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The biomarker networks measured by different modalities of data (e.g.,
structural magnetic resonance imaging (sMRI), diffusion tensor imaging
(DTI)) may share the same true underlying biological model. In this work we
propose a nodewise biomarker graphical model to leverage the shared mech-
anism between multimodality data to provide a more reliable estimation of
the target modality network and account for the heterogeneity in networks
due to differences between subjects and networks of external modality. La-
tent variables are introduced to represent the shared unobserved biological
network, and the information from the external modality is incorporated to
model the distribution of the underlying biological network. We propose an
efficient approximation to the posterior expectation of the latent variables that
reduces computational cost by at least 50%. The performance of the proposed
method is demonstrated by extensive simulation studies and an application to
construct gray matter brain atrophy network of Huntington’s disease by us-
ing sMRI data and DTI data. The identified network connections are more
consistent with clinical literature and better improve prediction in follow-up
clinical outcomes and separate subjects into clinically meaningful subgroups
with different prognosis than alternative methods.

1. Introduction. Network analysis is often used to learn interrelationships between bio-
logical measures (e.g., brain measures). A shared underlying biological network G0 may give
rise to multiple networks that are measured by different modalities of technology. Leverag-
ing the shared mechanism, the estimation of a target network G∗, which may not be the same
as the biological network, may be improved by borrowing information from an external and
observable network G1. Our goal is to learn a covariate-dependent target network G∗ by in-
corporating features from external modality network G1 that are observed at the individual
level.

In the context of brain networks, G0 can be structural connectivity which is the inter-
regional anatomical associations between neural elements (e.g., axons). Studies have revealed
the importance of structural connectivity on disease etiology and progression (Fornito, Za-
lesky and Bullmore (2016)). One approach to study structural connectivity is to construct
structural covariance network (G∗) which represents the covariation patterns of the mor-
phometric characteristics of gray matter regions (e.g., structural covariance network of re-
gional brain cortical thickness) from structural magnetic resonance imaging (sMRI) data
(Alexander-Bloch, Giedd and Bullmore (2013)). Given that cortical thickness is regarded
as an important early biomarker for disease progression, especially for Huntington’s disease
(HD; Rosas et al. (2005, 2008)), we regard structural covariance network as the target net-
work. However, another brain network used to describe structural connectivity is the white
matter connectivity (G1), which is obtained by reconstructing the trajectories of axonal fibers
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from white matter diffusion tensor imaging (DTI) data using tractography which is a 3D
reconstruction technique used to visualize neural tracts for each individual.

Both approaches are exploited to understand the biologically meaningful characteristics
of structural connectivity. The regions physically connected through white matter fibers may
show stronger covariation in their morphology. It has been documented that 30–40% of cor-
tical thickness covariance occurs between regions that manifest white matter connections
(Alexander-Bloch, Giedd and Bullmore (2013)). White matter hyperintensities have also been
shown to be associated with cortical thickness (Rizvi et al. (2018)). Borrowing information
from white matter connectivity network G1 may yield a more reliable estimate of structural
covariance network G∗.

We propose a novel integrative learning approach for network estimation from multimodal-
ity biomarker data. Specifically, we will borrow information from white matter connectivity
G1 to estimate gray matter structural covariance network G∗ because they share the same
underlying biological network G0. Our method makes two contributions: (a) incorporating
information from an external modality in a biologically meaningful way and providing bio-
logical interpretation; and (b) accounting for between-subject heterogeneity in networks. We
elaborate our contribution in the context of current literature below:

(a) First, several recent works have been proposed to estimate the functional connectivity
from functional magnetic resonance imaging (fMRI) data by incorporating information from
white matter connectivity. Hinne et al. (2014) modeled the posterior distribution of precision
matrix for functional connectivity, assuming that the sparseness structure of the precision
matrix is given by white matter connectivity. This assumption is restrictive since it assumes
that functional connectivity exists only between regions that show white matter connections.
Adaptive Gaussian graphical lasso models (Ng et al. (2012), Pineda-Pardo et al. (2014)) have
been proposed to provide some room to allow the discordance between functional connec-
tivity and white matter connectivity by using connection-specific shrinkage parameter which
is a function of fiber count between regions obtained from DTI data. However, such type of
shrinkage parameters is arbitrary, sensitive to the functional form and also lacks biological
interpretation and meaning. In addition, these approaches do not account for the heterogene-
ity in functional connectivity resulting from other sources of variations beyond white matter
connectivity. Gong et al. (2012) estimated the structural covariance network and white matter
connectivity separately and compare their patterns. To the best of our knowledge, no method
is available to estimate structural covariance network by integrating information from white
matter connectivity.

(b) Second, structural covariance networks are strongly influenced by genetic factors
(Schmitt et al. (2008)), change with age (Lerch et al. (2006)) and disease status (Seeley
et al. (2009)). However, current methods of constructing structural covariance networks are
at the population level, by calculating pairwise correlations between cortical thickness of
brain regions, each measured once from each individual in a population (Lerch et al. (2006),
Alexander-Bloch et al. (2013)). Gaussian graphical models have been studied extensively
to construct high-dimensional complex networks (Friedman, Hastie and Tibshirani (2008),
Epskamp and Fried (2018)), where the connection strength between two nodes is represented
by the partial correlation between these nodes conditioning on the remaining nodes. However,
Gaussian graphical models assume a homogeneous network for subjects in a population.
When a population separates into known subgroups, fused graphical lasso (FGL; Danaher,
Wang and Witten (2014)) was proposed to jointly estimate subgroup networks. However,
when population heterogeneity and subgroups are unknown, FGL may not be applicable.
Hao et al. (2017) and Städler et al. (2017) have extended the methods for unknown subgroups
cases but assumed a small number of discrete subgroups.

To fill the gaps above, we propose an integrative network learning approach to integrate
multiple networks and account for between-subject heterogeneity. Our approach builds on an
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unknown shared underlying biological network G0 measured by multiple modalities. First,
latent variables are introduced to represent the connections in the unobserved G0. The prob-
ability of connection in G0 is modeled as a function of connections measured in the external
network G1 based on a network growth model (Vértes et al. (2012)) accounting for distance
between nodes and degree of nodes for brain networks. Second, the connections between
nodes in the target network G∗ is absent if there is no connection in G0. However, when there
exists a connection in G0, the connection in G∗ is still allowed to be absent. This modeling
framework captures the substantial, but incomplete, overlap between G∗ and G1 of differ-
ent modalities and also provides biologically meaningful interpretation that reflects G0. To
address population heterogeneity, our approach provides subgroup- or subject-specific net-
works to capture the heterogeneity due to both subject’s covariates X (e.g., genetic variants
and age) and the networks of external modality G1 (i.e., white matter connectivity) which are
measured at the individual level. By including these individual networks to inform estimation
of G∗, the resolution of G∗ is expected to improve substantially.

For estimation we propose an EM algorithm to infer latent connection statuses in G0 from
the observed data in two modalities. Through these latent connections, the estimation of G∗
will be improved by communicating with G1 through G0. To use G0 and G1 to improve G∗,
the posterior means of G0 given observed nodes M for target modality and G1 need to be
computed. However, this is a highly challenging problem due to the extensive number of po-
tential connection patterns. For example, for a network with p nodes the potential number of
different combinations of latent connection statuses increases exponentially with the network
size p and linearly with the sample size n (i.e., on the order of np(p − 1)2p−2). When the
number of nodes increases, it is prohibitive to compute these posterior probabilities directly.
We propose a novel approximation to reduce the computational burden.

We conduct simulation studies to examine the performance of proposed method with vary-
ing number of nodes and sample sizes and compare with Gaussian graphical model and FGL.
We apply the method to an observational study of HD, where both sMRI data and DTI data are
available. We evaluate clinical utility of the identified connections in terms of prediction and
stratification of patients’ follow-up clinical outcomes. Incorporating connections measured
at baseline in linear regression improves the prediction of the follow up motor outcomes,
comparing to standard model and nonconnection model which includes nodes but not their
connections. The clusters identified by connections better distinguish between cluster motor
and cognitive outcomes than clusters identified by regional nodes. We conclude the paper
with some discussions and future directions.

2. Methodology. Our goal is to learn a covariate-dependent target network G∗ by incor-
porating features from external modality network G1 that are available for each individual.
We assume that G∗ and G1 arise from the same underlying biological network G0. For the ith
subject, let M i = (Mi1,Mi2, . . . ,Mip)′ be a p-dimensional vector that denotes measurements
(centered at the mean) of p nodes in G∗ (e.g., sMRI cortical thickness of p brain regions). Let
Xi = (1,Xi1,Xi2, . . . ,Xiq)

′ denote a q + 1-dimensional vector including a constant of one
and q exogenous covariates (e.g., age, genetic variants and baseline clinical biomarkers) that
may modify the edges (i,e., connections) in G∗ when the corresponding edges exist in G0.

2.1. Model. We consider a graphical model for estimating target network G∗, in which
the edge between two nodes depends on both observed covariates Xi and a latent indicator of
being connected in the shared biological network G0 for each individual. We introduce latent
variables Bijk to indicate the presence of an edge between nodes j and k (j �= k) in G0 for
subject i, that is, Bijk = 1 indicates that there is an edge. A subject-specific graphical model
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FIG. 1. Schematics of the proposed method. G∗ and G1 arise from an unknown shared network G0. We use G1
to improve estimation of G∗ through their relationships to G0. An edge absent in G0 is also absent in G∗. An edge
present in G0 can still be absent in G∗ or have connection strength θijk depending on Xi and G1 through Bijk ,
where Bijk represents the presence or absence of an edge between nodes j and k in G0 (see equation (1)).

(see Figure 1) with connection strength depends on both Xi and Bijk is that, for node j ,

(1) Mij = ∑
k �=j

θijkMik + εij ,

where θijk is modeled as

θijk =
{

0, Bijk = 0,

βT
jkXi , Bijk = 1.

Here, εij are independent of Mik and follow N(0, σ 2
j ). Note that βjk can still be zero if

Bijk = 1. An edge between nodes j and k is defined as present when ‖βjk‖2 �= 0 or ‖βkj‖2 �=
0 and the proportion of Bijk = 1 over all subjects is larger than a prespecified value α. To
guarantee the identifiability of βjk , we require that, for any pair of nodes (j, k), the covariate
matrix for all subjects with biological connectivities between the nodes (Bijk = 1) is a full-
rank matrix. When Bijk are observed, the model reduces to a covariate-dependent Gaussian
graphical model.

Since the probability of observing an edge in G0 is unknown, we estimate it by condition-
ing on the external network G1. Human brain networks exhibit small-worldness, organize in
a modular fashion and the hub nodes have a fat-tailed degree distributions (Bullmore and
Sporns (2009), He, Chen and Evans (2007)). To capture these observations, network growth
models were recently used to model the structural covariance network using cortical thickness
(He, Chen and Evans (2007)), functional connectivity in healthy subjects and Schizophrenia
patients (Vértes et al. (2012)) and DTI network (Betzel et al. (2016)). Furthermore, Vértes
et al. (2012) showed that modeling network growth as a function of anatomical distance alone
is insufficient to capture the topological properties of functional brain networks and proposed
to include an additional topological term (e.g., composite node degree or the number of near-
est neighbors in common between two nodes). In addition, the degree distribution of the
nodes in white matter connectivity from DTI data in our real-data application (Figure 2) is
fat-tailed and shows similar trend as the one generated by network growth model, depending
on a topological term; see Vértes et al. (2012), Figure 1B (orange and red lines).
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FIG. 2. Degree distribution of the nodes with Lowess smoothing density curve in white matter connectivity
network of our real data application.

Motivated by these prior studies, we propose a partially known network growth model
which depends on the composite node degree (or the number of nearest neighbors in common
between two nodes) and distances between nodes estimated from G1 to model the pseudo
probability of connection in G0. Specifically, we obtain a pseudo probability of edge Bijk for
node pairs (j, k) given G1 as

(2) pijk = P(Bijk = 1|sijk, dijk) = (1 + sijk)
γ d

−η
ijk

1 + (1 + sijk)γ d
−η
ijk

,

where sijk is the composite node degree (i.e., the product of node j ’s degree and node k’s
degree) or the number of common neighbors of nodes j and k, and dijk is the anatomical
distance between nodes j and k in external network G1 of subject i. In this model, sijk and
dijk are observed from G1 and γ and η are nonnegative parameters to be estimated from data.
The probability of connecting two nodes in G0 is increased when they belong to a large cluster
(with a high degree) in G1 or when they are anatomically close to each other (within a short
distance).

2.2. Estimation. For inference, we consider a nodewise conditional likelihood of the ob-
served data at node j , given the other nodes, treating f ({Bijk, k �= j}|Di) as a prior distri-
bution. Define Di = ({sijk}j,k, {dijk}j,k), observed composite node degree and distance in
G1. We assume that Bijk are independent for nodes k �= j given Di and we incorporate G1
through these prior distributions. The pseudo likelihood for node j is

Lj =
n∏

i=1

{ ∑
Bijk∈{0,1}

1√
2πσ 2

j

exp
(
−(Mij − ∑

k �=j Bijkβ
T
jkXiMik)

2

2σ 2
j

)

× f
({Bijk, k �= j}|Di

)}
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=
n∏

i=1

{ ∑
Bijk∈{0,1}

1√
2πσ 2

j

exp
(
−(Mij − ∑

k �=j Bijkβ
T
jkXiMik)

2

2σ 2
j

)

× ∏
k �=j

p
Bijk

ijk (1 − pijk)
1−Bijk

}
,

where n is the sample size.
Treating Bijk as missing data, EM algorithm is used to estimate the parameters (β, σ 2

j ,

γ, η). An advantage of incorporating external networks as prior information by introducing
Bijk is to facilitate the EM algorithm development: since the “complete data” distribution
gives a regular likelihood, so the EM ensures that the objective function increases over itera-
tions. Next, we describe details of the EM algorithm.

2.2.1. E-step. In the E-step we compute the expectation of the log pseudo complete data
likelihood given observed data Mij at node j as

Qj =
n∑

i=1

E

({
− log(

√
2πσj ) − 1

2σ 2
j

(
Mij − ∑

k �=j

Bijkβ
T
jkXiMik

)2}∣∣∣Mij ,Di

)

+
n∑

i=1

∑
k �=j

E
(
Bijk log(pijk) + (1 − Bijk) log(1 − pijk)|Mij ,Di

)

= −n log(
√

2πσj ) − 1

2σ 2
j

n∑
i=1

M2
ij +

n∑
i=1

∑
k �=j

log(1 − pijk)

+
n∑

i=1

∑
k �=j

(
1

σ 2
j

MijMikβ
T
jkXi + log

pijk

1 − pijk

)
E(Bijk|Mij ,Di)

− 1

2σ 2
j

n∑
i=1

∑
k,k′ �=j

(
βT

jkXi

)(
βT

jk′Xi

)
MikMik′E(BijkBijk′ |Mij ,Di).

To compute the expected likelihood given observed data, we need to obtain the posterior
expectations of connectivity indicators E[Bijk|Mij ,Di] and E[BijkBijk′ |Mij ,Di], which can
be expressed as

E(Bijk|Mij ,Di) = P(Bijk = 1|Mij ,Di)

= P(Bijk = 1,Mij |Di)

P (Bijk = 1,Mij |Di) + P(Bijk = 0,Mij |Di)
,

E
(
B2

ijk|Mij ,Di

) = E(Bijk|Mij ,Di)

and, for k′ �= k,

E(BijkBijk′ |Mij ,Di) = P(Bijk = 1,Bijk′ = 1|Mij ,Di)

= P(Bijk = 1,Bijk′ = 1,Mij |Di)∑
b,b′∈{0,1} P(Bijk = b,Bijk′ = b′,Mij |Di)

.
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Then, we obtain

P(Bijk = b,Mij |Di)

= ∑
bij1,...,bijp

P (Bij1 = bij1, . . . ,Bijk = b, . . . ,Bijp = bijp,Mij |Di)

=
(∏

k �=j

(1 − pijk)

)
× exp

(
b log

(
pijk

1 − pijk

)
+ ∑

l �=j,k

bij l log
(

pijl

1 − pijl

))

× ∑
bij1,...,bijp

1√
2πσ 2

j

exp
(
−(Mij − bβT

jkXiMik − ∑
l �=j,k bij lβ

T
jlXiMil)

2

2σ 2
j

)
,

where b ∈ {1,0} and bijl ∈ {1,0} for l �= j, k. In addition,

P
(
Bijk = b,Bijk′ = b′,Mij |Di

)
= ∑

bij1,...,bijp

P
(
Bij1 = bij1, . . . ,Bijk = b,Bijk′ = b′, . . . ,Bijp = bijp,Mij |Mij ,Di

)

=
(∏

k �=j

(1 − pijk)

)
× exp

(
b log

(
pijk

1 − pijk

)
+ b′ log

(
pijk′

1 − pijk′

)

+ ∑
l �=j,k,k′

bijl log
(

pijl

1 − pijl

)) ∑
bij1,...,bijp

1√
2πσ 2

j

× exp
(
−(Mij − bβT

jkXiMik − b′βT
jk′XiMik′ − ∑

l �=j,k,k′ bijlβ
T
jlXiMil)

2

2σ 2
j

)
,

where b ∈ {1,0}, b′ ∈ {1,0} and bijl ∈ {1,0} for l �= j, k, k′.
The computational complexity of the posterior expectations E(Bijk|Mij ,Di) and

E(BijkBijk|Mij ,Di) increases exponentially with the network size p due to exponential
number of terms in the summation of probabilities. The summation in P(Bijk = b,Mij |Di)

and P(Bijk = b,Bijk′ = b′,Mij |Di) can be calculated by: (1) exhaustive enumeration (Di-
rect), (2) Markov Chain Monte Carlo (MCMC) or (3) approximation. The first two meth-
ods are computationally expensive and may not be feasible for large networks. In this case,
we propose an approximation algorithm. Details of the approximation are given in Supple-
ment A.2 of the Supplementary Material (Xie, Zeng and Wang (2021)).

2.2.2. M-step. In the M-step we maximize the expected likelihood Qj replacing latent
connection statuses by their conditional expectations, E(Bijk|Mij ,Di) and E(BijkBijk′ |Mij ,

Di), computed from the E-step. To estimate parameters γ and η under model (2), we perform
a grid search to find the optimal combination that results in the largest log pseudo complete
data likelihood for node j and then take the average over all the nodes. For each combination
of γ and η, we maximize Qj and solve the following equations for each node j separately to
estimate parameters βjk and σ 2

j :

∂Qj

∂βjk

= 1

nσ 2
j

n∑
i=1

[
MijMikE(Bijk|Mij ,Di)X

T
i − ∑

k′ �=j

βT
jk′Mik′MikE(BijkBijk′ |Mij ,Di)XiX

T
i

]
,



INTEGRATING NETWORKS OF MULTIMODALITY BIOMARKERS 71

and

∂Qj

∂σ 2
j

= − 1

2σ 2
j

+ 1

2n(σ 2
j )2

n∑
i=1

M2
ij − 1

(nσ 2
j )2

n∑
i=1

∑
k �=j

E(Bijk|Mij ,Di)MijMikβ
T
jkXi

+ 1

2n(σ 2
j )2

n∑
i=1

∑
k �=j

(
βT

jkXi

)
Mik

∑
k′ �=k,j

(
βT

jk′Xi

)
Mik′E(BijkBijk′ |Mij ,Di)

+ 1

2n(σ 2
j )2

n∑
i=1

∑
k �=j

(
βT

jkXi

)2
M2

ikE(Bijk|Mij ,Di),

and compute

σ̂ 2
j = 1

n

n∑
i=1

M2
ij

− 1

n

∑
i=1

∑
k �=j

[
2E(Bijk|Mij ,Di)Mij − ∑

k′ �=k,j

(
β̂

T

jk′Xi

)
Mik′E(BijkBijk′ |Mij ,Di)

− E(Bijk|Mij ,Di)
(
β̂

T

jkXi

)
Mik

]
Mik

(
β̂

T

jkXi

)
.

Iterations in the EM algorithm will terminate when the estimates of βjk’s and σ 2
j converge.

To remove spurious edges, hard thresholding is performed on βjk based on EBIC criterion
(Foygel and Drton (2011), Chen and Chen (2008)). EBIC for node j is defined as

EBICj = −2 log
(
Lj

(
βjk, σ

2
j , γ̂ , η̂

)) + E × log(n) + 2δE × log(p − 1),

where E is the number of nonzero ‖βjk‖2, δ is a hyperparameter and γ̂ and η̂ are estimated
from EM algorithm. The estimates β̂jk and the corresponding σ̂ 2

j that minimize EBICj are

selected. An edge between nodes j and k is defined as present when ‖β̂jk‖2 or ‖β̂kj‖2 is
nonzero and the average of Ê(Bijk|Mij ,Di) over all subjects is larger than a prespecified
threshold value α.

3. Simulation studies.

3.1. Simulation design. We conducted extensive simulations to evaluate the proposed
method. We varied the number of biomarker nodes, p = 5,10 and the sample size, n =
200,400 with the number of covariates q = 3. Four settings were considered. In Settings
1–2 target network varied only by subject-specific external network. In Settings 3–4, target
network varied by both covariates and subject-specific external network. In all settings, four
out of 10 βjk’s (βjk and βkj are considered as a pair, βjk/σ

2
j = βkj /σ

2
k and counted only

once) are nonzeros when p = 5 and eight out of 45 βjk’s are nonzeros when p = 10 (Fig-
ure 3(a)). We refer βjk with a large L2 norm to as “strong signal” and that with a small L2
norm to as “weak signal.” The values of βjk and σj are presented in Supplement B of the
Supplementary Material (Xie, Zeng and Wang (2021)). We simulated covariates Xi indepen-
dently from N(0.1,1) truncated between −1 and 1.

In Settings 1–2, βjk is a scalar instead of a vector, representing population average edge
strength between nodes j and k among subjects with Bijk = 1.

Setting 1 (Varied by external modality network alone, weak signal):

• When p = 5, nonzero βjk’s (Figure 3(a), left panel) have ‖βjk‖2 = 0.45 when j is odd
and have ‖βjk‖2 = 0.55 when j is even;
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FIG. 3. Networks in the simulation settings.

• When p = 10, nonzero βjk’s (Figure 3(a), left panel) have ‖βjk‖2 = 0.55 when j is odd
and have ‖βjk‖2 = 0.63 when j is even.

Setting 2 (Varied by external modality network alone, strong signal):

• When p = 5, nonzero βjk’s (Figure 3(a), left panel) have ‖βjk‖2 = 0.67 when j is odd
and have ‖βjk‖2 = 0.82 when j is even;

• When p = 10, nonzero βjk’s (Figure 3(a), left panel) have ‖βjk‖2 = 0.82 when j is odd
and have ‖βjk‖2 = 0.95 when j is even.

In the external network G1, we let five edges be connected when p = 5 and 10 edges be
connected when p = 10 for each subject. Subjects with Xi1 > 0 (52% of subjects) had an
additional edge between nodes 1 and 2 when p = 5 and edge between nodes 4 and 5 when
p = 10. Subjects with Xi3 > 0.8 (8.55% of subjects) had an additional edge between nodes
3 and 5 when p = 5 and edge between nodes 8 and 9 when p = 10. The frequency of edges
appearing in G1 among subjects is shown in Figure 3(b), left panel.

Setting 3 (Covariate-dependent, weak signal):

• When p = 5, nonzero βjk’s (Figure 3(a), right panel) have ‖βjk‖2 = 0.17 when j is odd
and have ‖βjk‖2 = 0.26 when j is even;

• When p = 10, nonzero βjk’s (Figure 3(a), right panel) have ‖βjk‖2 = 0.26 when j is odd
and have ‖βjk‖2 = 0.35 when j is even.

Setting 4 (Covariate-dependent, strong signal):

• When p = 5, nonzero βjk’s (Figure 3(a), right panel) have ‖βjk‖2 = 0.35 when j is odd
and have ‖βjk‖2 = 0.52 when j is even;

• When p = 10, nonzero βjk’s (Figure 3(a), right panel) have ‖βjk‖2 = 0.52 when j is odd
and have ‖βjk‖2 = 0.69 when j is even.
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In the external modality network G1 the edges existed in all subjects and are as the same
as those in Settings 1–2. To introduce between-subject variation, there exists an extra edge
between nodes 4 and 5 if subjects have Xi1 > 0 (52% of subjects) and an edge between nodes
3 and 5 if subjects have Xi3 > 0 (52% of subjects). The frequency of edges appearing in G1
among subjects is shown in Figure 3(b), right panel. The distance between two nodes ranges
from 0.1 to 2. sijk is the number of common neighbors between two nodes. We set the degree
parameter γ = 2, and the distance parameter η = 1.

We assessed the edge selection performance by AUC of varying both hard thresholding
values and the prespecified proportion values α, the number of true positive (TP) edges, false
positive (FP) edges, true negative (TN) edges, false negative (FN) edges, sensitivity, speci-
ficity and the performance of parameter estimations by mean squared error (MSE). The lower
and upper thresholds of E(Bijk|Mij ,Di) introduced in Supplement A.1 of the Supplemen-
tary Material (Xie, Zeng and Wang (2021)) were set to be 0.1 and 0.9, respectively. We fixed
η = 1 to save computation time and selected � = {1.8,1.9,2.0,2.1,2.2} for grid search of γ .
The number of hard-thresholding cutoff values is 50, and the values are based on the magni-
tude of β̂jk’s. The proportion values α’s are {0,0.1,0.2,0.3,0.4}. In the approximation ver-
sion of the proposed method, we used the exponential basis functions with (λ1, . . . , λ18) =
(0.001,0.002,0.005,0.02,0.1,0.2,0.5,1,2,3,4,5,8,10,16,25,32,64), generated ui uni-
formly in [−1.5,1.5] and obtained the least square estimates of the basis function coeffi-
cients ζ .

We compared our method with EBIC glasso, which is the Gaussian graphical model with
lasso penalty, and the tuning parameter is chosen by EBIC criterion (Foygel and Drton
(2010)) and FGL using EBIC (defined in Supplement C of the Supplementary Material (Xie,
Zeng and Wang (2021))) criterion. The length of the searching path of the tuning parameter
for EBIC glasso is 50. FGL requires the subgroups are known. We stratified sample into two
subgroups, based on the median value of the first covariate Xi1, which is consistent with the
true simulation model. The tuning parameter for Lasso penalty was searched from 0 to 0.2
and that for penalty on encouraging similarity between subgroups was searched from 0 to
0.1, as suggested in Danaher, Wang and Witten (2014). We set the hyperparameter δ in EBIC
formula to be 0.5 for all methods, as suggested in Epskamp and Fried (2018). The simulations
were repeated 100 times.

3.2. Simulation results. In Settings 1–2 we demonstrated the improvement of perfor-
mance by incorporating external network alone. Our method selected all the true edges with
high frequency across 100 simulations, while the frequency of true edges selected by EBIC
glasso was lower and with nonnegligible false positives and FGL selected true edges more
frequently than EBIC glasso but also along with more null edges (Figure 4). When p = 5
(Table 1), sensitivity increased from 18.5% to 51.5% by incorporating external modality in-
formation in Setting 1 when n = 200 and increased from 65.3% to 80.5% when n = 400.
AUC of our method was 0.9 when n = 200 and increased to 0.98 when n = 400, while that of
EBIC glasso was 0.86 when n = 200 and 0.96 when n = 400 and that of FGL was 0.88 when
n = 200 and 0.97 when n = 400. When the signal was strong (Setting 2), our method identi-
fied almost all the true edges and selected fewer null edges than EBIC glasso and FGL. AUCs
of the three methods were all larger than 0.95, but our method still outperformed EBIC glasso
and FGL, achieving AUC = 1 when n = 400. When p = 10 (Table 2), our method achieved
78.1% sensitivity comparing to 51.6% sensitivity by EBIC glasso and 46.6% sensitivity for
FGL in Setting 1 with n = 200. In Setting 1 with n = 400 and Setting 2, all the three methods
achieved high sensitivity (almost 100%) while our method selected much fewer null edges
than EBIC glasso and FGL. These results suggest that external network improves learning in
terms of correctly identifying more nonnull edges and pruning more null edges.
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FIG. 4. The frequency of edges selected in estimated target networks in Settings 1–2. Each cell represents the
number of times an edge between two nodes was selected across 100 simulations. Blue cell: True positive edges;
Red cell: False positive edges. Darker color means higher frequency of being selected. Our method outperformed
EBIC glasso and FGL in terms of high frequency in selecting true edges and low frequency of null edges.

When the target network was also covariate-dependent (Settings 3–4), AUC of our method
was much higher than EBIC glasso and FGL. In Setting 3 with p = 5 (Figure 5, top row, left
panel), AUC of our method using either direct calculation or approximation was 0.62 when
n = 200 and achieved 0.68 when n = 400. In Setting 4 with strong signal (Figure 5, top row,
right panel), AUC of our method was 0.78 when n = 200 and 0.91 when n = 400. AUCs of
EBIC glasso and FGL for all settings ranged from 0.5 to 0.6.

Table 3 shows the selection performance of the simulation studies when p = 5. In Setting
3 (weak signal) the sensitivity of our method was about 30% while that of EBIC glasso was
only about 3% and that of FGL was smaller than 25%. In Setting 4 (strong signal) our method
achieved above 70% sensitivity comparing to EBIC glasso with 4% sensitivity and FGL with
18.5% sensitivity when n = 200. When n increases to 400, our method almost identified all
the true edges with 93.3% sensitivity and reasonable numbers of null edges with about 73%
specificity, whereas the sensitivity of EBIC glasso was only 4.5% and that of FGL was 25%.
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TABLE 1
Selection performance of simulations for p = 5 in Settings 1–2. The best performance for each row is bolded

Proposed method

α ≤ 0.4 EBIC glasso FGL

Direct Approx. α ≤ 0.4 α ≤ 0.4

Setting 1: External modality alone, Weak signal
n = 200

TP1 2.06 1.98 0.74 1.76
FP2 0.14 0.13 0.07 0.92
TN3 5.86 5.87 5.93 5.08
FN4 1.94 2.02 3.26 2.24
Sensitivity5 0.515 0.495 0.185 0.440
Specificity6 0.977 0.978 0.988 0.847

n = 400
TP1 3.22 3.20 2.61 2.83
FP2 0.09 0.09 0.42 1.20
TN3 5.91 5.91 5.58 4.80
FN4 0.78 0.80 1.39 1.17
Sensitivity5 0.805 0.800 0.653 0.708
Specificity6 0.985 0.985 0.930 0.800

Setting 2: External modality alone, Strong signal
n = 200

TP1 3.66 3.63 3.49 2.68
FP2 0.18 0.20 0.88 0.78
TN3 5.82 5.80 5.12 5.22
FN4 0.34 0.37 0.51 1.32
Sensitivity5 0.915 0.908 0.873 0.670
Specificity6 0.970 0.967 0.853 0.870

n = 400
TP1 3.99 3.99 4.00 3.62
FP2 0.07 0.08 1.12 0.95
TN3 5.93 5.92 4.88 5.05
FN4 0.01 0.01 0.00 0.38
Sensitivity5 0.998 0.998 1.000 0.905
Specificity6 0.988 0.987 0.813 0.842

1TP: Average number of true positive edges across 100 simulations; 2FP: Average number of false positive edges
across 100 simulations; 3TN: Average number of true negative edges across 100 simulations; 4FN: Average
number of false negative edges across 100 simulations; 5Sensitivity: Average sensitivity across 100 simulations;
6Specificity: Average specificity across 100 simulations.

Similar results are seen when p = 10 (Table 4). The sensitivity of our method was about
30% while that of EBIC glasso was just 0.6% and that of FGL was 3.4% when n = 400 in
Setting 3. In Setting 4 our method almost identified all the true edges, whereas both EBIC
glasso and FGL detected fewer than one true edges. Our method achieved 87.8% sensitivity,
meanwhile attained 77.4% specificity when n = 200 and further improved them when n =
400. AUCs were 0.65 and 0.75 for n = 200 and n = 400, respectively (Figure 5, bottom
row, left panel). Improvement of performance is seen when the signal was strong (Figure 5,
bottom row, right panel). AUC of our method was above 0.9 when n = 200 and increased to
0.98 when n = 400. AUCs of EBIC glasso and FGL for all settings ranged from 0.5 to 0.6.
EBIC glasso correctly selected true edges less than 10 times across 100 simulations, even
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TABLE 2
Selection performance of simulations for p = 10 in Settings 1–2. The best performance for each row is bolded

Proposed method

α ≤ 0.3 α = 0.4 EBIC glasso FGL

Direct Approx. Direct Approx. α ≤ 0.3 α = 0.4 α ≤ 0.3 α = 0.4

Setting 1: External modality alone, Weak signal
n = 200

TP1 6.25 6.15 6.10 6.00 4.13 4.08 3.73 3.66
FP2 0.97 1.23 0.72 0.89 0.39 0.44 3.82 3.89
TN3 36.03 35.77 36.57 36.40 36.61 36.85 33.18 33.40
FN4 1.75 1.85 1.61 1.71 3.87 3.63 4.27 4.05
Sensitivity5 0.781 0.769 0.791 0.778 0.516 0.527 0.466 0.472
Specificity6 0.974 0.967 0.981 0.976 0.989 0.988 0.897 0.896

n = 400
TP1 7.51 7.51 7.34 7.34 7.67 7.50 7.76 7.57
FP2 0.44 0.65 0.44 0.59 1.40 1.57 8.98 9.17
TN3 36.56 36.35 36.78 36.63 35.60 35.65 28.02 28.05
FN4 0.49 0.49 0.44 0.44 0.33 0.28 0.24 0.21
Sensitivity5 0.939 0.939 0.944 0.944 0.959 0.964 0.970 0.972
Specificity6 0.988 0.982 0.988 0.984 0.962 0.958 0.757 0.754

Setting 2: External modality alone, Strong signal
n = 200

TP1 8.00 8.00 7.71 7.69 8.00 7.71 8.00 7.71
FP2 0.79 2.75 0.87 2.75 8.17 8.46 14.23 14.52
TN3 36.21 34.25 36.42 34.56 28.83 28.83 22.77 22.77
FN4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sensitivity5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Specificity6 0.979 0.926 0.977 0.926 0.779 0.773 0.615 0.611

n = 400
TP1 8.00 8.00 7.78 7.76 8.00 7.78 8.00 7.78
FP2 0.73 3.32 0.83 3.17 9.06 9.28 16.68 16.90
TN3 36.27 33.68 36.39 34.07 27.94 27.94 20.32 20.32
FN4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sensitivity5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Specificity6 0.980 0.910 0.978 0.915 0.755 0.751 0.549 0.546

1TP: Average number of true positive edges across 100 simulations; 2FP: Average number of false positive edges
across 100 simulations; 3TN: Average number of true negative edges across 100 simulations; 4FN: Average
number of false negative edges across 100 simulations; 5Sensitivity: Average sensitivity across 100 simulations;
6Specificity: Average specificity across 100 simulations.

when the signal was strong and n = 400. FGL correctly selected true edges more frequently
than EBIC glasso but selected more null edges. In contrast, our method selected all true edges
with a high frequency (greater than 95 times out of 100 simulations; Figure 6). We also notice
that the performance is not sensitive to α. The results of α = 0,0.1,0.2,0.3 were the same
and those of α = 0.4 were slightly different.

In terms of parameter estimation, MSE of βjk ranged from 0.0014 to 0.0173 in Settings 1
and 2 and ranged from 0.025 to 0.09 in Settings 3 and 4 (Table 5).

The major difference between the proposed method and EBIC glasso is that EBIC glasso
estimates the edge strength between two nodes at the population level and does not account
for covariate-dependent or subject-specific connection status. When Bijk = 1, θijk = βT

jkXi
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FIG. 5. ROC curves of the simulations in Settings 3–4. Black solid line: Proposed Method (Direct); Red long–
dash line: Proposed Method (Approximation); Blue dash line: EBIC glasso; Orange dash line: FGL. Our method
provided higher AUC than EBIC glasso and FGL.

can be either positive or negative, depending on covariates Xi . When Bijk = 0, θijk = 0
directly. Therefore, the average edge signal at the population is low for many edges. This
may explain the poor performance of EBIC glasso. FGL performed better than EBIC glasso
because it incorporated covariate information when we stratified sample into subgroups based
on covariates. However, it requires that the subgroups are prespecified, which is not flexible,
and one may not know how to stratify samples in practice.

3.3. Computational advantage of the approximation. The results of our method with ap-
proximation were comparable to those of direct calculation when n = 200, and they were
very similar when n = 400, in terms of both selection performance in the final model (Ta-
bles 1, 2, 3 and 4) and ROC curves (Figure 5). Although losing some accuracy with low
sample size, computational efficiency was gained when we used approximation to calculate
the posterior expectations (Table 6) in all cases. All calculations were carried out on an Intel
Core i7 2.8 GHz processor. The average running time per simulation of using approximation
reduced by about 50% when n = 200 comparing to the direct calculation. The approximation
approach cost similar time for n = 400 and n = 200; thus, the running time reduced by more
than 66% comparing to direct calculation when n = 400.

4. Application to the gray matter atrophy network of HD. Huntington’s Disease
(HD), a progressive genetic neurodegenerative disease, is caused by an inherited CAG repeat
expansion in the huntingtin gene and is characterized by cognitive, motor and psychiatric
symptoms (Paulsen et al. (2008, 2006), Klöppel et al. (2015)). Studies have shown that corti-
cal thinning begins a decade before disease onset (Rosas et al. (2005), Tabrizi et al. (2009)).
The gray matter structural covariance networks are reported to differ among healthy controls,
preHD and HD patients, and might be an early biomarker for HD (Coppen et al. (2016)). Our
goal is to enhance estimation of the gray matter structural covariance network of the rate of
change in cortical thickness using information from white matter connectivity in HD patients.
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TABLE 3
Selection performance of simulations for p = 5 in Settings 3-4. The best performance for each row is bolded

Proposed Method

α ≤ 0.3 α = 0.4 EBIC glasso FGL

Direct Approx. Direct Approx. α ≤ 0.4 α ≤ 0.4

Setting 3: Covariate-dependent, Weak signal
n = 200

TP1 1.19 1.03 1.19 1.03 0.11 0.50
FP2 1.07 0.98 0.64 0.62 0.12 0.76
TN3 4.93 5.02 5.36 5.38 5.88 5.24
FN4 2.81 2.97 2.81 2.97 3.89 3.50
Sensitivity5 0.298 0.258 0.298 0.258 0.028 0.125
Specificity6 0.822 0.837 0.893 0.897 0.980 0.873

n = 400
TP1 1.35 1.28 1.35 1.28 0.16 0.96
FP2 0.84 0.80 0.45 0.43 0.16 1.28
TN3 5.16 5.20 5.55 5.57 5.84 4.72
FN4 2.65 2.72 2.65 2.72 3.84 3.04
Sensitivity5 0.338 0.320 0.338 0.320 0.040 0.240
Specificity6 0.860 0.867 0.925 0.928 0.973 0.787

Setting 4: Covariate-dependent, Strong signal
n = 200

TP1 3.03 2.84 3.03 2.84 0.16 0.74
FP2 1.81 1.72 1.29 1.17 0.11 0.90
TN3 4.19 4.28 4.71 4.83 5.89 5.10
FN4 0.97 1.16 0.97 1.16 3.84 3.26
Sensitivity5 0.758 0.710 0.758 0.710 0.040 0.185
Specificity6 0.698 0.713 0.785 0.805 0.982 0.850

n = 400
TP1 3.73 3.73 3.73 3.73 0.18 1.00
FP2 1.65 1.61 1.07 1.00 0.17 1.31
TN3 4.35 4.39 4.93 5.00 5.83 4.69
FN4 0.27 0.27 0.27 0.27 3.82 3.00
Sensitivity5 0.933 0.933 0.933 0.933 0.045 0.250
Specificity6 0.725 0.732 0.822 0.833 0.972 0.782

1TP: Average number of true positive edges across 100 simulations; 2FP: Average number of false positive edges
across 100 simulations; 3TN: Average number of true negative edges across 100 simulations; 4FN: Average
number of false negative edges across 100 simulations; 5Sensitivity: Average sensitivity across 100 simulations;
6Specificity: Average specificity across 100 simulations.

We analyzed data collected from an international longitudinal natural history study of HD,
TRACK-ON (Klöppel et al. (2015)). The cohort in the analyses includes 87 premanifest HD
(preHD) patients who carried mutant gene, but not yet diagnosed, and was followed up at
three time points (year 2012, 2013 and 2014). The gray matter cortical thickness regions of
interest (ROIs) were obtained from sMRI data and generated by segmenting a T1-weighted
image by Freesurfer (Desikan et al. (2006)). The white matter weighted streamline counts be-
tween ROIs for each individual resulting from probabilistic tractography were available from
DTI data. Details of the study design and MRI data acquisition can be found in McColgan
et al. (2017a).
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TABLE 4
Selection performance of simulations for p = 10 in Settings 3–4. The best performance for each row is bolded

Proposed method

α ≤ 0.3 α = 0.4 EBIC glasso FGL

Direct Approx. Direct Approx. α ≤ 0.3 α = 0.4 α ≤ 0.3 α = 0.4

Setting 3: Covariate-dependent, Weak signal
n = 200

TP1 1.72 1.65 1.64 1.57 0.04 0.03 0.07 0.07
FP2 4.13 3.61 2.93 2.55 0.12 0.12 0.43 0.43
TN3 32.87 33.39 34.36 34.74 36.88 37.17 36.57 36.86
FN4 6.28 6.35 6.07 6.14 7.96 7.67 7.93 7.64
Sensitivity5 0.215 0.206 0.211 0.203 0.005 0.005 0.009 0.009
Specificity6 0.888 0.902 0.921 0.932 0.997 0.997 0.988 0.988

n = 400
TP1 2.84 2.35 2.76 2.28 0.05 0.05 0.27 0.26
FP2 3.23 2.72 2.12 1.84 0.23 0.23 1.19 1.20
TN3 33.77 34.28 35.10 33.38 36.77 36.99 35.81 36.02
FN4 5.16 5.65 5.02 5.50 7.95 7.73 7.73 7.52
Sensitivity5 0.355 0.294 0.356 0.294 0.006 0.006 0.034 0.034
Specificity6 0.913 0.926 0.943 0.951 0.994 0.994 0.968 0.968

Setting 4: Covariate-dependent, Strong signal
n = 200

TP1 7.02 5.92 6.76 5.72 0.27 0.22 0.55 0.54
FP2 8.36 5.91 6.47 4.67 0.33 0.38 0.79 0.80
TN3 28.64 31.09 30.84 32.64 36.67 36.93 36.21 36.51
FN4 0.98 2.08 0.93 1.97 7.73 7.47 7.45 7.15
Sensitivity5 0.878 0.740 0.878 0.746 0.034 0.030 0.069 0.070
Specificity6 0.774 0.840 0.827 0.875 0.991 0.990 0.979 0.979

n = 400
TP1 7.91 7.69 7.58 7.36 0.44 0.42 0.87 0.82
FP2 5.91 5.31 4.28 3.86 0.52 0.54 1.33 1.38
TN3 31.09 31.69 33.05 33.46 36.48 36.79 35.67 35.95
FN4 0.09 0.31 0.09 0.31 7.56 7.25 7.13 6.85
Sensitivity5 0.989 0.961 0.988 0.960 0.055 0.055 0.109 0.108
Specificity6 0.840 0.856 0.886 0.897 0.986 0.986 0.964 0.963

1TP: Average number of true positive edges across 100 simulations; 2FP: Average number of false positive edges
across 100 simulations; 3TN: Average number of true negative edges across 100 simulations; 4FN: Average
number of false negative edges across 100 simulations; 5Sensitivity: Average sensitivity across 100 simulations;
6Specificity: Average specificity across 100 simulations.

A previous white matter connectivity study (McColgan et al. (2017a)) using TRACK-ON
has demonstrated that pre-HD subjects have significantly more vulnerable connections com-
pared with controls in the left and right posterior motor-occipital parietal modules. To con-
struct the white matter network, a linear mixed-effects model to exploit the longitudinal DTI
measurements was used to compute the rate of change in connections between ROIs and their
p-values, after adjusting for the baseline connection, CAG, age, gender, baseline total motor
score (TMS), baseline symbol digit modalities test (SDMT) score (which reflects cognitive
ability) and baseline total functional capacity (TFC) which measures progressive functional
decline. In the white matter connection network, the nodes were the ROIs, which had at least
one connection, with the false discovery rate (FDR) correction q < 0.1 and within the two
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FIG. 6. The frequency of edges selected in estimated target networks in Settings 3–4. Each cell represents the
number of times an edge between two nodes was selected across 100 simulations. Blue cell: True positive edges;
Red cell: False positive edges. Darker color means higher frequency of being selected. Our method outperformed
EBIC glasso and FGL in terms of high frequency in selecting true edges while low frequency in null edges.

modules. If the connection strength between nodes j and k for subject i was also nonzero at
the baseline visit, the edge between nodes j and k was defined as present in subject i’s white
matter connection network. For each individual the white matter connection network (G1)
consist of 10 nodes (ROIs) and, at most, eight edges (Supplement D of the Supplementary
Material (Xie, Zeng and Wang (2021)), Table S1). The anatomical distances between ROIs
were obtained from a template and were the euclidean distances. The distances ranged from
14 to 88, and we scaled the distance by dividing by 150. As a preliminary analysis to obtain
good initial values, we fitted a logistic regression model using product of degrees and dis-
tance as covariates on white matter network and obtained the estimated parameters γ̂ = 0.44
and η̂ = 0.31. Thus, we set the searching path for γ to be {0.2,0.3,0.4,0.5,0.6} and η to be
{0.15,0.20,0.25,0.30,0.35}.

The same 10 ROIs were used in the cortical gray matter structural covariance network
(G∗). The nodes were the rates of change in cortical thickness ROIs estimated by a linear
mixed-effects model adjusting for the baseline cortical thickness. CAP score (age × (CAG-
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TABLE 5
Average mean squared error of βjk estimation across 100 simulations

Weak signal Strong signal

Direct Approx. Direct Approx.

Settings 1-2: External modality alone
p = 5, n = 200 0.0169 0.0173 0.0124 0.0131
p = 5, n = 400 0.0080 0.0083 0.0035 0.0037
p = 10, n = 200 0.0086 0.0090 0.0025 0.0024
p = 10, n = 400 0.0031 0.0033 0.0014 0.0016

Settings 3–4: Covariate-dependent
p = 5, n = 200 0.0636 0.0616 0.0905 0.0898
p = 5, n = 400 0.0363 0.0362 0.0487 0.0478
p = 10, n = 200 0.0449 0.0413 0.0725 0.0543
p = 10, n = 400 0.0276 0.0258 0.0306 0.0253

35.5); Zhang et al. (2011)), baseline TMS and baseline SDMT were covariates used in our
method to estimate the network.

We set the length of the path of hard-thresholding values in our method or tuning parame-
ters in EBIC glasso to be 50. For FGL we stratified subjects into four groups based on CAP
score and searched tuning parameter for lasso penalty from 0 to 0.2 and that for subgroup
similarity penalty from 0 to 1 for FGL as suggested in Danaher, Wang and Witten (2014). We
set proportion value α = 0 and hyperparameter δ = 0.5 for all methods.

Our method identified 22 connections, while EBIC glasso identified 24 connections and
FGL identified a much denser network with 41 connections (Supplement D of the Supple-
mentary Material (Xie, Zeng and Wang (2021), Table S1). Eight connections were identified
by all three methods. Five connections identified by the proposed method in the gray mat-
ter network were in common with the white matter connection network, whereas only three
connections identified by EBIC glasso in the gray matter network overlapped with the white
matter connection network. Our results are more consistent with previous literature on the
characteristics of overlapped connections between structural covariance network and white
matter connectivity (Alexander-Bloch, Giedd and Bullmore (2013)).

Because the estimated connections from our method are subgroup- and subject-specific,
our estimated connections can be treated as additional variables for predicting clinical out-
comes and patient stratification. In contrast, connections estimated from EBIC glasso resulted
in the same connection strengths for the whole population, so cannot be used as patient-
specific covariates.

TABLE 6
Average running time for one simulation using direct calculation and approximation

Direct Approx.

Weak signal Strong signal Weak signal Strong signal

p = 5, n = 200 2.838 secs 2.730 secs 0.923 secs 1.202 secs
p = 5, n = 400 5.517 secs 5.035 secs 1.546 secs 1.618 secs

p = 10, n = 200 4.767 mins 5.269 mins 2.079 mins 2.907 mins
p = 10, n = 400 7.516 mins 7.798 mins 1.683 mins 2.608 mins
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4.1. Clinical utility of the connections. To assess the clinical utility of the connections
identified by integrative network learning, we evaluated their associations with TMS at
the last visit, which is a measure of motor symptoms, the hallmark of HD. We compared
the R-squares of the linear regression in a standard covariate model (with covariates CAP,
baseline SDMT, baseline TMS), nonconnection imaging model (with covariates and 10 re-
gional cortical thickness ROIs) and the connection imaging model (with covariates, 10 re-
gional cortical thickness and identified connections by the proposed method). The estimate

β̂
T

jkXi/σ̂
2
j ∗ Ê(Bijk|Mij ,Di) was treated as the connection strength between ROIs j and k.

The R-squared value of the standard covariate model was 0.376, increased to 0.494 of the
nonconnection imaging model and was 0.631 of the connection imaging model. Thus, an ad-
ditional 13.7% of variance was explained by the identified connections. When using connec-
tions estimated from FGL, the R-squared value of the connection imaging model was 0.519
which was worse than our method. Note that the network was constructed without using the
motor symptoms. These results suggest that the identified connections from our method are
highly predictive of the future motor symptom outcomes after including standard measures
and regional cortical thickness.

The connections identified by the proposed method are comparable to those reported in
previous literature. The connection between precuneus and isthmus cingulate regions, identi-
fied in both the structural covariation network and white matter connectivity, was also shown
to have greater functional connectivity in pre-HD subjects compared to control in a recent
fMRI study in TRACK-ON (McColgan et al. (2017b)). The thickness of occipital regions,
which are important visual processing regions, including the cuneus and lateral occipital, has
been found to impact cognition (Rosas et al. (2008), Johnson et al. (2015)). The precuneus
region responds to a range of cognitive processes, and the paracentral region correlates with
cognitive performance (Rosas et al. (2005, 2008)). These regions with similar functions might
covary as well.

4.2. Clustering analysis based on connectivity measures. We show another utility of the
identified connections in stratifying patients into groups with distinct clinical prognosis. Fig-
ure 7 shows that the connections have greater between-subject discriminative power and tend
to cluster patients into homogeneous groups, whereas no clear cluster is seen in the heatmap
of the regional nodes. Connections estimated from our method show stronger discriminative
power than FGL. Furthermore, we conducted three k-means clustering analyses based on ei-
ther the connectivity identified by our method or connectivity identified by FGL or the ROIs
and compared the results. We chose the number of clusters to be four since the elbow points
for both connectivity and regional nodes are at cluster = 4 (Supplement D of the Supplemen-
tary Material (Xie, Zeng and Wang (2021)), Figure S1). ANOVA F -test was conducted to
test the differences between the TMS at the last visit and SDMT at the last visit of the iden-
tified four subgroups based on connectivity and regional nodes. There is a significant group
difference for connectivity-based clusters from our method (Figure 8, Top panel), while no
significant difference for connectivity-based clusters from FGL or regional nodes based clus-
ters (Figure 8, middle and bottom panels). The connectivities from our method can better
stratify subjects into meaningful clinical groups with different motor and cognitive scores at
follow-up than regional nodes.

5. Discussion. In this work we propose an integrative network learning method un-
der a pseudo-likelihood graphical model to improve the estimation of a target covariate-
dependent network. Our method exploits a shared latent network between multiple modalities
of biomarker measurements. The external network is treated as prior of the shared network,
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FIG. 7. Heatmaps of connectivity and nodes. Each column represents one subject, and each row represents one
connection or node. Connections tend to cluster patients into groups, whereas no clear cluster is seen for regional
nodes. Connectivity estimated from our method show greater discriminative power than connectivity estimated
from FGL.
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FIG. 8. Clustering analysis based on connectivity and nodes. Connectivity-based clusters from proposed method
show significant group difference in follow-up clinical outcomes, while no significant difference is observed for
connectivity-based clusters from FGL or regional nodes-based clusters.

and a network growth model that captures the small-worldness and fat-tailed degree distribu-
tion properties in human brain networks has been used to generate the shared network. The
shared network then constrains the estimation of the target network.

There are several advantages of our modeling framework in (1) and (2). First, since model
(2) has biological underpinning, it improves biological relevance for the estimation of tar-
get network G∗. The estimated connections in G∗ will reflect the anatomical distances and
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common neighbors in G1. Second, by inferring Bijk as unknown latent connection statuses
from observed data M i , sijk and dijk , we borrow information from networks measured by two
neuroimaging modalities, and the efficiency is improved. Third, regular analysis of covariate-
dependent structural covariance networks is conducted at the subgroup level (depending on
the resolution of covariates). In our approach, since white matter connectivities are measured
for each individual, incorporating its information into the estimation of θijk of structural co-
variance network improves its resolution to the subject-level. In addition, our method creates
new useful network measures (connectivity) to improve the prediction of clinical outcomes
and better stratify subjects into homogeneous groups. Thus, the connectivity measures might
be considered to be included as new biomarker features to recruit subjects for future clinical
trials.

Several extensions can be considered. We can consider generalizing to use the power prior
(Ibrahim and Chen (2000), Spiegelhalter, Abrams and Myles (2004)) in the pseudo likeli-
hood Lj , that is, f ({Bijk, k �= j}|Di) is raised to some power, where the power is tuned
to determine how much information can be borrowed from the external modality network.
Since our model is a nodewise model that estimates the edges separately for each node, we
can extend current models to high-dimensional case when a large number of nodes exists by
adding a sparse penalty on βjk in the M-step. However, it will be computationally expensive
in calculating the posterior expectations in the E-step in a high-dimensional EM optimization
(Wang et al. (2015)). The current approximation approach may not be directly applicable to
large networks and other faster computational techniques such as variational Bayes might be
considered to further improve computation.

R code implementing this method is available in the Supplementary Material (Xie, Zeng
and Wang (2021)) and online at http://github.com/shanghongxie/INL.
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SUPPLEMENTARY MATERIAL

Supplement to “Integrative network learning for multimodality biomarker data”
(DOI: 10.1214/20-AOAS1382SUPPA; .pdf). Supplement A. This section describes the ap-
proaches to reduce computational burden in computing the posterior expectations in E-step.
Supplement B. This section contains the details of simulation settings. Supplement C. In this
section, we describe the EBIC criteria used for fused graphical lasso. Supplement D. This
section contains Table S1 and Figure S1.

Code (DOI: 10.1214/20-AOAS1382SUPPB; .zip). R code implementing this method.
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