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Checking for Prior-Data Conflict Using
Prior-to-Posterior Divergences
David J. Nott, Xueou Wang, Michael Evans and Berthold-Georg Englert

Abstract. When using complex Bayesian models to combine information,
checking consistency of the information contributed by different components
of the model for inference is good statistical practice. Here a new method
is developed for detecting prior-data conflicts in Bayesian models based on
comparing the observed value of a prior-to-posterior divergence to its dis-
tribution under the prior predictive distribution for the data. The divergence
measure used in our model check is a measure of how much beliefs have
changed from prior to posterior, and can be thought of as a measure of the
overall size of a relative belief function. It is shown that the proposed method
is intuitive, has desirable properties, can be extended to hierarchical settings,
and is related asymptotically to Jeffreys’ and reference prior distributions. In
the case where calculations are difficult, the use of variational approximations
as a way of relieving the computational burden is suggested. The methods are
compared in a number of examples with an alternative but closely related ap-
proach in the literature based on the prior predictive distribution of a minimal
sufficient statistic.

Key words and phrases: Bayesian inference, model checking, prior data-
conflict, variational Bayes, Bayesian inference.

1. INTRODUCTION

In modern applications, statisticians are often con-
fronted with the task of either combining data and expert
knowledge, or of combining information from diverse
data sources using hierarchical models. In these settings,
Bayesian methods are very useful. However, whenever we
combine different sources of information, it is important
to check the consistency of the information contributed
by different components of the model for inference. This
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work is concerned with the problem of detecting situa-
tions in which information coming from the prior and the
data are in conflict in a Bayesian analysis. Such conflicts
can highlight a lack of understanding of the information
put into the model, and it is only when there is no con-
flict between prior and data that we can expect Bayesian
inference to show robustness to the prior (Al Labadi and
Evans, 2017). See Andrade and O’Hagan (2006) for a
discussion of Bayesian robustness and the behaviour of
Bayesian inference in the case of prior-data conflict.

Here a new and attractive approach to measuring prior-
data conflict is introduced based on a prior-to-posterior
divergence, and the comparison of the observed value of
this statistic with its prior predictive distribution. We show
that this method extends easily to hierarchical settings,
and has an interesting relationship asymptotically with
Jeffreys’ and reference prior distributions. For the prior-
to-posterior divergence, we consider the class of Rényi
divergences (Rényi, 1961), with the Kullback–Leibler di-
vergence as an important special case. In the present con-
text, the Rényi divergence can be thought of as giving an
overall measure of the size of a relative belief function,
which is a function describing for each possible value of
a given parameter of interest how much more or less likely
it has become after observing the data. Evans (2015) and
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Baskurt and Evans (2013) give details of some attrac-
tive solutions to many inferential problems based on the
notion of relative belief. A large change in beliefs from
prior-to-posterior (where this is calibrated by the prior
predictive) may be indicative of conflict between prior and
likelihood, so that a check with prior-to-posterior Rényi
divergence as the checking discrepancy is an intuitive one
for prior-data conflict detection.

Checks for prior-data conflict have usually been formu-
lated within the broader framework of Bayesian predictive
model checking, although much of this work is concerned
with approaches which check the prior and model jointly
(see, e.g., Gelman, Meng and Stern (1996) and Bayarri
and Castellanos (2007) for entries into this literature). In
general the idea is that there is a discrepancy function
D(y) of data y (where a large value of this discrepancy
might represent an unusual value) and then for some ref-
erence predictive density m(y) a p-value is computed as

p = P
(
D(Y) ≥ D(yobs)

)
,(1)

where Y ∼ m(y) is a draw from the reference predictive
distribution and yobs is the observed data. A small p-value
indicates that the observed value of the discrepancy is sur-
prising under the assumed model, and that the model for-
mulation might need to be re-examined. The choice of
discrepancy will reflect some aspect of the model fit that
we wish to check, and this is generally application spe-
cific. The reference predictive density m(y) needs to be
chosen, and there are many ways that this can be done.
For example, m(y) might be the prior predictive den-
sity

∫
g(θ)p(y|θ) dθ (Box, 1980), where g(θ) is the prior

density and p(y|θ) is the density of y given θ . Another
common choice of reference distribution is the posterior
predictive for a hypothetical replicate (Guttman, 1967,
Rubin, 1984, Gelman, Meng and Stern, 1996). More com-
plex kinds of replication can also be considered, particu-
larly in the case of hierarchical models. In some cases, the
discrepancy might also be allowed to depend on the pa-
rameters, in which case the reference distribution defines
a joint distribution on both the parameters and y. When
the discrepancy is chosen in a casual way in the posterior
predictive approach it may be hard to interpret checks in a
similar way across different problems, and a variety of au-
thors have suggested modifications which have better cal-
ibration properties (Bayarri and Berger, 2000, Robins, van
der Vaart and Ventura, 2000, Hjort, Dahl and Steinbakk,
2006). The choice of a suitable discrepancy and reference
distribution in Bayesian predictive model checking often
depends on statistical goals, and this is discussed more
later.

Checking for prior-data conflict is distinct from the is-
sue of whether the likelihood component of the model
is adequately specified. An incorrect likelihood specifica-
tion means that there are no parameter values which pro-
vide a good fit to the data, whereas a prior-data conflict

occurs when the prior puts all its mass in the tails of the
likelihood. See Chapter 5 of Evans (2015) for a discus-
sion of different kinds of model checks. As a definition
of a prior-data conflict check, we can say it is a Bayesian
predictive check of the form given in equation (1), where
D(y) is a function of a minimal sufficient statistic, and
the reference distribution is the prior predictive distribu-
tion. To see that this definition captures the statistical in-
tuition of inconsistency between the observed likelihood
and the prior, consider the observed likelihood as a kind of
functional test statistic, where we want to know whether it
is unusual compared to what is expected under the prior.
Since we want to compare with what is expected under
the prior, we use the prior predictive as a reference dis-
tribution, and since we are interested in the likelihood it-
self, this is determined by the value of a minimal sufficient
statistic (i.e., we restrict the discrepancy to be a function
of a minimal sufficient statistic since other aspects of the
data are irrelevant to the likelihood). So the formulation of
a prior-data conflict check as a special kind of Bayesian
predictive check with restrictions on the discrepancy and
reference distribution is logical.

Although we focus here on prior-data conflict checks,
and not on checking the adequacy of the likelihood spec-
ification, it should be noted that adequacy of the likeli-
hood specification needs to be checked first before any
prior-data conflict check is performed. For if the sampling
model is inadequate, this means that there is no value of
the model parameter that provides a good fit to the data,
and sound inferences cannot result from such a model no
matter what prior is chosen. With regard to checking the
sampling model, Carota, Parmigiani and Polson (1996)
describe one method for this problem related to the cur-
rent work. They consider checking model adequacy by
defining a model expansion and then measuring the utility
of the expansion. Their preferred measure of utility is the
marginal prior-to-posterior Kullback–Leibler divergence
for the expansion parameter, and they consider calibra-
tion by comparison of the Kullback–Leibler divergence
with its value in some reference situations involving sim-
ple distributions. Their use of a prior-to-posterior diver-
gence in a model check is related to our approach and an
interesting complement to our method for prior-data con-
flict checking. The approach is very flexible, but the el-
ements of their construction need to be chosen with care
to avoid confounding prior-data conflict checking with as-
sessing the adequacy of the likelihood, and their approach
to calibration of the diagnostic measure is also quite dif-
ferent.

Henceforth, we will focus exclusively on model check-
ing with the aim of detecting prior-data conflicts. We post-
pone a comprehensive survey of the literature on prior-
data conflict assessment to the next section, after first de-
scribing the basic idea of our own approach. However,
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one feature of many existing suggestions for prior-data
conflict checking is that they require the definition of a
noninformative prior. Among methods that don’t require
such a choice, our approach is closely related to that of
Evans and Moshonov (2006). They modify the approach
to model checking given by Box (1980) by considering
as the checking statistic the prior predictive density value
for a minimal sufficient statistic, and they use the prior
predictive distribution as the reference predictive distri-
bution. They show that these choices are logical ones for
the specific purpose of checking for prior-data conflict.

In Section 2, we introduce the basic idea of our method
and discuss its relationship with other approaches in the
literature. In Section 3, a series of simple examples where
calculations can be done analytically is described. In
Section 4, we consider the asymptotic behaviour of the
checks, and some more complex examples are consid-
ered in Section 5 where computational implementation
using variational approximation methods is considered.
Section 6 concludes with some discussion.

2. PRIOR-DATA CONFLICT CHECKING

2.1 The Basic Idea

Let θ be a d-dimensional parameter and y be data to
be observed. We will assume henceforth that all distri-
butions such as the joint distribution for (y, θ) can be
defined in terms of densities with respect to appropriate
support measures and that in the continuous case these
densities are defined uniquely in terms of limits (see, e.g.,
Appendix A of Evans (2015)).

We consider Bayesian inference where the prior density
is g(θ) and p(y|θ) is the density of y given θ . The poste-
rior density is g(θ |y) ∝ g(θ)p(y|θ). We consider checks
for prior-data conflict based on a prior-to-posterior Rényi
divergence of order α (Rényi, 1961) (sometimes referred
to as an α divergence),

Rα(y) = 1

α − 1
log

∫ {
g(θ |y)

g(θ)

}α−1
g(θ |y)dθ,(2)

where α > 0 and the case α = 1 is defined by letting α →
1. This corresponds to the Kullback–Leibler divergence,
and we write

KL(y) = lim
α→1

Rα(y) =
∫

log
g(θ |y)

g(θ)
g(θ |y)dθ.

Also of interest is to consider α → ∞, which gives the
maximum value of log g(θ |y)

g(θ)
, and we write

MR(y) = lim
α→∞Rα(y)

for this maximum relative belief statistic. Our proposed
p-value for the prior-data conflict check is

pα = pα(yobs) = P
(
Rα(Y ) ≥ Rα(yobs)

)
,(3)

where yobs is the observed value of y and Y ∼ p(y) =∫
g(θ)p(y|θ) dθ is a draw from the prior predictive distri-

bution. This is a measure of how surprising the observed
value Rα(yobs) is in terms of its prior distribution. For
if this is small, then the distance between the prior and
posterior is much greater than expected. The use of p-
values in Bayesian model checking as measures of sur-
prise is well established, but we emphasize here that these
p-values are not measures of evidence, and it may be bet-
ter to think of the tail probability (3) as a calibration of
the observed value of Rα(yobs). However, we will con-
tinue to use the well-established p-value terminology in
what follows. If Rα(Y ), Y ∼ p(y), is continuous, and if
yobs ∼ p(y), then the tail probability (3) is one minus
the transformation of Rα(yobs) by its distribution func-
tion, and hence uniformly distributed on [0,1]. So the p-
value is a useful measure of suprise in the sense that we
know what to expect of it if the data are generated under
the prior predictive distribution. Similar to conventional
hypothesis testing, if the distribution of the divergence is
not continuous the situation is more complex. The case
of the hierarchical checks discussed later in Section 2.2 is
also more complex, and exact uniformity for finite sam-
ples will not usually hold there for the checks of the con-
ditional prior.

We will use the special notation pKL and pMR for the
p-values based on the discrepancies KL(y) and MR(y)

respectively. In the definition (2), it was assumed that we
want an overall conflict check for the prior. If interest cen-
ters on a particular quantity �(θ), however, we can look
at the marginal prior-to-posterior divergence for � instead
of θ in (2). If a predictive perspective is adopted, it is also
possible to consider some as yet unobserved data y∗ and
a prior to posterior divergence involving predictive densi-
ties for y∗,

1

α − 1
log

∫ {
p(y∗|y)

p(y∗)

}α−1
p

(
y∗|y)

dy∗,

where p(y∗|y) here denotes the posterior predictive and
p(y∗) the prior predictive. We consider this later in an
example.

2.2 Motivations for the Check

The prior-data conflict check (3) can be motivated from
a number of points of view. First, the choice of discrep-
ancy is intuitive, since Rα(y) is a measure of how much
beliefs change from prior to posterior, and comparing this
measure for yobs against what is expected under the prior
predictive intuitively tells us something about how sur-
prising the observed likelihood is under the prior. This
point of view connects with the relative belief framework
for inferences summarized in Baskurt and Evans (2013)
and Evans (2015). For a parameter of interest � = �(θ),
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the relative belief function is the ratio of the posterior den-
sity of � to its prior density,

RB(�|y) = g(�|y)

g(�)
.

RB(�|y) measures how much belief in � being the true
value has changed after observing data y. If RB(�|y) is
bigger than 1, this says that there is evidence for � being
the true value, whereas if it is less than 1 this says that
there is evidence against. Use of the Rényi divergence as
the discrepancy in (3) is equivalent to the use of the dis-
crepancy ∥∥RB(θ |y)

∥∥
s = {

E
(
RB(θ |y)s |y)}1/s(4)

as a test discrepancy, where s = α − 1, since Rα(y) =
log‖RB(θ |y)‖s . (4) is a measure of the overall size
of the relative belief function. The limit s → 0 gives
exp(KL(y)), s → ∞ gives RB(θ̂ |y) where θ̂ denotes the
maximum relative belief estimate which maximizes the
relative belief function, and s = 1 is the posterior mean of
the relative belief.

In Section 4, we also investigate the asymptotic be-
haviour of pα , which under appropriate conditions con-
verges to

P
(
g
(
θ∗)∣∣I (

θ∗)∣∣−1/2 ≥ g(θ)
∣∣I (θ)

∣∣−1/2)
(5)

in the large data limit, where I (θ) is the Fisher informa-
tion at θ , θ∗ is the true value of the parameter that gen-
erated the data, and θ ∼ g(θ). To interpret (5), note that
g(θ)|I (θ)|−1/2 is just the prior density, but written with
respect to the Jeffreys’ prior as the support measure rather
than the Lebesgue measure. So (5) is the probability that
a draw from the prior has prior density value less than
the prior density value at the true parameter. It is a mea-
sure of how far out in the tails of the prior the true value
θ∗ lies. There is a similar limit result for the check of
Evans and Moshonov (2006), but where the densities are
with respect to the Lebesgue measure (Evans and Jang,
2011a). Interestingly, (5) might be thought of as giving
some kind of heuristic justification for why the Jeffreys’
prior could be considered noninformative—if we were to
choose g(θ) as the Jeffreys’ prior, g(θ) ∝ |I (θ)|1/2, then
the value of the limiting p-value (5) is 1 and hence there
can be no conflict asymptotically. Some similar connec-
tions with reference priors (Berger, Bernardo and Sun,
2009, Ghosh, 2011) are considered in Section 4 for hi-
erarchical versions of our checks and we discuss these in
Section 2.2. While formally inserting the Jeffreys’ prior
into the limiting p-value (5) leads to a p-value of 1, we
note that there is no contradiction here with our earlier
observation of uniformity of the p-value from our check
under the prior predictive distribution. In fact, a distribu-
tion with point mass at 1 is not obtained under continuity

by considering the finite sample version of our check us-
ing the Jeffreys’ prior, considering the p-value as a ran-
dom variable indexed by sample size n, and then letting
n go to infinity. The derivation of the form of the limiting
p-value via the arguments of Section 4 fails when g(θ)

is the Jeffreys’ prior, as we explain later. Also in the case
where the Jeffreys’ prior is improper, both our divergence
statistic and the prior predictive reference distribution are
not well defined. The connection with the Jeffreys’ prior
obtained by examining the form of the limiting p-value is
rather heuristic, and a more rigorous formalization of this
connection may be challenging. It would be interesting
to investigate to what extent noninformative priors can be
characterized through the lens of lack of conflict, but that
is not our intention in the present work.

Further motivation for our approach follows from some
logical principles that any prior-data conflict check should
satisfy. Evans and Moshonov (2006) and Evans and Jang
(2011b) consider for a minimal sufficient statistic T a de-
composition of the joint model as

p(θ, y) = p(t)g(θ |t)p(y|θ, t)

= p(t)g(θ |t)p(y|t),(6)

where the terms in the decomposition are densities with
respect to appropriate support measures, p(t) is the prior
predictive density for T , g(θ |t) is the density of θ given
T = t (which is the posterior density since T is sufficient)
and p(y|t) is the density of y given T = t (which does not
depend on θ because of the sufficiency of T ). This decom-
position modifies a suggestion of Box (1980) for model
checking. In the case where there is no nontrivial minimal
sufficient statistic a decomposition (6) can still be con-
templated for some asymptotically sufficient T such as
the maximum likelihood estimator. The three terms in the
decomposition could logically be specified separately in
defining a joint model and they perform different roles in
an analysis. For example, the posterior distribution p(θ |t)
is used for inference, and p(y|t) is useful for checking the
likelihood, since it does not depend on the prior. Ideally a
check of adequacy for the likelihood should not depend on
the prior since the adequacy of the likelihood has nothing
to do with the prior.

For checking for prior-data conflict, Evans and Mosho-
nov (2006) and Evans and Jang (2011b) argue that the
relevant part of the decomposition (6) is the prior pre-
dictive distribution of T . Since a sufficient statistic de-
termines the likelihood, a comparison between the likeli-
hood and prior can be done by comparing the observed
value of a sufficient statistic to its prior predictive distri-
bution. Clearly any variation in y that is not a function of
a sufficient statistic does not change the likelihood, and
hence is irrelevant to determining whether prior and like-
lihood are in conflict. Furthermore, a minimal sufficient
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statistic will be best for excluding as much irrelevant vari-
ation as possible. For a minimal sufficient statistic T , the
p-value for the check of Evans and Moshonov (2006) is
computed as

pRB = pRB(yobs) = P
(
p(T ) ≤ p(tobs)

)
,(7)

where tobs is the observed value of T and T ∼ p(t) is
a draw from the prior predictive for T . This approach,
however, does not achieve invariance to the choice of the
minimal sufficient statistic, which is generally not unique;
see, however, Evans and Jang (2010) for an alternative
approach which does achieve invariance. They also con-
sider conditioning on maximal ancillary statistics when
they are available. Coming back from these general prin-
ciples to the check (3), we notice that the statistic Rα(y)

is automatically a function of any sufficient statistic, since
it depends on the data only through the posterior distribu-
tion. Furthermore, it is the same function no matter what
sufficient statistic is chosen. So our check is a function of
any minimal sufficient statistic as Evans and Moshonov
(2006) and Evans and Jang (2011b) would require, and
is invariant to the particular choice of that statistic. The
achievement of invariance is an important attraction of our
proposal. Note that if we were to transform the minimal
sufficient statistic T in (7) to another minimal sufficient
statistic T ′ by a smooth invertible transformation, then the
check (7) would differ for T ′ through the incorporation of
a Jacobian factor. For sufficiently extreme choices of the
transformation this Jacobian factor can be made to give
any answer at all. While there may sometimes be a natural
choice for T , lack of invariance is undesirable. Existing
proposals for prior-data conflict checking in the literature
lack either invariance to transformation of the test statis-
tic, or invariance to parametrization of the model, with
the exception of Evans and Jang (2010). However, this
method is very difficult to implement, since it requires a
computation of the Jacobian of a mapping of the data onto
a minimal sufficient statistic. The method proposed here
does not require this, and does not even require the identi-
fication of any minimal sufficient statistic, since the check
is defined directly in terms of the posterior distribution.

2.3 Hierarchical Versions of the Check

Next, consider implementation of the approach of Sec-
tion 2.1 in a hierarchical setting. Suppose the parame-
ter θ is partitioned as θ = (θ1, θ2), where θ1 and θ2 are
of dimensions d1 and d2 respectively, and that the prior
is decomposed as g(θ) = g(θ1|θ2)g(θ2). Sometimes it is
natural to consider the decomposition of the prior into
marginal and conditional pieces since it may reflect how
the prior is specified (such as in the case of a hierarchical
model). We may wish to check the two pieces of the prior
separately to identify more precisely the source of any

prior-data conflict when it occurs. Mirroring our decom-
position of the prior, write g(θ |y) = g(θ1|θ2, y)g(θ2|y).
To define a hierarchically structured check, let

Rα(y, θ2) = 1

α − 1
log

∫ {
g(θ1|θ2, y)

g(θ1|θ2)

}α−1

× g(θ1|θ2, y) dθ1

(8)

denote the conditional prior to conditional posterior Rényi
divergence of order α for θ1 given θ2, and define

Rα1(y) = Eθ2|yobs

(
Rα(y, θ2)

)
.(9)

Rα1(y) is a function of both y and yobs although we sup-
press this in the notation. Also, define

Rα2(y) = 1

α − 1
log

∫ {
g(θ2|y)

g(θ2)

}α−1
g(θ2|y)dθ2

so that Rα2(y) is the marginal prior to posterior diver-
gence for θ2.

For hierarchical checking of the prior, we consider the
p-values

pα1 = P
(
Rα1(Y ) ≥ Rα1(yobs)

)
,(10)

where

Y ∼ m(y) =
∫

p(y|θ)p(θ1|θ2)g(θ2|yobs) dθ(11)

and

pα2 =P
(
Rα2(Y ) ≥ Rα2(yobs)

)
,(12)

where Y ∼ p(y) = ∫
p(θ)p(y|θ) dθ . The p-value (10) is

measuring whether the conditional prior to posterior di-
vergence for θ1 given θ2 is unusually large for values of
θ2 and a reference distribution for Y that reflects knowl-
edge of θ2 under yobs. The p-value (12) is just the non-
hierarchical check (3) applied to the marginal posterior
and prior for θ2. We explore the behaviour of these hierar-
chical checks in examples later, as well as by examining
their asymptotic behaviour in Section 4, where we find
that these checks are related to two stage reference priors.
In the above discussion, we can also consider a partition
of the parameters with more than two pieces and the ideas
discussed can be extended without difficulty to this more
general case. We can also consider functions of θ1 and
θ2, �1(θ1) and �2(θ2), and prior to posterior divergences
involving these quantities in the definition of Rα1(y)

and Rα2(y). Later, we will also use the special nota-
tion KL1(y), KL2(y), pKL1 and pKL2 for limα→1 Rα1(y),
limα→1 Rα2(y), limα→1 pα1 and limα→1 pα2. As men-
tioned earlier, the limit α → 1 in the Rényi divergence
corresponds to the Kullback–Leibler divergence.

An anonymous referee has asked an intriguing
question—is it possible for a sequence of hierarchical
checks to all pass when an overall prior check fails, or for
one of the hierarchical checks to fail but the overall check
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to be passed? We conjecture that the answer is yes, since
the hierarchical checks are not just answering the same
question as an overall check at a finer level of detail. The
overall check is blind to the hierarchy that was used in the
specification of the prior, whereas the hierarchical checks
are looking for conflict in certain directions making use
of the hierarchy. Despite our conjecture that inconsistency
between these points of view is possible, we have yet to
find examples illustrating this. We feel that the hierarchi-
cal checks are the right way to check the prior, if prior
elicitation was conducted using a hierarchical approach.

There are a number of ways that the basic approach
above can be modified. One possibility is to replace the
posterior distribution g(θ2|yobs) in the reference distribu-
tion (11) with an appropriate partial posterior distribu-
tion (Bayarri and Berger, 2000, Bayarri and Castellanos,
2007) g(θ2|yobs\Rα1(yobs)), defined for data y by

g
(
θ2|y\Rα1(y)

) ∝ g(θ2)
p(y|θ2)

p(Rα1(y)|θ2)
.

The partial posterior removes the information in Rα1(y)

about θ2 from the likelihood p(y|θ2) in calculating a ref-
erence posterior for θ2 for use in (11). We would also use
the partial posterior in taking the expectation in (9). To get
some intuition, imagine receiving the information in y in
two pieces where we are told the value of Rα1(y) first, fol-
lowed by the remainder; if we applied Bayes’ rule sequen-
tially, first updating the prior g(θ2) by p(Rα1(y)|θ2), then
the “likelihood” term needed to update the posterior given
Rα1(y) to the full posterior g(θ2|y) would be p(y|θ2)

p(Rα1(y)|θ2)
.

So the partial posterior just updates the prior for g(θ2) by
this second likelihood term that represents the information
in the data with that from Rα1(y) removed. This somehow
avoids an inappropriate double use of the data where the
same information is being used to both construct a refer-
ence distribution and assess lack of fit. Use of the partial
posterior distribution in (11) makes computation of (10)
more complicated, however.

There are also other ways that the basic hierarchically
structured check can be modified in some problems with
additional structure. In their discussion of checking hi-
erarchical priors, Evans and Moshonov (2006) consider
two situations. The first situation is where the likelihood
is a function θ1 only, p(y|θ) = p(y|θ1). In this case, sup-
pose that T is a minimal sufficient statistic for θ1 in the
model p(y|θ1) and that V = V (T ) is minimal sufficient
for θ2 in the marginalized model

∫
p(y|θ1)p(θ1|θ2) dθ1.

Writing tobs and vobs for the observed values of T and V ,
they suggest further decomposing the term p(t) in (6) as
p(v)p(t |v) where p(v) denotes the prior predictive den-
sity for V and p(t |v) denotes the prior predictive density
for T given V = v. In this decomposition, it is suggested
that p(t |v) should be used for checking g(θ1|θ2), by com-
paring p(tobs|vobs) with p(T |vobs) for draws of T from

p(t |vobs), and then if no conflict is found p(v) should then
be used for checking g(θ2), by comparing p(vobs) with
p(V ) for V ∼ p(v). So checking g(θ2) should be based
on the prior predictive for V and checking g(θ1|θ2) should
be based on a statistic that is a function of T with refer-
ence distribution the conditional for T |V = vobs induced
under the prior predictive for the data. Looking at our hier-
archically structured check, if there exists a minimal suf-
ficient statistic V for θ2, then we see in (12) our checking
statistic Rα2(y) is a function of that statistic and it will be
invariant to what minimal sufficient statistic is chosen. We
are also using the prior predictive for the reference distri-
bution so our approach fits nicely with that of Evans and
Moshonov (2006). In the check (10), we can see that the
model checking statistic is a function of T and invariant
to the choice of T . If we were to change the reference dis-
tribution (11) to that of T |V = vobs, then (10) would also
fit naturally with the approach of Evans and Moshonov
(2006). However, sometimes suitable nontrivial sufficient
statistics are not available and the conditional prior pre-
dictive of T given V = vobs might be difficult to work
with. Our general approach of using the posterior distri-
bution of θ2 given vobs to integrate out θ2 comes close
to achieving the ideal considered in Evans and Mosho-
nov (2006) when there are sufficient statistics at different
levels of the model. A final observation is that we could
consider a cross-validatory version of the check if inter-
est centered on a certain observation specific parameter
within the vector θ1. These cross-validatory checks are
also useful when there is a division of the likelihood into
pieces representing different data sources. Excluding one
of the data sources, we obtain a posterior which we can
consider as the prior to be updated with the left out data
to get the full posterior. Then the prior to posterior diver-
gence in this sequential updating of one data source can
be considered for either parameters or predictive quanti-
ties to evaluate the effect on inferences of interest. Cross-
validatory checks are considered in a later example.

The other situation considered in Evans and Moshonov
(2006) for checking hierarchical priors is the case where
p(y|θ) can depend on both θ1 and θ2. Here they suppose
there is some minimal sufficient T and a maximal ancil-
lary statistic U(T ) for θ , and a maximal ancillary statistic
V for θ1 (ancillary for θ1 means that the sampling distri-
bution of V given θ depends only on θ2). Conditioning
on ancillaries is relevant since we don’t want assessment
of prior-data conflict to depend on variation in the data
that does not depend on the parameter. They suggest in
(6) decomposing p(t) as p(u)p(v|u)p(t |v,u) and using
the second term p(v|u) (the conditional distribution of V

given U induced under the prior predictive for the data)
to check g(θ2), with the third term p(t |v,u) (the condi-
tional distribution of T given V and U under the prior
predictive for the data) used to check g(θ1|θ2). Again we
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can modify our suggested approach where this additional
structure is available. If we change g(θ2|y) to g(θ2|v) in
the definition of Rα2(y), then we are checking g(θ2) using
a discrepancy which is a function of V . If no maximal an-
cillary for θ were available, the suggestion of Evans and
Moshonov (2006) would use the prior predictive for V for
the reference distribution. Because V is ancillary for θ1
the check does not depend in any way on g(θ1|θ2), which
is desirable because we would like to check for conflict
with θ2 separately from checking for any conflict with
g(θ1|θ2). For the check (10) our discrepancy is a function
of T as Evans and Moshonov (2006) would recommend,
and if the reference predictive distribution were changed
to be that of T given U and V we could use this approach
to check for conflict with g(θ1|θ2). However, in complex
situations identifying suitable maximal ancillary statistics
may not be possible. Nevertheless consideration of prob-
lems like this provides some guidance as an ideal.

2.4 Other Suggestions for Prior-Data Conflict
Checking

Now that we have given the basic idea of our method
we discuss its connections with other suggestions in the
literature. Perhaps the approach to prior-data conflict de-
tection most closely related to the one developed here
has been suggested by Bousquet (2008). Similar to us,
Bousquet (2008) considers a test statistic based on prior
to posterior (Kullback–Leibler) divergences, but uses the
ratio of two such divergences. Briefly, a noninformative
prior is defined and a reference posterior distribution for
this noninformative prior is constructed. Then, the prior
to reference posterior divergence for the prior to be ex-
amined is computed and divided by the prior to reference
posterior divergence for the noninformative prior. When
the noninformative prior is improper, some modification
of the basic procedure is suggested, and extensions to hi-
erarchical settings are also discussed. The approach we
consider here has similar intuitive roots but is simpler to
implement because it does not require the existence or
precise definition of a noninformative prior. We consider
the prior to posterior divergence for the prior under ex-
amination, a measure of how much beliefs have changed
from prior to posterior, and compare the observed value
of this statistic to its distribution under the prior predictive
for the data. There is hence no need to define a noninfor-
mative prior, although as mentioned earlier there are in-
teresting asymptotic connections between the checks we
suggest and Jeffreys’ and reference noninformative priors.
This will be discussed further in Section 4. Our focus here
is not on deriving noninformative prior choices, however,
but on detecting conflict for a given proper prior.

A quite general and practically implementable sugges-
tion for measuring prior-data conflict has been given re-
cently by Presanis et al. (2013). Their approach gener-
alizes earlier work by Marshall and Spiegelhalter (2007)

and also relates closely to some previous suggestions
by Gåsemyr and Natvig (2009) and Dahl, Gåsemyr and
Natvig (2007). They give a general conflict diagnostic
that can be applied to a node or group of nodes of a
model specified as a directed acyclic graph (DAG). The
conflict diagnostic is based on formulating two distri-
butions representing independent sources of information
about the separator node or nodes which are then com-
pared. Again, in general, there is a need in this approach
to specify noninformative priors for the purpose of for-
mulating distributions representing independent sources
of information. O’Hagan (2003) is an earlier suggestion
for examining conflict at any node of a DAG that was
inspirational for much later work in the area, although
the specific procedure suggested has been found to suf-
fer from conservatism in some cases. Scheel, Green and
Rougier (2011) consider a graphical approach to examin-
ing conflict where the location of a marginal posterior dis-
tribution with respect to a local prior and lifted likelihood
is examined, where the local prior and lifted likelihood
are representing different sources of information coming
from above and below the node in a chain graph model.
Reimherr, Meng and Nicolae (2014) examine prior-data
conflict by considering the difference in information in a
likelihood function that is needed to obtain the same pos-
terior uncertainty for a given proper prior compared to a
baseline prior. Again, some definition of a noninformative
prior for the baseline is needed for this approach to be im-
plemented. Finally, the model checking approach consid-
ered in Dey et al. (1998) can also be used for checking for
prior-data conflict. There is some similarity with our ap-
proach in that they use quantities associated with the pos-
terior itself in the test. Specifically, they consider Monte
Carlo tests based on vectors of posterior quantiles and the
prior predictive with a Euclidean distance measure used
to measure similarity between the vectors of quantiles.

2.5 Relationships with Formal Methods for Model
Choice and the Role of Explicit Alternatives

Bayesian model checking methods, including the prior-
data conflict checking methods discussed in the previous
subsection, do not usually make use of any explicit al-
ternative model. Instead, they attempt to reject a current
model without having any alternative model to replace
it with. Prompted by some comments by an anonymous
referee, we reflect here on possible roles for explicit al-
ternative models within Bayesian model checking gen-
erally. There are historical debates within statistics sur-
rounding different approaches to significance testing that
are pertinent to the discussion. In so-called pure signif-
icance testing (Cox and Hinkley, 1974, Chapter 3), the
choice of a test statistic is considered more primitive than
the construction of an explicit alternative model, and even
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though a test statistic in this framework will have cer-
tain departures from the assumed model in mind, no al-
ternative model is considered. Gelman and Shalizi (2013)
discuss pure significance testing in relation to Bayesian
predictive checking. The p-values in this framework are
measures of surprise or of lack of consistency of an ob-
served test statistic with the model, and are not used as
part of any formal decision making procedure involving
an alternative model with associated mathematical opti-
malities. However, both formal and informal methods of
model criticism and choice would seem to have a role to
play in choosing good models, depending on the circum-
stances.

As mentioned, Bayesian model criticism is usually
done in a framework without explicit alternative models,
but the work of Robins, van der Vaart and Ventura (2000)
does do this. They consider model expansions and score-
type discrepancies which are locally most powerful. We
have some sympathy for the argument that model expan-
sions can be useful even in informal methods for model
checking. A difficult practical question in Bayesian model
checking is always the choice of discrepancy. We see the
use of explicit alternative models as possibly helpful for
addressing this issue, with their role being to assist the
imagination—a discrepancy derived from a formal model
choice procedure and some explicit working model may
give a discrepancy with an intuitive form, but one that we
might not have thought of without the aid of the work-
ing alternative model. The alternative model may not be
taken very seriously in itself, however, and concepts such
as power might be of limited interest.

The above discussion was concerned with Bayesian
model checking generally and not specifically with prior-
data conflict checking. We note that our framework pro-
vides guidance on the choice of discrepancy—once a
function of the parameter of interest is chosen, we sug-
gest using a prior-to-posterior divergence for that func-
tion of the parameter as a discrepancy. If an explicit alter-
native model were to be considered for purposes such as
power computations for prior-data conflict checks, what
would that involve? We suggest that the logical way to
proceed is to embed the original prior used for the anal-
ysis into a family of priors. That is, we consider a family
of priors g(θ |γ ) where γ is some expansion parameter
and the original prior is g(θ) = g(θ |γ0) for some value γ0
for γ . Then suppose we were to make a binary decision
regarding the existence of a prior-data conflict by thresh-
olding the tail probability (3) at some conventional level
like 0.05. We can consider data generated under the prior
predictive for the prior with different values of γ , and look
at how frequently prior-data conflicts are declared for dif-
ferent values of γ . This is giving something like a notion
of power for prior-data conflict checks. This might be of
some interest, depending on the context, and we illustrate
this idea in the next section in a simple example.

3. FIRST EXAMPLES

To begin exploring the properties of the conflict check
(3), we consider a series of simple examples where cal-
culations can be done analytically. Although an analytic
form can be obtained for our discrepancies in these exam-
ples, their precise form is not always capable of intuitive
interpretation. However, as mentioned earlier, an advan-
tage of our framework is that it provides some guidance
on the choice of discrepancy as a prior-to-posterior diver-
gence. The p-values (or tail probabilities) in the exam-
ples have the usual interpretation in model checks without
an explicit alternative of measures of surprise, measuring
lack of consistency of the observed discrepancy with the
model. The examples considered here were also given in
Evans and Moshonov (2006), and we make some compar-
isons with their check (7) in each case, but leave algebraic
details of derivations to the Appendix.

EXAMPLE 1. Normal location model. Suppose y1,

. . . , yn ∼ N(μ,σ 2) where μ is an unknown mean and
σ 2 > 0 is a known variance. In this normal location
model, the sample mean is sufficient for μ and normally
distributed so without loss of generality, we may con-
sider n = 1 and write the observed data point as yobs. The
prior density g(μ) for μ will be assumed to be N(μ0, σ

2
0 )

where μ0 and σ 2
0 are known.

Here and in later examples, we use the notation A(y)
.=

B(y) to mean that A(y) and B(y) are related (as a func-
tion of y) by a monotone transformation. When conduct-
ing a Bayesian model check with discrepancies D1(y)

and D2(y) then they will result in the same predictive
p-values if D1(y)

.= D2(y) (although care must be taken
to compute the appropriate left or right tail area, since in
our definition of the .= notation the relationship between
A(y) and B(y) can be either monotone increasing or de-
creasing). Consider the prior-data conflict check based
on the Rényi divergence statistic. The posterior density
for μ is N(τ 2γ, τ 2) where τ 2 = (1/σ 2

0 + 1/σ 2)−1 and
γ = (μ0/σ

2
0 + y/σ 2) and the prior to posterior Rényi di-

vergence of order α is (using, e.g., the formula in Gil,
Alajaji and Linder (2013)),

Rα(y) = log
σ0

τ
+ 1

2(α − 1)
log

σ 2
0

σ 2
α

+ 1

2

α(τ 2γ − μ0)
2

σ 2
α

,

where σ 2
α = ασ 2

0 + (1 − α)τ 2. Here only γ depends on y,
so that

Rα(y)
.= (

τ 2γ − μ0
)2

.= (
γ − μ0/τ

2)2

= (y − μ0)
2/σ 2 .= (y − μ0)

2,
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The divergence based check turns out to be equivalent
to the Evans and Moshonov (2006) check in this exam-
ple for every value of α. To implement the conflict check
of Evans and Moshonov (2006), we need p(y) which
is the N(μ0, σ

2 + σ 2
0 ) density (the sufficient statistic in

this case of a single observation is just y). We can write
logp(y)

.= (y − μ0)
2 and just like the divergence based

check the check of Evans and Moshonov (2006) compares
(yobs −μ0)

2 to the distribution of (Y −μ0)
2 for Y ∼ p(y).

Following the similar example of Evans and Moshonov
(2006), page 897, the p-value is

pRB = 2
(

1 − �

( |yobs − μ0|√
σ 2 + σ 2

0

))
.

It is interesting to examine also the predictive version of
our check where Rα(y) is defined in terms of the prior-to-
posterior divergence for a predictive replicate y∗ of y. The
prior predictive density for y∗ is the N(μ0, σ

2 +σ 2
0 ) den-

sity, and the posterior predictive density for y∗ given y is
the N(τ 2γ, τ 2 + σ 2

0 ) density. Writing down the Rényi di-
vergence we see once again that Rα(y)

.= (τ 2γ − μ0)
2 .=

(y − μ0)
2 so the predictive perspective leads to the same

check here as the divergence based check on the parame-
ters.

Following the discussion of Section 2.4, we consider
how a power calculation for an alternative prior could pro-
ceed here if that were of interest. Consider a prior family
g(θ |μ′) = N(μ′, σ 2), where μ′ is a prior hyperparameter
that is allowed to vary. Choosing μ′ = μ0 gives the origi-
nal prior g(θ). The prior predictive for g(θ |μ′) is normal,
g(y|μ′) = N(μ′, σ 2 + σ 2

0 ). For data y generated under
g(y|μ′), we can study how frequently the p-value (3) is
less than some cutoff, which we choose here as 0.05, as
μ′ varies. The probability of a p-value less than 0.05 in
the conflict check for y ∼ g(y|μ′) is

P
(
μ′) = P

(
2
(

1 − �

( |y − μ0|√
σ 2 + σ 2

0

))
< 0.05

)
,

which after some simple algebra leads to

P
(
μ′) = �

( |μ0 − μ′|√
σ 2 + σ 2

0

− �−1(0.975)

)

+ �

(
− |μ0 − μ′|√

σ 2 + σ 2
0

− �−1(0.975)

)
.

Figure 1 shows plots of this power curve P(μ′) versus
μ′ with μ0 = 0, σ 2

0 = 1 and σ 2 = 1 and 0.1. The case of
σ 2 = 0.1 can equivalently be thought of as correspond-
ing to conflict checking based on the sample mean (a nor-
mally distributed minimal sufficient statistic) for a sample
of size 10 from a distribution with variance 1. In this ex-
ample, other expansions of the original prior could have
been used, such as varying the variance hyperparameter.

FIG. 1. Plots of P(μ′) versus μ′ in the location normal example with
μ0 = 0, σ 2

0 = 1, and σ 2 = 1 (solid) and 0.1 (dashed).

EXAMPLE 2. Binomial model. Suppose that y ∼
Binomial(n, θ) and write yobs for the observed value. The
prior density g(θ) of θ is Beta(a, b), which for data y re-
sults in the posterior density g(θ |y) being Beta(a +y, b+
n − y). Using the expression for the Rényi divergence
between two beta distributions (Gil, Alajaji and Linder,
2013)

Rα(y) = log
B(a, b)

B(a + y, b + n − y)

+ 1

α − 1
log

B(a + αy, b + α(n − y))

B(a + y, b + n − y)
,

where B(·, ·) denotes the beta function.
Calculations in the Appendix show that

Rα(y)
.= logB(a, b) − 1

2
log θ̂n

− 1

2
log(1 − θ̂n)

− (a − 1) log θ̂n

− (b − 1) log(1 − θ̂n) + O(1/n)

.= − logg(θ̂n) + 1

2
log

∣∣I (θ̂n)
∣∣

+ O(1/n),

(13)

where θ̂n = (a + y)/(a + b + n) is the posterior mean,
I (θ) = n/(θ(1 − θ)) is the Fisher information, and g(θ̂n)

is the prior density evaluated at θ̂n. The posterior mean
can be replaced by any other estimator differing from it
by O(1/n) such as the maximum likelihood estimator. We
explain in Section 4 why the form of the result above is
expected much more generally.

As a comparison, for the check of Evans and Moshonov
(2006), we have

logp(y)
.= logg(θ̂n) + O(1/n),

where as before θ̂n is the posterior mean for θ . See the
Appendix for further details. A general result about the
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check of Evans and Moshonov (2006) explaining the lim-
iting form of the check above is given in Evans and Jang
(2011a). So the two checks differ asymptotically owing to
the presence of the term −0.5 log I (θ̂n(y)). See the next
section for further discussion.

It is helpful to consider finite sample behaviour in some
particular cases. We see that for Rα(y) if we consider
α → ∞, we obtain

MR(y) = log
B(a, b)

B(a + y, b + n − y)

+ y

n
log

y

n
+

(
1 − y

n

)
log(n − y).

If a = b = 1 so that the prior is uniform, we see that

pMR =
(

#

{
y :

(
n

y

)(
y

n

)y(
1 − y

n

)n−y

≥
(

n

yobs

)(
yobs

n

)yobs
(

1 − yobs

n

)n−yobs
})

/(n + 1)

and plotting
( n
y

)
(
y
n
)y(1 − y

n
)n−y reveals that it is sym-

metric with an antimode at n/2 when n is even and at
{(n + 1)/2,1 + (n + 1)/2} when n is odd. So prior-data
conflict is detected whenever yobs is near 0 or n. This does
seem strange when the prior is uniform but is perhaps
not surprising given the asymptotic connection between
our checks and the Jeffreys’ prior, which is also not uni-
form in this example. On the other hand note that, letting
p(m) denote the prior predictive density of MR(y), then
p(m) = 2/(n+1) when n is even for all m except when m

is the antimode and when n is odd then p(m) = 1/(n+ 1)

for all m. So if we were to check the prior using p(m)

as the discrepancy rather than MR(y), the p-value would
never be small and any conflict would be avoided.

EXAMPLE 3. Normal location-scale model, hierar-
chically structured check. Extending our previous loca-
tion normal example, suppose y1, . . . , yn are independent
N(μ,σ 2) where now both μ and σ 2 are unknown. Write
y = (y1, . . . , yn). We consider a normal inverse gamma
prior for θ = (μ,σ 2), NIG(μ0, λ0, a, b) say, having den-
sity of the form

g(θ) =
√

λ0

σ
√

2π

ba

�(a)

(
1

σ 2

)a+1

× exp
(
−2b + λ0(μ − μ0)

2

2σ 2

)
.

This prior is equivalent to g(θ) = g(θ2)g(θ1|θ2) =
g(σ 2)g(μ|σ 2) with g(σ 2) inverse gamma, IG(a, b), and
g(μ|σ 2) normal, N(μ0, σ

2/λ0). In this model a sufficient
statistic is T = (ȳ, s2) where ȳ denotes the sample mean
and s2 the sample variance and we write tobs = (ȳobs, s

2
obs)

for its observed value. The normal inverse gamma prior is
conjugate, and the posterior is NIG(μ′

0(y), λ′
0, a

′, b′(y))

where μ′
0(y) = (n + λ0)

−1(μ0λ0 + nȳ), λ′
0 = n + λ0,

a′ = (a +n/2) and b′ = b′(y) = b + (n− 1)s2/2 +n(ȳ −
μ0)

2/(2(n/λ0 +1)). It is natural to consider the hierarchi-
cal checks we discussed earlier for testing the two compo-
nents of g(θ). First, let us consider the check for conflict
with g(μ|σ 2). Using the expression for the Rényi diver-
gence between normal densities, we get

Rα

(
y,σ 2) = log

λ′
0

λ0
+ 1

2(α − 1)
log

λ′
0

2

λ2
0

+ 1

2

α(μ′
0(y) − μ0)

2

σ 2
α

,

where σ 2
α = ασ 2

0 /λ0 + (1 − α)σ 2/λ′
0

2 and we note that

Rα1(y)
.= (

μ′
0(y) − μ0

)2 .= (ȳ − μ0)
2.

Our suggested hierarchical check compares Rα1(yobs)

to a reference distribution based on Y ∼ m(y) =∫
p(σ 2|yobs)

∫
p(y|μ,σ 2)p(μ|σ 2) dμdσ 2. Noting that

the distribution of ȳ under m(y) is t2a′(μ0,√
b′(yobs)

a′ ( 1
λ0

+ 1
n
)) we see that the divergence based check

just computes whether

ȳobs − μ0

σ ∗ = ȳobs − μ0√
b′(yobs)/a′(1/λ0 + 1/n)

is in the tails of a t2a′(0,1) distribution. The hierarchical
check of Evans and Moshonov (2006), page 909, on the
other hand calculates the probability that (ȳobs − μ0)/σ̃

is in the tails of a t2a′−1(0,1) distribution, where σ̃ 2 =
(1/λ0(n/λ0 + 1)(2b + (n − 1)s2

obs))/(n/λ0(n + 2a − 1)).
Clearly these checks are very similar, since both σ ∗ and
σ̃ are approximately s/

√
λ0 for large n and there is

only one degree of freedom difference in the reference t-
distribution. We also note that in our check if we change
the reference distribution to be that of y given s2 (noting
that s2 is ancillary for μ and following the discussion of
Section 2.2) then our check would coincide with that of
Evans and Moshonov (2006).

Consider next the check on p(σ 2). For two inverse
gamma distributions, p1(σ

2) and p2(σ
2), being IG(a′, b′)

and IG(a, b) respectively, the Rényi divergence between
them is

log
{
�(a)b′a′

�(a′)ba

}
+ 1

α − 1
log

{
�(aα)

�(a′)
b′a′

bα
aα

}
,

where aα = a′α + (1 − α)a and bα = αb′ + (1 − α)b.
Since a, b and a′ don’t depend on the data, this gives

Rα2(y)
.= a′ logb′ + 1

α − 1
a′ logb′

− 1

α − 1
aα logbα.
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Using logbα = log(αb′ + (1 − α)b) = logαb′ + (1 −
α)b/(αb′) + O(1/n) and collecting terms

Rα2(y)
.= a

a′ logb′ + aα

a′α
b

b′ + O

(
1

n

)
.= log

b′/a′

b/a
+ b/a

b′/a′ + O

(
1

n

)
.

Note also that s2 ≈ b′/a′ for large n, so that for large n

using Rα2(y) as discrepancy is approximately the same
as using

log
s2

b/a
+ b/a

s2 .(14)

As a comparison, for the check in Evans and Moshonov
(2006) it is shown in the Appendix that we have approxi-
mately for large n

RB(y)
.= a − 1

2a
log

s2

b/a
+ b/a

s2 ,

which, comparing with (14), clarifies the relationship to
the divergence based check.

EXAMPLE 4. A nonregular example. The following
example is adapted from Jaynes (1976) and Li et al.
(2016). Suppose we observe y1, . . . , yn ∼ f (y|θ) where
f (y|θ) = r exp(−r(y − θ))I (y > θ) where r is a known
parameter, θ > 0 is unknown and I (·) denotes the indi-
cator function. We consider an exponential prior on θ ,
g(θ) = κ exp(−κθ)I (θ > 0). Note that this is a nonreg-
ular example when inference about θ is considered, due
to the way that the support of the density for the data de-
pends on θ . This means, for example, that the MLE as
well as the posterior distribution are not asymptotically
normal. Writing t = (nr − κ)ymin (where ymin is the min-
imum of y1, . . . , yn), ν = nr/κ and tobs for the observed
value of t , it can be shown (see the Appendix) that the
p-value pα is

pα = pα(y)

= 1 −
∫ t2

t1

ν

(ν − 1)2

[
exp

(
− t

ν + 1

)
− exp

(
− νt

ν − 1

)]
dt,

where t1 and t2 are such that Rα(t1) = Rα(t2) = Rα(tobs)

with t1 < t0 < t2 and t0 is the value of t at which Rα(y) =
Rα(t) is minimal. There is a single global minimum with
Rα(t) decreasing for t < t0 and increasing for t > t0. Ei-
ther t1 or t2 will be equal to tobs. We can easily see that
if tobs = t0 then pα = 1, and if tobs → ∞ then pα → 0.
Figure 2 considers the special case of the KL divergence
and shows some plots of how pKL varies with tobs for a
few different values of ν = nr/κ .

4. LIMITING BEHAVIOUR OF THE CHECKS

We now give derivations of some of the limit results
stated in Section 2. We will consider the special case of
the Kullback–Leibler divergence first. Let y1, . . . , yn be
independent and identically distributed from p(y|θ) and
denote the true value of θ by θ∗. Write nI (θ) for the
Fisher information and nÎn for the observed information.
Then under suitable regularity conditions (see, e.g., The-
orem 1 of Ghosh, 2011, which summarizes the discus-
sion in Ghosh, Delampady and Samanta, 2006; see also
Johnson, 1970) an asymptotic expansion of the posterior
distribution gives

logg(θ |y) + d

2
log

2π

n
− 1

2
log |În|

+ n(θ − θ̂n)
T În(θ − θ̂n)

2

= Op

(
1√
n

)
almost surely Pθ∗ . Adding and subtracting logg(θ) from
the left-hand side and taking expectation with respect to
g(θ |y) gives

KL(y) +
∫ (

logg(θ)
)
g(θ |y)dθ

+ d

2
log

2π

n
− 1

2
log |În|

+
∫

n(θ − θ̂n)
T În(θ − θ̂n)

2
g(θ |y)dθ

is op(1) and using the asymptotic normality of the pos-
terior and noting that În − I (θ) converges to zero almost
surely, and θ̂n converges to θ∗ almost surely under the as-
sumed regularity conditions, gives

KL(y) + logg
(
θ∗) + d

2
log

2πe

n
− 1

2
log

∣∣I (
θ∗)∣∣

= op(1).

Hence provided that logg(θ∗) − 1/2 log |I (θ∗)| and
logg(θ) − 1/2 log |I (θ)| for θ ∼ g(θ) are not equal with
positive probability (which excludes the case where g(θ)

is the Jeffreys’ prior), the p-value (3) converges as n →
∞ to

P

(
1

2
log

∣∣I (θ)
∣∣ − logg(θ)

≥ 1

2
log

∣∣I (
θ∗)∣∣ − logg

(
θ∗))

,

where θ ∼ g(θ), and this can be written as P(g(θ∗) ×
|I (θ∗)|−1/2 ≥ g(θ)|I (θ)|−1/2).

Next, consider our hierarchical checks and the con-
flict p-values (10) and (12). The check (12) is really just
the same check as in the nonhierarchical case, but ap-
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FIG. 2. Plots of pKL versus tobs for ν = 2,8 and 50 in Example 4. Note the different scale on the x-axes for the three plots.

plied to the model and prior with θ1 integrated out so
the limit is the same as in the nonhierarchical case with
the Fisher information being that for the marginalized
model p(y|θ1) = ∫

p(y|θ)p(θ2|θ1) dθ , provided that an
appropriate asymptotic expansion of the marginal poste-
rior is available. For the check (10), the reference predic-
tive distribution m(y) converges as n → ∞ to p(y|θ∗

2 ) =∫
p(y|θ)p(θ1|θ∗

2 ) dθ1 and in this model with θ2 = θ∗
2

fixed we will get the limiting p-value

P
(
g
(
θ∗

1 |θ∗
2
)∣∣I11

(
θ∗

1 , θ∗
2
)∣∣−1/2

≥ g
(
θ1|θ∗

2
)∣∣I11

(
θ1, θ

∗
2
)∣∣−1/2)

,

where I11(θ) denotes the submatrix of I (θ) formed by the
first d1 rows and d1 columns and θ1 ∼ g(θ1|θ∗

2 ). Just as
the choice of g(θ) as the Jeffreys’ prior results in a lim-
iting p-value of 1 in the nonhierarchical case, choosing
g(θ) according to the two stage reference prior (Berger,
Bernardo and Sun, 2009, Ghosh, 2011) results in the lim-
iting p-values corresponding to (10) and (12) being 1.
This provides at least some heuristic reason why, from the
point of view of avoidance of conflict, a reference prior
might be considered desirable. It is not our intention here,
however, to develop methodology for default nonsubjec-
tive prior choice or even to justify existing choices, but

rather to develop methods for checking for conflict with
given proper priors.

Regarding the extension of the above ideas to the more
general case of the Rényi divergence, using a Laplace ap-
proximation to the integral∫ {

g(θ |y)

g(θ)

}α−1
g(θ |y)dθ

=
∫

g(θ)−(α−1)g(θ |y)α dθ,

expanding about the mode θ̂ of g(θ |y) and replacing the
Hessian of logg(θ |y) at the mode with nÎn, gives

(2π)d/2g(θ̂ |y)αg(θ̂)−(α−1)|αnÎn|−1/2,(15)

and using the asymptotic normal approximation to g(θ |y),
N(θ̂, n−1Î−1

n ), so that

g(θ̂ |y) ≈(2π)−d/2|nÎn|1/2,(16)

and combining (15) and (16), gives

Rα(y) ≈ 1

α − 1

(
d

2
log 2π − αd

2
log 2π

+ αd

2
logn + α

2
log |În|
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− (α − 1) logg(θ̂) − αnd

2
− 1

2
log |În|

)
.= − logg(θ̂) + 1

2
log |În|,

which converges to − logg(θ) + 1
2 log |I (θ)|. Hence, we

expect a similar limit will hold for the p-value as for the
Kullback–Leibler case, under suitable conditions.

5. MORE COMPLEX EXAMPLES AND VARIATIONAL
APPROXIMATIONS

To calculate the check (3) or its hierarchical extensions
can be difficult. Computation of Rα(y) involves an inte-
gral which is usually intractable, and an expensive Monte
Carlo procedure may be needed to approximate it. Fur-
thermore, the integrand involves the posterior distribution.
Even worse, as well as computing Rα(yobs), we need to
compute a reference distribution for it, and this may in-
volve calculating Rα(y(i)) for y(i), i = 1, . . . ,m, indepen-
dently drawn from the prior predictive distribution. So a
straightforward Monte Carlo computation of pα may in-
volve calculating Rα(y) for m+1 different datasets where
m might be large and with each of these calculations itself
being expensive. Here we suggest a way to make the com-
putations easier using variational approximation methods.
Tan and Nott (2014) also considered the use of variational
approximations for computation of conflict diagnostics in
hierarchical models and they show a relationship between
the diagnostics they consider and the mixed predictive
checks of Marshall and Spiegelhalter (2007). Their use of
variational approximations for conflict detection is very
different to that considered here, however.

In the variational approximation literature there are
quite general methods for learning approximations to the
posterior that are in the exponential family (Attias, 1999,
Jordan et al., 1999, Winn and Bishop, 2005, Rohde and
Wand, 2016). If the prior distribution for a certain block
of parameters is also in the same exponential family as its
variational approximation, it is possible to compute the
Rényi divergence in closed form (Liese and Vajda, 1987).
Furthermore, because variational approximations are fast
to compute, they are ideally suited to the repeated poste-
rior computations for samples under a reference predic-
tive distribution that we need to compute pα .

More generally there are also useful methods for learn-
ing approximations which are mixtures of Gaussians
(Salimans and Knowles, 2013, Gershman, Hoffman and
Blei, 2012) and if the prior can also be approximated by
a mixture of Gaussians then useful closed form approx-
imations to Kullback–Leibler divergences are available
(Hershey and Olsen, 2007). We illustrate the use of varia-
tional methods for computing approximations of our con-
flict p-values in two examples. In these examples, we use
the Kullback–Leibler divergence as the divergence mea-
sure. In the first example, we use a variational mixture

approximation, and in the second a Gaussian approxima-
tion in a hierarchically structured check for a logistic ran-
dom effects model. In both cases, there is a parametric
family of approximating densities, and the variational ap-
proximation involves finding the distribution in the para-
metric family closest to the true posterior distribution in
the Kullback–Leibler sense. Note that because the varia-
tional approximation procedure involves an optimization
that depends only on the data through the true posterior
distribution, the variational approximation is a function
of the data only through the posterior distribution, and
our prior-data conflict checks making use of the approx-
imation still satisfy the defining property of such checks
of the discrepancy being only a function of a minimal
sufficient statistic.

EXAMPLE 5. Beta-binomial example. We consider
the example in Albert (2009), Section 5.4. This example
estimates the rates of death from stomach cancer for males
at risk aged 45–64 for the 20 largest cities in Missouri.
The data set cancer mortality is available in the R package
LearnBayes (Albert, 2009). It contains 20 observations
denoted by (ni, yi), i = 1, . . . ,20, where ni is the number
of people at risk and yi is the number of deaths in the ith
city. An interesting model for these data is a beta-binomial
model with mean η and precision K , where the probabil-
ity function for the ith observation is

p(yi |η,K)

=
(
ni

yi

)
B(Kη + yi,K(1 − η) + ni − yi)

B(Kη,K(1 − η))
.

Albert (2009) considers the prior g(η,K) ∝ 1
η(1−η)

1
(1+K)2

and reparametrizes to θ = (θ1, θ2) where

θ1 = logit(η) = log
(

η

1 − η

)
, θ2 = log(K).

We use this parametrization, but since Albert’s prior on
(η,K) is improper we consider a Gaussian prior for θ ,
g(θ) = N(μ0,�0), where μ0 is the mean and �0 the co-
variance matrix. The posterior distribution g(θ |y) has a
nonstandard form, and we approximate it using a Gaus-
sian mixture model (GMM). Variational computations
are done using the algorithm in Salimans and Knowles
(2013), Section 7.2, where the same dataset was also con-
sidered but with Albert’s original prior. We consider a
two-component mixture approximation,

g(θ |y) ≈ q(θ) = ω1q1(θ) + ω2q2(θ),

where q(θ) denotes the variational approximation, ω1 and
ω2 are mixing weights with ω1 + ω2 = 1, and q1(θ) and
q2(θ) are the normal mixture component densities with
means and covariance matrices μ1, �1 and μ2, �2, re-
spectively. In our check, we replace

KL(y) =
∫

log
g(θ |y)

g(θ)
g(θ |y)dθ



CHECKING FOR PRIOR-DATA CONFLICT 247

with

K̃L(y) =
∫

log
q(θ)

g(θ)
q(θ) dθ.(17)

K̃L(y) replaces the true posterior g(θ |y) with its vari-
ational approximation. Then we replace the exact com-
putation of (17) with the closed form approximation of
Hershey and Olsen (2007), Section 7, which here takes
the form

ω1 · log
ω1 + ω2 · exp(−D(q1‖q2))

exp(−D(q1‖g))

+ ω2 · log
ω1 · exp(−D(q2‖q1)) + ω2

exp(−D(q2‖g))
,

where D(q1‖q2), D(q1‖g), D(q2‖g) are the Kullback–
Leibler divergences between q1 and q2, q1 and g and q2
and g respectively where g is the prior. There are closed
form expressions for these Kullback–Leibler divergences
since they are between pairs of multivariate Gaussian
densities. After application of the Hershey–Olsen bound,
we have an approximating statistic KL∗(y) to KL(y).
Then we can approximate pKL by simulating datasets
y(i), i = 1, . . . ,M under the prior predictive, computing
KL∗(y(i)) and KL∗(yobs) and then

pKL ≈ 1

M

M∑
i=1

I
(
KL∗(

y(i)) ≥ KL∗(yobs)
)
.

For illustration, consider three different normal priors,
all with prior covariance matrix �0 diagonal with diago-
nal entries 0.25, but with prior means representing a lack
of conflict, moderate conflict and a clear conflict (μ0 =
(−7.1,7.9), μ0 = (−7.4,7.9) and μ0 = (−7.7,7.9) re-
spectively). Figure 3 shows for the three cases contour
plots of the prior and likelihood (left column) and the
true posterior together with its two component variational
posterior approximation computed using the algorithm of
Salimans and Knowles (2013). The three rows from top
to bottom show the cases of lack of conflict, moderate
conflict and a clear conflict. The p-values approximated
by the variational method and Hershey–Olsen bound with
M = 1000 are 0.58, 0.25 and 0.03 for the three cases.
We can see that the variational posterior approximation is
excellent even with just two mixture components and the
p-values behave as we would expect.

EXAMPLE 6. Bristol Royal Infirmary Inquiry data.
We illustrate the computation of our conflict checks in a
hierarchical setting using a logistic random effects model.
Here the data are part of that presented to a public en-
quiry into excess mortality at the Bristol Royal Infirmary
in complex paediatric surgeries prior to 1995. The data are
given in Marshall and Spiegelhalter (2007), Table 1, and a
comprehensive discussion is given in Spiegelhalter et al.
(2002). The data consists of pairs (yi, ni), i = 1, . . . ,12

where i indexes different hospitals, yi is the number of
deaths in hospital i and ni is the number of operations.
The first hospital (i = 1) is the Bristol Royal Infirmary.
Marshall and Spiegelhalter (2007) consider a random ef-
fects model of the form yi ∼ Binomial(ni,pi) where
log(pi/(1 − pi)) = β + ui and ui ∼ N(0,D) so that
ui are hospital specific random effects, and they con-
sider formal measures of conflict involving the prior for
ui given D. Particular interest is in whether there is a
prior data conflict for i = 1 (Bristol) which would in-
dicate that this hospital is unusual compared to the oth-
ers. In our analysis here, we consider priors on β and
D where β ∼ N(0,1000) and logD ∼ N(−3.5,1) which
were chosen to be roughly similar to priors chosen in Tan
and Nott (2014) for this example. So we have a hierar-
chical prior, g(θ) = g(u,β,D) = g(u|D)g(β,D) and we
can use our methods for checking hierarchical priors to
check for conflict involving each of the ui .

We will use a multivariate normal variational approxi-
mation to g(θ |y) (but with D transformed by taking logs)
and computed using the method described in Kucukelbir
et al. (2017), which is implemented in the software pack-
age Stan (Carpenter et al., 2017). The conditional prior
g(u|D) is normal, and in the variational posterior the con-
ditional for u given β , D is also normal, so that condi-
tional prior to (variational) posterior divergences can be
computed in closed form. For checking for conflict for the
ui’s, we will use the statistic KL1(y) = limα→1 Rα1(y),
except that we replace the conditional posterior and prior
for u given β , D in the definition (8) with that of ui given
β , D when checking ui . This is because we are interested
in checking for conflicts for individual hospital specific
effects. We will approximate KL1(y) by KL∗

1(y) obtained
by replacing all computations involving the true posterior
with the equivalent calculations for the variational Gaus-
sian posterior.

Figure 4 shows for the observed data the variational
posterior distribution, together with the true posterior
approximated by MCMC. Table 1 also shows our con-
flict p-values for the different hospitals. Also listed are
cross-validated mixed predictive p-values obtained by the
method of Marshall and Spiegelhalter (2007) by MCMC
and given in Tan and Nott (2014), Table 1, as well as
a cross-validated version of our divergence based p-
values. The cross-validated divergence based p-values
use the posterior distribution for (β,D) obtained when
leaving out the ith observation, g(θ2|yobs,−i), instead
of g(θ2|yobs) in the definition of the reference distri-
bution (11) and in taking the expectation in (9). We
can see that the p-values are similar although the pri-
ors on the parameters (β,D) were not exactly the same
in Tan and Nott’s analysis. For comparison with pre-
vious analyses of the data, we have computed a one-
sided version of our conflict p-value here, which makes



248 NOTT, WANG, EVANS AND ENGLERT

FIG. 3. Contour plots of log-likelihood and prior (left) and true posterior together with Gaussian mixture approximation (right) for priors centered
at (−7.1,7.9), (−7.4,7.9) and (−7.7,7.9) (from top to bottom).

sense because excess mortality is of interest. We have
modified our p-value measuring surprise to pKL1 =
P(KL1(Y ) ≥ KL1(yobs) and Eq(ui |Y) > 0) for clusters
i with Eq(ui |yobs) > 0, and to pKL1 = P(KL1(Y ) ≤
KL1(yobs))+P(KL1(Y ) ≥ KL1(yobs) and Eq(ui |Y) > 0)

for clusters i with E(ui |yobs) < 0, where in these expres-
sions Eq(·) denotes expectation with respect to the appro-
priate variational posterior distribution. Although it is not
expected that these conflict p-values should be exactly the

same, it is seen that they give a similar picture about the
degree of consistency of the data for each hospital with
the hierarchical prior.

6. DISCUSSION

We have proposed a new approach for prior-data con-
flict assessment based on comparing the prior to posterior
Rényi divergence to its distribution under the prior pre-
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FIG. 4. Marginal posterior distributions computed by MCMC (red)
and Gaussian variational posteriors (blue) for u (top) and (β,D) (bot-
tom).

dictive for the data. The method can be extended to hi-
erarchical settings where it is desired to check different
components of a prior distribution, and has some inter-
esting connections with the methodology of Evans and
Moshonov (2006) and with Jeffreys’ and reference prior
distributions. Similar to Evans and Moshonov (2006), the
discrepancy will be a function of any minimal sufficient
statistic, but the new approach achieves invariance to the
choice of that statistic which is not unique. The method
works well in the examples we have examined, and we
have suggested the use of variational approximations for
making the methodology implementable in complex set-
tings.

There are a number of ways that this work could be fur-
ther developed. One line of future development concerns
the computational approximations developed in Section 5,
which can no doubt be improved. On the more statistical
side, Evans and Jang (2011b) define a notion of weak in-
formativity of a prior with respect to a given base prior,
inspired by ideas of Gelman (2006), and their particular
formulation of this concept makes use of the notion of

TABLE 1
Cross-validatory conflict p-values using the method of Marshall and
Spiegelhalter (pMS,CV), KL divergence conflict p-values (pKL), and

cross-validated KL divergence p-values (pKL,CV) for hospital
specific random effects

Hospital pMS,CV pKL pKL,CV

Bristol 0.001 0.010 0.002
Leicester 0.436 0.527 0.516
Leeds 0.935 0.912 0.947
Oxford 0.125 0.173 0.123
Guys 0.298 0.398 0.383
Liverpool 0.720 0.690 0.745
Southampton 0.737 0.680 0.715
Great Ormond St 0.661 0.595 0.628
Newcastle 0.440 0.455 0.430
Harefield 0.380 0.474 0.452
Birmingham 0.763 0.761 0.787
Brompton 0.721 0.591 0.631

prior-data conflict checks. It will be interesting to exam-
ine how the prior-data conflict checks we have developed
here perform in relation to this application.

APPENDIX

Details of Example 2

Consider the check of Evans and Moshonov (2006). y

is minimal sufficient and the prior predictive for y is beta-
binomial,

p(y) =
(
n

y

)
B(a + y, b + n − y)

B(a, b)
, y = 0, . . . , n.

Hence a suitable discrepancy for the check of Evans and
Moshonov (2006), which we denote by RB(y), is

RB(y) = logp(y)

= log
(
n

y

)
+ log

B(a + y, b + n − y)

B(a, b)
(18)

.= log�(a + y) + log�(b + n − y)

− log�(y + 1) − log�(n − y + 1).

The check of Evans and Moshonov (2006) and the di-
vergence based check are not equivalent in this example.
However, they can be related to each other when y and
n − y are both large.

The form of the check with the Rényi divergence is

Rα(y) = log
B(a, b)

B(a + y, b + n − y)

+ 1

α − 1
log

B(a + αy, b + α(n − y))

B(a + y, b + n − y)
(19)

= T1 + T2
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where B(·, ·) denotes the beta function. Using Stirling’s

approximation for the beta function

B(x, z) ≈ √
2π

xx− 1
2 zz− 1

2

(x + z)x+z− 1
2

,

for x and z large, we obtain

T1
.= logB(a, b) − (a + b + n)θ̂n log θ̂n

+ 1

2
log θ̂n

− (a + b + n)(1 − θ̂n) log(1 − θ̂n)

+ 1

2
log(1 − θ̂n) + O

(
1

n

)
,

(20)

where some constants not depending on y have been ig-

nored on the right hand side and θ̂n = (a +y)/(a +b+n)

is the posterior mean of θ . Another application of Stir-

ling’s approximation to T2 in (19) gives

T2 = 1

α − 1
log

B(a + αy, b + α(n − y))

B(a + y, b + n − y)

= 1

α − 1

{
(a + b + αn)θ̃n log θ̃n

+ (a + b + αn)(1 − θ̃n) log(1 − θ̃n)

− (a + b + n)θ̂n log θ̂n

− (a + b + n)(1 − θ̂n) log(1 − θ̂n)
}

+ O

(
1

n

)
,

where θ̃n = (a + αy)/(a + b + αn). Making the Taylor

series approximations

θ̃n log θ̃n = θ̂n log θ̂n

+ (θ̃n − θ̂n)(1 + log θ̂n)

+ O

(
1

n2

)
,

(1 − θ̃n) log(1 − θ̃n) = (1 − θ̂n) log(1 − θ̂n)

− (θ̃n − θ̂n)
(
1 + log(1 − θ̂n)

)
+ O

(
1

n2

)

and also observing that n(θ̃n − θ̂n) = α−1
α

{(a + b)θ̂n −
a} + O( 1

n
) gives

T2 = nθ̂n log θ̂n

+ n(1 − θ̂n) log(1 − θ̂n)

+ (
(a + b)θ̂n − a

)
log θ̂n

+ (
(a + b)θ̂n − b

)
log(1 − θ̂n)

+ O

(
1

n

)
.

(21)

Combining (20) and (21) gives the expression (13).
Turning now to the check of Evans and Moshonov

(2006), and writing ψ(·) for the digamma function, ap-
propriate Taylor expansions in (18) gives

log�(a + y)

= log�(y + 1) + (a − 1)ψ(a + y)

= log�(y + 1) + (a − 1) log(a + y)

+ O(1/n),

log�(b + n − y)

= log�(n − y + 1)

+ (b − 1)ψ(b + n − y)

= log�(n − y + 1)

+ (b − 1) log(b + n − y) + O(1/n)

which gives

logp(y)
.= log�(y + 1)

+ (a − 1) log(a + y)

+ log�(n − y + 1)

+ (b − 1) log(b + n − y)

− log�(y + 1)

− log�(n − y + 1) + O(1/n)

.= (a − 1) log(a + y)

+ (b − 1) log(b + n − y) + O(1/n)

.= logg(θ̂n) + O(1/n),

where as before θ̂n is the posterior mean for θ .

Details of Example 3

The check described in Evans and Moshonov (2006),
page 910, compares s2/(b/a) to an Fn−1,2a density. Plug-
ging in s2/(b/a) to the expression for the log of the F

density, we have the statistic

RB(y)
.= n − 3

2
log

s2

b/a
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− n + 2a − 1

2
log

(
1 + n − 1

2a

s2

b/a

)
,

and then using the approximation log(1 + x) ≈ logx +
1/x for large x gives approximately

RB(y)
.= n − 3

2
log

s2

b/a

− n + 2a − 1

2
log

(
s2

b/a

)

− n + 2a − 1

2

2a

n − 1

b/a

s2 + O

(
1

n

)
.= − a − 1

2
log

s2

b/a
− n + 2a − 1

n − 1

b

s2

+ O

(
1

n

)
.

So for large n, we have approximately

RB(y)
.=a − 1

2a
log

s2

b/a
+ b/a

s2 ,

which, comparing with (14), clarifies the relationship to
the divergence based check.

Details of Example 4

The likelihood function is

p(y|θ) = c(y) exp
(−nr(ymin − θ)

)
I (0 < θ < ymin),

where ymin denotes the minimum of y1, . . . , yn and
c(y) = rn exp(−nr(ȳ − ymin)) where ȳ denotes the sam-
ple mean. A sufficient statistic is ymin, and its sampling
distribution has density

p(ymin|θ)

= nr exp
(−nr(ymin − θ)

)
I (0 < θ < ymin).

The prior predictive of ymin is

p(ymin) = nrκ exp(−nrymin)

×
∫ ymin

0
exp

(
(nr − κ)θ

)
dθ

= nrκ

nr − κ

(
exp(−κymin)

− exp(−nrymin)
)
,

(22)

and this is the discrepancy for the test of Evans and
Moshonov (2006). Consider now the statistic Rα(y). We
have g(θ |y) ∝ exp((nr − κ)θ)I (0 < θ < ymin) so that

g(θ |y) = (nr − κ)

exp(t) − 1

× exp
(
(nr − κ)θ

)
I (0 < θ < ymin),

where t = (nr − κ)ymin. Then∫ ymin

0

(
g(θ |y)

g(θ)

)α−1
g(θ |y)dθ

= κ

αnr − κ

(
(nr − κ)

κ(exp(t) − 1)

)α

× [
exp

(
(αnr − κ)ymin

) − 1
]
,

and so

Rα(y) = 1

α − 1
log

κ

αnr − κ

+ α

α − 1
log

(
(nr − κ)

κ(exp(t) − 1)

)

+ 1

α − 1
log

(
exp

(
(αnr − κ)ymin

) − 1
)
.
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