite likelihood estimates under the null and the alternative
hypothesis as (ŵj , p̂0j ) and (w̃j , β̃0j , τ̃

2
j ), respectively, a composite likelihood ratio test for

variance component, that is, testing the heterogeneity of the reporting rates of the j th AE for
a given vaccine across years, can be constructed as

(3.5) LRj = La(w̃j , β̃0j , τ̃
2
j ;nij , ni.)

L0(ŵj , p̂0j ;nij , ni.)
.
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Under the null hypothesis, the parameter of interest τ 2
j lies on the boundary of the parameter

space, and the limiting distribution of LRj is a 50:50 mixture of χ2
0 , that is, a point mass at

0 and weighted χ2
1 distributions (Chen and Liang (2010), Chen et al. (2017), Huang et al.

(2020)),

(3.6) LRj → 1

2
χ2

0 + 1

2

e∗

e
χ2

1 ,

where e∗ and e are the elements in the inverse of Godambe information matrix Godambe
(1960), E{− ∂2 logL0

∂(τ 2
j )2 }{var ∂ logL0

∂τ 2
j

}−1E{− ∂2 logL0

∂(τ 2
j )2 } and sensitivity matrix, E{− ∂2 logL0

∂(τ 2
j )2 } which

can be calculated empirically. By comparing the test statistics with the critical values of the
mixture χ2 distribution, we can identify the AEs with significantly heterogeneous reporting
rates across years at prespecified significance level.

3.3. Profiling the temporal variation of reporting AEs with heterogeneous reporting rates
using empirical Bayes estimator. If the null hypothesis is rejected for the j th AE by the
proposed test described in Section 3.2, we conclude that the reporting rates of the j th AE
for the vaccine are statistically different across years. Such a temporal variation can indicate
safety issues. To further investigate the variation and identify the factors that may be associ-
ated with it, we propose an empirical Bayes estimator to identify the years with significantly
higher reporting rates of the j th AE. Different from the naive estimation of reporting rate
using p̂ij = nij /ni., i = 1, . . . , I , the empirical Bayes estimator borrows information across
years to achieve higher accuracy with lower mean squared error (Clayton and Kaldor (1987)).

Specifically, by equation (2), for the j th AE the reporting rates share a common distribu-
tion as

logit(pij ) ∼ N
(
β0j , τ

2
j

)
, i = 1, . . . , I,

where β0j , τ 2
j are the hyperparameters that can be empirically calculated from the data. The

posterior distribution of reporting rate in the ith year, pij , can be written as

(3.7)

f (pij |nij , ni.)

∝ f (nij |pij , ni.,wj )f
(
pij |β0j , τ

2
j

)
= {

wj + (1 − wj) exp(−ni.pij )
}ui

{
(1 − wj) exp(−ni.pij )(−ni.pij )

nij /nij !}1−ui

× {
pij (1 − pij )τj

√
2π

}−1 exp
[
−{logit(pij ) − β0j }2

2τ 2
j

]
,

and the posterior mean is a shrinkage estimator of pij which borrows information across
all the years. To numerically estimate the posterior mean, we use a Gibbs sampler to draw
samples from equation (3.7). In each iteration the parameters wj , β0j and τ 2

j are replaced
by the maximum composite likelihood estimates of La(wj ,β0j , τ

2
j ;nij , ni.), (w̃j , β̃0j , τ̃

2
j )

which makes the posterior mean an empirical Bayes estimator of pij .
To identify the years that have disproportionately higher reporting rates of the j th AE, we

propose to rank the posterior means of pij s, i = 1, . . . , I . We can also visualize the temporal
variation of reports of the j th AE after the vaccination by plotting the posterior mean of pij s

vs. years.

4. Simulation study.

4.1. Testing of heterogeneity of reporting rates of AE over years. We conducted simula-
tion studies to evaluate the type I error and the power of the proposed test. From the VAERS
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TABLE 1
Empirical rejection rates (%) in 1000 simulations of the proposed method to test the heterogeneity of reporting

rates of AE over I = 25,50 years, with the heterogeneity of the reporting rates τ2
j varying from 0 to 0.1, and the

probability of observing zero event wj increasing from 0 to 0.8

I = 25 I = 50

τ2
j τ2

j

wj 0 0.025 0.05 0.075 0.1 0 0.025 0.05 0.075 0.1

0 3.8 26.2 60.3 82.9 89.0 4.9 51.9 86.0 96.6 99.5
0.2 3.4 25.5 52.6 74.5 81.9 3.7 44.8 77.8 95.2 97.6
0.4 3.8 21.7 44.9 60.8 69.5 3.9 35.3 67.2 87.9 93.4
0.6 1.7 14.7 30.6 45.6 50.6 2.1 27.1 51.9 74.9 82.7
0.8 1.6 6.1 15.3 24.6 30.9 2.9 12.2 28.3 46.4 57.1

data for FLU3 (details of the data are discussed in Sections 2 and 5), we simulate I × J

tables with the row variable as calendar years and the column variable as types of AE after
vaccination. The marginal counts for each year/row are simulated from a uniform distribution
U(1000,5000) which is similar to the real data. The cell counts, that is, numbers of reported
events for each type of AE in each year, are generated using the zero-inflated Poisson model
in equation (3.1) given the marginal counts for each year. To evaluate the type I error, the j th
columns of the data are simulated from the null hypothesis with the reporting rates assumed
to be homogeneous across years, that is, pij = p0j , i = 1, . . . , I , thus the value of τ 2

j equals
to zero in equation (3.2). To evaluate the power of the proposed test, the j th column of the
data are simulated under the alternative hypothesis with reporting rates simulated from equa-
tion (3.2) with τ 2

j > 0. We set the average reporting rate p0j = 0.005 and investigate various
scenarios with different probabilities of zero events, wj , different magnitudes of heterogene-
ity of reporting rates, τ 2

j , and different number of years, I , to examine the performance of the
proposed test in different settings. The simulation is replicated for 1000 types of AEs, that
is, J = 1000. The VAERS reports currently date from 1990 to present. In order to evaluate
the performance of the proposed test when the number of years increases, we investigate the
scenarios of I = 25 and 50.

Table 1 summarizes the simulation results. We observe that the proposed test can control
type I error very well when the number of years gets larger, for example, I = 50, and the
probability of zero events gets lower, for example, wj < 0.4. Otherwise, the proposed test
is relatively conservative, for example, when I = 25, or wj = 0.6. The proposed test has
reasonable power to identify heterogeneity of reporting rates across years, even when the
variance of the reporting rate is as low as 0.025. The power of the proposed test increases
when number of years increases and when the probability of zero events decreases.

In summary, the simulation results suggest that the proposed test controls the type I error
well with data observed from a moderate number of years and has the power to identify small
heterogeneity of reporting rates.

4.2. Empirical Bayes estimator. We also compare the accuracy of estimating the rank of
the reporting rate across years by using the naive method and empirical Bayes method. The
naive method directly estimate the reporting rate of each year by pij = nij /ni.. The empirical
Bayes method estimates the parameters of the prior distribution of pij using the observations
first and then calculate the posterior mean of pij given the data. The accuracy of the rank
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TABLE 2
Comparison of the accuracy of rank estimation between the naive method and the proposed empirical Bayes

method based statistics R1, R3 and ρ in 1000 simulations with p0j = 0.005 and the number of years I = 25. .eb
and .naive represent the proposed empirical Bayes estimator and the naive estimator, respectively

wj τ2
j R1.eb R1.naive R3.eb R3.naive ρ.eb ρ.naive

0 0.025 0.558 0.554 0.102 0.09 0.831 0.828
0.05 0.68 0.676 0.162 0.158 0.895 0.894
0.075 0.732 0.73 0.218 0.222 0.923 0.922
0.1 0.782 0.776 0.278 0.264 0.939 0.938

0.2 0.025 0.53 0.532 0.09 0.066 0.828 0.826
0.05 0.662 0.666 0.15 0.138 0.893 0.892
0.075 0.734 0.728 0.224 0.218 0.920 0.919
0.1 0.768 0.774 0.288 0.266 0.934 0.934

0.4 0.025 0.548 0.56 0.106 0.11 0.821 0.823
0.05 0.662 0.68 0.186 0.174 0.888 0.887
0.075 0.738 0.734 0.25 0.238 0.915 0.914
0.1 0.784 0.778 0.314 0.3 0.930 0.929

0.6 0.025 0.596 0.598 0.132 0.15 0.800 0.809
0.05 0.686 0.682 0.242 0.25 0.872 0.875
0.075 0.718 0.72 0.31 0.308 0.901 0.902
0.1 0.752 0.746 0.364 0.354 0.918 0.918

estimation is characterize by several statistics:

R1 = Number of times correctly identify the year with largest reporting rate

Number of replications
,

R3 = Number of times correctly identify the year with first three largest reporting rate

Number of replications
,

ρ = Spearman correlation between the true rank and estimated rank.

As shown in Table 2, the rank estimation by using the empirical Bayes method has a slightly
better accuracy than the naive method.

In Appendix B we also provided results from additional simulation scenarios with I = 100
and rejection rates evaluated at the nominal levels of 0.01 and 0.0025. Our simulations and
the data analyses are conducted using R version 3.5.2 (see Supplementary Material (Huang
et al. (2021))), and the codes will be made available at https://github.com/Penncil/.

5. Application to VAERS FLU3 data. We applied the proposed test to the VAERS
FLU3 data described in Section 2. We first conducted the analysis at the SOC level of adverse
events. The total number of SOCs is 26, and the number of years studied is 24. A list of the 26
SOCs is shown in Table 3. After the mapping the data is a 24 × 26 table with 74 zero-count
cells (11.9%).

We tested the heterogeneity of reporting rates over the 24 years for each of the 26 AEs (in
terms of SOCs) using the proposed composite likelihood ratio test. Figure 2 summarizes the
p-values, together with the total number of events reported during the study period for each
SOC. We observed a separation of p-values of the 26 SOCs, indicated by the red solid line
with a significance level of 10−6 in Figure 2. There were eight SOCs that had significantly
heterogenous reporting rates over years (p ≤ 10−6) than the other 18 SOCs (p > 10−6), and
10 of the 26 SOCs had significantly heterogenous reporting rates at significance level 0.05
after Bonferroni correction, indicated by the blue dash line in Figure 2.

https://github.com/Penncil/
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TABLE 3
The MedDRA Terminology SOC List

SOC1 Infections and infestations
SOC2 Neoplasms benign, malignant and unspecified (including cysts and polyps)
SOC3 Blood and lymphatic system disorders
SOC4 Immune system disorders
SOC5 Endocrine disorders
SOC6 Metabolism and nutrition disorders
SOC7 Psychiatric disorders
SOC8 Nervous system disorders
SOC9 Eye disorders
SOC10 Ear and labyrinth disorders
SOC11 Cardiac disorders
SOC12 Vascular disorders
SOC13 Respiratory, thoracic and mediastinal disorders
SOC14 Gastrointestinal disorders
SOC15 Hepatobiliary disorders
SOC16 Skin and subcutaneous tissue disorders
SOC17 Musculoskeletal and connective tissue disorders
SOC18 Renal and urinary disorders
SOC19 Pregnancy, puerperium and perinatal conditions
SOC20 Reproductive system and breast disorders
SOC21 Congenital, familial and genetic disorders
SOC22 General disorders and administration site conditions
SOC23 Investigations
SOC24 Injury, poisoning and procedural complications
SOC25 Surgical and medical procedures
SOC26 Social circumstances

To further identify the SOCs that had significantly varying reporting rates, we used the
proposed empirical Bayes method to estimate the reporting rate in each year for the 10 SOCs
with significant p-values. We observed the trajectories of the reporting rates over time could
be summarized to three categories: fluctuation without an obvious trend, decreasing trend and

FIG. 2. P-values obtained from the proposed test in testing the heterogeneity of reporting rates of AEs during
1990 to 2013 and total number of reported AEs for FLU3 from 1990 to 2013. The blue dash line indicates a
significance level of 0.05 after Bonferroni correction, and red solid line indicates a significance level of 10−6.



262 J. HUANG ET AL.

FIG. 3. Examples of AEs that had significantly varying reporting rates from 1990 to 2013 at the SOC and PT
levels. (a)–(c): Examples of AEs at the SOC level with reporting rate that had (a) yearly fluctuations without an
obvious trend, (b) decreasing trends and (c) increasing trends. (d): Examples of AEs at the PT level within SOCs
23 and 25 that had significantly heterogeneous reporting rates.

increasing trend. For each category we showed two examples in the column panels of Fig-
ure 3(a)–(c). Specifically, to gain further insights into FLU3 vaccine safety, we zoomed into
the PT level of AEs and applied the proposed test to all the PTs that are included in SOC 23
and 25 which showed increasing reporting rates. We found four PTs had significantly hetero-
geneous reporting rates from 1990 to 2013 in SOC 23 and 25: nuclear magnetic resonance
imaging spinal abnormal, CSF test abnormal, laboratory test abnormal and blood product
transfusion. We visualized the observed reporting rates of these PTs in each year (number of
VAERS reports, including the PT after taking FLU3 vaccine/ total number of VAERS reports
related to FLU3 vaccine) in Figure 3(d).

We found the nuclear magnetic resonance imaging spinal abnormal was not reported un-
til 2013. In 2013, there were 31 reports (0.5% of total number of VAERS reports related to
FLUE3). By investigating the MedDRA in these consecutive years, we found such increase
was due to the update of PT in MedDRA. The PT, the nuclear magnetic resonance imag-
ing spinal abnormal, was not included in MedDRA until version 16.0 was released in March
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2013. Thus, this signal could be a false positive caused by the update of MedDRA vocabulary.
The second PT identified is CSF test (cerebrospinal fluid test), which is commonly used for
diagnosis of conditions that affect the brain and spinal cord, including diagnosis of autoim-
mune disorders, such as Guillain–Barré syndrome (GBS). In Figure 3(d) we detected two
peaks of reporting CSF test after FLU3 vaccination, 1993–1995 and 2003–2006, suggesting
potential increasing risk of GBS related to FLU3 vaccine in these years. Both signals were
confirmed, investigated and reported in literatures (Lasky et al. (1998), Iqbal et al. (2015)).
Lasky et al. (1998) conducted investigation using medical data from hospital-discharge sum-
maries in four states to study the potential increase of influenza vaccine associated GBS
during 1992–1994, and similar investigation was conducted by Iqbal et al. (2015) in 2003–
2006.

Our method also identified heterogeneous reporting rates of laboratory test abnormal and
blood product transfusion from 1990 to 2013. Specifically, the VAERS received increased
numbers of reports with laboratory test abnormal in 2002–2006 and with blood product trans-
fusion in 2004–2006 and 2008–2009. Through discussions with a group of investigators at
CDC who leads VAERS study, we found that the laboratory test abnormal and blood product
transfusion are generic descriptions which can contain a combination of AEs. Since the use
of the general terms can be affected by other more specific terms being available, it would
potentially be beneficial to explore the wider range of more specific lab test or transfusion
term changes during the period of signals. However, as VAERS reports do not contain the
lower level term (LLT) of AEs, we were not able to identify the specific AE types that were
driving the spike in reporting rates.

6. Discussion. In this paper we proposed a variance component test to study the tempo-
ral variation of reporting AEs over years for vaccine safety using VAERS data. To the best
of our knowledge, this method is the first effort to fill the methodological gap in rigorously
monitoring vaccine safety via testing the temporal variation of reporting AEs in VAERS. Our
simulation studies demonstrated that the proposed method can control type I error and is sen-
sitive in detecting temporal variation of reporting rate of AE over years in various scenarios.
We applied the proposed method to the FLU3 data from VAERS and found 10 SOCs had
significantly heterogenous reporting rates from 1990 to 2013, and two of them were increas-
ing. Within the two SOCs we detected four PTs with increasing reporting rates from 1990 to
2013. In this study we illustrated the proposed method using the example of testing for an-
nual variation of AE reports of FLU3 vaccine. In practice, the safety surveillance may need
to occur more frequent than annual analysis. The proposed method can be adapted to test for
monthly or quarterly heterogeneity as needed.

The proposed method has several strengths. First, our method attempted to address several
key limitations of VAERS data, including the unavailability of the whole vaccinated pop-
ulation, underreporting of AEs and zero-inflated observations. Specifically, the changes in
number of reported AEs can be caused by the fluctuation of total number of vaccinated peo-
ple who are willing to report in VAERS over time. A simple comparison of the total counts of
AEs reported in VAERS over years can be confounded by such an unknown fluctuation which
may be due to many other reasons, such as public awareness. The proposed method allevi-
ates the impact of fluctuation of unknown population in studying variation of reporting AEs
across years using the conditional likelihood. Second, the proposed method uses a composite
likelihood approach to achieve parsimony of the statistical model. Specifically, the numbers
of AEs reported for a particular vaccine across years are correlated, but the correlation struc-
ture among the consecutive AE reports is complicated, as the vaccinated population vary over
year and are largely unknown. The proposed composite likelihood method is appealing in this
scenario, as it circumvents the challenge of modeling such a complex correlation structure,
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which is commonly not of primary interest, yet provides valid statistical inference. Third,
the proposed method is powerful in detecting positive signals by using a variance component
test to test the heterogeneity of reporting rates over years. Moreover, the proposed method
accounts for the zero-inflated feature of VAERS data and quantify the temporal variation of
the reporting rate based on a ranking procedure of the estimated reporting rates over years by
using empirical Bayes method and the shrinkage estimator.

Our approach also has a few limitations that deserve further investigation. The proposed
method can be used by investigations as a filtering method to detect safety signals, but it
cannot be used as a significance test to quantify the strength of the evidence of heterogene-
ity. The magnitude of the p-value obtained from the test should not be overinterpreted. It
suggests statistical significance which is not an indicator of the importance of the evidence
or a true causal effect. Larger sample size (number of years) can achieve higher statistical
significance, but the clinical meaning of the results should be discussed with domain experts.
Second, the proposed method may have low power to detect safety signals for vaccines that
are not frequently updated or safety signals that are caused by reasons other than the update
of vaccines or changes of practices.

Our method is a tool to detect temporal variation of reporting adverse events for existing
vaccines. For new vaccines that are approved for a short period of time, there may be insuffi-
cient years of data to detect such temporal variation. In this situation, methods that comparing
the overall reporting rate of a particular AE to other AEs for a given vaccine or comparing
the overall reporting rate of a given AE for a particular vaccine to other vaccines, for ex-
ample, the proportional reporting ratios and reporting odds ratios, are more appropriate. In
event of unexpected pandemics, like the outbreaks of COVID-19 in 2020, the total number
of AE reports in VAERS may be substantially different from other years. The advantage of
our method is that we model the likelihood of reporting a given AE conditional on the total
number of reports observed in each year. Such a conditional likelihood method alleviates the
impact of fluctuation of the vaccinated population in comparing reported AEs across years.

In our investigation the proposed method also detected false positive signals caused by
update of MedDRA vocabulary. MedDRA updates two times a year; each includes a com-
bination of changes to existing terms and new terms added to MedDRA (MedDRA (2017)).
Signals of increased reports can be due to the addition of new terms or merging of multiple
terms into one. This makes the study of temporal variation challenging. However, as noted
by CDC, the study of VAERS is deemed as safety signal detection and hypothesis generation
rather than confirmatory data analysis. We believe the proposed method is a useful proce-
dure, which is sensitive to true signals and reduces false positive detection associated with
increased number of total VAERS reports, that can be attributable to factors like publicity
and increased coverage of vaccination population. In this study we scanned safety signal at
the SOC level and then zoomed into the PT level. Alternatively, we may scan all signals at
the PT level. However, such strategy is more affected by the changing of PT definitions in
MedDRA and suffers more from the multiple tests. Empirical comparisons of these strategies
are important and instructive to practical investigators. This topic will be investigated in the
future.

As a passive database for epidemiological studies, VAERS has several limitations. One
major problem is the unavailability of a control group because adverse events in unvacci-
nated people are not reported to VAERS. Thus, it is difficult to assess whether the number of
reported events is different from the number that would have been observed in the absence
of vaccination. One possible way to address this issue may be combining the VAERS data
with data from the Vaccine Safety Datalink project (Centers for Disease Control and Pre-
vention (2017d)), where electronic health data and the health status of vaccine recipients are
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available. The quality of VAERS data is also less than optimal. Because reports are submit-
ted by a wide variety of individuals, few of whom are experienced in completing data forms
for medical studies, many reports omit important data and contain obvious errors. Given that
VAERS receives over 30,000 reports annually, no attempt is made to assure the accuracy and
completeness of the database, although checks and follow-up are performed for a few key
data items, such as the type of vaccine administered and the severity of the event. Finally, the
simultaneous administration of multiple vaccines, following currently recommended vaccine
schedules, further complicates the assessment of AEs because it is challenging to determine
which of the vaccines (if any) was most likely to cause the outcome.

Due to these limitations, VAERS data are typically unable to provide definitive evidence
of causal associations between vaccines and particular reported outcomes. Nevertheless,
VAERS contributes to public health in critical ways. For example, reports in VAERS can
rapidly document possible effects, cover a larger population, longer follow-up time and con-
tain more types of AEs. To identify vaccine safety signals using VAERS data is critical and
potentially impact millions of vaccine recipients, as VAERS is the front line for vaccine
safety. In a sense, the proposed method for monitoring increase of AEs in VAERS is a signal
detection method to provide early warning signals and generate meaningful hypotheses for
further investigations.
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APPENDIX A: LIST OF ABBREVIATIONS

A list of abbreviations used in the main text was provided in Table 4.

APPENDIX B: ADDITIONAL SIMULATION STUDIES

In this appendix we present results from additional simulation studies. Tables 5 and 6
showed results from the same scenarios in Table 1, with rejection rates evaluated at the nom-
inal levels of 0.01 and 0.0025, respectively. Table 7 showed results with I = 100 years, with
rejection rates evaluated at the nominal levels of 0.05 and 0.001, respectively.

TABLE 4
Abbreviations used in the main text

AE adverse event
BCPNN Bayesian confidence propagation neutral network
CDC Centers for Disease Control and Prevention
DTP diphtheria, tetanus and acellular pertussis
FAERS FDA Adverse Event Reporting System
FDA Food and Drug Administration
FLU3 trivalent influenza virus vaccine
GBS Guillain–Barré syndrome
MedDRA Medical Dictionary for Regulatory Activities
MGPS multiitem Gamma Poisson shrinker
MLRT maximum likelihood ratio test
MMR measles, mumps and rubella
MSAEFI Monitoring System for Adverse Events Following Immunization
PT preferred term
POR reporting odds ratios
PRR proportional reporting ratios
SOC system organ class
VAERS Vaccine Adverse Event Reporting System
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TABLE 5
Empirical rejection rates (%) in 1000 simulations of the proposed method to test the heterogeneity of reporting
rates of AE over I = 25, 50 years, with the heterogeneity of the reporting rates τ2

j varying from 0 to 0.1, and the
probability of observing zero event wj increasing from 0 to 0.8 at the nominal level of 0.01

I = 25 I = 50

τ2
j τ2

j

wj 0 0.025 0.05 0.075 0.1 0 0.025 0.05 0.075 0.1

0 0.6 14.2 44.2 68.8 83.4 0.5 31.0 70.7 94.2 98.2
0.2 0.5 11.5 35.2 59.3 74.2 1.1 22.8 63.2 86.8 94.5
0.4 0.9 9.1 26.2 44.2 57.1 0.6 17.6 48.8 76.0 89.9
0.6 0.1 4.9 17.7 29.6 41.5 0.6 12.7 37.1 55.7 72.5
0.8 0.2 4.0 7.5 12.8 18.7 0.7 4.9 13.8 30.8 41.6

TABLE 6
Empirical rejection rates (%) in 1000 simulations of the proposed method to test the heterogeneity of reporting
rates of AE over I = 25, 50 years, with the heterogeneity of the reporting rates τ2

j varying from 0 to 0.1, and the
probability of observing zero event wj increasing from 0 to 0.8 at the nominal level of 0.0025

I = 25 I = 50

τ2
j τ2

j

wj 0 0.025 0.05 0.075 0.1 0 0.025 0.05 0.075 0.1

0 0.1 7.6 30.5 56.4 75.1 0.1 18.3 60.3 89.5 95.6
0.2 0.1 5.9 23.5 45.7 62.3 0.2 14.1 50.7 78.3 90.7
0.4 0.3 4.3 15.7 33.6 48.0 0.1 8.6 36.5 66.4 82.1
0.6 0.0 2.4 10.6 21.8 31.9 0.3 7.0 25.3 42.8 63.2
0.8 0.0 0.8 3.9 7.6 12.0 0.2 2.4 8.7 20.3 32.1

TABLE 7
Empirical rejection rates (%) in 1000 simulations of the proposed method to test the heterogeneity of reporting
rates of AE over I = 100 years, with the heterogeneity of the reporting rates τ2

j varying from 0 to 0.1, and the
probability of observing zero event wj increasing from 0 to 0.8 at the nominal levels of 0.05 and 0.0025

α = 0.05 α = 0.0025

τ2
j τ2

j

wj 0 0.025 0.05 0.075 0.1 0 0.025 0.05 0.075 0.1

0 5.3 75.5 98.7 100.0 100.0 0.2 42.3 91.6 99.9 100.0
0.2 6.0 72.3 96.6 99.6 100.0 0.1 35.9 83.3 97.9 100.0
0.4 6.1 62.6 91.8 98.6 100.0 0.3 25.1 69.1 92.8 98.7
0.6 3.8 45.6 78.6 94.5 98.3 0.1 14.6 50.4 80.4 91.1
0.8 2.9 26.4 53.1 73.3 83.7 0.1 5.7 23.6 45.8 62.5
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SUPPLEMENTARY MATERIAL

R functions and an example to implement the proposed method (DOI: 10.1214/20-
AOAS1393SUPP; .zip). We provide R functions together with an example to implement the
proposed composite likelihood ratio test.
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