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Abstract: It is frequently of interest to identify simultaneous signals, de-
fined as features that exhibit statistical significance across each of several
independent experiments. For example, genes that are consistently differ-
entially expressed across experiments in different animal species can reveal
evolutionarily conserved biological mechanisms. However, in some problems
the test statistics corresponding to these features can have complicated or
unknown null distributions. This paper proposes a novel nonparametric
false discovery rate control procedure that can identify simultaneous sig-
nals even without knowing these null distributions. The method is shown,
theoretically and in simulations, to asymptotically control the false discov-
ery rate. It was also used to identify genes that were both differentially
expressed and proximal to differentially accessible chromatin in the brains
of mice exposed to a conspecific intruder. The proposed method is available
in the R package github.com/sdzhao/ssa.
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1. Introduction

Multiple hypothesis testing is now a staple of scientific research, and summary
statistics, such as test statistics and p-values, from previously conducted exper-
iments are now readily publicly available. Jointly analyzing summary statistics
from different independent experiments can provide scientific insights that can-
not be achieved from a single experiment alone. One important type of joint
analysis is to identify features that are non-null in each of several experiments,
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which will be referred to as simultaneous signals. To be precise, given n features
in D experiments, define Iid to be an unobserved non-random signal indicator
that equals 0 when the null hypothesis is true for feature i in experiment d, and
equals 1 when the alternative hypothesis is true. The set of simultaneous signals
is defined to be

S = {i ∈ {1, . . . , n} : Ii1 = . . . = IiD = 1} , (1)

so that the set of non-simultaneous signals is Sc = {i : i /∈ S}.
The problem of identifying simultaneous signals arises in many different con-

texts. For example, it is of interest to identify genetic variants that are associated
with multiple related conditions, such as psychiatric disorders [1, 27, 28], to un-
cover potentially shared disease mechanisms. Similarly, it is useful to identify
regions in the genome that are simultaneously associated both with a disease
outcome and with a gene expression, as these locations may contain important
causal mutations [21, 48]. As another example, identifying findings that replicate
across independent experiments is a crucial component of reproducible research
[8, 23, 24]. Finally, comparative genomics research aims to find genes associ-
ated with similar phenotypes across different animal species, in hopes of finding
evolutionarily conserved genomic programs [33, 39, 47].

This paper studies the problem of identifying simultaneous signals under
false discovery rate control. Specifically, let Tid be a univariate test statistic
corresponding to the ith feature in the dth experiment, such that a hypothesis
test based on Tid can be performed to infer the true value of the signal indicator
Iid. Let δ : RD → {0, 1} be a simultaneous signal discovery procedure where
δ(Ti1, . . . , TiD) = 1 declares i ∈ S and δ(Ti1, . . . , TiD) = 0 declares i ∈ Sc.
False discovery rate control methods aim to maximize the number of discovered
simultaneous signals while maintaining the false discovery rate

fdr(δ) = E

[ ∑
i∈Sc δ(Ti1, . . . , TiD)

max{1,
∑n

i=1 δ(Ti1, . . . , TiD)}

]
(2)

to be at most α, for some prespecified α < 1.
There has been a great deal of recent work on methods to control the false dis-

covery rate when identifying simultaneous signals. An ad hoc approach is to use a
standard procedure, like that of Benjamini and Hochberg [7], to discover signifi-
cant features separately in each of theD experiments and then to identify discov-
eries common to all experiments. Bogomolov and Heller [9] developed a modified
version of this idea and proved that their procedure maintains false discovery
rate control. Another common strategy is to summarize the D statistics for each
feature i into a single scalar statistic, for example by taking the maximum of
their corresponding p-values [30]. This reduces the problem to a single sequence
of multiple tests, but it is unclear how to choose the best summary function.
A more principled approach treats the Tid as a single sequence of multivariate
test statistics (Ti1, . . . , TiD). In this framework, it has been shown that the local
false discovery rate [18] is the optimal scalar summary of the multivariate test
statistics [11, 13, 14, 24]. This can be difficult to calculate in practice, so Chung
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et al. [13] assumed a parametric model and used the EM algorithm to estimate
unknown parameters, Chi [11] proposed a Taylor expansion approximation, Du
and Zhang [14] used a single-index model approximation, and Heller and Yeku-
tieli [24] employed an empirical Bayes approach. Xiang, Zhao and Cai [51] re-
cently introduced a new framework for the joint analysis of multiple tests from
independent studies, of which simultaneous signal identification is a special case.

All of these methods assume that the null distributions of the test statistics
Tid are known to some extent. Many assume that p-values are available, mean-
ing that the nulls must be known exactly. Others estimate parameters of the
null distributions, which still requires knowing the parametric families to which
the nulls belongs [40]. However, in many important problems in genomics, in-
formation about the null distributions of the Tid is not readily available, for
at least three common reasons. First, small sample sizes can make it difficult
to obtain the exact null distribution of standard test statistics [53]. Second,
complex test statistics can have intractable null distributions. For example, the
null distribution of the SKAT statistic [50], which tests the significance of a
set of genetic variants, does not have a convenient closed form and in practice
is computationally approximated. Finally, complex data types can give rise to
null distributions that are difficult to model or characterize. For example, data
from ChIP-seq experiments [29] are used to identify regions of the genome where
transcription factors are found to bind, but the number, size, and locations of
these regions are not predetermined. This makes accurate quantification of the
statistical significance of the identified regions very difficult [12].

To date, relatively little work has considered false discovery rate control when
null distributions are not completely known. Some results are available given
test statistics from a single experiment. Knockoff filters [2, 3, 4, 10] assume
only that the null distributions are identical and symmetric, and p-filters [5,
32] assume only that the test statistics can be converted to random variables
between 0 and 1 that are stochastically larger than a uniformly distributed
random variable. Resampling-based procedures [15, 36, 49, 52] do not require
known null distributions, but can only be used if the raw data are available. This
may not be true for some applications, such as in genetics, where it is common
that only test statistics are easily accessible.

In contrast, results are lacking when there are two or more experiments of
interest. Nonparametric methods for detecting the presence of simultaneous sig-
nals have been proposed [55, 56], but there do not seem to exist methods for
identifying them when null distributions are unknown. Section 5 describes a
simultaneous signal identification problem, encountered in a study of mouse be-
havioral genomics [38], where the null distributions in one of the experiments
was unknown. No existing false discovery rate control method can be applied to
this problem.

This paper proposes a novel nonparametric method for controlling the false
discovery rate for identifying simultaneous signals when the test statistics have
unknown null distributions. A tradeoff of its robustness is that it can be very
conservative, especially if the proportion of simultaneous signals is high and the
studies D ≤ 3; see Sections 2.2 and 2.5 for further discussion. Section 2 describes
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the proposed procedure and shows that it can asymptotically control the false
discovery rate at the nominal level. Section 3 discusses an alternative procedure
that has more power but requires much more restrictive conditions. Section 4
illustrates the performance of the proposed method in simulations and Section
5 applies it in the mouse behavioral genomics problem. Section 6 concludes with
a discussion, and proofs of all technical results can be found in the Appendix.

2. Proposed procedure

2.1. Model

The observed data consist of D sequences of n univariate test statistics Tid, cor-
responding to features i = 1, . . . , n from experiments d = 1, . . . , D. For each Tid,
let F 0

id and F 1
id denote the cumulative distribution functions under the null and

alternative hypotheses, respectively, and S0
id and S1

id denote the corresponding
survival functions. Therefore

Tid ∼ F I
id = 1− SI

id when Iid = I (3)

for I = 0, 1, where the Iid are unobserved non-random indicators of whether
the null hypothesis is actually true or false, as introduced in Section 1. Within
each sequence d, it is assumed that the Tid are mutually independent, and the D
sequences are also assumed to be mutually independent. In other words, Tid and
Ti′d′ are independent if i �= i′ or d �= d′. Finally, the test statistics are assumed
to be one-tailed, with larger values of Tid giving more evidence against the null.
This is formalized in Assumption 1.

Assumption 1. For all t, S0
id(t) < S1

id(t).

This paper adopts a fixed-effects model where the Iid are non-random quan-
tities. A popular alternative in the multiple testing literature [24, 46, 51] is the
random-effects framework, where the (Ii1, . . . , IiD) are modeled as independent
and identically distributed random D × 1 Bernoulli vectors, whose components
Iid and Iid′ can be dependent for d �= d′. The Tid are then assumed to be
conditionally independent given (Ii1, . . . , IiD) such that

(Ti1, . . . , TiD) | (Ii1, . . . , IiD) ∼
D∏

d=1

F Iid
id (td). (4)

These fixed- and random-effects models are closely related [20, 44], and the
latter can be useful for interpreting certain aspects of the proposed procedure;
see Section 2.2.

2.2. Two sequences of test statistics

The proposed method is first introduced assuming that only two sequences of
test statistics Tid are observed, i = 1, . . . , n and d = 1, 2. Section 2.5 describes
a potential extension when there are more than two sequences of interest.
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The overall strategy follows the framework of Storey, Taylor and Siegmund
[45] for false discovery rate control in a single sequence of test statistics. The
proposed procedure declares a feature i to be a simultaneous signal if

(Ti1, Ti2) ∈ [t,∞)× [t,∞) (5)

for an appropriately chosen threshold t. The goal is to choose a threshold t that
discovers the most simultaneous signals while maintaining an acceptable false
discovery rate.

This requires estimating the false discovery rate that would be attained by a
particular threshold t. To motivate this estimator, suppose for now that S0

id = S0
d

and S1
id = S1

d for all features i. This condition is much stronger than necessary
and will be weakened in Assumption 2. Then under model (3), the expected
proportion of false positives would equal

n−1
∑
i∈Sc

SIi1
1 (t)SIi2

2 (t),

where S is the set of simultaneous signals defined in (1). The following result
shows that this expected proportion can be upper-bounded by the product of
marginal survival functions.

Proposition 1. For d = 1, 2, define the marginal signal proportion

πd =
|{i : Iid = 1}|

n

and Sd(t) = (1 − πd)S
0
d(t) + πdS

1
d(t), where S0

d(t) and S1
d(t) are any survival

functions that satisfy S0
d(t) < S1

d(t). Then under Assumption 1,

n−1
∑
i∈Sc

SIi1
1 (t1)S

Ii2
2 (t2) ≤ S1(t1)S2(t2)

for any t1 and t2, with S defined in (1).

Proposition 1 motivates the following conservative estimator for the false
discovery rate that would be attained by the rejection region [t,∞)× [t,∞):

f̂drρ(t) =
Ŝ1(t)Ŝ2(t) + ρ

max{n−1, Ĝ(t, t)}
, (6)

where Ŝd(t) = n−1
∑n

i=1 I(Tid > t) are empirical marginal survival functions,

Ĝ(t, t) = n−1
∑n

i=1 I(Ti1 > t, Ti2 > t) is the total proportion of rejected features,
and ρ is a positive constant that regularizes the asymptotic properties of the
proposed procedure. An alternative to (6) would be to define f̂drρ(t) = 0 if

Ĝ(t, t) = 0, but (6) is more convenient for proving asymptotic false discovery
rate control.

This leads to the proposed nonparametric discovery procedure

δ̂ρ(Ti1, Ti2) = I(Ti1 ≥ t̂ρ, Ti2 ≥ t̂ρ),

t̂ρ = inf
{
t ∈ [0,∞) : f̂drρ(t) ≤ α

}
,

(7)
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for some desired false discovery rate α < 1. Features with δ̂ρ(Ti1, Ti2) = 1 are
declared to be simultaneous signals. The threshold t̂ρ maximizes the number
of rejected features while maintaining a conservative estimate of the true false
discovery rate to be below α.

This estimator does not require any knowledge of S0
id or S1

id beyond the
stochastic ordering of Assumption 1. The tradeoff is that the proposed f̂drρ(t)
can give a very conservative estimate of the true false discovery rate. The proof
of Proposition 1 shows that

n−1
∑
i∈Sc

SIi1
1 (t1)S

Ii2
2 (t2) = S1(t1)S2(t2) + π(1,1)C1(t1, t2) + π1π2C2(t1, t2),

where π(1,1) is the proportion of simultaneous signals and C1(t1, t2) and C2(t1, t2)
are positive quantities. The bound in Proposition 1 can therefore be very loose
if the proportions of marginal or simultaneous signals are high. As a result, the
actual false discovery rate attained by the proposed method can be much lower
than the target level α. On the other hand, there are many settings where these
signal proportions are expected to be low, such as in genomics studies where
only small proportion of the genomic features are expected to be associated with
the outcome of interest.

Remark 1. The function Ĝ(t, t) in the denominator of f̂drρ(t) (6) does not
always converge to S1(t)S2(t), even though Ti1 and Ti2 are independent under
the fixed-effects model (3). This is because the (Ti1, Ti2) are not identically dis-
tributed, due to signal indicators (Ii1, Ii2) are that are different for different
features i. This observation motivates an interesting alternative interpretation
of the proposed procedure, which is more easily described using the random-
effects model (4) from Section 2.1. In this framework, the (Ii1, Ii2) are modeled
as identically distributed random Bernoulli tuples and Ti1 and Ti2 are indepen-
dent conditional on (Ii1, Ii2). Therefore the (Ti1, Ti2) are marginally identically
distributed, but dependence between Ii1 and Ii2 will make Ti1 and Ti2 marginally
dependent. Since Ĝ(t, t) estimates the marginal bivariate distribution function
of (Ti1, Ti2), f̂drρ(t) can be thought of measuring the departure of Ĝ(t, t) from
independence. In this sense, procedure (7) appears closely related to testing for
independence between the Ti1 and the Ti2.

Remark 2. The rejection regions in (5) are rectangular, but many other non-
rectangular shapes can be used. In fact, Heller and Yekutieli [24] showed that
the optimal rejection region is a level curve of the local false discovery rate.
On the other hand, rectangular regions are simple to implement and interpret,
and they allow the expected proportion of false positives to be upper-bounded
using only marginal survival functions, via Proposition 1. This is crucial to the
nonparametric nature of the proposed procedure, and it is not clear whether
there exist non-rectangular rejection regions that have this property.

2.3. Rank transformation

The rejection region (5) uses the same threshold for both Ti1 and Ti2. This may
not be appropriate when the null distributions S0

i1 and S0
i2 are not comparable,
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because the test statistics from the two sequences will be on different scales. A
simple solution is to transform the Tid within each sequence to their correspond-
ing ranks, which makes the sequences more comparable. This is equivalent to
replacing f̂drρ(t) with

n−1
∑n

i=1 I{F̂1(Ti1) ≥ t}n−1
∑n

i=1 I{F̂2(Ti2) ≥ t}+ ρ

max[n−1, n−1
∑n

i=1 I{F̂1(Ti1) ≥ t, F̂2(Ti2) ≥ t}]
,

where F̂d = 1 − Ŝd. The rank transformation procedure is therefore equivalent
to considering rejection regions [F̂−1

1 (t),∞)× [F̂−1
2 (t),∞) instead of region (5).

This procedure can be less powerful than a procedure that knows the true null
distributions S0

id of the Tid. When the nulls are known, the correct way to place
the test statistics on the same scale would be to convert the Tid to p-values, which
would replace F̂1 and F̂2 above with 1−S0

i1 and 1−S0
i2. This would correspond to

considering to rejection regions [(S0
i1)

−1(1−t),∞)×[(S0
i2)

−1(1−t),∞). However,
these regions may not coincide with those considered by rank transformation.
This can happen, for example, if S0

i1 = S0
i2 but F̂1 �= F̂2, and can result in

the rank transformation procedure having lower power. This is illustrated in
simulations in Section 4.1.

An alternative to the rank transformation approach is to consider rejection
regions [t1,∞)× [t2,∞) [11, 14]. This allows different thresholds for the different
sequences to be learned from the data, without needing knowledge of the null
distributions. However, the resulting procedure seems to require very restrictive
conditions in order to guarantee false discovery rate control. This is discussed
in detail in Section 3.

2.4. Theoretical properties

To motivate the proposed procedure, it was temporarily assumed that S0
id = S0

d

and S1
id = S1

d for all features i. However, in general the test statistics for differ-
ent features may have different null and alternative distributions. Even so, the
proposed method still has good properties under the following assumption about
the S0

id and S1
id. Let Ii = (Ii1, . . . , IiD) be the vector of true signal indicators

corresponding to feature i in each sequence of test statistics.

Assumption 2. The following hold for every sequence d = 1, . . . , D.

(a) For I ∈ {0, 1}, there exist continuous functions SI
d such that

lim
n→∞

1

|{i : Iid = I}|
∑

i:Iid=I

SI
id(t) = SI

d(t)

uniformly in t.
(b) For ever vector I ∈ {0, 1}D such that I �= (1, . . . , 1),

lim
n→∞

1

|{i : Ii = I}|
∑
i:Ii=I

D∏
d=1

SId
id (td) =

D∏
d=1

SId
d (td)
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uniformly in (t1, . . . , tD), with S0
d and S1

d defined in item (a) above.
(c) For I = (1, . . . , 1), there exists a continuous function G1 such that uni-

formly in (t1, . . . , tD),

lim
n→∞

1

|{i : Ii = I}|
∑
i:Ii=I

D∏
d=1

S1
id(td) = G1(t1, . . . , tD).

(d) For every I ∈ {0, 1}D, there exist proportions πI such that

lim
n→∞

|{i : Ii = I}|
n

→ πI.

Assumption 2 endows the fixed-effects model (3) with certain useful proper-
ties of the random-effects model (4), and is similar to assumptions introduced
by Genovese and Wasserman [20] and others [44, 45]. Assumption 2(a) posits
the existence of limiting survival functions S0

d and S1
d , which can be thought

of as the marginal null and alternative distributions of Tid under the random-
effects model. Assumption 2(b) recovers the random-effects assumption that
the components of (Ti1, . . . , Tid) are independent conditional on Ii. In fact it is
slightly weaker, requiring that the Tid are conditionally independent only when
Ii �= (1, . . . , 1), as the joint distribution G1 defined in Assumption 2(c) need
not equal the product of marginal survival functions. Finally, the πI defined
in Assumption 2(d) can be viewed as the probability that Ii = I under the
random-effects model.

The main result of this paper is that the proposed procedure can achieve
asymptotic false discovery rate control.

Theorem 1. Under Assumptions 1 and 2, the proposed procedure (7) with ρ > 0
satisfies

lim sup
n→∞

fdr(δ̂ρ) ≤ α,

where fdr is the true false discovery rate defined in (2).

Finite-sample rather than asymptotic false discovery rate control would be
ideal, and the proof of Theorem 1 suggests that this might be possible if the null
and alternative distributions did not vary across features, and if the marginal
survival functions Sd in f̂drρ(t) (6) were known rather than estimated. The
condition that ρ > 0 is necessary for technical reasons, but the simulations in
Section 4 indicates that using ρ = 0 still gives good results.

Procedure (7) can provably control the false discovery rate for simultaneous
signals without any knowledge of the null or alternative distributions, aside
from the stochastic ordering condition of Assumption 1. Because of this, it pays
a price in terms of power to detect simultaneous signals. A major reason is that
the bound in Proposition 1 is not tight, which causes the selected threshold t̂ρ
(7) to be larger than necessary. In particular, the proof of Proposition 1 indicates
that the bound is most tight when each sequence of test statistics has very few
signals and when there are very few simultaneous signals.
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2.5. Two or more sequences of test statistics

In some problems, the goal may be to discover features that are simultaneously
significant across D > 2 sequences of test statistics. The proposed method can
be extended to this setting by consider rejection regions of the form [t,∞)D for
a threshold t. Under model (3) and Assumption 2, the expected number of false
positives that would be discovered by this region can be upper-bounded using
the following generalization of Proposition 1.

Proposition 2. For D ≥ 2,

n−1
∑
i∈Sc

D∏
d=1

SIid
d (td) ≤

∑
d,d′∈1,...,D,d �=d′

Sd(td)Sd′(td′)

for any t1, . . . , tD, with Sd defined in Proposition 1 and S defined in (1).

Following the reasoning in Section 2.2, Proposition 2 therefore motivates the
following discovery procedure for any number D ≥ 2 of sequences:

δ̂ρ(Ti1, . . . , TiD) = I(Ti1 ≥ t̂ρ, . . . , TiD ≥ t̂ρ),

t̂ρ = inf

[
t ∈ [0,∞) :

∑
d,d′∈1,...,D,d�=d′ Ŝd(t)Ŝd′(t) + ρ

max{n−1, n−1
∑n

i=1 I(Ti1 > t, . . . , TiD > t)} ≤ α

]
,

(8)

and features with δ̂ρ(Ti1, . . . , TiD) = 1 are declared as simultaneous signals
across all D sequences. It is straightforward to extend the proof of Theorem 1
to this generalized procedure. This reduces to procedure (7) when D = 2.

Procedure (8) can suffer from very low power because the bound in Propo-
sition 2 becomes exceedingly conservative for larger D. When D > 2, this
bound is derived from repeated applications of the basic bound for D = 2.
This is likely not an optimal approach, and further work is necessary to de-
sign a more powerful nonparametric discovery procedure for more than two se-
quences. Nevertheless, simulations in Section 4 suggest that the method is still
serviceable when D ≤ 3, which covers many practical problems. Furthermore,
few other methods are available when the null and alternative distributions are
unknown.

3. Alternative procedure

For D = 2, Remark 1 of Section 2.2 pointed out that a more natural alternative
to rejection region (5) is the rectangle [t1,∞)× [t2,∞), which allows a different
threshold for each sequence of test statistics. Applying Proposition 1 to this
rejection region suggests the conservative false discovery rate estimator

f̃drρ(t1, t2) =
Ŝ1(t1)Ŝ2(t2) + ρ

max{n−1, Ĝ(t1, t2)}
, (9)
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Fig 1. The alternative false discovery rate control procedure (10) does not produce a unique
rejection region. The solid, dashed, and dotted lines demarcate three distinct regions that
maximize the number of rejections while satisfying f̃drρ(t1, t2) ≤ 0.05. Filled circles denote
true simultaneous signals.

with Ŝd and ρ as defined in (6) and Ĝ(t1, t2) = n−1
∑n

i=1 I(Ti1 > t1, Ti2 > t2).
This can be shown to be an asymptotically uniformly conservative estimate of
the false discovery rate incurred by the rejection region.

Theorem 2. For any discovery procedure of the form δ(Ti1, Ti2) = I(Ti1 ≥
t1, Ti2 ≥ t2), under Assumptions 1 and 2,

lim
n→∞

inf
t1≤η1,t2≤η2

{
f̃drρ(t1, t2)− fdr(δ)

}
≥ 0

almost surely, for fixed η1, η2 < ∞.

This leads to the following alternative to the proposed procedure (7):

δ̃ρ(Ti1, Ti2) = I(Ti1 ≥ t̂ρ1, Ti2 ≥ t̂ρ2),

(t̂ρ,1, t̂ρ2) = argmax
(t1,t2)∈Π

Ĝ(t1, t2) subject to f̃drρ(t1, t2) ≤ α, (10)

where the set Π = {(∞,∞)}∪{(Ti1, Ti′2) : 1 ≤ i, i′ ≤ n} is the union of the point
(∞,∞) along with the Cartesian product of the two sequences of observed test
statistics. The t̂ρ1 and t̂ρ2 are chosen to maximize Ĝ(t1, t2), which is equivalent to
maximizing the number of rejected features, subject to controlling the estimated
false discovery rate bound.

The t̂ρ1 and t̂ρ2 defined in (10) are not unique, in that there can exist multiple

distinct rejection regions that maximize Ĝ(t1, t2). Figure 1 illustrates an example
where n = 1,000, the marginal signal proportions were π1 = 0.019 and π2 =
0.012, there were six simultaneous signals, the null Tid ∼ χ2

1, and the non-null
Tid ∼ χ2

1(9). Each of the rectangular rejection regions at the α = 0.05 level
rejects a different set of three features. Nevertheless, under certain conditions
it can be shown that any (t̂ρ1, t̂ρ2) satisfying (10) can achieve asymptotic false
discovery rate control.
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Theorem 3. Under Assumptions 1 and 2, if there exist t′1, t
′
2 < ∞ such that

limn→∞ f̃drρ(t1, t2) < α, the alternative procedure (10) satisfies

lim sup
n→∞

fdr(δ̃ρ) ≤ α.

However, the requirement in Theorem 3 that there exist t′1 and t′2 such that
limn→∞ f̃drρ(t

′
1, t

′
2) ≤ α turns out to be very stringent. It can be shown follow-

ing the proof of Proposition 1 that such t′1 and t′2 must satisfy

S1(t
′
1)S2(t

′
2) + ρ

S1(t′1)S2(t′2) + (π(1,1) − π1π2){S1
1(t

′
1)− S0

1(t
′
1)}{S1

2(t
′
2)− S0

2(t
′
2)}

≤ α,

where π(1,1) is the proportion of simultaneous signals. But this can only happen
when π(1,1) > π1π2, where πd is the proportion of signals in study d. If it does not
hold, the alternative procedure may not be able to maintain the false discovery
rate at the nominal level. This is in contrast to Theorem 1 for the proposed
procedure δ̂ρ in (7), which guarantees asymptotic false discovery rate control
without needing this condition.

This is important, for example, when applying δ̃ρ (10) to sequences where

no simultaneous signals actually exist. Then π(1,1) = 0, and δ̃ρ may incorrectly
identify one or two features as simultaneous signals because it cannot maintain
the nominal false discovery rate. This alternative procedure is thus not pursued
in the remainder of this paper. Furthermore, the rank transformation described
in Section 2.3 obviates the need for a different threshold for each sequence of
test statistics.

4. Simulations

4.1. Effect of rank transformation

This section explores the effectiveness of the rank transformation described in
Section 2.3 for D = 2 sequences for a variety of null distributions of different
scales. The proposed discovery procedure δ̂ρ in (7), with ρ = 0, was applied in

three ways at a nominal α = 0.05 false discovery rate. First, δ̂ρ was applied to
directly to Tid to demonstrate the consequences of ignoring the different scales
of the test statistics. Next, p-values Pid were calculated based on the Tid, and
the proposed method was applied without rank transformation to − log10 Pid,
a p-value transformation common in the genomics literature. This represents
an oracle version of the proposed method that uses information about the true
null distributions to place the test statistics on comparable scales. Finally, δ̂ρ
was applied to rank-transformed Tid to attempt to recover the oracle perfor-
mance.

Figure 2 reports the false discovery rates and average numbers of discovered
simultaneous signals over 200 replications of the following simulation settings.
Each setting had n = 10,000 features, and the two sequences were generated
with either equal or unequal numbers of signals in each sequence.
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Fig 2. False discovery rates and average numbers of discovered simultaneous signals of pro-
posed method applied to rank-transformed Tid, − log10 Pid, and untransformed Tid, where
Pid are p-values calculated based on Tid using their true null distributions. Horizontal dashed
lines mark the nominal α = 0.05 false discovery rate level. The rank-transformed procedure
can have less power than the procedure applied to the − log10 Pid.

Example 1 (normal null). For sequences d = 1, 2, Tid = Z2
id where the Zid

were independently drawn from N(μid, d
2). If Iid = 0, μid = 0, and if Iid = 1,

μid ∼ N(μd, 1) and was fixed across all replications, for various μd. Because
the maximum of n independent N(0, d2) goes like d(2 logn)1/2, μd was at most
d(2 log n)1/2. This was to ensure that the simultaneous signals could not be
identified by simply choosing the features with Tid > d(2 log n)1/2 in both se-
quences.

Example 2 (exponential null). Simulations followed Example 1 except that the
Tid were independently generated from Exp(λid) where λid = 2d for Iid = 0
and λid ∼ max{0.1, N(λd, 0.01)} and fixed across replications for Iid = 1, for
various λd. Because the maximum of n independent Exp(2d) random variable
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goes like (logn)/(2d), λd was at least 2d/ logn, so that the expected value of
Tid for Iid = 1 was at most (log n)/(2d).

Example 3 (t4 null). Simulations followed Example 1 except that Tid = Y 2
id

where the Yid were independently generated from d(μid + t4) with t4 denoting
a random variable drawn from a t-distribution with four degrees of freedom. If
Iid = 0, μid = 0, and if Iid = 1, and μid ∼ N(μd, 1) and was fixed across all
replications, where μd was at most logn.

When the two sequences had the same number of signals, the rank-trans-
formed procedure performed essentially exactly as well as the oracle proce-
dure using the p-values calculated with knowledge of the true null distribu-
tions. However, when the two sequences had different numbers of signals, the
rank-transformed method had lower power, particularly for t4-distributed Tid.
As discussed in Section 2.3, this is because the rejection regions considered by
the rank-transformed procedure no longer coincide with those considered by the
oracle procedure.

4.2. Unknown null distributions

The main motivation of this paper was to develop a method to control the false
discovery rate for discovering simultaneous signals when the null and/or alter-
native distributions of the Tid are unknown. These simulations explore this for
D = 2 sequences. In this section, each sequence of test statistics was gener-
ated with the same number of signals, following Bogomolov and Heller [9]. See
Appendix A for additional simulation settings.

For each d and i, ten correlated z-scores (Zid1, . . . , Zid10) were generated from
N(μid,Σid), where μid = (0, . . . , 0) for Iid = 0 and μid = (μid1, . . . , μid10) with
μidj ∼ N(μd, 1) and fixed across replications for Iid = 1, for the same values of μd

used in Example 1 of Section 4.1. Each Σid was equal to the empirical correlation
matrix of a different set of 10 genes selected from a gene expression study of
multiple myeloma, obtained from Shi et al. [43]. These z-scores were converted

to correlated p-values (Pid1, . . . , Pid10), and finally Tid = −2
∑10

j=1 logPidj . The
vectors of z-scores were generated independently across both d and i, so that
the Tid were also independent.

This setting models applications where group testing is applied to multiple
groups of correlated genomic features. The groups, indexed by i, are indepen-
dent, but the features within the groups are not. The null distribution of each
Tid is complicated and in practice would not be known, as it depends on the
unknown correlations between the features.

The proposed procedure was implemented with ρ = 0 and rank-transformed
Tid. To demonstrate the difficulty of this problem, three existing methods de-
scribed in Section 1 were also implemented:

1. The method of Chung et al. [13] uses p-values Pid calculated from the Tid.
2. The empirical Bayes method of Heller and Yekutieli [24] uses an estimate

of the null distribution of the Tid. It first calculates z-scores from the Tid
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Fig 3. False discovery rates and average numbers of discovered simultaneous signals when
Tid has an unknown null distribution. Horizontal dashed lines mark the nominal α = 0.05
false discovery rate level. Only the proposed method was capable of maintaining the nominal
α. Proposed: proposed approach (7); GPA: method of Chung et al. [13]; repfdr: method of
Heller and Yekutieli [24]; radjust: method of Bogomolov and Heller [9].

using their known theoretical nulls, then assumes that the z-scores are
normally distributed but with unknown mean and variance, and finally
estimates the unknown parameters using the method of Efron [16]. See
Efron [18] for a discussion of why using this so-called “empirical null” can
be more appropriate than using the theoretical null in multiple testing
problems.

3. The method of Bogomolov and Heller [9] is based on first selecting promis-
ing features from each sequence based on the Pid.

These existing approaches all require known null distributions, so they were
implemented assuming that the Tid followed χ2

20, which would only be true if
Σid equaled the identity matrix.

Figure 3 reports the false discovery rates and average numbers of discovered
simultaneous signals over 200 replications. The proposed method always main-
tained the false discovery rate at the nominal level, something that none of the
other methods could achieve. It appears to be the only existing simultaneous
signal discovery procedure that can provably control the false discovery rate
in this setting when the Tid have complex or unknown null distributions. The
tradeoff is that the proposed method is conservative, in that the achieved false
discovery rate can be much lower than the desired level α. This was discussed in
Section 2.2. Additional simulation results in Appendix A, where there were no
true simultaneous signals and where the two sequences had different numbers
of signals, lead to similar conclusions.

4.3. Known null distributions

In many standard simultaneous signal detection problems, the null distributions
of the Tid are known. A number of methods already exist to address these cases,
such as those described above in Section 4.2. It is interesting to compare them
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Fig 4. False discovery rates and average numbers of discovered simultaneous signals when null
distributions are known. Horizontal dashed lines mark the nominal α = 0.05 false discovery
rate level. Proposed: proposed approach (7); GPA: method of Chung et al. [13]; repfdr: method
of Heller and Yekutieli [24]; radjust: method of Bogomolov and Heller [9].

in these standard settings to the performance of the proposed method. The
simulations in this section explore this for D = 2 sequences with a non-zero
number of simultaneous signals. As in Section 4.2, each sequence had the same
number of signals.

Figure 4 reports the false discovery rates and average numbers of discovered
simultaneous signals over 200 replications of the following simulation settings.
The first three examples are similar to those in Section 4.1 except that in this
section, the null distributions of the Tid were set to be equal for both sequences.
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Example 1 (normal null). This follows Example 1 of Section 4.1, except that
Tid = Z2

id where the Zid were independently drawn from N(μid, 1
2).

Example 2 (exponential null). This follows Example 2 of Section 4.1 except that
Tid ∼ Exp(λid) where λid = 2 for Iid = 0.

Example 3 (t4 null). This follows Example 3 of Section 4.1 except that Tid = Y 2
id

where the Yid were independently generated from μid + t4.

Example 4 (dependent test statistics). For sequences d = 1, 2, Tid = Z2
id where

the Zid were generated as in Example 1 of this section, except that all Zid within
a sequence d were correlated. Their correlation was set equal to the empirical
correlation matrix of n genes chosen from a gene expression study of multi-
ple myeloma [43]. This violates the assumption in model (3) of independence
between test statistics in a sequence.

The procedure of Chung et al. [13] discovered the largest number of simultane-
ous signals, but could not maintain the nominal false discovery rate even though
the null distributions of the Tid were known. The remaining methods were able
to maintain the nominal false discovery rate throughout, even when test statis-
tics were dependent. The methods of Heller and Yekutieli [24] and Bogomolov
and Heller [9] performed similarly, with the former having somewhat higher
power. The proposed method, in many cases, had comparable power when the
marginal signal proportions were very low, though as previously mentioned it
had very low power otherwise. It was able to control the false discovery rate even
when test statistics were dependent in Example 4, though this likely was due
in part to the procedure’s conservativeness. As before, additional simulations in
Appendix A lead to similar conclusions.

4.4. More than two sequences of test statistics

The generalized discovery procedure (8) in Section 2.5 was applied to D = 3
sequences with n = 10,000 features. In sequences d = 1, 2, Tid = Z2

id where the
Zid were independently generated from N(μid, 1), with μid = 0 when Iid = 0
and otherwise drawn from N(5, 1) and fixed across replications. In the third
sequence, Ti3 was generated from a complicated distribution meant to model
data from ChIP-seq experiments [29], such as the example studied in Section
5. The proposed procedure is the only one applicable to this setting due to the
unknown null distribution of the Ti3.

First, λi1 = λi2 were drawn from N(100, 5) when Ii3 = 0 and then fixed across
replications. These model population average ChIP-seq peak heights at genomic
location i under experimental and control conditions, respectively, that are equal
under the null hypothesis. When Ii3 = 1, λi1 and λi2 were independently drawn
from Exp(0.001), modeling differences in average peak heights between the ex-
perimental conditions under the alternative hypothesis. Next, Oil for l = 1, 2
were generated from Poisson(λil), modeling observed ChIP-seq peak counts. Fi-
nally, Ti3 = | log(Oi1/Oi2)|, and will tend to be larger when Ii3 = 1 because
λi1 �= λi2.
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Table 1

False discovery rates and average numbers of discovered simultaneous signals for D = 3
sequences of test statistics, using the proposed approach (8) with a nominal 0.05 false

discovery rate level.

μ1 = 2, μ2 = 2 μ1 = 2.5, μ2 = 2.5 μ1 = 3, μ2 = 3
Marginal signals 50 100 50 100 50 100

FDR 0.00 0.00 0.00 0.00 0.00 0.00
Discoveries 4.39 0.08 12.25 0.08 20.56 0.08

Table 1 reports the results over 200 replications and shows that the proposed
procedure maintained the nominal false discovery rate while still being able
to detect a significant proportion of the true simultaneous signals. That the
attained false discovery rates are much lower than the nominal 0.05 indicates
that the procedure is conservative, as discussed in Section 2.5.

5. Data analysis

The field of sociogenomics studies molecular correlates of social behavior [34].
Saul et al. [38] studied the transcriptomic response to social challenge in mice
that were exposed to intruder mice introduced to their cages. At 30, 60, and
120 minutes after intruder removal, they collected RNA-seq data from the amyg-
dala, frontal cortex, and hypothalamus in order to determine which genes were
differentially expressed between mice exposed to the intruder and mice exposed
to a nonsocial control condition. They also collected ChIP-seq H3K27ac data
at 30 and 120 minutes, to identify regions of chromatin that were differentially
accessible between experimental and control mice. These data are available from
the Gene Expression Omnibus under accession number GSE80345.

This section analyzes these data to find mouse genes that are both differen-
tially expressed and next to differentially accessible regions of chromatin. In-
tegrating these pieces of evidence can identify genes whose expression changes
may be directly caused by differential binding of transcription factors to nearby
regions of DNA [38]. This analysis can be cast as a simultaneous signal detection
problem. Each mouse gene constitutes a genomic feature i, which can be associ-
ated with both a differential expression test statistic Ti1 and a test statistic Ti2

for the differential accessibility of a neighboring region of chromatin. The goal
is to identify genes whose Ti1 and Ti2 are simultaneously non-null.

Following Saul et al. [38], the Ti1 = Z2
i1 where Zi1 were standard z-scores

obtained using the edgeR software package [35]. Defining Ti2 was more involved.
Methods exist for calculating differential accessibility test statistics for genomic
regions using ChIP-seq data [22, 42, 54], but these first identify regions of interest
from the same data that the test statistics come from. This makes accurate p-
values difficult to calculate [12]. This analysis takes a simple approach and by
defining Ti2 = | log(Oi1/Oi2)|, where Oi1 and Oi2 were the observed number of
H3K27ac reads, in the experimental and control sample respectively, within 100
kb up- and down-stream of the ith gene.

The null distribution of Ti2 is highly nontrivial, and the proposed method
(7) is the only existing false discovery rate control procedures that can be used
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Table 2

Mouse genes found to be both differentially expressed and next to differentially accessible
chromatin at a nominal false discovery rate of 0.1.

Amygdala Frontal cortex Hypothalamus
30 min 120 min 30 min 120 min 30 min 120 min

Klk6 Nts Ai606473 Lhx9
Foxg1
Gpr88
Meis2
Penk
Slc5a7

without knowledge of this null. Table 2 presents the genes identified at a nominal
false discovery rate of 0.1. It indicates that the hypothalamus is the most tran-
scriptionally responsive to social challenge, particularly at 30 minutes. A number
of these genes have been previously implicated in mouse behavior. For example,
mice without Gpr88 and Penk have been shown to exhibit low anxiety and re-
sistance to mild stress [25, 26], and Foxg1 was highlighted in Saul et al. [38] as
providing evidence for the role of neuropeptide signaling and neuron differen-
tiation. These findings raise novel mechanistic hypotheses about the molecular
response to social challenge.

6. Discussion

Most of this paper has assumed that the test statistics are independent across
features. In the single-sequence false discovery rate control problem with de-
pendent test statistics, an important step is to estimate parameters of the
null distribution of the test statistics rather than using the theoretical null
[17, 19, 41]. The nonparametric false discovery rate bound (6) already uses em-
pirical distribution estimates, so the proposed procedure may also be able to
control the false discovery rate under dependence. More work is required to
fully characterize the behavior of the proposed method with dependent test
statistics.

In some cases the two sequences of p-values are not of equal importance, as in
replicability analysis [8, 9, 23, 24], which distinguishes between a primary versus
a follow-up study. The proposed method makes no such distinction, but could
be potentially be modified. Suppose for two sequences that sequence 2 were of
greater interest. Then the rejection region could be defined as [t,∞) × [ct,∞)
for some fixed constant 0 < c < 1. This may allow weaker signals to be captured
from the more important study.

A major outstanding issue is the suboptimal power of the proposed method.
In some problems, with large numbers of test statistic sequences and/or se-
quences with moderate or high numbers of signals, the key bounds on the ex-
pected proportion of false positives in Propositions 1 and 2 are very loose. This
is the tradeoff the method’s robustness to unknown test statistic null distribu-
tions. Developing nonparametric detection methods with good power in these
settings is an important direction for future work.
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Fig 5. False discovery rates and average numbers of discovered simultaneous signals when Tid

has an unknown null distribution and there are no simultaneous signals. Horizontal dashed
lines mark the nominal α = 0.05 false discovery rate level. GPA: method of Chung et al. [13];
repfdr: method of Heller and Yekutieli [24]; radjust: method of Bogomolov and Heller [9].
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Appendix A: Additional simulation results

Figures 5 and 6 report simulation results with unknown and known null distri-
butions, respectively, when the number of true simultaneous signals was zero.
The simulation settings are described in Sections 4.2 and 4.3. The proposed
method is always able to maintain the false discovery rate at or below the nom-
inal α = 0.05 level, and is the only one capable of achieving this even when the
null distributions are unknown, as in Figure 3.

Figures 7 and 8 report simulation results with unknown and known null distri-
butions, respectively, when the two sequences have different numbers of signals.
The simulation settings also follow those in Sections 4.2 and 4.3. The results
show similar trends compared to results from settings with equal marginal signal
proportions, reported in Figures 3 and 4 in the main text.

Appendix B: Proof of Proposition 1

By definition,

S1(t1)S2(t2)

= (1− π1)(1− π2)S
0
1(t1)S

0
2(t2) + (1− π1)π2S

0
1(t1)S

1
2(t2)+

π1(1− π2)S
1
1(t1)S

0
2(t2) + π1π2S

1
1(t1)S

1
2(t2)
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Fig 6. False discovery rates and average numbers of discovered simultaneous signals when
null distributions are known and there are no simultaneous signals. Horizontal dashed lines
mark the nominal α = 0.05 false discovery rate level. Proposed: proposed approach (7); GPA:
method of Chung et al. [13]; repfdr: method of Heller and Yekutieli [24]; radjust: method of
Bogomolov and Heller [9].

=(1− π1 − π2)S
0
1(t1)S

0
2(t2)+

π1π2{S0
1(t1)S

0
2(t2) + S1

1(t1)S
1
2(t2)− S0

1(t1)S
1
2(t2)− S1

1(t1)S
0
2(t2)}+

π2S
0
1(t1)S

1
2(t2) + π1S

1
1(t1)S

0
2(t2).
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Fig 7. False discovery rates and average numbers of discovered simultaneous signals when Tid

has an unknown null distribution and the two sequences have different numbers of signals.
Horizontal dashed lines mark the nominal α = 0.05 false discovery rate level. GPA: method of
Chung et al. [13]; repfdr: method of Heller and Yekutieli [24]; radjust: method of Bogomolov
and Heller [9].

Define the proportion πI = |{i : Ii = I}|/n. Then π1 = π(1,0) + π(1,1) and
π2 = π(0,1) + π(1,1), so the above expression becomes

S1(t1)S2(t2)

= (π(0,0) − π(1,1))S
0
1(t1)S

0
2(t2) + (π(0,1) + π(1,1))S

0
1(t1)S

1
2(t2)+

(π(1,0) + π(1,1))S
1
1(t1)S

0
2(t2) + π1π2{S1

1(t1)− S0
1(t1)}{S1

2(t2)− S0
2(t2)}

=π(0,0)S
0
1(t1)S

0
2(t2) + π(0,1)S

0
1(t1)S

1
2(t2) + π(1,0)S

1
1(t1)S

0
2(t2)+

π(1,1)[S
0
1(t1)S

1
2(t2) + {S1

1(t1)− S0
1(t1)}S0

2(t2)] +

π1π2{S1
1(t1)− S0

1(t1)}{S1
2(t2)− S0

2(t2)}.

Since S1
1(t1) > S0

1(t1) by the stochastic ordering in Assumption 1, the last two
lines of the previous display are always positive. The result follows because

π(0,0)S
0
1(t1)S

0
2(t2) + π(0,1)S

0
1(t1)S

1
2(t2) + π(1,0)S

1
1(t1)S

0
2(t2)

=n−1
∑
i∈Sc

SIi1
1 (t1)S

Ii2
2 (t2).

Appendix C: Proof of Theorem 1

Define R(t) = {i : I(Ti1 ≥ t, Ti2 ≥ t)} to be the set of features rejected at
threshold t. Then

fdr(δ̂ρ) =
∑

i∈Sc∩R(t̂ρ)

E
I(Ti1 ≥ t̂ρ, Ti2 ≥ t̂ρ)

max{1,
∑n

i=1 I(Ti1 ≥ t̂ρ, Ti2 ≥ t̂ρ)}
,

with S defined as in (1). Since t̂ρ satisfies f̂drρ(t̂ρ) ≤ α,

Ŝ1(t̂ρ)Ŝ2(t̂ρ) + ρ

max{n−1, n−1
∑n

i=1 I(Ti1 ≥ t̂ρ, Ti2 ≥ t̂ρ)}
≤ α
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Fig 8. False discovery rates and average numbers of discovered simultaneous signals when null
distributions are known and the two sequences have different numbers of signals. Horizontal
dashed lines mark the nominal α = 0.05 false discovery rate level. Proposed: proposed approach
(7); GPA: method of Chung et al. [13]; repfdr: method of Heller and Yekutieli [24]; radjust:
method of Bogomolov and Heller [9].
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by the definition of f̂drρ(t̂ρ) in (6). Therefore,

fdr(δ̂ρ) ≤
α

n

∑
i∈Sc∩R(t̂ρ)

E
I(Ti1 ≥ t̂ρ, Ti2 ≥ t̂ρ)

Ŝ1(t̂ρ)Ŝ2(t̂ρ) + ρ
.

Analogous to the proposed procedure (7), define the constrained optimization
problem

t̂(−i)
ρ = inf

[
t ∈ [0,∞) :

∏2
d=1 n

−1{
∑

j �=i I(Tjd ≥ t) + 1}+ ρ

max[n−1, n−1{
∑

j �=i I(Tj1 ≥ t, Tj2 ≥ t) + 1}] ≤ α

]
.

(11)

This type of leave-one-out construction of t̂
(−i)
ρ has also been used in proofs of

false discovery rate control in a single sequence of test statistics [6, 32, 37].
For any feature i ∈ R(t̂ρ), I(Tid ≥ t̂ρ) = 1 and I(Ti1 ≥ t̂ρ, Ti2 ≥ t̂ρ) = 1, so

Ŝ1(t̂ρ)Ŝ2(t̂ρ) + ρ

max{n−1, n−1
∑n

i=1 I(Ti1 ≥ t̂ρ, Ti2 ≥ t̂ρ)}

=

∏2
d=1 n

−1{
∑

j �=i I(Tjd ≥ t̂ρ) + 1}+ ρ

max[n−1, n−1{
∑

j �=i I(Tj1 ≥ t̂ρ, Tj2 ≥ t̂ρ) + 1}]
.

This means that t̂ρ is feasible for problem (11), so t̂
(−i)
ρ ≤ t̂ρ. Next, this in

turn implies that since i ∈ R(t̂ρ), 1 = I(Tid ≥ t̂ρ) ≤ I(Tid ≥ t̂
−(i)
ρ ) ≤ 1 and

1 = I(Ti1 ≥ t̂ρ, Ti2 ≥ t̂ρ) ≤ I(Ti1 ≥ t̂
−(i)
ρ , Ti2 ≥ t̂

−(i)
ρ ) ≤ 1, hence, I(Tid ≥ t̂ρ) =

I(Tid ≥ t̂
−(i)
ρ ) = 1 and I(Ti1 ≥ t̂ρ, Ti2 ≥ t̂ρ) = I(Ti1 ≥ t̂

−(i)
ρ , Ti2 ≥ t̂

−(i)
ρ ) = 1, so

Ŝ1(t̂
(−i)
ρ )Ŝ2(t̂

(−i)
ρ ) + ρ

max{n−1, n−1
∑n

i=1 I(Ti1 ≥ t̂
(−i)
ρ , Ti2 ≥ t̂

(−i)
ρ )}

=
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ρ , Tj2 ≥ t̂

(−i)
ρ ) + 1}]

,

which is at most α by construction of t̂
(−i)
ρ . Thus t̂

(−i)
ρ is feasible for problem

(7) and t̂ρ ≤ t̂
(−i)
ρ .

The previous results imply that t̂
(−i)
ρ = t̂ρ for i ∈ R(t̂ρ). Then

fdr(δ̂ρ) ≤
α

n

∑
i∈Sc∩R(t̂ρ)

E
I(Ti1 ≥ t̂ρ, Ti2 ≥ t̂ρ)

Ŝ1(t̂ρ)Ŝ2(t̂ρ) + ρ

≤ α
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ρ ) + 1}+ ρ
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where the third line follows because it was shown above that i ∈ R(t̂ρ) implies

i ∈ R(t̂
(−i)
ρ ). Since neither t̂

(−i)
ρ nor the denominator of the final expression

depends on (Ti1, Ti2), and because the Tid are independent across sequences d,
for every i ∈ R(t̂ρ)

E
I(Ti1 ≥ t̂

(−i)
ρ , Ti2 ≥ t̂

(−i)
ρ )∏2

d=1{n−1
∑

j �=i I(Tjd ≥ t̂
(−i)
ρ ) + 1}+ ρ

=E
SIi1
i1 (t̂

(−i)
ρ )SIi2

i2 (t̂
(−i)
ρ )∏2

d=1{n−1
∑

j �=i I(Tjd ≥ t̂
(−i)
ρ ) + 1}+ ρ

= E
SIi1
i1 (t̂

(−i)
ρ )SIi2

i2 (t̂
(−i)
ρ )

Ŝ1(t̂
(−i)
ρ )Ŝ2(t̂

(−i)
ρ ) + ρ

.

Then again because t̂ρ = t̂
(−i)
ρ on R(t̂ρ),

fdr(δ̂ρ) ≤
α

n

∑
i∈Sc∩R(t̂ρ)

E
SIi1
i1 (t̂ρ)S

Ii2
i2 (t̂ρ)

Ŝ1(t̂ρ)Ŝ2(t̂ρ) + ρ
≤ αE

n−1
∑

i∈Sc S
Ii1
i1 (t̂ρ)S

Ii2
i2 (t̂ρ)

Ŝ1(t̂ρ)Ŝ2(t̂ρ) + ρ
.

It remains to show that

lim sup
n→∞

E
n−1

∑
i∈Sc S

Ii1
i1 (t̂ρ)S

Ii2
i2 (t̂ρ)

Ŝ1(t̂ρ)Ŝ2(t̂ρ) + ρ
≤ 1.

By the Fatou-Lebesgue theorem, it suffices to show that

lim sup
n→∞

n−1
∑

i∈Sc S
Ii1
i1 (t̂ρ)S

Ii2
i2 (t̂ρ)

Ŝ1(t̂ρ)Ŝ2(t̂ρ) + ρ
≤ 1

almost surely. Define N = {(0, 0), (0, 1), (1, 0)}. Then the left-hand expression
can be rewritten as

lim sup
n→∞

n−1
∑

i∈Sc S
Ii1
i1 (t̂ρ)S

Ii2
i2 (t̂ρ)

Ŝ1(t̂ρ)Ŝ2(t̂ρ) + ρ

≤ 1 + lim sup
n→∞

n−1
∑

i∈Sc S
Ii1
i1 (t̂ρ)S

Ii2
i2 (t̂ρ)−

∑
I∈N πIS

I1
1 (t̂ρ)S

I2
2 (t̂ρ)

Ŝ1(t̂ρ)Ŝ2(t̂ρ) + ρ
+ (12)

lim sup
n→∞

∑
I∈N πIS

I1
1 (t̂ρ)S

I2
2 (t̂ρ)− S1(t̂ρ)S2(t̂ρ)− ρ

Ŝ1(t̂ρ)Ŝ2(t̂ρ) + ρ
+ (13)

lim sup
n→∞

S1(t̂ρ)S2(t̂ρ)− Ŝ1(t̂ρ)Ŝ2(t̂ρ)

Ŝ1(t̂ρ)Ŝ2(t̂ρ) + ρ
, (14)

with πI and Sd defined as in Assumption 2.
First, the second term of (12) obeys

lim sup
n→∞

∣∣∣∣∣n−1
∑

i∈Sc S
Ii1
i1 (t̂ρ)S

Ii2
i2 (t̂ρ)−

∑
I∈N πIS

I1
1 (t̂ρ)S

I2
2 (t̂ρ)

Ŝd(t̂ρ)Ŝd(t̂ρ) + ρ

∣∣∣∣∣
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≤ 1

ρ
lim
n→∞

sup
t∈[0,∞)

∣∣∣∣∣n−1
∑
i∈Sc

SIi1
i1 (t)SIi2

i2 (t)−
∑
I∈N

πIS
I1
1 (t)SI2

2 (t)

∣∣∣∣∣ = 0,

almost surely, by Assumption 2. Next, the numerator of (13) satisfies

sup
t∈[0,∞)

{∑
I∈N

πIS
I1
1 (t)SI2

2 (t)− S1(t)S2(t)− ρ

}
< 0

by Proposition 1, and because ρ > 0,

lim sup
n→∞

∑
I∈N πIS

I1
1 (t̂ρ)S

I2
2 (t̂ρ)− S1(t̂ρ)S2(t̂ρ)− ρ

Ŝ1(t̂ρ)Ŝ2(t̂ρ) + ρ
≤ 0

almost surely. It remains to show that (14) goes to zero. Since

lim sup
n→∞

∣∣∣∣∣S1(t̂ρ)S2(t̂ρ)− Ŝ1(t̂ρ)Ŝ2(t̂ρ)

Ŝ1(t̂ρ)Ŝ2(t̂ρ) + ρ

∣∣∣∣∣ ≤ 1

ρ
lim
n→∞

sup
t∈[0,∞)

∣∣∣S1(t)S2(t)− Ŝ1(t)Ŝ2(t)
∣∣∣

and the Ŝd(t) are averages of independent but non-identically distributed terms
that satisfy the conditions of Theorem 8.3 of Pollard [31],

lim
n→∞

sup
t∈[0,∞)

∣∣∣∣∣Ŝd(t)−
1

n

n∑
i=1

SIid
id (t)

∣∣∣∣∣ = 0

almost surely for all d. By Assumption 2,

lim
n→∞

sup
t∈[0,∞)

∣∣∣∣∣ 1n
n∑

i=1

SIid
id (t)− Sd(t)

∣∣∣∣∣ = 0,

where Sd(t) = (1− πd)S
0
d(t) + πdS

1
d(t) is defined in Proposition 1. Therefore

lim
n→∞

sup
t∈[0,∞)

|S1(t)S2(t)− Ŝ1(t)Ŝ2(t)| ≤ lim
n→∞

sup
t∈[0,∞)

|S1(t)S2(t)− Ŝ1(t)S2(t)|+

lim
n→∞

sup
t∈[0,∞)

|Ŝ1(t)S2(t)− Ŝ1(t)Ŝ2(t)|

≤ lim
n→∞

2∑
d=1

sup
t∈[0,∞)

|Sd(t)− Ŝd(t)| = 0

almost surely. This concludes the proof.

Appendix D: Proof of Theorem 2

Define

Vab(t1, t2) =
∑

i:Ii1=a,Ii2=b

I(Ti2 ≥ t1, Ti2 ≥ t2), a, b = 0, 1,

R(t1, t2) =
∑
i

I(Ti1 ≥ t1, Ti2 ≥ t2).
(15)
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Then the true false discovery rate attained by a discovery rule of the form
δ(Ti1, Ti2) = I(Ti1 ≥ t1, Ti2 ≥ t2) can be written as

fdr(δ) = E

[
V(0,0)(t1, t2) + V(1,0)(t1, t2) + V(0,1)(t1, t2)

max{1, R(t1, t2)}

]
.

It will first be shown that for any η1, η2 < ∞,

lim
n→∞

inf
t1≤η1,t2≤η2

[
f̃drρ(t1, t2)−

n−1

n−1

V(0,0)(t1, t2) + V(1,0)(t1, t2) + V(0,1)(t1, t2)

max{1, R(t1, t2)}

]
≥ 0 (16)

almost surely, for f̃drρ(t1, t2) defined in (9). Next it will be shown that

sup
t1≤η1,t2≤η2

∣∣∣∣n−1

n−1

V(0,0)(t1, t2) + V(1,0)(t1, t2) + V(0,1)(t1, t2)

max{1, R(t1, t2)}
− fdr(δ)

∣∣∣∣ → 0,

(17)
almost surely, which will complete the proof.

To show (16), it suffices to show

lim
n→∞

inf
t1≤η1,t2≤η2

[Ŝ1(t1)Ŝ2(t2)−n−1{V(0,0)(t1, t2)+V(1,0)(t1, t2)+V(0,1)(t1, t2)}]≥ 0

almost surely. Arguments from the proof of Theorem 1 can be used to show that

lim
n→∞

sup
t1,t2∈[0,∞)

|Ŝ1(t1)Ŝ2(t2)− S1(t1)S2(t2)| = 0,

lim
n→∞

sup
t1,t2∈[0,∞)

|G0(t1, t2)− n−1{V(0,0)(t1, t2)+V(1,0)(t1, t2)+V(0,1)(t1, t2)}|=0

almost surely, where G0(t1, t2) =
∑

I∈N πIS
I1
1 (t1)S

I2
2 (t2) with N defined as

{(0, 0), (0, 1), (1, 0)}. Combining these with Proposition 1 proves (16).
To prove (17), define

G(t1, t2) = G0(t1, t2) + π(1,1)G
1(t1, t2) (18)

for G1(t1, t2) from in Assumption 2. Then

lim
n→∞

sup
t1≤η1,t2≤η2

∣∣∣∣n−1

n−1

V(0,0)(t1, t2) + V(1,0)(t1, t2) + V(0,1)(t1, t2)

max{1, R(t1, t2)}
− G0(t1, t2)

G(t1, t2)

∣∣∣∣
≤ lim

n→∞

n

max{1, R(η1, η2)}
×

sup
t1≤η1,t2≤η2

∣∣n−1{V(0,0)(t1, t2) + V(1,0)(t1, t2) + V(0,1)(t1, t2)} −G0(t1, t2)
∣∣+

lim
n→∞

n

max{1, R(η1, η2)}
1

G(η1, η2)
×

sup
t1≤η1,t2≤η2

∣∣G(t1, t2)− n−1 max{1, R(t1, t2)}
∣∣ .



136 S. D. Zhao and Y. T. Nguyen

Arguments from the proof of Theorem 1 can be used to show that both terms on
the right-hand side equal zero almost surely. Next, the dominated convergence
theorem implies that

0 =E lim
n→∞

×

sup
t1≤η1,t2≤η2

∣∣∣∣n−1

n−1

V(0,0)(t1, t2) + V(1,0)(t1, t2) + V(0,1)(t1, t2)

max{1, R(t1, t2)}
− G0(t1, t2)

G(t1, t2)

∣∣∣∣
= lim

n→∞
E×

sup
t1≤η1,t2≤η2

∣∣∣∣n−1

n−1

V(0,0)(t1, t2) + V(1,0)(t1, t2) + V(0,1)(t1, t2)

max{1, R(t1, t2)}
− G0(t1, t2)

G(t1, t2)

∣∣∣∣
≥ lim

n→∞
sup

t1≤η1,t2≤η2

∣∣∣∣fdr(δ)− G0(t1, t2)

G(t1, t2)

∣∣∣∣ .
Combining these results proves (17).

Appendix E: Proof of Theorem 3

The theorem is trivially true when (t̂ρ1, t̂ρ2) = (∞,∞). Otherwise, suppose there
exist fixed η1, η2 < ∞ such that t̂ρ1 ≤ η1 and t̂ρ2 ≤ η2 with probability 1. Then
by (16) from the proof of Theorem 2,

lim inf
n→∞

[
f̃drρ(t̂ρ1, t̂ρ2)−

V(0,0)(t̂ρ1, t̂ρ2) + V(1,0)(t̂ρ1, t̂ρ2) + V(0,1)(t̂ρ1, t̂ρ2)

max{1, R(t̂ρ1, t̂ρ2)}

]

≥ lim
n→∞

inf
t1≤η1,t2≤η2

[
f̃drρ(t1, t2)−

n−1

n−1

V(0,0)(t1, t2) + V(1,0)(t1, t2) + V(0,1)(t1, t2)

max{1, R(t1, t2)}

]
≥ 0

almost surely. This implies that

lim sup
n→∞

V(0,0)(t̂ρ1, t̂ρ2) + V(1,0)(t̂ρ1, t̂ρ2) + V(0,1)(t̂ρ1, t̂ρ2)

max{1, R(t̂ρ1, t̂ρ2)}
≤ α

almost surely. Then by the Fatou-Lebesgue theorem,

lim sup
p→∞

fdr(δ̃) ≤ E lim sup
p→∞

V(0,0)(t̂ρ1, t̂ρ2) + V(1,0)(t̂ρ1, t̂ρ2) + V(0,1)(t̂ρ1, t̂ρ2)

max{1, R(t̂ρ1, t̂ρ2)}
≤ α

for the discovery procedure δ̃ (10).
It remains to construct η1 and η2. The pointwise limit of f̃drρ(t1, t2) (9) is

fdrρ(t1, t2) = {S1(t1)S2(t2) + ρ}/G(t1, t2),
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for G(t1, t2) defined in (18). By assumption, there exists some ε > 0 such that
fdrρ(t

′
1, t

′
2) = α − ε. Kolmogorov’s strong law of large numbers and Slutsky’s

theorem show that for n sufficiently large,

|f̃drρ(t
′
1, t

′
2)− fdrρ(t

′
1, t

′
2)| ≤ ε/2

with probability 1. This implies that f̃drρ(t
′
1, t

′
2) ≤ α − ε/2, so (t′1, t

′
2) is a

feasible solution of the optimization problem (10). Then Ĝ(t̂ρ1, t̂ρ2) ≥ Ĝ(t′1, t
′
2).

Using arguments from the proof of Theorem 1, it can be shown that Ĝ(t1, t2)
converges almost surely toG(t1, t2) uniformly in (t1, t2). Therefore for any η > 0,
there exists a sufficiently large n such that

G(t̂ρ1, t̂ρ2) ≥ Ĝ(t̂ρ1, t̂ρ2)− η/4 ≥ Ĝ(t′1, t
′
2)− η/4 ≥ G(t′1, t

′
2)− η/2

with probability 1. Choose η = G(t′1, t
′
2), which must be positive because t′1 and

t′2 are both finite by assumption. This shows that G(t̂ρ1, t̂ρ2) ≥ η/2 > 0 with
probability 1. Now define η1 such that S−1

1 (η/2) and η2 = S−1
2 (η/2). Then

G(t̂ρ1, t̂ρ2) ≥ η/2 = S1(η1) = G(η1, 1) ≥ G(η1, t̂ρ2),

which implies that t̂ρ1 ≤ η1 with probability 1. By similar reasoning, t̂ρ2 ≤ η2
with probability 1. Finally, since η > 0, η1 and η2 are both finite as well.

Appendix F: Proof of Proposition 2

We prove the Proposition 2 for D = 3. Similar arguments can be applied for
cases D ≥ 4. First, the expression

n−1
∑
i∈Sc

SIi1
1 (t1)S

Ii2
2 (t2)S

Ii3
3 (t3)

equals

π(0,0,0)S
0
1(t1)S

0
2(t2)S

0
3(t3) + π(0,1,0)S

0
1(t1)S

1
2(t2)S

0
3(t3)+

π(1,0,1)S
1
1(t1)S

0
2(t2)S

1
3(t3) + π(1,0,0)S

1
1(t1)S

0
2(t2)S

0
3(t3)+

π(0,0,1)S
0
1(t1)S

0
2(t2)S

1
3(t3) + π(0,1,0)S

0
1(t1)S

1
2(t2)S

0
3(t3)+

π(1,1,0)S
1
1(t1)S

1
2(t2)S

0
3(t3),

where πI = |{i : Ii = I}|/n. By the stochastic ordering in Assumption 1,
S0
d(t) < S1

d(t) for d = 1, 2, 3, so the previous expression is at most

{π(0,0,0)S
0
1(t1)S

0
2(t2) + π(0,1,0)S

0
1(t1)S

1
2(t2) + π(1,0,1)S

1
1(t1)S

0
2(t2)}S1

3(t3)+

{π(1,0,0)S
0
2(t2)S

0
3(t3) + π(0,0,1)S

0
2(t2)S

1
3(t3) + π(0,1,0)S

1
2(t2)S

0
3(t3)}S1

1(t1)+

π(1,1,0)S
1
1(t1)S

1
2(t2)S

0
3(t3)

≤{π(0,0,0)S
0
1(t1)S

0
2(t2) + π(0,1,0)S

0
1(t1)S

1
2(t2) + π(1,0,1)S

1
1(t1)S

0
2(t2)}+
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{π(1,0,0)S
0
2(t2)S

0
3(t3) + π(0,0,1)S

0
2(t2)S

1
3(t3) + π(0,1,0)S

1
2(t2)S

0
3(t3)}+

{π(0,1,0)S
0
1(t1)S

0
3(t3) + π(0,1,1)S

0
1(t1)S

1
3(t3) + π(1,1,0)S

1
1(t1)S

0
3(t3)}.

Now define π(I1,I2,·) = π(I1,I2,0)+π(I1,I2,1) for I1, I2 ∈ {0, 1}, and define π(I1,·,I2)
and π(·,I1,I2) similarly. Then the previous expression is upper-bounded by

{π(0,0,·)S
0
1(t1)S

0
2(t2) + π(0,1,·)S

0
1(t1)S

1
2(t2) + π(1,0,·)S

1
1(t1)S

0
2(t2)}+

{π(·,0,0)S
0
2(t2)S

0
3(t3) + π(·,0,1)S

0
2(t2)S

1
3(t3) + π(·,1,0)S

1
2(t2)S

0
3(t3)}+

{π(0,·,0)S
0
1(t1)S

0
3(t3) + π(0,·,1)S

0
1(t1)S

1
3(t3) + π(1,·,0)S

1
1(t1)S

0
3(t3)}.

Applying Proposition 1 to each of these terms gives the desired result.
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