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The problem of maximizing cell type discovery under budget constraints
is a fundamental challenge for the collection and analysis of single-cell RNA-
sequencing (scRNA-seq) data. In this paper we introduce a simple, compu-
tationally efficient and scalable Bayesian nonparametric sequential approach
to optimize the budget allocation when designing a large-scale experiment
for the collection of scRNA-seq data for the purpose of, but not limited to,
creating cell atlases. Our approach relies on the following tools: (i) a hier-
archical Pitman–Yor prior that recapitulates biological assumptions regard-
ing cellular differentiation, and (ii) a Thompson sampling multiarmed bandit
strategy that balances exploitation and exploration to prioritize experiments
across a sequence of trials. Posterior inference is performed by using a se-
quential Monte Carlo approach which allows us to fully exploit the sequen-
tial nature of our species sampling problem. We empirically show that our
approach outperforms state-of-the-art methods and achieves near-Oracle per-
formance on simulated and scRNA-seq data alike. HPY-TS code is available
at https://github.com/fedfer/HPYsinglecell.

1. Introduction. Technological developments in high-throughput genomics have gener-
ated a wealth of data allowing researchers to measure and quantify RNA levels of individual
cells (Macosko et al. (2015), Zheng et al. (2017)). Benefiting from experimental and com-
putational advances alike, single-cell RNA-seq (scRNA-seq) allows the characterization of
cell types and cellular diversity, offering invaluable insights at scales unattainable in previ-
ous bulk gene expression studies (Zhu et al. (2018)). In order to understand the diversity of
the thousands of cell types and subtypes across different organisms, recent initiatives aim for
molecular profiling of all cell types of complex organisms, such as mouse or human (Han
et al. (2018), Regev et al. (2017)). Despite the decreasing cost of technologies for single-cell
sequencing, cell atlases are expensive to collect and hard to coordinate across species, cells,
tissues, organs, diseases, technologies and labs. A principled way of collecting data is there-
fore paramount: given the experimental cost limiting the number of cells to be sequenced and
given multiple related experimental scenarios (e.g., developmental time, biological region,
tumor site), how can one allocate the cellular sequencing budget in order to minimize exper-
imental cost and to maximize the number of distinct cells types obtained? In this paper we
present an effective Bayesian nonparametric approach to address this fundamental question.

Recent work (Battiston, Favaro and Teh (2018), Bubeck, Ernst and Garivier (2013),
Dumitrascu, Feng and Engelhardt (2018a)) proposed the use of classical multiarmed bandit
strategies—upper confidence bounds (UCB) (Auer, Cesa-Bianchi and Fischer (2002), Lai and
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Robbins (1985)) and Thompson sampling (TS) (Thompson (1933))—for devising sequential
approaches to maximize the number of distinct species discovered by sampling over multiple
populations. In particular, these sampling strategies balance the exploration of the experi-
mental choices—which populations are sampled—with the exploitation of populations that
maximize current estimates of the expected rewards—the observed species diversity within
a population. In the classical multiarmed bandit setting, a gambler is presented with slot ma-
chines (one-armed bandits is the colloquial term for a slot machine in American slang) that
each pay out a random reward sampled from an arm-specific probability distribution. The
gambler commits to querying a given arm for a single trial before switching to another arm,
and her goal is to select a sequence of arms to play in order to maximize her rewards over
subsequent trials. At each step the gambler estimates the expected rewards of a single trial
from each machine’s arm, both queried and not. She must then balance exploiting the arm
with the current highest estimate of expected rewards and exploring undersampled arms to
improve estimates of the arms’ expected rewards.

A natural variation of the above multiarmed bandit setting is when the gambler commits
to querying a given arm for a predetermined number of consecutive trials before switching
to another arm. This variation is readily applicable to the experimental design problem of
guiding the sequential selection of samples through single cell sequencing technologies: We
may sequence some number of cells from one of multiple tissues or sample sites. In detail,
we consider this problem as a set of sequential trials where a scientist may choose a subset of
tissue samples to assay. Each organ, tissue type, sample site or experimental condition repre-
sents an arm to be pulled. When choosing a specific arm, the scientist commits to sequencing
a number of cells proportional to the maximum number of new cell-type discoveries expected
in a future sample from the given experimental condition. The reward of each experimental
trial is given by the number of new cell types uncovered in the sequenced sample. A first
attempt to address this problem, within the context of scRNA-seq data, was proposed in
Dumitrascu, Feng and Engelhardt (2018b) by combining a class of Good–Toulmin (GT) esti-
mators (Efron and Thisted (1976), Good (1953), Good and Toulmin (1956), Orlitsky, Suresh
and Wu (2016)) with the TS strategy.

In this paper we follow ideas from Battiston, Favaro and Teh (2018) and Dumitrascu, Feng
and Engelhardt (2018b) to introduce a Bayesian nonparametric counterpart of the previous
Good–Toulmin Thompson sampling (GT-TS) approach (Dumitrascu, Feng and Engelhardt
(2018b)). Because of the purely nonparametric nature of smoothed GT estimators, the GT-
TS approach does not allow us to take into account the structure of cell type diversity. As cell
types arise through cellular differentiation (Rizvi et al. (2017)), they organize themselves in
developmental landscapes (Waddington et al. (1957)). Hierarchical structures can be imposed
on the cell types through Bayesian nonparametric priors, as was done for cell trajectory re-
construction and Bayesian inference on developmental lineages (Heaukulani, Knowles and
Ghahramani (2014), Shiffman et al. (2018)).

A natural choice for a nonparametric prior to model cell type diversity is the hierarchical
Pitman–Yor process (HPY) (Teh (2006), Teh and Jordan (2010)). The HPY process has pre-
viously been used in the context of species discovery problems in multiple populations, and
it has been shown to have good performance in small data sets (Bassetti, Casarin and Rossini
(2020), Camerlenghi et al. (2019)). Yet, species sampling problems considered in these recent
studies are not sequential problems: a Bayesian nonparametric model with a HPY prior is fit
to the data de novo each time new data become available. This makes current posterior sam-
pling procedures designed for the HPY prior infeasible for our sequential species sampling
problem of rapidly-growing single-cell data sets.

We propose a simple, computationally efficient and scalable Bayesian nonparametric se-
quential approach for guiding the selection of samples for single-cell sequencing technolo-
gies with the goal of maximizing the diversity of cell types discovered. Our approach has two



BAYESIAN NONPARAMETRIC EXPERIMENTAL DESIGN 2005

main contributions. First, we introduce a multiarmed bandit strategy that combines the TS ap-
proach with a Bayesian nonparametric counterpart of the GT estimator under the HPY prior,
extending previous work that allowed only a single trial to allow a predetermined number of
consecutive trials before switching arms (Battiston, Favaro and Teh (2018)). The TS strat-
egy encodes the sequential exploration-exploitation process associated with data collection
from any given region, whereas the use of the HPY prior incorporates biologically-relevant
information regarding the relationships among cell types to guide the allocation of resources.
Second, we devise an efficient posterior sampling scheme that relies on sequential Monte
Carlo methods (Liu and West (2001), West (1993a)). Sequential Monte Carlo (SMC) allows
us to fully exploit the sequential nature of our species sampling problem, thus avoiding the
overwhelming computational burden of the Markov chain Monte Carlo (MCMC) scheme pro-
posed in Battiston, Favaro and Teh (2018). We compare our method to the previous method
(GT-TS) and to an Oracle in simulations and in a data set based on the Mouse Cell Atlas (Han
et al. (2018)). Since our motivation lies in the realm of single cell experimental design, we
illustrate how, given a per-trial budget, the resulting algorithm leverages information across
tissues to inform subsequent experiments in order to maximize cell type discovery in the
Mouse Cell Atlas (Han et al. (2018)).

The paper is structured as follows. Section 2 contains preliminaries on: (i) the multiarmed
bandit setting within the context of prioritizing single cell sampling across populations, that
is, organs, tissues, regions and experimental conditions; (ii) the definition of the HPY prior
and some of its marginal sampling properties. In Section 3 we introduce our Bayesian non-
parametric sequential approach, referred to as the HPY-TS strategy, for guiding the selection
of samples through single-cell sequencing technologies. A detailed description of the se-
quential Monte Carlo approach for posterior sampling is presented in Section 4. Section 5
highlights results of our approach through a simulation study and an application to a data
set derived from the Mouse Cell Atlas. In Section 6 we summarize our work and briefly dis-
cuss extensions to our HPY-TS strategy. Additional simulation studies, posterior diagnostics
and proofs are deferred to the Supplementary Material (Camerlenghi et al. (2020a)). HPY-TS
code is available at https://github.com/fedfer/HPYsinglecell and in the Supplementary Mate-
rial (Camerlenghi et al. (2020b)).

2. Preliminaries. Let Y denote the set of labels representing the cell types of an or-
ganism being studied. The cell type composition within each of the J possible populations
(arms, experiments) is characterized by a probability distribution over Y , such that cell types
are shared across the J populations. Precisely, we denote by Pj the probability distribution
on Y in population j , for j = 1, . . . , J . Let nj be the number of cells (pulls) observed from
the j th population, and let Y j = (Yj,1, . . . , Yj,nj

) ∈ Ynj be the vector of nj observations
from the j th population, whereas Y = (Y 1, . . . ,Y J ) is the joint sample corresponding to a
budget n1 +· · ·+nJ . Assume now to have an additional budget M that constrains the number
of cells that can be collected per trial in a future experiment. If J populations are available,
a multiarmed bandit iteratively selects a subset of populations to sample from as well as the
appropriate number of cells to sample in each population. In other words, at each step the arm
is chosen with the goal of maximizing the number of novel cell types observed. Therefore, in
order to set up our strategy, the first step consists in estimating the number of thus far unseen
species (cells) that are going to be sampled for every possible arm j , as j = 1, . . . , J .

A possible strategy to address this sequential problem was first proposed in the work of
Dumitrascu, Feng and Engelhardt (2018a). This approach relies on a smoothed version of the
Good–Toulmin estimator of the number of unseen species (Orlitsky, Suresh and Wu (2016)).
However, while the smoothed Good–Toulmin estimator presents attractive statistical prop-
erties and provable guarantees in terms of minimax optimality (Orlitsky, Suresh and Wu

https://github.com/fedfer/HPYsinglecell
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(2016)), it is designed for a single population scenario. In this paper we focus on data com-
ing from multiple related populations. Indeed, we discover cell types across diverse tissue
types assayed in scRNA-seq experiments. It is then important to guarantee two key proper-
ties in our model: (i) the model preserves data heterogeneity for different tissues; and (ii) the
model allows borrowing of information across the different tissues. Hierarchical Bayesian
nonparametric priors are tailored for such situations: the data are divided into distinct popu-
lations (according to the tissue they are derived from), and at the same time the hierarchical
construction allows a borrowing of information across the diverse populations of cell types.

2.1. The Pitman–Yor process. The Bayesian nonparametric (BNP) approach relies on the
choice of a prior distribution for the cell type labels. The Dirichlet process (DP) (Ferguson
(1973)) is a well-known Bayesian nonparametric distribution. In this paper we make use of a
generalization of the DP, the Pitman–Yor (PY) process (Pitman and Yor (1997)). The PY pro-
cess P is a random probability measure that depends on two parameters (σ, θ), respectively,
called the concentration and the mass parameter, with a base measure P0 on the space of la-
bels Y . The admissible values we consider here for these parameters are σ ∈ (0,1) and θ > 0.
The most simple way to define the PY process uses a stick-breaking procedure (Sethuraman
(1994)). More specifically, P is a discrete random probability measure P = ∑

k≥1 πkδyk
such

that

π1 = V1

and

πk = Vk

k−1∏
h=1

(1 − Vh) for h ≥ 2,

where (yk)k≥1 is a sequence of i.i.d. random variables as P0, and (Vk)k≥1 is a collection
of independent beta-distributed random variables with parameters (θ + kσ,1 − σ). The two
sequences (yk)k≥1 and (Vk)k≥1 are assumed to be independent. We write P ∼ PY(σ, θ;P0)

to denote the distribution of P . The classical DP prior can be found as a limiting case of the
PY process, letting σ → 0.

It is worthwhile to highlight the differences between the PY process and the DP with
respect to the predictive distributions they induce. In both cases the predictive distribution
may be represented in terms of the celebrated Chinese restaurant process (CRP); see Pitman
and Yor (1997) for a comprehensive account and references. Consider a random sample

Y1, . . . , Yn|P iid∼ P of size n from the PY process. The almost sure discreteness of the ran-
dom probability measure P allows for ties within the sample. Then, let Kn be the number of
distinct values within the sample (Y1, . . . , Yn), denoted as (Y ∗

1 , . . . , Y ∗
Kn

) and having multi-
plicities (n1, . . . , nKn). Then, the predictive distribution of the n+1st observation Yn+1 given
past observations is

(2.1) Yn+1|(Y1, . . . , Yn),P0, σ, θ ∼
Kn∑
k=1

nk − σ

θ + n
δY ∗

k
+ θ + Knσ

θ + n
P0.

In other words, equation (2.1) tells us that the probability of observing a previously observed
value Y ∗

k is proportional to nk − σ . Intuitively, the more samples of a species we observe, the
higher the probability of sampling it again in future trials; this is referred to as “the rich get
richer” behavior. Alternatively, the probability of sampling a new observation from the base
measure P0 is proportional to θ +Knσ . Notice that the clustering structure of the PY process
depends on two parameters, σ and θ , whereas in the DP it is governed only by θ . This more
complex parametrization offers more flexible clustering rates and cluster size tail behaviors
for the PY process (Ishwaran and James (2001)).
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2.2. Hierarchies of Pitman–Yor processes. When considering observations sampled
from multiple populations, it is natural in the Bayesian framework to model the group struc-
ture with a hierarchical framework. Here, we use a hierarchical structure based on the PY
process. We denote the distribution of cell type labels across all of the populations (experi-
mental design conditions) by P . The probability distribution P is almost surely discrete with
an unknown number of atoms, and we select a PY process prior to model the distribution of
cell type labels with parameters (σ, θ) and nonatomic base measure P0 on the space of la-
bels. Then, each population-specific distribution Pj is modeled using a PY process prior with
parameters (σj , θj ), and we further suppose that the common base measure for all the Pj s
is the PY process P . Summing up, we have specified the following hierarchical PY (HPY)
process prior:

P |σ, θ,P0 ∼ PY(σ, θ;P0),

Pj |σj , θj ,P
ind∼ PY(σj , θj ;P) ∀j = 1,2, . . . , J,

Yj,i |Pj
iid∼ Pj ∀j = 1,2, . . . , J,∀i = 1,2, . . . , nj .

(2.2)

The above hierarchical specification introduces dependencies among different populations
(experimental conditions or arms), thus allowing the sharing of information across popu-
lations since the base measure P is common to the different collections of observations
(Camerlenghi et al. (2019), Teh (2006)). In particular, conditional on the base measure P ,
the Pj s are independent PY processes with base measure P . In particular, the interpretation
of the parameters (σj , θj ) is the same as in the single-population case described above.

The predictive distribution and the combinatorial structure induced by hierarchical pro-
cesses can be thought of in terms of the Chinese restaurant franchise (CRF) metaphor (Teh
and Jordan (2010)). According to this culinary metaphor, each sample Y j := (Yj,1, . . . , Yj,nj

)

identifies the dishes chosen by the nj customers of restaurant (group) j , for any j = 1, . . . , J .
People sitting at the same table eat the same dish, and the same dish can be served within the
same restaurant or across different restaurants, since we use the same a.s. discrete base mea-
sure P for all of the groups. We denote by Y ∗∗

1 , . . . , Y ∗∗
K the K distinct dishes across the J

samples, whereas nj,k ≥ 0 represents the number of customers in restaurant j eating dish k.
Finally, the vector nj := (nj,1, . . . , nj,nj

) encodes all of the frequencies for a specific popu-
lation j .

The combinatorial structure induced by the HPY process is formally described by the so-
called partially exchangeable partition probability function (pEPPF) defined by

(2.3) �
(n)
k (n1, . . . ,nJ ) := E

∫
YK

J∏
j=1

K∏
k=1

P
nj,k

j

(
dY ∗∗

k

)
.

In other words, this is the probability of observing a specific configuration of the dishes across
the restaurants. A tractable expression of the pEPPF (2.3) was found in Camerlenghi et al.
(2019), resorting to auxiliary latent variables, which may be seen as tables in the CRF lan-
guage. More specifically, each observation (customer) is associated with a latent tag identify-
ing the table of the restaurant at which the specific customer is seated. We have the constraints

nj,k =
mj,k∑
t=1

nj,t,k,

where mj,k is the number of tables in restaurant j serving dish k, that is, Y ∗∗
k , and nj,t,k is

the number of customers in restaurant j sitting at table t , eating dish k. In the sequel it will
be useful to denote by Kj the number of distinct values in the j th group Y j , indicated by
(Y ∗

j,1, . . . , Y
∗
j,Kj

), which is a subset of {Y ∗∗
1 , . . . , Y ∗∗

K }.
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The introduction of auxiliary variables leads to a refinement of the partition of the ob-
servations Y defined in equation (2.3). Indeed, now we can look for the probability that the
observations are partitioned into a set of m·,· distinct groups according to both tables and
dishes. Such a probability coincides with an augmented version of equation (2.3) derived in
Camerlenghi et al. (2019), that is,

�
(n)
k

(
n1, . . . ,nJ ; (nj,t,k)j,t,k, (mj,k)j,k

)
= �

m·,·
K (m·,1, . . . ,m·,K)

J∏
j=1

�
(nj )

mj,·,j (nj,·,1, . . . , nj,·,K),
(2.4)

where the functions �
m·,·
K and �

(nj )

mj,·,j denote the so-called exchangeable partition probability
function (EPPF) induced by P and Pj , respectively. Then, we have

�
m·,·
K (m·,1, . . . ,m·,K) =

∏K−1
i=1 (θ + σ i)

(θ)m·,·

K∏
i=1

(1 − σ)m·,i−1,

where (a)n := �(n + a)/�(a) is the Pochhammer symbol for the rising factorial, where mj,·
represents the total number of tables in group j and m·,· is the number of tables across restau-

rants. An analogous explicit formula holds for the probability �
(nj )

mj,·,j as well. Furthermore,
one can then obtain an expression for equation (2.3) by integrating out the tables in equation
(2.4).

The CRF provides a simple and meaningful interpretation of the predictive distributions
for observed species within and across populations. In particular, conditional on Pj , the pre-
dictive distribution for a new observation Yj,nj+1 of the j th population is the same as the
CRP in the single population case. On the other hand, by integrating out Pj , we obtain the
predictive distribution for the new species in population j with respect to the unique species
in the joint sample (across populations). That is, we can write

Y ∗
j,mj,·+1|Y ∗

1,1, . . . , Y
∗
J,mJ,·,P ∼

K∑
k=1

m·,k − σ

θ + m·,·
δY ∗∗

k
+ θ + Kσ

θ + m·,·
P,

where (Y ∗∗
1 , . . . , Y ∗∗

K ) are the distinct species in the joint sample from J populations and
mj,k is the number of observations in population j from species Y ∗∗

k . Notice that m·,k is
the number of times that species Y ∗∗

k has been observed in the joint sample. Intuitively, a
high value of m·,k leads to a high probability of observing Y ∗∗

k in all populations, even if
Y ∗∗

k has not yet been sampled in some of the J populations. In particular, this probability
is proportional to m·,k − σ , the number of times that we observe Y ∗∗

k minus the discount
parameter of the base distribution P . In other words, the pair of parameters (θ, σ ) allow us
to control the total number of species in the joint sample and the extent of sharing of species
across different populations. More precisely, we have that: (i) if θ is low then, in expectation,
the total number of distinct species in the joint sample will be low in expectation; (ii) if σ is
high then, in expectation, the distinct populations will share fewer species.

3. The HPY-TS strategy. In this section we present our Bayesian nonparametric se-
quential approach, referred to as HPY-TS, for guiding the selection of samples for single-cell
sequencing technologies. HPY-TS is a multiarmed bandit strategy that combines the TS strat-
egy with a Bayesian nonparametric counterpart of the GT estimator under the HPY process
prior. Our HPY-TS strategy may be viewed as an extension of the strategy that has been re-
cently proposed by Battiston, Favaro and Teh (2018) from a single trial before switching arms
to a predetermined number of consecutive trials before switching arms. It also may be viewed
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as a Bayesian nonparametric counterpart of the GT-TS strategy proposed in Dumitrascu, Feng
and Engelhardt (2018b), where the smoothed GT estimator is replaced by the Bayesian non-
parametric alternative under the HPY prior, including a hierarchical structure on the species.

Consider M cells that are simultaneously observed from multiple populations. Popula-
tions, that is, organs, tissues, regions or experimental conditions, represent arms to be se-
lected for experimentation. Under the HPY prior assumption for the unknown composition
of the populations, the HPY-TS strategy prescribes to select the population in such a way
as to maximize the number of new distinct cell types that we expect to observe in M ad-
ditional cells from the selected population. We define the set of hitherto unobserved cells as
A = {y ∈ Y : y /∈ Y }, and we denote by K

(M)
j |Y the random number of new distinct cell types

that will be observed in an additional sample of size M collected from population (or arm) j .
In such a situation the reward distribution for each arm j is the distribution of the random
variable E(K

(M)
j |Y ), whose randomness is due to the fact that Pj is random. We remark that,

conditioning on Pj |Y , then E(K
(M)
j |Y ) becomes a number. The HPY-TS strategy computes

draws from the posterior distribution of (E(K
(M)
1 |Y ), . . . ,E(K

(M)
J |Y )) and to select the arm

j that corresponds to the maximum value of E(K
(M)
j |Y ). This strategy usually outperforms

with respect to the so-called greedy strategy which selects the arm with the highest posterior
point estimate of E(K

(M)
j |Y ). Indeed, the HPY-TS better balances the exploration step, as

clearly explained in Battiston, Favaro and Teh (2018).
Under the HPY process prior, E(K

(M)
j |Y ) provides the natural Bayesian nonparametric

counterpart of the smoothed GT estimator proposed in Dumitrascu, Feng and Engelhardt
(2018b). An explicit expression for the posterior expectation E(K

(M)
j |Y ) appeared in Propo-

sition 2 of Battiston, Favaro and Teh (2018). In the next proposition we simplify this expres-
sion. We denote by beta(·|a, b) the beta distribution with parameters (a, b). Let Pj be the
unknown cell type proportions of population j . Let Pj (A) represent the unknown cell type
proportions for the collection of cells that have not yet been sampled A from population j .

PROPOSITION 3.1. Let the unknown cell type proportions Pj of population j be modeled
according to the HPY process (equation (2.2)). Conditional on random variables β0|Y ∼
beta(β0|θ + Kσ,m·· − σK) and Pj (A)|Y , β0 = pj , where

Pj (A)|Y , β0

∼ beta
(
pj |(θj + mj,·σj )β0, (θj + mj,·σj )(1 − β0) + nj,·· − σjmj,·

)
,

one has

E
(
K

(M)
j |Y , β0,pj

) = θ + Kσ

σ

[
M∑
i=1

(
M

i

)
pi

j (1 − pj )
M−i

×E

[
(θ + Kσ + σ)Ji

(θ + Kσ)Ji

]
− (

1 − (1 − pj )
M)](3.1)

with

E

[
(θ + Kσ + σ)Ji

(θ + Kσ)Ji

]
=

i∑
m̃=1

F
(
i, m̃, σ, (θ + mj ·)β0

)(θ + Kσ + σ)m̃

(θ + Kσ)m̃
.

Here, random variable Ji , for any i = 1, . . . ,M , counts the number of distinct values in a
random sample of size i from a PY process with updated parameters (σ, (θ + mj,·)β0), and
F(n, k, σ, θ) is the probability that {Ji = m̃}.
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Algorithm 1 HPY-TS
for i ∈ 1:number of new samples do

draw β0 ∼ beta(θ + σK,m·,· − σK)

for j ∈ 1 : J do
draw pj ∼ beta((θj + mj,·σj )β0, (θj + mj,·σj )(1 − β0) + nj,·,· − σjmj,·)
Compute E(K

(M)
j |Y , β0,pj ) according to Proposition 3.1

end for
Compute j∗ = argmax{E(K

(M)
j |Y , β0,pj ), j = 1, . . . , J };

Draw the next sample from population j∗;
Update the HPY parameters according to Algorithm 2;

end for

The proof of Proposition 3.1 is deferred to the Supplementary Material. Based on Propo-
sition 3.1, one can recover an explicit formula for E(K

(M)
j |Y ) by simply integrating equation

(3.1) with respect to the distribution of pj and the distribution of β0. Then, we can infer

that the computational complexity of computing the formula for E(K
(M)
j |Y , β0,pj ) is pro-

portional to M . Having found the posterior expectation of K
(M)
j |Y for all populations j in

Proposition 3.1, our HPY-TS strategy selects the population with the highest expected re-
wards, computed from a posterior sample. More specifically, we sample β0|Y and Pj (A)|Y ,
β0 from the distribution described in Proposition 3.1. Then, conditional on these realizations,
we compute E(K

(M)
j |Y , β0,pj ) according to equation (3.1). Finally, we select the population

with the highest realized value. Details of the HPY-TS strategy are described in Section 4.
Our HPY-TS strategy is based on the Thompson’s sampling approach (Algorithm 1), with
parameters updated sequentially according to Algorithm 2.

With regards to the choice of the prior distributions for the hyperparameters of the HPY
process, we assume a uniform prior on (0,1) for both parameters σ and σj . Moreover, we
assume a Gamma prior with parameters (1,1) for both parameters θ and θj . All prior dis-
tributions are assumed to be independent. Note that Algorithm 1 depends on the following
collection of parameters:

η = (θ, σ, σj , θj ; j = 1, . . . , J ),

and on the table counts of the CRF which are encoded by the vector mJ = (mj,·; j =
1, . . . , J ). Here, it is worth stressing that the collection of table counts mJ are latent variables,
that is quantities that have not been observed in the initial sample. Therefore, before running
Algorithm 1, we estimate these latent variables. This is done by using a Gibbs sampling al-
gorithm that relies on the explicit expression of the pEPPF from the work of Camerlenghi
et al. (2019). Specifically, we exploit the sequential structure of our species sampling prob-
lem to update the vector of parameters η: we describe the novel and efficient algorithm for
the updating of η in the next section.

4. Sequential parameter updates. The multiarmed bandit problem is described as a
sequential allocation problem, where the goal is to find the best allocation strategy to sample
new observations from J different populations at every experimental time step. Whenever
the new M cells are sampled from a population, one has to update the parameters of the HPY
process in a computationally feasible way. A possible approach to this problem was first
suggested in Battiston, Favaro and Teh (2018), where the authors propose a Markov chain
Monte Carlo (MCMC) in order to estimate the posterior distributions of the hyperparameters
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Algorithm 2 Filtering algorithm

Evaluate m
(i)
t for each i = 1,2, . . . ,N :

m
(i)
t = aη

(i)
t + (1 − a)η̄t ,

which are the prior point estimates of η. Construct a posterior approximation of p(�|Dt+1)

with weights ω
(i)
t+1 and samples η

(i)
t+1, for i = 1, . . . ,N , as follows.

for i ∈ 1 : N do
(1) Sample an auxiliary integer variable k from the set {1,2, . . . ,N} with probability
proportional to:

g
(i)
t+1 ∝ ω

(i)
t p

(
yt+1|m(i)

t ,Dt

)
(2) Sample a new parameter vector η

(k)
t+1 from the kth normal component of the kernel

density, namely:

η
(k)
t+1 ∼ N

(
m

(k)
t , h2V t

)
(3) Evaluate the corresponding weights

ω
(k)
t+1 ∝ p(yt+1|η(k)

t+1,Dt)

p(yt+1|m(k)
t ,Dt)

where

p(yt+1|η,Dt) ∝ �
(n)
k

(
n1, . . . ,nJ ; (nj,t,k)j,t,k, (mj,k)j,k

)
.

In other words p(yt+1|η,Dt) is proportional to the pEPPF defined in (2.4), depending
on the parameters η and on information available up to time t + 1.

end for
Resample according to the importance weights ω

(k)
t+1 to obtain a set of parameters with

equal weights—in other words, a Monte Carlo approximation of the posterior.

of the HPY. However, such an approach does not take advantage of the sequential nature
of the species sampling problem and, more importantly, is not computationally feasible with
large data sets. The computational burden of the approach of Battiston, Favaro and Teh (2018)
makes its direct application almost impossible, except for toy examples with small numbers
of arms. In this section we suggest a computationally tractable approach that leverages the
sequential structure of the problem (Algorithm 1) and is based on a filtering algorithm of Liu
and West (2001).

The HPY-TS strategy selects the arm to sample from; then, one sequentially samples the
batch of M cells from the selected arm. After that, one updates the model parameters with
the new observation encoded by η to select the new arm to sample from. We then consider
discrete time points t = 1,2, . . . , and we clarify how to sequentially update the parameters
of our model in a computationally feasible way. Let us fix some notation: yt is the vector of
observations from the arm selected at time t , and Dt = {yt ,Dt−1} is the set of observations
available at time t . Thus, we can think of a model that is described by a distribution p(yt |η)

evolving in time and depending on a vector of model parameters η. At each iteration we
select an arm and observe yt+1, and we sample the updated parameters from the posterior
distribution p(η|Dt+1), as t = 1,2, . . ..̇ Note that this posterior distribution is proportional to

p(yt+1|η,Dt)p(η|Dt),
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due to Bayes’ theorem. We can think of p(η|Dt) as the density function of η at time t . Our
aim is to sample a new set of parameters from the posterior distribution of η in the presence
of a new observation yt+1. The key idea is to approximate the distribution of η|Dt with a
mixture of N Gaussian kernels, that is,

p(η|Dt) ≈
N∑

i=1

ω
(i)
t N

(
η|m(i)

t , h2Vt

)
,

where {ω(1)
t , . . . ,ω

(N)
t } is the set of importance sampling weights for {η(i)

t : i = 1,2, . . . ,N}
at time t , N is the number of importance samples at each time step and N (η|m,V ) is the
density function of a Gaussian distribution with mean m and covariance V . Moreover, Vt is
the estimate of the covariance with respect to the Monte Carlo posterior, and h is a smoothing
parameter. Liu and West (2001) suggest to choose h as a decreasing function of the number of
importance samples. In our simulations we set h = 1

N
. In order to avoid “loss of information”

over time, earlier work (West (1993a), West (1993b)) proposes shrinkage kernel locations
and suggests setting m

(i)
t = aη

(i)
t + (1 − a)η̄t and a = √

1 − h2, where η̄t is the mean of the
Monte Carlo sample of size N at time t . With these choices we preserve the covariance Vt

over time.
In our framework, one only needs to evaluate the conditional distribution p(yt+1|η,Dt)

which may be recovered from the expression of the pEPPF in equation (2.4). In particular,
we initially run a Gibbs sampler (Camerlenghi et al. (2019)) to obtain a collection of random
samples for the latent table counts and parameters η. Then, the output of the initial sam-
ple may be regarded as an importance sample of η with equal weights at time t = 0. More
precisely, we used the Gibbs sampling scheme, described in Camerlenghi et al. (2019), to
initialize the values of all of the parameters η, conditionally on the data D0, which contains
the observations Y . In fact, we run the MCMC procedure of Camerlenghi et al. (2019), and
we used the output of the last N runs to initialize all the parameters for the particle filtering
algorithm. We also assign uniform importance sampling weights to all of the initial particles,
that is, ω

(i)
0 = 1/N as i = 1, . . . ,N . Then, we use Algorithm 2 to sequentially update the

parameters of the HPY.

5. Applications.

5.1. Simulation study. We first demonstrate the performance of our HPY-TS algorithm
in the context of simulated data. Additional simulation studies are presented in Section S2
of the Supplementary Material. We consider a setup with 100 arms, representing a sample
corresponding to 20,000 different species. The true distribution of each arm follows Zipf’s
law, such that the mass assigned to the kth most common species in a population j is

pj (k; sj ) = 1/ksj∑Nj

i=1 1/isj
,

where Nj > 0 is the number of species in population j , and sj > 1 is a real parameter that
controls the distribution of mass among the support; a large sj indicates that the total mass
is concentrated on a few points, and a small value indicates that the mass is shared across
many points. Hence, an arm with a low sj is a “winning arm” or an arm with high species
diversity. Among the 100 arms we consider four winning arms (Zipf parameter sj = 1.3) and
96 less diverse arms (Zipf parameter sj = 2). An optimal strategy should balance exploration
and exploitation and query the less diverse arms occasionally, while focusing on the winning
arms.
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We evaluate the performance of our TS strategy by comparing it with three baselines: the
Oracle strategy, the Uniform strategy and the Good-Toulmin Thompson sampling (GT-TS)
strategy proposed by Dumitrascu, Feng and Engelhardt (2018a). In particular, the Oracle
strategy is used to compare the performance with the optimal behavior; the Oracle strategy is
allowed to see into the future or presample from all the arms and make the optimal decision
at every iteration. More precisely, the Oracle strategy selects the arm having the highest prob-
ability of observing a new cell, where such a probability is evaluated numerically assuming
knowledge of the true distribution of the data (i.e., a Zipf distribution in our experiments).
The Uniform strategy allocates the budget uniformly across the arms, whereas the GT-TS
strategy is based on a smoothed version of the Good–Toulmin estimator. More precisely, the
smoothed Good–Toulmin estimator (Orlitsky, Suresh and Wu (2016)) estimates the number
of new species that will be sampled in an additional sample of size M for a fixed population j .
This estimator is defined as

Û
(M)
j (Y j ) = −

∞∑
i=1

(−M/nj )
i
P(L > cj )�ij ,

where M/nj is referred to as the extrapolation factor, �ij denotes the number of species
occurring with frequency i in Y j (the random sample from the j th population) and L is an
independent random nonnegative integer. Common choices for the distribution of the random
variable L include the Poisson distribution and the binomial distribution (Orlitsky, Suresh and
Wu (2016)). The Good–Toulmin diversity estimator can be incorporated into the multiarmed
bandit framework as follows. At each sampling step an arm is chosen based on its probability
of yielding the greatest number of novel species. The probability that the j th population is
chosen during a trial is based on the weight of its Good–Toulmin estimator Û

(M)
j (Y j ). Upon

collecting M new samples from the chosen arm, the reward (the number of novel cell types)
is observed, and the parameters of the Good–Toulmin estimator for the chosen population are
reestimated with the new samples and reward (Dumitrascu, Feng and Engelhardt (2018a)).

In implementing our HPY-TS strategy, we use an initial sample of 20 observations from
each of the 100 arms, with M = 50 observations sampled at each iteration. We use 500
sampling steps, and the results are averaged over 50 runs. The computations are performed
in parallel, and the code is available at https://github.com/fedfer/HPYsinglecell. We observe
that the HPY-TS algorithm performs better than the GT-TS strategy and the Uniform strategy;
the latter two methods explore, but fail to exploit, the most diverse arms (Figure 1). As ex-
pected, the HPY algorithm discovers fewer new species than the Oracle strategy, but the HPY
approach comes close to Oracle behavior. The results show similarities with the performance
previously reported in the work of Battiston, Favaro and Teh (2018) for a simulation scenario
with a small number of arms (eight arms), with the added benefit of scalability to an order of
magnitude more arms. The good performance of the algorithm has been assessed in Section
S3 of the Supplementary Material through posterior diagnostics for the simulation scenario
considered in this section.

5.2. Application to single cell RNA-seq experimental design. We further illustrate the ad-
vantage of our approach in the context of a simulation study based on the Mouse Cell Atlas
data (Han et al. (2018)). The Mouse Cell Atlas aims to provide the first high-throughout
transcriptome-based single-cell atlas in a mammalian system. The project assayed over
400,000 cells from all of the major mouse organs and identified previously uncharacterized
cell populations (Figure 2). Following technical noise correction, 60,000 high-quality cells
were sequenced, representing 43 distinct tissues and 98 major cell types across four develop-
mental stages—embryo, fetal, newborn and adult. In the collection process, equal numbers of

https://github.com/fedfer/HPYsinglecell
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FIG. 1. Simulation results. We consider a multiarmed bandit setting for population sampling with 100 arms
in which the species diversity follows Zipf’s law with parameters 1.3 (four high diversity, winning arms) and
two (96 low diversity arms). An initial sample of 20 cells were collected from each of the 100 arms, with 50
additional cells sampled at each iteration. We used 100 sampling steps and averaged the results over 50 runs.
We compared HPY-TS (red, dashed) to two baselines—the GT-TS sampler (black, dotted) and a uniform sampling
strategy (green, dot-dashed line)—and to an Oracle estimator (blue, solid). The shaded bands are within one
standard deviation of the average performance, computed as the mean across simulations.

cells were sampled uniformly across organs and developmental stages. We show that our ex-
perimental design approach achieves similar cell type diversity while requiring substantially
fewer samples when compared to related methods. We follow the simulation setup developed
in prior work (Dumitrascu, Feng and Engelhardt (2018a)), outlined below.

In our simulation study we envision a setting in which the cells were assayed in smaller
batches than in the actual experiments. In particular, smaller batches are common in single-
cell experiments that use technologies that are less noisy but more expensive; thus, experi-
mental design plays an important role in minimizing cost (Angerer et al. (2017)). Moreover,
larger batches would quickly saturate the available data, so we evaluate on batch sizes that are

FIG. 2. Summary figure from Dumitrascu, Feng and Engelhardt (2018a) of the single cell RNA-seq data from
the Mouse Cell Atlas (Han et al. (2018)). The different colors represent different cell types. Panel A: Cell type
distributions across tissues together with the corresponding cells and specimens. Panel B: Cell type distributions
per arm: Aggregated tissue types and developmental stages.
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FIG. 3. Performance of HPY-TS on the Mouse Cell Atlas data (incidence case). An initial sample of M = 50 cells
were collected from each of four populations: embryo, fetal, newborn and adult. Following the initial sampling step
with M = 50 samples, 20 sequential trials were performed. At each time step, all M = 25 cells were sampled from
one chosen experiment. The results were averaged over 100 runs of each algorithm. We compared HPY-TS (red,
dashed) to two baselines—the GT-TS sampler (black, dotted) and a uniform sampling strategy (green, dot-dashed
line)—and to an Oracle estimator (blue, solid). The shaded bands are within one standard deviation of the average
performance, computed as the mean across simulations.

typically smaller than are used. The 43 mouse organs were aggregated across the four devel-
opmental stages—embryo, fetal, newborn and adult—resulting in a heterogeneous data set.
Cells were sampled with replacement from each of the four experimental categories (arms),
representing the four developmental stages. An experimental round corresponds to an alloca-
tion step in which the cell budget is distributed across the four experimental conditions.

We consider two ways of allocating samples: the incidence case and the delayed abun-
dance case. In the incidence case (see Figure 3), a single most informative experimental con-
dition is chosen, and M samples come from that single condition. In the delayed abundance
case (see Figure 4), samples are allocated across all of the available experimental conditions
in parallel. In both cases the budget allocation step is applied using the HPY-TS strategy as
follows. In the incidence case we allocate more cells to the experiment (i.e., developmental
stage) with a higher probability of yielding new cell types based on previous trials. Follow-
ing the initial sampling step with M = 50 samples from each arm, 20 additional trials were
performed. At each time step all M = 25 cells were sampled from one chosen experiment.
In the delayed abundance case, after the initial M = 50 samples from each arm, a budget of
M = 100 cells were distributed across arms according to the HPY-TS estimated probabilities
across 20 sequential trials. The results were averaged over 100 runs for each algorithm, and
the HPY-TS sequential Monte Carlo strategy used 500 sampling steps. We compare HPY-TS
to three other approaches—the GT-TS sampler, a Uniform sampling strategy and an Oracle
estimator.

Our results show that the HPY-TS approach achieves substantial improvement in effi-
ciency, as compared to the baseline GT-TS estimator and to the Uniform sampling strategy
(Figure 3). Moreover, the HPY-TS approach shows nearly optimal performance, as compared
with the performance of the Oracle strategy. When compared to the uniform strategy, our
HPY-TS approach leads to, on average, as much as 50% more distinct cell types identified,
with an average consistent margin of 10 additional distinct cell types identified across trials
(Figures 3 and 4). The baseline GT-TS approach approximates the probability of observing
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FIG. 4. Performance of HPY-TS on the Mouse Cell Atlas data (delayed abundance). An initial sample of M = 50
cells were collected from the four populations: embryo, fetal, newborn and adult. Following the initial sampling
step, 20 additional trials were performed. At each time step, M = 100 samples were distributed across the arms
following a diversity estimation step. The results were averaged over 100 runs of each algorithm. We compared
HPY-TS (red, dashed) to two baselines—the GT-TS sampler (black, dotted) and a uniform sampling strategy
(green, dot-dashed line)—and to an Oracle estimator (blue, solid). The shaded bands are within one standard
deviation of the average performance, computed as the mean across simulations.

a new cell type according to a model that assumes the cell types are distributed according to
a Poisson process (Orlitsky, Suresh and Wu (2016)). In contrast, the HPY-TS algorithm as-
sumes that all arms share a baseline distribution given by the base measure, information that
is diffused across the developmental landscape to generate the developmental stage-specific
cell type distributions. Sharing information across experiments using this prior appears to
substantially improve performance by allowing updates of the parameters governing exper-
iments similar the chosen experiment at each iteration, instead of only updating the chosen
experiment’s parameters.

6. Discussion. We propose the HPY-TS multiarmed bandit strategy, which uses the
Thompson sampling strategy and a hierarchical Pitman–Yor process prior to optimize species
discovery in experimental design. The HPY-TS strategy was shown to substantially improve
cell type discovery in the setting of experimental design for single-cell sequencing experi-
ments. In particular, the HPY-TS strategy readily applies to cases where the number of arms
corresponding to experimental conditions have substantial structure across those conditions.
In particular, as cell atlases emerge, the strategy developed here is crucial to efficiently and
effectively study cell type variability across new and growing experimental conditions in-
cluding many thousands of simultaneous cellular perturbations (e.g., Perturb-seq (Dixit et al.
(2016))) and combinatorial interventions (Horlbeck et al. (2018)). The improvements that the
HPY-TS strategy achieves over uniform experimental design strategies in both simulated and
real data justify incorporating these types of methods in the data collection pipeline during
the experimental process.

From a statistical standpoint, our work proposed a sequential Monte Carlo scheme that,
unlike the previous work of Battiston, Favaro and Teh (2018), scales to a multisample setting
and allows for inference across a large number of experiments, as one finds in cell atlas
development or Perturb-seq experiments. This makes our HPY-TS strategy appropriate for
experimental setups with a large and growing number of arms. In this paper we demonstrate a
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number of advantages in using Bayesian experimental design to maximize cell type discovery
within a budget during single cell RNA-sequencing experiments. We further show evidence
that modeling the cell type structure of single-cell data using an HPY prior captures the
developmental constraints guiding cell type diversity and allows each sample to inform all of
the arms, leading to near-Oracle behavior.

As mentioned in Section 5.2, the optimization of cell type discovery in a multitissue set-
ting was proposed in Dumitrascu, Feng and Engelhardt (2018a) which uses a strategy based
on the Good-Toulmin estimator. However, the approach of Dumitrascu, Feng and Engelhardt
(2018a) is empirical rather than model-based. Indeed, some paramount statistical challenges
remain unsolved: (i) how to model both dependence and heterogeneity across tissues in a
principled statistical way? (ii) how to incorporate uncertainty quantification across experi-
mental conditions (arms) to select the arm at each step? (iii) does a suitable statistical model,
answering (i)–(ii), fundamentally improve performance? Our Bayesian nonparametric ap-
proach takes into account all of these challenges: the hierarchical structure allows informa-
tion to be shared across similar tissues, and the uncertainty across experimental conditions
is properly incorporated in the strategy through fast posterior computations (see Proposi-
tion 3.1). Finally, the experiments in Section 5 and Section 2 of the Supplementary Material
show that our model, which answers (i)–(ii), is able to discover more cells with respect to the
competing strategies.

In conclusion, the proposed HPY-TS strategy outperforms the current state-of-the-art
strategies, and our contribution paves the way for future research in the field. We first empha-
size that the number of cells that can be collected per trial M has been assumed to be fixed,
since this is typically the case in cell experiments. A possible alternative, which we do not
consider in our paper, would focus on optimizing each time for how many samples M should
be collected over a total fixed available budget. Second, a natural question stemming from
our analysis is understanding the effect that batch correction and cell type matching have on
optimal budget allocation. In order to distinguish new cell types in a true online fashion, ap-
propriate algorithms are needed to cluster data from new experiments as well as reconcile the
identified clusters with previously discovered ones (batch correction) in the likely presence of
experiment-specific noise. In this paper we focus on optimal experimental design under the
assumption that a precise label is available at the time of the experiment. Understanding the
effect of a suboptimal, possibly incorrect, or time-delayed label has on optimal experimental
design is an additional area of focus for future work.
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Supplementary Material to “Nonparametric Bayesian multiarmed bandits for single-
cell experiment design” (DOI: 10.1214/20-AOAS1370SUPPA; .pdf). The supplementary
material contains proofs, posterior diagnostics and additional simulation studies.

Source code for “Nonparametric Bayesian multiarmed bandits for single-cell ex-
periment design” (DOI: 10.1214/20-AOAS1370SUPPB; .zip). Matlab source code for the
Bayesian nonparametric model presented in this paper and data files.
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