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This article is motivated by the problem of studying the joint effect of
different chemical exposures on human health outcomes. This is essentially a
nonparametric regression problem, with interest being focused not on a black
box for prediction but instead on selection of main effects and interactions.
For interpretability we decompose the expected health outcome into a linear
main effect, pairwise interactions and a nonlinear deviation. Our interest is
in model selection for these different components, accounting for uncertainty
and addressing nonidentifiability between the linear and nonparametric com-
ponents of the semiparametric model. We propose a Bayesian approach to
inference, placing variable selection priors on the different components, and
developing a Markov chain Monte Carlo (MCMC) algorithm. A key com-
ponent of our approach is the incorporation of a heredity constraint to only
include interactions in the presence of main effects, effectively reducing di-
mensionality of the model search. We adapt a projection approach developed
in the spatial statistics literature to enforce identifiability in modeling the non-
parametric component using a Gaussian process. We also employ a dimen-
sion reduction strategy to sample the nonlinear random effects that aids the
mixing of the MCMC algorithm. The proposed MixSelect framework is eval-
uated using a simulation study, and is illustrated using data from the National
Health and Nutrition Examination Survey (NHANES). Code is available on
GitHub.

1. Introduction. Humans are exposed to mixtures of different chemicals arising due to
environmental contamination. Certain compounds, such as heavy metals and mercury, are
well known to be toxic to human health, whereas very little is known about how complex
mixtures impact health outcomes. One of the key questions that epidemiology should address
according to Braun, Gennings and Hauser (2016) is, What is the interaction among agents?
The primary focus of epidemiology and toxicology studies has been on examining chemicals
one at a time. However, chemicals usually cooccur in the environment or in synthetic mix-
tures, and hence assessing joint effects is of critical public health concern. Certainly, findings
from one chemical at a time studies may be misleading (Dominici et al. (2010), Mauderly
and Samet (2009)).

Building a flexible joint model for mixtures of chemicals is suggested by the National Re-
search Council (Mauderly et al. (2010), National Research Council et al. (2004), Vedal and
Kaufman (2011)). Recently, several studies have shown relationships between complex mix-
tures of chemicals and health or behavior outcomes. For example, Sanders, Claus Henn and
Wright (2015) review findings on perinatal and childhood exposures to cadmium (Cd), man-
ganese (Mn) and metal mixtures. Several attempts have been made to simultaneously detect
the effect of different chemicals on health outcomes, using either parametric or nonparametric
regression techniques. The former include regularization methods, like LASSO (Roberts and
Martin (2005)), or ridge regression and deletion/substitution/addition algorithms (Mortimer
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et al. (2008), Sinisi and van der Laan (2004)). Some of these techniques have also been ap-
plied to high-dimensional spaces (Hao and Zhang (2014)). While providing interpretability
in terms of linear effects and pairwise interactions, the resulting dose response surface is
typically too restrictive, as chemicals often have nonlinear effects.

Nonparametric models can also be used to estimate interactions among chemicals, rang-
ing from tree-methods (Hu et al. (2008), Lampa et al. (2014)), to Bayesian Kernel Machine
Regression (BKMR) (Bobb et al. (2015), Liu et al. (2018), Valeri et al. (2017)) and Bayesian
P-splines (Lang and Brezger (2004)). Although tree based methods, like boosted trees or ran-
dom forests, are convenient computationally and often provide accurate predictions, interpre-
tation of covariate effects is typically opaque. While providing good predictive performance,
nonparametric regression surfaces like BKMR provide excessive flexibility when a simple
parametric model provides an adequate approximation. On the other hand, the estimation of
interactions with Bayesian P-splines becomes extremely challenging when p is larger than
∼10, which is common in environmental epidemiology; refer to Section 2 of the Supplemen-
tary Material (Ferrari and Dunson (2020a)) for additional details.

Our goal is to simultaneously estimate a flexible nonparametric model and provide in-
terpretability. To do so, we decompose the regression surface on the health outcome into a
linear effect, pairwise interactions and a nonlinear deviation. This specification, which we
describe in Section 2, allows one to interpret the parametric portion of the model while also
providing flexibility via the nonparametric component. We address identifiability between
the parametric and nonparametric part of the model by adapting a projection approach de-
veloped in spatial statistics; see Section 2.1. We accurately take into account uncertainty in
model selection on the different components of the model with a Bayesian approach to in-
ference. We choose spike and slab priors for main effects and pairwise interactions (George
and McCulloch (1997)) and allow for variable selection of nonlinear effects adapting the ap-
proach of Savitsky, Vannucci and Sha (2011) which introduces spike and slab priors in the
Gaussian process setting. We reduce computation imposing a heredity condition (Chipman
(1996)), described in Section 2.2, and applying a dimension reduction approach to the Gaus-
sian process surface (Banerjee, Dunson and Tokdar (2013), Guan and Haran (2018)), which
we describe in Section 3.

We describe our efficient Bayesian inference procedure in Section 3, and we propose a
Markov chain Monte Carlo (MCMC) algorithm. We compare our method with the state-
of-the-art nonparametric models and with methods for interaction estimation in Section 4.
Finally, in Section 5 we assess the association of metal concentrations on BMI using data
from the National Health and Nutrition Examination Survey (NHANES). This application
shows the practical advantages of our method and how it could be used as a building block
for more complex analysis.

2. MixSelect modeling framework. Let yi denote a continuous health outcome for
individual i, let xi = (xi1, . . . , xip)T denote a vector of “exposure” measurements, and let
zi = (zi1, . . . , ziq)

T denote covariates. For example, “exposure” may consist of the levels of
different chemicals in a blood or urine sample, while covariates correspond to demographic
factors and potential confounders. For interpretability our focus is on decomposing the im-
pact of the exposures into linear main effects, linear pairwise interactions and a nonparamet-
ric deviation term, while including an adjustment for covariates. Each of the exposure effect
components will include a variable selection term so that some exposures may have no effect
on the health response, while others only have linear main effects, and so on. This carefully
structured semiparametric model differs from usual black-box nonparametric regression anal-
yses that can characterize flexible joint effects of the exposures but lack interpretability and
may be subject to overfitting and the curse of dimensionality. By including variable selection
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within our semiparametric model, we greatly enhance interpretability while also favoring a
more parsimonious representation of the regression function.

Our model structure can be described as follows:

yi = xT
i β +

p∑
j=1

∑
k>j

λjkxij xik + g∗(xi) + zT
i α + εi, εi ∼ N

(
0, σ 2)

,

g∗
n = Pgn, g ∼ GP(0, c),

(2.1)

where β = (β1, . . . , βp)T are linear main effects of exposures, λ = {λjk} are pairwise linear
interactions, gn = [g(x1), . . . , g(xn)] is a nonparametric deviation and α = (α1, . . . , αq)

T

are coefficients for the covariates. We include variable selection in each of the three terms
characterizing the exposure effects, as we will describe in detail in Section 2.2. In addition,
a key aspect of our model is the inclusion of a constraint on the nonparametric deviation to
enforce identifiability separately from the linear components. This is the reason for the P

term multiplying g in the above expression with P , a projection matrix, to be described in
Section 2.1. The notation GP(0, c) denotes a Gaussian process (GP) centered at zero with
covariance function c controlling the uncertainty and smoothness of the realizations.

In spatial statistics it is common to choose a Matern covariance function, but in our setting
we instead use a squared exponential covariance to favor smooth departures from linearity;
in particular, we let

(2.2) c
(
x, x′) = cov

{
g(x), g

(
x′)} = τ 2 exp

{
−

p∑
j=1

ρj

(
xj − x′

j

)2

}
,

where ρj is a smoothness parameter specific to the j th exposure and τ 2 is the signal variance.
Similar covariance functions are common in the machine learning literature and are often re-
ferred to as automatic relevance determination (ARD) kernels (Qi et al. (2004)). They have
also been employed by Bobb et al. (2015). However, to our knowledge previous work has
not included linear main effects and interactions or a projection adjustment for identifiabil-
ity. The proposed GP covariance structure allows variable selection (ρj = 0 eliminates the
j th exposure from the nonparametric deviation) and different smoothness of the deviations
across the exposures that are included. For example, certain exposures may have very modest
deviations while others may vary substantially from linearity.

The proposed model structure is quite convenient computationally, leading to an efficient
Markov chain Monte Carlo (MCMC) algorithm which mostly employs Gibbs sampling steps.
We will describe the details of this algorithm in Section 3, but we note that the projection ad-
justment for identifiability greatly aids mixing of the MCMC; our code can be run efficiently
for the numbers of exposures typically encountered in environmental epidemiology studies
(up to 100). Code for implementation is available at https://github.com/fedfer/MixSelect and
in the Supplementary Material (Ferrari and Dunson (2020a)).

2.1. Nonidentifiability and projection. Confounding between the Gaussian process prior
and parametric functions is a known problem in spatial statistics and occurs when spatially
dependent covariates are strongly correlated with spatial random effects; see Hanks et al.
(2015) or Guan and Haran (2018). This problem is exacerbated when the same features are
included in both the linear term and in the nonparametric surface. For this reason we project
the nonlinear random effects g on the orthogonal column space of the matrix containing main
effects.

The usual projection matrix on the column space of X is equal to PX = X(XT X)−1XT .
We define P = P ⊥

X = In −PX and set g∗
n = Pgn. First, notice that the projection has an effect

https://github.com/fedfer/MixSelect
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on the variance of the generated nonlinear effects; in particular,
n∑

i=1

(
g∗

i,n

)2 ≤
n∑

i=1

(gi,n)
2.

This follows from (
g∗

n

)T
g∗

n = [
(In − PX)gn

]T [
(In − PX)gn

]
= gT

n gn − (PXgn)
T (PXgn) ≤ gT

n gn.

Figure 1 in the Supplementary Material (Ferrari and Dunson (2020a)) shows examples of
realizations of gn and g∗

n . The curvature of the functions drawn from the projected GP is
greater than the curvature in the nonprojected case.

Another possibility would be to project the nonlinear random effects gn on the orthogonal
column space of the matrix containing both main effects and interactions. However, we no-
ticed in our simulations that this would make the resulting nonparametric surface too restric-
tive, especially when the number of possible interactions p(p−1)

2 is greater than n, resulting in
a worse performance of the model. We did not experience significant confounding between
the interaction effects and the nonlinear regression surface. Finally, notice that, rather than
sampling g and then projecting onto the orthogonal column space of X, we can equivalently
sample g∗ from a Gaussian process with covariance matrix PcP T . Another option that we
explore in Section 3 consists in integrating out the nonlinear effects.

2.2. Variable selection. In this section we describe the variable selection approach that
we develop in order to provide uncertainty quantification and achieve parsimonious model
specification. We assume that the chemical measurements and the covariates have been stan-
dardized prior to the analysis. We choose spike and slab priors for the main effects and non-
linear effects. Regarding main effects, we choose a mixture of a normal distribution with a
discrete Dirac delta at zero. Let us define as γk the indicator variable that is equal to 1 if the kth
variable is active in the linear main effect component of the model and equal to 0 otherwise.
We have that βk ∼ γkN(0,1)+(1−γk)δ0. For the γk we assume independent Bernoulli priors
with success probability π . We endow π with a Beta distribution with parameters (aπ , bπ).
The prior expected number of predictors included in the model is p aπ

aπ+bπ
which can be used

to elicitate the hyperparameters (aπ , bπ). As a default we choose aπ = bπ = 1 which corre-
sponds to a uniform distribution on π . We endow the main effects of covariate adjustments
αl with a normal prior Nq(0, I ), for l = 1, . . . , q .

We impose a heredity condition for the interactions. The heredity condition is commonly
employed for datasets with p ∈ [20,100] by one-stage regularization methods like Bien, Tay-
lor and Tibshirani (2013) and Haris, Witten and Simon (2016) or two-stage approaches as
Hao, Feng and Zhang (2018) when p > 100. Strong heredity means that an interaction be-
tween two variables is included in the model only if the main effects are. For weak heredity
it suffices to have one main effect in the model in order to estimate the interaction of the
corresponding variables. Formally:

S : λj,k|γj = γk = 1 ∼ N(0,1), λj,k|(γj = γk = 1)C ∼ δ0,

W : λj,k|(γj = γk = 0)C ∼ N(0,1), λj,k|γj = γk = 0 ∼ δ0,

where S and W stand for strong and weak heredity, respectively, and δ0 is a Dirac distribution
at 0. Models that satisfy the strong heredity condition are invariant to translation transforma-
tions in the covariates. Weak heredity provides greater flexibility with the cost of considering
a larger number of interactions, leading to a potentially substantial statistical and computa-
tional cost. Consider the case when the j th covariate has a low effect on the outcome, but
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FIG. 1. Graphical representation of the model. The arrows between two nodes indicate conditional dependence.
Variables that are in the same plate share the same indices. S/W refers to strong or weak heredity.

the interaction with the kth feature is significantly different than zero. Strong heredity will
sometimes prevent us from discovering this pairwise interaction. Heredity reduces the size of

the model space from 2p+
(p

2

)
to

∑p
i=0

(p
i

)
2
(i
2

)
or

∑p
i=0

(p
i

)
2pi−i(i+1)/2 for strong and weak

heredity, respectively. The heredity condition can also be extended to higher-order interac-
tions.

As for the main effects and interactions, we apply a variable selection strategy for the
nonlinear effects. We endow the signal standard deviation τ with a spike and slab prior,
that is, τ ∼ γ τFτ (·) + (1 − γ τ )δ0, where Fτ (·) is a gamma distribution with parameters
(1/2,1/2) and γ τ has a Bernoulli(1/2) prior. We noticed that this spike and slab prior prevents
overfitting of the nonlinear term in high-dimensional settings, in particular when the variables
are highly correlated and the true regression does not include nonlinear effects. This added
benefit is highlighted in Section 4 when comparing with BKMR. Finally, when γ τ = 0, the
regression does not include nonlinear effects, resulting in faster computations. In this case
the computational complexity of the model equals the one of a Bayesian linear model with
heredity constraints.

With respect to the covariate specific nonlinear effects, we follow the strategy of Savitsky,
Vannucci and Sha (2011), which is also employed by Bobb et al. (2015), and endow the
smoothness parameters ρ1, . . . , ρp with independent spike and slab priors. In particular, ρk ∼
γ τγ

ρ
k Fρ(·) + (1 − γ τ )(1 − γ

ρ
k )δ0, where Fρ(·) is a gamma distribution with parameters

(1/2,1/2). Only when γ τ is different than zero, we allow the covariate specific nonlinear
effects γ

ρ
j to be different than zero. When γ

ρ
k = 0, the kth exposure is eliminated from the

nonparametric term g in (2.1). As before, we choose a Bernoulli prior for γ
ρ
k with mean

ϕ, and we endow ϕ with a Beta prior with parameters (aϕ, bϕ). As a default we choose
aϕ = bϕ = 1 which corresponds to a Uniform distribution on ϕ. A graphical representation
of the model can be found in Figure 1.

3. Computational challenges and inference. In this section we describe how we con-
duct inference for model (2.1). We also address the computational challenges associated with
Gaussian process regression in the Bayesian framework and summarize the MCMC algorithm
at the end of the section.
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We defined a mixture of normal priors for the main effects, interactions and the coeffi-
cients of the covariate adjustments, namely, β , λ and α, in Section 2.2. Having a Gaussian
likelihood, the full conditionals for these parameters are conjugate, hence we can directly
sample from multivariate normal distributions within a Gibbs sampler. This operation could
be quite expensive since the number of parameters is of order p2. However, thanks to the
strong heredity condition, we only need to sample the interactions between the variables with
nonzero main effects, and we set to zero all the others. Given each of the elements of β , λ

and α, we can update the labels γ with a Bernoulli draw. We also reparametrize the model
setting τ = τ ∗σ , so that we can directly update σ 2 from an inverse gamma distribution.

Dealing with the nonlinear term g can also be expensive since we need to sample n pa-
rameters at each iteration. For this reason we integrate out the GP term so that, marginally,
the likelihood of model (2.1) is equivalent to

(3.1) y|β,, c ∼ N
(
Xβ + diag

(
XXT ) + αZ,σ 2In + PcP T )

,

where  is a upper triangular matrix such that j,k = λj,k when k > j and zero otherwise.
The covariance matrix depends on the hyperparameters ρj , for j = 1, . . . , p, that define the

variable selection scheme for the nonlinear effects. The priors for the smoothness parameters
ρj and τ 2 defined in Section 2.2 are not conjugate so that we need a Metropolis–Hastings
step within the Gibbs sampler to sample these parameters. In order to compute the acceptance
ratio, we need to evaluate the likelihood of (3.1) and invert the matrix σ 2In + PcP T of
dimension n: such operation is of complexity O(n3) and needs to be done p times. For this
reason we approximate the matrix PcP T with the strategy described in Algorithm 1 of Guan
and Haran (2018). This approach is a generalization of Banerjee, Dunson and Tokdar (2013)
and uses random projections to find an approximation of the Eigen Decomposition of PcP T .
In particular, we approximate this matrix as UmDmUT

m , where m is related to the order of
the approximation, with m usually being much smaller than n. Dm is a diagonal matrix of
dimension m, and Um is of dimension n × m. We can now apply the Sherman–Morrison–
Woodbury formula to compute the inverse of � = σ 2In + PcP T ,

�−1 = (
σ 2In + PcP T )−1 ≈ (

σ 2In + UmDmUT
m

)−1 =
= 1

σ 2

(
In + Um

(
σ 2Dm + UT

mUm

)−1
UT

m

)
which now involves the inversion of an m × m matrix. Similarly, we can simplify the com-
putations for the determinant of � using the determinant lemma (Harville (1997)),

|�| = ∣∣σ 2In + PcP T
∣∣ ≈ σ 2n

m∏
j=1

(
D−1

m;j,j + σ−2)
Dm;j,j .

It is challenging to design a sampler with satisfactory mixing for the smoothness parameters
{ρj }. However, we obtained good performance for an add-delete sampler which updates ρj at
every iteration. When the previous ρj = 0, we perform add move: sample from a distribution
with support on R+. When ρj 	= 0, we perform a delete move and propose ρj = 0. Then, for
the ρj 	= 0, we also perform the Gibbs-type move and sample from the same proposal as in
the add move. The MCMC sampler is summarized in Algorithm 1.

4. Simulations. In this section we compare the performance of our model with respect
to five other methods: BKMR (Bobb et al. (2015)), Family (Haris, Witten and Simon (2016)),
hierNet (Bien, Taylor and Tibshirani (2013)), PIE (Wang and Jiang (2019)) and RAMP (Hao,
Feng and Zhang (2018)). BKMR is a nonparametric Bayesian method that employs Gaussian
process regression with variable selection in a similar fashion as model (2.1). Family, hier-
Net, PIE and RAMP are designed for interaction selection in moderate to high-dimensional
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Algorithm 1 MCMC algorithm for sampling the parameters of model (2.1)

Step 1 Sample γj for j = 1, . . . , p from

π(γj |·) ∼ Bernoulli
(

1

1 + 1−π
π

Rj

)
,

where Rj = |XT
0j�−1X0j+I |−1/2 exp( 1

2 mT
0 V0m0)

|XT
1j�−1X1j+I |−1/2 exp( 1

2 mT
1 V1m1)

, � = σ 2In +PcP T , m0 = XT
0j�

−1y and V0 =
(XT

0j�
−1XT

0j + I )−1. X0j is the matrix of covariates such that γk = 1 for k 	= j . X1j is the
matrix of covariates such that γk = 1 for k = 1, . . . , p, with Xj included.

Step 2 Sample π from π(π |·) ∼ Beta(aπ + ∑p
j=1 γj , bπ + p − ∑p

j=1 γj )

Step 3 Sample the main coefficients βγ from the distribution:

π(βγ |·) ∼ N
(
V XT

γ �−1(
y − αZ − diag

(
XXT ))

,V
)
,

where V = (Xγ �−1Xγ + I )−1 and the subscript γ indicates that we are including only
the variables such that γj = 1

Step 4 Set λj,k equal to zero according to the chosen heredity condition. Then update λj,k

following an appropriate modification of Step 2

Step 5 Sample α following an appropriate modification of Step 2

Step 6 If γτ = 0, set ρj = 0 and γ
ρ
j = 0 and move to Step 7, else go to Step 6′.

Step 6′ If ρj 	= 0, perform delete move: propose ρ∗
j = 0 and γ ∗

j = 0. If ρj = 0 perform

add move: propose ρ∗
j > 0 and γ ∗

j = 1, for j = 1, . . . , p. Compute U∗
mD∗U∗T

m with the

approximation of Section 3, �∗−1 with Sherman–Woodbury formula and |�∗−1| with de-
terminant lemma. Then compute

−2 log(r) = log
∣∣�∗−1∣∣ − log

∣∣�−1∣∣ + 1

2
μT (

�∗−1 − �−1)
μ,

where μ = y − (Zα + Xβ + diag(XXT )). Sample u from a Uniform distribution in the
interval (0,1) and if log(r) > log(u), set ρj = ρ∗

j , γj , � = �∗, |�−1| = |�∗−1|
Step 7 For all j = 1, . . . , p such that ρj 	= 0, perform a Gibbs-type move: sample ρ∗

j from
a symmetric proposal distribution and then follow Step 5.

Step 8 Sample ϕ following an appropriate modification of Step 2.

Step 9 Sample τ ∗2 from a symmetric proposal distribution and update following an appro-
priate modification of Step 5. If τ ∗2 	= 0 perform a Gibbs-type move.

Step 10 Sample σ 2 from π(σ 2|·) ∼ InvGamma(1+n
2 ,

1+μT (In+Pc′P T )−1μ
2 ) where

c′(x, x∗) = (τ ∗)2 exp{∑p
j=1 ρj (xj − x∗

j )2}

settings. We generate the covariates independently Xi ∼ Np(0, Ip) for i = 1, . . . , n, for
n = 250,500 and p = 25,50, so that the number of parameters that we estimate with model
(2.1) is 353 and 1352, respectively. We generate the outcome as follows:

(a) yi = x1 − x2 + x3 + 2x1x2 − x1x3 + 1

2
x2

4 + 4

exp(−2x5) + 1
+ εi,
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(b) yi = x1 + x2 − x3 − x4 + 2x1x2 − x1x3 − x2x3 − 2x3x4 + εi,

(c) yi = sin(x1 + 3x3) − 1

2
x2

3 + exp(−0.1 ∗ x1) + εi,

where εi ∼ N(0,1). The first setting involves a model with strong heredity and nonlinear
effects, whereas the second is an interaction model and the third a nonlinear model. We eval-
uate the performance on a test dataset of 100 units with predictive mean squared error for all
the models. We compute the Frobenious norm for the matrix containing pairwise interactions
for Family, hierNet, RAMP and PIE. The Frobenious norm between two square matrices 

and ̂ of dimension p is defined as√
trace

(
( − ̂)T ( − ̂)

)
.

We also compute posterior inclusion probabilities of nonlinear effects, so that we can calcu-
late the percentage of true positive and true negative nonlinear effects for our method and
BKMR. We average the results across 50 simulations. The results for n = 500 are summa-
rized in Table 1 and Table 2 and are summarized for n = 250 in Table 1 and Table 2 of the
Supplementary Material (Ferrari and Dunson (2020a)).

Across all the simulation scenarios, our model consistently achieves nearly the best pre-
dictive performance in terms of prediction error and Frobenious norm and is able to identify
main effects, interactions and nonlinear effects. The experiments highlight the advantages of

TABLE 1
Results from the simulation study under the three scenarios with p = 25, n = 500. We computed test error, FR

for interaction effects, percentage of true positives and true negatives for main effects and interactions for
MixSelect, BKMR, hierNet, Family, PIE and RAMP. We divided each value of test error and FR by the best

(lowest) result for that metric. This makes the metric of the best model equal to 1

MixSelect BKMR hierNet Family PIE RAMP

Model (a) test MSE 1.138 1 1.098 5.645 4.400 1.217
FR 1.033 5.659 5.820 2.465 1

TP main 1 1 1 1 1
TN main 0.758 0.798 0.947 0.679 0.919
TP int 1 1 1 1 1
TN int 1.000 0.989 0.984 0.997 0.997
TP nl 0.947 1
TN nl 0.977 0.821

Model (b) test MSE 1 1.902 1.430 8.928 1.363 1.061
FR 1 18.162 22.572 1.723 1.433

TP main 1 1 1 1 1
TN main 0.998 0.863 0.907 0.688 0.992
TP int 1 1 0.978 1 0.989
TN int 1 0.988 0.958 0.993 0.999
TP nl
TN nl 0.984 0.673

Model (c) test MSE 1.359 1 1.203 2.927 1.285 2.641
FR 1 8.759 2.508 9.600 5.542

TP main
TN main 0.808 0.719 0.868 0.834 0.851
TN int 1.000 0.984 0.980 0.992 0.991
TP nl 0.645 0.985
TN nl 0.989 0.893
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TABLE 2
Results from the simulation study under the three scenarios with p = 50, n = 500. We computed test error, FR

for interaction effects, percentage of true positives and true negatives for main effects and interactions for
MixSelect, BKMR, hierNet, Family, PIE and RAMP. We divided each value of test error and FR by the best

(lowest) result for that metric. This makes the metric of the best model equal to 1

MixSelect BKMR hierNet Family PIE RAMP

Model (a) test MSE 1.135 11.409 1 5.630 4.057 1.181
FR 1.808 8.718 9.642 3.949 1

TP main 1 1 0.993 1 1
TN main 0.863 0.868 0.976 0.789 0.967
TP int 1 1 0.989 1 1
TN int 1 0.996 0.996 0.999 1.000
TP nl 0.826 1
TN nl 0.999 0.037

Model (b) test MSE 1.000 12.987 1.420 9.485 1.364 1
FR 1.222 20.973 25.820 1.849 1

TP main 1 1 1 1 1
TN main 0.999 0.880 0.977 0.822 0.999
TP int 1 1 0.990 0.995 1
TN int 1 0.996 0.993 0.999 1.000
TN nl 1 0.046

Model (c) test MSE 1.360 4.139 1 2.589 1.070 2.519
FR 1 7.990 2.078 8.885 3.562

TN main 0.894 0.815 0.950 0.901 0.942
TP int
TN int 1.000 0.994 0.997 0.998 0.999
TP nl 0.523 0.983
TN nl 0.984 0.043

MixSelect in the context of the application, where the dose-response surfaces usually have
roughly linear, hill-shaped or sigmoid shapes. Hence, constraining the flexible nonparametric
surface allows MixSelect to have a predictive and inference advantage over BKMR which
is the main nonparametric method used in environmental epidemiology applications. For
model (a), we achieve a better performance because of the decomposition of the regression
surface, and we correctly identify linear and nonlinear effects. With respect to model (b), our
method is able to correctly estimate a regression surface without nonlinear effects, thanks to
the spike and slab prior on the term τ . We also achieve a similar, if not better performance,
in the nonlinear scenario of method (c). Finally, Figure 2 of the Supplementary Material
(Ferrari and Dunson (2020a)) shows the estimated regression surface vs. the true surface for
model (a), when n = 250 and p = 25.

5. Environmental epidemiology application.

5.1. Motivation. The goal of our analysis is to assess the association of 14 metals (bar-
ium, cadmium, cobalt, caesium, molybdenum, manganese, mercury, lead, antimony, tin,
strontium, thallium, tungsten and uranium) with body mass index (BMI). Recently, several
studies showed the relation between complex mixtures of metals and health or behavioral
outcomes. See Sanders, Claus Henn and Wright (2015) for example for a literature review on
perinatal and childhood exposures to cadmium (Cd), manganese (Mn) and metal mixtures.
The authors state that there is suggestive evidence that cadmium is associated with poorer



1752 F. FERRARI AND D. B. DUNSON

cognition. Claus Henn, Coull and Wright (2014) report associations between mixtures and
pediatric health outcomes, cognition, reproductive hormone levels and neurodevelopment.
With respect to obesity indices and using data from the National Health and Nutrition Ex-
amination Survey (NHANES), metals have already been associated with an increase in waist
circumference and BMI; see Padilla et al. (2010) and Shao et al. (2017).

5.2. Data description. We consider data from NHANES collected in 2015. We select a
subsample of 2532 individuals for which at least one measurement of metals and BMI have
been recorded. We also include in the analysis cholesterol, creatinine, sex, age and ethnic-
ity which has five categories (Hispanic, other Hispanic, non-Hispanic White, non-Hispanic
Black and other Etnicity). We choose Hispanic as a reference group for ethnicity. Table 3
in the Supplementary Material (Ferrari and Dunson (2020a)) shows the correlations among
chemicals; Figure 3 and Figure 4 in the Supplementary Material (Ferrari and Dunson (2020a))
show the missingness pattern and the cases below the limit of detection (LOD). In NHANES,
different groups of chemicals, such as metals or phthalates, are only measured for a sub-
sample of individuals. This subsampling only depends on demographic characteristics of the
individuals, and hence the missing at random assumption should be appropriate in our con-
text.

We apply the base 10 logarithm transformation to the chemical exposure values, choles-
terol and creatinine. We also apply the log10 transformation to BMI in order to make its
distribution closer to normality which is the assumed marginal distribution in our model.
The log-transformation is commonly applied in environmental epidemiology in order to re-
duce the influence of outliers and has been employed in several studies using NHANES data
(Buman et al. (2013), Lynch et al. (2010), Nagelkerke et al. (2006)). We leave these transfor-
mations implicit for the remainder of the section.

5.3. Missing data and LOD. In this subsection we describe how to explicitly model the
covariates to allow imputation of observations that are missing or below the limit of detec-
tion. We are particularly motivated by studies of environmental health collecting data on
mixtures of chemical exposures. These exposures can be moderately high-dimensional with
high correlations within blocks of variables. For this reason we decide to endow the chemi-
cal measurements, cholesterol and creatinine with a latent factor model. Let X be the n × p

matrix containing the chemical measurements, Z an n × q matrix containing the covariates
and let Wi = (Xi, zi1, zi2)

T be a d × 1 vector containing the 14 chemical measurements,
cholesterol and creatinine. The factor model is as follows:

Wi = ηi + εi, εi ∼ Nd(0,�),

ηi ∼ Nk(0, I ),
(5.1)

where we center the data Wi to have zero mean prior to the analysis, � = diag(σ 2
1 , . . . , σ 2

d )

is as residual variance matrix,  is a d × k factor loadings matrix and ηi are i.i.d. standard
normal latent factors. We assume an elementwise standard normal prior for  and endow σ 2

j

with independent inverse-gamma priors with parameters (1/2,1/2), for j = 1, . . . , d . From
an eigendecomposition of the correlation matrix, the first nine eigenvectors explain more
than 85% of the total variability; hence, we set the number of factors equal to 9. Algorithm 2
in the Supplementary Material (Ferrari and Dunson (2020a)) describes how to sample the
parameters of (5.1) within an MCMC algorithm.

In addition to missingness due to chemicals that have not been assayed, 13.5% of chemi-
cals have been recorded under the limit of detection (LOD). We can impute these observations
as

Xij |Xij ∈ [−∞, log10(LODj )
] ∼ T N

(
ηT

i λj , σ
2
j ,−∞, log10(LODj )

)
,
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where LODj is the limit of detection for exposure j and T N(μ,σ 2, a, b) is a truncated
normal distribution with mean μ, variance σ 2 and support in [a, b]. A related approach was
used in Ferrari and Dunson (2020b) to impute chemicals below the LOD within an MCMC
algorithm.

To simplify data imputation under the above model and improve robustness to model mis-
specification, we apply a common “cut of feedback” approach (Lunn et al. (2009)). In par-
ticular, in imputing the missing values and those below the limit of detection, we use the
conditional posterior given only the data in the Wi component of the model and not taking
into account that Wi also appears in the outcome model.

5.4. Statistical analysis. We estimate a quadratic regression with nonlinear effects for the
transformed chemicals, which are included in the matrix X, and we control for covariates,
which are included in the matrix Z, according to model (2.1). We use the specified priors in
Section 2.2 and alternate between the steps of Algorithm 1 and Algorithm 2 at each MCMC
iteration to obtain the posterior samples. In environmental epidemiology the signal to noise
ratio is usually low; hence, we use the weak heredity specification in order to have greater
flexibility in our model and to enhance power in discovery of linear interactions. We run the
MCMC chain for a total of 5000 iterations with a burn-in of 4000.

We observed good mixing for main effect and interaction coefficients. In particular, the
average effective sample size (ESS) for main effects and interactions was equal to 725.
For the smoothness parameters the effective sample size for each ρj was on average three
times higher with respect to the corresponding parameters in BKMR. We also computed
the Geweke diagnostic for main and interaction effects, for a total of 105 parameters. The
Geweke diagnostic tests for a difference of the mean in the first 25% of the MCMC samples
and the last 25% of the samples. All computed p-values were not significant at the 0.01 level.
Residual plots are included in Figure 5 of the Supplementary Material (Ferrari and Dunson
(2020a)). The residual diagnostics suggest that the model assumptions are satisfied fairly
well. First, approximate normality holds with only a mild deviation in the tails. Second, in-
specting the scatter plot of predicted BMI vs standardized residual, we did not find any clear
patterns, suggesting homoskedasticity and adequate fit of our regression model. Lastly, we
conducted posterior predictive checks, comparing the mean of the in-sample predictions at
each MCMC iteration to the data mean. Figure 6 in the Supplementary Material (Ferrari and
Dunson (2020a)) shows that the two means align very well. We also observed good in sample
and out of sample coverage of 100(1 − α)% predictive intervals for different α values; refer
to Table 4 in Supplementary Material (Ferrari and Dunson (2020a)).

The complexity per iteration of Gibbs sampling is O(n2m) when τ 	= 0, where m is related
to the approximation described in Section 3. When τ = 0, the complexity per iteration of
Gibbs sampling is O(d2), where d is the number of active main effects.

5.5. Results. In our analysis we found significant nonlinear associations with BMI for
cadmium and tungsten with posterior predictive probabilities of having an active nonlinear
effect of 1 and 0.79, respectively. Figure 2 shows the estimated nonlinear surfaces for cad-
mium and tungsten, when all the other variables are set to their median. The nonlinear effect
of cadmium has a hill-shaped dose response, with a monotone increase at lower doses fol-
lowed by a downturn leading to a reverse in the direction of association—presumably, as toxic
effects at high doses lead to weigh loss. We also found a significant negative linear association
between BMI and lead and molybdenum, and the main effect estimates suggested a negative
linear association with cesium, cobalt and tin. A similar negative effect for higher doses of
cadmium, cobalt and lead was found in Shao et al. (2017) and Padilla et al. (2010), where
both authors found an inverse linear association among these metals and BMI, suggesting
that they can create a disturbance of metabolic processes.
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FIG. 2. Estimated dose response curves for the chemicals cadmium, tungsten, lead and cobalt, when all the
other quantities are equal to their median. The black line corresponds to the posterior median, the shaded bands
indicate 95% posterior credible intervals and the marks on the x-axis indicate the observed data points.

We found positive linear interactions between molybdenum × strontium, lead × antimony,
and negative interaction between lead × uranium. Figure 7 in the Supplementary Material
(Ferrari and Dunson (2020a)) shows the estimated coefficients for interactions. With respect
to covariate adjustments, we found a positive association between BMI and age, creatinine
and cholesterol, as expected, and also a negative association with ethnicities—Other His-
panic, non-Hispanic White, non-Hispanic Black and Other Ethnicity—with respect to the
reference group Hispanic, refer to Figure 8 of the Supplementary Material (Ferrari and Dun-
son (2020a)). Finally, even if some of the chemicals were moderately correlated (see molyb-
denum and tungsten, e.g., in Table 3 in the Supplementary Material, Ferrari and Dunson
(2020a)), our model was able to distinguish the two effects, estimating a linear association
for molybdenum and no association for tungsten.

We compared the performance of our model with the methods described in Section 4:
BKMR (Bobb et al. (2015)), Family (Haris, Witten and Simon (2016)), hierNet (Bien, Tay-
lor and Tibshirani (2013)), PIE (Wang and Jiang (2019)) and RAMP (Hao, Feng and Zhang
(2018)). For simplicity in making comparisons across methods that mostly lack an approach
to accommodate missing exposures, we focus on complete case analyses, discarding all ob-
servations having any values that are missing. Table 3 shows the performance of the models
for in sample MSE when training on the full dataset and out of sample MSE when holding
out 500 data points. Notice that BKMR overfits the training data in the presence of highly
correlated covariates and, consequently, has worse performance on the test set. In addition,
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TABLE 3
Performance of MixSelect, BKMR, RAMP, hierNet, Family and PIE for in sample mean squared error when

training on the complete cases and out of sample mean squared error when holding out 500 data points

MixSelect BKMR hierNet Family PIE RAMP

In sample MSE 0.530 0.031 0.573 0.879 0.626 0.572
Out of sample MSE 0.687 0.919 0.611 0.927 0.710 0.604

BKMR estimates a posterior probability of a nonlinear effect greater than 0.87 for each chem-
ical which could be a result of overfitting. On the other hand, MixSelect is able to distinguish
a simple regression surface from a more complex one thanks to the identifiability constraint
which prevents overfitting.

Figure 3 shows the estimated main effects of the chemicals, and 95% credible intervals
for MixSelect. Notice that most of the main effect estimates of the other models are equal to
0, perhaps due to low power. The method PIE also estimates a negative association for lead
and molybdenum; RAMP and hierNet estimate a negative association for lead. Finally, there
is suggestive evidence of a negative association between BMI with cesium, tin and cobalt,
which is also detected by PIE. In the Supplementary Material (Ferrari and Dunson (2020a))
we consider possible chemical interactions with Sex and non-Hispanic Black ethnicity. The
nonlinear effect of cadmium in Females and non-Hispanic Blacks has a hill-shaped dose
response as in Figure 2, whereas it is negatively associated with BMI in the male subgroup.
Moreover, we found that lead and molybdenum exposures have a stronger negative effect on
females than males, and we observe the opposite behavior for tin and cobalt.

6. Discussion. We proposed a MixSelect framework that allows identification of main
effects and interactions. We also allow flexible nonlinear deviations from the parametric spec-
ification relying on a Gaussian process prior. We showed that MixSelect improves on the
state-of-the-art for assessing associations between chemical exposures and health outcomes.
To our knowledge, this is the first flexible method that is designed to provide interpretable
estimates for main effects and interactions of chemical exposures while not constraining the
model to have a simple parametric form. We also included variable selection, uncertainty
quantification, missingness in the predictors and limit of detection. The proposed specifica-
tion provides a nice building block for more complicated data structures; for example, there
are straightforward extensions to allow censored outcomes, longitudinal data, spatial depen-
dence and other issues.

FIG. 3. Estimated main effects using MixSelect with 95% credible intervals and estimated coefficients using
RAMP, hierNet, Family and PIE. We trained all the methods on the dataset with complete cases. Exposure mea-
surements are on the log scale.
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NHANES data are obtained using a complex sampling design, which includes oversam-
pling of certain population subgroups, and contains sampling weights for each observation
that are inversely proportional to the probability of being sampled. We did not employ sam-
pling weights in our analysis because our goal was to study the association between metals
and BMI rather than providing population estimates. One possibility to include the sampling
weights in our method is to jointly model the outcome and the survey weights (Si, Pillai and
Gelman (2015)), without assuming that the population distribution of strata is known.

With correlated features, variable selection techniques can lead to multiple models having
almost the same posterior probability of being the best one, and, with few observations, the
interpretation of results becomes difficult. However, our method provided better inference
under correlated predictors than BKMR (Bobb et al. (2015)). We believe this is due to the
projection approach which protects against overfitting by adding a constraint to the highly
flexible nonparametric surface. An alternative solution is to cluster the predictors at each it-
eration of the MCMC algorithm using a nonparametric prior specification for the coefficients
(MacLehose et al. (2007)).

Instead of focusing on mean regression, we can easily modify MixSelect to accommodate
quantile regression. In order to induce a regression on a specific quantile, one can use (2.1)
but with the residual εi having an asymmetric Laplace distribution (Yu and Moyeed (2001)).
The asymmetric Laplace can be represented as a scale mixture of Gaussians, facilitating a
straightforward modification to our MCMC algorithm; refer to Yu et al. (2013) for related
work. Alternatively, it is possible to allow main effects and interactions to vary with quantiles
of yi ; see, for example, Reich, Fuentes and Dunson (2011). We can also induce a quantile
dependence on the nonlinear deviation g∗(xi). In particular, we can introduce uniformly dis-
tributed latent variables ηi modifying the nonlinear deviation as g∗(xi, ηi) which is referred
to as the Gaussian process transfer prior (Kundu and Dunson (2014)).

Chemical studies usually involve up to dozens of exposures, but recent developments em-
ploying novel data collection techniques are starting to produce interesting datasets in which
the number of exposures is in the order of the number of data points, so that the estimation of
statistical interactions becomes infeasible with standard techniques. In this paper we impose
heredity constraints and an approximation to the Gaussian process surface in order to deal
with this problem, but new developments for dimension reduction are needed to scale up to
allow massive number of exposures.
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SUPPLEMENTARY MATERIAL

Supplementary Material to “Nonparametric Bayesian multi-armed bandits for single
cell experiment design” (DOI: 10.1214/20-AOAS1363SUPPA; .pdf). The supplementary
material contains a description of the predictive distribution, a comparison with P-splines,
Figures and Tables relative to Sections 4 and 5, the algorithm for sampling the parameters of
(5.1) and an extension of the analysis in Section 5 with sex or non-Hispanic Black ethnicity
interactions.

Source code “Nonparametric Bayesian multi-armed bandits for single cell experi-
ment design” (DOI: 10.1214/20-AOAS1363SUPPB; .zip). R source code for Algorithm 1
and Algorithm 2 of the Supplementary Material (Ferrari and Dunson (2020a)).

https://doi.org/10.1214/20-AOAS1363SUPPA
https://doi.org/10.1214/20-AOAS1363SUPPB
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