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Abstract: We study the problem of recovery of matrices that are simulta-
neously low rank and row and/or column sparse. Such matrices appear
in recent applications in cognitive neuroscience, imaging, computer vi-
sion, macroeconomics, and genetics. We propose a GDT (Gradient Descent
with hard Thresholding) algorithm to efficiently recover matrices with such
structure, by minimizing a bi-convex function over a nonconvex set of con-
straints. We show linear convergence of the iterates obtained by GDT to a
region within statistical error of an optimal solution. As an application of
our method, we consider multi-task learning problems and show that the
statistical error rate obtained by GDT is near optimal compared to min-
imax rate. Experiments demonstrate competitive performance and much
faster running speed compared to existing methods, on both simulations
and real data sets.
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1. Introduction

Many problems in machine learning, statistics and signal processing can be
formulated as optimization problems with a smooth objective and nonconvex
constraints. The objective usually measures the fit of a model, parameter, or
signal to the data, while the constraints encode structural requirements on the
model. Examples of nonconvex constraints include sparsity where the parameter
is assumed to have only a few non-zero coordinates [67, 137, 111, 120, 147],
group sparsity where the parameter is comprised of several groups only few of
which are non-zero [90, 77, 68, 36], and low-rankness where the parameter is
believed to be a linear combination of few factors [6, 37, 42, 55, 72]. Common
approach to dealing with nonconvex constraints is via convex relaxations, which
allow for application of simple optimization algorithms and easy theoretical
analysis [2, 30, 51, 29, 80]. From a practical point of view, it has been observed
that directly working with a nonconvex optimization problem can lead to both
faster and more accurate algorithms [115, 144, 138, 129]. As a result, a body of
literature has recently emerged that tries to characterize good performance of
these algorithms [13, 143, 57].
In this work, we focus on the following optimization problem

O¢c arggleiralf(@) (1.1)

where = C R™*™2 ig a nonconvex set comprising of low rank matrices that are
also row and/or column sparse,

= =Z2(r,s1,82) = {® € R™*™2 | rank(0) < r,|O]|2,0 < s1, ||@T||2,0 < 89},

where [|Ol2,0 = [{i € [ma] | Xjepma ©7; # 0}| is the number of non-zero
rows of ©. Such an optimization problem arises in a number of applications in-
cluding sparse singular value decomposition and principal component analysis
[129, 91, 65], sparse reduced-rank regression [20, 93, 37, 38, 123], and reinforce-
ment learning [26, 116, 83, 131, 113]. Rather than considering convex relaxations
of the optimization problem (1.1), we directly work with a nonconvex formu-
lation. Under an appropriate statistical model, the global minimizer 5) approx-
imates the “true” parameter ©* with an error level e. Since the optimization
problem (1.1) is highly nonconvex, our aim is to develop an iterative algorithm
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that, with appropriate initialization, converges linearly to a stationary point ©
that is within ¢ - € distance of ©. In order to develop a computationally effi-
cient algorithm, we reparametrize the m; x mo matrix variable © as UV T with
U e R™>*" and V € R™2*" and optimize over U and V. That is, we consider
(with some abuse of notation) the following optimization problem

(U,V) €arg min_ f(U,V), (1.2)
where
U = U(sl) = {U € R™*" | ||UH2’0 < 81}
and

V=V(s2) = {V €R™" | |[V]2p < 52}

Such a reparametrization automatically enforces the low rank structure and will
allow us to develop an algorithm with low computational cost per iteration. Note
that even though U and V are only unique up to scaling and a rotation by an
orthogonal matrix, © = UV T is usually unique.

We make several contributions in this paper. First, we develop an efficient
algorithm for minimizing (1.2), which uses projected gradient descent on a non-
convex set in each iteration. Under conditions on the function f(©) that are
common in the high-dimensional literature, we establish linear convergence of
the iterates to a statistically relevant solution. In particular, we require that the
function f(O) satisfies restricted strong convexity (RSC) and restricted strong
smoothness (RSS), conditions that are given in Condition (RSC/RSS) below.
Compared to the existing work for optimization over low rank matrices with
(alternating) gradient descent, we need to study a projection onto a noncon-
vex set in each iteration, which in our case is a hard-thresholding operation,
that requires delicate analysis and novel theory. Our second contribution, is in
the domain of multi-task learning. Multi-task learning is a widely used learning
framework where similar tasks are considered jointly for the purpose of improv-
ing performance compared to learning the tasks separately [32]. We study the
setting where the number of input variables and the number of tasks can be
much larger than the sample size (see [93] and references there in). Our focus
is on simultaneous variable selection and dimensionality reduction. We want to
identify which variables are relevant predictor variables for different tasks and
at the same time we want to combine the relevant predictor variables into fewer
features that can be explained as latent factors that drive the variation in the
multiple responses. We provide a new algorithm for this problem and improve
the theoretical results established in [93]. In particular, our algorithm does not
require a new independent sample in each iteration and allows for non-Gaussian
errors, while at the same time achieves nearly optimal error rate compared to
the information theoretic minimax lower bound for the problem. Moreover, our
prediction error is much better than the error bound proposed in [20], and
matches the error bound in [111]. However, all of the existing algorithms are
slow and cannot scale to high dimensions. Finally, our third contribution is
in the area of reinforcement learning. We study the Multi-task Reinforcement
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Learning (MTRL) problem via value function approximation. In MTRL the de-
cision maker needs to solve a sequence of Markov Decision Processes (MDPs).
A common approach to Reinforcement Learning when the state space is large
is to approximate the value function of linear basis functions (linear in some
appropriate feature representation of the states) with sparse support. Thus, it
is natural to assume the resulting coefficient matrix is low rank and row sparse.
Our proposed algorithm can be applied to the regression step of any MTRL algo-
rithm (we chose Fitted Q-iteration (FQI) for presentation purposes) to solve for
the optimal policies for MDPs. Compared to [26] which uses convex relaxation,
our algorithm is much more efficient in high dimensions.

1.1. Related work

Our work contributes to several different areas, and thus is naturally related to
many existing works. We provide a brief overview of the related literature and
describe how it is related to our contributions. For the sake of brevity, we do
not provide an extensive review of the existing literature.

Low-rank matrix recovery A large body of literature exists on recovery
of low-rank matrices as they arise in a wide variety of applications throughout
science and engineering, ranging from quantum tomography to signal processing
and machine learning [1, 89, 114, 45]. Recovery of a low-rank matrix can be
formulated as the following optimization problem

©carg min f(©) subject to rank(©) <, (1.3)
OcR™1 Xm2

where the objective function f : R™1*™2 — R is convex and smooth. The
problem (1.3) is highly nonconvex and NP-hard in general [51, 52]. A lot of the
progress in the literature has focused on convex relaxations where one replaces
the rank constraint using the nuclear norm. See, for example, [29, 30, 28, 106,
23, 105, 55, 33, 67, 109, 80, 61, 98, 36, 132, 99, 2, 107, 39, 40, 41, 65, 25,
135, 147, 128] and references therein. However, developing efficient algorithms
for solving these convex relaxations is challenging in regimes with large m;
and mgy [66]. A practical approach, widely used in large scale applications such
as recommendation systems or collaborative filtering [117, 81, 54, 150] relies
on solving a nonconvex optimization problem where the decision variable © is
factored as UV T, usually referred to as the Burer-Monteiro type decomposition
[21, 22]. A stationary point of this nonconvex problem is usually found via
a block coordinate descent-type algorithm, such as alternating minimization
or (alternating) gradient descent. Unlike for the convex relaxation approaches,
the theoretical understanding of these nonconvex optimization procedures has
been developed only recently [75, 76, 72, 62, 64, 63, 115, 144, 43, 97, 49, 145,
17, 16, 119, 42, 148, 35, 149, 53, 88, 86, 94, 58]. Compared to the classical
nonconvex optimization theory, which only shows a sublinear convergence to a
local optima, the focus of the recent literature is on establishing linear rates of
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convergence or characterizing that the objective does not have spurious local
minima. In addition to the methods that work on the factorized form, [70,
84, 71, 13, 46] consider projected gradient-type methods which optimize over
the matrix variable ©@ € R™ *™2_ These methods involve calculating the top r
singular vectors of an m X mo matrix at each iteration. When r is much smaller
than m; and ms, they incur much higher computational cost per iteration than
the methods that optimize over U € R™*" and V € R™=2X",

Our work contributes to this body of literature by studying gradient descent
with a projection step on a non-convex set, which requires hard-thresholding.
Hard-thresholding in this context has not been considered before. Theoretically
we need a new argument to establish linear convergence to a statistically relevant
point. [42] considered projected gradient descent in a symmetric and positive
semidefinite setting with a projection on a convex set. Our work is most closely
related to [144], which used the notion of inexact first order oracle to establish
their results, but did not consider the hard-thresholding step.

Structured low-rank matrices Low-rank matrices with additional struc-
ture also commonly arise in different problems ranging from sparse principal
component analysis (PCA) and sparse singular value decomposition to multi-
task learning. In a high-dimensional setting, the classical PCA is inconsistent
[73] and recent work has focused on PCA with additional sparse structure on
the eigenvectors [5, 14, 18, 24, 125, 92, 142]. Similar sparse structure in singular
vectors arises in sparse SVD and biclustering [85, 37, 91, 121, 136, 74, 10, 78, 11].
While the above papers use the sparsity structure of the eigenvectors and singu-
lar vectors, it is also possible to have simultaneous low rank and sparse structure
directly on the matrix ©. Such a structure arises in multi-task learning, covari-
ance estimation, graph denoising and link prediction [95, 108]. Additional struc-
ture on the sparsity pattern was imposed in the context of sparse rank-reduced
regression, which is an instance of multi-task learning [38, 20, 93, 9, 111]. Our al-
gorithm described in Section 2 can be applied to the above mentioned problems.
In Section 4, we theoretically study multi-task learning in the setting of [93].
We relax conditions imposed in [93], specifically allowing for non-Gaussian er-
rors and not requiring independent samples at each step of the algorithm, while
still achieving the near minimax rate of convergence. We provide additional dis-
cussion in Section 4 after formally providing results for the multi-task learning
setting. In Section 5, we further corroborate our theoretical results in exten-
sive simulations and show that our algorithm outperforms existing methods in
multi-task learning.

Low-rank plus sparse matrix recovery At this point, it is worth mention-
ing another commonly encountered structure on the decision variable © that we
do not study in the current paper. In various applications it is common to model
O as a sum of two matrices, one of which is low-rank and the other one sparse.
Applications include robust PCA, latent Gaussian graphical models, factor anal-
ysis and multi-task learning [27, 67, 33, 41, 2, 56, 143, 133, 57, 60, 31]. While
Burer-Monteiro factorization has been considered for the low-rank component
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in this context (see, for example, [143] and references therein), the low-rank
component is dense as it needs to be incoherent. The incoherence assumption
guarantees that the low-rank component is not too spiky and can be identified
[29]. An alternative approach was taken in [57] where alternating minimization
over the low-rank and sparse component with a projection on a nonconvex set
was investigated.

1.2. Organization of the paper

In Section 2 we provide details for our proposed algorithm. Section 3 states our
assumptions and the theoretical result with a proof sketch. Section 4 shows ap-
plications to multi-task learning, while Section 5 presents experimental results.
Section 6 provides detailed technical proofs. Conclusion is given in Section 7.

2. Gradient descent with hard thresholding

In this section, we detail our proposed algorithm, which is based on gradient
descent with hard thresholding (GDT). Our focus is on developing an efficient
algorithm for minimizing f(©) with © € =Z. In statistical estimation and machine
learning a common goal is to find ©*, which is an (approximate) minimizer of
E[f(©)] where the expectation is with respect to randomness in data. In many
settings, the global minimizer of (1.1) can be shown to approximate ©* up
to statistical error, which is problem specific. In Section 3, we will show that
iterates of our algorithm converge linearly to ©* up to a statistical error. It is
worth noting that an argument similar to that in the proof of Theorem 1 can be
used to establish linear convergence to the global minimizer © in a deterministic
setting. That is, suppose (U, V) is a global minimizer of the problem (1.2) and
© = UVT. Then as long as the conditions in Section 3 hold for U , V in place
of U*,V*, we can show linear convergence to © up to an error level defined by
the gradient of the objective function at ©. See the discussion after Theorem 1.

Our algorithm, GDT, uses a Burer-Monteiro factorization to write @ = UV T,
where U € R™*" and V € R™2*" and minimizes

U, V) €arg min  f(UV)+g(UV), (2.1)

where g(U, V) is the penalty function defined as
1
9U.V) = {IUTU - VTV

The role of the penalty is to find a balanced decomposition of (:), one for which
o, (U) =0;(V),i=1,...,r [149, 143]. Note the value of the penalty is equal to
0 for a balanced solution, so we can think of the penalized objective as looking
through minimizer of (1.2) for a one that satisfies U T U~V "V = 0. In particular,
adding the penalty function g does not change the minimizer of f over =. The
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convergence rate of GDT depends on the condition number of (U*,V*), the
point algorithm converges to. The penalty ensures that the iterates U, V are not
ill-conditioned. Gradient descent with hard-thresholding on U and V is used to
minimize (2.1). Details of GDT are given in Algorithm 1. The algorithm takes
as input parameters 7, the step size; s1, so, the sparsity level; T, the number of
iterations; and a starting point OV,

The choice of starting point ©Y is very important as the algorithm performs
a local search in its neighborhood. In Section 3 we will formalize how close ©°
needs to be to ©*, while in Section 4 we provide a concrete way to initialize
under a multi-task learning model. In general, we envisage finding ©° by solving
the following optimization problem

0" =arg min f(©)+ pen(O), (2.2)
O€eR™1Xm2

where pen(©) is a (simple) convex penalty term making the objective (2.2) a
convex optimization problem. For example, we could use the vector ¢; norm,
pen(©) = ||©]]1. The choice of penalty pen(©) should be such that solving
the optimization problem in (2.2) can be done efficiently in a high dimensional
setting. In practice, if solving the convex relaxation is slow, we can start from
the all zero matrix and perform several (proximal) gradient steps to get an
appropriate initialization. See for example [143]. Once an initial estimate ©° is
obtained, we find the best rank r approximation O =UXVT to ©° and use
it to obtain the initial iterates U° and V. In each step, GDT updates U and
V' by taking a gradient step and hard-thresholding the result. The operation
Hard(U, s) keeps s rows of U with the largest ¢ row-norm, while setting to zero
other rows.

Suppose that the target statistical parameter ©* is in Z(r*, s3, s3). The spar-
sity level s7 and s3 as well as the rank r* are not known in practice, but are
needed in Algorithm 1. For the convergence proof we require that the input
parameters to the algorithm are set as s; = c¢- s} and sy = ¢ s for some ¢ > 1.
From simulations, we observe that the estimation accuracy is not very sensitive
to the choice of s; and ss as long as they are chosen greater than the true values
s7 and s5. This suggests that in practice, we could set s; and so to be reason-
ably large values whenever a reasonable guess of the sparsity level is available,
as incorrectly omitting nonzero value (false negative) is more troublesome than
including one zero value (false positive). Alternatively, as we do in simulations,
we can use a validation set or an information criteria to select these tuning pa-
rameters. However, it is noted in [112] that conventional cross validation may
select an inconsistent model, especially when using a non-convex penalty. As an
improvement, we can adopt the techniques in [111], which develops the scale-
free predictive information criterion to select the best sparsity parameters. Also,
[112] proposes structural cross validation method that can achieve the minimax
optimal error rate.

Following the same guideline as in the literature, in our analysis we assume
that we are using the true rank r = r*. In practice, the rank r can be estimated
as in [19], which guarantees consistent rank estimation with high probability.
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Algorithm 1 Gradient Descent with Hard Thresholding (GDT)

: Input: Initial estimate ©°
: Parameters: Step size n, Rank r, Sparsity level s1, s2, Total number of iterations T'
(U,%,V) = rank r SVD of @°
U° = Hard(U(2) 2, 51), VO = Hard(V(2) 2, s2)
fort=1to T do
Viros =yt — anf(Utv vt) - ang(Ut7 Vt)?
Vit+l = Hard(VI10-3, s5)
Uttos = Ut —gVy f(US, V) = nVug(U', VY,
Utt! = Hard(U'*05, 51)
: end for
: Output: @7 =yT(vT)T

QORI R W

— =

Although [19] considers low-rank structure without sparsity, in practice, it still
provides a reasonable rank estimator. The usage of [19] in a low-rank and sparse
model is also suggested in [93]. The performance of the GDT algorithm is robust
to the choice of rank r, as we will demonstrate through extensive experiments
in Section 5. Finally, we remark that a joint tuning scheme for the rank and
sparsity parameters can also be considered.

To the best of our knowledge, GDT is the first gradient based algorithm to
deal with a nonconvex optimization problem over a parameter space that is
simultaneously low rank and row and column sparse. In the following section
we will provide conditions on the objective function f and the starting point
060 which guarantee linear convergence to ©* up to a statistical error. As an
application, we consider the multi-task learning problem in Section 4. We show
that the statistical error nearly matches the optimal minimax rate, while the
algorithm achieves the best performance in terms of estimation and prediction
error in simulations.

3. Theoretical result

In this section, we formalize the conditions and state the main result on the
linear convergence of our algorithm. We begin in Section 3.1 by stating the
conditions on the objective function f and initialization that are needed for our
analysis. In Section 3.2, we state Theorem 1 that guarantees linear convergence
under the conditions to a statistically useful point. The proof outline is given in
Section 3.3. In Section 4 to follow, we derive results for multi-task learning as
corollaries of our main result.

3.1. Regularity conditions

We start by stating mild conditions on the objective function f, which have
been used in the literature on high-dimensional estimation and nonconvex opti-
mization, and they hold with high-probability for a number of statistical models
of interest [144, 143, 57]. Note that all the conditions depend on the choice of
s1 and sy (or equivalently, on c).



Nonconvez estimation of sparse low rank matrices 421

For ©* € Z(r*, s}, s3), let ©* = Ug~Xe+Vg. be its singular value decompo-
sition. Let U* = U@*Eé)/f and V* = V@*ng be the balanced decomposition of
©* = U*V*T. Note that the decomposition is not unique as ©* = (U*O)(V*O)"
for any orthogonal matrix O € O(r). Let 01(0*) = 0nax(0*) and 0,(0*) =
Omin(©*) denote the maximum and minimum nonzero singular values of ©*
with r = r*. The first condition is Restricted Strong Convexity and Smoothness

on f.

Restricted Strong Convexity and Smoothness (RSC/RSS) There exist
universal constants p and L such that

L1102 = ©1]} < £(62) = £(61) = (VF(©1), 02 — 61)

IN

L
§||@2—91H%

for all ©1,09 € E(2r,51,52) where 51 = (2¢ + 1)s7 and S5 = (2¢ + 1)s5.

The next condition is on the initial estimate ©°. It quantifies how close the
initial estimator needs to be to ©* so that iterates of GDT converge to statis-
tically useful solution.

Initialization (I) Define fimi, = § min{1, J;—LL} and

4 o 1
IO = guminar(@ ) . mln{m,Q}. (31)

We require
Iy

1
|e°—er < ¢ min{ar(G)*), 5 ar<@*>}, (3.2)

where €2 =1+ —2=.

We note that, in general, (3.2) defines a ball of constant radius around ©*
in which the initial estimator needs to fall into. In particular, when considering
statistical learning problems, the initial estimator can be inconsistent as the

sample size increases.

Next, we define the notion of the statistical error,

Estat = sup <Vf(®*), A> (33)
A€EE(2r,31,32)
IAllF<1

Note that the statistical error quantifies how large the gradient of the objective
evaluated at the true parameter ©* can be in the directions of simultaneously
low-rank and sparse matrices. It implicitly depends on the choice of ¢ and as we
will see later there is a trade-off in balancing the statistical error and convergence
rate of GDT. As cincreases, statistical error gets larger, but requires us to choose
a smaller step size in order to guarantee convergence.

With these two conditions, we are ready to the choice of the step size in
Algorithm 1.
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0
Step size selection Let Z° = { 50 } . We choose the step size 7 to satisfy
1 1
n§7~min{7,1}, 3.4
W2 ™ 2 ) (34

Furthermore, we require 1 and ¢ to satisfy

6 = 52 (]- —-n: %Nminar(g*)) < ]-, (35)

and ) I
2 <10 L g
&n L+np

The condition that the step size 7 satisfies (3.4) is typical in the literature on
convex optimization of strongly convex and smooth functions. Under (3.5) we
will be able to show contraction after one iteration and progress towards O*.
The second term in (3.5) is always smaller than 1, while the first term &2 is
slightly larger than 1 and is the price we pay for the hard thresholding step. In
order to show linear convergence we need to balance the choice of i and £? to
ensure that 8 < 1. From (3.5), we see that if we select a small step size 7, then
we need to have a small ¢€2, which means a large c. Intuitively, if 7 is too small,
it may be impossible to change row and column support in each iteration. In
this case we have to keep many active rows and columns to make sure we do
not miss the true signal. This leads to large s; and so, or equivalently to a large
c. However, the statistical error (3.3) will increase with increase of ¢ and these
are the trade-off on the selection of 7 and c.

Finally, (3.6) guarantees that the iterates do not run outside of the initial
ball given in (3.2). In case (3.6) is violated, then the initialization point ©°
is already a good enough estimate of ©*. Therefore, this requirement is not
restrictive. In practice, we found that the selection of 7 and ¢ is not restrictive
and the convergence is guaranteed for a wide range of values of their values.

In order to satisfy these regularity conditions, we may need to choose a rel-
atively large c. However, the condition on c¢ is purely a technical conditions.
To the best of our knowledge, all the literature on iterative hard thresholding
requires some restrictive conditions on c¢. Without the hard thresholding step,
we can guarantee contraction 5 < 1 after one step of the gradient descent. How-
ever, the hard thresholding step amplifies the estimation error and, therefore,
we need a relatively large ¢ to guarantee contraction. In theory, we require an
upper bound on c¢ that does not scale with n,p, or K. In practice, we do not
know the true sparsity level s* and choose s directly based on prior knowledge
or select it via cross validation. Moreover, the step size 7 could be selected in a
heuristic way when implementing the algorithm for specific applications. While
the techniques needed to establish better theoretical control of the parameter ¢
still require improvement, in practice, even with small values of ¢ the method
performs well. Experiments in Section 5 show that the tuning parameters can
be chosen in way to yield good finite sample performance. In practice, selecting

(3.6)
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inappropriate model parameters or initialization may worsen the performance
of the algorithm, resulting in possibly sublinear convergence rate.

3.2. Main result

Our main result establishes linear convergence of GDT iterates to ©* up to
statistical error. Since the factorization of ©* is not unique, we turn to measure
the subspace distance of the iterates (U?, V) to the balanced decomposition
Us(v*) " =e*

U*
V*
o;(V*) for each ¢ = 1,...,r. Define the subspace distance between Z = { g }

andZ*:[U }as

Subspace distance Let Z* = [ } where ©* = U*V*' and 0,(U*) =

V*

(2.2") = min {|U=U"Ol}+V = V"OI:}.

With this, we are ready to state our main result.

Theorem 1. Suppose the conditions (RSC/RSS), (I) are satisfied and the
step size n satisfies (3.4)—(3.6). Then after T iterations of GDT (Algorithm 1),
we have

& ﬂ 2 (3.7)

d2(ZT?Z*)§/6Td2(Z07Z*)+1_5 LM 'estat'

Furthermore, for ©T = UT(VT)T we have

2
167 073 < 4oy (0% - [87 - a?(20. 27y + S EEE ] (3)
1-8 L-u

The proof sketch of Theorem 1 is given in the following section. Conceptually,
Theorem 1 provides a minimal set of conditions for convergence of GDT. The
first term in equations (3.7) and (3.8) correspond to the optimization error,
whereas the second term corresponds to the statistical error. These bounds
show that the distance between the iterates and ©* drop exponentially up to the
statistical limit egat, which is problem specific. In statistical learning problem,
it commonly depends on the sample size and the signal-to-noise ratio of the
problem.

Theorem 1 provides convergence in a statistical setting to the “true” parame-
ter ©*. However, as mentioned in Section 2, Algorithm 1 and Theorem 1 can also
be used to establish linear convergence to a global minimizer in a deterministic
setting. Suppose (U,V) € argmingey,vev{f(U,V)} is a global minimizer and
0= (ZXA/T Furthermore, assume that the conditions in Section 3.1 are satisfied
with © in place of ©*. Then we have that the iterates {O'} obtained by GDT
converge linearly to a global minimum 5) up to the error .t defined similar to
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(3.3) with © in place of ©*. This error comes from sparsity and hard threshold-
ing. In particular, suppose there are no row or column sparsity constraints in
the optimization problem (1.2), so that we do not have hard-thresholding steps
in Algorithm 1. Then we have €, = 0, so that iterates {@t} converge linearly
to ©, recovering the result of [144].

3.3. Proof sketch of Theorem 1

In this section we sketch the proof of our main result. The proof combines three
lemmas. We first one quantify the accuracy of the initialization step. The fol-
lowing one quantifies the improvement in the accuracy by one step of GDT. The
third lemma shows that the step size assumed in Theorem 1 satisfies conditions
of the second lemma. Detailed proofs of these lemmas are relegated to Section 6.

Our first lemma quantifies the accuracy of the initialization step.

Lemma 2. Suppose that the input to GDT, ©°, satisfies initialization condi-
tion (3.2). Then the initial iterates U and VO obtained in lines 3 and 4 of
Algorithm 1 satisfy

d(Z°, 72%) < I, (3.9)

0
where Z° = [ ‘[io } and Iy is defined in (3.1).

The proof of Lemma 2 is given in Section 6.1.
Lemma 3. Suppose the conditions (RSC/RSS), (I) are satisfied. Assume

that the point Z = satisfies d(Z,Z*) < Iy. Let (U, V1) denote the next

U
%
iterate obtained with Algorithm 1 with the step size n satisfying

1 1
< smin g ————, 1. 3.10
1< gz M oY (3.10)
Then we have
d2(Z%,2%) < &2 (1 —n- gMma,.(@*)) dX(Z,Z*) +n- LEn 2 (3.11)
I’ — 5 Y L /J stat |

where £2 =1 4+ —2

c—1"

The proof of Lemma 3 is given in Section 6.2.

Lemma 4. Suppose Z = [ u } satisfies d(Z, Z*) < Iy. We have that the choice

v
of step size (3.4) in Theorem 1 satisfies the condition (3.10) in Lemma 3.

The proof of Lemma 4 is given in Section 6.3.
Combining the three results above, we can complete the proof of Theo-
rem 1. Starting from initialization ©° satisfying the initialization condition (3.2),
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Lemma 2 ensures that (3.9) is satisfied for Z° and Lemma 4 ensures that the
choice of step size (3.4) satisfies the step size condition (3.10) in Lemma 3. We
can then apply Lemma 3 and get the next iterate Z' = Z%, which satisfies
(3.11). Using the condition on statistical error (3.6), initialization (3.2), and a
simple calculation, we can verify that Z! satisfies d(Z', Z*) < Iy. Theref