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We say that one point process on the line R mimics another at a band-
width B if for each n ≥ 1 the two point processes have n-level correlation
functions that agree when integrated against all band-limited test functions
on bandwidth [−B,B]. This paper asks the question of for what values a and
B can a given point process on the real line be mimicked at bandwidth B by
a point process supported on the lattice aZ. For Poisson point processes we
give a complete answer for allowed parameter ranges (a,B), and for the sine
process we give existence and nonexistence regions for parameter ranges. The
results for the sine process have an application to the alternative hypothesis
regarding the scaled spacing of zeros of the Riemann zeta function, given in
a companion paper.

1. Introduction.

1.1. Objective. In this paper we ask the following question: how well can the statistics of
a point process on the real line R be mimicked by the statistics of a point process restricted to
a lattice aZ = {aj : j ∈ Z}? The statistics we consider are correlation functions, and what we
mean by “mimicking” is perfect agreement of the correlation functions of the two processes
when integrated against band-limited Schwartz functions of a specified bandwidth, explained
further below. We give an analysis of the mimicking problem for two distinct point processes,
the Poisson process and the sine process, and uncover some surprising mismatches between
the two.

This problem has its origins in a problem regarding the zeros of the Riemann zeta-function,
which we discuss at the end of the introduction and treat more fully in a companion paper
[24].

1.2. Background and conventions for point processes. We first recall the definition of a
point process, and fix notation. A good reference for point processes with conventions similar
to ours is Hough et al. [19]. Other basic references for point processes include [3, 17, 30, 45].

A point process is a recipe to randomly lay down points in some topological space. In more
formal terms: we consider a locally compact separable topological space X; in fact for us X
will always be R or aZ for some a > 0, equipped with the Euclidean topology, which is the
discrete topology on aZ. A point configuration u in X is a sequence of elements u := (uj )j∈Z
with ui ∈X for all i ∈ Z. For u a configuration, and V ⊂ X, we use the notation

#V (u) := #{i : ui ∈ V }
to denote the number of elements of the configuration u inside V . We allow repeated values
uj = uk with j �= k, and count them with multiplicity. We let the configuration space Conf(X)

be the set of locally finite configurations, that is

Conf(X) := {
u : #K(u) < +∞ for all compact K

}
.
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We let M be the smallest topology on Conf(X) that contain all cylinder sets CV
m , where

CV
m := {

u ∈ Conf(X) : #V (u) = m
}
,

where V is any bounded Borel set and m is any nonnegative integer.
We let B(M) be the Borel σ -algebra generated by M. A point process on X is a random

element u taking values in (Conf(X),B(M)). With this definition, the sets{
u : #B1(u) = m1,#B2(u) = m2, . . . ,#Bn(u) = mn

}
are measurable events, for any finite collection of Borel subsets B1,B2, . . . ,Bn of X and
for any finite collection of nonnegative integers m1, . . . ,mn. This definition allows points to
coincide; they may have a finite multiplicity. A point process is said to be simple if (with
probability one) any configuration has ui �= uj if i �= j .

In this paper we specialize to the case that the space is X is R or aZ for some a > 0.
For the point processes we will be interested in, we will require an additional condition.

UNIFORM LOCAL MOMENTS CONDITION. For each n ≥ 1 there exists a constant Cn <

∞ such that

(1) E
[(

#[L,L+1](u)
)n] ≤ Cn for all L ∈ R.

Here Cn depends on n but does not depend on L.

We say that a point process satisfying (1) has uniform local moments, and refer to it sub-
sequently as a u.l.m. point process.

Given a point process on R, for any n ≥ 1 and any φ ∈ Cc(R
n), the sum

(2)
∑

j1,...,jn
distinct

φ(uj1, . . . , ujn)

defines a random variable (that is, a measurable mapping from Conf(X) to C). In the case
that our point process has uniform local moments, the Riesz representation theorem implies
for that measure that for all n ≥ 1 there exists a unique measure ρn on R

n such that

(3) E
∑

j1,...,jn
distinct

φ(uj1, . . . , ujn) =
∫
Rn

φ(x1, . . . , xn) dρn(x1, . . . , xn)

for all φ ∈ Cc(R
n). (See Theorem A.1 in Appendix A.1.) In the case that X = aZ, the measure

ρn will be supported on (aZ)n. The measure ρn is called the n-level correlation measure of
the process u. (The name n-level joint intensity measure is used interchangeably in some
literature, e.g., [19], Chapter 3.)

We recall the well-known fact that if V is any Borel subset of R (or aZ), we have

(4)
∑

j1,...,jn
distinct

1V (uj1) · · ·1V (ujn) =
n−1∏
i=0

(
#V (u) − i

)
,

where 1V is the indicator function of the set V . In consequence

(5) E

n−1∏
i=0

(
#V (u) − i

) =
∫
V n

dρn(x1, . . . , xn).

From this it follows that a u.l.m. point process has finite constants An such that
ρn([L,L + 1]n) ≤ An.

The u.l.m. condition on a point process allows us to extend (2) to a slightly wider class of
functions φ than Cc(R

n). Let S(Rn) be the Schwartz class of functions on R
n.
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PROPOSITION 1.1. Let u be a u.l.m. point process on R and let ρn be the n-level corre-
lation measure of the process u (defined by (3) for all φ ∈ Cc(R

n)). Then for all n ≥ 1 and
η ∈ S(Rn), the sum ∑

j1,...,jn
distinct

η(uj1, . . . , ujn)

converges almost surely and defines an integrable random variable, with

(6) E
∑

j1,...,jn
distinct

η(uj1, . . . , ujn) =
∫
Rn

η(x1, . . . , xn) dρn(x1, . . . , xn).

Proposition 1.1 is proved via a simple limiting argument combined with the dominated
convergence theorem. Theorem A.3 in Appendix A.2 gives a slightly more general result
with a full proof.

REMARK 1.2. It is possible for two distinct point processes to share the same corre-
lation functions for all n ≥ 1. For instance, if X and Y are random variables taking values
in the natural numbers which have the same moments but different distributions—see [47],
Section 11.7, for a construction—let u be the point process consisting of X points at the
origin (and no other points) and v be the point process consisting of Y points at the origin
(and no other points). Then u and v will have the same correlation measures but different
distributions.

This phenomenon is not the usual situation: if a point process has uniform local moments
whose constants Cn in (1) do not grow too quickly with n, then any other point process that
has the same correlation measures ρn for n ≥ 1 must be identical in distribution. See [28],
Theorem 2, and [19], Remark 1.2.4. One may make a comparison between this fact and the
classical moment problem for random variables, see Lenard [29], p. 242, and for the moment
problem [1, 42, 43].

1.3. Statement of the problem. Throughout the paper we use the convention that the
Fourier transform of η(x) on R

n is given by

η̂(ξ) =
∫
Rn

η(x)e(−x · ξ) dx,

where e(y) = e2πiy and x · ξ = x1ξ1 + · · · + xnξn.
We make the following definition.

DEFINITION 1.3. Let u and v be u.l.m. point processes in R, and let B > 0. Suppose
that for each n ≥ 1 and all η ∈ S(Rn) whose Fourier transform η̂ is supported in [−B,B]n,
we have

(7) E
∑

j1,...,jn
distinct

η(uj1, . . . , ujn) = E
∑

j1,...,jn
distinct

η(vj1, . . . , vjn).

Then we say that v mimics u at the bandwidth [−B,B] (resp. v mimics u at the bandwidth B).

The mimicry relation is an equivalence relation: it is reflexive, symmetric and transitive.
The symmetry property is if v mimics u at bandwidth B , then u mimics v at bandwidth B .

We have been motivated to consider this definition by an application to number theory
described in Section 1.8.

A point process is said to be supported on aZ if all configurations lie in aZ. We ask the
following question in general:
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Band-limited Mimicry Problem. For a given u.l.m. point process u in R, for what values a and B

does there exist a u.l.m. point process u∗ supported on the lattice aZ such that u∗ mimics u at the
bandwidth B?

In this problem we do not require either of the point processes we consider u or u∗ to be
simple.

In the band-limited mimicry problem for a process u we are given partial information about
the n-level correlation measures for a putative point process u∗ supported on aZ. A major
difficulty in resolving the problem is that not all collections of measures ρ∗

n are realizable as
the correlation measures of some point process. Determining which collections of measures
are in fact the correlation measures of some point process is referred to as the realizability of
point processes. Abstract criteria for the realizability of a point process were given by Lenard
[29], Theorem 4.1, in terms of correlation measures. These criteria are hard to apply in prac-
tice. Lenard also specified a large set of inequalities that correlation functions must satisfy,
which provide a possible mechanism to prove nonrealizability, for example, [29], Proposi-
tions 3.4–3.8. The realizability problem has more recently been the subject of considerable
work [9, 22, 23].

It is not clear for which point processes band-limited mimicry is possible at all (namely, for
some a,B > 0). This paper exhibits some processes where band-limited mimicry is possible
and establishes limits on allowable mimicry parameters (a,B).

1.4. Sampling and interpolation. There is a certain relation between the band-limited
mimicry problem and the classical problems of sampling and interpolating a signal. Below by
saying that a function is band-limited on R

n, we mean that function has compactly supported
Fourier transform.

Indeed, the sampling theorem (see Grafakos [16], Thm. 5.6.9) tells us that a band-limited
function η ∈ S(Rn) which satisfies supp η̂ ⊂ [−1/2a,1/2a]n can be reconstructed (by inter-
polation) from its sample values on the lattice aZ, by the Whittaker–Shannon interpolation
formula

(8) η(x) = ∑
k∈(aZ)n

η(k)

n∏
i=1

S

(
xi − ki

a

)
,

where S(x) is a sinc-function, defined by

(9) S(x) =
⎧⎨
⎩

sinπx

πx
, x �= 0,

1, x = 0.

Therefore, given a Schwartz function η ∈ S(Rn) having supp η̂ ⊂ [1/2a,1/2a]n, for a
u.l.m. point process’s n-point correlation measures ρn, we have

(10)
∫
Rn

η(x) dρn(x) =
∫
Rn

∑
k∈(aZ)n

η(k)

n∏
i=1

S

(
xi − ki

a

)
dρn(x).

Under mild hypotheses on ρn we can interchange the sum and integral on the right side to
obtain

(11)
∫
Rn

η(x) dρn(x) = ∑
k∈(aZ)n

η(k)

∫
Rn

n∏
i=1

S

(
xi − ki

a

)
dρn(x).

That is, we have ∫
Rn

η(x) dρn(x) =
∫
Rn

η(x) dρ′
n(x),(12)
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where ρ′
n(x) is the atomic measure on R

n supported on the lattice (aZ)n with

(13) ρ′
n

({k}) =
∫
Rn

n∏
i=1

S

(
xi − ki

a

)
dρn(x)

for all k = (k1, k2, . . . , kn) ∈ (aZ)n. (There exist measures ρn such that the integral in (13)
will not converge, but for all ρn which we consider this integral will indeed converge.)

Nonetheless the existence of a measure ρ′
n supported on (aZ)n satisfying (12) is only a

necessary condition that there exist a point process having such correlation measures. As we
will see, the measures defined by (12) are sometimes realized as correlation measures of a
point process, but sometimes they are not. The bandwidth 1

2a
for the lattice aZ nonetheless

retains a certain importance, and we use the convention that the bandwidth B = 1
2a

is called
the Nyquist bandwidth (for mimicry on aZ), following a naming convention in sampling
theory. (More often 1

a
= 2B is termed the Nyquist rate (measured in samples per second) for

sampling band-limited functions whose Fourier transform has maximum frequency B on a
lattice with spacing aZ.)

We note that there are general mathematical results asserting that for (stable) reconstruc-
tion of an arbitrary band-limited signal on R

n with frequencies confined to a finite set of
intervals having measure 2B using a sampling scheme on aZn, one must have B ≤ 1

2a
, see

Landau [25], Theorem 1, [26], who noted that the special case of an interval [−B,B] was
originally due to A. Beurling.

1.5. Point processes studied. In this paper we will treat in detail the mimicry tradeoff
between a and B for two particular point processes for which mimicry occurs: the Poisson
process and the sine-process.

1.5.1. Poisson point process. The Poisson process is in fact a family of point processes
indexed by a parameter λ > 0 called the intensity. The Poisson process of intensity λ may
be characterized as follows [20], Ex. 2.5: it is the unique point process w with correlation
measures defined by

(14) E
∑

j1,...,jn
distinct

φ(wj1, . . . ,wjn) =
∫
Rn

φ(x1, . . . , xn) · λn dx1 · · ·dxn

for all n ≥ 1 and for all φ ∈ Cc(R
n). Thus its n-point correlation measure is dρn(x) = λn dnx.

From this fact and (5) it is easy to see for any λ that the Poisson point process of intensity λ

has uniform local moments.

1.5.2. Sine process. The sine process is a name often used for the determinantal point
process associated to the sine kernel K(x,y) = sinπ(x−y)

π(x−y)
for x �= y, and K(x,x) ≡ 1, cf. [8].

The sine process may be characterized as follows [19], Ch. 4: it is the unique point process z

with correlation measures dρn(x) = detn×n[S(xi − xj )]dnx:

(15) E
∑

j1,...,jn
distinct

φ(zj1, . . . , zjn) =
∫
Rn

φ(x1, . . . , xn) · det
n×n

[
S(xi − xj )

]
dx1 · · ·dxn

for all n ≥ 1 and all φ ∈ Cc(R
n). Here detn×n[·] denotes an n × n determinant, and S(x) is

the sinc function given in (9). Furthermore, by convention, the right hand side of (15) for
n = 1 has the meaning

∫
R

φ(x1) dx1. From this correlation measure and (5) it is easy to see
that the sine process also has uniform local moments.
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1.6. Main results: General processes. We prove two general results about mimicry. The
first result is a uniqueness result for the correlation functions of a mimicking process strictly
above the Nyquist bandwidth.

THEOREM 1.4. For any u.l.m. point process u on R, if there exists a point process u′
supported on aZ that mimics u at the bandwidth [−B,B] with B > 1

2a
then its n-point cor-

relation measures, supported on (aZ)n, are uniquely determined for all n ≥ 1.

The uniqueness assertion of Theorem 1.4 need not hold for B ≤ 1
2a

. In fact, for all a > 0
and B = 1

2a
, there exist two distinct point processes supported on aZ, with different cor-

relation measures for all n ≥ 1, which mimic the Poisson process (of any intensity λ). See
Proposition 3.4.

We prove Theorem 1.4 in Section 2, where we give a reconstruction formula for these
correlation measures in Theorem 2.1. Note that n-point correlation functions do not always
uniquely determine a point process, but they do so provided a suitable bound on the growth
of the local moments if the process holds.

The second result gives an upper bound for the mimicry tradeoff for translation invariant
u.l.m. point processes. We call a point process R-translation invariant (in the correlation
sense) if for all n ≥ 1 its n-point correlation measures satisfy for each (x1, x2, . . . , xn) ∈ R

n,

(16) ρn(x1 + t, x2 + t, . . . , xn + t) = ρn(x1, x2, . . . , xn) for all t ∈ R.

The usual notion of translation-invariance for a point process requires that its probability law
be invariant in distribution under translations, compare [3], Section 4.2.6. This notion im-
plies translation-invariance in the correlation sense. For u.l.m. point processes with a suitable
growth bound on their local moments, so that the correlation functions uniquely determine
the law of the process, the two definitions are equivalent.

We have a similar notion of (aZ)-translation invariance (in the correlation sense), for point
processes supported on the lattice aZ restricting (x1, x2, . . . , xn) ∈ (aZ)n and t ∈ aZ above.
Furthermore we say a point process u is trivial if for all Borel subsets B , #B(u) = 0 almost
surely. A point process is said to be nontrivial otherwise.

THEOREM 1.5. Let u be a nontrivial u.l.m. point process on R that is R-translation-
invariant in the correlation sense. If a point process u′ supported on aZ mimics u at the
bandwidth [−B,B], then necessarily B ≤ 1

a
. That is, for any lattice aZ the process u cannot

be mimicked on aZ above twice its Nyquist bandwidth.

The bound 1
a

of Theorem 1.5 is tight. We show in Theorem 1.6 that it is attained for the
Poisson process.

Theorem 1.5 is derived at the end of Section 2 using a result that if u is a translation-
invariant point process (in the correlation sense) that can be mimicked by a process u′ on aZ

at a bandwidth B > 1
2a

above the Nyquist bandwidth, then u′ is necessarily aZ-translation
invariant (in the correlation sense). We obtain a contradiction from this property if B > 1

a
.

1.7. Main results: Poisson process and sine process. We prove specific results for the
Poisson process and the sine process. For each lattice spacing a, one may ask about the full
range of bandwidths B for which the point process can be mimicked.

For the Poisson process we have a complete characterization: mimicry is possible for B

up to and including twice the Nyquist bandwidth.

THEOREM 1.6 (Poisson process mimicry—general bandwidth). Let λ > 0 be arbitrary.
We have,
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1. For all a > 0, if B ≤ 1
a

, then the Poisson process with intensity λ can be mimicked at
bandwidth [−B,B] by a u.l.m. point process supported on aZ.

2. For all a > 0, if B > 1
a

, then the Poisson process with intensity λ cannot be mimicked
at bandwidth [−B,B] by a u.l.m. point process supported on aZ.

COROLLARY 1.7 (Poisson process mimicry—Nyquist bandwidth). Let λ be arbitrary.
For each a > 0, the Poisson process with intensity λ can be mimicked at the Nyquist band-
width [− 1

2a
, 1

2a
] by a u.l.m. point process supported on aZ.

We have stated this corollary for mimicry of the Poisson process at the Nyquist bandwidth
in order to compare with Corollary 1.9 for the sine process, which exhibits a very different
behavior in this regime.

Turning to the sine process, we obtain a partial answer on bandwidths when mimicry is
possible, for a general sampling lattice aZ.

THEOREM 1.8 (Sine process mimicry—general bandwidth). We have,

1. For all 0 < a ≤ 1, if B ≤ 1−a
a

, then the sine process can be mimicked at bandwidth
[−B,B] by a u.l.m. point process supported on aZ.

2. For all 0 < a ≤ 1
2 , if B > 1−a

a
, then the sine process cannot be mimicked at bandwidth

[−B,B] by a u.l.m. point process supported on aZ.
3. If a > 1

2 and B ≥ 1
2a

, then the sine process cannot be mimicked at bandwidth [−B,B]
by a u.l.m. point process supported on aZ.

This result gives a complete answer for the sine process at the Nyquist bandwidth. An
important feature of the answer is that existence of mimicry at the Nyquist bandwidth depends
on the value of a.

COROLLARY 1.9 (Sine process mimicry—Nyquist bandwidth). The sine process can be
mimicked by a u.l.m. point process supported on aZ at the Nyquist bandwidth [− 1

2a
, 1

2a
] if

and only if 0 < a ≤ 1
2 .

This answer contrasts with the Poisson process case, where mimicry is possible at the
Nyquist bandwidth for every a > 0.

For 0 < a < 1
2 , Theorem 1.8 implies mimicry is possible slightly beyond the Nyquist

bandwidth, by an amount depending on a. For a > 1
2 we do not determine the complete

range of mimicry, however Theorem 1.8 shows that the mimicry range is strictly below the
Nyquist bandwidth.

We note that the sine process at a = 1
2 is the largest value of a where the Nyquist bandwidth

can be achieved. This process plays an important role in [24].
The regions of a,B spelled out by these theorems are plotted in Figure 1. It would be very

interesting to understand those a,B not described by Theorem 1.8, left white in Figure 1.

1.8. An application to the alternative hypothesis. The questions treated in this paper
were motivated by a problem originating in number theory regarding zeros of the Riemann
zeta function. We treat this problem in a companion paper [24], and give a brief description
here.

Let the nontrivial zeros of the Riemann zeta function in the upper half-plane be listed as
{βk + iγk}k∈Z in increasing order of ordinate, taking 0 < γ1 ≤ γ2 ≤ γ3 · · · . We define the
rescaled zeta zero ordinates

γ̃k := 1
2π

γk logγk.
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FIG. 1. A plot of the regions (a,B) for which the Poisson process and sine process can be mimicked at bandwidth
B by a point process with uniform moments supported on aZ. In the green region these point processes can
be mimicked, while in the red region they cannot. In the white region of the second plot we currently have no
information.

It is known that the γ̃k have on average a spacing of 1 between consecutive values. (This
result goes back to Riemann’s original paper [37], for a proof see [32], Corollary 14.2.)
The alternative hypothesis refers to the (seemingly outlandish) supposition that the spacings
γ̃k+1 − γ̃k always lie approximately in the set 1

2Z. It is discussed in a 2004 AIM note [35],
Farmer, Gonek and Lee [14], Section 2, and in Baluyot [6].

The alternative hypothesis is of special interest because of known connections between
the spacings of zeros of the zeta function and the existence of Landau–Siegel zeros (see, e.g.,
Conrey and Iwaniec [12]). The alternative hypothesis is expected to be false, and indeed it
is contradicted by the well-known GUE hypothesis, that the spacing between zeros of the
zeta function follow a distribution coming from random matrix theory, concerning rescaled
eigenvalues of the Gaussian unitary ensemble, cf. [21, 31, 34]. On the other hand, the GUE
hypothesis remains a conjecture, even assuming the Riemann hypothesis, and it is natural
to ask whether the alternative hypothesis can be ruled out just by what is known about the
statistical distribution of zeros of the zeta function. By this we mean the known information
about n-level correlation functions of zeros that was proved by Rudnick and Sarnak [41] for
all n ≥ 1, extending results for n = 2 and n = 3 ([18, 31]).

Rudnick and Sarnak characterized the correlation functions of zeros against certain band-
limited test functions; their result amounts to knowing just a bit less than the assertion that
the renormalized zeros mimic the sine process at a bandwidth B = 1. In the companion paper
[24] we review an exact statement of their result, and using ideas related to those in this
paper, we show that the Alternative Hypothesis cannot be ruled out by what is known about
the statistical distribution of zeros of the zeta function. This is done via the construction of a
counterexample alternative hypothesis point process which uses the 1/2-discrete sine process
in its construction.

Recently Tao has independently treated the alternative hypothesis (using slightly different
methods) in a blog post [48]. He constructs an alternate distribution ACUE for eigenvalues
of unitary matrices U(N); in a suitable scaling limit as N → ∞ his construction yields the
alternative hypothesis point process treated here.
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The present paper investigates conditions permitting mimicking by a lattice process aZ in
greater generality than [24]. In particular, Corollary 1.9 reveals that the ability to construct a
counterexample alternative hypothesis point process depends upon quite special properties of
the sine process and the lattice-bandwidth combination (a,B) = (1/2,1). In particular (see
Figure 1), the point (a,B) = (1/2,1) occurs on the boundary of mimicry for the sine process,
and even a slight perturbation off this lattice spacing or bandwidth would no longer allow for
it.

We note that while the band-limited mimicry problem as posed above seems natural from
the perspective of both applications to number theory and what one is able to say about it, one
may reasonably ask broader questions. For instance, one may generalize Definition 1.3 so that
(7) holds for a different collection of functions η than those with Fourier transform supported
on [−B,B]n (e.g., one might allow η to be bandlimited in [−Bn,Bn]n for constants Bn which
vary with n). It would be interesting to see if a more general theory along these lines can be
developed, but we do not pursue this here.

2. The Nyquist bandwidth. The Nyquist bandwidth has important implications regard-
ing correlation measures. In this section we prove for B strictly larger than the Nyquist band-
width 1

2a
that all the correlation measures of any u.l.m. mimicking discrete point process

on aZ are uniquely determined. This result does not address the question whether any such
mimicking discrete point process exists. We then study translation invariance (in the correla-
tion sense) and deduce that R translation invariant point processes cannot be mimicked above
twice the Nyquist bandwidth.

2.1. Uniqueness of correlation functions above the Nyquist bandwidth. In what follows
for 0 < ε < 1/2, we let βε be an even bump function with the following four properties:

0 ≤ βε(ξ) ≤ 1 for all ξ ∈ R,(17)

βε(ξ) = 1 for |ξ | ≤ 1/2 − ε,(18)

βε(ξ) = 0 for |ξ | ≥ 1/2 + ε,(19)

βε

(
1
2 + x

)
= 1 − βε

(
1
2 − x

)
for all 0 ≤ x < 1/2.(20)

A “bump function” is any function that is C∞-smooth and compactly supported. We omit
the details in constructing such bump functions, see Lee [27], Lemma 2.22. The function
βε(ξ) should be seen as a smooth approximation to the indicator function of the interval from
[−1

2 , 1
2 ]. Note further that the functions . . . , βε(ξ − 1), βε(ξ), βε(ξ + 1), . . . form a partition

of unity for the real line.

THEOREM 2.1. If a u.l.m. point process u can be mimicked at bandwidth B by a point
process u′ supported on aZ, and if B > 1

2a
, then the correlation measures ρ′

n of u′, which are
supported on (aZ)n, are uniquely determined and satisfy

(21) ρ′
n

({
(k1, k2, . . . , kn)

}) =
∫
Rn

n∏
i=1

β̂ε

(
xi − ki

a

)
dρn(x) for all k ∈ (aZ)n

for any bump function βε satisfying (17)–(20) and for all sufficiently small ε (where suffi-
ciently small depends on B).

REMARK 2.2. For ε > 0, the function β̂ε(x) is a Schwartz function and the integral (21)
converges due to the assumption of uniform local moments on the point process u.
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PROOF OF THEOREM 2.1. We begin by showing that for x ∈ (aZ)n,

(22)
n∏

i=1

β̂ε

(
xi − ki

a

)
= 1k(x).

Note that

(23)
n∏

i=1

β̂ε

(
xi − ki

a

)
=

n∏
i=1

∫
R

βε(ξ)e
(
ξ(xi − ki)/a

)
dξ.

For fixed i, if (xi − ki)/a ∈ Z, then f (ξ) = e(ξ(xi − ki)/a) has period 1 and so using the
properties (18), (19), and (20),∫

R

βε(ξ)e
(
ξ(xi − ki)/a

)
dξ

=
∫ 3/2

−3/2
βε(ξ)e

(
ξ(xi − ki)/a

)
dξ

=
∫ 1/2

−1/2

[
βε(ξ) + βε(−1 + ξ) + βε(1 + ξ)

]
e
(
ξ(xi − ki)/a

)
dξ

=
∫ 1/2

−1/2
1 · e(

ξ(xi − ki)/a
)
dξ

= 1ki
(xi).

(24)

Applying this formula for each i in (23) yields (22). (Note that the equality (24) does not hold
if ki ∈ R \ aZ.)

Let η ∈ S(Rn) denote

(25) η(x) :=
n∏

i=1

β̂ε

(
xi − ki

a

)
.

We have

η̂(ξ) = ane(−k · ξ)

n∏
i=1

βε(aξi),

which is supported in [− 1
2a

− ε
a
, 1

2a
+ ε

a
]n. If B > 1/(2a), then for sufficiently small ε > 0

we have supp η̂ ⊂ [−B,B]n.
From the support of u′ falling in aZ, and from (22) we have

ρ′
n

({k}) = E
∑

j1,...,jn
distinct

1k

(
u′

j1
, . . . , u′

jn

)

= E
∑

j1,...,jn
distinct

η
(
u′

j1
, . . . , u′

jn

)
.

(26)

If u is mimicked at bandwidth B by u′, since supp η̂ ⊂ [−B,B]n we have

E
∑

j1,...,jn
distinct

η
(
u′

j1
, . . . , u′

jn

) = E
∑

j1,...,jn
distinct

η(uj1, . . . , ujn) =
∫
Rn

η(x) dρn(x),

where the second equality holds by Proposition 1.1. Combining this equality with (26) gives

ρ′
n

({k}) =
∫
Rn

η(x)dρn(x) =
∫
Rn

n∏
i=1

β̂ε

(
xi − ki

a

)
dρn(x),

as asserted. �
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Theorem 1.4 is a direct consequence of Theorem 2.1.

2.2. Translation-invariant point processes and Nyquist bandwidth. Recall from Sec-
tion 1.6 that a point process on R is R translation-invariant (in the correlation sense) if
every n-level correlation function is translation invariant: For all n ≥ 1,

ρn(x1, x2, . . . , xn) = ρn(x1 + t, x2 + t, . . . , xn + t) for all t ∈ R.

A point process is aZ translation-invariant (in the correlation sense) if every n-level corre-
lation function is translation invariant: ρn(x1, x2, . . . , xn) = ρn(x1 + t, x2 + t, . . . , xn + t) for
all t ∈ aZ.

COROLLARY 2.3. Let u be a u.l.m. point process that is R translation-invariant in the
correlation sense. Suppose that u can be mimicked by a point process u′ supported on aZ at
bandwidth B with B > 1

2a
. Then u′ is aZ translation-invariant in the correlation sense. That

is, for each n ≥ 1 the (uniquely determined) correlation measure ρ′
n of u′, which is supported

on (aZ)n, is aZ-translation invariant.

PROOF. Since B > 1
2a

, by Theorem 2.1 the correlation functions of the process
u′ are uniquely determined. The aZ-translation invariance of all the correlation func-
tions ρ

′
n(k1, k2, . . . , kn) of u′ then follows from (21). In more detail: we have, for each

(k1, k2, . . . , kn) ∈ (aZ)n and any translation k ∈ aZ,

ρ′
n

({
(k1 − k, . . . , kn − k)

}) =
∫
Rn

n∏
i=1

β̂ε

(
xi − ki + k

a

)
dρn(x1, . . . , xn)

=
∫
Rn

n∏
i=1

β̂ε

(
yi − ki

a

)
dρn(y1 − k, . . . , yn − k)

=
∫
Rn

n∏
i=1

β̂ε

(
yi − ki

a

)
dρn(y1, . . . , yn)

= ρ′
n(k1, . . . , kn),

with the third equality holding by R-translation invariance of the n-point correlation function
ρn of u, and the first and last inequality hold (for (k1 − k, . . . , kn − k) ∈ (aZ)n) by (21).
(Actually only the aZ-translation invariance of ρn is needed for the third equality to hold.)

�

2.3. Proof of Theorem 1.5. PROOF OF THEOREM 1.5. We suppose that there exists
a nontrivial process u′ supported on aZ that mimics u to bandwidth B > 1

a
and obtain a

contradiction. By the result of Theorem 2.3 the process u′ is aZ-translation invariant in the
correlation sense.

On the other hand, letting a′ = 1
2a, we have that u′ is also supported on the lattice a′

Z =
1
2aZ, as this includes aZ as a sublattice. But the process u′ mimics u to bandwidth B > 1

a
=

1
2a′ , which is above the Nyquist bandwidth for the lattice a′

Z. Therefore Theorem 2.3 applies
to say that this process u′ must be a′

Z-translation invariant in the correlation sense.
However u′ is manifestly not a′

Z translation-invariant in the correlation sense, because it is
supported on aZ, a lattice which does not include the point a′. Indeed, because u′ is nontrivial
and translation invariant in the correlation sense on aZ, we must have E#{0}(u′) > 0. Then
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translation invariance in the correlation sense on a′
Z implies E#{a′}(u′) > 0, which cannot be

the case if u′ is supported on aZ. �

We note that Theorem 1.5 is not true if the assumption of translation invariance is dropped.
Indeed, consider the point process which consists of a single point located at the position 0
almost surely. Since for any a this point process is already itself supported on the lattice aZ,
mimicry occurs for any parameters (a,B).

3. Mimicry of the Poisson process.

3.1. The discrete Poisson process. In this section we prove Theorem 1.6, describing
when the Poisson process can be mimicked.

It ends up that in the range of a,B where the process can be mimicked, it is mimicked just
by the discrete Poisson process.

DEFINITION 3.1. For any a > 0 and any λ > 0 the discrete Poisson process on aZ of
intensity λ is the point process w∗ = (w∗

j )j∈Z such that for each k ∈ aZ, the number of points
at each site #k(w

∗) are independent and identically distributed random variables, with each
variable a Poisson random variable with mean aλ.

The discrete Poisson process on aZ of intensity λ is never a simple point process.

PROPOSITION 3.2. Letting w∗ be the discrete Poisson process on aZ of intensity λ, we
have for all n ≥ 1 and φ ∈ S(Rn),

E
∑

j1,...,jn
distinct

φ
(
w∗

j1
, . . . ,w∗

jn

) = ∑
k∈(aZ)n

(aλ)nφ(k).

PROOF. This follows from the independence of the random variables #k(w
∗) for different

k, and the fact that the factorial moments of Poisson random variables satisfy

E#k

(
w∗)(

#k

(
w∗) − 1

) · · · (#k

(
w∗) − (m − 1)

) = (aλ)m. �

3.2. Mimicry for B ≤ 1
a

, no mimicry otherwise. We now show the first part of Theo-
rem 1.6, that the Poisson process can be mimicked by the discrete Poisson process. The proof
depends on the Poisson summation formula, which we recall in a suitable form.

THEOREM 3.3 (Poisson summation formula). For all φ ∈ S(Rn),

an
∑

k∈(aZ)n

φ(k) = ∑
j∈(a−1Z)n

φ̂(j).

PROOF. The usual formulation of Poisson summation states this for a = 1 (see [16],
Theorem 3.1.17):

∑
k∈Z φ(k) = ∑

j∈Z φ̂(j). Replacing φ(x) with anφ(ax) yields the result
for general a. �

PROOF OF THEOREM 1.6, PART (I). We show that for B ≤ 1/a, the Poisson process
with intensity λ is mimicked at bandwidth [−B,B] by the discrete Poisson process on aZ

with intensity λ. For η ∈ S(Rn) with supp η̂ ⊂ [−B,B]n, we must show that

E
∑

j1,...,jn
distinct

η(wj1, . . . ,wjn) = E
∑

j1,...,jn
distinct

η
(
w∗

j1
, . . . ,w∗

jn

)
.
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Using (14) for the Poisson process and Proposition 3.2 for the discrete Poisson process, this
requires the equality

(27)
∫
Rn

η(x)λn dnx = ∑
k∈(aZ)n

(aλ)nη(k).

The left side is λnη̂(0). Using Poisson summation the right side is

(aλ)n
∑

k∈(aZ)n

η(k) = λn
∑

j∈(a−1Z)n

η̂(j) = λnη̂(0),

where the last equality holds because supp η̂ ⊂ [− 1
a
, 1

a
]n, since B ≤ 1

a
. Since η̂ is a Schwartz

function it necessarily must vanish at all points on the boundary of its support, hence the only
nonvanishing point k in (a−1

Z)n is k = 0. �

The other half of Theorem 1.6 follows from results we have already proved:

PROOF OF THEOREM 1.6, PART (II). This is a direct consequence of Theorem 1.5. �

As we have mentioned in the context of Theorem 1.4, the mimicry demonstrated above
need not be unique outside the range B > 1

2a
.

PROPOSITION 3.4. For any λ > 0 and any a and B satisfying 0 < B ≤ 1
2a

, there exist
two distinct point processes supported on aZ which mimic the Poisson process of intensity λ,
and have different correlation measures for all n ≥ 1.

PROOF. Let w∗ be the discrete Poisson process on aZ with intensity λ and let w∗∗ be
the discrete Poisson process on 2aZ with intensity λ. For B ≤ 1

2a
, we have that both w∗ and

w∗∗ mimic the Poisson process at bandwidth [−B,B]. For w∗, this is implied directly by
Theorem 1.6. For w∗∗, we also verify mimicry from Theorem 1.6, with the lattice spacing
a replaced by a lattice spacing of 2a. Yet 2aZ ⊂ aZ, so both w∗ and w∗∗ are supported on
the lattice aZ, and it is plain from the definition that w∗ and w∗∗ have different correlation
measures for all n ≥ 1. �

4. Mimicry of the sine process.

4.1. The discrete sine process. In this section we prove Theorem 1.8. A key tool will be
the discrete sine process.

THEOREM 4.1. For each 0 < a ≤ 1, there exists a unique point process z∗ on aZ such
that for all n ≥ 1 and all φ ∈ S(Rn),

(28) E
∑

j1,...,jn
distinct

φ
(
z∗
j1

, . . . , z∗
jn

) = ∑
k∈(aZ)n

an det
n×n

[
S(ki − kj )

]
φ(k).

Moreover z∗ has uniform local moments.

DEFINITION 4.2. The point process z∗ described by Theorem 4.1 is called the discrete
sine process on aZ.
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The discrete sine process is not new; in various guises it has appeared in [7, 20, 50, 51]
and a proof of its existence follows the same ideas as for the (continuous) sine process,
coming from the theory of determinantal point processes. The details of this proof however
do not seem to be in the literature. We provide a proof of Theorem 4.1 in the Appendix
of a companion paper [24]. For a > 1, there does not exist a point process with correlation
structure described by (28), see [24], Remark A.3.

The discrete sine process on aZ is a simple point process for 0 < a ≤ 1 ([24], Proposi-
tion 4.4). This simplicity property exhibits repulsion of points, a characteristic property of
determinantal point processes, cf. [19], Chapter 1.

4.2. Mimicry for B ≤ 1−a
a

. We show that the sine process can be mimicked by the dis-
crete sine process; this is the first part of Theorem 1.8. As in the previous section, our proof
depends on Poisson summation.

PROOF OF THEOREM 1.8, PART (I). We show for B ≤ 1−a
a

= 1/a − 1, the sine process
is mimicked by the discrete sine process on aZ. By Theorem 4.1 and (15) this is just a matter
of showing that for η ∈ S(Rn) with supp η̂ ⊂ [−B,B]n,

(29)
∫
Rn

η(x) det
n×n

[
S(xi − xj )

]
dnx = an

∑
k∈(aZ)n

η(k) det
n×n

[
S(ki − kj )

]
.

Let g(x) = η(x)detn×n[S(xi − xj )]. Then (29) is just the claim that∫
Rn

g(x) dnx = an
∑

k∈(aZ)n

g(k),

and as the left hand side is ĝ(0), this identity will be verified by Poisson summation if we
show ĝ(y) = 0 whenever y /∈ (−1/a,1/a)n.

For notational reasons we let E = [−1/2,1/2]. One has the well-known computation

S(x) =
∫
R

1E(ξ)e(ξ) dξ

so, where Sn is the symmetric group,

det
n×n

[
S(xi − xj )

] = ∑
σ∈Sn

sgn(σ )

n∏
i=1

S(xi − xj )

= ∑
σ∈Sn

sgn(σ )

∫
En

e

(
n∑

i=1

ξi(xi − xσ(i))

)
dnξ

= ∑
σ∈Sn

sgn(σ )

∫
En

e

(
n∑

i=1

xi(ξi − ξσ−1(i))

)
dnξ.

Hence for y ∈R
n,

ĝ(y) = ∑
σ∈Sn

sgn(σ )

∫
En

∫
Rn

e(−x · y)e

(
n∑

i=1

xi(ξi − ξσ−1(i))

)
η(x) dnx dnξ

= ∑
σ∈Sn

sgn(σ )

∫
En

η̂
(
y1 − (ξ1 − ξσ−1(1)), . . . , yn − (ξn − ξσ−1(n))

)
dnξ.

(30)

But for y /∈ (−1/a,1/a)n, we must have |yi | ≥ 1/a for some i, and hence for ξ ∈ En, we
have |yi − (ξi − ξσ−1(i))| ≥ 1/a − 1. If η̂ is supported in [−B,B]n with B ≤ 1/a − 1, we
therefore have that the integrand in (30) vanishes for all y /∈ (−1/a,1/a)n, and ĝ(y) = 0 as
we wanted. This therefore verifies (29) and proves the claim. �
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4.3. No mimicry for a ≤ 1
2 and B > 1−a

a
. We now prove part (ii) of Theorem 1.8. For

a ≤ 1/2, our strategy will be to suppose the sine process can be mimicked for bandwidth
B > 1−a

a
and obtain a contradiction. Our main tool, as before, is Lemma 2.1, but now we use

2-level correlations.

PROOF OF THEOREM 1.8, PART (II). Let a ≤ 1/2 and let z be the sine process. Suppose
there exists a u.l.m. point process z′ supported on aZ which mimics z at bandwidth B >
1−a
a

= 1/a − 1; we will obtain a contradiction.
For a ≤ 1/2, this implies B > 1/2a and so Theorem 2.1 applies. Thus for any k ∈ (aZ)2

and all sufficiently small ε > 0,

ρ′
2(k) =

∫
R2

β̂ε

(
x1 − k1

a

)
β̂ε

(
x2 − k2

a

)(
1 − S(x1 − x2)

2)
dx1 dx2

=
∫
R2

βε(ξ1)βε(ξ2)e

(
−k1ξ1 + k2ξ2

a

)

×
[
δ

(
ξ1

a

)
δ

(
ξ2

a

)
− δ

(
ξ1 + ξ2

a

)(
1 −

∣∣∣∣ξ1

a

∣∣∣∣
)

+

]
dξ1 dξ2

= a2
(

1 −
∫
R

βε(aν)2e
(
(k1 − k2)ν

)(
1 − |ν|)+ dν

)
,

where the computation in the second line uses the Fourier pair f (x) = S(x)2, f̂ (ξ) = (1 −
|ξ |)+, and the computation in the third line makes use of the fact that βε is even to simplify
the resulting expression. As this is true for all sufficiently small ε, we can take the limit as
ε → 0, and see that

ρ′
2(k) = a2

(
1 −

∫ 1/2a

−1/2a
e
(
(k1 − k2)ν

)(
1 − |ν|)+ dν

)
= a2(

1 − S(k1 − k2)
2)

,

with the last identity following because (1−|ν|)+ is supported in [−1/2a,1/2a] for a ≤ 1/2.
Hence for any η ∈ S(R), we must have for the point process z′,

(31) E
∑
j1,j2

distinct

η
(
z′
j1

, z′
j2

) = a2
∑

k∈(aZ)2

η(k)
(
1 − S(k1 − k2)

2)
.

Yet if z′ mimics the sine process at bandwidth B for supp η̂ ⊂ [−B,B]2,

(32) E
∑
j1,j2

distinct

η
(
z′
j1

, z′
j2

) =
∫
R2

η(x)
(
1 − S(x1 − x2)

2)
dx1 dx2.

Let g(x) = η(x)(1 − S(x1 − x2)
2), so that as a consequence of (30) for n = 2,

(33) ĝ(y1, y2) = η̂(y1, y2) −
∫
R

η̂(y1 − ξ, y2 + ξ)
(
1 − |ξ |)+ dξ.

By Poisson summation the expression on the right hand side of (31) is∑
j∈(a−1Z)2

ĝ(j),

while the expression in (32) is

ĝ(0).
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These expressions are not equal if η is chosen such that η̂(ξ) ≥ 0 for all ξ and η̂ is supported
in a sufficiently small neighborhood of the point (1/a − 1,−(1/a − 1)) with η̂(1/a − 1,

−(1/a − 1)) �= 0, since in this case

(34)
∑

j∈(a−1Z)2

ĝ(j) = ĝ(0) −
∫
R

η̂(1/a − ξ,−1/a + ξ)
(
1 − |ξ |)+ dξ

due to (33) and the facts that η̂(j) = 0 for any j ∈ (a−1
Z)2 and η̂(j1 − ξ, j2 + ξ) = 0 for all

ξ ∈ (−1,1) if j ∈ (a−1
Z)2 unless j = (1/a,−1/a) (or possibly j = 0 if a = 1/2). But then

(34) is not equal to ĝ(0) since η̂(1/a − 1,−(1/a − 1)) �= 0.
This shows that (31) cannot equal (32), a contradiction. �

4.4. No mimicry for a > 1
2 and B ≥ 1

2a
. Finally we prove part (iii) of Theorem 1.8. This

proof is rather more involved than the other proofs in this paper, and we break it into three
steps:

1. In step 1, we show that band-limited mimicry can be extended to a slightly more general
class of test-functions η than Schwartz-class.

2. In step 2 we develop some computations for the sine-determinant involving a particular
set of functions ha,�(x) allowed by step 1, which vanish on aZ except at x = 0 or x = �,
where � is an odd multiple of a.

3. In step 3 we suppose the sine process can be mimicked for the relevant a and B and
obtain a contradiction through a violation of suitable moment inequalities, as the parameter
� → ∞.

Step 1: We extend the class of test functions outside the Schwartz class, to which band-
limited mimicry can be applied:

LEMMA 4.3. If u and v are u.l.m. point processes and u mimics v at bandwidth [−B,B],
then for all n ≥ 1 if η ∈ C(Rn) is a function that can be written as

η(x1, . . . , xn) = h(x1) · · ·h(xn),

with

1. ĥ(ξ) = ∫ ξ
−∞ σ(t) dt where σ is of bounded variation, and

2. σ and ĥ are supported in [−B,B]
then we have

E
∑

j1,...,jn
distinct

η(uj1, . . . , ujn) = E
∑

j1,...,jn
distinct

η(vj1, . . . , vjn).

The proof of Lemma 4.3 is given in Appendix A.3. The proof is a refinement of the proof
of Theorem A.3 in the Appendix.

The point of Lemma 4.3 is that η is just slightly out of the Schwartz class, but expectations
of these statistics can still be taken.

Step 2: We fix a > 0 and let � = (2k + 1)a be an odd multiple of a. Define the functions

ha,�(x) = S

(
x

a

)
+ S

(
x − �

a

)
.

As � is an odd multiple of a, we have

ha,�(x) = sin πx
a

πx
a

− sin πx
a

πx
a

− (2k + 1)
= O

(
1

1 + x2

)
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as |x| → ∞. These functions ha,� are included among the test functions h allowed in
Lemma 4.3. A key property of the function ha,�(x) is that it vanishes at all x ∈ aZ except
x = 0 and x = �, where it takes the value 1. We set

Ha,�(x1, . . . , xn) = ha,�(x1) · · ·ha,�(xn),

and note that Ha,�(x1, . . . , xn) = O( 1
1+x2

1
· · · 1

1+x2
n
), with implicit constants depending on

a, �, n. Furthermore we define

�n(a) = lim
�→∞,odd

∫
Rn

Ha,�(x1, . . . , xn) det
n×n

[
S(xi − xj )

]
dnx.

(The limit is taken over odd multiples of a, as � → ∞.) Because of the decay of Ha,� the
integrals inside the limit are well defined, though it is not yet obvious that the limit exists.

LEMMA 4.4. The limit defining �n(a) exists for all n ≥ 1 and a > 0, and

�1(a) = 2a,

�2(a) =
{

2a2 if a ∈ (0,1/2]
1/2 − 2a + 4a2 if a ∈ (1/2,∞),

�3(a) =
{

0 if a ∈ (0,1/2],
(2a − 1)3 if a ∈ (1/2,∞),

�4(a) =

⎧⎪⎪⎨
⎪⎪⎩

0 if a ∈ (0,1/2],
(a − 1/2)2(

1 − 20a + 12a2)
if a ∈ (1/2,1],

17/4 − 22a + 48a2 − 48a3 + 16a4 if a ∈ (1,∞).

PROOF. In the first place, note

(35) ĥa,�(ξ) = a · (
1 + e(−�ξ)

)
Ia(ξ),

where for notational reasons we write Ia(ξ) = 1[−1/2a,1/2a](ξ). Fix n and a, and for x ∈ R
n,

let

g�(x) = Ha,�(x) det
n×n

[
S(xi − xj )

]
.

Using (30), and recalling the notational convention E = [−1/2,1/2], we see∫
Rn

Ha,�(x) det
n×n

[
S(xi − xj )

]
dnx

= ĝ�(0) = ∑
σ∈Sn

sgn(σ )

∫
En

an
n∏

j=1

(
1 + e

(
�(ξj − ξσ−1(j))

))
Ia(ξj − ξσ−1(j)) dnξ.

(36)

We will take the limit of this expression as � → ∞. By multiplying cross terms of (36), using
the Riemann–Lebesgue Lemma to eliminate any terms in which an exponential remains, we
see the limit as � → ∞ exists and

(37) �n(a) = ∑
σ∈Sn

sgn(σ )N(σ)an
∫
En

n∏
j=1

Ia(ξj − ξσ−1(j)) dnξ,

where

N(σ) = #
{
T ⊆ {1, . . . , n} : σ(T ) = T

}
= 2ω(σ),
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with ω(σ) the number of cycles in the permutation σ . To deduce the remainder of the Lemma
one evaluates the integrals on the right side of (37) noting that the integral in (37) breaks into
separate parts for each cycle of σ .

To evaluate the integrals, for ν ≥ 2 we define

fν(r) =
∫
En

1[−r,r](ξ1 − ξ2) · · ·1[−r,r](ξn−1 − ξn)1[−r,r](ξn − ξ1) dnξ.

One can verify

f2(r) =
{

2r − r2 if r ∈ (0,1),

1 if r ∈ [1,∞),

f3(r) =
{

3r2 − 2r3 if r ∈ (0,1),

1 if r ∈ [1,∞),

f4(r) =

⎧⎪⎪⎨
⎪⎪⎩

(
16r3 − 14r4)

/3 if r ∈ (0,1/2),(
1 − 8r + 24r2 − 16r3 + 2r4)

/3 if r ∈ [1/2,1),

1 if r ∈ [1,∞).

(A computer algebra system is helpful here.) Painstakingly inserting these into (37) yields
the computations of �1, . . . ,�4 that have been claimed. �

REMARK 4.5. Using cycle index polynomials one can make the computation indicated
in the last line of the above proof more efficient by noting that if Z(Sn;a1, . . . , an) is the
cycle index polynomial of Sn in the variables a1, . . . , an, the formula (37) simplifies to

�n(a) = (−1)nn!anZ
(
Sn;−2f1(1/2a), . . . ,−2fn(1/2a)

)
,

where we adopt the convention f1(r) = 1 for all r .

Step 3: We can now complete the last part of the proof of Theorem 1.8.

PROOF OF THEOREM 1.8, PART (III). Take a > 1/2. We now suppose that the sine
process z can be mimicked at a bandwidth B ≥ 1/2a by a u.l.m. point process z′ supported
on aZ, and we will obtain a contradiction. For � always an odd multiple of a, consider the
random variable

X� = ∑
j

ha,�

(
z′
j

)
(38)

= #{0,�}
(
z′),(39)

with the second identity dependent on the assumption that z′ is supported on aZ.
We consider two sets of inequalities satisfied by expectation values of functions of this

random variable. First, X� is an nonnegative integer-valued random variable, and so clearly

(40) EX�(X� − 1)(X� − 2)(X� − 3) ≥ 0.

Second, let

mr
� := EXr

�

denote the r th moment of X�. By a consequence of the Hamburger moment criterion (see,
e.g., [42], Theorem 1.2), we have,

(41) D� = det

⎛
⎜⎜⎝

m0
� m1

� m2
�

m1
� m2

� m3
�

m2
� m3

� m4
�

⎞
⎟⎟⎠ ≥ 0.
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We claim that for any choice of a > 1
2 at least one of the inequalities (40) or (41) will not

hold for all sufficiently large �.
For consider first a ∈ (1/2,1]. Note that from (38) and the indicator function identity (4)

we have

(42) EX�(X� − 1)(X� − 2)(X� − 3) = E
∑

j1,...,jn
distinct

Ha,�

(
z′
j1

, z′
j2

, z′
j3

, z′
j4

)
.

The computation (35) reveals that ĥa,�(ξ) = −2πia�
∫ ξ
−∞ e(−�t)Ia(t) dt , with the integrand

of bounded variation and supported in [−1/2a,1/2a] ⊂ [−B,B], so Lemma 4.3 may be
applied; if z′ mimics z, then (42) is equal to∫

R4
Ha,�(x) det

4×4

[
S(xi − xj )

]
d4x.

Taking the limit of this expression as � → ∞ along odd multiples of a, Lemma 4.4 yields

lim
�→∞,odd

EX�(X� − 1)(X� − 2)(X� − 3) = �4(a)

= (a − 1/2)2(
1 − 20a + 12a2)

.

For a ∈ (1/2,1], it can be checked that this number is strictly negative, but this contradicts
(40).

Now consider a > 1. As above we have

lim
�→∞,odd

EX�(X� − 1) · · · (X� − (n − 1)
) = �n(a),

and from this, using Lemma 4.4, one may extract

lim
�→∞,odd

EX� = 2a (for a > 0),

lim
�→∞,odd

EX2
� = 1

2
+ 4a2 (for a > 1/2),

lim
�→∞,odd

EX3
� = 1

2
+ 2a + 8a3 (for a > 1/2),

lim
�→∞,odd

EX4
� = 7

4
+ 2a + 4a2 + 16a4 (for a > 1),

and further, using the notation in (41), one may compute

lim
�→∞,odd

D� = 1

2
− a2 (for a > 1).

(A computer algebra system is helpful here.) But this is strictly negative for any choice of
a ∈ (1,∞), and this contradicts (41).

Thus we have obtained a contradiction for all a > 1/2, so in this range such a u.l.m. point
process z′ does not exist. �

5. Further questions. This paper formulated the band-limited mimicking problem for
u.l.m. point processes on R. We studied two such processes where band-limited mimicry is
possible, the Poisson process and the sine process. These processes are special in at least two
ways:

1. Both processes are R translation-invariant, in probability law and in the correlation
sense defined in Section 1.6.
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2. These processes have n-point correlation measures for each n ≥ 1 that have ab-
solutely continuous densities dρn(x1, x2, . . . , xn) = fn(x1, . . . , xn) dx1 dx2 · · ·dxn, with
fn(x1, x2, . . . , xn) defined on R

n, with the property that they holomorphically extend to entire
functions fn(z1, z2, . . . , zn) on C

n.

We raise several general questions.
First, we do not know to what extent the band-limited mimicry phenomenon discussed in

this paper exists for general u.l.m. point processes. Are there u.l.m. point processes P that
do not permit band-limited mimicry at any bandwidth B > 0? If there are, how general is the
class of such processes for which band-limited mimicry exists for some (a,B) with B > 0?

Second, related to this question: which u.l.m. point processes u have the property that if u

supports band-limited mimicry for some B > 0 on a lattice aZ then it supports band-limited
mimicry for some B = B(a′) > 0 on each lattice a′

Z having 0 < a′ ≤ a? Does this class of
processes u include all R-translation invariant u.l.m. point processes?

Third, what restrictions does band-limited mimicry entail for point processes not neces-
sarily supported on a lattice? For instance, let T1 be the class of all u.l.m. point processes u

which mimic the sine process at a bandwidth B = 1, and let

μ = sup
{
m : there exists u ∈ T1 such that almost surely |ui − uj | ≥ m for all i �= j

}
.

Theorem 1.8 shows that μ ≥ 1/2. The method of proof in Carneiro et al. [10], which makes
use only of pair correlation, should be able to be straightforwardly modified to show that
μ ≤ 0.606894. It may be that μ = 1/2.

Likewise let

λ := inf
{
� : there exists u ∈ T1 such that almost surely |uj+1 − uj | ≤ � for all j ∈ Z

}
.

What is the value of λ? Is it finite? It may be that a reinterpretation of methods from number
theory (see, e.g., Soundararajan [46]) can yield further upper bounds for μ and lower bounds
for λ. Questions about both μ and λ are closely connected to classical questions about gaps
between zeros of the Riemann zeta function.

Fourth, to what extent do classical theorems and conjectures about the sine process (or
zeros of the zeta function or eigenvalues of a random matrix) remain true for a point process
which merely mimics the sine-process at some bandwidth? For instance, central limit theo-
rems for mesoscopic statistics will still hold for processes which only mimic the sine-process
(see [38], Section 7), along with suitably interpreted central limit theorems for characteristic
polynomials (using the method of [13], Section 7). To take another example, to what extent
do results and conjectures about extreme values of the zeta function or characteristic polyno-
mials (see, e.g., [4, 5, 11, 15, 33, 36]) rely only upon information preserved by band-limited
mimicry?

We also raise some more specific questions.
First, Theorem 1.8 of this paper did not completely determine the parameter ranges of a

and B permitting band-limited mimicry for the sine process. What happens for those (a,B)

in the white region of Figure 1? Can the sine process be mimicked there or not?
Second, it is obviously of interest to investigate the extent to which the band-limited

mimicry phenomenon extends to other point processes. Two one-parameter classes of point
processes which may be of interest to study are:

1. Valkó and Virág [49] define the one-parameter family of Sineβ processes, where β > 0.
All members of this one-parameter family are R-translation invariant, and they have the Pois-
son process as a suitable scaling limit as β → 0, see Allez and Dumaz [2]. The sine-process
corresponds to β = 2, and the Gaussian orthogonal and symplectic ensembles corresponds to
β = 1 and 4 respectively.
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2. Sodin [44] introduces the one-parameter family of Sia-processes (for a ∈ R) as a model
of critical points of characteristic polynomials for random matrices. In particular, the Si0-
process is presented as a model for the limiting distribution of (normalized) spacings of zeros
of the derivative of the Riemann ξ -function ξ(s) = s(s − 1)π− s

s �( s
2)ζ(s) assuming RH and

the multiple correlation conjecture, cf. [44], Corollary 2.3. (The multiple correlation conjec-
ture is equivalent to the GUE Hypothesis, in the form [24], Conjecture 2.1.)

APPENDIX: SOME GENERAL RESULTS ON CORRELATION MEASURES

In this appendix we collect and prove some results regarding the correlation functions of
point processes which we have used in the paper.

A.1. Existence of correlation measures. The following result essentially is [29],
Prop. 3.2. We include the simple proof here for completeness.

THEOREM A.1. If u is a point process on R such that for any compact set K the random
variable #K(u) has finite moments of all orders, then for all n ≥ 1 there exists a unique Borel
measure ρn on R

n such that

(43) E
∑

j1,...,jn
distinct

φ(uj1, . . . , ujn) =
∫
Rn

φ(x1, . . . , xn) dρn(x1, . . . , xn)

for all φ ∈ Cc(R
n).

REMARK A.2. A point process with uniform local moments will satisfy the hypothesis
of Theorem A.1.

PROOF OF THEOREM A.1. The fact that #K(u) has a finite nth moment for any compact
K implies that for φ ∈ Cc(R

n), the random variables
∑

j1,...,jn
distinct

φ(uj1, . . . , ujn) are integrable,

and thus the mapping � defined by

�φ = E
∑

j1,...,jn
distinct

φ(uj1, . . . , ujn),

is a positive linear functional on Cc(R
n). The Riesz representation theorem [40], Ch. 2, The-

orem 2.14, thus implies the existence of the Borel measure ρn. �

A.2. Bootstrapping test functions from Cc(R
n) to S(Rn). We show that for u.l.m.

point processes the correlation measures make sense with respect to not only Cc(R
n) test

functions, but also Schwartz class test functions. Actually we show a bit more.

THEOREM A.3. If u is a u.l.m. point process on R and ρn is the measure on R
n defined

by (43) for φ ∈ Cc(R
n), then (43) also holds for all n ≥ 1 and all φ ∈ C(Rn) such that

φ(x1, . . . , xn) = O

(
1

(1 + x2
1) · · · (1 + x2

n)

)
.

REMARK A.4. Hence in particular for a point process with uniform local moments, (43)
holds for all φ ∈ S(Rn), for all n ≥ 1.
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PROOF OF THEOREM A.3. Let

(44) Q(x1, . . . , xn) = 1

1 + x2
1

· · · 1

1 + x2
n

.

We first establish for the point process u that

(45) E
∑

j1,...,jn
distinct

Q(uj1, . . . ujn) < +∞.

For, there exists a absolute constant K such that

Q(x1, . . . , xn) ≤ K
∑

L∈Zn

Q(L1, . . . ,Ln)1[L1,L1+1](x) · · ·1[Ln,Ln+1](x)

for all x ∈ R, so we have that

E
∑

j1,...,jn
distinct

Q(uj1, . . . , ujn) ≤ K ·E ∑
L∈Zn

Q(L1, . . . ,Ln)#[L1,L1+1](u) · · ·#[Ln,Ln+1](u)

≤ K
∑

L∈Zn

Q(L1, . . . ,Ln)

n∏
i=1

(
E#[Li,Li+1](u)n

)1/n

≤ KCn

∑
L∈Zn

Q(L1, . . . ,Ln) < +∞,

using Fatou’s lemma and Hölder’s inequality in the second line.
For the same reasons, we have

(46)
∫
Rn

Q(x1, .., xn) dρn(x1, . . . , xn) < +∞.

Note also that (45) implies that almost surely

(47)
∑

j1,...,jn
distinct

Q(uj1, . . . , ujn) converges.

Let β ∈ Cc(R
n) be a bump function takes the value 1 in some neighborhood of 0 ∈ R

n

and which satisfies 0 ≤ β(x) ≤ 1 for all x ∈ R
n. For R > 0 define φR(x) = φ(x)β(x/R), and

note for all x ∈ R
n,

lim
R→∞φR(x) = φ(x).

Moreover φR ∈ Cc(R
n) for all R, and by assumption there is a constant C > 0 such that∣∣φR(x1, . . . , xn)

∣∣ ≤ CQ(x1, . . . , xn)

for all x ∈ R
n.

Now from (47), it is easy to see that almost surely

lim
R→∞

∑
j1,...,jn
distinct

φR(uj1, . . . , ujn) = ∑
j1,...,jn
distinct

φ(uj1, . . . , ujn).

Hence using (45),(46) and dominated convergence,

E
∑

j1,...,jn
distinct

φ(uj1, . . . , ujn) = lim
R→∞

∑
j1,...,jn
distinct

φR(uj1, . . . , ujn)

= lim
R→∞

∫
Rn

φR(x1, . . . , xn) dρn(x1, . . . , xn)

=
∫
Rn

φ(x1, . . . , xn) dρn(x1, . . . , xn),

as claimed. �
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A.3. Bootstrapping band-limited test functions. We prove Lemma 4.3. The proof will
involve similar ideas to that of Theorem A.3. We require two lemmas from analysis first.

Below we consider functions σ which are of bounded variation. We use the notation var(σ )

to denote the total variation of the function σ on the real line.

LEMMA A.5. Suppose s(ξ) = ∫ ξ
−∞ σ(t) dt where σ and s are integrable and σ is of

bounded variation. Then

ŝ(x) = O
(
min

(‖s‖L1(R),var(σ )/x2))
.

PROOF. This is a combination of two standard results. The bound ŝ(x) ≤ ‖s‖L1 is obvi-
ous, and the bound var(σ )/x2 comes from integrating by parts twice in computing the Fourier
transform:

∣∣ŝ(x)
∣∣ =

∣∣∣∣
∫ ∞
−∞

e−i2πxξ

(−i2πx)2 dσ(ξ)

∣∣∣∣ ≤ 1

4π2x2

∫ ∞
−∞

∣∣dσ(ξ)
∣∣.

Combining these bounds proves the lemma. �

LEMMA A.6. If σ(t) is supported on the interval [A,B] and of bounded variation, then
for any ε > 0 there exists a Schwartz function σ̃ (t) supported on [A,B] such that

var(σ̃ ) ≤ var(σ )

and

‖σ̃ − σ‖L1(R) < ε.

PROOF. As σ is of bounded variation, the Jordan decomposition (see [39], Section 5.2)
tells us there exists monotonic nondecreasing functions σ+ and σ− such that σ = σ+ − σ−
and σ+ and σ− are constant for t /∈ [A,B], that is

σ±(t) = σ±(A) for all t ≤ A,

σ±(t) = σ±(B) for all t ≥ B,

and moreover var(σ ) = var(σ+)+var(σ−). It is a straightforward exercise to construct mono-
tonically nondecreasing functions σ̃+ and σ̃− with Schwartz class derivatives such that for
either + or −,

‖σ̃± − σ±‖L1 < ε/2,

σ̃±(t) = σ±(A) for all t ≤ A,

σ̃±(t) = σ±(B) for all t ≥ B.

Note var(σ̃+) = var(σ+) = σ+(B) − σ−(A) and var(σ̃−) = var(σ−) = σ−(B) − σ−(A), so if
σ̃ = σ̃+ − σ̃−,

var(σ̃ ) ≤ var(σ̃+) + var(σ̃−) = var(σ+) + var(σ−) = var(σ ),

verifying the first inequality of the lemma. Because σ̃ is compactly supported and is the dif-
ference of two functions with Schwartz class derivatives, σ̃ is itself Schwartz class. Moreover
from the triangle inequality,

‖σ̃ − σ‖L1 ≤ ‖σ̃+ − σ+‖L1 + ‖σ̃− − σ−‖L1 < ε,

verifying the second claim of the lemma. �
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We finally turn to Lemma 4.3.

PROOF OF LEMMA 4.3. The proof follows that of Theorem A.3. We show for all R ≥ 1
there exists ηR ∈ S(Rn) such that

lim
R→∞ηR(x) = η(x) for all x ∈ R

n,(48)

supp η̂R ⊂ [−B,B]n for all R ≥ 1,(49)

ηR(x) = O
(
Q(x)

)
for all x ∈ R

n,R ≥ 1,(50)

where Q is the the quadratically decaying function defined in (44). Then exactly by the
argument in the proof of Theorem A.3, we have

E
∑

j1,...,jn
distinct

η(uj1, . . . , ujn) = lim
R→∞E

∑
j1,...,jn
distinct

ηR(uj1, . . . , ujn)

= lim
R→∞E

∑
j1,...,jn
distinct

ηR(vj1, . . . , vjn)

= E
∑

j1,...,jn
distinct

η(vj1, . . . , vjn).

The functions ηR are constructed in the following way. For σ as in statement of Lemma 4.3,
let σ̃R be a function described by Lemma A.6 such that supp σ̃R ⊂ [−B,B], var(σ̃R) ≤ var(σ )

and ‖σ̃R − σ‖L1 ≤ 1/R. Define hR by

ĥR(ξ) =
∫ ξ

−∞
σ̃R(t) dt,

and note that

(51) supp ĥR ⊂ [−B,B],
and for all ξ , |ĥR(ξ) − ĥ(ξ)| ≤ 1/R so that from the support of both functions ĥ, ĥR ,

(52)
∣∣hR(x) − h(x)

∣∣ ≤ ‖ĥR − ĥ‖L1 ≤ 2B/R.

Finally from Lemma A.5, we have

hR(x) = O
(
min

(‖ĥR‖L1,var(σ̃R)/x2))
= O

(
min

(
2B‖σ̃R‖L1,var(σ )/x2))

= O

(
1

1 + x2

)
.

(53)

Letting ηR(x1, . . . , xn) = h1(x1) · · ·hn(xn), we see that (48), (49), (50) are satisfied, using
(52), (51), (53) respectively. This completes the proof. �
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