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Abstract: Researchers are sometimes interested in predicting a distal or
external outcome (such as smoking cessation at follow-up) from the trajec-
tory of an intensively recorded longitudinal variable (such as urge to smoke).
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This can be done in a semiparametric way via scalar-on-function regression.
However, the resulting fitted coefficient regression function requires special
care for correct interpretation, as it represents the joint relationship of time
points to the outcome, rather than a marginal or cross-sectional relation-
ship. We provide practical guidelines, based on experience with scientific
applications, for helping practitioners interpret their results and illustrate
these ideas using data from a smoking cessation study.

MSC 2010 subject classifications: Primary 62-02; secondary 62M10,
62G08.

Keywords and phrases: Distal outcomes, functional regression, intensive
longitudinal data, scalar-on-function regression, trajectories.
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1. Introduction

Modern longitudinal studies in medical and behavioral sciences often make use
of advanced technologies, such as activity monitors and smartphones, to capture
variables intensively over time in real life settings [4, 76, 91]. It is sometimes
of scientific importance to study whether intensively-measured covariates can
inform predictions of later outcomes of interest such as adverse events or di-
agnoses [31]. For example, in people who are attempting to quit smoking, the
trajectory of self-reported withdrawal symptoms, such as urge to smoke and
negative affect, has been shown to predict relapse risk [27, 58]. Another study
[66] found that the pattern of change in a fetus’s heartbeat, measured every 0.2
seconds over one minute after a vibroacoustic stimulation, predicted whether
the mother would experience a high-risk birth. Similarly, participants’ response
patterns over time in a grip strength test may distinguish between different
neurological disorders [53]. Longitudinal data collected over months or years
can also be used for predicting a later outcome. For example, [26] studied the
relation between weight gain during the first months of infancy and later neu-
ropsychological performance in childhood, and [29] studied prediction of later
height from children’s early height trajectory.

In many of these contexts, an investigator wishes to predict a scalar variable
Yi, for each participant or other sampling unit, from the a trajectory, Xi(t), of
a longitudinally measured variable. The simplest way to do this would be to
use a data reduction strategy. Specifically, one could summarize Xi(t) as one
or more univariate statistics to be used as regression predictors. For example,
if Xi(t) is numerical then the researcher could predict Yi in a regression using
the average X̄i [e.g. 34], the fitted linear slope for each participant in Xi [e.g.
46, 89, 90], and perhaps also the variance or volatility in Xi [e.g. 10]. If Xi is
binary, the researcher could use the count of events [e.g. 75]. However, each of
these methods imposes a parametric form on the predictive relationship and
discards some information on Xi(t). A more general option is scalar-on-function
regression, described by [19], [50], [62], [63], and [67], to name only a few. This
is a form of functional regression, which allows a nonparametric relationship
between a longitudinal function and an outcome. Other forms of functional
regression exist, such as function-on-scalar, concurrent function-on-function, and
lagged function-on-function, but they are beyond the scope of this paper [see 63].

1.1. Scalar-on-function regression

Assuming, as is convention, that the time interval is rescaled to be between 0
and 1, this model can be written as

g(E(Yi|Xi)) = θ0 +

1∫
0

θ1(t)Xi(t)dt (1.1)

where g() is a link function such as the identity for linear regression or the logit
for logistic regression [48]. Here, Xi(t) is viewed as a smooth function evolving
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over time, taking on some scalar value,Xij , at time tij , though the index variable
t need not always be time. In particular, scalar-on-function regression is also
useful for spatial and imaging data, including neuroimaging [e.g. 20, 21]. Note
that scalar predictors and additional functional predictors can also be included
in the model [19], but in this paper we focus on the case of a single functional
predictor Xi(t) for simplicity.

It can be helpful to view Model (1.1) as a limit of the approximation

g(E(Yi|Xi)) = θ0 +

J∑
j=1

θjXij (1.2)

for a large number J of equally spaced measurement times [see 19, p. 832]. The
smoothness assumption translates into constraining differences between consec-
utive θj to be small in order to manage collinearity and overfitting. Intuitively,
a model such as (1.1) or (1.2) is extremely flexible and therefore able to repre-
sent many different possible predictive relationships. This makes it an attractive
choice for researchers. However, there have been at least two challenges that have
prevented it from being of more use in practice: accessibility and interpretability.

1.2. Challenges in scalar-on-function regression

In the past, software availability has been limited when fitting models such as
Model (1.1) in cases when measurement times are irregular and vary across
units. Software such as the fda R package [64] and older versions of the refund
R package [12] required data to be specified as a matrix where columns are
measurement times. This was a problem for many studies, such as ecological
momentary assessment [76], which involve electronic measurements taken at
random times. However, this challenge has been assuaged with the relatively
recent release of two R packages that allow measurement times to differ for each
participant: funreg [14] and newer versions of refund [e.g. 22]. The method
used by funreg, which closely follows [19], is reviewed in the Appendix.

The remaining difficulty thus involves interpretation. The coefficient func-
tion, θ1(t), does not have the same interpretation as an ordinary regression
coefficient, even when only examining a single time point. Therefore, it is easy
to make misleading conclusions about the interpretation of θ1(t0) at a given
value, t0. In particular, θ1(t0) does not express the marginal relationship be-
tween X(t0) and Y in Model (1.1). That is, one cannot say, as in simple linear
regression, that the prediction g(E(Yi)) is θ(t) units higher for a participant
with Xi(t) = x versus a participant with Xi(t) = x− 1. Such an interpretation
would confuse a joint relationship for a marginal relationship, which can yield
misleading conclusions [65]. To see this, notice that θj in Model (1.2) expresses
the estimated relationship of Xj to Y while adjusting for the other measure-
ments Xj′ , i.e., the contribution of Xj to Y holding the other X covariates
constant. However, because the measurements are likely to be highly correlated
within an individual, there is no reason why θj should have the same value,
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or even the same sign, as the regression coefficient of Y on Xj alone. Further-
more, in Model (1.1), θ1(t) and X(t) are treated as smooth functions of time,
so it is not even meaningful to speak of varying X(t0) while holding all other
X(t) constant. It would be more accurate to say that θ1(t0) tells approximately
how many y-units g(E(Y )) would increase when Xi(t) increased by an average
of one x-unit within in a small neighborhood of time centered at t0, holding
other Xi(t) roughly constant outside this neighborhood. However, it is not clear
how this rather abstract explanation should be applied to answer a researcher’s
substantive questions.

In the fetal pulse example, [66] estimated θ1(t) to look roughly like the nega-
tive of a cosine function, first becoming negative, then gradually positive, then
returning to around zero over the course of the minute. They found that the
fitted model had predictive or diagnostic value (i.e., θ1(t) was not identically
zero for all t). However, they did not attempt to interpret the specific clinical
implications of the negative, positive, and near-zero time intervals.

James [30] sought to predict the five-year life expectancies (Yi) of cirrho-
sis patients from their bilirubin levels (Xij) over a period of 800 days, taking
censoring into account in a way not described here. An increasing trajectory of
bilirubin levels is thought to be indicative of disease severity and to predict liver
failure [43, 73]. James found that the weight function θ1(t) had a negative rela-
tionship with five-year survival for the beginning 200 and final 200 days of the
interval of interest, reflecting the expected behavior of bilirubin as a marker of
illness. However, paradoxically, he found that it seemed to have a weak positive
relationship with five-year survival between around days 200 to 600. There was
no clear reason why the meaning of bilirubin as a diagnostic indicator would
fluctuate over time in this way. However, James cautioned that the plot “must
be interpreted carefully” (p. 13), because those who have high bilirubin at one
time will also have high bilirubin at other times. In this sense, perhaps the posi-
tive coefficient in the middle of the interval really meant something like bilirubin
is always a disease indicator, but is a less severe indicator in the middle of the
interval than at other times. It might even mean bilirubin is always a disease
indicator, but the worst situation is when bilirubin increases from the middle to
the end of the interval. A näıve interpretation such as high bilirubin is associated
with less disease severity towards the middle of the interval, but more disease
severity at the beginning or end could be very misleading.

1.3. Approach of this paper

This goal of this paper is to help researchers to more easily and insightfully
interpret scalar-on-function regression models. We explore heuristics and po-
tential pitfalls for interpretation of scalar-on-function regression models, and
also describe alternative models that may be more useful in specific situations.
We begin by briefly reviewing the notation and implementation of the scalar-on-
function regression model and illustrating its use on a smoking cessation dataset.
We then explain possible approaches for making θ1(t) easier to interpret. After
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this, we illustrate these issues within an important special case, namely the at-
tempts to find a value of t for which X(t) is considered maximally influential in
predicting Y , and show why this can also be misleading if the question is not
defined carefully. We additionally make recommendations for possible future
research.

2. Notation and implementation

We assume a generalized linear model of the form in (1.1). Scalar predictor vari-
ables Si1, ..., SiL representing subject-level non-time-varying covariates, such as
gender or ethnicity, can additionally readily be included along with the scalar
intercept θ0, but for simplicity we do not address this here. The coefficient func-
tion, θ1(t), is not assumed to have a known parametric form, and is instead
estimated nonparametrically. We do assume here that the link function, g, is
set to a known link function (e.g., logit); for a discussion of the more compli-
cated case in which the form of g must also be nonparametrically estimated, see
[50].

Although the the underlying trajectories,Xi(t), are assumed to be continuous
functions, practically they are observed at only a finite number of points and
potentially with measurement error. Therefore, in practice the model is fit by
first fitting smooth nonparametric functions X̂i(t), and then using these as data
to estimate the θ1(t) function. Let X̂i(t) at time tij be a smooth prediction of
Xi(t), rather than setting it to the observed Xij itself [19, 92]. Thus, the actual
fitted model is approximated as

g(E(Yi|Xi) ≈ θ0 +

1∫
0

θ1(t)X̂i(t)dt. (2.1)

This changes the meaning of the model slightly, because Xi(t) and X̂i(t) are not
technically the same variable, but for simplicity we do not address this distinc-
tion here. Goldsmith and co-authors [19] and Wang and co-authors [92] describe
the relationship of smoothing to inference in functional data analysis further.
We also do not consider the issue of registration (warping): roughly speaking,
techniques for making sure that time points have comparable meanings across
participants. This is very important for interpretability but is discussed else-
where [see, e.g. 63, 95].

To fit Model (2.1), we approximate both θ1(t) and the X̂i(t) in terms of
an appropriate finite basis. In particular, we use a functional principal compo-
nents expansion [also known as Karhunen-Loève decomposition; 3] for the Xi(t),

and we use a penalized B-spline for θ̂1(t) [15] with the richness of each basis
controlled by some model selection or tuning criterion. Thus, the problem is
translated into a manageable parametric multiple linear regression problem; see
[19], [30], [63]. Either a very small set of basis functions or a roughness penalty
function, or both, is used to control the complexity of θ(t) and to control its
sampling variance [16, 19, 32, 63].
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3. Empirical illustration

Ecological momentary assessment (EMA) is an innovative and increasingly im-
portant data collection strategy which provides intensive longitudinal data rel-
evant to studying human experiences and problems in daily life [see 84]. One
prominent use of EMA has been in monitoring the everyday experiences of par-
ticipants suffering from addiction or trying to quit a harmful substance [e.g.
58, 74, 90]. In particular, tobacco smoking is known to be one of the largest
preventable causes of death and of disability in the world [18, 25, 33], but over-
coming nicotine dependence in order to quit smoking can be extremely difficult
[33, 59]. Therefore, research into the causes of relapse and its prevention is very
important [59].

In this section, we present a re-analysis of a real dataset from an EMA study
on smoking cessation, previously analyzed elsewhere [13, 74, 77, 78, 79, 82].
Details of the study are described by Shiffman and co-workers [74] but are
briefly summarized here. Analyses are done in R [60].

3.1. Original study

The 304 participants in this study were adults highly motivated to quit smoking.
They were given a palmtop computer used as an electronic diary, and were asked
to record their smoking behavior, as well as being given random prompts about
five times daily to answer questions about their emotions and level of urge to
smoke. They were asked to quit smoking on a particular day, about two weeks
into the observational study, and they continued to record observations for about
a month after this quit date. Past analyses focused on describing the context and
antecedents of lapses into smoking, the risk factors for relapses (serious lapses,
defined as smoking at least 5 cigarettes for 3 consecutive days), and the natural
course of changes in urge to smoke over time. To explore the potential for scalar-
on-function regression, we reanalyze the data with a new question: Among those
who are able to avoid relapse for at least a week, can the trajectory of urge to
smoke during the first week after quitting (the third week of the study overall),
be used to predict their likelihood of continuing to avoid relapse for the rest
of the month? In other words, can the trajectory of urge to smoke be used to
give an early assessment of which participants are in high danger of relapse and
which participants are doing well?

3.2. Analysis subsample

The subsample used for this analysis was 235 participants who provided data
points before, during, and after the first post-quit week and who did not re-
lapse during the first post-quit week. These criteria were set in an attempt to
make sure that enough data would be available per subject to fit a scalar-on-
function regression model, and that informative dropout would be avoided by
focusing on those who were relapse-free for the first post-quit week. Only data
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resulting from random prompts was analyzed, ignoring additional event-driven
prompts described elsewhere [e.g. 78]. Also, within a subject, not all prompts
were answered and only occasions in which urge was reported are considered
here. The total number of usable observations per subject during the first post-
quit week ranged from 2 to 53, with an average of 27. Among these 235 analyzed
participants, 31 had relapsed after the first four weeks and 204 had not.

3.3. Predictor variable

The predictor variable Xi(t) used in this analysis was self-rated urge to smoke,
rated on a scale from 0 to 10 [78] and treated as a numerical variable. Feelings
of craving or urge have been found to be important predictors of relapse [see,
e.g. 10, 47]. Xi(t) had a mean of 2.76, standard deviation of 2.98, and median
of 2, averaging across times. However, it ranged over the entire scale available
(0 to 10) with first and third quartiles at 0 and 5, suggesting that an average
participant’s urge was usually fairly low but with some occasions of high urge.

3.4. Baseline covariates

We also considered three subject-level baseline covariates: age (22 to 67 with
a mean of 44), sex (101 male, 134 female), and baseline nicotine dependence.
The latter was operationally measured using the continuous form of the Heav-
iness of Smoking Index [HSI; 5], based on the earlier categorical Heaviness of
Smoking Index [24, 39]. It is calculated as a function of self-reported cigarettes
smoked in a typical day (more indicating greater dependence) and of minutes
until first cigarette on a typical morning (fewer indicating greater dependence).
Participants reported 7 to 90 cigarettes per day (mean of 26), and first cigarette
between 1 and 180 minutes after waking (mean of 17; note that the skewed dis-
tribution is taken into account in the formula for HSI.) This corresponded to an
HSI index from 4.66 to 15.49 with a median of 8.77 and a mean of 8.83. The orig-
inal HSI score had been a 0 to 6 categorical scale; on this scale the participants
ranged from 0 to 6, with the median corresponding to 4. The numerical and cate-
gorical HSI scores were correlated at r = .92; the numerical version is used here.

3.5. Initial descriptive analyses

For each participant, a mean self-rated urge and a least-squares slope in self-
rated urge were calculated. The mean self-rated urge X̄i was correlated at r =
0.126 (p = .055) with binary relapse status, and the least-squares slope in self-
rated urge for each subject was correlated at r = 0.187 (p = .004) with binary
relapse status. These analyses suggest that participants whose self-rated urge
was high near the end of the first post-quit week were at higher risk of relapse.

A parametric logistic regression was fit to predict relapse from mean urge,
least-squares slope in urge, and the baseline covariates. Results are shown in
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Table 1

Parametric logistic regression results from smoking cessation example

Coefficient Standard Error z p
Intercept −3.85 1.29 −2.98 0.003
Sex (male=1) 0.37 0.42 0.88 0.378
Age (years) −0.02 0.02 −1.02 0.306
Numerical HIS 0.31 0.12 2.69 0.007
Mean urge 0.11 0.09 1.19 0.233
Slope in urge 1.60 0.56 2.88 0.004

Table 1. Higher levels of initial dependence, and higher slope, each predicted
higher probability of relapse.

For illustrative purposes, the mean trajectories of urge for the 31 who re-
lapsed and for the 204 who did not, are shown in Figure 1. Note that Figure 1
is not directly applicable either to forecasting or to causal explanation, because
it involves predicting the past from the future, but it is nonetheless helpful in
understanding how relapsers and non-relapsers differ. The upper left pane shows
the fit for each subsample using the R function loess, accepting defaults (local
quadratic with span 0.75). However, the confidence intervals are likely to be too
narrow, due to ignoring within-person correlation, as well as implicitly condi-
tioning on the choice of the tuning parameter. As an alternative, the upper right
pane shows a generalized estimating equations (GEE) fit of urge on time and
time squared for each subsample as a whole, using working independence with a
robust standard error to account for within-person correlation [42]. Dotted lines
indicate 95% pointwise confidence intervals. The lower left and lower right panes
show within-day means and confidence intervals, for a local constant GEE, using
working independence GEE again, for non-relapsers and relapsers respectively.
These confidence intervals do not correct for multiple comparisons, which would
have been difficult given the current sample size at the subject level. Similarly,
as is usual in nonparametric regression, the 95% pointwise confidence interval
for a function at a particular value of t is much narrower than the interval which
would be required to contain the function for the whole interval with 95% fami-
lywise confidence. Therefore, it is not possible to make statements about which
days are statistically significantly different from other days. However, although
the details of each plot differ, and the smaller number of relapsers leads to wide
confidence intervals when correcting for within-subject correlation, each plot ap-
proach suggests a steady mean decline in urge for non-relapsers and much less
of a decline for relapsers. That is, participants who would eventually be success-
ful seem to enjoy a steady reduction in urge, while those who would eventually
relapse seem to decline briefly and then reach a plateau [see 82].

3.6. Scalar-on-function regression

We fit a binary functional logistic regression in which outcome variable Yi was
relapse status at the end of the study, about four weeks after quit date. We
adjusted for the baseline covariates of age, gender, and assessed smoking depen-
dence. As mentioned earlier, of the 235 participants considered in the subsample,
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Fig 1. Smoothed Mean Trajectories of Later Nonrelapsers and Later Relapsers Over Time.

31 (13%) had relapsed and 204 had not. Because no one in the subsample re-
lapsed during the first post-quit week, the relapses ranged from day 8 to day 24
after quit date. The length of time until relapse was not used in this illustrative
analysis, although a survival-outcome scalar-on-function regression would have
been possible.

Therefore, the model is

g(E(Yi|Xi)) = θ0 + θ1S1i + θ2S2i + θ3S3i +

7∫
0

θX(t)Xi(t)dt (3.1)

where g() is the logit link, Yi is relapse after four weeks, Xi is the trajectory
of urge over the first weeks, and S1i, S2i and S3i are sex (dummy-coded 1 for
male), age, and HSI. θX(t) here is the coefficient function of interest, analogous
to θ1(t) in Model (1.1). As a caveat, possible interactions or nonlinear effects of
the covariates were not considered because of the relatively small sample size of
responders at the subject level, but they cannot be ruled out as a possibility.
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Fig 2. Coefficient Function in Functional Logistic Regression Model for Predicting Relapse.

The funreg package [14] was used for computation; the Appendix gives tech-
nical details on this package. The estimated coefficient for the intercept was
−3.76. The estimated coefficients for male sex, age, and numerical HSI were
approximately 0.40 (standard error 42), −0.02 (standard error .02), and 0.31
(standard error .12). Sex and age were not significant predictors, but higher HSI
predicted higher probability of relapse (p = 0.008). The fitted coefficient func-
tion θX(t) for Model (1.1), with 95% pointwise confidence intervals, is shown
in Figure 2. The pointwise confidence intervals overlap with zero from day 0
through 5, but the function is pointwise significant and positive after day 5.
This seems to agree with the other analyses reported in that high self-rated urge
during the end of the first post-quit week predicted higher later risk of relapse.

3.7. Significance test

A simple permutation test was used to provide a familywise bootstrap p-value for
a global test of whether θX(t) was identically zero. Using 5000 permutations, the
p-value was significant at p = 0.0176 if baseline covariates are not adjusted for,
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or p = 0.0092 adjusting for baseline covariates. This p-value is slightly higher
than the parametric model, although still significant. This may be because a
nonparametric model can have lower power and precision in small samples than
a well-chosen parametric model, a classic bias-variance tradeoff. The current
sample is large in terms of total number of observations, but rather small when
considered as a logistic regression at the subject level (only 31 relapsers). In
some recent applications of intensive longitudinal data with extremely large
datasets from the general population, statistical power limitations might not be
an issue, and insuring practical significance and interpretability would become
more important [28, 56]. Nonetheless, for studies such as this one involving
specific groups of volunteers (e.g., people in the first days of a smoking cessation
attempt), sample size limitations will still exist.

3.8. Interpretation of the coefficient function

More importantly, the interpretation of Figure 2 involves a similar dilemma in
interpretation as the bilirubin data discussed earlier. Notice that in Figure 2 the
model places a nonsignificant but seemingly negative weight θX on urge from
days 0 to 5 and a then a positive weight on urge after day 5. How should this
be interpreted? If the coefficient function at a given time is misinterpreted as a
marginal relationship between urge at that time and relapse, a researcher might
conclude that a high urge to smoke was not problematic, or was perhaps even
beneficial, until after day 5. However, there is no obvious reason why the sign of
the relationship between urge and relapse risk would change so abruptly on that
or any other specific day. Figure 3 shows the actual marginal correlations. The
dotted lines are the marginal correlation of the smoothed X̂i(t) values with Yi

at each given t, with approximate 95% pointwise confidence intervals. The dots
with error bars are correlations of the within-day mean data for each subject
with that subject’s relapse status. It can be seen that the estimated relationship
between X̂i and Yi is always positive, as one would expect, although it is initially
not statistically significant.

Thus, Figure 2 can only be correctly interpreted by considering the entire
curve as a single unit. The fitted coefficient function puts positive weight on the
later days and negative weight on the earlier days, not because urge goes from
being a favorable to an unfavorable symptom, but because the slope of urge over
time (i.e., its decrease or lack thereof) is the important predictive feature. This
is reasonable in light of the descriptive analysis and Figure 1. Some analogous
past studies using parametric models have also found the slope of a trajectory
to be an important predictor. For example, [94] found that an increase of pain
symptoms over time was an important predictor of relapse in individuals trying
to recover from prescription opioid dependence.

At first, the correlations in Figure 3 seem small. However, it is reasonable
for the correlations to be modest because urge at a single given time may be
less predictive than the average change in urge over time. One reason is that
urge at a specific time is likely to have high noise variability, both because urge
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Fig 3. Subject-level Correlation of Urge with Relapse over Time for Binned Means and for
Smoothed Trajectories.

changes rapidly over time and because different participants are in different en-
vironments at that exact time. Another reason is that there is no way to correct
for subjective differences between participants in what subjective feeling they
choose to describe as an urge of 1, 2, etc. Therefore, for best predicting relapse,
perhaps it is necessary to consider all times together as in Figure 2. However, if
it is desired to be able to interpret the predictive relationship of urge at a given
day to later outcome, then Figure 3 is useful and Figure 2 is misleading. Thus,
both the joint and marginal approach are useful, but for different questions, and
a better understanding is obtained by considering them all instead of just one.

3.9. Other possibilities for analysis

As a caveat, note that attrition during the time period of interest was not a
concern for this example because only those participants who avoided relapse for
the first week were considered. If the goal was to predict relapse during the same
time period as urge was being monitored, a researcher might use a joint model
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of longitudinal process with a survival process [e.g. 55, 68, 97] or a landmarking
approach [e.g. 88] but these are beyond the scope of this paper. Also, because
all participants had a set quit date, treated as day zero in this analysis, time
was already considered to be on a common scale for each participant and no
special curve registration or warping method [63, 95] was considered necessary.

The analysis of the original study included not only “relapse” events but also
“lapse” events, in which a participant uses one or a few cigarettes but does
not return to daily smoking. A richer model could have included these events,
perhaps using the presence or absence of an early lapse as an additional co-
variate for predicting ultimate relapse, or expanding the outcome variable to
include three levels (full abstinence, some lapse, actual relapse) instead of only
two. However, in this illustrative example we focus on predicting relapse only,
as that is the more severe outcome.

If the Xi(t) functions being used for prediction are all small variations upon
a known basic shape, then it is possible to extract interpretable features using
substantive knowledge rather than use a nonparametric approach. For example,
[53] compared certain specified features of intensively observed curves, such as
rate of increase or decrease during a particular phase of a task, as predictor
variables. Describing group differences in terms of these features, instead of a
nonparametric regression function, was advantageous because their meaning can
be easily understood and interpreted by clinicians. Of course, in order for this
approach to work, it is necessary for the Xi(t) curves to be fairly regular and
to be comparable enough across subjects for these features to have a common
meaning. When making decisions based on features extracted from functions, it
is important that the features be both predictive and interpretable, and how to
find such features is an important topic of ongoing research [see 41, 70]. Some-
times, even from only a few measurement points, many features of substantive
interest can be derived [36]. As a general rule, it is reasonable to conjecture that
that the nonparametric approach is not as helpful as having a parametric model
which is well-grounded in good theory, but more helpful than having a poorly
informed parametric model.

4. Approaches towards improving interpretability

The challenge of making even nonparametric scalar-on-function regression more
interpretable has received some attention, although not yet enough.

4.1. The FLiRTI method

In particular, [32] suggested the “Functional Linear Regression that’s Inter-
pretable” (FLiRTI) approach, an implementation of Model (1.1) which uses an
approach like the LASSO [86] to bias the estimate of θ1(t) towards a piecewise
linear or quadratic function that is easier to describe. In the simplest version of
FLiRTI, the time interval is divided into many subintervals, on many of which
the θ1(t) function is assumed to be zero, and model selection techniques are
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used to select which values of t have nonzero θ1(t), so that the predictor can be
envisioned as influencing the response only during those time periods. More gen-
erally, instead of selecting regions with θ1(t) �= 0, they select regions where θ1(t)
has a nonzero dth derivative for some d ≥ 0; for instance, θ1(t) may be piecewise
linear. They demonstrate that this costs very little in terms of predictive ability.
More recently, [72] also describe a somewhat similar way of using a LASSO-like
penalty for functional regression. However, merely simplifying the shape of θ1(t)
does not resolve the problem of distinguishing joint from marginal relationships.

4.2. Eigenfunction decomposition

James [30] considered another approach to analyzing model (1.1). Instead of
reconstructing and plotting θ1(t), one could plot the most important eigenfunc-
tions of Xi(t) and report the regression coefficient of each one in predicting
yi. This might provide a description of just what features in the data may be
associated with higher or lower y, which can provide helpful insights [see 98].
However, many researchers will find this approach rather unfamiliar and may
have some difficulties in interpreting the results. Furthermore, there is no guar-
antee that the eigenfunctions ofXi(t) are the patterns which are most important
and interpretable for explaining variability in Yi.

4.3. Heuristic rules

In an attempt to find more broadly applicable rules for interpreting the results
of scalar-on-function regression, it may be helpful to first consider some rather
abstract special cases. The most extreme possible case is one which that Xi(t)
values are constant over time within each subject i. Then the regression coef-
ficients from the multiple regression Model (1.2) cannot be uniquely estimated
because of perfect collinearity. The same intuition holds for Model (1.1); if Xi(t)

is constant in t then it can be factored out of the integral
∫ 1

0
θ1(t)Xi(t)dt and

the fitted values will be entirely determined by the integral of θ1(t) rather than
its shape or value at any point. In such a situation, the marginal effects would
be the same at all t, and the joint effect will be unidentifiable.

In contrast, now suppose that Xi(t) is not constant in t, but that the θj
coefficients in Model (1.2) are all equal. Thus, E(Yi) is determined by the sum
of the Xij , or equivalently, after rescaling, by their mean. The equivalent in
terms of Model (1.1) would be to have θ1(t) equal to a constant κ for all t. This
is because under such an assumption,

g(E(Yi)) = θ0 +

1∫
0

θ1Xi(t)dt

= θ0 + κ

1∫
0

Xi(t)dt

= θ0 + κX̄i
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where X̄i is the average value ofXi(t). Just as in classic regression, X̄i and Yi are
then positively correlated, negatively correlated or uncorrelated if θ1 is positive,
negative, or zero, respectively. Here θ1(t) = κ is a special parametric case within
the nonparametric scalar-on-function regression model (1.1) Thus, we already
have three heuristic rules for interpreting scalar-on-function regression:

1. If the plot of θ1(t) oscillates wildly between extremely high positive and
negative values, with a very wide confidence interval, either a stronger
model restriction is needed (stronger penalty function or more limited
basis functions) or the Xij may be too highly correlated within subject.

2. If the plot of θ1(t) resembles a flat line with zero intercept and zero slope,
this is consistent with a model in which Yi is unrelated to Xij .

3. If the plot of θ1(t) resembles a flat line with a nonzero intercept and zero
slope, this is consistent with a model in which Yi is predicted by the overall
level of Xi but not by the direction of changes in Xij , and this relationship
is positive or negative depending on whether the intercept is positive or
negative.

Consideration of some other simple scenarios will provide more of these rules.
In Model (1.2), instead of supposing the θj to be zero, now suppose that they are
equal to the coefficients of some meaningful linear contrast in X. For example,
suppose that θj = tj − tmid where tmid is the middle of the interval of interest
(e.g., 0.5 if time is scaled from 0 to 1). Then this model is equivalent to saying
that the within-subject regression slope of the xi determines E(y). The large-J
equivalent of this model is then Model (1.1) with θ1(t) = κ(t − tmid) for some
constant κ. This suggests another simple case.

4. If the plot of θ1(t) resembles a straight line with nonzero slope and which
is zero near the middle time point, this is compatible with a model in
which yi is predicted by the within-subject slope of xij but not its overall
mean.

It would seem rather unusual for the mean of the xij to have no predictive
value at all if the within-subject slope had predictive value. However, one can
obtain a more complex rule by adding the coefficients together. Adding κ1 +
κ2

∫
xi(t)dt, in which the mean of x is the predictor of interest, to κ3+κ4

∫
(t−

tmid)xi(t)dt, in which the slope of x is the predictor of interest, we get κ5 +∫
(κ6 + κ7t)xi(t)dt. Thus, we have another rule of thumb:

5. If the plot of θ1(t) resembles a straight line with nonzero slope, and does
not pass through 0 midway through the interval, it is compatible with a
model in which both the within-subject mean and the within-subject slope
of xij are important predictors of yi.

If one of these simpler cases appears roughly adequate, then an appropri-
ate parametric model [46, 89] could be more useful and interpretable than a
nonparametric curve. However, if no such case applies, then a richer model is
necessary. Further research may suggest further heuristic rules for interpreting
more complex situations. Alternatively, one might consider using one or more
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derivatives of xi(t) as the predictor, instead of xi(t) itself. In this vein, even if
the coefficient function is not a straight line, fairly simple oscillations can still
be interpretable. For example, a straight line indicates the importance of the
slope of the trajectory, while a parabola would point towards the importance of
acceleration. Higher levels of oscillation can be interpreted similarly by linking
them to higher order derivatives or more intricate contrasts, though one must
be attentive to the risk of overfitting.

These rules for comparing nonparametric models to parametric models are
only heuristic. It is reasonable to ask whether formal tests are available. Sig-
nificance tests exist for whether a functional coefficient θ1(t) is identically zero
[8, 38, 50], and these could perhaps be adapted to test whether θ1(t) is zero after
accounting for a parametric effect. Alternatively, information criteria have been
used to choose model complexity in functional regression [50] and the same idea
could presumably be adapted to compare a spline model with a given number
of knots to a particular parametric model. However, these ideas require more
research before being generally recommended.

If a researcher’s substantive questions are more about marginal than joint
relationships between particular time points and the outcome, then a function-
on-scalar regression approach [see 63, 81, 85, 96] may be more appropriate. To
see why, consider that it is possible for a time-invariant variable to have a time-
varying effect (i.e., to be the predictor in a regression with functional response).
An example is biological sex, which has a different relationship with height at
different stages of child growth. If one’s question is about association rather than
causation or future prediction, a researcher might try reversing the roles of the
variables to perform a function-on-scalar regression using the scalar outcome as
the predictor.

E(Xij) = β0(tij) + β1(tij)Yi (4.1)

Because this is not intended as a causal model, the essential difference between
Model (1.1) on the one hand, and (4.1) on the other, is not which variable comes
first in time. The difference is which kind of correlation is of most interest: joint
relationship conditioning on other measurement times in (1.1), versus marginal
relationship ignoring other measurement times in (4.1).

A researcher must think carefully about which approach addresses the ques-
tion of interest. To explore this further, we consider a common question about
longitudinal data, that of finding what time period is most important, whether
in a predictive or causal sense. It will be seen that precise formulation of the
question and model determines which methods can or can not be used.

5. Identifying a critical period

One possible motivation for scalar-on-function regression or similar techniques
is in looking for a period of time during which X(t) is somehow most strongly
predictive of Y . This period may have special causal importance; for example,
important developmental psychological studies have investigated critical periods
in which an organism is especially influenced by its environment in developing
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certain capacities or abilities [see 37]. Some researchers in developmental psy-
chology use the idea of a “critical” or “sensitive” period to describe a time
period in which the risk of a particular adverse outcome is particularly high for
members of a vulnerable group [e.g. 17], or a developmental period in which
environmental traumas (e.g., child abuse or separation from parents) have the
largest harmful effect on a later health outcome [1, 2, 51, 57]. The term “sen-
sitive” is often preferred to “critical” to emphasize that some adaptability and
resilience can remain even after this period has passed [51]. Nonetheless, much
public health research stresses the importance of early experiences and early
interventions [e.g. 6, 11, 45, 51, 52]. Given a limited amount of intervention
resources, intervening at the right time to prevent difficulties from developing
may be much more effective than intervening to treat them later.

Note that the idea of a most important period could be of interest not only
for describing developmental changes over a period of years, but also clinical
changes over a shorter period of time. For example, in a smoking cessation
study, [47] found many participants reported a jump in self-reported craving
during the day of the quit attempt and that a larger jump predicted higher
relapse risk.

Note that sensitive periods are assumed to occur at roughly the same time for
each participant. They therefore differ from turning points (unexpected external
events which dramatically change later trajectories; see [54]) and tipping points
(abrupt changes due to an input reaching an unobserved threshold; see [9, 80]),
although there may be some similarities.

It is sometimes of interest to find a period in which changes have the most
causal influence, but other times it is instead of interest simply to identify a
period which provides the best statistical measurement or prediction regardless
of causation. Intensity of urge to smoke experienced during the first few waking
minutes of a day might be a clearer indicator of addiction severity than the
intensity of urge to smoke, say, just after lunch or just before dinner, if only
because it is known that the individual has been abstaining for several hours in
the first case, but may or may not have been abstaining in the other cases. The
goal of finding either a causal or a predictive sensitive period seems to suggest
scalar-on-function regression as a possible approach.

5.1. Challenges in locating sensitive periods

Although these critical or sensitive periods are substantively very important,
locating them using functional regression would involve some challenges, espe-
cially because measurements are correlated over time. As a simple example,
suppose that each subject’s X(t) was an autoregressive moving average process
of order one as follows: Xi,t = γ0 + γ1Xi,t−1 + et, with independent normal
errors et, and for simplicity consider only 5 discrete time points; note that the
continuous time analog would be the Ornstein-Uhlenbeck process. Also for sim-
plicity, assume γ1 ≥ 0. This process could be represented by a very simple path
diagram: X1 → X2 → X3 → X4 → X5. Let y = X5 and suppose it is desired to
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predict y from X1, X2, X3, and X4 in a model of the form (1.2). As the path
diagram suggests, the X’s are a Markov chain. That is, among the predictors,
X4 has the highest correlation with y, and, furthermore, in a model which con-
tains X4, the earlier X’s have no predictive value. Thus, the true values for the
coefficients in Model (1.2), if fit to this population, would be zero for X1, X2,
and X3, and positive only for X4. In contrast, the true values for the marginal
correlation coefficients of X5 with any of X1 through X4, or of the coefficients
in a model like (4.1), would all be positive, but they would start out small and
increase over time. This would be the case even if the γ1 coefficients differed
at each time point (assuming γt ≥ 0), so that some of the arrows in the path
diagram represented stronger relationships than others. No matter how strong
or weak X2 is as a predictor of X3, it can never be a stronger predictor of y
than X3 is, because the effect of X2 is entirely mediated by X3. Even if, say,
time 2 represents a transition period of enormous importance so that the X2 to
X3 coefficient is much larger than any other coefficient, the model specifies that
an effect on X5 of a disturbance at X2 must always be fully mediated by X3

and by X4. That is, X5 is independent of X1 through X3 conditionally upon
X4, and so Corr(X5, X2) = Corr(X5, X4)Corr(X4, X2) ≤ Corr(X5, X4).

Thus, the practical importance of X2, such as for timing an intervention, can-
not be found by examining marginal correlations with X5. However, it would
not necessarily be detected in a joint regression either, because such a regres-
sion conditions on all of the X’s and does not explicitly model the relationship
between them. Making the intuition of a most predictive time period rigorous
would require a more careful definition (e.g., the largest autoregressive coeffi-
cient) and/or a richer model (e.g., the possibility for lagged causal effects). It
may be that in a causal sense, one cigarette smoked at age 13 is a greater danger
for causing addiction than one cigarette smoked at age 30. However, in predict-
ing nicotine addiction at age 31, smoking level at age 30 is almost certain to be
the stronger statistical predictor. This is not said to dismiss the concept of a
sensitive period but to reiterate that a data-driven search for a sensitive period
would depend heavily on the precise definition being used.

5.2. Implications for scalar-on-function or function-on-scalar
regression

With these insights, we can imagine what would occur if either Model (1.1) or
Model (4.1) were fit to a process with strong positive autocorrelation, in an
attempt to predict a later value of that process. Scalar-on-function regression
might well find that the coefficient function is close to zero except near the end
of the interval, when it jumps to a positive value. The shape might not actually
be quite that simple because of sampling and measurement error, error per-
haps exacerbated by the autocorrelation. Still, it would very likely be generally
increasing and not always noticeably positive at first. Function-on-scalar regres-
sion, or a smoothed marginal correlation plot like Figure 3, would probably find
a gradually increasing positive curve. A researcher might therefore mistakenly
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conclude that the most recent period was the most critical in a causal sense,
even though it was essentially no different from any of the other periods. This
suggests another heuristic rule to our list of rules for scalar-on-function regres-
sion:

6. If θ1(t) tends to be increasing, or increases sharply near the end of the
interval, and if y represents a measurement taken after the end of the
interval, consider whether the finding may simply represent the fact that
the most informative measurements in predicting the next step of an au-
tocorrelated process are the most recent.

Another interpretation of this concept is that scalar-on-function regression will
not be a useful explanatory (as opposed to merely predictive) model for a distal
y, unless it is plausible that early values of x could have an effect on y that is
not fully mediated by later values of x. Otherwise, the earlier x observations
will no longer seem to have an effect in a joint model conditioning for the
later observations, no matter their actual causal importance. This is essentially
the same problem as would occur when conditioning on a consequence of the
treatment variable when performing an analysis of covariance [see, e.g. 40].

5.3. Other possibilities

Apparently, functional regression is not always the best way to model a sensitive
period. Perhaps a better way might be explicitly modeling the change in the
covariate process over time, rather than conditioning on the entire process as in
functional regression. For example, a parametric model of the changes in X(t)
over time is possible using a dynamical systems approach. An analysis in which
the dynamic changes of craving for smoking are modeled over time is given by
[87]; possibly this approach could be extended to predict a relapse outcome.

Other possibilities also exist. [35] provides a computational model for simu-
lating the effect of early and recent events on later behavior. Causal modeling,
whether frequentist or Bayesian, may also be useful [see, e.g. 49]. [44] assume
that the predictive information in X can be summarized by its values at one or
a few crucial time points, which are the same for every subject, and discuss how
to estimate the location of this point in time (e.g., for timing medical checkups).
Also, [83] describe a method for comparing the information available for making
a decision based on predicting an outcome at different potential decision times,
for purposes of deciding whether to change treatment plans. In any case, the
most appropriate methodology must depend on the precise research question
and goal.

6. Conclusion

In scalar-on-function regression, it is possible to find a coefficient function θ̂1(t)
which provides a good nonparametric estimate of the best weighting function
for using all of the observed data in a longitudinal trajectory to predict a distal



170 J. Dziak et al.

outcome. However, it can sometimes be difficult to interpret what this estimated
coefficient function means to a substantive researcher. In a way, this is typical
for any kind of regression model fitted to correlated data from a non-randomized
experimental study: that is, just because a model provides good predictions does
not mean that it provides causal or mechanistic insight. However, in scalar-on-
function regression, there are many intercorrelated X measurements for each Y
measurement, as well as a very rich model space, so the problem of interpretation
is especially salient. Sometimes the nonparametric coefficient function estimated
using penalized functional regression may suggest a simple parametric form.
When this is the case, researchers might then choose to follow up their analysis
by going on to fit a parametric model which might have an easier interpretation.
However, even in these cases, the nonparametric approach can still be useful in
an exploratory or diagnostic role. In the future, further methodological research
may make it easier to interpret the coefficient function in scalar-on-function
regression.
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Appendix A: Technical explanation of model-fitting details

The approach used in the funreg package for fitting Model (1.1) basically follows
that outlined in [19] with back-end calculations handled using the mgcv and
splines packages in R [see 93]. There are two practical challenges which the
approach of [19] overcomes. The first challenge is how to manage the sparsity
of the Xi(t) functions, observed at only a finite number of points despite being
theoretically smooth functions. This is managed by modeling the distribution
of the Xi(t) using functional principal components analysis. The second is how
to avoid spuriously overfitting the data because of the great flexibility of the
model. In classic regression, overparameterization is often addressed either by
selecting a subset of variables or by using a ridge or empirical Bayes penalty.
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An approach combining these options (basis selection and penalization) is used
here.

First, the Xi are viewed as having been measured with some error, so that
conceptually one is estimating a latent Xi which may be slightly more smooth
and less variable than the observed Xi. One approach would be to smooth each
participant’s curve separately. However, this may oversmooth and distort the
curves, especially for those subjects who have sparser data. It also does not
provide insight into the distribution of the Xi’s in general. Therefore, [19] com-
bine information from all the Xi’s by using functional principal components
analysis [3]. It is assumed that each Xi(t) can be expressed as a fixed mean
function μX(t) plus a random process Xc

i (t) with mean zero and a finite co-
variance function ΣX(s, t) = Cov(Xi(s), Xi(t)) = Cov(Xc

i (s), X
c
i (t)). Suppose

that the eigenfunctions ψ of the function ΣX(s, t) have been estimated on a fine
regular grid of t. Let the first MX of these eigenfunctions, in decreasing order
by eigenvalue, be denoted as ψ1(t), ..., ψMX

(t), and let each subject’s curve Xc
i

have a loading cij on each ψj(t). In this case, we can approximate the random
Xc

i (t) by

Xc
i (t) ≈

MX∑
j=1

cijψj(t) (A.1)

where ψj(t) is the jth eigenfunction in order of the eigenvalues. Goldsmith and
co-workers [19] recommend a large MX (in one of their sample code files MX =
30). Thus, the curves can be summarized by a Karhunen-Loève decomposition,
and this can be used to rebuild a smoothed version of each curves on as dense
a regular grid as is desired.

In order to perform the Karhunen-Loève decomposition described above, one
needs to estimate the covariance function ΣX(s, t) = Cov(Xi(s), Xi(t)) of the
Xi curves. This seems very challenging because the Xi curves are possibly sparse
and error-contaminated data which are not necessarily measured on a common
grid. Specifically, because only a finite and perhaps irregular grid of points on
the Xi have been observed, cij in (A.1) is not known but has to be replaced
with a good estimate. Fortunately, empirical Bayes theory provides a way to
find a best linear unbiased estimate in such a situation. Specifically, if a random
quantity vi = μ̂vi + bZi + ei is being predicted from random predictors Zi in
a linear mixed model, where the ei are independent normal and the Zi have
some nondegenerate multivariate normal distribution, then the empirical Bayes
estimate and best linear unbiased predictor for the subject-specific coefficients
is

b̃i = Cov (b)ZT
i (Cov (v))

−1
(vi − μ̂vi)

where

Cov (v) = ZiCov (b)Z
T
i + (Var(e))I

[61, 69]. Goldsmith and co-authors [19] are predicting Xi(t) = μX(t)+ψ(t)ci+
ei(t), so they plug ψi in for Zi above, diag(λ) for Cov (b), and the measurement
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error in X for the variance of the ei, and thus they can get estimates for the ci
vectors. They still need an estimate for σ2

x (i.e., the measurement error variance
of X), so they get it from binning the observations and comparing the smoothed
variance between and within bins. They also obtain a μX(t) estimate from a
penalized spline fit on all of theX’s together. Once the cij ’s have been estimated,
the covariance function of Xi and the estimates of Xi(t) at any point are treated
as known.

One might ask whether to use the original Xi or the centered Xc
i (t) = Xi(t)−

μX(t) as predictors. The Goldsmith et al. (2011) sample code uses Xc
i (t), after

estimating μX(t) using a penalized spline, and funreg follows this approach.
This centering may make numerical computations more stable. However, for
interpreting the estimate of θ̂1 (t), it matters little whether the Xi are centered
or not. This is because

∫ 1

0

Xc
i (t)θ̂1(t)dt =

∫ 1

0

(Xi(t)− μX(t)) θ̂1(t)dt

=

∫ 1

0

Xi(t)θ̂1(t)dt−
∫ 1

0

μX(t)θ̂1(t)dt

where the second term does not depend on i and therefore gets absorbed into
the scalar intercept constant θ0.

Once the Xi have been estimated for all subjects on each point of a fine and
regular grid, it is possible to continue with a regression. However, the goal is
not merely to do a regression of y on a grid of hundreds of X(t) values, but
to do this in a special way so that the θ1 estimates for each consecutive pair
of bins are close to each other, thus giving θ1(t) a smooth form. Specifically,
it is assumed that θ1(t) is a nonparametric function assumed to be reasonably
smooth. It can therefore be approximated by using a parametric regression on
some appropriate basis consisting of functions φ(t) [63]. That is, we assume

θ1(t) ≈
M∑

m=1

bmφj(t) (A.2)

for some finite and reasonably small integer M .
Many options are available for the form of the basis functions φ. Goldsmith

and co-authors [19] point out that they could have reused the eigenfunctions
from the decomposition and reconstruction of theX curves as the basis functions
for θ1(t) (i.e., set φm(t) = ψm(t)), but this would rest on a possibly unjustified
assumption that the functions which summarize X well also summarize β well.
Alternatively, they could also have used B-splines [15], a Fourier basis, or many
other choices. Instead, they argue that a penalized truncated power spline basis
is reasonable [19, 71]. This basis consists of some simple functions of time (e.g.,

1, t, t2, t3), and some knot terms (e.g.,
(
(t− κk)+

)3
) for several prespecified knot

locations κ1, ..., κK . As [7] show, the choice of basis for approximating θ1(t) is
very important for estimation quality, so further research may be warranted
here.
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Once the basis functions have been chosen, substituting (A.1) and (A.2) into
Model (1.1), we get

g (μYi) = α+

∫ 1

0

X(t)θ1(t)dt

= αc +

∫ 1

0

Xc(t)β(t)dt

≈ αc +

M∑
j=1

∫ 1

0

cijψj(t)φj(t)bdt

= αc +

(∫ 1

0

ψj(t)φj(t)

)⎛
⎝ M∑

j=1

cijbdt

⎞
⎠

= αc +CJb (A.3)

where αc is the adjusted value of α because of the centering, C the matrix of

cij ’s, J =
∫ 1

0
ψj(t)φ(t), and b is simply a vector of constants to be estimated.

Thus, the functional linear regression is estimated as a parametric multiple
regression where the matrix CJ is the regression matrix (design matrix).

Even with a reasonably smallM , to prevent overfitting one must still keep the
b coefficients from being too large individually. Instead of using ordinary linear
regression estimates of the bi, [19] apply a smoothness penalty, which can be seen
as something like an empirical Bayes prior or a ridge regression penalty. The
strength of this penalty function can be chosen automatically using an approach
based on restricted maximum likelihood [the REML approach to P-splines; see
71]. Thus [19] call their approach penalized functional regression. The model-
based estimates for the covariance matrix of b in the intermediate regression
(A.3), are then transformed using Cramèr’s delta method (Taylor linearization)
into the metric of θ1(t) for each t of interest to obtain pointwise confidence
intervals for θ1(t). [19] admit that one disadvantage of this approach is that
it only takes into account the uncertainty in regressing y on the reconstructed
Xi’s, and not the uncertainty about the reconstructed Xi’s themselves (i.e., the
uncertainty in the estimates of the cij loadings, as well as the choice of MX). In
addition, it ignores possible bias and uncertainty due to the necessity of using
a smoothing penalty, and it only provides pointwise coverage so it does not
directly allow inferences on differences in the function between multiple times.
For these reasons, resampling techniques like bootstrapping might give more
realistic confidence intervals.
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