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The Bradley–Terry model is a fundamental model in the analysis of net-
work data involving paired comparison. Assuming every pair of subjects in
the network have an equal number of comparisons, Simons and Yao (Ann.
Statist. 27 (1999) 1041–1060) established an asymptotic theory for statistical
estimation in the Bradley–Terry model. In practice, when the size of the net-
work becomes large, the paired comparisons are generally sparse. The spar-
sity can be characterized by the probability pn that a pair of subjects have at
least one comparison, which tends to zero as the size of the network n goes to
infinity. In this paper, the asymptotic properties of the maximum likelihood
estimate of the Bradley–Terry model are shown under minimal conditions of
the sparsity. Specifically, the uniform consistency is proved when pn is as
small as the order of (logn)3/n, which is near the theoretical lower bound
logn/n by the theory of the Erdős–Rényi graph. Asymptotic normality and
inference are also provided. Evidence in support of the theory is presented in
simulation results, along with an application to the analysis of the ATP data.

1. Introduction. Is Roger Federer a better tennis player than John McEnroe? Is research
article A more influential than research article B, among a collection of all research articles in
a scientific field? Is webpage A more important than webpage B, among the existing millions
of webpages? Is person A more popular than person B in a large social network, such as
Twitter users? These questions may be answered by analysis of paired comparison data in a
network. The paired comparison may be in terms of head-to-head match outcomes, citation
of a research article by another, a webpage containing a link of another webpage, a user
retweeting the tweet of another user, etcetera. When the size of the network, such as a total
number of webpages, becomes large, paired comparisons are generally sparse. The sparsity
may be described in different ways, such as the total number of observed comparisons divided
by the total number of subjects in the network. Throughout this paper, the size of the network
in study is denoted as n, and we assume any pair has a comparison with probability pn. The
degree of sparsity is then characterized by the size of pn, the smaller the sparser.

For paired comparison, the Bradley–Terry model (Bradley and Terry (1952)) is one of the
most commonly used models. Consider n subjects in a network. Subject i has merit ui for
i = 0, . . . , n−1, where ui ∈ R and ui > 0. The Bradley–Terry model assumes the probability
that subject i defeats j as

(1.1) pij = ui

ui + uj

, i, j = 0, . . . , n − 1; i �= j.

The generalizations of the Bradley–Terry model can be seen in, for example, Luce (1959),
Rao and Kupper (1967) and Agresti (1990), among many others. For estimation of the merits
based on a set of paired comparison data, the maximum likelihood estimation (MLE) is a
common choice. It is much desired to justify the asymptotic properties of the MLE, particu-
larly when the comparisons are sparse. A distinct feature of this problem is that the number
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of parameters, which is the same as the number of subjects, tends to infinity. Moreover, in the
case of sparsity, the number of comparisons per pair is 0 with probability tending to 1.

Suppose any pair has a fixed positive number of comparisons, Simons and Yao (1999)
proved the uniform consistency and asymptotic normality of the MLE for the Bradley–Terry
model. Under this assumption, there would be at least n(n − 1)/2 comparisons in total. Fur-
ther extension was reported in Yan, Yang and Xu (2012) with relaxed conditions but still
requiring the number of comparisons at the order of n2. Both papers considered nonsparse
cases, where pn has a positive lower bound and, as a result, does not go to 0. In this paper, we
show the asymptotic properties of the MLE for sparse comparisons. In particular, when the
maximum ratio of merits are bounded, the uniform consistency holds as long as pn is greater
than (logn)3/n, and the asymptotic normality is true when pn is greater than the order of
(logn)1/5/n1/10.

The order of (logn)3/n required for the uniform consistency is close to the necessary
theoretical lower bound, logn/n, below which a unique MLE does not exist. The network
we consider can be regarded as the Erdős–Rényi graph G(n,pn) (Erdős and Rényi (1959)),
where each node stands for a subject and each edge stands for the comparison between the
two corresponding nodes. Erdős and Rényi (1960) showed that the Erdős–Rényi graph will
be disconnected with positive probability if pn < ε logn/n, for any ε < 1. As to be seen,
a disconnected graph will fail the condition of the existence and uniqueness of the MLE of
Bradley–Terry model, implying that not all subjects are comparable. In the sense of sparsity,
the theory established in this paper is nearly optimal.

Although we assume that each pair of subjects in the network has a comparison with
the same probability pn, one can follow our proof to extend it to the case with different
comparison probabilities at the order of pn. The main contribution of this article is to show
the asymptotic theorem of MLE when pn → 0 and how small pn can be to obtain it.

We note that Negahban, Oh and Shah (2012) and Maystre and Grossglauser (2015) showed
the consistency of the MLE under �2 norm for sparse comparison data. The �2 norm therein
is normalized by

√
n. Since the network size goes to infinity, consistency under the �2 norm

does not ensure the consistency of the merits of any fixed number of subjects. In other words,
with their normalized �2 consistency, one cannot tell for sure that the estimation of merits
ratio of any given pair is accurate. In this sense, the uniform consistency is a much desired
result.

This paper is organized as follows. In Section 2, we show the large sample properties of
the MLE. Simulation results and analysis of the ATP data are given in Section 3. Section 4
contains some concluding remarks. All proofs are relegated to the appendices.

2. Main results. Consider any two subjects i and j with 0 ≤ i, j ≤ n− 1. Let tij denote
the number of comparisons between subjects i and j and aij denote the number of times
that i defeats j . Set aii = tii = 0 for simplicity of notation. Then tj i = tij = aij + aji for
all i, j . For slightly more generality, throughout the sequel, we assume tij follows binomial
distribution, ∼ Bin(T ,pn) where T is a positive integer not depending on n. Given tij , the
Bradley–Terry model implies aij ∼ Bin(tij , pij ), where pij = ui/(ui + uj ). Without loss of
generality, one can take T as 1 for ease of understanding.

Based on the observations of paired comparisons {aij , tij : 0 ≤ i, j ≤ n−1}, the likelihood
function is

(2.1) L(u) ∝
n−1∏
i,j=0
i �=j

p
aij

ij =
∏n−1

i=0 u
ai

i∏
0≤i<j≤n−1(ui + uj )

tij
,
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where ai = ∑n−1
j=0 aij is the total number of comparisons that subject i wins and u =

(u0, u1, . . . , un−1) is the merits vector. By the method of maximum likelihood estimation,
the likelihood equations are

(2.2) ai =
n−1∑
j=0

tij ûi

ûi + ûj

, i = 0, . . . , n − 1,

where û = (û0, û1, . . . , ûn−1) is the MLE of the merits vector u. Since the Bradley–Terry
model is invariant under scaling of parameters, we assume that u0 = 1, û0 = 1 for the purpose
of identifiability.

As noted by Zermelo (1929) and Ford (1957), a necessary and sufficient condition for
existence and uniqueness of the MLE is as follows,

CONDITION A. For every partition of subjects into two nonempty sets, a subject in the
second set has defeated a subject in the first at least once.

When Condition A is not satisfied, there exists a nonempty set of subjects, say A, such that
the MLEs of the merits of members in A would be infinitely larger than those of the members
not in A. As a result, the MLE cannot be consistent. Under some sparsity conditions given
there, Lemma 1 shows Condition A holds with probability approaching 1 as n → ∞. Some
more notations are introduced here:

(2.3)
Mn = max

0≤i,j≤n−1

ui

uj

, �n =
√

(logn)3

[log(npn)]2npn

and

�ui = ûi − ui

ui

, i = 0, . . . , n − 1,

where Mn is the largest ratio of ui and uj for all i, j , and will be called the largest ratio of
merits.

LEMMA 1. If

(2.4)
Mn logn

npn

→ 0 as n → ∞,

then P(Condition A is satisfied) → 1 as n → ∞.

REMARK 1. The largest ratio of merits, Mn controls the spread of the merits in the net-
work, while pn controls the possibility of comparisons. A large Mn and a small pn both
increase the likelihood of the existence of a group of subjects such that any member of this
group always wins in a comparison with any member not in this group, and result in Condi-
tion A being violated.

Under condition (2.4), pn can be close to the order of logn/n. Given T = 1, (tij )n×n can
be regarded as the adjacency matrix of the Erdős-Rényi graph (Erdős and Rényi (1959)),
denoted as G(n,pn), under our assumption. Erdős and Rényi (1960) showed that if pn <

ε logn/n, for any positive ε < 1, G(n,pn) is disconnected, disagreeing with Condition A,
with probability tending to 1. Therefore, in order to satisfy Condition A, it is necessary to
require pn ≥ logn/n. According to (2.4), when we fix Mn as a constant, pn nearly meets the
lower bound logn/n.

Condition (2.4) of Lemma 1 ensures the existence and uniqueness of the MLE (û0, û1, . . . ,

ûn−1). The theorems in this paper all assume conditions that imply (2.4).
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2.1. Uniform consistency. We first define two notations Op and op to stand for the or-
der of the sequence of random variables. Given a sequence of random variables {Xn} and a
corresponding sequence of constants {an}. We say that Xn = Op(an) if for any ε > 0, there
exists a finite M > 0 and a finite N > 0 such that P(|Xn/an| > M) < ε for any n > N . Gen-
erally speaking, Xn = Op(an) denotes Xn/an is stochastically bounded. Another notation
Xn = op(an) means that Xn/an converges to zero in probability.

Based on these two notations, we have the following theorem.

THEOREM 2.1. If

(2.5) M2
n�n → 0 as n → ∞,

then

(2.6) max
i=0,...,n−1

|�ui | = Op

(
M2

n�n

) = op(1).

REMARK 2. The condition imposed on the largest ratio of merits Mn and sparsity pn

in (2.5) ensures the uniform consistency of the MLE of the Bradley–Terry model when the
comparisons may be sparse and the network is large. For a large value of Mn, the teams
with relative poor merits has very little chance to defeat those with relative large merits,
thereby making estimation difficult. Meanwhile, for a small pn, teams have few opportunities
to compete with others, thus making a poor estimation.

To prove (2.6), we let

i0 = arg max
i

ûi

ui

, i1 = arg min
i

ûi

ui

.

Since û0/u0 = 1, it suffices to show that the ratio of subject i0, ûi0/ui0 , and the ratio of i1,
ûi1/ui1 are very close.

Review that the main idea of the previous work (Simons and Yao (1999), Yan, Yang and
Xu (2012)) contains two parts. The first part is that the number of the common neighbors
between any two subjects is at least cn for some constant c through their dense assumption.
The second part is that for subject i = i0 or i1, some subjects j with tij �= 0 have the ratio
close to the ratio of i. Then, it can be shown there exists at least one subject, say s (one would
suffice), who is a neighbor of i0 with the ratio ûs/us close to ûi0/ui0 and is also a neighbor
of i1 with the ratio close to ûi1/ui1 . Such a common neighbor serves as middleman between
subjects i0 and i1. As a result, ûi0/ui0 is close to ûi1/ui1 . Thus, the uniform consistency holds.

However, in the sparse case, the number of common neighbors of any two subjects tends
to 0 as n increases to infinity. If we follow the previous proof directly, no common neighbors
of subjects i0 and i1 may be found, let alone a common neighbor with desired closeness of its
ratio to ûi0/ui0 and ûi1/ui1 . Due to the absence of such a middleman, this approach cannot
be applied to the sparse comparison.

It appears to be an obvious extension that one might try to find a chain of subjects, say
l1, . . . , lk , serving as middlemen to bridge the subjects i0 and i1. Namely li+1 is a neighbor
of li and they are close in terms of the ratios. An immediate difficulty, along with other
technicalities, arises from the evaluation of this closeness since the previous proof only works
for subjects i0 and i1. Then, the second extension of our proof is to show for any subject
i = 0, . . . , n − 1, some subjects j with tij �= 0 have the ratios close to the ratio of i, which is
summarized in Lemma 3.

With these two extensions, we prove the uniform consistency by showing the existence
of a nonempty intersection between two carefully designed sets. One is the set of subjects
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having the ratio close to the maximum ratio ûi0/ui0 . The other is the set of subjects having
the ratio close to the minimum ratio ûi1/ui1 . For the first set, we start from A = {i0} and then
constantly expand the size of A through the neighbors of the subjects in A until |A| > n/2.
Similarly, we can obtain the size of the second set is also larger than n/2. Hence there must
exist a subject, a middleman, with its ratio close to both ûi0/ui0 and ûi1/ui1 . More details can
be found in Remark 5.

The consistency presented in Theorem 2.1 also applies to the special case of nonsparse
comparisons, where pn has a lower bound away from 0, as considered in the previous work.
Moreover, the special case of Mn being a constant sheds light on the sparsity required for the
uniform consistency. These are summarized in the following corollaries.

COROLLARY 1. If Mn = C for some constant C ≥ 1 and there exists an n0 such that

(2.7) pn ≥ (logn)3

n

for all n > n0, then

(2.8) max
i=0,...,n−1

|�ui | = Op

(
1

log(npn)

)
= op(1).

COROLLARY 2. If pn = c for some constant c ≤ 1 and

(2.9) M2
n�n → 0 as n → ∞,

then

(2.10) max
i=0,...,n−1

|�ui | = Op

(
M2

n

√
logn

n

)
= op(1).

REMARK 3. Corollary 1 shows the uniform consistency of the MLE holds when Mn = C

and pn ≥ (logn)3/n, close to the theoretical lower bound logn/n.

2.2. Asymptotic normality. Recall that ai = ∑n−1
j=0,j �=i aij , where aij is the number of

times that subject i prevails over j . Let V n−1 = (vij )i,j=1,...,n−1 denote the covariance matrix
of a1, . . . , an−1, where

(2.11) vii =
n−1∑
k=0

tikuiuk

(ui + uk)2 , vij = − tij uiuj

(ui + uj )2 , i, j = 1, . . . , n − 1; i �= j.

Let v00 = ∑n−1
i,j=1 vij = ∑n−1

k=1[(t0kuk)/(1 + uk)
2]. Here V n−1 is the Fisher information ma-

trix for the parameterization (logu1, . . . , logun−1). Simons and Yao (1999) used a symmetric
matrix Sn−1 = (sij )(n−1)×(n−1) to approximate V −1

n−1, where

(2.12) sij = δij

vii

+ 1

v00
, i, j = 1, . . . , n − 1,

and δij is the Kronecker delta. With sparse comparisons, we shall re-evaluate the accuracy of
this approximation in Lemma 7. The following theorem shows the asymptotic normality of
the MLE.

THEOREM 2.2. If

(2.13)
Mn

pn

(logn)1/5

n1/10 → 0 as n → ∞,

then for each fixed r ≥ 1, as n → ∞, the vector (�u1, . . . ,�ur) is asymptotically normally
distributed with mean 0 and covariance matrix given by the upper left r × r block of Sn−1
defined in (2.12).
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As expected, condition (2.13) involves Mn and pn. The following two corollaries each
deal with the special cases of Mn and pn being constants.

COROLLARY 3. If pn = c for some constant c ≤ 1 and

(2.14) Mn

(logn)1/5

n1/10 → 0 as n → ∞,

then for each fixed r ≥ 1, as n → ∞, the vector (�u1, . . . ,�ur) is asymptotically normally
distributed with mean 0 and covariance matrix given by the upper left r × r block of Sn−1
defined in (2.12).

COROLLARY 4. If Mn = C for some constant C ≥ 1 and

(2.15) pn

n1/10

(logn)1/5 → ∞ as n → ∞,

then for each fixed r ≥ 1, as n → ∞, the vector (�u1, . . . ,�ur) is asymptotically normally
distributed with mean 0 and covariance matrix given by the upper left r × r block of Sn−1
defined in (2.12).

REMARK 4. Corollary 3 is the theorem about asymptotic normality presented in Simons
and Yao (1999) and Yan, Yang and Xu (2012), and Corollary 4 gives the sparsity condition
to ensure asymptotic normality when the largest ratio of merits is bounded above.

3. Numerical studies.

3.1. Simulation. Simulations are carried out to evaluate the finite sample performance of
the MLE of the Bradley–Terry model. We assume T = 1 in all simulations, which means that
any pair has one comparison with probability pn and no comparison with probability 1 −pn.

The result of the first simulation study is shown in Table 1. In order to study the uniform
consistent tendency of MLE, we present the mean and median of maxi=0,...,n−1 |�ui | based
on 1000 repetitions. In this simulation, the size of network n is taken to be 1000, 2000,
5000, 10,000, 15,000, the sparse probability pn is chosen as logn/n, (logn)3/n, 10/

√
n

and Mn equals to 1, which implies merits of all subjects are identical. When pn = logn/n,
all the repetitions do not produce the MLE since Condition A is not satisfied. In the case
of pn = (logn)3/n, both mean and median of maxi=0,...,n−1 |�ui | become closer to 0 with
increasing n. For comparison, we also consider pn as large as 10/

√
n. We multiply 1/

√
n by

10 to ensure there are more paired comparisons than pn = (logn)3/n for values of n in the
simulation. The result shown in Table 1 indeed indicates the consistency of the MLE under

TABLE 1
The mean and median (in parentheses) of maxi=0,...,n−1 |�ui |. In the third column, “–” means all repetitions
fail Condition A. The three numbers in the parentheses in the first column represent respectively the average

numbers of comparisons one subject has for pn = logn/n, pn = (logn)3/n and pn = 10/
√

n

n Mn pn = logn/n pn = (logn)3/n pn = 10/
√

n

1000 (7/330/316) 1 – 0.4784 (0.4365) 0.4862 (0.4427)
2000 (8/439/447) 1 – 0.4291 (0.4012) 0.4242 (0.3929)
5000 (9/618/707) 1 – 0.3765 (0.3593) 0.3511 (0.3327)
10,000 (9/781/1000) 1 – 0.3423 (0.3223) 0.2988 (0.2867)
15,000 (10/889/1225) 1 – 0.3226 (0.3085) 0.2727 (0.2595)
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TABLE 2
Coverage probabilities and the probabilities that Condition A fails (in parentheses). In the first column, the

numbers in the parentheses represent the average numbers of comparisons one subject has

n (i, j) Mn = 1 Mn = √
n Mn = n

pn = 1/
√

n

100(10) (0,1) 0.277 (0.703) 0.041 (0.958) 0.001 (0.999)
(0,99) 0.275 (0.703) 0.041 (0.958) 0.001 (0.853)
(50,51) 0.278 (0.703) 0.039 (0.958) 0.001 (0.853)

200(14) (0,1) 0.697 (0.260) 0.124 (0.871) 0.001 (0.999)
(0,199) 0.696 (0.260) 0.123 (0.871) 0.001 (0.999)

(100,101) 0.692 (0.260) 0.120 (0.871) 0.001 (0.999)

500(23) (0,1) 0.932 (0.010) 0.416 (0.562) 0.002 (0.998)
(0,499) 0.931 (0.010) 0.415 (0.562) 0.002 (0.998)

(250,251) 0.930 (0.010) 0.410 (0.562) 0.002 (0.998)

pn = √
logn/n

100(21) (0,1) 0.938 (0.003) 0.888 (0.070) 0.501 (0.483)
(0,99) 0.940 (0.003) 0.886 (0.070) 0.491 (0.483)
(50,51) 0.943 (0.003) 0.877 (0.070) 0.483 (0.483)

200(33) (0,1) 0.944 (0) 0.941 (0.011) 0.710 (0.262)
(0,199) 0.947 (0) 0.939 (0.011) 0.696 (0.262)

(100,101) 0.942 (0) 0.931 (0.011) 0.693 (0.262)

500(56) (0,1) 0.949 (0) 0.949 (0) 0.897 (0.062)
(0,499) 0.945 (0) 0.948 (0) 0.886 (0.062)

(250,251) 0.947 (0) 0.944 (0) 0.890 (0.062)

pn = 1

100(99) (0,1) 0.951 (0) 0.954 (0) 0.954 (0)
(0,99) 0.952 (0) 0.954 (0) 0.950 (0)
(50,51) 0.941 (0) 0.948 (0) 0.948 (0)

200(199) (0,1) 0.954 (0) 0.954 (0) 0.942 (0)
(0,199) 0.953 (0) 0.957 (0) 0.951 (0)

(100,101) 0.950 (0) 0.946 (0) 0.951 (0)

500(499) (0,1) 0.951 (0) 0.953 (0) 0.949 (0)
(0,499) 0.953 (0) 0.959 (0) 0.950 (0)

(250,251) 0.955 (0) 0.948 (0) 0.950 (0)

the sparsity condition given in Theorem 2.1. This further supports that our sparsity condition
nearly meets the lower bound of pn to ensure the existence of a unique MLE.

The second simulation is done to measure the coverage probabilities of MLE and the
result based on 5000 repetitions is given in Table 2. By applying Theorem 2.2, we construct
the approximate 1 − α confidence interval for log(ui/uj ) as

log(ûi/ûj ) ± z1−α/2

√
1/v̂ii + 1/v̂jj ,

where z1−α/2 refers to the quantile of the standard normal distribution at level 1 − α/2. The
asymptotic variances are based on (2.11), and v̂ii and v̂jj are computed using û, the MLE
of merits u. We present the coverage probabilities of 95% confidence intervals of some pairs
of merits (the first two merits, the middle two merits, the first and the last merits when they
are sorted in ascending order) when Condition A is met. The frequencies that Condition A
fails are also reported. In this simulation, we choose the size of network n = 100,200,500,
the sparse probability pn = 1/

√
n,

√
logn/n, 1 and the largest ratio of merits Mn = 1,

√
n.
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TABLE 3
Coverage probabilities and the probabilities that Condition A fails (in parentheses)

when Mn = 1 and n = 1000,2000. In the first column, the two numbers in the
parentheses represent the numbers of comparisons one subject has for

pn = √
logn/n and pn = logn/

√
n

n (i, j) pn = √
logn/n pn = logn/

√
n

1000 (83/218) (0,1) 0.942 (0) 0.938 (0)
(0,999) 0.947 (0) 0.943 (0)

(500,501) 0.943 (0) 0.946 (0)

2000 (123/340) (0,1) 0.945 (0) 0.954 (0)
(0,1999) 0.948 (0) 0.950 (0)

(1000,1001) 0.940 (0) 0.956 (0)

The average numbers of comparisons one subject has under different sparse probabilities are
shown in the parentheses following the numbers of subjects n in Table 2. For example, there
are only around 20 and 50 comparisons for each of 500 subjects in two cases with pn = 1/

√
n

and
√

logn/n respectively.
From Table 2, we see coverage probabilities become closer to the nominal level as pn

increases or Mn decreases. With n increasing, the coverage probabilities approach the nomi-
nal level and the probabilities that Condition A fails decrease. These phenomena agree with
the theoretical asymptotic properties given in Theorem 2.2. Condition A fails mostly when
pn = 1/

√
n and Mn = n, due to extremely sparse comparisons and the large range of merits.

Furthermore, Table 3 reports coverage probabilities for larger network, with n = 1000 and
2000. In this simulation, we let pn = √

logn/n, logn/
√

n and Mn = 1, which means all
subjects have equal merits. One can conclude that the coverage probabilities are close to the
nominal level from Table 3, showing evidence in support of the theory.

3.2. The ATP dataset. We present results of the Bradley–Terry model applied to the 2017
ATP data and then compare its ranking with the official ATP ranking. The ATP matches of
one year include four Grand Slams, the ATP World Tour Masters 1000, the ATP World Tour
500 series and other tennis series of the year. There are 203 players in total after removing
those who never win or lose for Condition A to be satisfied. Besides, we exclude walkovers
and only consider finished games. The results are reported in Table 4. The estimated merits of

TABLE 4
Results of the analysis of the ATP 2017 data

Rank Player Games Winning rate Merit ATP Ranking

1 Roger Federer 55 0.909 7.505 2
2 Rafael Nadal 76 0.855 4.085 1
3 Novak Djokovic 36 0.806 2.029 12
4 Juan Martin del Potro 53 0.698 1.440 11
5 Alexander Zverev 73 0.712 1.321 4
6 Grigor Dimitrov 65 0.708 1.303 3
7 Nick Kyrgios 38 0.684 1.287 21
8 Milos Raonic 39 0.718 1.136 24
9 Stan Wawrinka 36 0.694 1.043 9

10 Kei Nishikori 42 0.714 1.000 22
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TABLE 5
Results of the analysis of the ATP 1968–2016 data

Rank Player Games Winning rate Merit

1 Novak Djokovic 880 0.831 2.788
2 Rafael Nadal 968 0.818 2.286
3 Roger Federer 1287 0.814 2.128
4 Andy Murray 782 0.776 1.744
5 Ivan Lendl 1274 0.820 1.247
6 Pete Sampras 957 0.770 1.128
7 Andy Roddick 784 0.741 1.111
8 John McEnroe 1035 0.813 1.104
9 Juan Martin del Potro 481 0.709 1.066

10 Andre Agassi 1101 0.756 1.000

Bradley–Terry model are given in the fifth column, and, based on which, the ranks are given
in the first column. The number of games played in 2017, winning rates and ATP rankings
are also presented. The 10th player, Kei Nishikori, is taken as the baseline (u0 = û0 = 1).
We note that there is a difference between ranking by the estimated merits and the ATP
ranking. For example, the 7th player in our ranking list, Nick Kyrgios, ranked 21st in the
ATP ranking. Yet he defeated Novak Djokovic twice and Rafael Nadal once in 2017. These
will be counted heavily in the Bradley–Terry model and less so in the points calculation which
the ATP ranking is based on. Notice that Roger Federer and Rafael Nadal have reversed order
in the two ranking systems. In fact, Rafael Nadal had 6 winners and 4 runners-up and more
ATP points in 2017 than Roger Federer, who had 7 winners and 1 runner-up. On the other
hand, Federer defeated Nadal four times in 2017 and had an outstanding winning rate. As a
result, the estimated merit of Federer is higher than that of Nadal.

Moreover, we applied the Bradley–Terry model to the ATP matches from 1968 to 2016.
There are 2877 players in total after data cleaning. All players are ranked by their estimated
merits, and top 10 of them are presented in Table 5. The 10th player, Andre Agassi, is taken as
the baseline. The Big Four, Novak Djokovic, Rafael Nadal, Roger Federer and Andy Murray,
rank top four in the ranking list. They are considered dominant in terms of ranking and
the tournament victories from 2004 onwards. With this dataset and the application of the
Bradley–Terry model, the estimated chance that Federer defeats McEnroe in a hypothetical
match is 2.128/(2.128+1.104) = 0.6584, even though the two had very similar winning rates
in reality. We remark that the correctness of this answer is limited by the assumption that the
players’ merits are fixed and may be viewed as averaged over time. Further analysis using
more sophisticated dynamic models, such as the whole history rating (Coulom (2008)), may
be more appropriate. The static model in this paper serves as a basis for further extensions.

4. Discussion. This paper provides an asymptotic theory of the MLE of the Bradley–
Terry model when comparisons between any pair of subjects are sparse. The uniform consis-
tency and asymptotic normality of the MLE are shown under, respectively, conditions (2.5)
and (2.13). Two quantities, the largest ratio of merits, Mn, and the probability of paired com-
parison, pn, contribute to the accuracy of the MLE. When Mn are bounded, we prove the
uniform consistency holds under nearly minimal condition of sparsity. The results of this
paper may have broad applications and can be further generalized to other models in the
sparse case, such as Plackett–Luce model (Luce (1959)) which fits multiple comparisons, the
Rao–Kupper model (Rao and Kupper (1967)) which allow paired comparisons with ties.
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APPENDIX A: PROOF OF LEMMA 1

PROOF. Let En denote the event that Condition A holds. We will show that under condi-
tion (2.4), P(Ec

n) → 0 as n → ∞, that is, the probability that the subjects in the second group
never defeat the subjects in the first group, for all partitions of subjects into two nonempty
groups, tends to 0. The proof consists of two steps. Step 1 is about estimating the number of
comparisons between the first and second groups. Step 2 is about computing the probability
of Ec

n and its convergence to 0.
Step 1. Let � = {0,1, . . . , n − 1} be the set of all n subjects, and let �r denote any subset

of � with r subjects. The number of comparisons between �r and �c
r , denoted by N�r , can

be expressed as

N�r = ∑
i∈�r,j∈�c

r

tij .

Recall that tij is the number comparisons between subjects i and j , which follows binomial
distribution. N�r can be viewed as the sum of T r(n − r) independent identically distributed
Bernoulli random variables with common probability ratio pn.

We first estimate N�r for a fixed r . Condition (2.4) implies logn/(npn) → 0 as n → ∞,
since Mn ≥ 1. It follows from the Chernoff bound (Chernoff (1952)) that, for a fixed r ∈
{1, . . . , �n/2�} and n > 32 logn/(Tpn),

P

(
min
�r

N�r ≤ T

2
r(n − r)pn

)
≤ ∑

�r

P

(
N�r ≤ T

2
r(n − r)pn

)

≤
(
n

r

)
sup
�r

P

(
N�r ≤ T

2
r(n − r)pn

)

≤ nr sup
�r

P

(
N�r ≤ T

2
r(n − r)pn

)

≤ exp
{
−T

8
r(n − r)pn + r logn

}

≤ exp
{
− T

16
r(n − r)pn

}

≤ exp
{
− T

16
(n − 1)pn

}
.

The next-to-last inequality holds due to n > 32 logn/(Tpn). The definition of N�r , implies
the symmetry: min�r N�r = min�n−r N�n−r . Therefore, for any fixed r ∈ {1, . . . , n − 1} and
n > 32 logn/(Tpn),

P

((
min|�r |=r

N�r

)
≤ T

2
r(n − r)pn

)
≤ exp

{
− T

16
(n − 1)pn

}
.

Next, we estimate the lower bound N�r for all r ∈ {1, . . . , n − 1}. Let Fn be the event that
N�r > T r(n − r)pn/2 holds for all r = 1, . . . , n − 1 and all partitions of � into �r and �c

r .



SPARSE BRADLEY–TERRY MODEL 2501

Then, and n > 32 logn/(Tpn),

P(Fn) ≥ 1 −
n−1∑
r=1

P

((
min|�r |=r

N�r

)
≤ T

2
r(n − r)pn

)

≥ 1 −
n−1∑
r=1

exp
{
− T

16
(n − 1)pn

}

≥ 1 − exp
{
− T

16
(n − 1)pn + log(n − 1)

}
.

Therefore, P(Fn) → 1 as n → ∞, since Condition (2.4) ensures n > 32 logn/(Tpn) for all
large n.

Step 2. Since Mn = max0≤i,j≤n−1 ui/uj ≥ 1,

(A.1) max
0≤i,j≤n−1

pij = max
0≤i,j≤n−1

1

1 + uj/ui

≤ 1

1 + 1/Mn

≤
(

1

2

)1/Mn

.

Let G
(r)
n denote the event that Condition A fails with the first group containing r subjects.

Then, by the definition of Fn,

P
(
G(r)

n |Fn

) ≤ ∑
�r

(
max

0≤i,j≤n−1
pij

) T r(n−r)pn
2

≤ ∑
�r

(
1

2

) T r(n−r)pn
2Mn =

(
n

r

)(
1

2

) T r(n−r)pn
2Mn

.

Recall that Ec
n is the event that Condition A fails. Write

P
(
Ec

n|Fn

) = P

(
n−1⋃
r=1

G(r)
n

∣∣∣Fn

)
=

n−1∑
r=1

P
(
G(r)

n |Fn

)

≤
n−1∑
r=1

(
n

r

)(
1

2

) T r(n−r)pn
2Mn ≤ 2

�n/2�∑
r=1

(
n

r

)(
1

2

) T r(n−r)pn
2Mn

≤ 2
�n/2�∑
r=1

(
n

r

)(
1

2

) T rnpn
4Mn ≤ 2

[(
1 +

(
1

2

) T npn
4Mn

)n

− 1
]
,

which tends to 0 as n → ∞, ensured by Condition (2.4). With the law of total probability,

P
(
Ec

n

) = P
(
Ec

n|Fn

)
P(Fn) + P

(
Ec

n|Fc
n

)
P

(
Fc

n

)
,

where Fc
n is the complementary event of Fn. Since P(Ec

n|Fn) → 0 and P(Fn) → 1 as n →
∞, it follows that P(Ec

n) → 0 and P(En) → 1 as n → ∞. The proof is complete. �

APPENDIX B: PROOF OF UNIFORM CONSISTENCY

In this appendix, we show the proof of uniform consistency described in Theorem 2.1.
Some notations need to be introduced first.
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We first make a transformation on ûi for i = 0, . . . , n − 1. Let ũj = ûj /(maxi ûi/ui). As
a result, max0≤i≤n−1 ũi/ui = 1 and we set ũi0/ui0 = 1. In addition, let

(B.1)

K =
⌊

2 logn

log(npn)

⌋
, φn = log(npn)

logn
, qn = φnMn

(1 + Mn)2T + φnMn

,

Ci = {j : tij > 0}, dij = I (tij > 0), di =
n−1∑
j=0

dij and ti =
n−1∑
j=0

tij ,

where �·� is the floor function and I (·) is the indicator function. We also need a sequence of
increasing number {Dk}Kk=1 to present the level of the closeness in terms of the ratios,

Dk = β(1 + φn)
kMn�n for k = 0, . . . ,K − 1,

DK = 40βT (1 + φn)
KM2

n�n,

and a sequence of nested or increasing sets {Ak}Kk=1 to collect the subjects which have ratios
close to maxi ûi/ui in the level of Dk ,

(B.2)

Ak =
{
j : ũj

uj

≥ 1 − β(1 + φn)
kMn�n

}
for k = 0, . . . ,K − 1,

AK =
{
j : ũj

uj

≥ 1 − 40βT (1 + φn)
KM2

n�n

}
,

where the constant β = 20T .
To prove Theorem 2.1, we need four additional lemmas, whose proofs are given after the

proof of Theorem 2.1. For ease of illustration, we use the sentence that “for all large n, the
condition Sn holds” to stand for that there exists n0 such that Sn holds for all n > n0.

LEMMA 2. Assume condition (2.5) holds. For all large n,

(B.3) P

(
max

0≤i≤n−1

∣∣Z+
i − Z−

i

∣∣ < 2

√
logn

npn

)
≥ 1 − 3n−3,

where

(B.4)

Z+
i = 1

ti

∑
j∈C+

i

tij

(
tij ũi

ũi + ũj

− tij ui

ui + uj

)
= 1

ti

∑
j∈C+

i

tij
ũiuj − ũjui

(ũi + ũj )(ui + uj )
,

Z−
i = 1

ti

∑
j∈C−

i

tij

(
tij ũi

ũi + ũj

− tij ui

ui + uj

)
= − 1

ti

∑
j∈C−

i

tij
ũiuj − ũjui

(ũi + ũj )(ui + uj )
,

C+
i =

{
j : ũi

ui

>
ũj

uj

, j ∈ Ci

}
and C−

i =
{
j : ũi

ui

≤ ũj

uj

, j ∈ Ci

}
.

LEMMA 3. Assume condition (2.5) holds. For any i ∈ Ak where k < K − 1, let

(B.5) C∗
i =

{
j : j ∈ Ci,

ũj

uj

≥ 1 − β(1 + φn)
k+1Mn�n

}
.

Then for all large n,

P
(∣∣C∗

i

∣∣ ≥ qndi

) ≥ 1 − 3n−3,
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where qn and di are defined in (B.1). For any i ∈ AK−1, let

(B.6) C∗
i =

{
j : j ∈ Ci,

ũj

uj

≥ 1 − 40βT (1 + φn)
KM2

n�n

}
.

Then for all large n,

P

(∣∣C∗
i

∣∣ ≥ 19

20
di

)
≥ 1 − 3n−3.

LEMMA 4. Assume condition (2.5) holds. For a set A ⊂ �, let s = |A| denote the size
of A. Define a set B = {j : there exists i ∈ Asuch thattij > 0}. If sT < p−1

n , then for all large
n,

P

(
|B| >

(
1 − 4

√
logn√
npn

)(
sT npn − s2T 2np2

n

)) ≥ 1 − 2n−3sT .

If sT = p−1
n , then for all large n,

P

(
|B| > 3

5

(
1 − 4

√
logn√
npn

)
n

)
≥ 1 − 2n−3sT .

LEMMA 5. Assume condition (2.5) holds. Recall Ak defined in (B.2), for all large n,

P
(|Ak| ≥ (npn)

k
2
) ≥ 1 − 6kn−2 for k = 0, . . . ,K − 2,(B.7)

P

(
|AK−1| ≥ 1

pn

)
≥ 1 − 6(K − 1)n−2,(B.8)

and

(B.9) P

(
|AK | ≥ 21n

40

)
≥ 1 − 6Kn−2.

REMARK 5. We give some insights to the proof of Lemma 5, which used the facts proved
in Lemmas 2 to 4. In particular, Lemma 5 is proved by mathematical induction. For illustra-
tion, we assume that ui = 1 for all i. Ak is exactly the set that contains subjects with esti-
mators close to the maximum estimator max0≤i≤n−1 ũi in the level of Dk . We aim to show
there are more than n/2 subjects whose estimators are close to the maximum estimator in the
level of DK . In the first step, we begin with A0 = {i0}. With the use of Lemma 2, we know
Z−

i = 0 so that Z+
i = Op(

√
logn/(npn)). It means there are some ũj very close to ũi0 , where

j ∈ Ci0 (j is the neighbor of i0). Moreover, Lemma 3 states the proportion of such kind of j

in Ci0 and Lemma 4 gives the size of Ci0 . Eventually, we put i0 and such kind of j together
to generate the set A1 whose size is obtained from Lemma 5.

Next, by Lemma 2, given i ∈ A1, the relevant quantities Z+
i and Z−

i associated with sub-
jects in C+

i and C−
i are balanced. If C−

i has a large size, then C∗
i , the neighbors of i with

estimators so large to be in A2 will automatically be large; if C−
i does not have a large size,

the balance of Z+
i and Z−

i dictates that those in C+
i would still have a large size of subset

in A2. The detailed arguments are given in Cases 1 and 2 in the proof of Lemma 3. Then,
we find the subjects in A2 through the neighbors of the subjects in A1. We repeat the process
until the size of Ak is larger than n/2.
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B.1. Proof of Theorem 2.1.

PROOF. The proof mainly contains two parts. One is to show that the number of subjects
whose ratios of estimated merits and real merits ûj /uj are close to the largest ratio maxi ûi/ui

is larger than n/2. The other is to show that the number of subjects whose ratios are close to
the smallest ratio is also larger than n/2.

Step 1. Observe that (B.9), with proof given in that of Lemma 5, implies, for all large n,

(B.10) P

(∣∣∣∣
{
j : ũj

uj

≥ 1 − 40βT (1 + φn)
KM2

n�n

}∣∣∣∣ ≥ 21n

40

)
≥ 1 − 6Kn−2.

Under condition (2.5), it follows that

K ≤ 2 logn and (1 + φn)
K ≤ e2.

Let λ = 40βT e2, from (B.10), we obtain for all large n,

(B.11) P

(∣∣∣∣
{
j : ũj

uj

≥ 1 − λM2
n�n

}∣∣∣∣ ≥ 21n

40

)
≥ 1 − 12n−2 logn.

Notice that ũj = ûj /(maxi ûi/ui). Thus, (B.11) can be written as

P

(∣∣∣∣
{
j : ûj /uj

max0≤i≤n−1(ûi/ui)
≥ 1 − λM2

n�n

}∣∣∣∣ ≥ 21n

40

)
≥ 1 − 12n−2 logn.

It means that with probability approaching 1 as n → ∞,

(B.12)
∣∣∣∣
{
j : ûj /uj

max0≤i≤n−1(ûi/ui)
≥ 1 − λM2

n�n

}∣∣∣∣ ≥ 21n

40
>

n

2
.

Step 2. Next, we will show that the number of subjects whose ratios are close to the smallest
ratio is also larger than n/2.

Let ūj = ûj /(mini ûi/ui). Similar to (B.2), we define

Āk =
{
j : ūj

uj

≤ 1 + β(1 + φn)
kMn�n

}
for k = 0, . . . ,K − 1,

ĀK =
{
j : ūj

uj

≤ 1 + 40βT (1 + φn)
KM2

n�n

}
.

Compared with (B.9), we can obtain

P

(
|ĀK | ≥ 21n

40

)
≥ 1 − 6Kn−2

with the similar proof of Lemma 2 to 5. Similar to Step 1, that with probability approaching
1 as n → ∞,

(B.13)
∣∣∣∣
{
j : ûj /uj

min0≤i≤n−1(ûi/ui)
≤ 1 + λM2

n�n

}∣∣∣∣ ≥ 21n

40
>

n

2
.

Combining û0 = u0 = 1, (B.12) and (B.13), it can be shown that with probability approaching
1 as n → ∞,

1 − λM2
n�n

1 + λM2
n�n

≤ min
0≤i≤n−1

ûi

ui

≤ max
0≤i≤n−1

ûi

ui

≤ 1 + λM2
n�n

1 − λM2
n�n

.

Consequently,

max
0≤i≤n−1

∣∣∣∣ ûi

ui

− 1
∣∣∣∣ ≤ 2λM2

n�n

1 − λM2
n�n

.



SPARSE BRADLEY–TERRY MODEL 2505

Since M2
n�n → 0 as n → ∞, with probability approaching 1,

max
0≤i≤n−1

∣∣∣∣ ûi

ui

− 1
∣∣∣∣ → 0 as n → ∞.

Except for the deferred proof of Lemma 2 to 5, the proof of Theorem 2.1 is complete. �

B.2. Proof of Lemma 2.

PROOF. The proof of Lemma 2 contains three steps. In the first step, we find the upper
bound of |ai − E(ai |tij ,0 ≤ j ≤ n − 1)| for fixed i. In the second step, we find the upper
bound of |Z+

i − Z−
i | for fixed i through the first step. In the third step, we find the uniform

upper bound of |Z+
i − Z−

i | for i = 0, . . . , n − 1.
Step 1. Recall that ti = ∑

0≤j≤n−1 tij and ai is the total number of wins of subject i in ti
comparisons. Since the outcome of each comparison is independent of other comparisons, ai

is the sum of mi independent Bernoulli random variables given tij = mij , for j = 0, . . . , n −
1, where mi = ∑n−1

j=0 mij . With the use of Hoeffding’s inequality (Hoeffding (1963)), we have

P
(∣∣ai − E(ai |tij ,0 ≤ j ≤ n − 1)

∣∣ ≥
√

2T ti logn|tij = mij ,0 ≤ j ≤ n − 1
)

= P
(∣∣ai − E(ai |tij ,0 ≤ j ≤ n − 1)

∣∣ ≥
√

2T mi logn|tij = mij ,0 ≤ j ≤ n − 1
)

≤ exp
{−(4T mi logn)/mi

} = 2n−4T ≤ 2n−4,

where E(ai |tij ,0 ≤ j ≤ n − 1) is the conditional expectation given tij for 0 ≤ j ≤ n − 1.
Note that the upper bound of the above probability does not depend on mij . With the law of
total probability, for fixed i,

P
(∣∣ai − E(ai |tij ,0 ≤ j ≤ n − 1)

∣∣ ≥
√

2T ti logn
)

=
T∑

mi0=0

· · ·
T∑

mi,n−1=0

P(tij = mij ,0 ≤ j ≤ n − 1)

× P
(∣∣ai − E(ai |tij ,0 ≤ j ≤ n − 1)

∣∣ ≥
√

2T ti logn|tij = mij ,0 ≤ j ≤ n − 1
)

≤ 2n−4
T∑

mi0=0

· · ·
T∑

mi,n−1=0

P(tij = mij ,0 ≤ j ≤ n − 1)

= 2n−4.

Thus with probability at least 1 − 2n−4, for any fixed i,

(B.14)
∣∣ai − E(ai |tij ,0 ≤ j ≤ n − 1)

∣∣ <
√

2T ti logn.

Step 2. Recall that the maximum likelihood estimator ûi satisfies

ai =
n−1∑
j=0

aij =
n−1∑
j=0

tij ûi

ûi + ûj

.

Since ũj = ûj /(maxi ûi/ui), we can rewrite the above equation as,

ai =
n−1∑
j=0

aij =
n−1∑
j=0

tij ũi

ũi + ũj

.



2506 HAN, YE, TAN AND CHEN

Then,

ai − E(ai |tij ,0 ≤ j ≤ n − 1) =
n−1∑
j=0

(
tij ũi

ũi + ũj

− tij ui

ui + uj

)
= ti

(
Z+

i − Z−
i

)
.

Based on (B.14), we can obtain with probability at least 1 − 2n−4,

∣∣Z+
i − Z−

i

∣∣ <

√
2T logn

ti
.

Step 3. We first find the uniform lower bound of ti for i = 0, . . . , n − 1. Notice that ti
is the sum of n independent and identically distributed (i.i.d.) binomial random variables,
Bin(T ,pn). It can be also regarded as the sum of T n i.i.d. Bernoulli random variables. With
the use of Chernoff bound (Chernoff (1952)), we have

P

(
min

0≤i≤n−1
ti <

T

2
npn

)
≤

n−1∑
i=0

P

(
ti <

T

2
npn

)
≤ n exp

{
− T

12
npn

}
.

Thus, with probability at least 1 − n exp{−(T npn)/12},

(B.15) min
0≤i≤n−1

ti ≥ T

2
npn

which means that ti = Op(npn). According to the result of Step 2,

P
(

max
0≤i≤n−1

∣∣Z+
i − Z−

i

∣∣ ≥
√

2T logn/ min
0≤i≤n−1

ti

)

≤
n−1∑
i=0

P
(∣∣Z+

i − Z−
i

∣∣ ≥
√

2T logn/ti
) ≤ n × 2n−4 = 2n−3.

By (B.15), with probability 1 − 2n−3 − n exp{−(T npn)/12},

max
0≤i≤n−1

∣∣Z+
i − Z−

i

∣∣ < 2

√
logn

npn

.

Meanwhile, M2
n�n → 0 as n → ∞ implies (logn)/(npn) → 0 as n → ∞. Therefore,

n exp
{
−T npn

12

}
< n−3,

for all large n. As a result, with probability at least 1 − 3n−3,

max
0≤i≤n−1

∣∣Z+
i − Z−

i

∣∣ < 2

√
logn

npn

.

We complete the proof. �

B.3. Proof of Lemma 3.

PROOF. We first consider the case when k < K − 1. Recall the definition of Ak is given
in (B.2). For any i ∈ Ak , we aim to show that for all large n, with probability at least 1−3n−3,∣∣C∗

i

∣∣ ≥ qndi,

where C∗
i is defined in (B.5). Observe that C−

i ⊂ C∗
i for any i ∈ Ak .
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Case 1. If |C−
i | ≥ qndi , then we have∣∣C∗

i

∣∣ ≥ ∣∣C−
i

∣∣ ≥ qndi.

Case 2. If |C−
i | < qndi , we set |C−

i | = αdi , where α < qn. We need to show that for all
large n, with probability at least 1 − 3n−3,∣∣∣∣

{
j : j ∈ C+

i ,
ũj

uj

> 1 − β(1 + φn)
k+1Mn�n

}∣∣∣∣ ≥ (qn − α)di.

We use Lemma 2 to prove the above inequality and our proof contains three steps. Recall that
Z+

i and Z−
i defined in (B.4). The first step is to find the lower bound of Z+

i and the upper
bound of Z−

i . The second step is to show that the number of subjects who have comparisons
with i and close ratios to ûi/ui is larger than (qn − α)di , that is,∣∣∣∣

{
j : ũj /uj

ũi/ui

> 1 − βφn(1 + φn)
kMn�n, j ∈ C+

i

}∣∣∣∣ ≥ (qn − α)di.

The last step is to prove the subject j included in the above set belongs to C∗
i .

Step 1. For Z−
i , we have

Z−
i = − 1

ti

∑
j∈C−

i

ũiuj − ũjui

(ũi + ũj )(ui + uj )
· tij

= 1

ti

∑
j∈C−

i

ũj /uj − ũi/ui

(ũi/ui + ũj /uj × uj/ui)(1 + ui/uj )
· tij .

Since M2
n�n → 0 as n → ∞,

β(1 + φn)
kMn�n ≤ βe2Mn�n ≤ 1

2

for all large n. It can be given that for i ∈ Ak , j ∈ C−
i and for all large n,

1

2
≤ 1 − β(1 + φn)

kMn�n ≤ ũi/ui ≤ ũj /uj ≤ 1.

Therefore, for all large n,

Z−
i ≤ 1

ti

∑
j∈C−

i

2tij
1 − (1 − β(1 + φn)

kMn�n)

(1 + ui/uj )(1 + uj/ui)
≤ αβ

2
(1 + φn)

kMn�n.

The last inequality is from

4 ≤
(

1 + ui

uj

)(
1 + uj

ui

)
≤ (1 + Mn)

2

Mn

.

Similarly, for Z+
i , we obtain

Z+
i = 1

ti

∑
j∈C+

i

tij
ũiuj − ũjui

(ũi + ũj )(ui + uj )

= 1

ti

∑
j∈C+

i

tij
ũi/ui − ũj /uj

(ũi/ui + ũj /uj × uj/ui)(1 + ui/uj )

≥ Mn

(1 + Mn)2T di

∑
j∈C+

i

(
1 − ũj /uj

ũi/ui

)
.
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From above, we have bounds for Z−
i and Z+

i respectively, for all large n,

(B.16) Z−
i ≤ αβ

2
(1 + φn)

kMn�n, Z+
i ≥ Mn

(1 + Mn)2T di

∑
j∈C+

i

(
1 − ũj /uj

ũi/ui

)
.

Step 2. According to Lemma 2, we have for all large n, with probability at least 1 − 3n−3,

Z+
i − αβ

2
(1 + φn)

kMn�n ≤ Z+
i − Z−

i ≤ 2

√
logn

npn

Since �nφn = √
logn/(npn), for all large n, with probability at least 1 − 3n−3,

Z+
i ≤ αβ

2
(1 + φn)

kMn�n + 2

√
logn

npn

=
[
αβ

2
(1 + φn)

kMn + 2φn

]
�n.

Then, from (B.16), it follows that for all large n, with probability at least 1 − 3n−3,

Mn

(1 + Mn)2T di

∑
j∈C+

i

(
1 − ũj /uj

ũi/ui

)
≤

[
αβ

2
(1 + φn)

kMn + 2φn

]
�n.

Notice that |C+
i | = |Ci | − |C−

i | = (1 − α)di , we can rewrite the above inequality as for all
large n, with probability at least 1 − 3n−3,

1

|C+
i |

∑
j∈C+

i

(
1 − ũj /uj

ũi/ui

)
≤ T (1 + Mn)

2

Mn(1 − α)

[
αβ

2
(1 + φn)

kMn + 2φn

]
�n.

Set the xth percentile of {(ũj /uj )/(ũi/ui) : j ∈ C+
i } to be bx , where x = (1 − qn)/(1 − α).

As

1

|C+
i |

∑
j∈C+

i

(
1 − ũj /uj

ũi/ui

)
= 1 − 1

|C+
i |

∑
j∈C+

i

ũj /uj

ũi/ui

,

it follows that for all large n, with probability at least 1 − 3n−3,

1

|C+
i |

∑
j∈C+

i

ũj /uj

ũi/ui

≥ 1 − T (1 + Mn)
2

Mn(1 − α)

[
αβ

2
(1 + φn)

kMn + 2φn

]
�n,

1 − x + bxx ≥ 1 − T (1 + Mn)
2

Mn(1 − α)

[
αβ

2
(1 + φn)

kMn + 2φn

]
�n,

bx ≥ 1 − T (1 + Mn)
2

Mn(1 − α)x

[
αβ

2
(1 + φn)

kMn + 2φn

]
�n.

Since x = (1 − qn)/(1 − α), 0 ≤ α < qn, where qn is defined in (B.1), we have for all large
n, with probability at least 1 − 3n−3,

bx ≥ 1 − T (1 + Mn)
2

Mn(1 − qn)

[
αβ

2
(1 + φn)

kMn + 2φn

]
�n

> 1 − T (1 + Mn)
2

Mn(1 − qn)

[
qnβ

2
(1 + φn)

kMn + 2φn

]
�n
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≥ 1 − (1 + Mn)
2T + φnMn

Mn

[
φnMnβ

2(1 + Mn)2T + 2φnMn

(1 + φn)
kMn + 2φn

]
�n

≥ 1 −
[
β

2
φn(1 + φn)

kMn + (1 + Mn)
2T + φnMn

Mn

× 2φn

]
�n

≥ 1 −
[
β

2
φn(1 + φn)

kMn + 8T Mnφn + 2φ2
n

]
�n.

Given β = 20T , we can rewrite above inequality as

bx > 1 − βφn(1 + φn)
kMn�n,

which means∣∣∣∣
{
j : ũj /uj

ũi/ui

> 1 − βφn(1 + φn)
kMn�n, j ∈ C+

i

}∣∣∣∣ ≥ (1 − x)(1 − α)di = (qn − α)di.

Step 3. Since i ∈ Ak = {j : (ũj /uj ) ≥ 1 − β(1 + φn)
kMn�n}, for any j ∈ {j : (ũj /uj )/

(ũi/ui) > 1 − βφn(1 + φn)
kMn�n, j ∈ C+

i }, it follows that for all large n, with probability
at least 1 − 3n−3,

ũj

uj

>
(
1 − βφn(1 + φn)

kMn�n

)(
1 − β(1 + φn)

kMn�n

)
≥ 1 − βφn(1 + φn)

kMn�n − β(1 + φn)
kMn�n

= 1 − β(1 + φn)
k+1Mn�n,

which implies ∣∣∣∣
{
j : ũj

uj

> 1 − β(1 + φn)
k+1Mn�n, j ∈ C+

i

}∣∣∣∣ ≥ (qn − α)di.

Therefore, for all large n, with probability at least 1 − 3n−3,

∣∣C∗
i

∣∣ ≥ ∣∣C−
i

∣∣ + ∣∣∣∣
{
j : ũj

uj

> 1 − β(1 + φn)
k+1Mn�n, j ∈ C+

i

}∣∣∣∣
≥ αdi + (qn − α)di

= qndi.

For k = K − 1, we can obtain the result with the same proof as above except replacing qn

with 19/20. Hence, for all large n, with probability at least 1 − 3n−3,

∣∣C∗
i

∣∣ =
∣∣∣∣
{
j : j ∈ Ci,

ũj

uj

≥ 1 − 40βT (1 + φn)
KM2

n�n

}∣∣∣∣ ≥ 19

20
di.

The proof is complete. �

B.4. Proof of Lemma 4.

PROOF. We present the proof with two steps. The first step is to find the lower bound of
|B| when A is a deterministic set. The second step is to extend the result of the first step to
the case when A is a random set.

Step 1. Let A be a nonrandom set with size s ≤ (Tpn)
−1. For any j ∈ �,

P(tij = 0 for all i ∈ A) = (1 − pn)
sT .
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Set y = 1 − (1 − pn)
sT and ηj = I (j ∈ B). So ηj = 1 if j has a comparison with someone

in A, otherwise ηj = 0. We know that P(ηj = 1) = y.
Since M2

n�n → 0 as n → ∞, 4
√

logn <
√

npn for all large n. Thus, with Chernoff bound
(Chernoff (1952)), for all large n,

P

(
|B| ≤

(
1 − 4

√
logn√
npn

)
ny

)
≤ 2 exp

{
−16ny logn

2npn

}

= 2 exp
{
−8(1 − exp(sT log(1 − pn))) logn

pn

}

≤ 2 exp
{
−8(1 − exp(−sTpn)) logn

pn

}

≤ 2 exp{−4sT logn}.
Here, the second and third inequalities are based on log(1−x) ≤ −x and x ≤ 2(1−exp(−x))

respectively when 0 < x < 1.
Step 2. For any set A ⊂ � with size s and all large n, it follows that

P

((
min|A|=s

∣∣{j : there exists i ∈ A such that tij > 0}∣∣) ≤
(

1 − 4
√

logn√
npn

)
ny

)

≤ ∑
|A|=s

P

(∣∣{j : there exists i ∈ A such that tij > 0}∣∣ ≤
(

1 − 4
√

logn√
npn

)
ny

)

≤ 2
(
n

s

)
exp{−4sT logn}

≤ 2ns exp{−4sT logn}
≤ 2n−3sT .

In summary,

P

((
min|A|=s

∣∣{j : there exists i ∈ Asuch thattij > 0}∣∣) ≤
(

1 − 4
√

logn√
npn

)
ny

)

≤ 2n−3sT → 0 as n → ∞.

Since for any set A with the size s,

|B| ≥ min|A| = s

∣∣{j : there exists i ∈ A such that tij > 0}∣∣.
Thus, for all large n, with probability at least 1 − 2n−3sT ,

|B| >
(

1 − 4
√

logn√
npn

)
ny.

Recall that y = 1 − (1 − pn)
sT , for sT < p−1

n ,

ny = n
(
1 − (1 − pn)

sT ) ≥ sT npn − s2T 2np2
n,

while for sT = p−1
n ,

ny = n
(
1 − (1 − pn)

sT ) ≥ n
(
1 − e−1)

>
3

5
n.

The proof is complete. �
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B.5. Proof of Lemma 5.

PROOF. Our aim is to show that there exists a uniform constant C such that when n > C,
(B.7), (B.8) and (B.9) hold. C is defined as the maximum of n which does not satisfy any
following inequalities,

(B.17)
n−3 > n exp

{
−T npn

12

}
,

√
npn > 4

√
logn,

βe2Mn�n ≤ 1

2
and qn

√
npn − 8

√
logn > 2,

where qn is defined in (B.1) and β is defined in (B.9). Since M2
n�n → 0 as n → ∞, it ensures

the existence of C. Then, for any n > C, n satisfies all inequalities in (B.17).
We show Lemma 5 by mathematical induction.
(1) For k = 0, it is obvious that

|A0| ≥
∣∣{i0}∣∣ = (npn)

0 = 1.

Therefore, we obtain

P
(|A0| ≥ (npn)

0) ≥ 1.

(2) For k < K − 2, let Ak denote the event that |Ak| ≥ (npn)
k/2 happens. Assume that

when n > C,

P(Ak) ≥ 1 − 6kn−2.

Then we proceed under the condition that event Ak happens. Without loss of generality, let
|Ak| = (npn)

k/2/T , otherwise we consider any of its subsets with size (npn)
k/2/T .

For any i ∈ Ak , we have C∗
i ⊂ Ak+1. Hence

⋃
i∈Ak

C∗
i ⊂ Ak+1. Consequently,

(B.18) |Ak+1| ≥
∣∣∣∣ ⋃
i∈Ak

C∗
i

∣∣∣∣ ≥
∣∣∣∣ ⋃
i∈Ak

Ci

∣∣∣∣ − ∑
i∈Ak

∣∣Ci \ C∗
i

∣∣.
Next we estimate

∑
i∈Ak

|Ci \ C∗
i | and |⋃i∈Ak

Ci | by Lemma 3 and Lemma 4 respectively.
Note that

⋃
i∈Ak

Ci = {j : j has a comparsion with anyone in Ak} and

(B.19) |Ak| = (npn)
k
2

T
≤ (npn)

K−3
2

T
≤ (np3

n)
− 1

2

T
.

Based on Lemma 4, we know that when n > C, with probability at least 1 − 2n−3T |Ak |,

(B.20)
∣∣∣∣ ⋃
i∈Ak

Ci

∣∣∣∣ ≥
(

1 − 4
√

logn√
npn

)[
(npn)

k
2 +1 − (npn)

kp2
nn

]
.

Meanwhile, from Lemma 3, we know for i ∈ Ak , when n > C, with probability at least
1 − 3n−3, ∣∣Ci \ C∗

i

∣∣ ≤ (1 − qn)di,

where qn and di are defined in (B.1). As a result, when n > C, with probability at least
1 − 3|Ak|n−3,

(B.21)
∑
i∈Ak

∣∣Ci \ C∗
i

∣∣ ≤ (1 − qn)
∑
i∈Ak

di.
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Based on the Chernoff bound (Chernoff (1952)), the range of di is given as

P

(
di ≥

(
1 + 4

√
logn√
npn

)
T npn

)
≤ P

(
di ≥

(
1 + 4

√
logn√
npn

)
E(di)

)

≤ exp
(
−16

3
logn

)
,

where the first inequality is from E(dij ) = 1 − (1 − pn)
T ≤ Tpn. Consequently,

P

((
max

0≤i≤n−1
di

)
≥

(
1 + 4

√
logn√
npn

)
T npn

)
≤ n exp

(
−16

3
logn

)
≤ n−4,

which implies
(

max
0≤i≤n−1

di

)
<

(
1 + 4

√
logn√
npn

)
T npn,

with probability at least 1 − n−4. So we can rewrite (B.21) as when n > C, with probability
at least 1 − 3|Ak|n−3 − n−4,

(B.22)
∑
i∈Ak

∣∣Ci \ C∗
i

∣∣ ≤ (1 − qn)

(
1 + 4

√
logn√
npn

)
(npn)

k
2 +1.

Based on (B.18), (B.20) and (B.22), when n > C, with probability at least 1 − 2n−3T |Ak | −
3|Ak|n−3 − n−4,

|Ak+1| ≥
(

1 − 4
√

logn√
npn

)[
(npn)

k
2 +1 − (npn)

kp2
nn

] − (1 − qn)

(
1 + 4

√
logn√
npn

)
(npn)

k
2 +1

≥ (npn)
k
2 +1

[
qn − 8

√
logn√
npn

− (npn)
k
2 pn

]
.

Due to 1 ≤ |Ak| ≤ n, 1 − 2n−3T |Ak | − 3|Ak|n−3 − n−4 ≥ 1 − 6n−2. Thus, when n > C, with
probability at least 1 − 6n−2,

(B.23) |Ak+1| ≥ (npn)
k
2 +1

[
qn − 8

√
logn√
npn

− (npn)
k
2 pn

]
.

According to (B.19), (npn)
k/2 ≤ (np3

n)
−1/2. Meanwhile, when n > C, from (B.17), we have

√
npn

[
qn − 8

√
logn√
npn

− (npn)
k
2 pn

]
= qn

√
npn − 8

√
logn − (npn)

k
2 pn

√
npn

≥ 2 − (npn)
k
2 pn

√
npn

≥ 2 − (
np3

n

)− 1
2 × pn

√
npn = 1.

Hence, we can rewrite (B.23) as when n > C, with probability at least 1 − 6n−2,

|Ak+1| ≥ (npn)
k+1

2 .

That is, when n > C,

P
(|Ak+1| ≥ (npn)

k+1
2 |Ak

) ≥ 1 − 6n−2.

Given P(Ak) ≥ 1 − 6kn−2, we obtain when n > C,

P
(|Ak+1| ≥ (npn)

k+1
2

) ≥ 1 − 6(k + 1)n−2.
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(3) For k = K − 2, we assume that when n > C,(|AK−2| ≥ (npn)
K−2

2
) ≥ 1 − 6(K − 2)n−2.

Notice that (npn)
(K−2)/2 ≥ (np3

n)
−1/2. We choose a subset of AK−2 with size (np3

n)
−1/2/T .

Proceed similarly as (2), so when n > C, with probability at least 1 − 6(K − 1)n−2,

|AK−1| ≥
(

1 − 4
√

logn√
npn

)[
n√
npn

− 1

pn

]
− (1 − qn)

(
1 + 4

√
logn√
npn

)
n√
npn

≥ n√
npn

(
qn − 8

√
logn√
npn

− 1√
npn

)

≥ 1

pn

.

(4) For k = K − 1, we assume that when n > C,

P

(
|AK−1| ≥ 1

pn

)
≥ 1 − 6(K − 1)n−2.

We choose a subset of AK−1 with size (Tpn)
−1 and can complete the proof similar to (2) by

replacing qn with 19/20 and using the second case of Lemma 3 and Lemma 4. Hence, when
n > C, with probability at least 1 − 6Kn−2,

|AK | ≥ 3

5

(
1 − 4

√
logn√
npn

)
n − 1

20

(
1 + 4

√
logn√
npn

)
n

= 11

20
n − 11

√
logn

5
√

npn

≥ 21

40
n.

The proof is complete. �

APPENDIX C: PROOF OF ASYMPTOTIC NORMALITY

Now we will sketch the proof of Theorem 2.2. Similar to Simons and Yao (1999), we need
the following lemmas.

LEMMA 6. If

(C.1) δn = 32Mn

√
logn

(n − 1)p3
n

→ 0 as n → ∞,

then maxi=0,...,n−1 |�ui | = Op(δn) → 0 as n → ∞.

LEMMA 7. If

W n−1 := V −1
n−1 − Sn−1,

then with probability approaching 1 as n → ∞,

‖W n−1‖ ≤ 256T 2M3
n

(n − 1)2p3
n

,

where ‖A‖ = maxi,j |aij | for the matrix A = (aij ).



2514 HAN, YE, TAN AND CHEN

Lemma 7 evaluates the quality of the approximation Sn−1, for V −1
n−1. This idea was first

proposed by Simons and Yao (1998). We are able to establish analogous results with the
sparser probability.

Let a = (a1, . . . , an−1)
�, where ai is defined in the (2.2) for i = 1, . . . , n − 1.

LEMMA 8. If Rn−1 denotes the covariance matrix of W n−1a, then with probability ap-
proaching 1 as n → ∞,

‖Rn−1‖ ≤ 256T 2M3
n

(n − 1)2p3
n

+ 48T M2
n

(n − 1)2p2
n

.

As ai is a sum of independent bounded random variables, if vii diverges, ai − E(ai) is
asymptotically normal with variance vii (Loève (1977), page 289) and the following lemma
is derived.

LEMMA 9. If Mn = o(n) as n → ∞, then, as n → ∞, the components of (a1 −
E(a1), . . . , ar − E(ar)) are asymptotically independent and normally distributed with vari-
ances v11, . . . , vrr , respectively, for each fixed integer r ≥ 1. Moreover, the first r rows of
Sn−1(a − E(a)) are asymptotically normal with covariance matrix given by the upper left
r × r block of Sn−1, for fixed r ≥ 1.

PROOF OF THEOREM 2.2. Recall that En is the event that Condition A holds and let Gn

be the event that

max
0≤i≤n−1

|�ui | ≤ 32T Mn

√
logn

(n − 1)p3
n

.

It follows from Lemma 1 and Lemma 6 that P(En ∩ Gn) → 1 as n → ∞. We proceed under
the condition that event En ∩ Gn happens. Let

ξij = tij uiuj (�ui − �uj)

(ui + uj )2 , ξi =
n−1∑

j=0,j �=i

ξij ,

ξ = (ξ1, . . . , ξn−1)
�, η = (η1, . . . , ηn−1)

� = a − E(a) − ξ , η0 =
n−1∑
j=1

ηj .

It follows that with probability approaching 1 as n → ∞,

(C.2)

|ηi | ≤ 2vii max
0≤j≤n−1

|�uj |2 ≤ vii

211T 2M2
n logn

(n − 1)p3
n

, i = 1, . . . , n − 1,

∣∣(Sn−1η)i
∣∣ ≤ 1

vii

|ηi | + 1

v00
|η0| ≤ 212T 2M2

n logn

(n − 1)p3
n

= Op

(
M2

n logn

np3
n

)
,

where vij is defined in (2.11). With the use of Chernoff bound (Chernoff (1952)), it is easy
to show that, with probability approaching 1 as n → ∞,

(C.3)
T npn

8Mn

≤ Mn

(Mn + 1)2 min
0≤i≤n−1

ti ≤ vii ≤ 1

4
max

0≤i≤n−1
ti ≤ 3T npn

8
.

According to Lemma 7 and (C.3),

(C.4)
∣∣(Wn−1η)i

∣∣ ≤ 256T 2M3
n

(n − 1)2p3
n

×
n−1∑
i=1

|ηi | = Op

(
M5

n logn

np5
n

)
.
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By (C.2) and (C.4),

∣∣(V −1
n−1η

)
i

∣∣ ≤ ∣∣(W n−1η)i
∣∣ + ∣∣(Sn−1η)i

∣∣ = Op

(
M5

n logn

np5
n

)
+ Op

(
M2

n logn

np3
n

)
.

Since ξ = V n−1�u, where �u = (�u1, . . . ,�un−1)
�, it can be obtained that

(C.5)

�u = V −1
n−1ξ

= V −1
n−1

(
a − E(a)

) − V −1
n−1η

= Sn−1
(
a − E(a)

) + W n−1
(
a − E(a)

) − V −1
n−1η.

When (2.13) holds, |(V −1
n−1η)i | = op(n−1/2), and by Lemma 8, |(W n−1(a − E(a)))i | =

op(n−1/2). So (C.5) is equivalent to

�ui = (
V −1

n−1ξ
)
i = (

Sn−1
(
a − E(a)

))
i + op

(
n−1/2)

.

Following Lemma 9, the proof is complete. �
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