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Abstract: In the framework of the supervised learning of a real function
defined on an abstract space X , Gaussian processes are widely used. The
Euclidean case for X is well known and has been widely studied. In this
paper, we explore the less classical case where X is the non commutative
finite group of permutations (namely the so-called symmetric group SN ).
We provide an application to Gaussian process based optimization of Latin
Hypercube Designs. We also extend our results to the case of partial rank-
ings.

MSC 2010 subject classifications: Primary 60G15; secondary 62M20.
Keywords and phrases: Learning, Gaussian processes, covariance func-
tions, statistical ranking, partial rankings.

Received April 2019.

1. Introduction

The problem of ranking a set of items is a fundamental task in today’s data
driven world. Analysing observations which are not quantitative variables but
rankings has been often studied in social sciences. It has also become a pop-
ular problem in statistical learning thanks to the generalization of the use of
automatic recommendation systems. Rankings are labels that model an order
over a finite set EN := {1, . . . , N}. Hence, an observation is a set of preferences
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between these N points. It is thus a one to one relation σ acting from EN onto
EN . In other words, σ lies in the finite symmetric group SN of all permutations
of EN . More precisely, assume that we have a finite set X = {x1, · · · , xN} and
we have to order the elements of X. A ranking on X is a statement of the form

xi1 � xi2 � · · · � xiN , (1.1)

where all the ij , j = 1 · · · , N are different. We can associate to this ranking
the permutation σ defined by σ(ik) = k. Reversely, to a permutation σ, we can
associate the following ranking

xσ−1(1) � xσ−1(2) � · · · � xσ−1(N). (1.2)

We refer to the works of Douglas E. Critchlow (see for example [19, 16, 18]) for
an introduction to rankings, together with various results.

Our aim is to predict outputs corresponding to permutations inputs. For
instance, the permutation input can correspond to an ordering of tasks, in ap-
plications. In a workflow management system, there may be a large number
of tasks that may be done in different orders but are all necessary to achieve
the goal. Workflow prediction or optimization problems currently occur in fields
such as grid computing [44], and logistics [11].

Another example of application is given by the maintenance of machines
in a supply line. Machines in a supply line need to be tuned or monitored in
order to optimize the production of a good. The machines can be tuned in
different orders, each corresponding to a permutation and these choices have an
impact on the quality of the production of the goods, measured by a quantitative
variable Y , for instance the amount of defects in the produced goods. Hence, the
objective of the model will thus be to forecast the outcome of a specific order
for the maintenance of the machines in order to optimize the production.

Another interesting case of output corresponding to a permutation input is of
the form maxx∈X f(σ, x), where f is a function both acting on the permutation
σ and on some external variable x. This output corresponds to a worst case for
the performance or the cost given by the permutation σ. Classical examples of
this kind of output are the max distance criterion for Latin Hypercube Designs
[35, 40] and the robust deviation for a tour in the robust traveling salesman
problem [37]. In Section 3.4, we discuss and address the example of the max
distance criterion.

In this paper, we will be in the framework of Gaussian processes indexed by
SN . Actually, Gaussian process models rely on the definition of a covariance
function that characterizes the correlations between values of the process at
different observation points. As the notion of similarity between data points is
crucial, i.e. close location inputs are likely to have similar target values, covari-
ance functions (symmetric positive definite kernels) are the key ingredient in
using Gaussian processes for prediction. Indeed, the covariance operator con-
tains nearness or similarity informations. In order to obtain a satisfying model
one needs to choose a covariance function (i.e. a symmetric positive definite
kernel) that respects the structure of the index space of the dataset.
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A large number of applications gave rise to recent researches on ranking in-
cluding ranking aggregation [29], clustering rankings (see [12]) or kernels on
rankings for supervised learning. Constructing kernels over the set of permuta-
tions has been studied following several different ways. In [27], Kondor provides
results about kernels in non-commutative finite groups and constructs diffu-
sion kernels (which are positive definite) on SN . These diffusion kernels are
based on a discrete notion of neighbourhood. Notice that the kernels considered
therein are quite different from those considered in this paper. Furthermore,
the diffusion kernels are not in general covariance functions because of their
tricky dependency on permutations. The recent reference [25] proves that the
Kendall and Mallow’s kernels are positive definite. Further, [32] extends this
study characterizing both the feature spaces and the spectral properties associ-
ated with these two kernels. A real data set [10] on rankings is studied in [32].
The authors used a kernel regression to predict the age of a participant with
his/her order of preference of six sources of news regarding scientific develop-
ments: TV, radio, newspapers and magazines, scientific magazines, the internet,
school/university.

There are applications where not all of the items in (1.1) are ranked. Rather,
a partial ranking is given (see for example the “sushi” dataset available at
http://www.kamishima.net or movie datasets). The books [17] and [33] pro-
vide metrics on partial rankings and the papers [28] and [25] provide kernels
on partial rankings and deal with the complexity reduction of their computa-
tion.

The goal in this paper is threefold: first we define Gaussian processes indexed
by SN by providing a wide class of covariance kernels. We generalize previous
results on the Mallow’s kernel (see [25]). Second, we consider the Kriging models
(see for instance [41]) that consist in inferring the values of a Gaussian random
field given observations at a finite set of observation points. Here, the observa-
tions points are permutations. We study the asymptotic properties of the maxi-
mum likelihood estimator of the parameters of the covariance function. We also
prove the asymptotic accuracy of the Kriging prediction under the estimated
covariance parameters. Further, we provide simulations that illustrate the very
good performances of the proposed kernels. Finally, we provide an application
to Gaussian process based optimization of Latin Hypercube Designs. Last, we
show that the Gaussian process framework may be adapted to the cases of learn-
ing with partially observed rankings. We define a class of covariance kernels on
partial rankings, for which we show how to reduce the computation complexity.
In simulations, we show that our suggested kernels yield more efficient Gaussian
process predictions than the kernels given in [25].

The paper falls into the following parts. In Section 2, we recall some facts on
SN and provide some covariance kernels on this set. Asymptotic results on the
estimation of the covariance function are presented in Section 3. Section 3 also
contains an application to the optimization of Latin Hypercube Designs. Section
4 provides new covariance kernels for partial rankings with a comparison with
the ones given in [25] in a numerical experiment. Section 5 concludes the paper.
The proofs are all postponed to the appendix.

http://www.kamishima.net
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2. Covariance model for rankings

Recall that we define SN as the set of all permutations on EN := {1, . . . , N}.
An element σ of SN is a bijection from EN to EN . We aim at constructing
kernels, or covariance functions, on SN . We will base these kernels on the three
following distances on SN (see [21]). For any permutations π and σ of SN ,

• The Kendall’s tau distance is defined by

dτ (π, σ) :=
∑

i,j=1,...,N
i<j

(
1σ(i)>σ(j), π(i)<π(j) + 1σ(i)<σ(j), π(i)>π(j)

)
. (2.1)

This distance counts the number of pairs on which the permutations dis-
agree in ranking.

• The Hamming distance is defined by

dH(π, σ) :=

N∑
i=1

1π(i) �=σ(i). (2.2)

• The Spearman’s footrule distance is defined by

dS(π, σ) :=
N∑
i=1

|π(i)− σ(i)|. (2.3)

These three distances are right-invariant. That is, for all π, σ, τ ∈ SN , d(π, σ) =
d(πτ, στ). Other right-invariant distances are discussed in [21].

We aim at defining a Gaussian process indexed by permutations. Notice that,
generally speaking, using the abstract Kolmogorov construction (see for example
[20] Chapter 0), the law of a Gaussian random process (Yx)x∈E indexed by an
abstract set E is entirely characterized by its mean and covariance functions

M : x �→ E(Yx)

and

K : (x, y) �→ Cov(Yx, Yy).

Of course, here the framework is much simpler as SN is finite (|SN | = N !), and
the Gaussian distribution is obviously completely determined by its mean and
covariance matrix. Hence, if we assume that the process is centered, we only have
to build a covariance function on SN . First, we recall the definition of a positive
definite kernel on an abstract space E. A symmetric map K : E × E → R is
called a positive definite kernel if for all n ∈ N and for all (x1, · · · , xn) ∈ En,
the matrix (K(xi, xj))i,j is positive semi-definite. In this paper, we say that K
is a strictly positive definite kernel if K is symmetric and, for all n ∈ N and for
all (x1, · · · , xn) ∈ En such that xi �= xj if i �= j, the matrix (K(xi, xj))i,j is
positive definite.
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These notions are particularly interesting for SN (and any finite set). Indeed,
if K is a strictly positive definite kernel, then for any function f : SN → R,
there exists (aσ)σ∈SN

such that

f =
∑

σ∈SN

aσK(., σ), (2.4)

and K is of course an universal kernel (see [36]).

Remark 1. Since SN is a finite discrete space, remark that the Reproducible
Kernel Hilbert Space (RKHS) of a kernel K is defined by the set of the functions
of the form (2.4), and the universality of the kernel K is equivalent to the
equality of its RKHS with the set of the functions from SN to R. This is, in
turn, equivalent to the fact that K is strictly positive definite.

We now provide two different parametric families of covariance kernels. The
members of these families have the general form

Kθ1,θ2(σ, σ
′) := θ2 exp (−θ1d(σ, σ

′)) , (θ1, θ2 > 0), (2.5)

and

Kθ1,θ2,θ3(σ, σ
′) := θ2 exp

(
−θ1d(σ, σ

′)θ3
)
, (θ1, θ2 > 0, θ3 ∈ [0, 1]). (2.6)

Here, d is one of the three distances defined in (2.1), (2.2) and (2.3). More pre-
cisely, for the Kendall’s (resp. Hamming’s and Spearman’s footrule) distance let
Kτ

θ1,θ2(,θ3)
(resp. KH

θ1,θ2(,θ3)
, KS

θ1,θ2(,θ3)
) be the corresponding covariance func-

tion. For concision, sometimes we will write Kθ1,θ2(,θ3) (resp. d) for one of these
three kernels (resp. distances).

We show in the next proposition that Kθ1,θ2 is strictly positive definite.

Proposition 1. For all θ1 > 0 and θ2 > 0, Kτ
θ1,θ2

, KH
θ1,θ2

, KS
θ1,θ2

are strictly
positive definite kernels on SN .

Remark 2. In [32], the strict positive definiteness of the Mallow’s kernel, corre-
sponding to Kτ

θ1,θ2
, is also shown. Our proof of Proposition 1 seems more direct

than the one given in [32].

We also have a similar result for Kθ1,θ2,θ3 .

Proposition 2. For all θ1 > 0, θ2 ≥ 0 and θ3 ∈ [0, 1], the maps Kτ
θ1,θ2,θ3

,

KH
θ1,θ2,θ3

, KS
θ1,θ2,θ3

are positive definite kernels on SN .

Propositions 1 and 2 enable to define Gaussian processes indexed by permu-
tations.

Remark 3. The authors of [2] define strictly positive definite kernels on graphs
with Euclidean edges with two different metrics: the geodesic metric and the “re-
sistance metric”. The kernels are obtained by applying completely monotonous
functions to these metrics (distances). They provide different classes of such
functions: the power exponential functions (which are considered in our work,
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see (2.6)), the Matérn functions (with a smoothness parameter 0 < ν ≤ 1/
2), the generalized Cauchy functions and the Dagum functions. One can show
that Proposition 2 remains valid for all these kernels, by remarking as in [2]
that these kernels are based on completely monotonous functions. Some of the
proofs of [2] are based on techniques similar to the proof of Proposition 2, using
Schoenberg’s theorems.

We remark that the finite set of permutations SN is a graph, when two per-
mutations σ1 and σ2 are connected if there exists a transposition π such that
σ1 = σ2π. Hence, it is natural to ask if the results of [2] can imply or extend some
of the results in this paper. The answer however appears to be negative. Indeed,
the distances considered in [2] are the geodesic or the “resistance” distances,
hence the distances in (2.1), (2.2) and (2.3) do not fall into this category.

One could also consider the set of the permutations as a fully connected
weighted graph, where the weight of the edge between σ1 and σ2 is d(σ1, σ2)
and where d is dτ or dH or dS. Nevertheless, also with this graph, the results of
[2] do not apply, since the graphs addressed by this reference have a particular
structure (finite sequential 1-sum of Euclidean cycles and trees).

We finally remark that [2] constructs covariance functions not only on finite
graphs, but between connected vertices. In contrast, the covariance functions
constructed here are defined only on the finite set SN .

3. Gaussian fields on the symmetric group

3.1. Maximum likelihood

Let us consider a Gaussian process Y indexed by σ ∈ SN , with zero mean and
covariance function K∗. In a parametric setting, a classical assumption is that
the covariance function K∗ belongs to some parametric set of the form

{Kθ ; θ ∈ Θ}, (3.1)

where Θ ⊂ R
p is given and for all θ ∈ Θ, Kθ is a covariance function. The

parameter θ is generally called the covariance parameter. In this framework,
K∗ = Kθ∗ for some parameter θ∗ ∈ Θ.

The parameter θ∗ is estimated from noisy observations of the values of the
Gaussian process at several inputs. Namely, to the observation point σi, we
associate the observation Y (σi) + εi, for i = 1, . . . , n, where (εi)i is an indepen-
dent Gaussian white noise. Let us consider a sample of random permutations
Σ = (σ1, σ2, · · · , σn) ∈ SN . Assume that we observe Σ and a random vector
y = (y1, y2, · · · , yn)T defined by, for i ≤ N ,

yi = Y (σi) + εi. (3.2)

Here, Y is a Gaussian process indexed by SN and independent of Σ. We assume
that Y is centered with covariance function Kθ∗

1 ,θ
∗
2
(see (2.5) in Section 2) and

that (εi)i≤n ∼ N (0, θ∗3In). Y is the unknown process to predict and ε is an



Gaussian field on the symmetric group 509

additive white noise. Notice that θ3 denotes here the variance of the nugget
effect while it is a power in Section 2 (see (2.6)). We keep the same name
in order to use the compact notation θ for the parameter of the model. The
Gaussian process Y is stationary in the sense that for all σ1, · · · , σn ∈ SN and
for all τ ∈ SN , the finite-dimensional distribution of Y at σ1, · · · , σn is the same
as the finite-dimensional distribution at σ1τ, · · · , σnτ .

Several techniques have been proposed for constructing an estimator
θ̂ = θ̂(σ1, y1, · · · , σn, yn) of θ∗ := (θ∗1 , θ

∗
2 , θ

∗
3): maximum likelihood estimation

[43], restricted maximum likelihood [14], leave-one-out estimation [13, 3], leave-
one-out log probability [42]... Here, we shall focus on the maximum likelihood
method. It is widely used in practice and has received a lot of theoretical at-
tention. Assume that Θ ⊂

∏3
i=1[θi,min, θi,max] for some given 0 < θi,min ≤

θi,max < ∞ (i = 1, 2, 3). The maximum likelihood estimator is defined as

θ̂ML = θ̂n ∈ argmin
θ∈Θ

Lθ (3.3)

with

Lθ :=
1

n
ln(detRθ) +

1

n
yTR−1

θ y, (3.4)

where Rθ = [Kθ1,θ2(σi, σj) + θ31i=j ]1≤i,j≤n is invertible for θ ∈ Θ since θ3 > 0.

3.2. Asymptotic results

When considering the asymptotic behaviour of the maximum likelihood esti-
mator, two different frameworks can be studied: fixed domain and increasing
domain asymptotics [41]. Under increasing-domain asymptotics, as n → ∞, the
observation points σ1, · · · , σn are such that mini �=j d(σi, σj) is lower bounded
and d(σi, σj) becomes large with |i − j|, (thus we can not keep N fixed as
n → +∞). Under fixed-domain asymptotics, the sequence (or triangular array)
of observation points (σ1, · · · , σn, · · · ) is dense in a fixed bounded subset. For a
Gaussian field on R

d, under increasing-domain asymptotics, the true covariance
parameter θ∗ can be estimated consistently by maximum likelihood. Further-
more, the maximum likelihood estimator is asymptotically normal [34, 14, 15, 4].

Moreover, prediction performed using the estimated covariance parameter θ̂n is
asymptotically as good as the one computed with θ∗ as pointed out in [4]. Fi-
nally, note that in the symmetric group, the fixed-domain framework can not
be considered (contrary to the input space R

d) since SN is a finite space.
We will consider hereafter the increasing-domain framework. We thus con-

sider a number of observations n that goes to infinity. Hence, the size N of the
permutations can not be fixed, as pointed out above. We thus let the size of the
permutations be a function of n, that we write Nn, with Nn → ∞ as n → ∞.
To summarize, we consider a sequence of Gaussian processes Yn on SNn , with

Nn −→
n→+∞

+∞ and where we consider a triangular array (σ
(n)
i )i≤n ⊂ SNn of

observation points. However, for the sake of simplicity, we only write Y and
(σi)i≤n and the dependency on n is implicit. We observe values of the Gaussian
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process on the permutations Σ = (σ1, · · · , σn), that are assumed to fulfill the
following assumptions:

Condition 1: For d = dτ or d = dH or d = dS , there exists β > 0 such that
∀i, j, d(σi, σj) ≥ |i− j|β .

Condition 2: For d = dτ or d = dH or d = dS , there exists c > 0 such that
∀i, d(σi, σi+1) ≤ c.

Here, we recall that dτ , dH and dS are defined in Section 2. Notice that β
and c are assumed to be independent on n.

These conditions are natural under increasing-domain asymptotics. Indeed,
Condition 1 provides asymptotic independence for pairs of observations with
asymptotically distant indices. It allows to show that the variance of Lθ and of
its gradient converges to 0. Condition 2 ensures the asymptotic discrimination of
the covariance parameters (see Lemma 4 in the appendix). These conditions can
be ensured with particular choices of sampling schemes for (σ1, · · · , σn) (using
the distances previously discussed).

As an example consider the following setting. We fix k ∈ N. For n ∈ N, i ∈
[1 : n], we choose σ

(n)
i = σi = τici ∈ Sk+n (we have Nn = k + n) with τi ∈

Sk × id[k+1:n+k] := {σ ∈ Sn+k| σ|[k+1:n+k] = id} a random permutation such
that (τi)i are independent (we do not make further assumptions on the law of
τi). Let ci = (i + k i + k − 1 · · · 1) the cycle defined by ci(1) = i + k,
ci(j) = j−1 if 1 < j ≤ i+k and ci(j) = j if j > i+k. Then, σi is a permutation
such that σi(1) = i + k, σi(j) is a random variable in [2 : k] if 1 < j ≤ k + 1,
σi(j) = j − 1 if k + 1 < j ≤ i+ k and σi(j) = j if j > i+ k. A straightforward
computation shows that the Conditions 1 and 2 are satisfied with β = 1 and
c = 1 + k(k − 1)/2 for the Kendall’s tau distance, c = 2 + k for the Hamming
distance, c = 2 + k2 for the Spearman’s footrule distance. Indeed, the three
distances in Sk are upper-bounded by k(k − 1)/2, k and k2 respectively.

The following theorems give both the consistency and the asymptotic nor-
mality of the estimator when the number of observations increases.

Theorem 1. Let θ̂ML be defined as in (3.3), where the distance d used to define
the set {Kθ ; θ ∈ Θ} is dτ , dH or dS. Assume that Conditions 1 and 2 hold
with the same choice of the distance d. Then,

θ̂ML
P−→

n→+∞
θ∗. (3.5)

Theorem 2. Under the assumptions of Theorem 1, let MML be the 3×3 matrix
defined by

(MML)i,j =
1

2n
Tr

(
R−1

θ∗
∂Rθ∗

∂θi
R−1

θ∗
∂Rθ∗

∂θj

)
. (3.6)

Then √
nM

1
2

ML

(
θ̂ML − θ∗

)
L−→

n→+∞
N (0, I3). (3.7)
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Furthermore,

0 < lim inf
n→∞

λmin(MML) ≤ lim sup
n→∞

λmax(MML) < +∞, (3.8)

where λmin(MML) (resp. λmax(MML)) is the smallest (resp. largest) eigenvalue
of MML.

Given the maximum likelihood estimator θ̂n = θ̂ML, the value Y (σn), for
any input σn ∈ SNn , can be forecasted by plugging the estimated parameter in
the conditional expectation expression for Gaussian processes. Hence Y (σn) is
predicted by

Ŷθ̂n
(σn) = rT

θ̂n
(σn)R

−1

θ̂n
y (3.9)

with

rθ̂n(σn) =

⎡⎢⎣ Kθ̂n
(σn, σ1)
...

Kθ̂n
(σn, σn)

⎤⎥⎦ .
We point out that Ŷθ̂n

(σn) is the conditional expectation of Y (σn) given y1, · · · ,
yn, when assuming that Y is a centered Gaussian process with covariance func-
tion Kθ̂n

.
The following theorem shows that the forecast with the estimated parameter

behaves asymptotically as if the true covariance parameter were known.

Theorem 3. Under the assumptions of Theorem 1, for any fixed sequence
(σn)n∈N, with σn ∈ SNn for n ∈ N, we have∣∣∣Ŷθ̂ML

(σn)− Ŷθ∗(σn)
∣∣∣ P−→
n→+∞

0. (3.10)

Remark 4. Theorem 3 does not imply that

max
σ∈SNn

∣∣∣Ŷθ̂ML
(σ)− Ŷθ∗(σ)

∣∣∣ P−→
n→+∞

0. (3.11)

Indeed, letting σn ∈ argmax
σ∈SNn

∣∣∣Ŷθ̂ML
(σ)− Ŷθ∗(σ)

∣∣∣, (3.11) is equivalent to

∣∣∣Ŷθ̂ML
(σn)− Ŷθ∗(σn)

∣∣∣ P−→
n→+∞

0,

but where σn is random. Here, Theorem 3 does not imply (3.11) as it holds
for deterministic sequences (σn)n∈N. It would be interesting, in future work, to
extend Theorem 3 to show (3.11).

The proofs of Theorems 1, 2 and 3 are given in the appendix, Sections B.2, B.3
and B.4 respectively. They are based on lemmas stated and proved in Section
B.1. In [4] and [5], similar results for maximum likelihood are given for Gaussian
fields indexed on R

d and on the set of all probability measures on R (see also [7]).
At the beginning of Appendix B, we also discuss the similarities and differences
between the proofs of Theorems 1, 2 and 3 and these given in [4] and [5].
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Fig 1. Monte Carlo estimates of P(‖θ̂n − θ∗‖ > 0.5) for different values of n, the number of
observations, with θ∗ = (0.1, 0.8, 0.3) and Kendall’s tau distance, the Hamming distance and
the Spearman’s footrule distance from left to right.

3.3. Numerical experiments

As an illustration of Theorem 1, we provide a numerical illustration showing
that the maximum likelihood is consistent. We generated the observations as
discussed in Section 3 with k = 3. We recall that Nn = k + n and σi = τi(i +
k i+ k − 1 · · · 1) ∈ Sk+n where τi ∈ Sk × id[k+1:k+n] is a random permutation.

For each value of n, we estimate the probability P(‖θ̂n − θ∗‖ > ε) using a
Monte-Carlo method and a sample of 1000 values of 1‖θ̂n−θ∗‖>ε. Figure 1 depicts

these estimates for ε = 0.5, θ∗ = (0.1, 0.8, 0.3) and Θ = [0.02, 2]×[0.3, 2]×[0.1, 1].

In Figure 2, we display the density of the coordinates of the maximum like-
lihood estimator for different values of n ranging from 20, 60 to 150. These
densities have been estimated with a sample of 1000 values of the maximum
likelihood estimator. We observe that the densities can be far from the true pa-
rameter for n = 20 or n = 60 but are quite close to it for n = 150. Further, we
see that for n = 150, the Kendall’s tau distance seems to give better estimates
for θ∗3 . However, the computation time of the distance matrix is much longer
with the Kendall’s tau distance than with the other distances.

In Figure 3, for a given σn, we display estimates of the probability that the
deviation between the prediction of Y (σn) given in (3.9) with the parameter θ̂n
and the prediction of Y (σn) with the parameter θ∗ exceeds 0.3. Indeed, Theorem
3 ensures us that this probability converges to 0 as n → +∞.

3.4. Application to the optimization of Latin Hypercube Designs

We consider here an application of Proposition 2 to find an optimal Latin Hyper-
cube Design (LHD). A LHD is a design of experiments (Xj)j≤N ∈ [0, 1]d where,
for each component i ∈ [1 : d], the projections of X1, ..., XN on the component
i are equispaced in [0, 1] (see [35]). We will thus consider that each component
of one Xj is equal to k/(N − 1) for some k ∈ [0 : N − 1]. We also remark that
we can always permute the variables so that the first component of Xj is equal
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Fig 2. Density of the coordinates of θ̂n for the number of observations n = 20 (in red), n = 60
(in blue), n = 150 (in green) with θ∗ = (0.1, 0.8, 0.3) (represented by the red vertical line). We
used the Kendall’s tau distance, the Hamming distance and the Spearman’s footrule distance
from left to right.

Fig 3. Monte Carlo estimates of P
(∣∣∣Ŷθ̂n

(σn)− Ŷθ∗(σn)
∣∣∣ > 0.3

)
for different values of n, the

number of observations, with θ∗ = (0.1, 0.8, 0.3), σn = (1 4 6) ∈ Sn+3, and the Kendall’s tau
distance, the Hamming distance and the Spearman’s footrule distance from left to right.
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to (j − 1)/(N − 1). So, for each LHD (Xj)j≤N , there exist σ2, ..., σd ∈ SN such
that for all j ∈ [1 : N ], we have

Xj =

(
j − 1

N − 1
,
σ2(j)− 1

N − 1
, · · · , σd(j)− 1

N − 1

)
.

Hence, there is a bijection between the set of LHD with N points and the set
Sd−1
N .
Now, if (Xj)j≤N is a LHD, we can define its measure of space filling quality

as
f((Xj)j≤N ) = sup

x∈[0,1]d
min

j∈[1:N ]
‖x−Xj‖,

that is the largest distance of a point of [0, 1]d to (Xj)j≤N . We remark that
LHDs minimizing f are called minimax [40]. Our aim is to find a minimax LHD
(X∗

j )j≤N . However, given a LHD (Xj)j≤N , its quality f((Xj)j≤N ) is not an
obvious quantity and its computation is expensive.

To estimate this quantity, we suggest to generateNtot random points (xl)l≤Ntot

uniformly on [0, 1]d, to compute their distance to the LHD and to take the max-
imum value. This estimation is costly (because of the large number Ntot) and
noisy (because of the randomness of the points (xl)l≤Ntot). Thus, we suggest to
use a Gaussian process model on f and to apply the Expected Improvement
(EI) strategy [26]. Nevertheless, remark that f is a positive function, whereas
a Gaussian process realization can take negative values. In this case, different
options are possible: firstly, we can ignore the information of the inequality
constraint; secondly, we can use Gaussian process under inequality constraints
(see [6]); thirdly, we can use a transformation of the function to remove the
inequality constraint. We choose here the third strategy and we model log(f)
by a Gaussian process realization. We remark that log(f) can take positive and
negative values.

We thus assume that the unknown function log(f) to minimize is a realization
of a Gaussian process. We have to find a positive definite kernel on Sd−1

N . Thanks

to Proposition 2, we have three positive definite kernels on SN , thus on Sd−1
N

(taking the tensor product of these kernels). Thus, we apply the EI strategy
with these three kernels to find the best LHD with Nmax calls to the function
f . The Nmax/2 first LHDs are generated uniformly on Sd−1

N and the other ones
are generated sequentially by following the EI strategy.

More precisely, for i ∈ [Nmax/2 : Nmax − 1], let us explain how to choose

the i + 1-th observation, when we have observed the vectors (σ
(k)
j )j∈[2:d],k∈[1:i]

and the associated observations
[
log
(
f
(
(σ

(k)
j )j∈[2:d]

))]
k∈[1:i]

(we remark that

f can be defined equivalently as a function f(σ2, . . . , σd) of d− 2 permutations
or as a function f((Xj)j≤N ) of a LHD). We model log(f) by a realization of

a Gaussian process Z, with a conditional mean written Ẑi(σ2, · · · , σd) and a
conditional variance written ŝ2i (σ2, · · · , σd), given

{Z((σ
(k)
j )j=2,...,d) = log(f((σ

(k)
j )j=2,...,d))}k=1,...,i. (3.12)
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Then, we let

(σ
(i+1)
2 , · · · , σ(i+1)

d ) ∈ argmax
σ2,··· ,σd∈SN

EI(σ2, · · · , σd),

where

EI(σ2, · · · , σd) = Ei (max (Mi − Z(σ2, · · · , σd), 0)) ,

where Mi = mink∈[1:i] log(f(σ
(k)
2 , · · · , σ(k)

d )), and Ei is the expectation condi-
tionally to the observations (3.12). We have an explicit expression of EI,

EI = (Mi − Ẑi)Φ

(
Mi − Ẑi

ŝi

)
+ ŝiφ

(
Mi − Ẑi

ŝi

)
,

where φ and Φ are the standard normal density and distribution functions. To

choose (σ
(i+1)
2 , · · · , σ(i+1)

d ), we thus solve an optimization problem for EI, which
has a very small cost compared to evaluating f , since the computation of EI is
instantaneous. We thus choose the set of permutations that maximizes EI over
2000 sets of uniformly distributed permutations.

We refer to [26] for more details on EI. The parameters of the covariance
functions are estimated by maximum likelihood at each step.

We run an experiment where we compare the performances of the 5 following
methods:

• Random sampling, to generate Nmax LHDs of the form {(X(i)
j )j≤N ; i ≤

Nmax} by generating σ2, ..., σd uniformly and independently;
• Simulated annealing, choosing that two LHDs (σj)2≤j≤d and (σ′

j)2≤j≤d are
neighbours if there exist transpositions τ2, ..., τd such that for all j ∈ [2 : d],
we have σ′

j = σjτj ;
• EI with Kendall distance;
• EI with Hamming distance;
• EI with Spearman distance.

For each method, the performance indicator is mini=1,...,Nmax f((X
(i)
j )j≤N ). Here,

we take d = 3, N = 15, Nmax = 200 and Ntot = 27× 106.
We can see in Figure 4 that the best LHDs are found by EI, particularly with

the Spearman distance. The simulated annealing is slightly better than random
sampling.

We display in Figure 5 the distributions of the qualities {f((X(i)
j )j≤N ); i ≤

Nmax} for the five methods. We can notice that the simulated annealing does
not explore the set of all the LHDs and does not find the best minimum. EI
performs minimisation and exploration to find better minima. We can then
provide the best LHD of EI with the Spearman distance. This LHD is given by
the permutations

σ2 = (5, 2, 1, 7, 6, 3, 4, 8, 11, 13, 12, 9, 10, 14, 15),

σ3 = (3, 6, 1, 8, 4, 9, 15, 7, 12, 5, 13, 10, 2, 11, 14).
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Fig 4. Minimal quality of LHD found by the five methods.

Fig 5. Distributions of the quality of LHDs for the five methods.
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To conclude, the kernels on permutations provided in Section 2 enable us
to use EI that gives much better results than simulated annealing or random
sampling to find the best LHD.

4. Covariance model for partial ranking

4.1. A new kernel on partial rankings

In application, it can happen that partial rankings rather than complete rank-
ings are observed. A partial ranking aims at giving an order of preference be-
tween different elements of X without comparing all the pairs in X. Hence, a
partial ranking R is a statement of the form

X1 � X2 � · · · � Xm, (4.1)

where m < N , and X1, · · · , Xm are disjoint sets of X = {x1, x2, · · · , xN}. The
partial ranking means that any element of Xj is preferred to any element of
Xj+1 but the elements of Xj cannot be ordered. Given a partial ranking R, we
consider the following subset of SN

ER := {σ ∈ SN : σ(i1) < σ(i2) < · · · < σ(im)

for any choice of (xi1 , · · · , xim) ∈ X1 × · · · ×Xm } . (4.2)

In the statistical literature, there is a natural way to extend a positive definite
kernel K on SN to the set of partial rankings (see [28], [25]). To do so, one
considers for R and R′ two partial rankings the following averaged kernel

K(R,R′) :=
1

|ER||ER′ |
∑

σ∈ER

∑
σ′∈ER′

K(σ, σ′). (4.3)

Here, |ER| denotes the cardinal of the set ER. Notice that, if K is a positive
definite kernel on permutations, then K is also a positive definite kernel [24].
Indeed, if R1, · · · , Rn are partial rankings and if (a1, · · · , an) �= 0, then

n∑
i,j=1

aiajK(Ri, Rj) =
∑

σ,σ′∈SN

bσbσ′K(σ, σ′), (4.4)

where we set
bσ :=

∑
i, σ∈Ri

ai
|ERi |

. (4.5)

Observe that the computation of K is very costly. Indeed, we have to sum over
|ER||ER′ | permutations. Several works aim to reduce the computation cost of
this kernel (see [28, 30, 31]). However, its efficient computation remains an issue.

In the following, we provide another way to extend the kernels Kθ1,θ2,θ3 to
partial rankings. We will provide computational simplifications for this exten-
sion. First, define the measure of dissimilarity davg on partial rankings as the
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mean of distances d(σ, σ′) (σ ∈ ER, σ
′ ∈ ER′). That is

davg(R,R′) :=
1

|ER||ER′ |
∑

σ∈ER

∑
σ∈ER′

d(σ, σ′). (4.6)

Since davg(R,R) �= 0 in general, we need to define dpartial as follows

dpartial(R,R′) := davg(R,R′)− 1

2
davg(R,R)− 1

2
davg(R

′, R′). (4.7)

Proposition 3. d
1
2

partial
is a pseudometric on partial rankings (i.e. it satisfies

the positivity, the symmetry, the triangular inequality and is equal to 0 on the
diagonal {(R,R), R is a partial ranking}).

We remark that other metrics on partial rankings are defined in [17], in
particular the Hausdorff metrics and the fixed vector metrics (based on the group
representation of SN ). These two metrics are different from the one defined in
(4.7). Our suggested metric dpartial will enable us to define positive definite

kernels in Proposition 4. In future work, it would be interesting to study the
construction of positive definite kernels based on the Hausdorff and fixed vector
metrics.

We further define

Kθ1,θ2,θ3(R,R′) := θ2 exp(−θ1dpartial(R,R′)θ3). (4.8)

The next proposition warrants that this last function is in fact a covariance
kernel, which will later enable to define Gaussian processes on partial rankings.

Proposition 4. Kθ1,θ2,θ3 is a positive definite kernel for the Kendall’s tau dis-
tance, the Hamming distance and the Spearman’s footrule distance.

4.2. Kernel computation in partial ranking

At a first glance, the computation of the kernel Kθ1,θ2,θ3(R,R′) on partial rank-
ings may still appear very costly due to the evaluation of dpartial. Indeed, we

have to sum |ER||ER′ | elements for davg(R,R′), |ER|2 elements for davg(R,R)
and |ER′ |2 elements for davg(R

′, R′). However, this computation problem can
be quite simplified. As we will show in this subsection, the mean of the dis-
tances is much easier to compute than the mean of exponential of distances. We
write dτ,avg (resp. dH,avg and dS,avg) for the average distance in (4.6) when
the distance on the permutations is dτ (resp. dH and dS).

To begin with, let us consider the case of top-k partial rankings. A top-k
partial ranking (or a top-k list) is a partial ranking of the form

xi1 � xi2 � · · · � xik � Xrest, (4.9)

where Xrest := X \ {xi1 , · · · , xik}. It can be seen as the “highest rankings”.
In order to alleviate the notations, let just write I = (i1, · · · , ik) for this top-k
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partial ranking. The following proposition shows that the computation cost to
evaluate davg (and so the kernel values) might be reduced when the partial
rankings are in fact top-k partial rankings. Before stating this proposition let
us define some more mathematical objects. Let I := (i1, · · · , ik) and I ′ :=
(i′1, · · · , i′k) be two top-k partial rankings. Let

{j1, · · · , jp} := {i1, · · · , ik} ∩ {i′1, · · · , i′k}

where j1 < j2 < · · · < jp and p is an integer no larger than k. Let, for l = 1, · · · p,
cjl (resp. c

′
jl
) denotes the rank of jl in I (resp. in I ′). Further, let r := k−p and

define Ĩ (resp. Ĩ ′) as the complementary set of {j1, · · · , jp} in {i1, · · · , ik} (resp.
in {i′1, · · · , i′k}). Writing these two sets in ascending order, we may finally define

for j = 1, · · · , r, uj (resp. u′
j) as the rank in I (resp I ′) of the j-th element of Ĩ

(resp. Ĩ ′).

Example. Assume that n = 7, I = (3, 2, 1, 4, 5) and I ′ = (3, 5, 1, 6, 2). We have
(j1, j2, j3, j4) = (1, 2, 3, 5) (the items ranked by I and I ′, in increasing order).
Thus, cj1 = 3, cj2 = 2, cj3 = 1, cj4 = 5 and c′j1 = 3, c′j2 = 5, c′j3 = 1, c′j4 = 2.
Further, u1 = 4 and u′

1 = 4.

Proposition 5. Let I and I ′ be two top k-partial rankings. Set N ′ := N −k−1
and m := N − |I ∪ I ′|. Then,

dτ,avg(I, I
′) =

∑
1≤l<l′≤p

1(cjl<cj
l′ ,c

′
jl
>c′j

l′
) or (cjl>cj

l′ ,c
′
jl
<c′j

l′
) + r(2k + 1− r)

−
r∑

j=1

(uj + u′
j) + r2 +

(
N − k

2

)
− 1

2

(
m
2

)
,

dH,avg(I, I
′) =

p∑
l=1

1cjl �=c′jl
+m

N − k − 1

N − k
+ 2r,

dS,avg(I, I
′) =

p∑
l=1

|cjl − c′jl |+ r(N + k + 1)−
r∑

j=1

(uj + u′
j)

+mN ′ − mN ′(2N ′ + 1)

3(N ′ + 1)
.

Notice that the sequences (cjl), (c
′
jl
) and (uj), (u

′
j) are easily computable and

so davg(I, I
′) too. Let us discuss an easy example to handle the computation of

the previous sequences.

Example. Assume that n = 7, I = (3, 2, 1, 4, 5) and I ′ = (3, 5, 1, 6, 2). Propo-
sition 5 leads to

dτ,avg(I, I
′) = 6, dS,avg(I, I

′) = 4.5, dS,avg(I, I
′) = 11.5.

To compute the pseudometric dpartial defined in (4.7), we also need to com-

pute dτ,avg on the diagonal {(I, I)| I is a top-k partial ranking}. The following
corollary gives these computations.
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Corollary 1. Let I be a top-k partial ranking. Then,

dτ,avg(I, I) =
1

2

(
N − k

2

)
,

dH,avg(I, I) = N − k − 1,

dS,avg(I, I) = (N − k)(N − k − 1) +
(N − k − 1)(2N − 2k − 1)

3
.

Remark 5. Similar results as Proposition 5 are stated in Sections III.B and
III.C of [17] for the Hausdorff metrics and the fixed vector metrics respectively.

In the case of the Hamming distance, we may step ahead and provide a sim-
pler computational formula for the average distance between two partial rank-
ings whenever their associated partitions share the same number of members
(see Proposition 6 below). More precisely let R1 and R2 be two partial rankings
such that

Ri = Xi
1 � · · · � Xi

k, i = 1, 2, (4.10)

assume also that for j = 1, · · · , k, |X1
j | = |X2

j | and denote by γj this integer.

Obviously, N =
∑k

j=1 γj so that γ := (γj)j is an integer partition of n. Further,
when 1 = γ1 = γ2 = · · · = γk−1 and γk = N − k + 1 one is in the top-(k − 1)
partial ranking case. For j = 1, · · · , k, let Γj be the set of all integers lying in[∑j−1

l=1 γl + 1,
∑j

l=1 γl

]
. Set further,

Sγ := SΓ1 × SΓ2 × · · · × SΓk
,

where SΓi is the set of permutations on Γi. Notice that Sγ is nothing more than
the subgroup of Sn letting invariant the sets Γj (j = 1, · · · , k). So that, for i =
1, 2, we can write ERi as a right coset Ri = Sγπi for some πi ∈ ERi . With these
extra notations and definitions, we are now able to compute dH,avg(R1, R2).

Proposition 6. In the previous setting, we have

dH,avg(R1, R2) = |{i, Γ(π1(i)) �= Γ(π2(i))}|+
k∑

j=1

γj
N

(γj − 1), (4.11)

where, for 1 ≤ l ≤ N , Γ(l) is the integer j such that l ∈ Γj.

Note that in (4.11), the term |{i, Γ(π1(i)) �= Γ(π2(i))}| counts the number
of item i ∈ [1 : N ] that are ranked differently in R1 and R2.

4.3. Numerical experiments

We have proposed in Section 4.1 a new kernel Kθ1,θ2,θ3 defined by (4.8) on partial
rankings. We show in Section 4.2 that in several cases (for example with top-
k partial rankings), we can reduce drastically the computation of this kernel.
Another direction is given in [25] by considering the averaged Kendall kernel and
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Table 1

Rate of test points that are in the 90% confidence interval and coefficient of determination
for the four kernels.

kernel Kτ
θ1,θ2,θ3

KH
θ1,θ2,θ3

KS
θ1,θ2,θ3

Kθ1

rate 0.902 0.904 0.912 0.928
R2 0.887 0.996 0.996 0.070

reducing the computation of this kernel on top-k partial rankings. This kernel is
available on the R package kernrank. We write K the averaged Kendall kernel,
and we define Kθ1 := θ1K.

In this section, we compare our new kernel Kθ1,θ2,θ3 with the averaged Kendall
kernel Kθ1 in a numerical experiment where an objective function indexed by
top-k partial rankings is predicted, by Kriging. We take N = 10 and for sim-
plicity, we take the same value k = 4 for all the top-k partial rankings. For
a top-k partial ranking I = (i1, i2, i3, i4), the objective function to predict is
f(I) := 2i1 + i2 − i3 − 2i4. We make 500 noisy observations (yi)i≤500 with
yi = f(Ii) + εi, where (Ii)i≤500 are i.i.d. uniformly distributed top-k partial
rankings and (εi)i≤500 are i.i.d. N (0, λ2), with λ = 1

2 . As in Section 3, we esti-
mate (θ, λ) by maximum likelihood. Then, we compute the predictions (ŷ′i)i≤500

of y′ = (y′i)i≤500, with y′ the observations corresponding to 500 other test points
(I ′i)i≤500, that are i.i.d. uniform top-k partial rankings.

For the four kernels (our kernel Kθ1,θ2,θ3 with the 3 distances and the av-
eraged Kendall kernel Kθ1), we provide the rate of test points that are in the
90% confidence interval together with the coefficient of determination R2 of the
predictions of the test points. Recall that

R2 := 1−
1

500

∑500
i=1 (y

′
i − ŷ′i)

2

1
500

∑500
i=1

(
y′i − y′

)2 ,
where y′ is the average of y′. The results are provided in Table 1.

The rate of test points that are in the 90% confidence interval is close to 90%
for the four kernels. We can deduce that the parameters (θ, λ) are well estimated
by maximum likelihood, even for the averaged Kendall kernel Kθ1 .

However, we can see that the coefficient of determination of the averaged
Kendall kernel Kθ1 is close to 0. The predictions given by the averaged Kendall
kernel Kθ1 are nearly as bad as predicting with the empirical mean. In the
opposite way the coefficient of determination of our kernels is larger than 0.9
for the Kendall distance, and larger than 0.99 for the Hamming distance and
the Spearman distance. That means that the prediction given by our kernels
are much better than the empirical mean.

To conclude, we provide a class of positive definite kernels Kθ1,θ2,θ3 which
seems to be significantly more efficient than the averaged Kendall kernel Kθ1 ,
in the case of Gaussian process models on partial rankings.
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5. Conclusion

In this paper, we provide a Gaussian process model for permutations. Following
the recent works of [25] and [32], we propose kernels to model the covariance
of such processes and show the relevance of such choices. Based on the three
distances on the set of permutations, Kendall’s tau, Hamming distance and
Spearman’s footrule distance, we obtain parametric families of relevant covari-
ance models. To show the practical efficiency of these parametric families, we
apply them to the optimization of Latin Hypercube Designs. In this framework,
we prove under some assumptions on the set of observations, that the parame-
ters of the model can be estimated and the process can be forecasted using linear
combinations of the observations, with asymptotic efficiency. Such results enable
to extend the well-known properties of Kriging methods to the case where the
process is indexed by ranks and tackle a large variety of problems. We remark
that our asymptotic setting corresponds to the increasing domain asymptotic
framework for Gaussian processes on the Euclidean space. It would be interest-
ing to extend our results to more general sets of permutations under designs
that do not necessarily satisfy Conditions 1 and 2.

We also show that the Gaussian process framework can be extended to the
case of partially observed ranks. This corresponds to many practical cases. We
provide new kernels on partial rankings, together with results that significantly
simplify their computation. We show the efficiency of these kernels in simula-
tions. We leave a specific asymptotic study of Gaussian processes indexed by
partial rankings open for further research.

As highlighted in [33], data consisting of rankings arise from many different
fields. Our suggested kernels on total rankings and partial rankings could lead
to different applications to real ranking data. We treated the case of regression
in Sections 3.3 and 4.3. In Section 3.4, we used these kernels for an optimization
problem. One could also use our suggested kernels in classification, as it is done
in [25], in [32] or in [28], and also using Gaussian process based classification
[39] with ranking inputs.
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Appendix A: Proofs for Sections 2 and 4

Proof of Proposition 1. We show that Kθ1,θ2 is a strictly positive definite kernel
on Sn. It suffices to prove that, if ν > 0, the map K defined by

K(σ, σ′) := e−νd(σ,σ′) (A.1)

is a strictly positive definite kernel.

Case of the Kendall’s tau distance It has been shown in Theorem 5 of [32]
that K is a strictly positive definite kernel on SN for the Kendall’s tau distance.
Nevertheless, we provide here an other shorter and easier proof. The idea is to
write K(σ1, σ2) as M(Φ(σ1),Φ(σ2)), for an application Φ defined below, for a
function M defined below and for σ1, σ2 ∈ SN . We will then show that M is
strictly positive definite and which will imply that K also is.

Let

Φ : SN −→ {0, 1}N(N−1)
2

σ �−→ (1σ(i)<σ(j))1≤i<j≤N .

Further, define

M :
{0, 1}N(N−1)

2 × {0, 1}N(N−1)
2 −→ R

((ai,j)i,j , (bi,j)i,j) �−→ exp
(
−ν
∑

i<j |ai,j − bi,j |
)
.

Remark that for all σ, σ′, we have

K(σ, σ′) = M(Φ(σ),Φ(σ′)).
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Now, assume that M is a strictly positive definite kernel. Let n ∈ N and
let σ1, · · · , σn ∈ SN such that σi �= σj if i �= j. As Φ is injective, we have
Φ(σi) �= Φ(σj) if i �= j, and so (K(σi, σj))1≤i,j≤n = (M(Φ(σi),Φ(σj)))1≤i,j≤n
is a symmetric positive definite matrix. Thus, K is a strictly positive definite
kernel.

It remains to prove that M is a strictly positive kernel. For all k ∈ N
∗, we

index the elements of {0, 1}k using the following bijective map

Nk :
{0, 1}k −→ [1 : 2k]

(ai)i≤k �−→ 1 +
∑k

i=1 ai2
i−1.

With this indexation, we let M̃ be the square matrix of size 2
N(N−1)

2 defined by

M̃i,j := M(N−1
N(N−1)

2

(i), N−1
N(N−1)

2

(j)).

By induction on k, we show that the 2k × 2k matrix M (k) defined by

M
(k)
i,j := exp

(
−ν

k∑
l=1

|N−1
k (i)l −N

(−1)
k (j)l|

)
, (i, j ∈ [1 : 2k]),

is the Kronecker product of k matrices Aν defined by

Aν :=

(
1 e−ν

e−ν 1

)
, (ν > 0).

This is obvious for k = 1. Assume that this is true for some k. Thus, for all
i ≤ 2k and j ≤ 2k, we have

(Aν ⊗M (k))i,j = 1M
(k)
i,j

= exp

(
−ν

k∑
l=1

|N−1
k (i)l −N

(−1)
k (j)l|

)

= exp

(
−ν

k+1∑
l=1

|N−1
k+1(i)l −N

(−1)
k+1 (j)l|

)
= M

(k+1)
i,j .

With the same computation, we have

(Aν ⊗M (k))i+2k,j+2k = M
(k+1)

i+2k,j+2k
.

We also have

(Aν ⊗M (k))i+2k,j = e−νM
(k)
i,j

= exp

(
−ν

[
1 +

k∑
l=1

|N−1
k (i)l −N

(−1)
k (j)l|

])
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= exp

(
−ν

k+1∑
l=1

|N−1
k+1(i)l −N

(−1)
k+1 (j)l|

)
= M

(k+1)

i+2k,j
,

and with the same computation,

(Aν ⊗M (k))i,j+2k = M
(k+1)

i,j+2k
.

So we conclude the induction. Using this result with k = N(N−1)
2 , we have that

the matrix M̃ is the Kronecker product of positive definite matrices, thus it is
positive definite and so, M is a strictly positive definite kernel.

Remark 6. We could have showed that M is a positive definite kernel using
Example 21.5.1 and Property 21.5.8 of [38] (it is a straightforward consequence
of these example and property). However, these example an property do not
prove the strict positive definiteness of M .

Case of the other distances For the Hamming distance and the Spearman’s
footrule distance, we show that the kernel K is strictly positive definite on the
set F of the functions from [1 : N ] to [1 : N ]. Indeed, if “for all n ∈ N and
all f1, · · · , fn ∈ F such that fi �= fj if i �= j, (K(fi, fj))1≤i,j≤n is a symmetric
positive definite matrix”, then “for all n ∈ N and all σ1, · · · , σn ∈ SN ⊂ F
such that σi �= σj if i �= j, (K(σi, σj))1≤i,j≤n is a symmetric positive definite
matrix”. Now, to prove the strict positive definiteness of K on F , it suffices to
index the elements of F by f1, · · · , fNN and to prove that the matrix M̃ :=
(K(fi, fj))1≤i,j≤NN is symmetric positive definite. We index the elements of F
using the following bijective map

JN :
F −→ [1 : NN ]

f �−→ 1 +
∑N

i=1 N
i(f(i)− 1).

Thus, it suffices to show that the NN ×NN matrices M̃ defined by

M̃i,j := K
(
J−1
N (i), J−1

N (j)
)
,

are positive definite matrices for these three distances. Straightforward compu-
tations show that

• For the Hamming distance, M̃ is the Kronecker product of N matrices,
all equal to (exp(−ν1i �=j))i,j∈[1:N ].

• For the Spearman Footrule distance, M̃ is the Kronecker product of N
matrices, all equal to (exp(−ν|i− j|))i,j∈[1:N ].

In all cases, M̃ is a Kronecker product of positive definite matrices thus is also
a positive definite matrix.
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Lemma 1. For all the three distances, there exist constants dN ∈ N
∗, CN ∈ R

and a function Φ : SN → R
dN such that d(σ, σ′) = CN − 〈Φ(σ),Φ(σ′)〉. Here

〈·, ·〉 denotes the standard scalar product on R
dN .

Proof.

• N(N−1)
4 −dτ (σ, σ

′) = 1
2

∑
i<j 1σ(i)<σ(j), σ′(i)<σ′(j)+1σ(i)>σ(j), σ′(i)>σ′(j)−

1
2

∑
i<j 1σ(i)<σ(j), σ′(i)>σ′(j) + 1σ(i)>σ(j), σ′(i)<σ′(j) = 〈Φ(σ),Φ(σ′)〉 where

Φ(σ) ∈ R
N(N−1)

2 is defined by Φ(σ)i,j := 1√
2
(1σ(i)>σ(j) − 1σ(i)<σ(j)), for

all 1 ≤ i < j ≤ N .
• N − dH(σ, σ′) =

∑N
i=1 1σ(i)=σ(j) = 〈Φ(σ),Φ(σ′)〉 where Φ(σ) ∈ MN (R) is

defined by Φ(σ) := (1σ(i)=j)i,j ,

• N2 − dS(σ, σ
′) =

∑N
i=1 min(σ(i), σ′(i)) + N − max(σ(i), σ′(i)) =

〈Φ(σ),Φ(σ′)〉 where Φ(σ) ∈ MN (R)2 is defined by

Φ(σ)i,j,1 :=

{
1 if j ≤ σ(i)
0 otherwise,

Φ(σ)i,j,2 :=

{
0 if j < σ(i)
1 otherwise.

Proof of Proposition 2. Let us prove that d is a definite negative kernel, that is,
for all c1, ..., ck ∈ R such that

∑k
i=1 ci = 0, we have

∑k
i,j=1 cicjd(σi, σj) ≤ 0.

Let c1, ..., ck ∈ R such that
∑k

i=1 ci = 0 and let σ1, ..., σk ∈ SN . We have

k∑
i,j=1

cicjd(σi, σj) = CN

k∑
i,j=1

cicj −
k∑

i,j=1

cicj〈Φ(σi),Φ(σj)〉 ≤ 0,

as CN

∑k
i,j=1 cicj = CN

(∑N
i=1 ci

)2
is equal to 0. So, d is a negative definite

kernel. Hence dθ3 is a definite negative kernel for all θ3 ∈ [0, 1] (see for exam-
ple Property 21.5.9 in [38]). The function F : t �→ θ2 exp(−θ1t) is completely
monotone, thus, using Schoenberg’s theorem (see [8] for the definitions of these
notions and Schoenberg’s theorem), Kθ1,θ2,θ3 is a positive definite kernel.

Proof of Proposition 3. Let us write, with the notation of Lemma 1,

Φavg : R �−→ 1

|ER|
∑

σ∈ER

Φ(σ). (A.2)

Then,

CN − davg(R,R′) = CN − 1

|E||E′|
∑

σ∈ER

∑
σ∈ER′

d(σ, σ′)

=
1

|ER||ER′ |
∑

σ∈ER

∑
σ∈ER′

CN − d(σ, σ′)

=
1

|ER||ER′ |
∑

σ∈ER

∑
σ∈ER′

〈Φ(σ),Φ(σ′)〉

= 〈Φavg(R),Φavg(R
′)〉.
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Thus,

dpartial(R,R′)

= davg(R,R′)− 1

2
davg(R,R)− 1

2
davg(R

′, R′)

=
1

2

[(
CN − davg(R,R)

)
+
(
CN − davg(R

′, R′)
)
− 2
(
CN − davg(R,R′)

)]
=

1

2

(
‖Φavg(R)‖2 + ‖Φavg(R′)‖2 − 2〈Φavg(R),Φavg(R

′)〉
)

= ‖Φavg(R)− Φavg(R
′)‖2.

Proof of Proposition 4. Let us prove that dpartial is a definite negative kernel.

We define

Davg(R,R′) := Φavg(R)TΦavg(R
′). (A.3)

Let (c1, ..., ck) ∈ R
k such that

∑k
i=1 ci = 0. We have

k∑
i,j=1

cicjdpartial(Ri, Rj)

=

k∑
i,j=1

cicj

[
davg(Ri, Rj)−

1

2
davg(Ri, Ri)−

1

2
davg(Rj , Rj)

]

=

k∑
i,j=1

cicjdavg(Ri, Rj)−
1

2

k∑
i=1

cidavg(Ri, Ri)

k∑
j=1

cj

−1

2

k∑
j=1

cjdavg(Rj , Rj)

k∑
i=1

ci

=

k∑
i,j=1

cicjdavg(Ri, Rj)

=

k∑
i,j=1

cicj
[
CN −Davg(Ri, Rj)

]
= −

k∑
i,j=1

cicjDavg(Ri, Rj)

≤ 0.

So, dpartial is a definite negative kernel, and we may conclude as in the proof

of Proposition 2.

Proof of Proposition 5. Assume that σ (resp. σ′) is a uniform random variable
of EI (resp. EI′). We have to compute E(d(σ, σ′)) = davg(I, I

′) for the three
distances: Kendall’s tau, Hamming and Spearman’s footrule.
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First, we compute E(dτ (σ, σ
′)). Following the proof of Lemma 3.1 of [22], we

have
E(dτ (σ, σ

′)) =
∑
a<b

E(Ka,b(σ, σ
′)),

with
Ka,b(σ, σ

′) = 1(σ(a)<σ(b),σ′(a)>σ′(b)) or (σ(a)>σ(b),σ′(a)<σ′(b)).

We now compute E(Ka,b(σ, σ
′)) for (a, b) in different cases. Let us write J :=

{j1, · · · , jp} and we keep the notation I (resp. I ′) for the set {i1, ..., ik} (resp.

{i′1, ..., i′k}). In this way, we have I = J � Ĩ and I ′ = J � Ĩ ′.

1. Consider the case where a and b are in J . There exists l and l′ ∈ [1 : p]
such that a = jl and b = jl′ . Then

Ka,b(σ, σ
′) = 1(cjl<cj

l′ ,c
′
jl
>c′j

l′
) or (cjl>cj

l′ ,c
′
jl
<c′j

l′
).

Thus, the total contribution of the pairs in this case is∑
1≤l<l′≤p

1(cjl<cj
l′ ,c

′
jl
>c′j

l′
) or (cjl>cj

l′ ,c
′
jl
<c′j

l′
).

2. Consider the case where a and b both appear in one top-k partial ranking
(say I) and exactly one of i or j, say i appear in the other top-k partial
ranking. Let us call P2 the set of (a, b) such that a < b and (a, b) is in this
case. We have∑

(a,b)∈P2

Ka,b(σ, σ
′) =

∑
a∈J,

b∈Ĩ

Ka,b(σ, σ
′) +

∑
a∈J,

b∈Ĩ′

Ka,b(σ, σ
′)

Let us compute the first sum. Recall that Ĩ = {iu1 , ..., iur}.∑
a∈J,

b∈Ĩ

Ka,b(σ, σ
′) =

∑
b∈Ĩ

∑
a∈J

Ka,b(σ, σ
′)

=
∑
b∈Ĩ

#{a ∈ J, σ(a) > σ(b)}

=

r∑
l=1

#{a ∈ J, σ(a) > σ(iul
)}

We order u1, · · · , ur such that u1 < · · · < ur. Let l ∈ [1 : r]. Remark that
σ(iul

) = ul. We have #{a ∈ I, σ(a) > ul} = k − ul and #{a ∈ Ĩ , σ(a) >
ul} = r − l, thus #{a ∈ J, σ(a) > ul} = k − ul − r + l. Then,

∑
a∈J,

b∈Ĩ

Ka,b(σ, σ
′) = r

(
k +

1− r

2

)
−

r∑
l=1

ul.
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Likewise, we have

∑
a∈J,

b∈Ĩ′

Ka,b(σ, σ
′) = r

(
k +

1− r

2

)
−

r∑
l=1

u′
l. (A.4)

Finally, the total contribution of the pairs in this case is

r(2k + 1− r)−
r∑

j=1

(uj + u′
j).

3. Consider the case where a, but not b, appears in one top-k partial ranking
(say I), and b, but not a, appears in the other top-k partial ranking (I ′).
Then Ka,b(σ, σ

′) = 1 and the total contribution of these pairs is r2.
4. Consider the case where a and b do not appear in the same top-k partial

ranking (say I). It is the only case where Ka,b(σ, σ
′) is a non constant

random variable. First, we show that in this case, E(Ka,b(σ, σ
′)) = 1/2.

Assume for example that I does not contain a and b. Let (a b) be the
transposition which exchanges a and b and does not change the other
elements. We have

{π ∈ EI , π(a) < π(b)} = (a b){π ∈ EI , π(a) > π(b)}.

Thus, there are as many π ∈ EI such that π(a) < π(b) as there are π ∈ EI

such that π(a) > π(b). That proves that E(Ka,b(σ, σ
′)) = 1/2.

Then, the total distribution of the pairs in this case is

1

2

[(
|Ic|
2

)
+

(
|I ′c|
2

)
−
(
|Ic ∩ I ′c|

2

)]
=

(
N − k

2

)
− 1

2

(
m
2

)
.

That concludes the computation for the Kendall’s tau distance.
To compute E(dH(σ, σ′)), it suffices to see that

E(dH(σ, σ′)) = E

(
n∑

i=1

1σ(i) �=σ′(i)

)

=

p∑
l=1

1cjl �=c′jl
+ E

⎛⎝ ∑
i �=I∪I′

1σ(i) �=σ′(i)

⎞⎠
+E

⎛⎝ r∑
j=1

1uj �=σ′(iuj
)

⎞⎠+ E

⎛⎝ r∑
j=1

1σ(iu′
j
) �=u′

j

⎞⎠
=

p∑
l=1

1cjl �=c′jl
+m

N − k − 1

N − k
+ 2r.

Finally, let compute E(dS(σ, σ
′)). First, we define
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• Ac :=
∑p

j=1 |cj − c′j |
• Au(σ

′) :=
∑r

j=1 |uj − σ′(iuj )|
• Au′(σ) :=

∑r
j=1 |σ(i′u′

j
)− u′

j |
• R(σ, σ′) :=

∑
i �=I∪I′ |σ(i)− σ′(i)|.

We have

E(dS(σ, σ
′)) = E(Ac) + E(Au(σ

′)) + E(Au′(σ)) + E(R(σ, σ′)).

It remains to compute all the expectations appearing here.

1. E(Ac) = Ac.
2. E(Au(σ

′)) =
∑r

j=1 E(|uj − σ′(iuj )|). If σ′ is uniform on EI′ , then σ′(iuj )
is uniform on [k + 1 : N ] so:

E(|uj − σ′(iuj )|) = E(σ′(iuj )− uj) =
N + k + 1

2
− uj .

Finally,

E(Au(σ
′)) = r

N + k + 1

2
−

r∑
j=1

uj . (A.5)

3. E(Au′(σ)) = rN+k+1
2 −

∑r
j=1 u

′
j .

4. E(R(σ, σ′)) =
∑

i �=I∪I′ E(|σ(i) − σ′(i)|). σ(i) and σ′(i) are independent
uniform random variables on [k + 1 : N ].

E(|σ(i)− σ′(i)|) =

N−k−1∑
j=1

jP(|σ(i)− σ′(i)| = j)

=

N−k−1∑
j=1

j2
N − k − j

(N − k)2
.

Then

E(R(σ, σ′)) =
2m

(N ′ + 1)2

N ′∑
j=1

j(N ′ + 1− j)

=
2m

(N ′ + 1)2

(
N ′(N ′ + 1)2

2
− N ′(N ′ + 1)(2N ′ + 1)

6

)
= mN ′ − mN ′(2N ′ + 1)

3(N ′ + 1)
.

That concludes the proof of Proposition 5.

Proof of Proposition 6. We define

aγj (σ, σ
′) := |{i ∈ [1 : N ], σ(i) ∈ Γj , σ

′(i) ∈ Γj , σ(i) �= σ′(i)}|,
bγj,l(σ, σ

′) := |{i ∈ [1 : N ], σ(i) ∈ Γj , σ
′(i) ∈ Γl, j �= l}|.
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Now, assume that σ, σ′ ∼ U(Sγ) and σj , σ
′
j ∼ U(Sγj ). We have

E (dH(σ, σ′)) = E

⎛⎝ k∑
j,l=1

bγj,l(σπ1, σ
′π2) +

k∑
j=1

aγj (σπ1, σ
′π2)

⎞⎠
=

k∑
j,l=1

bγj,l(π1, π2) +

k∑
j=1

|{i, π1(i), π2(i) ∈ Γj}|
γj − 1

γj

= |{i, Γ(π1(i)) �= Γ(π2(i))}|+
k∑

j=1

γj
n
(γj − 1).

Appendix B: Proofs for Section 3

In the following, let us write ‖.‖ for the operator norm (for a linear mapping of
R

n with the Euclidean norm) of a squared matrix of size n, ‖.‖F for its Frobenius
norm defined by ‖M‖2F :=

∑n
i,j=1 m

2
ij for M = (mij)1≤i,j≤n ∈ Mn(R), and let

us define the norm | · | by |M |2 := 1
n‖M‖2F . We remark that, when M is a

symmetric positive definite matrix, ‖M‖ is its largest eigenvalue. In this case,
we may also write ‖M‖ = λmax(M), where λmax(M) has been defined in Section
3.2 and is the largest value of M . For a vector u of Rd, for d ∈ R, recall that
‖u‖ is the Euclidean norm of u.

The proofs of Theorems 1, 2 and 3 are given in Appendix B.2, B.3 and B.4
respectively. These proofs are based on Lemmas 2 to 5, that are stated and
proved in Appendix B.1. The proofs of these lemmas are new. Then, having at
hand the lemmas, the proof of the theorems follows [5]. We write all the proofs
to be self-contained.

B.1. Lemmas

The following Lemmas are useful for the proofs of Theorems 1, 2 and 3.

Lemma 2. The eigenvalues of Rθ are lower-bounded by θ3,min > 0 uniformly
in n, θ and Σ.

Proof. Rθ is the sum of a symmetric positive matrix and θ3In. Thus, the eigen-
values are lower-bounded by θ3,min.

Lemma 3. For all α = (α1, α2, α3) ∈ N
3, with |α| = α1 + α2 + α3 and with

∂θα = ∂θα1
1 ∂θα2

2 ∂θα3
3 , the eigenvalues of ∂|α|Rθ

∂θα are upper-bounded uniformly in
n, θ and Σ.

Proof. It is easy to prove when α1 = α2 = 0. Indeed:

1. If α3 = 0, then λmax (Rθ) ≤ λmax ((Kθ1,θ2(σi, σj))i,j)+θ3,max and we show
that λmax (Kθ1,θ2(σi, σj)i,j) is uniformly bounded using Gershgorin circle
theorem ([23]).
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2. If α3 = 1, then ∂|α|Rθ

∂θα = In.

3. If α3 > 1, then ∂|α|Rθ

∂θα = 0.

Then, we suppose that (α1, α2) �= (0, 0). Thus,

∂|α|Rθ

∂θα
=

∂|α| (Kθ1,θ2(σi, σj)i,j)

∂θα
.

It does not depend on α3 so we can assume that α ∈ N
2. We have∣∣∣∣∂|α|Kθ1,θ2(σ, σ

′)

∂θα

∣∣∣∣ ≤ max(1, θ2,max)d(σ, σ
′)α1e−θ1,mind(σ,σ

′). (B.1)

We conclude using Gershgorin circle theorem [23].

Lemma 4. Uniformly in Σ,

∀α > 0, lim inf
n→+∞

inf
‖θ−θ∗‖≥α

1

n

n∑
i,j=1

(Rθ,i,j −Rθ∗,i,j)
2 > 0. (B.2)

Proof. Let N be the norm on R
3 defined by

N(x) := max(4cθ2,max|x1|, 2|x2|, |x3|), (B.3)

with c as in Condition 2. Let α > 0. We want to find a positive lower-bound
over θ ∈ Θ \BN (θ∗, α), where BN (θ∗, α) is the ball with the norm N of center
θ∗ and radius α, of

1

n

n∑
i,j=1

(Rθ,i,j −Rθ∗,i,j)
2. (B.4)

Let θ ∈ Θ \BN (θ∗, α).

1. Consider the case where |θ1 − θ∗1 | ≥ α/(4cθ2,max). Let kα ∈ N be the first
integer such that

kβα ≥ 4cθ2,max
2 + ln(θ2,max)− ln(θ2,min)

α
. (B.5)

Then, for all i ∈ N
∗,∣∣∣∣ (θ∗1 − θ1)d(σi, σi+kα) + ln(θ2)− ln(θ∗2)

2

∣∣∣∣ ≥ 1.

For all n ≥ kα,

1

n

n∑
i,j=1

(Rθ,i,j −Rθ∗,i,j)
2

≥ 1

n

n−kα∑
i=1

(Rθ,i,i+kα −Rθ∗,i,i+kα)
2
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≥ 1

n

n−kα∑
i=1

e−2θ1,maxckα+2 ln(θ2,min)

×4 sinh2
(
(θ∗1 − θ1)d(σi, σi+kα) + ln(θ2)− ln(θ∗2)

2

)
≥ C1,α

n− kα
n

,

where we write C1,α = e−2θ1,maxckα+2 ln(θ2,min)4 sinh2(1).
2. Consider the case where |θ1 − θ∗1 | ≤ α/(4cθ2,max).

(a) If |θ2 − θ∗2 | ≥ α/2, we have

|θ1 − θ∗1 |
2

d(σi, σi+1) <
α

8θ2,max

=
α

4θ2,max
− α

8θ2,max

≤ | ln(θ∗2)− ln(θ2)|
2

− α

8θ2,max
.

Thus, ∣∣∣∣ (θ∗1 − θ1)d(σi, σi+1) + ln(θ2)− ln(θ∗2)

2

∣∣∣∣ ≥ α

8θ2,max
, (B.6)

and we have

1

n

n∑
i,j=1

(Rθ,i,j −Rθ∗,i,j)
2

≥ 1

n

n−1∑
i=1

(Rθ,i,i+1 −Rθ∗,i,i+1)
2

≥ 1

n

n−1∑
i=1

e−2θ1,maxc+2 ln(θ2,min)4 sinh2
(

α

8θ2,max

)
= C2,α

n− 1

n
,

where we write C2,α := e−2θ1,maxc+2 ln(θ2,min)4 sinh2
(

α
8θ2,max

)
.

(b) If |θ2 − θ∗2 | < α/2, we have |θ3 − θ∗3 | ≥ α. Thus,

1

n

n∑
i,j=1

(Rθ,i,j −Rθ∗,i,j)
2

≥ 1

n

n∑
i=1

(Rθ,i,i −Rθ∗,i,i)
2
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=
1

n

n∑
i=1

(θ2 + θ3 − θ∗2 − θ∗3)
2

≥ α2

4
.

Finally, if we write

Cα := min

(
C1,α, C2,α,

α2

2

)
, (B.7)

we have

inf
N(θ−θ∗)≥α

1

n

n∑
i,j=1

(Rθ,i,j −Rθ∗,i,j)
2 ≥ n− kα

n
Cα. (B.8)

To conclude, by equivalence of norms in R
3, there exists h > 0 such that ‖.‖2 ≤

hN(.), thus

lim inf
n→+∞

inf
‖θ−θ∗‖≥α

1

n

n∑
i,j=1

(Rθ,i,j −Rθ∗,i,j)
2 ≥ Cα/h > 0. (B.9)

Lemma 5. ∀(λ1, λ2, λ3) �= (0, 0, 0), uniformly in σ,

lim inf
n→+∞

1

n

n∑
i,j=1

(
3∑

k=1

λi
∂

∂θk
Rθ∗,i,j

)2

> 0. (B.10)

Proof. We have

∂

∂θ1
Rθ∗,i,j = −θ∗2d(σi, σj)e

−θ∗
1d(σi,σj),

∂

∂θ2
Rθ∗,i,j = e−θ∗

1d(σi,σj),

∂

∂θ3
Rθ∗,i,j = 1i=j .

Let (λ1, λ2, λ3) �= (0, 0, 0). We have

1

n

n∑
i,j=1

(
3∑

k=1

λk
∂

∂θk
Rθ∗,i,j

)2

=
1

n

n∑
i �=j=1

(
2∑

k=1

λk
∂

∂θk
Rθ∗,i,j

)2

+ (λ2 + λ3)
2

=
1

n

n∑
i �=j=1

e−2θ∗
1d(σi,σj) (λ2 − λ1θ

∗
2d(σi, σj))

2
+ (λ2 + λ3)

2.

If λ1 �= 0, then for conditions 1 and 2, we can find ε > 0, τ > 0, k ∈ Z so that for
|i−j| = k, we have (λ2 − λ1d(σi, σj))

2 ≥ ε and e−2θ∗
1d(σi,σj) ≥ τ . This concludes

the proof in the case λ1 �= 0. The proof in the case λ1 = 0 can then be obtained
by considering the pairs (j, j + 1) in the above display.

With these lemmata we are ready to prove the main asymptotic results.
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B.2. Proof of Theorem 1

Proof. Step 1: It suffices to prove that, uniformly in Σ where we recall that
Σ = (σ1, · · · , σn) ∈ SNn ,

P

(
sup
θ∈Θ

|(Lθ − Lθ∗)− (E(Lθ|Σ)− E(Lθ∗ |Σ))| ≥ ε

∣∣∣∣Σ)→n→∞ 0, (B.11)

and that there exists a > 0 such that

E(Lθ|Σ)− E(Lθ∗ |Σ) ≥ a
1

n

n∑
i,j=1

(Kθ(σi, σj)−Kθ∗(σi, σj))
2. (B.12)

Indeed, by contradiction, assume that we have (B.11), (B.12) but not the consis-
tency of the maximum likelihood estimator. We will use a subsequence argument
and thus we explicit here the dependence on n of the likelihood function (resp.

the estimated parameter) writing it Ln,θ (resp. θ̂n). Then,

∃ε > 0, ∃α > 0, ∀n ∈ N, ∃mn ≥ n, P(‖θ̂mn − θ∗‖ ≥ ε) ≥ α. (B.13)

Thus, with probability at least α, we have, for all n:
‖θ̂mn − θ∗‖ ≥ ε thus inf‖θ−θ∗‖≥ε Lmn,θ ≤ Lmn,θ̂mn

.

However, by definition of θ̂mn , we have Lmn,θ̂mn
≤ Lmn,θ∗ .

Thus: inf‖θ−θ∗‖≥ε Lmn,θ ≤ Lmn,θ∗ .
Finally, with probability at least α:

0 ≥ inf
‖θ−θ∗‖≥ε

(Lmn,θ − Lmn,θ∗)

≥ inf
‖θ−θ∗‖≥ε

E (Lmn,θ − Lmn,θ∗ |Σ)

− sup
‖θ−θ∗‖≥ε

|(Lmn,θ − Lmn,θ∗)− (E(Lmn,θ − Lmn,θ∗ |Σ)|

≥ inf
‖θ−θ∗‖≥ε

a|Rθ −Rθ∗ |2

− sup
‖θ−θ∗‖≥ε

|(Lmn,θ − Lmn,θ∗)− (E(Lmn,θ − Lmn,θ∗ |Σ)| ,

using (B.12), which is contradicted using (B.11) and recalling Lemma 4. In the
above display, we recall that the norm |·| for matrices is defined at the beginning
of Appendix B. It remains to prove (B.11) and (B.12).

Step 2: We prove (B.11).

For all σ ∈ (SNn)
n satisfying Conditions 1 and 2, recalling that ‖ · ‖2F and

‖ · ‖ are defined at the beginning of Appendix B,

Var(Lθ|Σ = σ) = Var

(
1

n
det(Rθ) +

1

n
yTR−1

θ y|Σ = σ

)
=

2

n2
Tr(Rθ∗R−1

θ Rθ∗R−1
θ )
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=
2

n2

∥∥∥R 1
2

θ∗R
−1
θ∗ R

1
2

θ∗

∥∥∥2
F
.

The previous display holds true because, with R
1
2

θ∗ , the unique matrix square
root of Rθ∗ , we have

Tr(Rθ∗R−1
θ Rθ∗R−1

θ ) = Tr

[(
R

1
2

θ∗R
−1
θ∗ R

1
2

θ∗

)T (
R

1
2

θ∗R
−1
θ∗ R

1
2

θ∗

)]
=
∥∥∥R 1

2

θ∗R
−1
θ∗ R

1
2

θ∗

∥∥∥2
F
.

Then, we have the relation ‖AB‖2F ≤ ‖A‖2‖B‖2F . Thus, we have

Var(Lθ|Σ = σ) ≤ 2

n2

∥∥∥R 1
2

θ∗R
−1
θ∗ R

1
2

θ∗

∥∥∥2
F

≤ 2

n2

∥∥∥R 1
2

θ∗

∥∥∥2 ∥∥R−1
θ∗

∥∥2
F

∥∥∥R 1
2

θ∗

∥∥∥2
≤ 2

n2
‖R

1
2

θ∗‖4n‖R−1
θ ‖2

≤ 2

n
‖Rθ∗‖2‖R−1

θ ‖2.

Hence, we have

Var(Lθ|Σ = σ) ≤ C

n
,

where C > 0 is some constant independent on n, θ and Σ, using Lemmas 2 and
3 (Lemmas 2 to 5 are stated and proved in Appendix B.1). Thus, for all σ,

Var(Lθ|Σ = σ) = E
(
(Lθ − E(Lθ|Σ = σ))2|Σ = σ

)
≤ C

n
,

so

E
(
(Lθ − E(Lθ|Σ = σ))2

)
≤ C

n
,

thus Lθ − E(Lθ|Σ) = oP(1). Let us write z := R
− 1

2

θ y. For i ∈ {1, 2, 3},

sup
θ∈Θ

∣∣∣∣∂Lθ

∂θi

∣∣∣∣
= sup

θ∈Θ

1

n

(
Tr

(
R−1

θ

∂Rθ

∂θi

)
+ zTR

1
2

θ∗R
−1
θ

∂Rθ

∂θi
R−1

θ R
1
2

θ∗z

)
≤ sup

θ∈Θ

(
max

(
‖R−1

θ ‖
∥∥∥∥∂Rθ

∂θi

∥∥∥∥ , ‖Rθ∗‖‖R−2
θ ‖
∥∥∥∥∂Rθ

∂θi

∥∥∥∥))(1 + 1

n
‖z‖2

)
.

Here, we have used zTAz ≤ ‖z‖2‖A‖ for a symmetric positive definite matrix
A, the fact that ‖AB‖ ≤ ‖A‖‖B‖ for matrices A and B, and the fact that, by
Cauchy-Schwarz,

Tr(AB) ≤ ‖A‖F ‖B‖F ≤ n‖A‖‖B‖.
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Hence, supθ∈Θ

∣∣∣∂Lθ

∂θi

∣∣∣ is bounded in probability conditionally to Σ = σ, uniformly

in σ. Indeed z ∼ N (0, In) thus 1/n ‖z‖2 is bounded in probability, conditionally
to Σ and uniformly in Σ.

Then supi∈[1:3],θ∈Θ

∣∣∣∂Lθ

∂θi

∣∣∣ is bounded in probability.

Thanks to the pointwise convergence and the boundedness of the derivatives,
we have

sup
θ∈Θ

|Lθ − E(Lθ)| =: r1, (B.14)

where r1 depends on Σ and, for all ε > 0, P(|r1| > ε) −→
n→+∞

0 uniformly in Σ.

Hence,

sup
θ∈Θ

|Lθ − E(Lθ|Σ)|+ |Lθ∗ − E(Lθ∗ |Σ)| =: r2,

where r2 depends on Σ and, for all ε > 0, P(|r2| > ε) −→
n→+∞

0 uniformly in Σ.

Now, let us write Dθ,θ∗ := E(Lθ|Σ)− E(Lθ∗ |Σ). Thanks to (B.14),

sup
θ∈Θ

|Lθ − Lθ∗ −Dθ,θ∗ | ≤ sup
θ

|Lθ − E(Lθ|Σ)|+ |Lθ∗ − E(Lθ∗ |Σ)|. (B.15)

Thus

sup
θ∈Θ

|Lθ − Lθ∗ −Dθ,θ∗ | =: r3,

where r3 depends on Σ and, for all ε > 0, P(|r3| > ε) −→
n→+∞

0 uniformly in Σ.

Step 3: We prove (B.12).

We have

E(yTRθy|Σ) = E(Tr(yTRθy)|Σ) = E(Tr(Rθyy
T )|Σ)) = Tr(RθE(y

T y)).

Thus

E(Lθ|Σ) =
1

n
ln(det(Rθ)) +

1

n
Tr(R−1

θ Rθ∗). (B.16)

Let us write φ1(M), · · · , φn(M) the eigenvalues of a symmetric n × n matrix
M . We have

Dθ,θ∗ =
1

n
ln(det(Rθ)) +

1

n
Tr(R−1

θ Rθ∗)− 1

n
ln(det(Rθ∗))− 1

=
1

n

(
− ln

(
(det(R−1

θ ) det(Rθ∗)
)
+Tr(R−1

θ Rθ∗)− 1
)

=
1

n

(
− ln

(
(det(R

1
2

θ∗R
−1
θ R

1
2

θ∗)
)
+Tr(R

1
2

θ∗R
−1
θ R

1
2

θ∗)− 1
)

=
1

n

n∑
i=1

(
− ln

[
φi

(
R

1
2

θ∗R
−1
θ R

1
2

θ∗

)]
+ φi

(
R

1
2

θ∗R
−1
θ R

1
2

θ∗

)
− 1
)
.
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Thanks to Lemmas 3 and 4, the eigenvalues of Rθ and R−1
θ are uniformly

bounded in θ and Σ. Thus, there exist a > 0 and b > 0 such that for all σ,
n and θ, we have

∀i, a < φi

(
R

1
2

θ∗RθR
1
2

θ∗

)
< b.

Let us define f(t) := − ln(t)+t−1. The function f is minimal in 1 and f ′(1) = 0
and f ′′(1) = 1. So there exists A > 0 such that for all t ∈ [a, b], f(t) ≥ A(t−1)2.
Finally:

Dθ,θ∗ ≥ A

n

n∑
i=1

(
1− φi(R

1
2

θ∗R
−1
θ R

1
2

θ∗)
)2

=
A

n
Tr

[(
In −R

1
2

θ∗R
−1
θ R

1
2

θ∗

)2]
=

A

n
Tr

[(
R

− 1
2

θ (Rθ −Rθ∗)R
− 1

2

θ

)2]
=

A

n

∥∥∥R− 1
2

θ (Rθ −Rθ∗)R
− 1

2

θ

∥∥∥2
F
,

where we have used Tr(AAT ) = ‖A‖2F for a square matrix A. Furthermore,
with λmin(A) the smallest eigenvalue of a symmetric matrix A, for any squared
matrix B, we have ‖AB‖2F ≥ λ2

min(A)‖B‖2. This yields

Dθ,θ∗ ≥ A

n
‖Rθ −Rθ∗‖2F λ2

min

(
R

− 1
2

θ

)
λ2
min

(
R

− 1
2

θ

)
≥ a|Rθ −Rθ∗ |2,

by Lemma 2, writing a = Aθ−2
3,max, and recalling that |A|2 = 1

n‖A‖2F for a matrix
A.

B.3. Proof of Theorem 2

Proof. First, we prove (3.8). For all (λ1, λ2, λ3) ∈ R
3 such that ‖(λ1, λ2, λ3)‖ =

1, we have

3∑
i,j=1

λiλj(MML)i,j

=
1

2n
Tr

⎛⎝R−1
θ∗

(
3∑

i=1

λi
∂Rθ∗

∂θi

)
R−1

θ∗

⎛⎝ 3∑
j=1

λj
∂Rθ∗

∂θj

⎞⎠⎞⎠
=

1

2n
Tr

⎛⎝R
− 1

2

θ∗

(
3∑

i=1

λi
∂Rθ∗

∂θi

)
R

− 1
2

θ∗ R
− 1

2

θ∗

⎛⎝ 3∑
j=1

λj
∂Rθ∗

∂θj

⎞⎠R
− 1

2

θ∗

⎞⎠
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=
1

2n

∥∥∥∥∥R− 1
2

θ∗

(
3∑

i=1

λi
∂Rθ∗

∂θi

)
R

− 1
2

θ∗

∥∥∥∥∥
2

F

,

where we have used Tr(AAT ) = ‖A‖2F for a square matrix A. Furthermore,
using ‖AB‖2F ≥ λ2

min(A)‖B‖2 when A is symmetric, we obtain

3∑
i,j=1

λiλj(MML)i,j ≥ 1

2n
λ2
min

(
R

− 1
2

θ∗

)∥∥∥∥∥
(

3∑
i=1

λi
∂Rθ∗

∂θi

)∥∥∥∥∥
2

F

λ2
min

(
R

− 1
2

θ∗

)

=
1

2θ23,max

∣∣∣∣∣
(

3∑
i=1

λi
∂Rθ∗

∂θi

)∣∣∣∣∣
2

,

using Lemma 2 and where we recall that 1
n‖ · ‖2F = | · |, see the beginning of

Appendix B. Hence, from Lemma 5, there exists Cmin > 0 such that

lim inf
n→∞

λmin(MML) ≥ Cmin. (B.17)

Moreover, we have, using similar manipulations of norms on matrices above,
and using |Tr(AB)| ≤ ‖A‖F ‖B‖F from Cauchy-Schwarz,

|(MML)i,j | =

∣∣∣∣ 12nTr
(
R−1

θ∗
∂Rθ∗

∂θi
R−1

θ∗
∂Rθ∗

∂θj

)∣∣∣∣
≤ 1

2n

∥∥∥∥R−1
θ∗

∂Rθ∗

∂θi

∥∥∥∥
F

∥∥∥∥R−1
θ∗

∂Rθ∗

∂θj

∥∥∥∥
F

≤ 1

2

∥∥∥∥R−1
θ∗

∂Rθ∗

∂θi

∥∥∥∥ ∥∥∥∥R−1
θ∗

∂Rθ∗

∂θj

∥∥∥∥
≤ 1

2
‖R−1

θ∗ ‖2
∥∥∥∥∂Rθ∗

∂θi

∥∥∥∥ ∥∥∥∥∂Rθ∗

∂θj

∥∥∥∥
≤ Cmax,

for some Cmax < ∞, from Lemmas 2 and 3. Using Gershgorin circle theorem
[23], we obtain

lim sup
n→∞

λmax(MML) < +∞, (B.18)

that concludes the proof of (3.8).
By contradiction, let us now assume that

√
nM

1
2

ML

(
θ̂ML − θ∗

)
�
�
�L−→

n→+∞
N (0, I3). (B.19)

Then, there exists a bounded measurable function g : R3 → R, ξ > 0 such that,
up to extracting a subsequence, we have:∣∣∣E [g (√nM

1
2

ML(θ̂ML − θ∗
)]

− E(g(U))
∣∣∣ ≥ ξ, (B.20)
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with U ∼ N (0, I3). The rest of the proof consists in contradicting (B.20).
As 0 < Cmin ≤ λmin(MML) ≤ λmax(MML) ≤ Cmax, up to extracting another

subsequence, we can assume that:

MML −→
n→∞

M∞, (B.21)

with λmin(M∞) > 0.
We have:

∂

∂θi
Lθ =

1

n

(
Tr

(
R−1

θ

∂Rθ

∂θi

)
− yTR−1

θ

∂Rθ

∂θi
R−1

θ y

)
. (B.22)

Let λ = (λ1 λ2 λ3)
T ∈ R

3. For a fixed σ, denoting
∑3

k=1 λkR
− 1

2

θ∗
∂Rθ∗
∂θk

R
− 1

2

θ∗ =

PTDP with PTP = In and D diagonal, zσ = PR
− 1

2

θ∗ y (which is a vector of
i.i.d. standard Gaussian variables, conditionally to Σ = σ), we have, letting
φ1(A), · · · , φn(A) be the eigenvalues of a n× n symmetric matrix A,

3∑
k=1

λk

√
n

∂

∂θk
Lθ∗

=
1√
n

[
Tr

(
3∑

k=1

λkR
−1
θ∗

∂Rθ∗

∂θk

)
−

n∑
i=1

φi

(
3∑

k=1

λkR
− 1

2

θ∗
∂Rθ∗

∂θk
R

− 1
2

θ∗

)
z2σ,i

]

=
1√
n

[
n∑

i=1

φi

(
3∑

k=1

λkR
− 1

2

θ∗
∂Rθ∗

∂θk
R

− 1
2

θ∗

)
(1− z2σ,i)

]
.

Hence, we have

Var

(
3∑

k=1

λk

√
n

∂

∂θk
Lθ∗

∣∣∣∣∣Σ
)

=
2

n

n∑
i=1

φ2
i

(
3∑

k=1

λkR
− 1

2

θ∗
∂Rθ∗

∂θk
R

− 1
2

θ∗

)

=
2

n

3∑
k,l=1

λkλlTr

(
∂Rθ∗

∂θk
R−1

θ∗
∂Rθ∗

∂θl
R−1

θ∗

)
= λT (4MML)λ −→

n→∞
λT (4M∞)λ.

Hence, for almost every σ, we can apply the Lindeberg-Feller criterion to the

variables 1√
n
φi

(∑3
k=1 λkR

− 1
2

θ∗
∂Rθ∗
∂θk

R
− 1

2

θ∗

)
(1 − z2σ,i) to show that, conditionally

to Σ = σ,
√
n ∂

∂θLθ∗ converges in distribution to N (0, 4M∞).
Then, using the dominated convergence theorem on Σ, we show that:

E

(
exp

(
i

3∑
k=1

λk

√
n

∂

∂θk
Lθ∗

))
−→
n→∞

exp

(
−1

2
λT (4M∞)λ

)
. (B.23)

Finally,
√
n
∂

∂θ
Lθ∗

L−→
n→∞

N (0, 4M∞). (B.24)
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Let us now compute

∂2

∂θi∂θj
Lθ∗ =

1

n
Tr

(
−R−1

θ∗
∂Rθ∗

∂θi
R−1

θ∗
∂Rθ∗

∂θj
+R−1

θ∗
∂2Rθ∗

∂θi∂θj

)
+
1

n
yT
(
2R−1

θ∗
∂Rθ∗

∂θi
R−1

θ∗
∂Rθ∗

∂θj
R−1

θ∗ −R−1
θ∗

∂2Rθ∗

∂θi∂θj
R−1

θ∗

)
y.

Thus, we have,

E

(
∂2

∂θi∂θj
Lθ∗

)
−→

n→+∞
(2M∞)i,j , (B.25)

and, using Lemmas 2 and 3, and proceeding similarly as in the proof of Theorem
1,

Var

(
∂2

∂θi∂θj
Lθ∗

∣∣∣∣Σ) −→
n→+∞

0. (B.26)

Hence, a.s.
∂2

∂θi∂θj
Lθ∗

P|Σ−→
n→+∞

2(M∞)i,j . (B.27)

Moreover, ∂3

∂θi∂θj∂θk
Lθ can be written as

1

n
Tr(Aθ) +

1

n
yTBθy, (B.28)

where Aθ and Bθ are sums and products of the matrices R−1
θ or ∂|β|

∂θβ with
β ∈ [0 : 3]3. Hence, from Lemmas 2 and 3, we have

sup
θ∈Θ

∥∥∥∥ ∂3

∂θi∂θj∂θk
Lθ

∥∥∥∥ = OP|Σ(1). (B.29)

We know that, for k ∈ {1, 2, 3}, from a Taylor expansion,

0 =
∂

∂θk
Lθ̂ML

=
∂

∂θk
Lθ∗ +

(
∂

∂θ

∂

∂θk
Lθ∗

)T

(θ̂ML − θ∗) + rk

with some random rk, such that

|rk| ≤ C sup
θ∈Θ,i,j

∣∣∣∣ ∂3Lθ

∂θi∂θj∂θk

∣∣∣∣ ‖θ̂ML − θ∗‖2,

where C is a finite constant that come from the equivalence of norms for 3× 3

matrices. Hence, from (B.29), rk = oP|Σ(|θ̂ML−θ∗|). We then have, with ∂2

∂θ2Lθ∗

the 3× 3 Hessian matrix of Lθ at θ∗,

− ∂

∂θ
Lθ∗ =

[(
∂2

∂θ2
Lθ∗

)T

+ oP|Σ(1)

](
θ̂ML − θ∗

)
,
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an so (
θ̂ML − θ∗

)
= −

[(
∂

∂θ

∂

∂θ
Lθ∗

)T

+ oP|Σ(1)

]−1
∂

∂θk
Lθ∗ . (B.30)

Hence, using Slutsky lemma, (B.27) and (B.24), a.s.

√
n
(
θ̂ML − θ∗

) L|Σ−→
n→+∞

N
(
0, (2M∞)−1(4M∞)(2M∞)−1

)
= N

(
0,M−1

∞
)
.

(B.31)
Moreover, using (B.21), we have

√
nM

1
2

ML

(
θ̂ML − θ∗

) L|Σ−→
n→+∞

N (0, I3). (B.32)

Hence, using dominated convergence theorem on Σ, we have

√
nM

1
2

ML

(
θ̂ML − θ∗

)
L−→

n→+∞
N (0, I3). (B.33)

To conclude, we have found a subsequence such that, after extracting,∣∣∣E [g (√nM
1
2

ML(θ̂ML − θ∗
)]

− E(g(U))
∣∣∣ −→
n→+∞

0, (B.34)

which is in contradiction with (B.20).

B.4. Proof of Theorem 3

Proof. Let σn ∈ SNn . We have:∣∣∣Ŷθ̂ML
(σn)− Ŷθ∗(σn)

∣∣∣ ≤ sup
θ∈Θ

∥∥∥∥ ∂

∂θ
Ŷθ(σn)

∥∥∥∥ ∥∥∥θ̂ML − θ∗
∥∥∥ . (B.35)

From Theorem 1, it is enough to show that, for i ∈ {1, 2, 3}∣∣∣∣sup
θ∈Θ

∂

∂θi
Ŷθ(σn)

∣∣∣∣ = OP(1). (B.36)

From a version of Sobolev embedding theorem (W 1,4(Θ) ↪→ L∞(Θ), see Theo-
rem 4.12, part I, case A in [1]), there exists a finite constant AΘ depending only
on Θ such that

sup
θ∈Θ

∣∣∣∣ ∂

∂θi
Ŷθ(σn)

∣∣∣∣ ≤ AΘ

∫
Θ

∣∣∣∣ ∂

∂θi
Ŷθ(σn)

∣∣∣∣4 dθ +AΘ

3∑
j=1

∫
Θ

∣∣∣∣ ∂2

∂θj∂θi
Ŷθ(σn)

∣∣∣∣4 dθ.
The rest of the proof consists in showing that these integrals are bounded in
probability. We have to compute the derivatives of

Ŷθ(σn) = rTθ (σn)R
−1
θ y
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with respect to θ. Thus, we can write these first and second derivatives as
weighted sums of wT

θ (σn)Wθy, where wθ(σn) is of the form rθ(σn) or
∂

∂θi
rθ(σn)

of ∂2

∂θjθi
rθ(σn) and Wθ is product of the matrices R−1

θ , ∂
∂θi

Rθ and ∂2

∂θjθi
Rθ. It is

sufficient to show that ∫
Θ

∣∣wT
θ (σn)Wθy

∣∣4 dθ = OP(1). (B.37)

From Fubini-Tonelli Theorem (see [9]), we have

E

(∫
Θ

∣∣wT
θ (σn)Wθy

∣∣4 dθ∣∣∣∣Σ) =

∫
Θ

E

(∣∣wT
θ (σn)Wθy

∣∣4∣∣∣Σ) dθ.
There exists a constant c so that for X a centred Gaussian random variable

E
(
|X|4

)
= cVar(X)2,

hence

E

(∫
Θ

∣∣wT
θ (σn)Wθy

∣∣4 dθ|Σ) = c

∫
Θ

Var
(
wT

θ (σn)Wθy|Σ
)2

dθ

= c

∫
Θ

(
wT

θ (σn)WθR
∗
θWθ(σn)wθ(σn)

)2
dθ.

From Lemma 3, there exists B < ∞ such that, a.s.

sup
θ∈Θ

‖WθRθ∗Wθ‖ < B.

Thus

E

(∫
Θ

∣∣wT
θ (σn)Wθy

∣∣4 dθ∣∣∣∣Σ) ≤ B2c

∫
Θ

‖wT
θ (σn)‖2dθ. (B.38)

Finally, for some α ∈ [0 : 2]3 such that |α| ≤ 2, we have

sup
θ∈Θ

‖wT
θ (σn)‖2 = sup

θ

n∑
i=1

(
∂|α|

∂θα
Kθ(σn, σi)

)2

.

Thus, it suffices to bound this term. Using the proof of Lemma 3, there exists
A < +∞, a > 0 such that

sup
θ

(
∂|α|

∂θα
Kθ(σn, σi)

)2

≤ A exp (−ad(σn, σi)) .

Yet, choosing i∗ ∈ [1 : n] such that d(σn, σi∗) ≤ d(σn, σi) for all i ∈ [1 : n], we
have

d(σn, σi) ≥
1

2
d(σi, σi∗).
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Thus, we have

sup
θ

n∑
i=1

(
∂|α|

∂θα
Kθ(σn, σi)

)2

≤ A

n∑
i=1

exp
(
−a

2
d(σi, σi∗)

)
≤ A

n∑
i=1

exp
(
−a

2
|i− i∗|β

)
≤ 2A

+∞∑
i=0

exp
(
−a

2
iβ
)

≤ C.

That concludes the proof.
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