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Conventional analysis of neuroscience data involves computing average
neural activity over a group of trials and/or a period of time. This approach
may be particularly problematic when assessing the response patterns of neu-
rons to more than one simultaneously presented stimulus. In such cases the
brain must represent each individual component of the stimuli bundle, but
trial-and-time-pooled averaging methods are fundamentally unequipped to
address the means by which multiitem representation occurs. We introduce
and investigate a novel statistical analysis framework that relates the firing
pattern of a single cell, exposed to a stimuli bundle, to the ensemble of its
firing patterns under each constituent stimulus. Existing statistical tools fo-
cus on what may be called “first order stochasticity” in trial-to-trial variation
in the form of unstructured noise around a fixed firing rate curve associated
with a given stimulus. Our analysis is based upon the theoretical premise that
exposure to a stimuli bundle induces additional stochasticity in the cell’s re-
sponse pattern in the form of a stochastically varying recombination of its
single stimulus firing rate curves. We discuss challenges to statistical estima-
tion of such “second order stochasticity” and address them with a novel dy-
namic admixture point process (DAPP) model. DAPP is a hierarchical point
process model that decomposes second order stochasticity into a Gaussian
stochastic process and a random vector of interpretable features and facil-
itates borrowing of information on the latter across repeated trials through
latent clustering. We illustrate the utility and accuracy of the DAPP analysis
with synthetic data simulation studies. We present real-world evidence of sec-
ond order stochastic variation with an analysis of monkey inferior colliculus
recordings under auditory stimuli.

1. Introduction. The brain is capable of encoding multiple objects presented simultane-
ously. But the neural computing behind this complex operation—of great relevance to compu-
tational and cognitive neuroscience—remains poorly understood. Presently lacking are sta-
tistical models and tools to quantify the relationship between an individual cell’s response
to a bundle of stimuli presented together and the ensemble of its response patterns evoked
when each stimulus is presented in isolation. We fill this gap with a novel statistical analysis
framework developed under the theory that a cell’s response to a stimuli bundle is a stochas-
tically varying, dynamic combination of its single stimulus response patterns. Such a theory
allows the possibility that each item in the stimuli bundle dominates the cell’s response pat-
tern during distinct periods of time. We have recently presented evidence in favor of such an
interpretation for auditory and visual stimuli (Caruso et al. (2018)).
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For simplicity, and also limited by available experimental data, we restrict this discussion
to stimuli bundles consisting of two stimuli which evoke measurably different response pat-
terns from a neural cell. Neural activity in each experimental trial is measured as a spike
train recorded over a common time horizon. We assume repeated trials are available from
each of the following three experimental conditions: A: “exposure to a stimulus A alone,” B:
“exposure to a stimulus B alone” and AB: “exposure to stimuli A and B together.”

Statistical analysis of spike-train data typically assumes an underlying, stimulus-driven
response curve from which a stochastic point pattern of spiking times is generated on each
experimental trial (Gerstein and Kiang (1960)); see Kass, Ventura and Brown (2005) and the
references therein for a comprehensive overview. The response curve, taken as a function
of time, is interpreted to give the potentially time-varying expected firing rates of the cell
in response to the given stimulus. Variations of the spike train across multiple trials is con-
sidered “random noise” around this expected rate curve, realized in the form of a random
point pattern. We refer to such variation as first order stochasticity. Statistical analyses under
this framework usually proceed by aggregating spike trains across trials to improve accuracy
in estimating the underlying response curve. We adopt this framework to estimate the ex-
pected firing rate curves λA(t) and λB(t) associated with, respectively, stimulus A and and
stimulus B.

The same framework, however, may not apply to the case when both stimuli A and B
are presented together and the brain perceives them as distinct signals (perhaps revealed by
behavioral response). To the brain, the stimuli are not fused together as a novel combined
stimulus but remain a stimuli bundle with each signal maintaining its individuality. It is con-
ceivable that exposure to a stimuli bundle may induce a second type of stochasticity in the
cell’s response. Each trial under condition AB may involve its own distinct response curve
that combines both λA and λB, with the combination depending on unmeasured upstream or
contemporaneous representation of the stimuli bundle by other cells.

We refer to such random but structural variation across trials as second order stochasticity.
We distinguish second order stochasticity from a broader umbrella term trial-to-trial vari-
ation often used in the literature (Kass, Ventura and Brown (2005), Ventura, Cai and Kass
(2005)). Our focus is on quantifying variability that is specifically activated by the presence
of two stimuli at the same time. Disambiguation of second order stochasticity from trial-to-
trial variations that are not specific to the AB condition is an additional statistical challenge
which is addressed in Section 6.3.

2. Statistical analysis of second order stochasticity.

2.1. The dynamic averaging model. Our general approach is to describe second order
stochasticity as dynamic averaging, in which the relative contributions of A-like and B-like
response patterns can vary across time on multiple scales. Specifically, we describe the rate
curve behind any specific AB trial as a convex combination α(t)λA(t) + (1 − α(t))λB(t),
involving a possibly time varying weight curve α(t). Second order stochasticity manifests
when the entire weight curve varies stochastically across AB trials, either stably within a trial
but variably across trials or variably across both trials, and time within trials.

A weight curve α(t) that is stable across time within a trial but clusters bimodally near
zero and one across trials constitutes a special case, consistent with neurons encoding only
one of the two stimuli per trial and doing so in a fashion that is consistent with how they
respond when only that stimulus is present. In our previous study we referred to such cases
as showing whole-trial fluctuations (“Mixtures,” Caruso et al. (2018)). If the underlying firing
rate dynamically alternates between those encoded by λA(t) and λB(t) within the course of a
single trial, with α(t) approaching values of 0 and 1 for periods of time, the neuron may be
encoding each stimulus separately during distinct temporal epochs of subtrial durations.
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FIG. 1. Multiple forms of stochasticity in inferior colliculus (IC). Each row corresponds to a distinct experiment
set with recording from monkey IC and shows how a cell responds to a triplet of experimental conditions A, B and
AB, where A and B each corresponds to an auditory stimulus in the form of a bandpass filtered noise played from
a certain angle. Each black curve represents one trial and shows the trial’s spiking rate which has been smoothed
to aid visualization. The orange and cyan bands show estimates and uncertainty bands for λA and λB : (a) Set 1:
AB responses appear to be a superimposition of A and B responses. (b) Set 2: AB responses appear to fluctuate
more widely within each trial than A or B responses. (c) Set 3: AB responses appear nonwavering and A-like
within any trial but partially shifted toward a middling firing rate.

In either of these two special cases, the neuron is imagined to encode for only a single
stimulus at any given time point. Our dynamic averaging model goes beyond such one signal
at a time view and allows for cases where the neuron’s firing rate at any time point on an AB
trial is truly intermediary between its A-level and B-level firing rates at the same time point.
Here, the weight curve α(t) is seen as undulating, within or across trials, between a range of
values that are bounded away from the extremes of zero or one.

In Figures 1 and 2, we visualize response patterns of three example inferior colliculus cells
belonging to three different sets of our experiments. For the cell in Set 1, AB responses appear
to be a superimposition of A and B responses (Figure 1), conforming to random selection of
signals at the whole trial level. Correspondingly, the AB spike count distribution appears as
a mixture of A and B spike count distributions (Figure 2). In contrast, in both Sets 2 and
3 the cells have their AB spike count distribution sit in between their A and B spike count
distributions. However, in Set 2, AB responses appear to fluctuate more widely within each
trial than A or B responses, whereas, in Set 3, AB responses appear nonwavering and A-like
within any trial but partially shifted toward a middling firing rate.

2.2. Statistical estimation challenges. It is challenging to carry out statistical analysis
of second order stochasticity under the dynamic averaging assumption. First, purely from
a statistical accuracy perspective, estimation of the weight curves is difficult because one
has access to only one spike train for each unknown weight curve. An ordinary aggregation
across the AB trials no longer helps in combining information. Instead, one must rely on
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FIG. 2. Smoothed histograms of whole-trial spike counts of the three IC experiment sets grouped by experimental
condition A, B and AB. For each set the AB total spike count distribution sits between the distributions under
conditions A and B. But the shape of the AB distribution varies across sets.

a hierarchical model that relates the weight curves to each other through a few meaningful
features which are then estimated jointly from the pooled data.

Second, on a more conceptual level, simply estimating the weight curves is not enough
to draw inference on the exact nature of the cell’s second order stochasticity. What is more
relevant is to be able to predict how the cell is going to respond if new trials were carried
out under the AB condition. While the weight curves associated with the new trials cannot be
predicted exactly, one should be able to predict what features these weight curves are likely
to possess.

We address these challenges with a novel hierarchical point process model. We formulate
the distribution of the weight curves as an unknown quantity to be estimated from the data. We
reduce the estimation complexity of this problem by assuming the unknown stochasticity of
the weight curves can be decomposed into a known Gaussian process distribution on smooth
curves and an unknown probability distribution on a vector of a small number of meaningful
summaries of the weight curves. The latter unknown probability distribution is conceived to
be a discrete distribution and is assigned a Dirichlet process (Ferguson (1973)) prior to carry
out a full Bayesian estimation. The discreteness assumption induces a (stochastic) clustering
of the AB trials, facilitating borrowing of information across weight curves. Estimating the
unknown distribution of the weight curves leads immediately to realistic prediction of the
features of the weight curve in future trials.

3. Dynamic admixture point process model.

3.1. Poisson process formulation. Let nA, nB and nAB give the numbers of trials under,
respectively, conditions A, B and AB. Each trial produces a distinct spike train measurement.
We assume that any neural spike train recorded over a given response window [0, T ] is a
realization of a stochastic point process (N(t) : t ∈ [0, T ]) where N(t) denotes the spike
count between time zero and t , 0 ≤ t ≤ T . For each condition e ∈ {A,B,AB} and each trial
j ∈ {1, . . . , ne}, let Ne

j (t) denote the corresponding point process.
For conceptual simplicity and analytical tractability we make a Poisson distributional as-

sumption on these three sets of point processes:

1. NA
j , j = 1, . . . , nA, are independent realizations of an inhomogeneous Poisson process

with intensity function λA(t), t ∈ [0, T ];
2. NB

j , j = 1, . . . , nB, are independent realizations of an inhomogeneous Poisson process
with intensity function λB(t), t ∈ [0, T ];
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3. NAB
j , j = 1, . . . , nAB, are independently distributed inhomogeneous Poisson processes

but with distinct intensity functions. The intensity function of the j th such process is given
by

λj (t) = αj (t)λA(t) + {
1 − αj (t)

}
λB(t), t ∈ [0, T ],

where αj (t) ∈ [0,1], t ∈ [0, T ], is a possibly time varying weight curve.

To incorporate second order stochasticity in our model, we assume the weight curves αj (t),
j = 1, . . . , nAB, are independently distributed according to some unknown probability law
P on the space of weight curves. This probability law may be understood as a characteristic
of the neural cell when subjected to condition AB. Estimation of P is the key goal of our
statistical analysis. We call this model the dynamic admixture of Poisson process (DAPP)
model.

3.2. Modeling the stochasticity of weight curves. The space of weight curves is large
and complex, and statistical estimation of an unknown probability law on this space is next to
impossible without strong structural assumptions. Below we introduce a model for P where
the unknown stochasticity of the weight curve is reduced to an unknown stochasticity of
only a limited number of its features, namely, the curve’s long term average value, maximum
deviation from the average and the extent of waviness around the average. The remaining
stochasticity is assumed to be governed by a known probability law, namely, a modified
Gaussian measure.

3.2.1. A Gaussian probability law for curves on [0, T ]. To be specific, for any � > 0, let
CSE

� : [0, T ] × [0, T ] → (0,∞) denote the so-called squared exponential kernel with charac-
teristic length scale �, given by

CSE
� (s, t) = σ 2

0 exp
{
−(s − t)2

2�2

}
, s, t ∈ [0, T ],

where σ 2
0 is a fixed scalar to be discussed later. For any scalars φ and ψ > 0, let GP(φ,ψCSE

� )

denote the probability law of a Gaussian process (η(t) : t ∈ [0, T ]) with mean and covariance
functions

(1) E
[
η(t)

] ≡ φ, Cov
[
η(s), η(t)

] = ψCSE
� (s, t), t, s ∈ [0, T ].

It is well known that GP(φ,ψCSE
� ) defines a Gaussian measure on the space of smooth curves

on [0, T ].

REMARK 1. Random curves generated from this measure are not exactly periodic but are
systematically wavy in the sense that the number of times such a curve crosses any fixed level
is a random variable with a finite expectation. Indeed, the expected number of up-crossings1

of level φ is precisely T/(2π�) ≈ 0.16 · T/�. Therefore, a GP(φ,ψCSE
� ) law favors flat or

wavy curves, depending upon whether � is, respectively, large or small. With � = 160%T ,
one expects little waviness since the expected number of up-crossing is only a tenth, whereas,
with � = 4%T one expects four up-crossings and hence considerable waviness.

REMARK 2. Furthermore, for any random curve η generated from GP(φ,ψCSE
� ), the

scalar φ gives the expected value of the curve at any time point t as well as the expected
value of its long term average η̄ := (1/T )

∫ T
0 η(t) dt . If η′ were another curve generated from

1Crossing from below; see Adler and Taylor ((2009), Chapter 11).
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the same law and independently of η, then E{η(t) − η′(t)}2 = 2ψσ 2
0 at every t ∈ [0, T ] and

hence ψ represents the range of the curve across repeated random generations. Both ψ and
� play a role in controlling the within-trial deviation of η(t) around its long term average η̄.
This deviation can be quantified as

(2) E

[
1

T

∫ T

0

(
η(t) − η̄

)2
dt

]
= ψσ 2

0

{
1 − T −2

∫∫
[0,T ]2

e
− (s−t)2

2�2 ds dt

}
.

The right-hand side of (2) is a monotonically decreasing function2 of �/T , going from a
maximum value of ψσ 2

0 at � = 0 to 0 as �/T → ∞. For � = 4%T , the right-hand side of (2)
equals 0.9 · ψσ 2

0 which means the within-trial deviation is expected to be 90% of the across-
trial variance of the curve at any single time point. On the other hand, for � = 160%T , the
within-trial deviation equals 0.03 · ψσ 2

0 , that is, only 3% of the across-trial variance.

3.2.2. A hierarchical Gaussian measure model for P. We model P as the probability law
of a random weight curve α(t) generated by the following sequence of operations:

draw (φ,ψ, �) ∼Q,(3)

draw η ∼ GP
(
φ,ψCSE

�

)
,(4)

set α(t) = 1

1 + e−η(t)
, t ∈ [0, T ],(5)

where Q is an unknown probability law on (−∞,∞) × (0,∞) × (0,∞) to be estimated
from data. Even without (3), one could simply take (4)–(5) as a model for P where the only
unknown quantities are the three scalars φ, ψ and � which would render parameter estimation
far easier. Therefore, it is important to justify why we must include (3) in our model for P.

Consider the case where a cell’s second order stochasticity is close to 50–50 random selec-
tion; in nearly half of the AB trials α(t) ≈ 0.9, t ∈ [0, T ], while in the other half α(t) ≈ 0.1,
t ∈ [0, T ]. Suppose our model for P were based of only (4)–(5) with the vector (φ,ψ, �) be-
ing the only unknown quantity. In light of the remarks in Section 3.2.1, one would estimate
φ ≈ 0 and both ψ and � large. Hence, the estimated P will produce α(t) curves that are nearly
flat across time but with no discernible concentration around either the 0.1 mark or the 0.9
mark. Therefore, while the estimated model will provide great fit to the observed data, it will
completely fail to learn the true nature of the second order stochasticity.

Inclusion of (3) in modeling P offers a much richer framework to learn various kinds of
second order stochasticity. The vector (φ,ψ, �) in (4) exerts direct control on several broad
features of the random weight curve α in (5), for example, its waviness, range, long term
average and deviation around the long term average. The unknown probability measure Q of
(φ,ψ, �) represents the unknown nature of stochasticity of these broad features.

4. Bayesian inference: Prior specification. Although (3)–(5) offer a great reduction of
complexity in statistical estimation of P, estimating the remaining unknown quantity, the
probability measure Q, still remains a challenging problem. We adopt a Bayesian inference
technique to estimate Q from data where a well-chosen prior distribution on Q offers further
structural simplification and regularization through latent clustering.

REMARK 3 (Notation). Below we use the generic expression p(x|y) to understand the
conditional distribution and/or the conditional probability density function (pdf) of one vari-
able x given another variable y. We use Poi(μ) to denote the Poisson distribution with

2Given by ψσ 2
0 {1 − f (�/T )} where f (r) = 2[√2πr{
(r−1) − 0.5} − r2{1 − exp(−0.5r−2)}], r ≥ 0.
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mean μ, Bin(n,p) to denote the binomial distribution with size n and success probability
p, N(m,v) to denote the (possibly multivariate) normal distribution with mean (vector) m

and variance (matrix) v, Be(a, b) to denote the beta distribution with shape parameters a and
b; Dir(a1, . . . , ak) to denote the k-dimensional Dirichlet distribution with shape parameters
ai , i = 1, . . . , k, Ga(r, s) to denote the gamma distribution with shape r and rate s (so that
mean is r/s); IG(r, s) to denote the inverse-gamma distribution with shape r and rate s; δx

to denote the Dirac probability measure that assigns probability one to a single atom x and
for an ordered, finite set A = {a1, . . . , ak} of size k and a probability vector p = (p1, . . . , pk),
PA,p to denote the discrete distribution

∑k
i=1 piδai

supported on A that assigns probability
pi to atom ai , i = 1, . . . , k.

4.1. A structural simplification of characteristic length-scale. We restrict the character-
istic length scale � to realize values in a known finite set L = {�∗

1, . . . , �
∗
L} ⊂ (0,∞). Such

a choice offers great computational speed and can be justified by Remarks 1 and 2. In par-
ticular, Remark 1 implies that � is intimately related to the number of stochastic oscillations
of α, with the expected number of up-crossing of its long-term average being ≈ 0.16T/�.
Since this number can be limited to a finite range that is scientifically relevant, one could
find a suitable finite set L that offers a good coverage of plausible oscillatory behavior of the
weight curves. For example, to represent between zero and four oscillations, one could work
with L = {0.16T/N : N ∈ {0.01,0.5,1,2,3,4}}. In our experiments we typically have a re-
sponse horizon of T = 1000 (measured in milliseconds), for which the corresponding grid,
reordered from the smallest to the largest, is L = {40,53.3,80,160,320,16,000}.

We model Q hierarchically as the distribution of (φ,ψ, �) from the specification

(6) (φ,ψ,π) ∼ Qφ,ψ,π , � ∼ PL,π ,

where π is a random element of the L-dimensional probability simplex �L = {(π1, . . . , πL) ∈
RL : πi ≥ 0,

∑
i πi = 1} and, Qφ,ψ,π is an unknown probability measure on (−∞,∞) ×

(0,∞) × �L. A prior distribution on Q is specified by assigning a prior distribution to
Qφ,ψ,π .

4.2. Dirichlet process prior. We assign Qφ,ψ,π a Dirichlet process prior DP(κG) with
precision κ > 0 and base probability measure G on (−∞,∞)× (0,∞)×�L that depends on
the precision to be specified below. This prior specification restricts Qφ,ψ,π to be a (random)
discrete probability measure with infinitely many atoms

(7) Qφ,ψ,π =
∞∑

h=1

ωhδ(φ∗
h,ψ∗

h ,π∗
h),

where the atoms (φ∗
h,ψ∗

h,π∗
h), h = 1,2, . . . , are drawn independently from the base mea-

sure G and the weights ωh, h = 1,2, . . . , admit the stick-breaking representation ωh =
βh

∏h−1
j=1(1 − βj ) with βh, h = 1,2, . . . , drawn independently from a Be(1, κ) distribution

(Sethuraman (1994)).
The discreteness of Qφ,ψ,π implies that repeated independent draws of (φ,ψ,π) from this

probability law will produce duplication. Consequently, the AB trials can be grouped into
clusters where, within each cluster, all trials have weight curves arising as in (4)–(5) with
a single underlying (φ,ψ) and distinct realizations of � arising from a shared probability
vector π . Therefore, these weight curves would have broad features such as the long term
average and the range roughly matched. If π was peaked in one coordinate, that is, πi ≈ 1 for
some i while other πi′ are close to zero, then the weight curves from the cluster would also
have similar oscillatory behavior. However, in spite of sharing these broad features, the exact
forms of these curves will be different.
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The precision parameter κ determines the extent of this clustering with larger values of
κ leading to more distinct clusters. Following common practice (Escobar and West (1995)),
we assign the precision parameter a further Ga(1,1) prior which makes the learning of this
parameter relatively straightforward.

REMARK 4. One could specify a Dirichlet process prior directly on Q without the intro-
duction of the intermediary quantity π as in (6). But our choice of decoupling � from (φ,ψ),
via the introduction of π , leads to much improved posterior computation; see Appendix B of
the Supplementary Material (Glynn et al. (2021)) for more details.

4.3. An unconventional choice of the base distribution. We deviate from common prac-
tice in choosing the base measure G equaling the law of (φ∗,ψ∗,π∗) where

(8) π∗ ∼ Dir(a1, . . . , aL), ψ∗ ∼ Be(b1, b2), φ∗|ψ∗ ∼ N
(
0, σ 2

0
(
1 − ψ∗))

.

This choice of G ensures that under (3)–(4), η(t) ∼ N(0, σ 2
0 ) at each t ∈ [0, T ]. Conse-

quently, with σ0 = 1.87, our a priori belief is that α(t) is nearly uniformly distributed over
the range (0,1) at each single time point t ; see Griffin (2010), Tokdar and Martin (2019) for
similar constructions. In contrast, the more conventional choice of a normal-inverse gamma
base measure (Escobar and West (1995)) would lead to a heavy tailed Student-t prior on η(t),
and, consequently, the prior on α(t) would place more mass than a uniform prior near the
extremes of α(t) = 0 and α(t) = 1.

The hyperparameters a1, . . . , aL ∈ (0,∞) of the Dirichlet distribution in (8) determine the
prior expectation for π∗ in the form of the probability vector (a1, . . . , aL)/

∑
i ai , with

∑
i ai ,

called precision, serving as a measure of tightness of the prior around the prior expectation.
For the default choice of L as given before and arranged from the smallest to the largest,
we choose ai ∝ i and adjust them so that

∑
i ai = 2. With this choice, larger length-scales

and hence flatter weight curves are slightly favored a priori. The precision value 2 ensures
the prior belief to be at par with the information content of two observations drawn from the
multinomial distribution PL,π . We choose b1 = b2 = 1, opting for a noninformative uniform
distribution for the new draws ψ∗ of the variance component of each cluster.

5. Posterior computing.

5.1. Time discretized model approximation. For any step function f (t) on [0, T ] that is
continuous from the right, let J (f ) = {t ∈ [0, T ] : f (t) �= f (t−)} denote the set of its jump
points. If (N(t) : t ∈ [0, T ]) is an inhomogeneous Poisson process with intensity λ(t), then,
with probability one, N is a step function that is continuous from the right and J (N) is finite.
In fact, the likelihood of observing N can be expressed as

(9) p(N |λ) = e− ∫ T
0 λ(t) dt

∏
t∈J (N)

λ(t)

and may be used in a Bayesian update of a prior measure � on λ to the posterior measure
�(dλ|N) ∝ p(N |λ)�(dλ).

However, since no closed form analytical expression is typically available for the poste-
rior measure, one needs to employ numerical algorithms, for example, Markov chain Monte
Carlo (MCMC) to carry out posterior inference on λ. For such numerical algorithms a direct
use of this exact likelihood function creates serious computational challenges. The evaluation
of the integral

∫ T
0 λ(t) dt involves the entire curve λ(t), t ∈ [0, T ]. Consequently, the numer-

ical algorithm needs to run on the infinite dimensional space of curves, presenting nearly
insurmountable computational difficulties. Rao and Teh (2011) circumvent this problem by
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augmenting additional latent variables which allow them to run a Gibbs sampler for MCMC
computation. While this technique could be directly implemented to draw posterior inference
on λA (or λB) based on only the A (B) trials’ data, its use in drawing inference on the αj

curves from AB trials data remains extremely challenging.
A less elegant but pragmatic alternative is to use time discretization. Fix an integer M , and

partition the response window [0, T ] into M contiguous subintervals (0,w], (w,2w], . . . ,
(T − w,T ] of length w = T/M each. Let t∗m = (m − 0.5)w be the midpoint of the mth
subinterval. When M is relatively large, one can appeal to the Riemann approximation of∫ T

0 λ(t) dt and express (9) as

(10) p(N |λ) ≈ exp

{
−

M∑
m=1

wλ
(
t∗m

)} M∏
m=1

λ
(
t∗m

)Xm ∝
M∏

m=1

Poi
(
Xm|wλ

(
t∗m

))
,

where Xm = N(mw) − N((m − 1)w) denotes the number of jumps in the mth subinterval
and the second and third terms are proportional as functions of λ.

By using (10), an MCMC now needs to be run only on the M-dimensional vector
(λ(t∗1 ), . . . , λ(t∗M)). Although one could obtain more accurate, M-term numerical approxi-
mation to

∫ T
0 λ(t) dt by using Gaussian quadrature or Romberg’s method, the equivalence of

the second and third terms in (10) is a real advantage of using the Riemann approximation,
as it allows us to develop an extremely efficient Gibbs sampler based MCMC algorithm for
joint posterior inference on all model parameters.

5.2. Reduced data and two-stage analysis. Following the notation of the above subsec-
tion, let Xe

jm denote the spike count in the mth subinterval for the j th trial under experimental
condition e, where, m = 1, . . . ,M , j = 1, . . . , ne, e ∈ {A,B,AB}. Under the approximation
given by (10), our data model now looks as follows:

1. XA
jm ∼ Poi(wλA(t∗m)), m = 1, . . . ,M , j = 1, . . . , nA,

2. XB
jm ∼ Poi(wλB(t∗m)), m = 1, . . . ,M , j = 1, . . . , nB,

3. XAB
jm ∼ Poi(w{αj (t

∗
m)λA(t∗m) + (1 − αj (t

∗
m))λB(t∗m)}), m = 1, . . . ,M , j = 1, . . . , nAB

and all these random variables are independent of each other given λA, λB and αj , j =
1, . . . , nAB. Let Xe = (Xe

jm : 1 ≤ j ≤ ne,1 ≤ m ≤ M) denote the ne × M dimensional data
matrix of bin counts from experiment e ∈ {A,B,AB}.

Notice that only the AB trial data XAB is relevant to second order stochasticity analysis, as
it provides information on the αj curves and their unknown feature generating distribution Q.
Below we first describe how posterior inference can be drawn on these quantities from XAB

alone under the working assumption that λA and λB have already been estimated. Then, in
Section 5.2.2 we describe how the estimates of λA and λB may be obtained by analyzing XA

and XB in a preprocessing step. We also discuss how the uncertainty in these estimates may
be incorporated in the the second stage analysis of XAB.

5.2.1. MCMC inference for Q and αj curves. Recall that underlying each αj curve are a
vector (φj ,ψj ,π j ) ∼ Qφ,ψ,π , a scalar �j ∼ π j and a curve ηj ∼ GP(φj ,ψjC

SE
�j

) such that
αj (t) = [1 + exp{−ηj (t)}]−1, t ∈ [0, T ], j = 1, . . . , nAB. Clearly, we can focus on the poste-
rior distribution of these ηj curves instead of the original αj ’s. The other model parameters
to be estimated are Qφ,ψ,π and the precision parameter κ . However,

p
(
Qφ,ψ,π , κ, {ηj ,φj ,ψj ,π j , �j }nAB

j=1|XAB, λA, λB
)

∝ p
(
κ, {ηj , φj ,ψj ,πj , �j }nAB

j=1|XAB, λA, λB
)
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×
nAB∏
j=1

p(ηj |ηj , φj ,ψj , �j )

× p
(
Qφ,ψ,π |κ, {φj ,ψj ,πj }nAB

j=1

)
,

where ηj = (ηj (t
∗
1 ), . . . , ηj (t

∗
M)), j = 1, . . . , nAB. Notice that each of the conditional proba-

bility distributions appearing in the last two lines above is available in closed form. Therefore,
to obtain MCMC inference on all model parameters it suffices to focus on building a Markov
chain sampler with target stationary distribution p(κ, {ηj , φj ,ψj ,π j , �j }nAB

j=1|XAB, λA, λB).

Toward this goal, first rewrite our Poisson observational model XAB
jm ∼ Poi(w{αj (t

∗
m) ×

λA(t∗m) + (1 − αj (t
∗
m))λB(t∗m)}) as(

ZA
jm,ZB

jm

) ∼ Poi
(
wλA

(
t∗m

)) × Poi
(
wλB

(
t∗m

))
,(

Y A
jm,Y B

jm

) ∼ Bin
(
ZA

jm,αj

(
t∗m

)) × Bin
(
ZB

jm,1 − αj

(
t∗m

))
,

XAB
jm = Y A

jm + Y B
jm,

with independence assumed across j = 1, . . . , nAB, m = 1, . . . ,M . This representation is
valid since

(11) Z ∼ Poi(μ), Y |Z ∼ Bin(Z,p) =⇒ (Y,Z−Y) ∼ Poi(pμ)×Poi
(
(1−p)μ

)
.

Consequently, it is sufficient to construct a Markov chain sampler for the augmented target
distribution

p
(
ZA,ZB,YA,YB, κ, {ηj , φj ,ψj ,πj , �j }nAB

j=1|XAB, λA, λB
)
,

where Ze = (Ze
jm : 1 ≤ j ≤ nAB,1 ≤ m ≤ M), Ye = (Y e

jm : 1 ≤ j ≤ nAB,1 ≤ m ≤ M),
e ∈ {A,B}. Algorithm 1 gives a schematic representation of our Markov chain sampler. All
technical details are provided in Appendix A of the Supplementary Material (Glynn et al.
(2021)).

5.2.2. Estimating λA and λB. One could use any existing aggregation and smoothing
technique to estimate the average firing rate curves λA and λB from A and B trial data. Popu-
lar techniques include kernel and spline smoothing as well as more advanced nonparametric
methods (Kass, Ventura and Cai (2003), Rao and Teh (2011), Truccolo et al. (2005)). How-
ever, when either or both of nA and nB are small, it is important to account for the uncertainty
in estimating these curves in the second stage analysis AB trial data. For a full Bayesian anal-
ysis, suppose these two unknown curves were assigned prior measures �A and �B, respec-
tively. Then, posterior computation can proceed by first updating these priors to posteriors
�A(λA|XA) and �B(λB|XB) by using data from only, respectively, the A and the B trials and
then using these posteriors as new priors for λA and λB in the second stage analysis of XAB

detailed above.
From a practicality perspective it is most convenient to have the second-stage priors for

λA and λB in the following form:

(12) �e

(
λe

(
t∗1

)
, . . . , λe

(
t∗M

)|Xe) =
M∏

j=1

Ga
(
λe

(
t∗m

)|ae
m, be

m

)
, e ∈ {A,B}

for some ae
m, be

m, m = 1, . . . ,M , which depend only on Xe, that is, data from the condition
e ∈ {A,B}. Such a structure allows us to fully exploit the conjugacy between the Poisson and
the gamma families of distributions. One only needs to extend the MCMC updates detailed in
Section 5.2.1 by making an additional set of draws of λe(t

∗
m) ∼ Ga(ae

m +∑
j Ze

jm, be
m +nAB)



SECOND ORDER STOCHASTICITY OF NEURAL SPIKING 51

Input: Binned spike counts XAB from AB trials, and, λA and λB curves (evaluated at
the bin midpoints). Also, starting values for the model parameters
κ, {ηj , φj ,ψj ,πj , �j }nAB

j=1. These values may be drawn from the prior.

Output: S Markov chain samples of model parameters κ, {ηj , φj ,ψj ,πj , �j }nAB
j=1

for s ← 1 to S do
1. Impute (ZA,ZB,YA,YB) by a combination of Poisson and binomial

draws leveraging upon (11).
2. Carry out a parameter-expanded Gibbs update of {ηj , �j }nAB

j=1 by using
the Pólya-Gamma augmentation method of Polson, Scott and Windle
(2013).

3. Carry out a parameter-expanded Gibbs update of {φj ,ψj ,πj }nAB
j=1 by

using Algorithm 8 of Neal (2000).
4. Carry out a parameter-expanded Gibbs update of κ along the lines of

Escobar and West (1995).
5. Given the current grouping of {φj ,ψj ,πj }nAB

j=1, update the shared pa-
rameters (φ∗

c ,ψ∗
c ,π∗

c) of each cluster c. Of these, π∗
c is updated by

a Gibbs step by utilizing the multinomial-Dirichlet conjugacy, and,
(φ∗

c ,ψ∗
c ) is updated by a combination of an independent proposal

Metropolis–Hastings update for ψ∗
c , followed by a draw of φ∗

c from
a normal distribution.

6. Save current parameter values as the sth sample draw.

end
Algorithm 1: Schematic description of the Markov chain sampler

independently across e ∈ {A,B} and m = 1, . . . ,M . These draws could be made right after
Step 1 of Section 5.2.1.

We fix the parameters ae
m, be

m by first smoothing the bin counts of the corresponding single-
stimulus spike trains. Each spike train is smoothed by using Friedman’s super smoother
(Friedman (1984)). The average and the variance of the smoothed spike trains are then taken
to give the bin specific prior mean (ae

m/be
m) and variance (ae

m/(be
m)2) for the second stage

analysis.

REMARK 5. The product nature of the second stage prior in (12) is at best a working hy-
pothesis. It may appear less than satisfactory because it introduces additional random varia-
tion across bins, even when prior mean and variances are smoothed. One could overcome this
deficiency by using importance sampling correction. Suppose �∗

e(λe(t
∗
1 ), . . . , λe(t

∗
M)|Xe),

e ∈ {A,B} were the actual prior distributions one had intended to use for the second stage,
but the MCMC was run with the product prior given in (12) with ae

m, be
m properly chosen

so as to match the first two moments under �∗
e . One could then obtain Monte Carlo es-

timates under the intended prior by simply using weighted averages of the saved MCMC
draws with the weights being given by the ratio of �∗

e to �e evaluated at the drawn values of
(λe(t

∗
1 ), . . . , λe(t

∗
M)).

REMARK 6 (Computation time). We have currently implemented DAPP with the R pro-
gramming language. An R package neuromplex has been published on The Comprehensive
R Archive Network.3 We ran DAPP analyses on an Apple MacBook Pro with 2.5 GHz Intel

3Available at https://CRAN.R-project.org/package=neuromplex.

https://CRAN.R-project.org/package=neuromplex
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Core i7 processor and 16 GB 1600 MHz memory. It took about 105 (230) seconds to accumu-
late 5000 iterations of the Markov chain sampler with nAB = 20 (50) AB trials and M = 20
bins. With M = 40 bins, the run time increased to 130 (260) seconds.

5.3. Prediction. Inference on Q is best quantified and visualized through the weight
curves α∗ it is likely to produce in future AB trials. Such α∗ may be simulated by making
draws from the posterior predictive distribution

(13) p
(
α∗|XAB,XA,XB) =

∫
p

(
α∗|θ)

p
(
θ |XAB,XA,Xb)

dθ ,

where θ = (κ, {ηj , φj ,ψj ,π j , �j }nAB
j=1) denotes the ensemble of all model parameters that are

included in the MCMC sampling of Section 5.2.1. Draws of η∗ from (13) may be made by
drawing one α∗ from p(α∗|θ) for each saved draw of θ from the Markov chain sampler. Let
φ∗, ψ∗, π∗, �∗ and η∗ denote the latent quantities associated with α∗ as in (3)–(5). Notice
that

p
(
α∗|θ) = p

(
α∗|η∗, φ∗,ψ∗, �∗)

p
(
η∗|φ∗,ψ∗, �∗)

p
(
�∗|π∗)

(14)

× p
(
φ∗,ψ∗,π∗|{φj ,ψj ,π j }nAB

j=1

)
,(15)

and hence a draw of α∗ from p(α∗|θ) can be made by making draws from the four conditional
distributions on the right-hand side, proceeding sequentially from right to left. It is easy to
make draws from the three posterior distributions appearing on (14), as they are governed
purely by the relationships in (3)–(5). The conditional distribution in (15), again by the Pólya
urn scheme representation of the Dirichlet process, is given by

p
(
φ∗,ψ∗,π∗|{φj ,ψj ,π j }nAB

j=1

) = κ

κ + nAB
Gκ + 1

κ + nAB

K∑
c=1

δ(φ∗
c ,ψ∗

c ,π∗
c )

,

where K denote the number of distinct elements (φ∗
c ,ψ∗

c ,π∗
c), c = 1, . . . ,K , among the

collection {(φj ,ψj ,π j ) : j = 1, . . . , nAB}.

6. Second order stochasticity in inferior colliculus.

6.1. Data. The neural data reported here comes from electrophysiological recordings
described and analyzed in Caruso et al. (2018). Briefly, the activity of individual neurons in
the inferior colliculus (IC) was recorded while two monkeys listened for sounds and made
eye movements to their locations. Each trial began with the onset of a visual target located
straight ahead, which the monkey was required to fixate on before the trial could proceed.
Then, either one or two sounds were presented. These sounds stayed on for 600–1000 ms, at
which point the fixation light was extinguished, cuing the monkey to make eye movements
to each sound (one if one sound, two if two sounds).

The dual sounds were located at either (−24 deg, +6 deg) or (−6 deg, +24 deg) horizon-
tally, and consisted of bandpass noise with different center frequencies, one at 742 Hz and
another at a frequency that differed by a ratio of 1.22 or an integer power of that ratio. Each
distinct double-sound experiment set was uniquely identified by the cell under recording (de-
termined by monkey and the day of the experiment) and the frequency and the location of
the second sound. Associated single sounds were derived from the same set of locations and
frequencies that were used on the dual sound trials. The neural activity was analyzed during
the first 600 or 1000 ms since sound onset in which the sounds were on, but the monkey was
maintaining fixation. All conditions were randomly interleaved.
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A total of 1484 distinct double-sound sets were retained after dropping those where the cell
was nonresponsive to either of the two sounds (see Caruso et al. (2018), for more details).
From these, 698 sets were included for DAPP analysis after ascertaining that they had at least
five trials in each of the three experimental conditions and that the distribution of the total
spike counts under condition A could be statistically distinguished from that under B (log
intrinsic Bayes factor of at least 3 under a Poisson distributional assumption and Jeffreys’
prior on the Poisson rates). This is a larger group than the 362 sets reported in Caruso et al.
(2018) who further screened out sets where either the A or the B total spike count distribution
failed a Poisson goodness of fit test. We exclude this step in favor of a novel assessment of
the suitability of a DAPP analysis of the AB trials, reported in Section 6.3.

6.2. Case study with three example sets. For illustrative purposes we begin with DAPP
analysis results for the three example experiment sets referred to in Figures 1 and 2. Our pri-
mary goal is to demonstrate that DAPP is able to tease apart different modes of second order
stochasticity from real data. A secondary goal is to illustrate what kind of precise quantitative
inference one may draw from such analyses. The latter is explored further with a full analysis
of the 698 sets in the next subsection and a comprehensive simulation study presented in the
next section.

All three example sets came from monkey Y but involved three different cells as recordings
were done on different days and involved different electrode insertions. Set 1 had a 500 Hz
sound at 24 degrees to the right (A) and a 742 Hz sound at six degrees to the left (B). Set
2 also had 500 Hz (A) and 742 Hz (B) sounds, but their locations were at six degrees to
the left and 24 degrees to the right, respectively. Signal A for Set 3 was a 903 Hz sound at
24 degrees to the left, with a 742 Hz sound at six degrees to the right being signal B. Set 1
was recorded over a 1000 ms response period, while the other two sets each had a 600 ms
response horizon. Set 1 had seven A trials, 11 B trials and 18 AB trials. The corresponding
counts were 21, 21 and 33 for Set 2, and, 6, 7, and 14 for Set 3. Recall that Figure 2 shows
smoothed histograms of whole trial spike counts grouped by conditions A, B and AB. For
each set the AB distribution appears to sit between the distributions under conditions A and
B, conforming with the DAPP assumption.

Figure 3 offers a visualization of DAPP analyses of the three sets. Along with estimates of
the α curves underlying the recorded AB trials, we also show 20 sample draws of the weight
curve from the posterior predictive distribution. Additionally, we use 1000 such draws to
compute posterior predictive distributions of the three broad features of the weight curves:
(1) the range of α defined as range(α) = maxt∈[0,T ] α(t) − mint∈[0,T ] α(t), (2) the long-term
average ᾱ and (3) the waviness as captured by the expected up-crossing count 0.16T/�, with
� denoting the characteristic length scale underlying α.

It is apparent that the three sets exhibit different patterns of second order stochasticity. The
plots of the distribution of range(α) indicate that, while both Sets 1 and 3 produce mostly flat
α curves, Set 2 includes a good mix of wavy curves. Also, Set 1 and Set 3 are distinct from
one another in the distribution of ᾱ. For Set 1 the weight curves have a noticeably higher
concentration near the extremes of 0 and 1, while for Set 3 they concentrate in the middle
with a slight tilt toward 1.

Such marginal distributions, however, fail to capture the whole picture. For example, it is
unclear whether the bulge in the middle of the ᾱ distribution of Set 3 is due to an increased
concentration of flat weight curves around the midpoint or is driven by the wavy weight
curves which, by design, have to have an ᾱ near the center. To resolve such entanglements
and to extract more precise quantitative summaries out of the DAPP analysis, we adopt a
labeling convention for the weight curves and study posterior predictive distributions of the
resulting labels.
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FIG. 3. Visual summary of inference for three example IC sets. For each set, top panels show (left to right)
estimated α(t) for recorded AB trials, 20 posterior predictive draws of α(t) in future hypothetical trials (red/yellow
for wavy/mostly wavy; blue/green for flat/nearly flat), inference on λA (orange) and λB (cyan) depicted by 95%
credible bands. Bottom panels show (left to right) marginal posterior predictive distributions of three features of
the weight curves: range, long-term average and waviness (blue for prior, red for posterior).
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TABLE 1
Label distributions for three example IC sets, along with inferred second order stochastic variability types. Prior

figures are shown in parentheses

Cell flat-A flat-B flat-Mid Wavy Unlabeled Type

1 52%(24%) 29%(24%) 12%(31%) 7%(21%) 40%(46%) flat-A + flat-B
2 13%(27%) 13%(27%) 32%(29%) 42%(18%) 62%(51%) flat-Mid + Wavy
3 41%(26%) 4%(26%) 51%(29%) 4%(19%) 51%(52%) flat-A + flat-Mid

We label an α as wavy or flat based on whether range(α) is larger than 0.8 or smaller
than 0.15, leaving it unlabeled otherwise. Each flat α curve is further sublabeled as flat-A
or flat-B or flat-Mid based on whether ᾱ is between (0.75,1) or (0,0.25) or (0.25,0.75).
Table 1 shows posterior predictive distributions of these labels computed from 1000 draws
of α. DAPP is most decisive for Set 1, being able to label 60% of the posterior predictive
draws, whereas offering a more modest labeling success for the other two sets.

From Table 1 it appears that Set 1 exhibits a second order stochasticity pattern somewhat
similar to random selection. Of the labeled draws, a total of 93% are flat, with 52% flat-A and
29% flat-B. That is, of the future AB trials that could be clearly labeled, more than half the
time the cell would respond like it is responding only to sound A. But, in about every third of
these trials, its response will be more resembling of its sound B spiking activity.

In contrast, Set 3, which also has a high propensity of producing flat α curves (96% of
the labeled draws), appears to have a different pattern than random selection. With flat-Mid
(51%) and flat-A (41%) being the two dominant labels, the underlying cell appears to exhibit
a spiking activity with a firing rate that is either similar to λA or is a nondynamic weighted
average of λA and λB where the weights could be evenly balanced between the two signals.

In comparison to Sets 1 and 3, Set 2 has a much higher likelihood of producing a wavy
α curve. Among the labeled draws, the two dominating groups are wavy (42%) and flat-
Mid (32%). The cell in Set 2 appears to have a different bimodal response pattern under the
associated AB exposure: it either dynamically swings between its A and B firing patterns or
holds steady at a balanced average of the two single sounds firing rates. Note that a wavy
α with range(α) > 0.8 must make at least one switch between the ranges 0–10% and 90–
100%, a behavior consistent with within trial random interleaving. Also, from Figure 3 the
posterior distribution of the expected up-crossing count has a modest concentration around 1,
indicating that about one complete switch (back and forth) is likely to occur within a single
wavy AB trial.

The last column (Type) of Table 1 offers a concise summary of the label distribution by
assigning each set with a tag consisting of the labels with at least 20% posterior predictive
probability. We refer to this tag as the inferred type of second order stochasticity of each set.
Set 1 is inferred to be a “flat-A + flat-B” type, underlining its random selection like second
order stochastic variation. Set 2 is a “flat-Mid + wavy” type, and Set 3 is a “flat-A + flat-
Mid” type. These type tags emphasize the main modes of second order stochasticity for each
set, offering a simple yet meaningful summary of the DAPP inference.

6.3. A comprehensive analysis of IC neurons. Some caution is warranted before a full
scale analysis of the IC data could be carried out with DAPP. The fundamental premise of a
DAPP analysis is to quantify any second order stochastic variation in AB trials against the
benchmarks set by A and B trials. But these benchmarks are set only under a Poisson model,
suppressing any additional trial-to-trial variability that may have been present in the single
sound data. If such variability were present but suppressed in estimating λA and λB, it is
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possible the same source of variation could be mistakenly identified as causing information-
encoding second order stochastic variation in the double-sound activity! Note that such trial-
to-trial variation need not arise only from variable, unaccounted for stimuli present in the
experimental environment. It could arise purely internally as manifest by the prevalence of
burstiness in which neural spikes tend to spontaneously bunch up and space out in alternat-
ing short time intervals (Tokdar et al. (2010)). While one hopes that the DAPP analysis is
performed with a bin width large enough to average out such additional local variability, it is
important to safeguard the analysis against the possibility of suppressing substantial trial-to-
trial variation in the single sound data.

To address this, we preprocessed each of the 698 IC sets by employing DAPP on two fake
copies of each set. In one fake copy, data from AB trials was replaced with data from A
trials; the other copy had B trials’ data in place of the AB trials. We ran DAPP with 50 ms
bin width on each copy and retrieved the type tag as outlined in Section 6.2. Under the
hypothesis that single sound behavior was only first-order stochastic, at least at the scale of
the chosen bin width, one would expect to retrieve a “flat-A” type for the first fake copy and
“flat-B” for the second, and this should happen with high precision, that is, with only a small
percentage of unlabeled draws. With a 40% cut-off on the unlabeled percentage, a total of 159
sets returned the expected type tag for each fake copy. Recall that the type codification uses
only a 20% threshold on each label, making this screening process extremely sensitive. Even
though many sets were screened out by this preprocessing step, we considered the remaining
159 sets to offer considerable amount of data to address the central questions: does second
order stochastic variation exist in IC? If yes, then are there multiple modes through which
such variation could manifest?

We then analyzed the actual data from the AB trials of these remaining 159 sets with
DAPP. Figure 4 shows their inferred types. The most common inferred type (57 sets) was
“flat-X + flat-Mid” where X was either A (37) or B (20). We consolidate these two types into
one because the A vs. B labelling of the signals was essentially arbitrary in our experiments.
The important detail is that this type is made up of flat weight curves which were either in
the middle or to one extreme. The next dominating type was “flat-X” (47 sets), where X
was either A (32) or B (15). Notice that this type essentially encodes a lack of second order
stochasticity in AB trials. Here, the double-sound spiking activity is nearly identical to one
of the two single-sound activities, in a winner-take-all manner. A third well-represented type
was “flat-X + flat-Mid + flat-wavy” (25 sets) where, again, X could be either A (13) or B
(12). Each of these sets included a fair amount of wavy weight curves along with flat curves
that were either in the middle or toward one extreme. Ten other types were also inferred, but
each was taken up by a small subgroup of the remaining 30 sets. Random selection, which
is encoded by the type tag “flat-A + flat-B,” was assigned to seven sets (including Set 1
presented in Section 6.2), whereas random interleaving (“wavy”) was not assigned to any.

FIG. 4. Inferred second order stochastic variation types for 159 IC sets. Types are consolidated to suppress the
arbitrariness of the A and B labeling of the single sounds. For example, the top group consolidates “flat-A +
flat-Mid” and “flat-B + flat-Mid” into a single group. Notice that all groups, except for “flat-A/B,” correspond to
some mode and degree of second order variability.



SECOND ORDER STOCHASTICITY OF NEURAL SPIKING 57

From our analysis we conclude that the IC neurons exhibit a fair amount of second or-
der stochastic variation (all types other than “flat-A” or “flat-B” and, potentially, “flat-Mid”).
Additionally, the modes of this variation can be remarkably different from pure random se-
lection or interleaving, as highlighted by the prevalence of tags that include “flat-Mid.” Also,
AB spiking activity seems to be biased toward one of the two signals even when it is not
entirely winner-take-all. This is underlined by the presence of either “flat-A” or “flat-B,” but
not both, in the three dominating types.

7. Simulation study with synthetic data. Here, we report results from simulation ex-
periments in which we assessed the accuracy of the labeling and tagging methods introduced
above. Five “true” dynamic admixture types were considered:

Type 1 (60% flat-A + 40% flat-B). The cell always produces flat weight curves α(t) ≡ α,
with the magnitude α drawn either uniformly from (0.85,0.95) with probability 60% or
uniformly from (0.05,0.15) with probability 40%.

Type 2 (100% wavy). The cell always produces sinusoidal weight curves α(t) = 0.01 +
0.49{1 + sin(2π a+t

b
)}, which oscillate between 0.01 and 0.99, where the random period b (in

ms) is drawn uniformly from the range (400,1000) and the random shift a (also in ms) is
drawn uniformly from (0, b).

Type 3 (50% flat-Mid + 50% wavy). The cell produces a 50–50 mixture of flat and si-
nusoidal weight curves. For the flat curves the time invariant magnitude is drawn uniformly
from (0.45,0.55). The sinusoidal curves are drawn exactly as in Type 2.

Type 4 (50% flat-B + 50% wavy). This is identical to Type 3 except that, for the flat curves,
the time invariant magnitude is drawn uniformly from (0.05,0.15).

Type 5 (60% flat-A + 40% flat-Mid). This is identical to Type 1 except that the magnitudes
of the flat curves are drawn, with a 60–40 split, either from (0.85,0.95) or from (0.45,0.55).

For each true type, 100 data sets were generated each with nA = nB = 20 trials for each
single stimulus condition and nAB ∈ {20,50} trials for the double-stimuli condition. For each
trial the response horizon was taken to be T = 1000 ms, and the instantaneous single stimulus
firing rates (in Hz) were taken to be

λB(t) = S · 40e−2t/T , λA(t) = 4λB(t) + S · 40e−0.2t/T , t ∈ (0, T ),

where S ∈ {1,1.5} was used to manipulate the overall signal strength. These choices produced
average firing rates of 105 · S Hz for the A trials and 17 · S Hz for the B trials. We also ran
experiments with nA = nB = 50, but the results were not substantially different from the
results presented here with smaller single stimulus trial size and hence are omitted from
further discussion.

Each synthetic dataset was analyzed by the DAPP method, with spike counts aggregated
over 50 ms bins. The posterior predictive draws were then processed to generate a distribution
of the four labels: flat-A, flat-B, flat-Mid and wavy, amongst those that could be labeled. We
also tallied the proportion of unlabeled draws. The distribution of the four labels was then
compared to the true type, and the total variation distance between the two probability vec-
tors was calculated as a measure of estimation error. For example, if, for a data set in Type 1,
the distribution of labels were 52% flat-A, 29% flat-B, 12% flat-Mid and 7% wavy, then the
predicted distribution vector would be p̂ = (0.52,0.29,0.12,0.07), whereas the true distri-
bution was p = (0.6,0.4,0,0), with a total-variation distance = 0.5 ·∑4

j=1 |pj − p̂j | = 0.19.
We also tabulated whether or not the inferred second order stochasticity type matched the
true type; see Appendix C in the Supplementary Material (Glynn et al. (2021)) for additional
visualization.
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TABLE 2
Statistical performance of DAPP measured by total variation error in estimating the label distribution (Error),

rate of accurate recovery of the second order stochastic variability type (Recovery) and, lack of precision in
labeling (Unlabeled)

lSet True type Signal nAB Error Recovery Unlabeled

l1 60% flat-A + 40% flat-B Base 20 14% 92% 34%
l 50 9 100 28

l 1.5x 20 12 97 33
l 50 9 99 26

l2 100% wavy Base 20 9 100 44
l 50 3 100 38

l 1.5x 20 7 100 45
l 50 2 100 42

l3 50% flat-Mid + 50% wavy Base 20 33 39 57
l 50 25 53 52

l 1.5x 20 24 65 52
l 50 13 95 46

l4 50% flat-B + 50% wavy Base 20 19 86 43
l 50 10 100 32

l 1.5x 20 16 96 39
l 50 11 100 32

l5 60% flat-A + 40% flat-Mid Base 20 15 83 39
l 50 10 93 36

l 1.5x 20 14 82 35
l 50 10 92 32

Table 2 gives a summary of the results. DAPP appears to have offered a fairly decent per-
formance across the board, except for set 3 with weak signal strength. Overall, performance
improved when either signal strength improved or one had more double trials. Set 3, which
included a mix of flat and wavy weight curves all with similar long term averages, presented
the hardest challenge to DAPP which failed to resolve the two clusters when either signal
strength was weak or only a limited number of double trials were available. For this set,
DAPP mostly overestimated the percentage of “wavy” curves (bias = 19% for S = 1 and
nAB = 20) and underestimated the same for “flat-mid” curves (bias = −28%). In 57% of
the replicates, the recovered type was just “wavy”. DAPP’s inability to disambiguate the two
types was reflected in a fairly high percentage of unlabelled curves. In contrast, DAPP deliv-
ered a much more confident and accurate inference for Set 4 which has a similar mix of flat
and wavy curves but with distinct long term averages.

The results for Set 5 are intriguing. While the overall estimation errors were comparable to
Set 1, the recovery rates were substantially smaller. These rates failed to improve with higher
signal strength, however the unlabeled percentage did go down. Interestingly, for the entirety
of Set 5, every replicate that was misclassified got assigned to “flat-A.” Putting together the
results from Sets 3 and 5, we conclude that DAPP may suppress “flat-Mid” in favor of “flat-
X” or “wavy” when signals are weak or sample sizes are small.

8. Discussion. We have introduced here a novel concept of second order stochasticity
in neuronal firing rates in response to a stimuli bundle. The very definition of second order
stochasticity, rooted in the information-preserving, stochastic variation of the firing rate curve



SECOND ORDER STOCHASTICITY OF NEURAL SPIKING 59

from one trial to the next, rules out the commonly used time-and-trial aggregated statistical
methods for analyzing spike-train data. We have developed a detailed point-process model,
namely, the DAPP model, based on the assumption of stochastically varying, dynamic av-
eraging of single stimulus firing rate curves. Our model is generative in nature. The fitted
model can be used to draw inference on and codify how a cell is likely to respond in future
hypothetical trials under a stimuli bundle exposure. Our analysis of monkey inferior collicu-
lus recording with auditory signals presents substantial evidence of the existence of second
order stochastic variation in the natural world and the utility of the DAPP analysis in identi-
fying different modes of such variations. However, several comments are in order to further
appreciate the development presented here.

REMARK 7 (Subjective choices). In its current form the DAPP analysis requires the user
to choose the binning interval width to carry out the time discretization of spiking activ-
ity. While shorter bins allow more flexible estimation of the time varying dynamics of the
α curves, an increased number of bins adds to computing cost, though the computing com-
plexity increases only linearly in the number of bins. Under moderate signal strength, DAPP
analyses results are fairly robust to the choice of the bin width. This was verified by repeat-
ing the simulation study reported in Section 7 with 25 ms bin width. However, when single
stimulus firing rates are weak and/or sample sizes are small, DAPP results could be sensitive
to the choice of bin width. For example, a DAPP analysis of the IC sets with a 25 ms bin
width mostly resulted in similar label distributions but exhibited a mild suppression of the
“flat-Mid” percentage which was redistributed to either “wavy” or “flat-X.”

Recall that a similar suppression of “flat-Mid” was reported in Section 7. The two suppres-
sion phenomena are related because both stem from a common source, weak signal strength.
For the IC analysis with 25 ms bins, the weakening of the signal strength is an artifact of our
two stage estimation of the λA and λB curves. For a smaller bin size with only few spikes
in each bin, the second stage prior in (12), which assumes conditional independence of the
curve values across bins, does not offer adequate smoothing or anchoring at the single-sound
estimates. Final estimates of λA and λB are noisy with large credible bands. This results in
diminished separation between the two single sound benchmarks, effectively reducing the
overall signal strength.

Based on our numerical experiments, we recommend a conservative choice of the bin
width relative to the single stimulus firing rates and sample sizes; see also relevant discussion
in Kass and Ventura (2006), Shimazaki and Shinomoto (2007). The latter paper offers a data
driven choice of an optimal bin width. For this to be suitable for DAPP, one does need to
reconcile possibly different choices made for the A and the B spiking activities, and additional
reconciliations will be needed to fix a common choice of the bin width under which multiple
sets could be analyzed. An alternative and practical rule of thumb is to choose the bin size
so that, for either single stimulus, the trial-aggregated spike count in each bin exceeds a
target count N , corresponding to a 100/

√
N% coefficient of variation under the Poisson

assumption. A small coefficient of variation ensures that the single stimulus data provides a
stronger anchoring of the benchmarks λA and λB, making them less vulnerable to the weak
second-stage prior. For IC data, a 50 ms bin width gave a 15% median coefficient of variation,
whereas the same figure for 25 ms bins was 21%.

A more technically satisfying remedy to this problem could be obtained by replacing the
product gamma prior in (12) with a smoothness inducing prior for the single stimulus firing
rates. Such a choice, in general, could increase the computing cost manifold. A potential
trade-off may be obtained with the conditionally autoregressive gamma priors discussed in
Wolpert and Ickstadt (1998). This will be addressed in future research.
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A second set of subjective choices is needed in setting the thresholds for the codification
scheme introduced in Section 6.2. We intend these thresholds to be chosen by the neuro-
scientist, not the statistician. For example, we have used a high bar for the “wavy” label to
codify the phenomenon of random, within-trial interleaving. A lower threshold could be used
if the goal were to simply detect any level of within-trial, dynamic variations that may not
necessarily match the notion of the cell encoding only one signal at a time.

REMARK 8 (Alternative methods). Note that one could employ much simpler tests to
assess whether a given AB trial had an underlying weight curve that was flat or time-varying.
For example, once the data has been binned, and, λA and λB have been estimated, one could
calculate a Bayes factor for trial j between a “flat” model: αj (t

∗
1 ) = · · · = αj (t

∗
M) = αj ∼

Unif (0,1) and a “wavy” model: αj (t
∗
m) ∼ Unif (0,1), independently across m = 1, . . . ,M .

Such an analysis suffers from three major drawbacks: (1) repeating this for all AB trials
would invariably require some reconciliation that is not exactly aligned with multiplicity
adjustment, unless one chooses either “flat” or “wavy” as a null hypothesis; (2) the “wavy”
model is a weak competitor without a smoothness assumption which would be much more
demanding to compute with and will require additional reconciliation across trials; (3) most
importantly, such flat-vs.-wavy tests do not offer any meaningful codification of the modes
of second order stochastic variation.

Toward a more structured version of such an approach, we considered a hierarchical state
space model as follows. We assumed that for each AB trial with probability pflat one had a flat
weight curve: αj (t

∗
1 ) = · · · = αj (t

∗
M) with the common value drawn from a distribution πflat

on [0,1]. Otherwise, (αj (t
∗
m) : m = 1, . . . ,M) was a Markov chain on the binary state space

{0,1}, governed by an initial distribution and a transition probability matrix. The latter two
quantities could be parametrized by a p0 ∈ (0,1) giving the probability of starting at 0 and
q01, q10 ∈ (0,1) giving the probabilities of the two possible state changes. The parameters
pflat, πflat, p0, q01 and q10 were assumed unknown but shared across trials.

In analyzing the IC data with this hierarchical hidden Markov model, we estimated pflat to
be larger than 80% for 146 of the 159 IC sets considered in Section 6.3. Estimated pflat was
smaller than 40% for only two sets, all of which were of the type “flat-X + flat-Mid + wavy”
under DAPP. These estimates were obtained under a Bayesian analysis of the state space
model, with πflat modeled as πflat = ∑10

k=1 πkUnif ((k − 1)/10, k/10), where (π1, . . . , π10)

was assigned a Dirichlet prior. Additionally, to avoid ambiguity between a flat α and a Markov
switching α that happened to not make any switch at all, we used informative priors on q01,
q10 ensuring that the induced prior on the run length of either state, measured in milliseconds,
concentrated on (T /4,3T/4) with a median at T/2.

These results are not surprising because the Markov model gives a precise encoding of
random interleaving which has been shown by our DAPP analysis to be not well supported by
the IC data. The important point to note here is that the above state space model does not allow
any other form of waviness, and, hence, for each trial the evidence toward “flat” is stronger
than that toward “wavy.” When these evidences across trials are aggregated together through
a shared probability pflat, the overall evidence toward flatness becomes overwhelming. For
example, if there were 2:1 evidence toward “flat” in each of 20 AB trials then, under a uniform
prior, pflat would be estimated to be as high as 93%!

The only way to prevent such overwhelming aggregation of evidence toward flatness is to
allow for more flexible waviness structures. At the same time, it is crucial to share such struc-
tures across trials to allow borrowing of vital information that enhances the shared evidence
toward waviness. DAPP achieves these twin goals by entertaining an unknown discrete prob-
ability distribution P that is designed to concentrate on a small number of waviness patterns
selected out of a large and varied collection. In our understanding, any comparable statistical
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analysis approach will have to embrace a similar level of modeling complexity. To the best
of our knowledge, no such reasonable alternative currently exists in the literature.

REMARK 9 (Model deficiencies). The overarching assumption of dynamic averaging
can explain only special kinds of second order stochasticity where, under the stimuli bundle
exposure, the overall firing rate of the cell resides in between the rates it exhibits under
each individual stimulus. Stimuli bundles that evoke either enhancement or suppression of
activity, that is, producing rates outside the range of single stimulus response rates, cannot
be analyzed with the current version of the DAPP model. A possible generalization could be
to model λj (t) = α(t)λA(t) + β(t)λB(t), where α(t), β(t) are two weight curves bounded
between 0 and 1 but are not restricted to satisfy α(t) + β(t) = 1. While such a model could
be easily computed with using our current machinery, it is not clear how to resolve the issue
of nonidentifiability that arises without the restriction on the sum. A second possibility is to
retain our affine combination approach but allow α(t) to take values outside of (0,1). This
relaxation will require substantial work on the computational side as the Poisson thinning
results needed for our current computation scheme no longer apply.

Additionally, our model assumes spike counts are Poisson distributed with possibly time
varying firing rate curves. It is known that the Poisson assumption does not always provide
the best fit to interspiking interval distributions observed in reality. For example, a Poisson
process model is unable to account for the refractory period which is a short time gap im-
mediately after a spike during which the neuron cannot fire again no matter what stimulus
is presented to it. However, this inability is not a big issue in our applications where spiking
activity is aggregated in 50 ms time bins which is much longer time scale than the typical
length of a refractory period which is usually no more than two ms.

A second issue with the Poisson assumption is its inability to account for overdispersion
where the variance of the spiking activity is larger than its mean. As pointed out in Sec-
tion 6.3, suppressing such overdispersion in the single stimulus data with a Poisson model
could lead to unsound conclusions about second order variability under multistimuli expo-
sure. While the fake-copy preprocessing step introduced in the same section offers some
counter-measure, it may result in a substantial loss of data. Instead of screening out data
with overdispersion, it will be useful to account for such additional trial-to-trial variability by
either extending the DAPP model, where the Poisson assumption is replaced with a negative-
binomial assumption, or by adopting other types of point process models (Kass and Ventura
(2001), Ramezan, Marriott and Chenouri (2016)).

REMARK 10 (Joint analysis). In Section 6.3 we carried out separate analyses of the 159
IC sets. Some of these sets corresponded to recordings from the same neural cell, and it may
be useful to consider model-based reconciliation of the corresponding analyses. This could
potentially be carried out by extending the DAPP model to a multiset joint analyses frame-
work where the core generating distributions Q̃(s), across sets s = 1, . . . , S, are jointly mod-
eled as a hierarchical Dirichlet process (Teh et al. (2006)). A second critical issue to be looked
into in the future is whether and how second order stochastic variation correlates across a neu-
ral population. While our current results offer substantial evidence toward such variation at
the level of a single neuron, a complete picture of how the brain represents multiple stim-
uli could be obtained only by understanding how such variations are synchronized between
multiple neurons recorded simultaneously. However, designing a practicable multicell DAPP
model would involve significant effort, as correlation specifications must encompass all types
of second order variability, spanning both within-trial and across-trial time scales.

REMARK 11 (More than two stimuli). It is relatively straightforward to generalize our
approach to the case where the stimuli bundle consists of more than two stimuli. The j th
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multistimuli trial can be modeled as a draw from a Poisson process with instantaneous fir-
ing rate curve: λj (t) = ∑K

k=1 αk(t)λAk
(t), where λAk

is the firing rate curve for the kth
stimulus presented alone (Condition Ak) and, αk(t) are weight curves restricted to satisfy:
α1(t) + · · · + αk(t) = 1. The current prior specification and posterior computation easily ex-
tends to this situation, with binomial models replaced with multinomial models in Step 1
of Algorithm 1. However, what is less obvious is how one would analyze data and interpret
results when various partial combinations of such stimuli are considered. Should the weight
curves under ABC condition be related to weight curves under AB, BC or AC conditions?
Modeling and analyzing the relationship between activities recorded under many different
stimuli combinations remains a formidable challenge in both statistics and neuroscience.

These challenges notwithstanding, the DAPP analysis framework presented in this paper
offers an important first step toward understanding, modeling and estimating second order
stochasticity. Section 6.3 presents strong evidence of the prevalence of second order stochas-
ticity in the primate brain. It also demonstrates the utility of the DAPP analysis in cataloging
various modes of such stochastic variation. Clearly, it will take a system level understanding
of neural computing to completely describe how the brain might represent multiple simul-
taneous signals. The cell level DAPP analysis promises to be an important building block
toward such a goal.
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