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We consider an infinite-server queue into which customers arrive accord-
ing to a Cox process and have independent service times with a general dis-
tribution. We prove a functional large deviations principle for the equilibrium
queue length process. The model is motivated by a linear feed-forward gene
regulatory network, in which the rate of protein synthesis is modulated by
the number of RNA molecules present in a cell. The system can be modelled
as a nonstandard tandem of infinite-server queues, in which the number of
customers present in a queue modulates the arrival rate into the next queue in
the tandem. We establish large deviation principles for this queueing system
in the asymptotic regime in which the arrival process is sped up, while the
service process is not scaled.

1. Introduction. The work in this paper is motivated by the problem of modelling fluc-
tuations in the number of protein molecules in a cell. The synthesis of proteins is catalysed by
RNA molecules, which in turn are transcribed from DNA molecules. Both RNA and protein
molecules degrade spontaneously after some random time. It is important for proper function-
ing of the cell that protein numbers are maintained within certain limits, and biologists are
interested in understanding the regulatory mechanisms involved in controlling their fluctua-
tions. Consequently, the problem of modelling stochastic fluctuations has attracted interest,
and there has been considerable work on Markovian models of such systems; see, for exam-
ple, [11, 13]. These models assume that each copy of a gene creates RNA molecules accord-
ing to a Poisson process (while active), that each RNA molecule generates protein molecules
according to a Poisson process, and that the lifetimes of RNA and protein molecules are ex-
ponentially distributed. The assumption of exponential lifetimes is biologically unrealistic;
for example, inhomogeneities in the cellular environment could result in lifetimes that are
mixtures of exponential distributions, or the denaturing of molecules could be a multistage
process.

Our approach relies on modelling the chemical kinetics using ·/G/∞ queues rather than
Markov processes, which correspond to ·/M/∞ queues. Customer arrivals into the queue
correspond to the synthesis of molecules of a specified type; after independent lifetimes with
a general distribution, the molecules decay which equates to service (and departure) of the
corresponding customers. For the problem described above, we have two such queues in
series, one for RNA molecules and one for proteins. However, unlike in a tandem queueing
network, where departures from one queue enter the next queue in series, here departures just
leave the system; the way influence propagates is that the arrival rate into the protein queue is
modulated by the occupancy of the preceding queue (here, RNA) in the series. We consider
a very simple form of modulation, in which the arrival rate into a queue is proportional to the
occupancy of the preceding queue, and the arrival process is conditionally Poisson given the
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occupancy. Thus, this results in a Cox process model for the arrivals into a queue, and the
system is modelled as a series of Cox/G/∞ queues interacting as described.

We briefly recall the description of the queue length process in an M/G/∞ queue with
arrival rate λ and service distribution F . The arrival process into this queue can be repre-
sented as an inhomogeneous Poisson process on R×R+ with intensity measure λ ⊗ F . If a
realisation of this point process has a point at (t, y), it denotes that a customer arrives at time
t bringing a service requirement of y. The queue length at time t is simply the total number
of points of the Poisson process in the set

At = {
(s, y) : s ≤ t, y > t − s

}
,

as a customer arriving at time s will still be in the system at time t if and only if its service
requirement is greater than t − s. (We follow the convention of defining the queue length
process to be right continuous.) Likewise, the queue length process during a time interval
[s, t] can be described in terms of the empirical measure of the above Poisson process on the
wedge-shaped set

A[s,t] = ⋃
u∈[s,t]

Au.

In the problem we want to study, the intensity of the arrival process is modulated by the
number of customers present in the previous queue. Hence, we need to model it as a Cox
process and study the corresponding Cox/G/∞ queue. As described above, this requires us
to study the empirical measure of a Cox process on a subset of R2. We shall in fact study
them in a more general setting of σ -compact Polish spaces, namely Polish spaces that can be
covered by countably many compact subsets. Our goal is to obtain functional large deviation
principles (FLDPs) for the corresponding queue length processes; we shall obtain these by
contraction from LDPs for the empirical measure of the Cox process. We have not been able
to drop the technical assumption of σ -compactness from our proof, but do not know if it is
essential for the stated results.

In terms of the motivating application, regulatory mechanisms within cells need to be ro-
bust enough to filter out small fluctuations, but sensitive to variations of larger magnitude. For
example, p53 is a tumour suppressor protein and master transcriptional regulator of response
to DNA damage, and the gene that encodes it is the most frequently mutated gene in cancer
cells. Normal proliferating cells typically respond to DNA damage with repair mechanisms,
or by activating apoptosis (programmed cell death) or senescence (prolonged arrest of the cell
cycle). Large fluctuations in p53 concentrations can alter such a cell fate, triggering a switch
from an arrested to a proliferative state [14]. Similarly, bistable switches are a very common
motif in gene regulatory networks where significant oscillations in protein numbers can result
in changes in cell fate [16]. While biologists have long been interested in studying fluctua-
tions in molecule numbers, most work to date has focused on second-order statistics [11].
The scaling regime studied in this paper might be more relevant for understanding the rare
but large fluctuations that trigger changes in cell fate of the type described above. In addi-
tion, a functional LDP of the type presented here can be used to identify the typical sample
paths leading to rare events of interest, and the typical time scales over which they occur, by
solving the optimization problem in the definition of the rate function. The rate functions are
explicit enough that the solution of these optimization problems can be well approximated
numerically, or upper and lower bounds calculated, in concrete applications.

We present our model and main results in the next section, followed by the proofs in the
final two sections.
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2. Model and results. We now set out our Cox process model. Let (E,d) be a σ -
compact Polish space, and let � be a random finite Borel measure on E; in other words, � is
a random variable taking values in Mf

+(E), the space of finite nonnegative Borel measures
on E. A Cox process � with stochastic intensity � is a point process which is conditionally
Poisson, with intensity measure λ on the event that � = λ. Note that the point process � is
almost surely finite. A realisation of � can be thought of as either a point set {x1, x2, . . . , xk},
or as a counting measure

∑k
i=1 δxi

, where k is the (random) number of points in the reali-
sation. We call the latter the empirical measure corresponding to the realisation of the point
set, and note that it is also an element of Mf

+(E). There are three topologies on Mf
+(E)

which will be of interest to us. We say that a sequence of measures μn ∈ Mf
+(E) converges

to μ ∈ Mf
+(E) in the weak topology if

∫
E f dμn converges to

∫
E f dμ for all bounded con-

tinuous functions f : E → R; we say the measures converge in the vague topology if the
integrals converge only for continuous functions with compact support (which are necessar-
ily bounded), and that they converge in the tempered topology if the integrals converge for
continuous functions with compact support, which furthermore vanish on the boundary of
their support. The tempered topology will play a role in Section 4, where we establish an
LDP for the queue occupancy measure by expressing it as a function of the empirical mea-
sure of the marked arrival process, and using the contraction principle. In order to do so, we
require continuity of the queueing map, which holds in the tempered topology on the image
space, but not the weak topology.

We now consider a sequence of Cox point processes �n, with corresponding stochastic
intensities �n. Our first contribution is a large deviation principle (LDP) for their scaled
empirical measures:

THEOREM 2.1. Suppose that (�n,n ∈ N) is a sequence of random finite Borel measures
on a σ -compact Polish space (E,d), and that the sequence �n/n satisfies an LDP in Mf

+(E)

equipped with the weak topology, with good rate function I1(·). Let �n be a Cox process with
stochastic intensity �n, that is, a random counting measure on E equipped with its Borel σ -
algebra. Then the sequence of measures �n/n satisfies an LDP in Mf

+(E) equipped with the
weak topology, with good rate function

I2(μ) =
⎧⎪⎨
⎪⎩

inf
λ

{
I1(λ) + λ(E)

}
if μ ≡ 0,

inf
λ

{
I1(λ) + IPoi

(
μ(E),λ(E)

) + μ(E)H

(
μ

μ(E)

∣∣∣ λ

λ(E)

)}
if μ �≡ 0,

where H and IPoi are defined as follows:

H(β|α) =
⎧⎨
⎩

∫
log(dβ/dα)dβ if β 	 α and

∫ ∣∣log(dβ/dα)
∣∣dβ < ∞

+∞ otherwise,

IPoi(x,α) =

⎧⎪⎪⎨
⎪⎪⎩

x log
x

α
− x + α if α > 0,

0 if α = 0, x = 0,

+∞ if α = 0, x > 0.

The function H(β|α) is called the relative entropy or Kullback–Leibler divergence of β with
respect to α.

A slightly different version of this theorem, with only local finiteness of the measures �n

assumed, has been established by Schreiber [15], albeit in the vague rather than the weak
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topology; his result also requires a technical assumption about the measures �n/n dominat-
ing a fixed measure with full support on E, which we do not need. However, his result does
not require that the space be σ -compact. The extension of the result to the weak topology is
nontrivial, and relies on the finiteness assumption on the intensity measures. In addition, our
proof techniques are very different. A functional LDP for rescaled Poisson random measures
is proved in [7] using projective limits, and in [10] using Cramér’s theorem and subadditivity
arguments.

The claim of Theorem 2.1 appears intuitive from the assumed LDP for the intensity mea-
sures �n/n, the LDP for a Poisson random variable, and Sanov’s theorem for the empirical
distribution. However, a number of technical conditions need to be checked. Moreover, while
these imply an LDP, goodness of the rate function is not immediate. We show this indirectly
by establishing exponential tightness; this is the step where finiteness of the measures is cru-
cial.

Next, we consider a sequence of stationary Cox/G/∞ queues where the arrival processes
are sped up by the index n ∈N, while the service process remains unchanged. More precisely,
the service times are i.i.d. with some fixed distribution F that does not depend on n, while
the arrival process into the nth queue is a Cox process with stochastic intensity (directing
measure) �n on R. We make the following assumptions.

ASSUMPTIONS.

[A1] (�n,n ∈ N) is a sequence of random σ -finite measures on R, whose laws are trans-
lation invariant, such that E[�n([a, b])] = nλ(b − a), for some fixed λ > 0, and any compact
interval [a, b] ⊂ R.

[A2] For any interval [a, b], the sequence (�n/n)|[a,b] obeys an LDP on Mf
+([a, b])

equipped with the weak topology, with good rate function I[a,b].
[A3] Define

ψn(θ) = logE
[
e

θ�n([0,1])
n

]
.

There is a neighbourhood of 0 on which ψn(nθ)/n is bounded, uniformly in n.
[A4] The mean service time, given by

∫ ∞
0 x dF(x) = ∫ ∞

0 F(x)dx, is finite; here F =
1 − F denotes the complementary cumulative distribution function of the service time.

Let Qn(t) denote the number of customers at time t in the infinite-server queue with Cox
process arrivals with intensity �n and i.i.d. service times with distribution F . Let Ln denote
the measure on R which is absolutely continuous with respect to Lebesgue measure, with
density Qn(·). Our second contribution in this paper is the following:

THEOREM 2.2. Consider a sequence of Cox/G/∞ queues indexed by n ∈ N, where the
arrival process into the nth queue is a Cox process with directing measure �n, and service
times are i.i.d. with common distribution F . Suppose the arrival and service processes satisfy
Assumptions [A1]–[A4]. Let Qn(t) denote the number of customers in the nth queue at time
t , and let Ln denote the random measure on R which is absolutely continuous with respect
to Lebesgue measure and has density Qn(·). Then the sequence of measures Ln satisfies
Assumptions [A1]–[A3]. In particular, for any compact interval [a, b] ⊂ R, the measures
(Ln/n)|[a,b] satisfy an LDP on Mf

+([a, b]) equipped with the weak topology, with a good
rate function J[a,b].

A fuller description of the rate function J[a,b] is provided in the proof of this theorem,
in Section 4. The theorem shows that the sequence of queue occupancy measures Ln also
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satisfies the above assumptions and, in particular, that they satisfy an LDP. This implies that
our analysis extends easily to an arbitrary number of Cox/G/∞ queues in (nonstandard)
tandem, where the arrivals into each queue constitute a Cox process with directing measure
given by the number in the previous queue.

Let �n denote the Cox point process of arrivals into the nth system as above, with di-
recting measure �n. Denote by �̂n the marked point process obtained by marking each
arrival with its service time. Can we prove an LDP, not just for the queue occupancy mea-
sures but for the queue lengths at a fixed time, say for the sequence of random variables
Qn(0)/n = �̂n(A0)/n? Unfortunately, the map μ �→ μ(A0) is not continuous in the weak
topology, since the indicator function of the set A0 is not a continuous function. Hence, our
approach of invoking the contraction principle does not work. It might be possible to get
around this, by sandwiching the indicator function of A0 between bounded continuous func-
tions which converge to it pointwise from below and above. We could then prove an LDP for
the integral of the queue occupancy measure against these functions. If we could calculate
the rate function explicitly, and show that it approaches the same limit for the functions ap-
proximating the indicator from above and from below, then that would prove the LDP for the
marginal queue length distribution. But as these calculations are quite involved, and distract
from the main motivation of the present work, we do not pursue them here.

Next, we turn to the departure process from a Cox/G/∞ queue. While we study nonstan-
dard tandems in which departures leave the network rather than feeding the next queue in the
tandem, our model can be easily extended to reaction networks in which the products of one
reaction are reactants in the next, rather than catalysts as in our model. In that case, one would
have a standard tandem of infinite-server queues, instead of the nonstandard tandems that are
the focus of this paper. In addition, the departure process is an object of interest in queueing
theory. With these motivations, we now describe our results for the departure process.

Let �n denote the point process of departures, which may be viewed as a random counting
measure on R. From the description of the ·/G/∞ queue in terms of point processes given
in the Introduction, we see that for any interval [a, b], we have

(1) �n

([a, b]) = �̂n

(
cl(A[a,b] \ Ab)

)
,

since a customer departs during the interval [a, b] only if it arrives at time t ≤ b, bringing in
an amount of work x such that a ≤ t + x ≤ b; here cl(B) denotes the closure of a subset B

of R2. Our next result establishes an LDP for the empirical measures, �n, of the departures
from the queue. Hence, the results extend easily to a (standard) tandem of such queues.

THEOREM 2.3. Let �n, n ∈ N, be a sequence of Cox arrival processes satisfying As-
sumptions [A1]–[A3], and let �̂n be a Cox process obtained by marking the arrivals with
i.i.d. service times drawn according to a distribution F satisfying Assumption [A4]. Let �n

denote the corresponding departure process from an infinite-server queue, as defined pre-
cisely in (1). Then, (�n,n ∈ N) satisfies [A1]–[A3]; in particular, for any fixed compact
interval [a, b], (�n/n)|[a,b] obeys an LDP on Mf

+([a, b]) equipped with the weak topology,
with a good rate function K[a,b].

The Cox/G/∞ model studied in this paper is an instance of a queue in a random environ-
ment. The first study of infinite-server queues in random environment was in [12]: factorial
moments in stationarity were derived for the M/M/∞ queue in a Markovian environment,
namely one in which the arrival and service rates are modulated by a finite state, irreducible,
continuous time Markov chain. There has recently been extensive further study of this model,
including moments for steady state and transient distributions, and large deviation and cen-
tral limit asymptotics for the marginal distribution of the queue length; see [2] for a collation
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of the results. The Markovian assumption on the environment is relaxed in [9], where the
background process modulating arrivals and services in an M/M/∞ queue is just a general
càdlàg stochastic process. An LDP is proved for the queue length at an arbitrary fixed time,
t , whereas we establish a process level LDP, without assuming (conditionally) exponential
service times. A special type of Cox background process is considered in [8], which proves a
functional CLT for the scaled queue length process. In all of these cases the queue length is
viewed as a random càdlàg function, whereas we view it as living on a space of measures.

The proof of Theorem 2.1 is presented in Section 3, and the proofs of Theorems 2.2 and 2.3
in Section 4.

3. Proof of empirical measure LDP. Our proof of Theorem 2.1 relies on a theorem of
Chaganty [4], which essentially states that a sequence of probability measures on a product
space satisfies an LDP if the corresponding sequences of marginal and conditional probability
distributions do so, and certain additional technical conditions are satisfied. For completeness,
we include below a statement of this theorem, together with an extension of Sanov’s theorem
by Baxter and Jain [1] which is needed to check its conditions, and relevant definitions.

DEFINITION 3.1. Let (�1,B1) and (�2,B2) be two Polish spaces with their associ-
ated Borel σ -fields. Let {νn(·, ·)} be a sequence of transition functions on �1 × B2, that is,
νn(x1, ·) is a probability measure on (�2,B2) for each x1 ∈ �1 and νn(·,B2) is a measurable
function on �1 for each B2 ∈ B2. We say that the sequence of probability transition func-
tions {νn(x1, ·), x1 ∈ �1} satisfies the LDP continuously in x1 with rate function J (x1, x2),
or simply the LDP continuity condition holds, if:

1. For each x1 ∈ �1, J (x1, ·) is a good rate function on �2, that is, it is nonnegative, lower
semicontinuous (l.s.c.), and has compact level sets.

2. For any sequence {x1n} in �1 such that x1n → x1, the sequence of measures {νn(x1n, ·)}
on �2 obeys the LDP with rate function J (x1, ·).

3. J (x1, x2) is l.s.c. as a function of (x1, x2).

THEOREM 3.2 ([4], Theorem 2.3). Let (�1,B1), (�2,B2) be two Polish spaces with
their associated Borel σ -fields. Let {μ1n} be a sequence of probability measures on (�1,B1).
Let {νn(x1,B2)} be a sequence of probability transition functions defined on �1 × B2. We
define the joint distribution μn on the product space �1 × �2, and the marginal distribution
μ2n on �2 by

μn(B1 × B2) =
∫
B1

νn(x1,B2) dμ1n(x1), μ2n(B2) = μn(�1 × B2).

Suppose that the following two conditions are satisfied:

1. {μ1n} satisfies an LDP with good rate function I1(x1).
2. {νn(·, ·)} satisfies the LDP continuity condition with a rate function J (x1, x2).

Then the sequence of joint distributions {μn} satisfies a weak LDP on the product space
�1 × �2, with rate function

I (x1, x2) = I1(x1) + J (x1, x2).

The sequence of marginal distributions μ2n satisfies an LDP with rate function

I2(x2) = inf
x1∈�1

[
I1(x1) + J (x1, x2)

]
.

Finally, {μn} satisfies the LDP if I (x1, x2) is a good rate function.
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REMARK. Recall that a sequence of probability measures (or random variables) is said
to satisfy a weak LDP if the large deviations upper bound holds for all compact sets, and to
satisfy a (full) LDP if it holds for all closed sets. For both, the large deviations lower bound
holds for all open sets.

THEOREM 3.3 ([1], Theorem 5). Let (S, d) be a Polish space. Let {αn} be a sequence
of probability measures on (S, d) converging weakly to a probability measure α. For each n,
let Xn

i , i ∈ N be i.i.d. S-valued random variables with common distribution αn. Let M1(S)

denote the space of probability measures on S and let μn ∈ M1(S) denote the empirical
distribution, (δXn

1
+· · ·+δXn

n
)/n. Then {μn} satisfies the LDP with good rate function H(·|α),

which was defined in the statement of Theorem 2.1.

The proof of Theorem 2.1 proceeds through a sequence of lemmas. We begin with an
elementary LDP for a sequence of Poisson random variables.

LEMMA 3.4. Let Nn,n ∈ N be a sequence of Poisson random variables with parameter
nαn, and suppose that αn tends to α ≥ 0. Then the sequence Nn/n obeys an LDP in R+ with
good rate function IPoi(·, α) defined in the statement of Theorem 2.1.

PROOF. We apply the Gärtner–Ellis theorem [5], Theorem 2.3.6, to the sequence Nn/n.
By direct calculation,

1

n
logE

[
enθ Nn

n
] = αn

(
eθ − 1

)
.

This sequence of scaled log-moment generating functions converges pointwise to the limit
α(eθ − 1), which is finite and differentiable everywhere (hence also continuous, and essen-
tially smooth). Hence, by the Gärtner–Ellis theorem, the sequence of random variables Nn/n

obeys an LDP with a rate function which is the convex conjugate of α(eθ − 1). A straight-
forward calculation confirms that this is the function IPoi(·, λ) in the statement of the lemma,
and that it is l.s.c. with compact level sets for each α. �

The next two lemmas establish conditional LDPs for the scaled empirical measures of
Poisson processes whose scaled intensities converge to a limit.

LEMMA 3.5. Let �n,n ∈N be a sequence of Poisson point processes with intensity mea-
sures nλn ∈ Mf

+(E), and suppose that λn converge weakly in Mf
+(E) to the zero measure.

Then, �n/n,n ∈ N satisfy the LDP in Mf
+(E) equipped with the weak topology, with good

rate function

I0(μ) =
{

0 if μ ≡ 0,

+∞ otherwise.

PROOF. As the map μ �→ μ(E) is weakly continuous (the indicator of E is a bounded,
continuous function), it follows that λn(E) tends to λ(E) = 0. Let Nn = �n(E) denote the
total number of points in the Poisson process �n. Then, Nn is a Poisson random variable
with parameter nλn(E), and it follows from Lemma 3.4 that (Nn/n,n ∈ N) obey an LDP
with good rate function

IPoi(x,0) =
{

0 if x = 0,

+∞ if x > 0.
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Let F ⊂ Mf
+(E) be closed in the weak topology, and suppose that it does not contain the

zero measure. Define

xF = inf
{
μ(E) : μ ∈ F

}
.

We claim that xF > 0. Indeed, if xF = 0, then we can find a sequence of measures μn ∈ F

such that μn(E) tends to zero, that is,
∫
E 1dμn tends to zero. It follows that

∫
E f dμn tends

to zero for all bounded, measurable, nonnegative functions f , and hence also for all bounded
measurable functions. Hence, the sequence μn converges weakly to the zero measure, con-
tradicting the assumption that 0 /∈ F and F is closed.

We now have the large deviations upper bound for F :

lim sup
n→∞

1

n
logP

(
�n

n
∈ F

)
≤ lim sup

n→∞
1

n
logP

(
�n(E)

n
≥ xF

)

= lim sup
n→∞

1

n
logP

(
Nn

n
≥ xF

)
= −∞,

where we have used the LDP for Nn/n with rate function IPoi(·,0) and the fact that xF > 0
to obtain the last equality.

The large deviations lower bound is trivial for open sets G not containing the zero measure,
as the infimum of the rate function is infinite on such sets. Now, for G containing the zero
measure, we have

lim inf
n→∞

1

n
logP

(
�n

n
∈ G

)
≥ lim inf

n→∞
1

n
logP

(
�n

n
≡ 0

)
= lim inf

n→∞
1

n
logP(Nn = 0)

= lim inf
n→∞

(−λn(E)
) = −λ(E) = 0,

as Nn ∼ Poi(nλn(E)). This completes the proof of the lemma. �

LEMMA 3.6. Let �n,n ∈ N be a sequence of Poisson point processes with intensity
measures nλn, and suppose that the sequence λn converges in the weak topology on Mf

+(E)

to λ �≡ 0. Then, �n/n,n ∈ N satisfy the LDP in Mf
+(E) equipped with the weak topology,

with good rate function

I1(μ) =
⎧⎪⎨
⎪⎩

IPoi
(
μ(E),λ(E)

) + μ(E)H

(
μ

μ(E)
| λ

λ(E)

)
if μ �≡ 0,

IPoi
(
0, λ(E)

)
if μ ≡ 0.

Here, IPoi(·, ·) and H(·|·) are as defined in Lemma 3.4 and Theorem 3.3 respectively.

PROOF. We will prove the lemma by first establishing an LDP for the sequence Nn/n,
then verifying that conditional on this, �n/n satisfies the LDP continuously, and invoking
Theorem 3.2.

The LDP for Nn/n, with rate function IPoi(·, λ(E)), is immediate from Lemma 3.4 since
λn(E) tends to λ(E). We now prove an LDP for �n/n, conditional on Nn/n. Fix a sequence
Nn such that Nn/n → x ≥ 0. If x = 0, then the proof follows that of Lemma 3.5, and yields
I0 as the rate function.

It remains to consider x > 0. We can write

�n = δXn
1
+ δXn

2
+ · · · + δXn

Nn
,

where the Xn
i are i.i.d., with law λn

λn(E)
. Note that the probability law of Xn

i is well defined
for all n sufficiently large, as λn(E) tends to λ(E) > 0. Define

�̂n = δXn
1
+ δXn

2
+ · · · + δXn�nx�,
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where the dependence of �̂n on x has been suppressed in the notation. We claim that the
sequences �n/n and �̂n/n are exponentially equivalent (see [5], Definition 4.2.10). To see
this, we use the fact that the weak topology on Mf

+(E) can be metrised, for instance by the
Kantorovich–Rubinstein metric,

dKR(μ, ν) = sup
f ∈Lip(1),‖f ‖∞≤1

∫
E

f dμ −
∫
E

f dν.

It is easy to see that, for all bounded measurable f ,∣∣∣∣
∫
E

f d�n −
∫
E

f d�̂n

∣∣∣∣ ≤ ‖f ‖∞
∣∣Nn − �nx�∣∣,

and so, dKR(�n/n, �̂n/n) tends to zero deterministically, as Nn/n tends to x deterministi-
cally. This establishes the exponential equivalence of the two sequences.

Now, we have from Theorem 3.3 and the observation that λn(·)/λn(E) converges weakly
to λ(·)/λ(E), that (�̂n/�nx�, �nx� ∈ N) obey an LDP in M1(E) with good rate function
H(· ∣∣ λ

λ(E)
), and hence also in Mf

+(E) with rate function which is the same on M1(E), and

infinite outside it. It follows that (�̂n/n,n ∈ N) obey an LDP in Mf
+(E) with rate function

(2) Hx(μ) =
⎧⎪⎨
⎪⎩

xH

(
μ

x

∣∣∣ λ

λ(E)

)
if

μ

x
∈M1(E),

+∞ otherwise.

Finally, by [5], Theorem 4.2.13, (�n/n,n ∈ N) obey an LDP in Mf
+(E) with the same rate

function Hx , as they are exponentially equivalent to �̂n/n.
Having established conditional LDPs for �n/n, conditional on Nn/n tending to x, we

now need to check the LDP continuity conditions in Definition 3.1 with �1 = R+ and �2 =
Mf

+(E), and transition function νn(x, ·) defined as the law of �n conditional on Nn = �nx�.
We defne the function

J (x,μ) =
{
I0(μ) if x = 0,

Hx(μ) if x > 0,

where I0 is defined in Lemma 3.5 and Hx in (2). Note that J is nonnegative as I0 and
{Hx,x ≥ 0} are all nonnegative.

The first condition in Definition 3.1 holds trivially if x = 0, as all level sets are singletons
comprised of the zero measure; if x > 0, the condition follows from the goodness of the
relative entropy function, which is well known from Sanov’s theorem (see, e.g., [5], Theorem
6.2.10). In a bit more detail, given α > 0, the level set

Lα =
{
μ ∈ M1(E) : H

(
μ

∣∣∣ λ

λ(E)

)
≤ α

x

}

is compact in M1(E) equipped with the weak topology; hence, so is its image under the
continuous map μ �→ xμ from M1(E) to Mf

+(E).
The second condition in Definition 3.1 is precisely the content of the conditional LDPs that

we just obtained. That leaves us to check the third condition, which is that J (x,μ) is l.s.c.
in (x,μ). As R+ ×Mf

+(E) is a metric space, we can check this along sequences. Consider
a sequence (xn,μn) converging to (x,μ). If (x,μ) = (0,0), then J (x,μ) = 0, which is no
bigger than lim infJ (xn,μn). If x = 0 and μ �≡ 0, then μ(E) > 0 and so, for all n sufficiently
large, xn < μn(E); consequently, μn/xn is not a probability measure, and J (xn,μn) = +∞.
The same reasoning applies if x > 0 and μ/x /∈ M1(E). Finally, suppose x > 0 and μ/x ∈
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M1(E), so that μn/xn converges weakly to μ/x in Mf
+(E). We may restrict attention to the

subsequence of N for which μn/xn are probability measures, as J (xn,μn) = +∞ otherwise.
Along this subsequence, the desired inequality lim infHxn(μn) ≥ Hx(μ) follows from the
lower semicontinuity of H , the relative entropy function.

We are now in a position to invoke Theorem 3.2, with �1 = R+ and �2 = Mf
+(E). The

second condition in the theorem is a conditional LDP for �n/n given that Nn/n tends to x,
which we have just verified. The first condition is an LDP for Nn/n, which was proved in
Lemma 3.4. Hence, the conclusion of Theorem 3.2 holds, that is, we have an LDP for �n/n

with rate function

I2(μ) = inf
x∈R+

{
IPoi

(
x,λ(E)

) + J (x,μ)
}
.

As J (x,μ) = +∞ unless x = μ(E), it is clear that the infimum is attained at x = μ(E), and
we have

I2(μ) = IPoi
(
μ(E),λ(E)

) + J
(
μ(E),μ

)
.

This coincides with the rate function in the statement of the lemma, and concludes its proof.
�

We now have all the ingredients required to complete the proof of Theorem 2.1.

PROOF OF THEOREM 2.1. We invoke Theorem 3.2 with �1 and �2 both being the space
of finite nonnegative measures on E, equipped with the weak topology and the corresponding
Borel σ -algebra. The sequence μ1n will denote the laws of the directing (intensity) measures
�n, and the probability transition functions νn(λ, ·) will denote the law of the scaled Poisson
random measures �n/n, where �n has intensity nλ. We now check the assumptions of the
theorem.

The first condition in Theorem 3.2 is an LDP for (�n/n,n ∈ N) with a good rate function,
which holds by assumption. To check the second condition in Theorem 3.2, define

J (λ,μ) =
{
I0(μ) if λ ≡ 0,

I1(μ) otherwise,

where I0 and I1 are as defined in Lemmas 3.5 and 3.6. We need to check that the conditions
in Definition 3.1 are satisfed. The first condition is satisfied as I0 and I1 are both good
rate functions, as shown in Lemmas 3.5 and 3.6. The second condition is the content of the
conditional LDPs established in these lemmas. That leaves us to check the third condition,
that J (·, ·) is l.s.c. As the weak topology on Mf

+(E) is metrizable, so is the product topology

on Mf
+(E) ×Mf

+(E), and we can check lower semicontinuity along sequences. Consider a
sequence (λn,μn) converging to (λ,μ), that is, λn converges weakly to λ, and μn to μ. We
distinguish four cases:

1. If λ ≡ 0 and μ ≡ 0, then J (λ,μ) = I0(μ) = 0, which is no bigger than the limit infi-
mum of a nonnegative sequence.

2. If λ ≡ 0 and μ �≡ 0, then J (λ,μ) = I0(μ) = +∞. But note that λn(E) → λ(E) = 0
and μn(E) → μ(E) > 0, and so IPoi(μn(E),λn(E)) → +∞. As

J (λn,μn) = I1(μn) ≥ IPoi
(
μn(E),λn(E)

)
,

we see that J (λn,μn) also tends to infinity.
3. If λ �≡ 0 and μ ≡ 0, then J (λ,μ) = I1(μ) = IPoi(0, λ(E)). On the other hand,

J (λn,μn) ≥ IPoi(μn(E),λn(E)), which tends to IPoi(0, λ(E)) as n tends to infinity, as IPoi
is continuous.
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4. Finally, suppose that λ �≡ 0 and μ �≡ 0. In this case, for all n sufficiently large, both
λn and μn are nonzero measures, and we have J (λn,μn) = I1(μn). As λn(E) and μn(E)

converge to λ(E) and μ(E) respectively, it is easy to see that IPoi(μn(E),λn(E)) tends to
IPoi(μ(E),λ(E)). Hence, to verify lower semicontinuity, it suffices to show that H(β|α)

is jointly l.s.c. in its arguments. Recall the Donsker–Varadhan variational formula for the
relative entropy (see, e.g., [6], Section C.2):

H(β|α) = sup
g∈Cb(E)

{∫
E

g dβ − log
∫
E

eg dα

}
,

where Cb(E) denotes the set of bounded continuous functions on E. But if g ∈ Cb(E), so is
eg , and the map

(α,β) �−→
∫
E

g dβ − log
∫
E

eg dα

is continuous. Consequently, H(β|α), being the supremum of continuous functions of (α,β),
is l.s.c.

Thus, we have checked all the conditions of Theorem 3.2. Hence, the conclusion of the
theorem holds, and yields that (�n/n,n ∈N) obey an LDP on Mf

+(E), with rate function

I2(μ) = inf
λ∈Mf

+(E)

{
I1(λ) + J (λ,μ)

}
,

where J (λ,μ) equals I0(μ) if λ ≡ 0 and I1(μ) otherwise, and I0 and I1 are defined in
Lemmas 3.5 and 3.6 respectively. Using those definitions, we can write the rate function
more explicitly as follows:

I2(μ) =
⎧⎪⎨
⎪⎩

inf
λ

{
I1(λ) + λ(E)

}
if μ ≡ 0,

inf
λ

{
I1(λ) + IPoi

(
μ(E),λ(E)

) + μ(E)H

(
μ

μ(E)

∣∣∣ λ

λ(E)

)}
if μ �≡ 0,

where the infimum is taken over all finite Borel measures λ on E. The expression above
coincides with that in the statement of the theorem.

It remains only to check that the rate function I2 is good. This is a consequence of
Lemma 3.8 below, which establishes the exponential tightness of the scaled empirical mea-
sures �n/n, and [5], Lemma 1.2.18. This completes the proof of Theorem 2.1. �

We first state a proposition which provides an explicit construction of compact subsets of
Mf

+(E), and which we will need for the proof of Lemma 3.8. The proof of the proposition
is deferred until after the lemma, and is where the assumption of σ -compactness of E is
required.

PROPOSITION 3.7. Let K1 ⊆ K2 ⊆ · · · be a nested sequence of compact subsets of E,
whose union is equal to E; such a sequence exists by the assumption that E is σ -compact. Let
ε0 ≥ ε1 ≥ · · · be a sequence of real numbers decreasing to zero. Define K0 to be the empty
set. Then, the set

L(Kn,εn) = {
μ ∈ Mf

+(E) : μ(
Kc

n

) ≤ εn ∀n ∈ N
}
,

is compact in the weak topology on Mf
+(E). Moreover, if K is any compact subset of

Mf
+(E), and εn, n ∈ N+ any sequence decreasing to 0, then there exist ε0 > 0 and com-

pact K1 ⊆ K2 ⊆ · · · ⊆ E such that K ⊆ L(Kn,εn).
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LEMMA 3.8. Suppose that (�n,n ∈ N) is a sequence of random finite Borel measures
on a Polish space (E,d), which satisfy the assumptions of Theorem 2.1. Let (�n,n ∈ N) be a
sequence of Cox point processes on E, with stochastic intensities �n. Then, the sequence of
random measures �n/n is exponentially tight in Mf

+(E) equipped with the weak topology.

PROOF. We have to show that for every α < ∞, there is a compact Kα ⊆ Mf
+(E) such

that

(3) lim sup
n→∞

1

n
logP

(
�n

n
∈Kc

α

)
< −α.

By the assumptions of Theorem 2.1, the sequence �n/n satisfies an LDP in Mf
+(E), with

good rate function I1. Hence, the sequence is exponentially tight, that is, there is a compact
set K̂α ⊆ Mf

+(E) such that

(4) lim sup
n→∞

1

n
logP

(
�n

n
/∈ K̂α

)
< −α.

By Proposition 3.7, K̂α is contained in a compact set of the form L(Kn,εn), where εn, n ≥ 1 can
be chosen to decrease to zero arbitrarily. We will show that, for a suitably chosen sequence
δn ↓ 0, the set L(Kn,δn) satisfies the upper bound in (3).

Observe that

(5)

P

(
�n

n
/∈ L(Ki,δi )

)
≤ P

(
�n

n
/∈ L(Ki,δi )

∣∣∣�n

n
∈ L(Ki,εi )

)
+ P

(
�n

n
/∈ L(Ki,εi )

)

≤ P

(
�n

n
/∈ L(Ki,δi )

∣∣∣�n

n
∈ L(Ki,εi )

)
+ P

(
�n

n
/∈ K̂α

)
.

Now, conditional on �n, �n is a Poisson point process, and �n(K
c
i ) is a Poisson ran-

dom variable with mean �n(K
c
i ). Thus, conditional on �n/n ∈ L(Ki,εi ), the random variable

�n(K
c
i ) is stochastically dominated by a Poisson random variable with mean nεi , for each

i ∈ N. Also, the event {�n/n /∈ L(Ki,δi )} is the union of the events {�n(K
c
i ) > nδi} over i ∈ N.

Define mn = sup{i : nδi > 1}. Since �n is a counting measure, the event {�n(K
c
i ) > nδi} co-

incides with {�n(K
c
i ) ≥ 1} for i > mn. Hence, we obtain using the union bound that

(6)

P

(
�n

n
/∈ L(Ki,δi )

∣∣∣�n

n
∈ L(Ki,εi )

)
≤

∞∑
i=0

P
(
Poi(nεi) > nδi

)

=
mn∑
i=0

P
(
Poi(nεi) > nδi

) +
∞∑

i=mn+1

P
(
Poi(nεi) ≥ 1

)
.

Without loss of generality, we can take ε0 ≥ 1. Take εi = e−i and δi = κ/i for i ≥ 1, for a
constant κ to be determined, depending on α. Take δ0 = κε0. Then mn = �κn�, and we obtain
using Markov’s inequality that

(7)
∞∑

i=mn+1

P
(
Poi(nεi) ≥ 1

) ≤
∞∑

i=�κn�
ne−i ≤ ne−κn

1 − e−1 .

We also have the large deviations (Chernoff) bound for a Poisson random variable that, for
μ > λ,

P
(
Poi(λ) > μ

) ≤ exp
(
−μ log

μ

λ
+ μ − λ

)
,
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from which it follows that

P
(
Poi(nεi) > nδi

) ≤
⎧⎪⎨
⎪⎩

exp
(−nε0(κ logκ − κ + 1)

)
, i = 0,

exp
(
−nκ

logκ + i − 1 − log i

i

)
, i ≥ 1.

Now, ε0 ≥ 1 by assumption and, if κ is chosen sufficiently large, then it is easy to verify that
(logκ + i − 1 − log i)/i is bigger than 1/2 for all i ≥ 1. Hence, we obtain that

(8)
mn∑
i=0

P
(
Poi(nεi) > nδi

) ≤ e−n(κ logκ−κ+1) + κne−κn/2,

as mn = �κn�. Substituting (7) and (8) in (6), we get

P

(
�n

n
/∈ L(Ki,δi )

∣∣∣�n

n
∈ L(Ki,εi )

)
≤ ne−κn

1 − e−1 + e−n(κ logκ−κ+1) + κne−κn/2.

It is clear from this that we can choose κ sufficiently large to ensure that

(9) lim sup
n→∞

1

n
logP

(
�n

n
/∈ L(Ki,δi )

∣∣∣�n

n
∈ L(Ki,εi )

)
≤ −α.

Finally, combining (4), (5) and (9), we conclude that

lim sup
n→∞

1

n
logP

(
�n

n
/∈ L(Ki,δi )

)
≤ −α.

This concludes the proof of the lemma. �

PROOF OF PROPOSITION 3.7. The weak topology on the space of finite measures on
a Polish space is metrizable [17]), and so it suffices to check sequential compactness. Let
(μn,n ∈ N) be a sequence of finite measures on E satisfying the assumptions of the proposi-
tion with respect to a nested sequence of compact sets Kn whose union is equal to E, and a
sequence εn decreasing to zero. In particular, the measures are bounded; μn(E) ≤ ε0 for all
n ∈N. We want to show that (μn,n ∈N) contains a convergent subsequence.

Recall that the space of subprobability measures on a compact set K is compact in the
weak topology; this follows from the Banach–Alaoglu theorem applied to the unit ball in
the space of finite signed measures on K , which the Riesz representation theorem identifies
with the dual of the Banach space C(K) of continuous functions on K equipped with the
supremum norm. Hence, by Tychonoff’s theorem, so is the space of finite measures on K

bounded by an arbitrary constant ε0.
Thus, the measures μn restricted to K1 all lie within a compact set; hence, there is a sub-

sequence μ11,μ12, . . . , whose restriction to K1 converges weakly to some μ̃1 ∈ Mf
+(K1).

Similarly, the restriction of this subsequence to K2 all lie within a compact set, and contain a
convergent subsubsequence μ21,μ22, . . .. We can extend this reasoning to K3, K4 and so on.

Formally, denote by pn the projection from Mf
+(E) to Mf

+(Kn) and by pmn the projec-

tion from Mf
+(Km) to Mf

+(Kn) for m ≥ n. Then, we can rewrite the above as:

p1μ1n → μ̃1 ∈ Mf
+(K1), p2μ2n → μ̃2 ∈ Mf

+(K2), , . . . ,

where the convergence is with respect to the weak topology on the corresponding spaces.
Now consider the diagonal sequence μkk . It is clear from the above that

pnμkk
k→∞→ μ̃n ∈ Mf

+(Kn)

for each n. A natural question to ask is whether there is a measure μ̃ ∈ Mf
+(E) such that

μ̃n = pnμ̃ for all n. The answer follows from a generalisation of Kolmogorov’s Extension
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theorem by Yamasaki [18], Proposition 2.1; it is affirmative if the measures μ̃n satisfy the
consistency conditions pmnμ̃m = μ̃n for all m > n. It is straightforward to verify these.

We now show that the diagonal subsequence μkk converges weakly to the measure μ̃

(whose existence we have just shown) in the weak topology on Mf
+(E), and moreover that

the limit μ̃ is in L(Kn,εn). We start with the latter. As μ̃ is a finite measure on the Polish space
E, it is regular; therefore, as Kn are compact sets increasing to E, μ̃(Kn) increases to μ̃(E).
Hence, for any m ∈N,

μ̃
(
Kc

m

) = lim
n→∞ μ̃(Kn) − μ̃(Km).

Now, for any fixed i > n > m, μ̃i is the restriction (or projection) of μ̃ to the set Ki , and so

μ̃(Kn) − μ̃(Km) = μ̃i(Kn) − μ̃i(Km) ≤ μ̃i

(
Kc

m

) ≤ εm.

The last inequality holds because μ̃i is the weak limit of measures whose mass on Kc
m is

bounded by εm, and Kc
m is an open set. As this holds for each n, we conclude on taking limits

that μ̃(Kc
m) ≤ εm. But m was arbitrary, so μ̃ ∈ L(Kn,εn).

Next, given δ > 0 and a bounded continuous function g : E → R, choose � large enough
that ε�‖g‖∞ < δ. Next, pick m ≥ � large enough that∣∣∣∣

∫
K�

g dμ�n −
∫
K�

g dμ̃�

∣∣∣∣ ≤ δ ∀n ≥ m,

which is possible since μ�n converges weakly to μ̃� as n tends to infinity. Now, μn· is a
subsequence of μ�· for n ≥ �, so the above inequality also holds for

∫
K�

g(dμnn − dμ̃�) for
all n ≥ m. Thus, we can write∣∣∣∣

∫
E

g dμnn −
∫
E

g dμ̃

∣∣∣∣ ≤
∣∣∣∣
∫
K�

g(dμnn − dμ̃�)

∣∣∣∣ +
∣∣∣∣
∫
K�

g(dμ̃� − dμ̃)

∣∣∣∣ + 2‖g‖∞ε�,

as μnn(K
c
� ) and μ̃(Kc

� ) are both bounded above by ε�. We have just shown that the first
integral above is smaller than δ in absolute value, for all n ≥ m. The second integral is zero
as μ̃� is the restriction or projection of μ̃ to K�. The last term is bounded by 2δ by the choice
of �. Thus, we have shown that we can choose m in such a way that∣∣∣∣

∫
E

g dμnn −
∫
E

g dμ̃

∣∣∣∣ ≤ 3δ

for all n ≥ m. As g was an arbitrary bounded continuous function, this proves that μnn con-
verges to μ̃. This completes the proof that L(Kn,εn) is compact.

For the converse, let K be compact in Mf
+(E) equipped with the weak topology. As the

map μ �→ μ(E) is continuous (the indicator of E is a bounded continuous function E →R),
its supremum over K is attained. Denote the supremum by ε0. Then μ(E) = μ(Kc

0) ≤ ε0

for all μ ∈ K. Next, we invoke a generalisation of Prokhorov’s theorem by Bogachev [3],
Theorem 8.6.2), which states that the measures in a compact set are uniformly tight. In other
words, given ε1 > 0, we can find a compact subset K1 of E such that μ(Kc

1) ≤ ε1 for all
μ ∈ K. Similarly, we can find compact K2 such that μ(Kc

2) ≤ ε2 for all μ ∈ K. Without loss of
generality, we can assume that K1 ⊆ K2; otherwise, re-define K2 as their union. Continuing
in the same vein, we obtain a sequence Kn of nested compact sets such that μ(Kc

n) ≤ εn for
all n ∈ N, for all μ ∈ K. If their union is not equal to E, it can be extended countably to have
this property, by the assumption that E is σ -compact. Now, K ⊆ L(Kn,εn). �
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FIG. 1. The wedge A[s,t] and the truncated wedge Au[s,t].

4. Proof of LDP for queue occupancy and departures. The proof of Theorems 2.2
and 2.3 are presented in this section. We begin by recalling how the queue occupancy measure
is related to the input to the queue. First, we represent the input to the nth queue as a Cox
process on R×R+ by marking each arrival with its service time; the resulting marked point
process is a Cox process on R×R+ with stochastic intensity �n ⊗ F . Now, Qn(t) is equal
to the number of points of this Cox process lying in the triangle

At = {
(s, x) ∈ R×R+ : s ≤ t, x ≥ t − s

}
.

Furthermore, the queue length process {Qn(t), t ∈ [a, b]}, is determined by the restriction of
the above Cox process to the wedge

A[a,b] := ⋃
t∈[a,b]

At,

as illustrated in Figure 1. Next, for u ≤ s ≤ t , we will also need to define the truncated sets

Au
t = {

(s, x) ∈R×R+ : u ≤ s ≤ t, x ≥ t − s
}
, Au[s,t] := ⋃

x∈[s,t]
Au

x.

Finally, recall that we are interested in the occupancy measure Ln, which is defined as the
random measure that is absolutely continuous with respect to Lebesgue measure, and has
density Qn(·).

Our goal is to prove an LDP for Ln, restricted to an arbitrary interval [a, b]. We start by
establishing an LDP for the scaled directing measures �n

n
⊗F , restricted to a truncated wedge

Au[a,b], for arbitrary u < a; we define below a new topology, which we call the tempered
topology, in which we establish this LDP. Then, using the projective limit approach described
below, we extend this family of LDPs to an LDP on the full wedge A[a,b], in the projective
limit topology. However, the queueing map is not continuous in this topology, so we need
to strengthen the LDP to the weak topology on the full wedge. We do this by establishing
exponential tightness of the measures �n

n
⊗ F in the tempered topology on A[a,b]. Next, we

invoke Theorem 2.1 to deduce an LDP for the Cox process on A[a,b] with this intensity.
Finally, we use continuity of the queueing map with respect to the weak topology, and the
contraction principle, to obtain the LDP for Ln. Checking that Ln also satisfies Assumptions
[A1]–[A3] is fairly straightforward. The details of all these steps are presented below.

DEFINITION 4.1. Let u ≤ a < b ∈ R, and let Mf
+(Au[a,b]) denote the space of finite

measures on the truncated wedge Au[a,b] defined above. The tempered topology on this space
is the weakest topology which makes the maps μ �→ ∫

f dμ continuous for all bounded,
continuous functions f : Au[a,b] →R which vanish at the boundary of Au[a,b].

The tempered topology on Mf
+(A[a,b]) is defined analogously.
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Notice that the tempered topology is weaker than the weak topology, as it is restricted to
test functions that vanish at the boundary. We are now ready to state our first result.

LEMMA 4.2. Fix u ≤ a < b ∈ R and consider the truncated wedge Au[a,b]. The sequence

of random measures �n

n
⊗ F |Au[a,b] , n ∈ N, satisfy an LDP on Mf

+(Au[a,b]) equipped with the
tempered topology, with good rate function

Iu[a,b](μ) = inf
{
I[a,b](λ) : λ ∈ Mf

+
([a, b]),μ = (λ ⊗ F)|Au[a,b]

}
.

PROOF. Define the map

T : Mf
+

([u,b]) → Mf
+

([u,b] ×R+
)

by T (μ) = μ ⊗ F . We first show that this map is continuous in the weak topology. As
the weak topology is metrizable, we can check continuity along sequences. To this end,
consider a sequence of finite measures μn on [u,b] converging weakly to a finite mea-
sure μ, and let g : [u,b] × R+ → R be bounded and continuous. Define h : [u,b] �→ R by
h(x) = ∫ ∞

0 g(x, y) dF (y). We have∫
[u,b]×R+

g d
(
T (μn)

) =
∫ b

u

(∫ ∞
0

g(x, y) dF (y)

)
dμn(x) =

∫ b

u
h(x) dμn(x),

where the first equality follows from Fubini’s theorem. If we can show that h is continuous,
then it will follow that

∫
gd(T (μn)) converges to

∫
gd(T (μ)), and, as g was an arbitrary

bounded continuous function, that T (μn) converges weakly to T (μ), thus proving that T is
continuous.

Now, to show that h is continuous, fix ε > 0 and x0 ∈ R such that 1 − F(x0) ≤ ε. Now g

is uniformly continuous on the compact set [u,b] × [0, x0], so we can find δ > 0 such that
|g(x, z) − g(y, z)| < ε provided |x − y| < δ. It follows that∣∣h(x) − h(y)

∣∣
≤

∫ x0

0

∣∣g(x, z) − g(y, z)
∣∣dF(z) +

∫ ∞
x0

∣∣g(x, z)
∣∣dF(z) +

∫ ∞
x0

∣∣g(y, z)
∣∣dF(z)

≤ (
1 + 2‖g‖∞

)
ε.

This proves the continuity of h, and consequently of T .
Next, let S be the map that restricts finite measures on [u,b] × R+ to the wedge Au[a,b].

Equip Mf
+([u,b] ×R+) with the weak topology, and Mf

+(Au[a,b]) with the tempered topol-
ogy. It is easy to see that S is continuous. Indeed, let μn,n ∈ N be a sequence of finite
measures on [u,b] × R+ converging weakly to a finite measure μ on [u,b] × R+, and let
f be a bounded, continuous function on Au[a,b], vanishing on its boundary. Extend it to a

bounded, continuous function f̂ : [u,b] × R+ → R by defining f̂ ≡ f on Au[a,b] and f̂ ≡ 0
on the complement of Au[a,b] in [u,b] ×R+. Then,∫

Au[a,b]
f d

(
S(μn)

) =
∫
[u,b]×R+

f̂ dμn →
∫
[u,b]×R+

f̂ dμ =
∫
Au[a,b]

f d
(
S(μ)

)
,

where the convergence holds by the assumption that μn converge weakly to μ. This proves
that S is continuous. As S and T are both continuous, so is the composition S ◦ T . The
claim of the lemma now follows from the assumed LDP for �n

n

∣∣[u,b] and the contraction
principle [5], Theorem 4.2.1. �
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The family of LDPs on the truncated wedges {Au[a,b], u < a} can be extended to an LDP
on the full wedge A[a,b] using the Dawson–Gärtner theorem for projective limits [5], Theo-
rem 4.6.1. This yields an LDP in the projective limit topology, which is generated by bounded
continuous functions supported on the truncated wedges Au[a,b] and vanishing at their bound-
aries. In order to strengthen this LDP to the weak topology on A[a,b], we need to show ex-
ponential tightness of the measures �n

n
⊗ F in the weak topology. The following lemma is a

key ingredient in establishing this.

LEMMA 4.3. Suppose X,X1,X2, . . . are identically distributed random variables with
arbitrary joint distribution, and suppose αi , i ∈ N are nonnegative coefficients whose sum is
finite, and which we denote by α. Then,

∞∑
i=1

αiXi ≤cx αX,

where we write Y ≤cx Z to denote that Y is dominated by Z in the convex stochastic order,
that is, E[φ(Y )] ≤ E[φ(Z)] for all convex functions φ for which the expectations are defined,
possibly infinite.

PROOF. By scaling the random variables, we assume α = 1 without loss of generality.
By Jensen’s inequality, the inequality

φ

( ∞∑
i=1

αiXi(ω)

)
≤

∞∑
i=1

αiφ
(
Xi(ω)

)
,

holds pointwise on the probability space �. Taking expectations on both sides yields the
result if we can interchange expectation and summation on the right. We can certainly do so
(by Tonelli’s theorem) if the functions φ are nonnegative, and hence also if they are bounded
below. Now, for any c ∈ R, the function φc defined by φc(x) = max{c,φ(x)} is convex and
bounded below, so we get

E

[
φc

( ∞∑
i=1

αiXi

)]
≤

∞∑
i=1

αiE
[
φc(Xi)

] =
( ∞∑

i=1

αi

)
E

[
φc(X)

]
,

as the Xi are identically distributed with the same law as X. Since φ ≤ φc, it follows that

E

[
φ

( ∞∑
i=1

αiXi

)]
≤

( ∞∑
i=1

αi

)
E

[
φc(X)

]
,

for all c ∈R. Letting c decrease to −∞ on the right now yields the claim of the lemma. This
can be justified by splitting φ into its positive and negative parts, and using the monotone
convergence theorem. �

We are now ready to show that the directing measures restricted to a wedge are exponen-
tially tight in the weak topology.

PROPOSITION 4.4. The sequence of random measures((
�n

n
⊗ F

)∣∣∣∣
A[a,b]

)
n∈N

is exponentially tight in the weak topology.
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PROOF. We have to show that for every 0 < α < ∞, there is a compact set Kα ⊆
Mf

+(A[a,b]) such that

(10) lim sup
n→∞

1

n
logP

((
�n

n
⊗ F

)∣∣∣∣
A[a,b]

∈ Kc
α

)
< −α.

We will use the explicit construction of a weakly compact set of measures given in Proposi-
tion 3.7. We seek a nested sequence of compact sets K1 ⊆ K2 ⊆ · · · ⊆ A[a,b], whose union is
the wedge A[a,b], and a sequence of positive constants ε0 ≥ ε1 ≥ · · · decreasing to zero, such
that

(11) P

((
�n

n
⊗ F

)(
Kc

i

)
> εi

)
≤ e−n(i+1)α ∀i ≥ 0,

where we define K0 to be the empty set. If we can find such Ki and εi , then the weakly
compact set of measures

Kα = {
μ ∈ Mf

+(A[a,b]) : μ(
Kc

i

) ≤ εi ∀i ∈ N
}
,

satisfies the inequality in (10), thus proving the proposition.
Each of the compact sets Ki , i ≥ 1, will be specified by two real numbers ui and hi as

shown in Figure 2:

Ki = {[ui, b] × [0, hi]} ∩ A[a,b].

We shall write Kc
i to denote the complement of Ki in A[a,b], and we decompose this set into

a triangle

Ti = {
(s, x) ∈ R×R+ : s ≤ ui, x ≥ a − s

}
,

and a rectangle

Ri = {
(s, x) ∈R×R+ : ui ≤ s ≤ b, x ≥ hi

};
see Figure 2. Thus, we have

(12)
1

n
(�n ⊗ F)

(
Kc

i

) = 1

n
(�n ⊗ F)(Ti) + 1

n
(�n ⊗ F)(Ri).

Now, by the translation invariance of �n, we have

(�n ⊗ F)(Ti)
d= (�n ⊗ F)

(
T a−ui

)
and (�n ⊗ F)(Ri)

d= (�n ⊗ F)
(
R

hi

b−ui

)
,

FIG. 2. The wedge A[a,b] split into a compact set Ki , infinite rectangle Ri and infinite triangle Ti . The triangle
is split into strips of unit width.



LDP FOR COX PROCESSES AND Cox/G/∞ QUEUES 2483

where d= denotes equality in distribution, and the sets T � and Rh
z are defined as

T � = {
(t, x) ∈R×R+ : t ≤ 0, t + x ≥ �

}
,

Rh
z = {

(t, x) ∈R×R+ : t ∈ [0, z], x ≥ h
}
.

(13)

Thus, we obtain from (12) that

(14)
P

((
�n

n
⊗ F

)(
Kc

i

)
> εi

)
≤ P

(
(�n ⊗ F)

(
T a−ui

)
>

nεi

2

)

+ P

(
(�n ⊗ F)

(
R

hi

b−ui

)
>

nεi

2

)
.

We show in Lemma 4.5 that, given i ∈ N, εi > 0 and α > 0, we can choose ui to make
a − ui sufficiently large that

P

(
(�n ⊗ F)

(
T a−ui

)
>

nεi

2

)
≤ e−n(i+1)α ∀n ∈ N;

to see this, take ε = εi/2 and β = (i + 1)α in the statement of the lemma. Next, by the same
lemma, given ui , and hence b − ui , we can choose hi sufficiently large to ensure that

P

(
(�n ⊗ F)

(
R

hi

b−ui

)
>

nεi

2

)
≤ e−n(i+1)α ∀n ∈ N.

Combining these two inequalities with (14), we conclude that for all i ≥ 1,

(15) P
(
(�n ⊗ F)

(
Kc

i

)
> nεi

) ≤ 2e−n(i+1)α ∀n ∈N,

which is essentially the same as (11). That leaves the case i = 0.
The same argument does not work for K0 as we cannot choose this set; K0 is the empty

set and Kc
0 = A[a,b]. Instead, we need to show that we can choose ε0 sufficiently large that

(16) P
(
(�n ⊗ F)(A[a,b]) > nε0

) ≤ e−nα ∀n ∈ N.

We first note that A[a,b] ⊂ T0 ∪ {[a − �, b] ×R+}, where

T0 = {
(t, x) ∈ R×R+ : t ≤ a − �, t + x ≥ a

}
.

Hence

(�n ⊗ F)(A[a,b]) ≤ (�n ⊗ F)(T0) + �n

([a − �, b]).
Moreover, by translation invariance of �n, we have

(�n ⊗ F)(T0)
d= (�n ⊗ F)

(
T �),

where T � is defined in (13). Using Lemma 4.5 below, we conclude that we can choose �

sufficiently large that

(17) P
(
(�n ⊗ F)(T0) > n

) ≤ e−nα ∀n ∈ N.

We also see from the proof of Lemma 4.5 that �n([a − �, b]) is dominated, in the increasing
convex order, by �� + b − a��n([0,1]); in particular,

E
[
eθ�n([a−�,b])] ≤ E

[
eθ(�+1+b−a)�n([0,1])] = exp

(
ψn

(
nθ(� + 1 + b − a)

))
,

where ψn is defined in Assumption [A3]. By [A3], for given a, b, �, ψn(nθ(�+1+b−a))/n

is bounded, for θ in a neighbourhood of the origin, uniformly in n, that is, there exist constants
θ, δ > 0 such that ψn(nθ) ≤ nδ for all n ∈ N. Consequently, by Markov’s inequality,

P
(
�n

([a − �, b]) ≥ n(ε0 − 1)
) ≤ e−nθ(ε0−1)+nδ ∀n ∈ N.
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Clearly, we can choose ε0 large enough to ensure that

P
(
�n

([a − �, b]) ≥ n(ε0 − 1)
) ≤ e−nα ∀n ∈ N.

Combining the above equation with (17), we see that the inequality in (16) holds, up to a
factor of two. This completes the proof that the inequality in (11) holds for all i ≥ 0, up to a
factor of two on the RHS. Now, using the union bound over i, we get

P

(
∃i ≥ 0 :

(
�n

n
⊗ F

)(
Kc

i

)
> εi

)
≤

∞∑
i=0

e−n(i+1)α ≤ 2e−nα,

from which (10) is immediate, given the definition of Kα . This completes the proof of the
proposition. �

LEMMA 4.5. Let β > 0 be a given constant. For �,h, z > 0, let the triangle T� and the
rectangle Rh

z be defined as in (13). Then, we have the following:

1. Given ε > 0, we can choose � sufficiently large that

P
(
(�n ⊗ F)

(
T �) > nε

) ≤ e−nβ ∀n ∈ N.

2. Given z > 0 and ε > 0, we can choose h sufficiently large that

P
(
(�n ⊗ F)

(
Rh

z

)
> nε

) ≤ e−nβ ∀n ∈ N.

PROOF. Fix an � ∈ R. By splitting the triangle T � into vertical strips of unit width, we
see that

(�n ⊗ F)
(
T �) ≤

∞∑
k=0

�n

([−k − 1,−k])F(� + k).

Now, by translation invariance of �n, the random variables �n([−k − 1,−k]) are identi-
cally distributed for all k. Moreover, the sum of the coefficients F(� + k) can be bounded as
follows:

∞∑
k=0

F(� + k) ≤ c� :=
∫ ∞
�−1

F(x)dx = E
[
S1(S ≥ � − 1)

]
,

where S denotes a random variable with the distribution F of the service time, and 1(E)

denotes the indicator of the event E. This last expectation is finite by the assumption that the
service time has finite mean. Hence, invoking Lemma 4.3, we obtain that

(�n ⊗ F)
(
T �) ≤icx c��n

([0,1]),
where, for random variables X and Y , we say that X is dominated by Y in the increasing
convex order, written X ≤icx Y , if E[φ(X)] ≤ E[φ(Y )] for all increasing convex functions φ.
Applying this bound to the increasing convex function φ(x) = eθx for arbitrary θ > 0, and
using Markov’s inequality, we get, for any ε > 0,

P

(
(�n ⊗ F)

(
T �) ≥ nε

2

)
≤ e−nθε/2

E
[
eθc��n([0,1])] = exp

(
−nθε

2
+ ψn(nθc�)

)
,

where the function ψn was defined in Assumption [A3]. As θ > 0 is arbitrary, it is convenient
to rewrite the above inequality, replacing θ by θ/c�, as

(18) logP
(
(�n ⊗ F)

(
T �) ≥ nε

2

)
≤ −nθε

2c�

+ ψn(nθ) where c� = E
[
S1(S ≥ � − 1)

]
.
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Now, by Assumption [A3], there exist positive constants δ and θ such that ψn(nθ) ≤ nδ,
uniformly in n. Morever, as E[S] is finite by Assumption [A4], it follows that c� tends to zero
as � tends to infinity. Hence, we see from (18) that, given i ∈ N and β, ε > 0, we can choose
� sufficiently large, and consequently c� sufficiently small, to ensure that

(19) P
(
(�n ⊗ F)

(
T �) ≥ nε

) ≤ e−nβ ∀n ∈ N.

This completes the proof of the first claim of the lemma.
The proof of the second claim is very similar. We show that

(�n ⊗ F)
(
Rh

b−a

) ≤icx �b − a�F(h)�n

([0,1]),
and apply Markov’s inequality to the exponential of the random variable on the RHS. The
details are omitted. �

We now have all the ingredients required to establish an LDP for the scaled intensity
measures (�n ⊗ F)/n, on the wedge A[a,b].

PROPOSITION 4.6. Suppose that �n,n ∈ N is a sequence of random measures satisfying
Assumptions [A1]–[A3] and F satisfies [A4]. Fix an interval [a, b] ⊂ R. The sequence of
random measures (�n

n
⊗ F)|A[a,b] , n ∈ N, satisfy an LDP on Mf

+(A[a,b]) equipped with the
weak topology, with good rate function

I[a,b](ν) = sup
u≤a

Iu[a,b](ν|Au[a,b]), ν ∈ Mf
+

([a, b]).
PROOF. We will use the Dawson–Gärtner theorem [5], Theorem 4.6.1, for projective

limits. Letting

J := {
Au[a,b] : u ∈ (−∞, a)

}
,

it is clear that the collection (J,⊆) of truncated wedges Au[a,b] equipped with set inclusion is
totally ordered, and hence also right-filtering. The set is indexed by u, and we will use u to
denote the element Au[a,b], to simplify notation. Denote by Yu the space Mf

+(Au[a,b]) of finite
measures on Au[a,b], equipped with the tempered topology.

If t ≤ u, that is, Au[a,b] ⊆ At[a,b] (note that the order in the projective system reverses in-
equalities from the order on the real line), define the projection put : Yt → Yu by the restric-
tion of a measure on At[a,b] to the subset Au[a,b]. It is clear that this map is continuous in the
tempered topology, since any bounded, continuous function on Au[a,b], vanishing on its bound-
ary, can be extended to a bounded, continuous function on At[a,b], vanishing on its boundary,
by setting it to zero outside Au[a,b]. Moreover, the projections satisfy the consistency condi-
tion pus = put ◦ pts for s ≤ t ≤ u. Thus, (Yu,put )t≤u constitute a projective system. We can
identify Mf

+(A[a,b]) with the projective limit, with canonical projections

pu : Mf
+(A[a,b]) → Mf

+
(
Au[a,b]

)
defined as the restriction of a measure from the full wedge A[a,b] to its truncation Au[a,b].
These are clearly continuous in the tempered topology, by the same argument as above.

Now, by Lemma 4.2, the projections(
�n

n
⊗ F

)∣∣∣∣
Au[a,b]

= pu

((
�n

n
⊗ F

)∣∣∣∣
A[a,b]

)
, n ∈ N,
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satisfy an LDP for each u ∈ (∞, a), with rate function Iu[a,b]. Hence, by the Dawson–Gärtner

theorem, the sequence of measures (�n

n
⊗ F)|A[a,b] , n ∈ N, satisfies an LDP in the projective

limit topology, with good rate function

I[a,b](ν) = sup
u≤a

Iu[a,b](ν|Au[a,b]), ν ∈ Mf
+

([a, b]).
Moreover, by Proposition 4.4, the measures (�n

n
⊗ F)|A[a,b] are exponentially tight in the

weak topology on Mf
+(A[a,b]). Hence, by [5], Corollary 4.2.6, we obtain that the LDP holds

in the weak topology. Exponential tightness also implies goodness of the rate function [5],
Lemma 1.2.18. �

Next, we show the continuity of the queueing map, which is the prelude to obtaining the
LDP for the queue occupancy measure. For a measure ν ∈ Mf

+(A[a,b]), and t ∈ [a, b], we
define Qν(t) = ν(At), where we recall that At = A[t,t] is the set{

(s, x) ∈ R×R+ : s ≤ t, s + x ≥ t
}
.

The interpretation is that, if ν is a counting measure representing the marked arrival process
into an infinite-server queue, where each arrival is marked with its service time, then Qν(t)

denotes the number of customers in the queue at time t . Let L(ν) denote the measure on [a, b]
which is absolutely continuous with respect to Lebesgue measure, and has density Qν(·); let
L denote the map from Mf

+(A[a,b]) to Mf
+([a, b]) which takes ν to L(ν).

We want an explicit characterisation of the map L. We will describe L(ν) through its
action on the dual space Cb([a, b]) of bounded, continuous functions on [a, b], that is, by
specifying

∫ b
a g(t) dL(ν)(t) for all g ∈ Cb([a, b]). By the Riesz representation theorem, L(ν)

is uniquely determined by these integrals. From the description above, we have∫ b

a
g(t) dL(ν)(t) =

∫ b

a
g(t)Qν(t) dt =

∫ b

t=a
g(t)ν(At) dt

=
∫
A[a,b]

(∫ min{s+x,b}
max{a,s}

g(t) dt

)
ν(ds × dx).

(20)

The last equality is obtained by interchanging the order of integration, noting that an area
element at ds × dx contributes to ν(At ) for each t between max{a, s} and min{s + x, b}.

LEMMA 4.7. The map L : Mf
+(A[a,b]) → Mf

+([a, b]), defined by (20) via the Riesz
representation theorem, is continuous with respect to the weak topology on each of these
sets.

PROOF. The weak topology on the space of finite measures on a Polish space is metriz-
able [17], so we can check continuity of L along sequences. Suppose νn, n ∈N converge to ν

in the weak topology on Mf
+(A[a,b]). Let g : [a, b] →R be a bounded, continuous function.

We have by (20) that

(21)

∫ b

a
g(t) dL(νn)(t) =

∫
A[a,b]

h(s, x)νn(ds × dx) where

h(s, x) =
∫ min{s+x,b}

max{a,s}
g(t) dt,

where the last integral is defined to be zero if the upper limit of integration is smaller than the
lower limit. (In other words, the domain of integration should be understood to be empty in
this case, rather than treating it as a signed integral with limits reversed.)
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It is clear that the the function h : A[a,b] →R is bounded and continuous. Hence, it follows
from the assumed convergence of νn to ν in the weak topology that the RHS in (21) converges
to ∫

A[a,b]
h(s, x)ν(ds × dx).

This completes the proof of the lemma. �

We are now ready to prove the main result.

PROOF OF THEOREM 2.2. Let �n denote the Cox process of arrivals into the nth queue,
marked with their service times. Fix [a, b] ⊂ R. By Proposition 4.6, the sequence of measures
(�n

n
⊗ F)|A[a,b] , satisfy an LDP on Mf

+(A[a,b]) equipped with the weak topology, with good
rate function I[a,b] given therein. Hence, by Theorem 2.1, the sequence of Cox point measures
�n

n
|A[a,b] also satisfies an LDP on Mf

+(A[a,b]) equipped with the weak topology, with good
rate function I[a,b] given by

(22) I[a,b](0) = inf
λ

{
I[a,b](λ) + λ(A[a,b])

}
,

where 0 denotes the zero measure, whereas, for μ �≡ 0,

(23)

I[a,b](μ) = inf
λ

{
I[a,b](λ) + IPoi

(
μ(A[a,b]), λ(A[a,b])

)

+ μ(A[a,b])H
(

μ

μ(A[a,b])

∣∣∣ λ

λ(A[a,b])

)}
,

where H and IPoi are defined in the statements of Theorem 3.3 and Lemma 3.4 respectively.
Now, the queue occupancy measures Ln are given by Ln/n = L(�n/n), where the map

L is defined by (20), and is linear and weakly continuous. Hence, by the contraction prin-
ciple [5], Theorem 4.2.1, the sequence of measures Ln/n satisfies an LDP on Mf

+([a, b])
equipped with the weak topology, with good rate function

(24) J[a,b](ν) = inf
{
I[a,b](μ) : L(μ) = ν

}
,

where the infimum of an empty set is defined to be +∞. Thus, the sequence Ln satisfies
Assumption [A2]. The measures Ln inherit translation invariance from �n via �n ⊗ F and
�n, while finiteness of the mean follows easily from that of λ (the mean arrival intensity) and
of the service time distribution. Thus, [A1] is verified. It remains to check [A3].

Observe that, analogous to (21), we have

Ln

([0,1]) = (
L(�n)

)([0,1])
=

∫
(s,x)∈A[0,1]

(
min{s + x,1} − max{s,0})�n(ds × dx)

≤ �n(A[0,1]).

But, conditional on �n ≡ λ, �n([0,1]) is a Poisson random variable with mean (λ ⊗
F)(A[0,1]). Hence, we have for θ ≥ 0 that

E
[
eθLn([0,1])] ≤ E

[
exp

((
eθ − 1

)
(�n ⊗ F)(A[0,1])

)]
.

Moreover, it can be shown by splitting A[0,1] into vertical strips of unit width and invoking
Lemma 4.3, as in the proof of Lemma 4.5, that

(�n ⊗ F)(A[0,1]) ≤icx

(
1 +E[S])�n

([0,1]),
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where E[S] denotes the mean service time, and is finite by Assumption [A4]. Hence, we
obtain for θ ≥ 0 that

E
[
eθLn([0,1])] ≤ E

[
exp

((
eθ − 1

)(
1 +E[S])(�n

([0,1])))].
By Assumption [A3], there is a neighbourhood of 0 on which

ψn(nη)

n
= 1

n
logE

[
eη�n(0,1)]

is bounded, uniformly in n. Setting η = (eθ − 1)(1 +E[S]), we obtain uniform boundedness
of

1

n
logE

[
eθLn([0,1])]

for θ ≥ 0 sufficiently small, uniformly in n. Boundedness is automatic for θ < 0 as the ran-
dom variables Ln([0,1]) are nonnegative. Thus, the sequence of measures Ln satisfy [A3] as
well. This completes the proof of the theorem. �

Having established the LDP for the queue occupancy measure, we now turn to the empir-
ical measure of the departure process from the infinite-server queue, which can be expressed
as a function of the marked arrival process, where the marks specify the service times. Fix
a compact interval [a, b] ⊂ R, and let D denote the function which maps the marked arrival
process on A[a,b], to the departure process measure on [a, b], as described in (1). We will for-
mally define D via the Riesz representation theorem, by specifying, for each ν ∈Mf

+(A[a,b]),
the integral with respect to D(ν) of arbitrary bounded, continuous functions on [a, b]. Let
g ∈ Cb([a, b]) be one such function. We define the function hg on A[a,b] by setting

(25) hg(s, x) =
{
g(s + x), (s, x) ∈ cl(A[a,b] \ Ab),

0 otherwise,

and define the map ν �→ D(ν) by setting

(26)
∫
[a,b]

gd
(
D(ν)

) =
∫
A[a,b]

hg dν ∀g ∈ Cb

([a, b]).
It is clear from (1) that∫

[a,b]
g d�n =

∫
A[a,b]

hg d�̂n ∀g ∈ Cb

([a, b]),
that is, �n = D(�̂n). We will show that D(·) is continuous in a suitable topology, and use
this to establish the desired LDP for (�n,n ∈ N).

PROOF OF THEOREM 2.3. We begin by showing that the map D : Mf
+(A[a,b]) →

Mf
+([a, b]) defined by (26) is continuous, when Mf

+(A[a,b]) is equipped with the weak

topology, and Mf
+([a, b]) with the tempered topology. We can check continuity using se-

quences, as the weak topology on Mf
+(A[a,b]) is metrizable [17]. Consider a sequence of

finite measures νn on A[a,b], converging weakly to a finite measure ν. Let g be a bounded,
continuous function on [a, b], vanishing at its end-points, a and b. Then, it is clear that the
function hg defined in (25) is bounded and continuous on A[a,b]. Therefore,

∫
hg dνn con-

verges to
∫

hg dν, where the integrals are over A[a,b]. Hence, by (26),
∫

g dD(νn) converges
to

∫
g dD(ν). It follows that νn converges to ν in the tempered topology.
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It was shown in the proof of Theorem 2.2 that �̂n/n (which was denoted �n/n there!)
satisfy the LDP on Mf

+(A[a,b]) equipped with the weak topology. Since the map D(·) is con-
tinuous, it follows by the contraction principle [5], Theorem 4.2.1, that �n/n satisfy the LDP
on Mf

+([a, b]) equipped with the tempered topology, with a good rate function K[a,b](·),
which can be expressed as the solution of a minimisation problem.

It remains to strengthen this LDP to the weak topology on Mf
+([a, b]). We do this by

showing that the sequence of random variables �n, n ∈ N, is exponentially tight in the weak
topology. In order to show this, fix α > 0, arbitrarily large. We need to find a weakly compact
subset K of Mf

+([a, b]) such that

lim sup
n→∞

1

n
logP

(
�n

n
∈ Kc

)
≤ −α,

where Kc denotes the complement of K . Fix γ > 0 sufficiently large, and take

K(γ ) = {
ν ∈ Mf

+
([a, b]) : ν([a, b]) ≤ γ

}
.

Then K(γ ) is compact in the weak topology, as noted in the proof of Proposition 3.7. More-
over,

�n

([a, b]) = �̂n

(
cl(A[a,b] \ Ab)

) ≤ �̂n(A[a,b]),

and so,

lim sup
n→∞

1

n
logP

(
�n

n
∈ K(γ )c

)
≤ lim sup

n→∞
1

n
logP

(
�̂n

n
(A[a,b]) > γ

)
.

By the goodness of the rate function governing the LDP of �̂n/n, the last term tends to −∞
as γ tends to infinity. Hence, we can choose γ large enough to make it smaller than −α, as
required.

Since (�n/n,n ∈N) satisfy the LDP on Mf
+([a, b]) equipped with the tempered topology,

and are exponentially tight in the weak topology, it follows by [5], Corollary 4.2.6, that the
LDP also holds in the weak topology, and by [5], Lemma 1.2.18, that the rate function is
good.

It remains to show that �n/n satisfy Assumptions [A1] and [A3]. The proof is very similar
to the corresponding part of the proof of Theorem 2.2. Translation invariance is inherited from
�̂n/n, and finiteness of the mean intensity is also easy to prove using the same property for
�n/n and F . To prove [A3], we use the fact that �n([a, b]) is dominated by �̂n(A[a,b]). We
omit the details, which are identical to the proof of Theorem 2.2. �
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