
Electronic Journal of Statistics
Vol. 14 (2020) 413–457
ISSN: 1935-7524
https://doi.org/10.1214/19-EJS1658

Recovery of simultaneous low rank and

two-way sparse coefficient matrices,

a nonconvex approach

Ming Yu, Varun Gupta, and Mladen Kolar

Booth School of Business, The University of Chicago, Chicago, IL 60637
e-mail:

mingyu@chicagobooth.edu; varun.gupta@chicagobooth.edu; mladen.kolar@chicagobooth.edu

Abstract: We study the problem of recovery of matrices that are simulta-
neously low rank and row and/or column sparse. Such matrices appear
in recent applications in cognitive neuroscience, imaging, computer vi-
sion, macroeconomics, and genetics. We propose a GDT (Gradient Descent
with hard Thresholding) algorithm to efficiently recover matrices with such
structure, by minimizing a bi-convex function over a nonconvex set of con-
straints. We show linear convergence of the iterates obtained by GDT to a
region within statistical error of an optimal solution. As an application of
our method, we consider multi-task learning problems and show that the
statistical error rate obtained by GDT is near optimal compared to min-
imax rate. Experiments demonstrate competitive performance and much
faster running speed compared to existing methods, on both simulations
and real data sets.
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1. Introduction

Many problems in machine learning, statistics and signal processing can be
formulated as optimization problems with a smooth objective and nonconvex
constraints. The objective usually measures the fit of a model, parameter, or
signal to the data, while the constraints encode structural requirements on the
model. Examples of nonconvex constraints include sparsity where the parameter
is assumed to have only a few non-zero coordinates [67, 137, 111, 120, 147],
group sparsity where the parameter is comprised of several groups only few of
which are non-zero [90, 77, 68, 36], and low-rankness where the parameter is
believed to be a linear combination of few factors [6, 37, 42, 55, 72]. Common
approach to dealing with nonconvex constraints is via convex relaxations, which
allow for application of simple optimization algorithms and easy theoretical
analysis [2, 30, 51, 29, 80]. From a practical point of view, it has been observed
that directly working with a nonconvex optimization problem can lead to both
faster and more accurate algorithms [115, 144, 138, 129]. As a result, a body of
literature has recently emerged that tries to characterize good performance of
these algorithms [13, 143, 57].

In this work, we focus on the following optimization problem

Θ̂ ∈ argmin
Θ∈Ξ

f(Θ) (1.1)

where Ξ ⊂ R
m1×m2 is a nonconvex set comprising of low rank matrices that are

also row and/or column sparse,

Ξ = Ξ(r, s1, s2) = {Θ ∈ R
m1×m2 | rank(Θ) ≤ r, ‖Θ‖2,0 ≤ s1, ‖Θ�‖2,0 ≤ s2},

where ‖Θ‖2,0 = |{i ∈ [m1] |
∑

j∈[m2]
Θ2

ij �= 0}| is the number of non-zero
rows of Θ. Such an optimization problem arises in a number of applications in-
cluding sparse singular value decomposition and principal component analysis
[129, 91, 65], sparse reduced-rank regression [20, 93, 37, 38, 123], and reinforce-
ment learning [26, 116, 83, 131, 113]. Rather than considering convex relaxations
of the optimization problem (1.1), we directly work with a nonconvex formu-

lation. Under an appropriate statistical model, the global minimizer Θ̂ approx-
imates the “true” parameter Θ∗ with an error level ε. Since the optimization
problem (1.1) is highly nonconvex, our aim is to develop an iterative algorithm
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that, with appropriate initialization, converges linearly to a stationary point Θ̌
that is within c · ε distance of Θ̂. In order to develop a computationally effi-
cient algorithm, we reparametrize the m1 ×m2 matrix variable Θ as UV � with
U ∈ R

m1×r and V ∈ R
m2×r, and optimize over U and V . That is, we consider

(with some abuse of notation) the following optimization problem

(Û , V̂ ) ∈ arg min
U∈U,V ∈V

f(U, V ), (1.2)

where
U = U(s1) =

{
U ∈ R

m1×r | ‖U‖2,0 ≤ s1
}

and
V = V(s2) =

{
V ∈ R

m2×r | ‖V ‖2,0 ≤ s2
}
.

Such a reparametrization automatically enforces the low rank structure and will
allow us to develop an algorithm with low computational cost per iteration. Note
that even though Û and V̂ are only unique up to scaling and a rotation by an
orthogonal matrix, Θ̂ = Û V̂ � is usually unique.

We make several contributions in this paper. First, we develop an efficient
algorithm for minimizing (1.2), which uses projected gradient descent on a non-
convex set in each iteration. Under conditions on the function f(Θ) that are
common in the high-dimensional literature, we establish linear convergence of
the iterates to a statistically relevant solution. In particular, we require that the
function f(Θ) satisfies restricted strong convexity (RSC) and restricted strong
smoothness (RSS), conditions that are given in Condition (RSC/RSS) below.
Compared to the existing work for optimization over low rank matrices with
(alternating) gradient descent, we need to study a projection onto a noncon-
vex set in each iteration, which in our case is a hard-thresholding operation,
that requires delicate analysis and novel theory. Our second contribution, is in
the domain of multi-task learning. Multi-task learning is a widely used learning
framework where similar tasks are considered jointly for the purpose of improv-
ing performance compared to learning the tasks separately [32]. We study the
setting where the number of input variables and the number of tasks can be
much larger than the sample size (see [93] and references there in). Our focus
is on simultaneous variable selection and dimensionality reduction. We want to
identify which variables are relevant predictor variables for different tasks and
at the same time we want to combine the relevant predictor variables into fewer
features that can be explained as latent factors that drive the variation in the
multiple responses. We provide a new algorithm for this problem and improve
the theoretical results established in [93]. In particular, our algorithm does not
require a new independent sample in each iteration and allows for non-Gaussian
errors, while at the same time achieves nearly optimal error rate compared to
the information theoretic minimax lower bound for the problem. Moreover, our
prediction error is much better than the error bound proposed in [20], and
matches the error bound in [111]. However, all of the existing algorithms are
slow and cannot scale to high dimensions. Finally, our third contribution is
in the area of reinforcement learning. We study the Multi-task Reinforcement
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Learning (MTRL) problem via value function approximation. In MTRL the de-
cision maker needs to solve a sequence of Markov Decision Processes (MDPs).
A common approach to Reinforcement Learning when the state space is large
is to approximate the value function of linear basis functions (linear in some
appropriate feature representation of the states) with sparse support. Thus, it
is natural to assume the resulting coefficient matrix is low rank and row sparse.
Our proposed algorithm can be applied to the regression step of any MTRL algo-
rithm (we chose Fitted Q-iteration (FQI) for presentation purposes) to solve for
the optimal policies for MDPs. Compared to [26] which uses convex relaxation,
our algorithm is much more efficient in high dimensions.

1.1. Related work

Our work contributes to several different areas, and thus is naturally related to
many existing works. We provide a brief overview of the related literature and
describe how it is related to our contributions. For the sake of brevity, we do
not provide an extensive review of the existing literature.

Low-rank matrix recovery A large body of literature exists on recovery
of low-rank matrices as they arise in a wide variety of applications throughout
science and engineering, ranging from quantum tomography to signal processing
and machine learning [1, 89, 114, 45]. Recovery of a low-rank matrix can be
formulated as the following optimization problem

Θ̂ ∈ arg min
Θ∈Rm1×m2

f(Θ) subject to rank(Θ) ≤ r, (1.3)

where the objective function f : R
m1×m2 �→ R is convex and smooth. The

problem (1.3) is highly nonconvex and NP-hard in general [51, 52]. A lot of the
progress in the literature has focused on convex relaxations where one replaces
the rank constraint using the nuclear norm. See, for example, [29, 30, 28, 106,
23, 105, 55, 33, 67, 109, 80, 61, 98, 36, 132, 99, 2, 107, 39, 40, 41, 65, 25,
135, 147, 128] and references therein. However, developing efficient algorithms
for solving these convex relaxations is challenging in regimes with large m1

and m2 [66]. A practical approach, widely used in large scale applications such
as recommendation systems or collaborative filtering [117, 81, 54, 150] relies
on solving a nonconvex optimization problem where the decision variable Θ is
factored as UV �, usually referred to as the Burer-Monteiro type decomposition
[21, 22]. A stationary point of this nonconvex problem is usually found via
a block coordinate descent-type algorithm, such as alternating minimization
or (alternating) gradient descent. Unlike for the convex relaxation approaches,
the theoretical understanding of these nonconvex optimization procedures has
been developed only recently [75, 76, 72, 62, 64, 63, 115, 144, 43, 97, 49, 145,
17, 16, 119, 42, 148, 35, 149, 53, 88, 86, 94, 58]. Compared to the classical
nonconvex optimization theory, which only shows a sublinear convergence to a
local optima, the focus of the recent literature is on establishing linear rates of
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convergence or characterizing that the objective does not have spurious local
minima. In addition to the methods that work on the factorized form, [70,
84, 71, 13, 46] consider projected gradient-type methods which optimize over
the matrix variable Θ ∈ R

m1×m2 . These methods involve calculating the top r
singular vectors of an m1×m2 matrix at each iteration. When r is much smaller
than m1 and m2, they incur much higher computational cost per iteration than
the methods that optimize over U ∈ R

m1×r and V ∈ R
m2×r.

Our work contributes to this body of literature by studying gradient descent
with a projection step on a non-convex set, which requires hard-thresholding.
Hard-thresholding in this context has not been considered before. Theoretically
we need a new argument to establish linear convergence to a statistically relevant
point. [42] considered projected gradient descent in a symmetric and positive
semidefinite setting with a projection on a convex set. Our work is most closely
related to [144], which used the notion of inexact first order oracle to establish
their results, but did not consider the hard-thresholding step.

Structured low-rank matrices Low-rank matrices with additional struc-
ture also commonly arise in different problems ranging from sparse principal
component analysis (PCA) and sparse singular value decomposition to multi-
task learning. In a high-dimensional setting, the classical PCA is inconsistent
[73] and recent work has focused on PCA with additional sparse structure on
the eigenvectors [5, 14, 18, 24, 125, 92, 142]. Similar sparse structure in singular
vectors arises in sparse SVD and biclustering [85, 37, 91, 121, 136, 74, 10, 78, 11].
While the above papers use the sparsity structure of the eigenvectors and singu-
lar vectors, it is also possible to have simultaneous low rank and sparse structure
directly on the matrix Θ. Such a structure arises in multi-task learning, covari-
ance estimation, graph denoising and link prediction [95, 108]. Additional struc-
ture on the sparsity pattern was imposed in the context of sparse rank-reduced
regression, which is an instance of multi-task learning [38, 20, 93, 9, 111]. Our al-
gorithm described in Section 2 can be applied to the above mentioned problems.
In Section 4, we theoretically study multi-task learning in the setting of [93].
We relax conditions imposed in [93], specifically allowing for non-Gaussian er-
rors and not requiring independent samples at each step of the algorithm, while
still achieving the near minimax rate of convergence. We provide additional dis-
cussion in Section 4 after formally providing results for the multi-task learning
setting. In Section 5, we further corroborate our theoretical results in exten-
sive simulations and show that our algorithm outperforms existing methods in
multi-task learning.

Low-rank plus sparse matrix recovery At this point, it is worth mention-
ing another commonly encountered structure on the decision variable Θ that we
do not study in the current paper. In various applications it is common to model
Θ as a sum of two matrices, one of which is low-rank and the other one sparse.
Applications include robust PCA, latent Gaussian graphical models, factor anal-
ysis and multi-task learning [27, 67, 33, 41, 2, 56, 143, 133, 57, 60, 31]. While
Burer-Monteiro factorization has been considered for the low-rank component
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in this context (see, for example, [143] and references therein), the low-rank
component is dense as it needs to be incoherent. The incoherence assumption
guarantees that the low-rank component is not too spiky and can be identified
[29]. An alternative approach was taken in [57] where alternating minimization
over the low-rank and sparse component with a projection on a nonconvex set
was investigated.

1.2. Organization of the paper

In Section 2 we provide details for our proposed algorithm. Section 3 states our
assumptions and the theoretical result with a proof sketch. Section 4 shows ap-
plications to multi-task learning, while Section 5 presents experimental results.
Section 6 provides detailed technical proofs. Conclusion is given in Section 7.

2. Gradient descent with hard thresholding

In this section, we detail our proposed algorithm, which is based on gradient
descent with hard thresholding (GDT). Our focus is on developing an efficient
algorithm for minimizing f(Θ) with Θ ∈ Ξ. In statistical estimation and machine
learning a common goal is to find Θ∗, which is an (approximate) minimizer of
E[f(Θ)] where the expectation is with respect to randomness in data. In many
settings, the global minimizer of (1.1) can be shown to approximate Θ∗ up
to statistical error, which is problem specific. In Section 3, we will show that
iterates of our algorithm converge linearly to Θ∗ up to a statistical error. It is
worth noting that an argument similar to that in the proof of Theorem 1 can be
used to establish linear convergence to the global minimizer Θ̂ in a deterministic
setting. That is, suppose (Û , V̂ ) is a global minimizer of the problem (1.2) and

Θ̂ = Û V̂ �. Then as long as the conditions in Section 3 hold for Û , V̂ in place
of U∗, V ∗, we can show linear convergence to Θ̂ up to an error level defined by
the gradient of the objective function at Θ̂. See the discussion after Theorem 1.

Our algorithm, GDT, uses a Burer-Monteiro factorization to write Θ = UV �,
where U ∈ R

m1×r and V ∈ R
m2×r, and minimizes

(Û , V̂ ) ∈ arg min
U∈U,V ∈V

f(U, V ) + g(U, V ), (2.1)

where g(U, V ) is the penalty function defined as

g(U, V ) =
1

4
‖U�U − V �V ‖2F .

The role of the penalty is to find a balanced decomposition of Θ̂, one for which
σi(Û) = σi(V̂ ), i = 1, . . . , r [149, 143]. Note the value of the penalty is equal to
0 for a balanced solution, so we can think of the penalized objective as looking
through minimizer of (1.2) for a one that satisfies Û�Û−V̂ �V̂ = 0. In particular,
adding the penalty function g does not change the minimizer of f over Ξ. The
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convergence rate of GDT depends on the condition number of (U∗, V ∗), the
point algorithm converges to. The penalty ensures that the iterates U, V are not
ill-conditioned. Gradient descent with hard-thresholding on U and V is used to
minimize (2.1). Details of GDT are given in Algorithm 1. The algorithm takes
as input parameters η, the step size; s1, s2, the sparsity level; T , the number of
iterations; and a starting point Θ0.

The choice of starting point Θ0 is very important as the algorithm performs
a local search in its neighborhood. In Section 3 we will formalize how close Θ0

needs to be to Θ∗, while in Section 4 we provide a concrete way to initialize
under a multi-task learning model. In general, we envisage finding Θ0 by solving
the following optimization problem

Θ0 = arg min
Θ∈Rm1×m2

f(Θ) + pen(Θ), (2.2)

where pen(Θ) is a (simple) convex penalty term making the objective (2.2) a
convex optimization problem. For example, we could use the vector �1 norm,
pen(Θ) = ‖Θ‖1. The choice of penalty pen(Θ) should be such that solving
the optimization problem in (2.2) can be done efficiently in a high dimensional
setting. In practice, if solving the convex relaxation is slow, we can start from
the all zero matrix and perform several (proximal) gradient steps to get an
appropriate initialization. See for example [143]. Once an initial estimate Θ0 is

obtained, we find the best rank r approximation Θ̃ = Ũ Σ̃Ṽ � to Θ0 and use
it to obtain the initial iterates U0 and V 0. In each step, GDT updates U and
V by taking a gradient step and hard-thresholding the result. The operation
Hard(U, s) keeps s rows of U with the largest �2 row-norm, while setting to zero
other rows.

Suppose that the target statistical parameter Θ∗ is in Ξ(r∗, s∗1, s
∗
2). The spar-

sity level s∗1 and s∗2 as well as the rank r∗ are not known in practice, but are
needed in Algorithm 1. For the convergence proof we require that the input
parameters to the algorithm are set as s1 = c · s∗1 and s2 = c · s∗2 for some c > 1.
From simulations, we observe that the estimation accuracy is not very sensitive
to the choice of s1 and s2 as long as they are chosen greater than the true values
s∗1 and s∗2. This suggests that in practice, we could set s1 and s2 to be reason-
ably large values whenever a reasonable guess of the sparsity level is available,
as incorrectly omitting nonzero value (false negative) is more troublesome than
including one zero value (false positive). Alternatively, as we do in simulations,
we can use a validation set or an information criteria to select these tuning pa-
rameters. However, it is noted in [112] that conventional cross validation may
select an inconsistent model, especially when using a non-convex penalty. As an
improvement, we can adopt the techniques in [111], which develops the scale-
free predictive information criterion to select the best sparsity parameters. Also,
[112] proposes structural cross validation method that can achieve the minimax
optimal error rate.

Following the same guideline as in the literature, in our analysis we assume
that we are using the true rank r = r∗. In practice, the rank r can be estimated
as in [19], which guarantees consistent rank estimation with high probability.
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Algorithm 1 Gradient Descent with Hard Thresholding (GDT)

1: Input: Initial estimate Θ0

2: Parameters: Step size η, Rank r, Sparsity level s1, s2, Total number of iterations T
3: (Ũ , Σ̃, Ṽ ) = rank r SVD of Θ0

4: U0 = Hard(Ũ(Σ̃)
1
2 , s1), V 0 = Hard(Ṽ (Σ̃)

1
2 , s2)

5: for t = 1 to T do
6: V t+0.5 = V t − η∇V f(Ut, V t)− η∇V g(Ut, V t),
7: V t+1 = Hard(V t+0.5, s2)
8: Ut+0.5 = Ut − η∇Uf(Ut, V t)− η∇Ug(Ut, V t),
9: Ut+1 = Hard(Ut+0.5, s1)
10: end for
11: Output: ΘT = UT (V T )�

Although [19] considers low-rank structure without sparsity, in practice, it still
provides a reasonable rank estimator. The usage of [19] in a low-rank and sparse
model is also suggested in [93]. The performance of the GDT algorithm is robust
to the choice of rank r, as we will demonstrate through extensive experiments
in Section 5. Finally, we remark that a joint tuning scheme for the rank and
sparsity parameters can also be considered.

To the best of our knowledge, GDT is the first gradient based algorithm to
deal with a nonconvex optimization problem over a parameter space that is
simultaneously low rank and row and column sparse. In the following section
we will provide conditions on the objective function f and the starting point
Θ0 which guarantee linear convergence to Θ∗ up to a statistical error. As an
application, we consider the multi-task learning problem in Section 4. We show
that the statistical error nearly matches the optimal minimax rate, while the
algorithm achieves the best performance in terms of estimation and prediction
error in simulations.

3. Theoretical result

In this section, we formalize the conditions and state the main result on the
linear convergence of our algorithm. We begin in Section 3.1 by stating the
conditions on the objective function f and initialization that are needed for our
analysis. In Section 3.2, we state Theorem 1 that guarantees linear convergence
under the conditions to a statistically useful point. The proof outline is given in
Section 3.3. In Section 4 to follow, we derive results for multi-task learning as
corollaries of our main result.

3.1. Regularity conditions

We start by stating mild conditions on the objective function f , which have
been used in the literature on high-dimensional estimation and nonconvex opti-
mization, and they hold with high-probability for a number of statistical models
of interest [144, 143, 57]. Note that all the conditions depend on the choice of
s1 and s2 (or equivalently, on c).
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For Θ∗ ∈ Ξ(r∗, s∗1, s
∗
2), let Θ

∗ = UΘ∗ΣΘ∗V �
Θ∗ be its singular value decompo-

sition. Let U∗ = UΘ∗Σ
1/2
Θ∗ and V ∗ = VΘ∗Σ

1/2
Θ∗ be the balanced decomposition of

Θ∗ = U∗V ∗�. Note that the decomposition is not unique as Θ∗ = (U∗O)(V ∗O)�

for any orthogonal matrix O ∈ O(r). Let σ1(Θ
∗) = σmax(Θ

∗) and σr(Θ
∗) =

σmin(Θ
∗) denote the maximum and minimum nonzero singular values of Θ∗

with r = r∗. The first condition is Restricted Strong Convexity and Smoothness
on f .

Restricted Strong Convexity and Smoothness (RSC/RSS) There exist
universal constants μ and L such that

μ

2
‖Θ2 −Θ1‖2F ≤ f(Θ2)− f(Θ1)− 〈∇f(Θ1),Θ2 −Θ1〉 ≤

L

2
‖Θ2 −Θ1‖2F

for all Θ1,Θ2 ∈ Ξ(2r, s̃1, s̃2) where s̃1 = (2c+ 1)s∗1 and s̃2 = (2c+ 1)s∗2.
The next condition is on the initial estimate Θ0. It quantifies how close the

initial estimator needs to be to Θ∗ so that iterates of GDT converge to statis-
tically useful solution.

Initialization (I) Define μmin = 1
8 min{1, μL

μ+L} and

I0 =
4

5
μminσr(Θ

∗) ·min
{ 1

μ+ L
, 2
}
. (3.1)

We require

‖Θ0 −Θ∗‖F ≤ 1

5
min

{
σr(Θ

∗),
I0
ξ

√
σr(Θ∗)

}
, (3.2)

where ξ2 = 1 + 2√
c−1

.

We note that, in general, (3.2) defines a ball of constant radius around Θ∗

in which the initial estimator needs to fall into. In particular, when considering
statistical learning problems, the initial estimator can be inconsistent as the
sample size increases.

Next, we define the notion of the statistical error,

estat = sup
Δ∈Ξ(2r,s̃1,s̃2)

‖Δ‖F≤1

〈∇f(Θ∗),Δ〉. (3.3)

Note that the statistical error quantifies how large the gradient of the objective
evaluated at the true parameter Θ∗ can be in the directions of simultaneously
low-rank and sparse matrices. It implicitly depends on the choice of c and as we
will see later there is a trade-off in balancing the statistical error and convergence
rate of GDT. As c increases, statistical error gets larger, but requires us to choose
a smaller step size in order to guarantee convergence.

With these two conditions, we are ready to the choice of the step size in
Algorithm 1.



422 M. Yu et al.

Step size selection Let Z0 =

[
U0

V 0

]
. We choose the step size η to satisfy

η ≤ 1

16‖Z0‖22
·min

{ 1

2(μ+ L)
, 1
}
, (3.4)

Furthermore, we require η and c to satisfy

β = ξ2
(
1− η · 2

5
μminσr(Θ

∗)

)
< 1, (3.5)

and

e2stat ≤
1− β

ξ2η
· Lμ

L+ μ
· I20 . (3.6)

The condition that the step size η satisfies (3.4) is typical in the literature on
convex optimization of strongly convex and smooth functions. Under (3.5) we
will be able to show contraction after one iteration and progress towards Θ∗.
The second term in (3.5) is always smaller than 1, while the first term ξ2 is
slightly larger than 1 and is the price we pay for the hard thresholding step. In
order to show linear convergence we need to balance the choice of η and ξ2 to
ensure that β < 1. From (3.5), we see that if we select a small step size η, then
we need to have a small ξ2, which means a large c. Intuitively, if η is too small,
it may be impossible to change row and column support in each iteration. In
this case we have to keep many active rows and columns to make sure we do
not miss the true signal. This leads to large s1 and s2, or equivalently to a large
c. However, the statistical error (3.3) will increase with increase of c and these
are the trade-off on the selection of η and c.

Finally, (3.6) guarantees that the iterates do not run outside of the initial
ball given in (3.2). In case (3.6) is violated, then the initialization point Θ0

is already a good enough estimate of Θ∗. Therefore, this requirement is not
restrictive. In practice, we found that the selection of η and c is not restrictive
and the convergence is guaranteed for a wide range of values of their values.

In order to satisfy these regularity conditions, we may need to choose a rel-
atively large c. However, the condition on c is purely a technical conditions.
To the best of our knowledge, all the literature on iterative hard thresholding
requires some restrictive conditions on c. Without the hard thresholding step,
we can guarantee contraction β < 1 after one step of the gradient descent. How-
ever, the hard thresholding step amplifies the estimation error and, therefore,
we need a relatively large c to guarantee contraction. In theory, we require an
upper bound on c that does not scale with n, p, or K. In practice, we do not
know the true sparsity level s∗ and choose s directly based on prior knowledge
or select it via cross validation. Moreover, the step size η could be selected in a
heuristic way when implementing the algorithm for specific applications. While
the techniques needed to establish better theoretical control of the parameter c
still require improvement, in practice, even with small values of c the method
performs well. Experiments in Section 5 show that the tuning parameters can
be chosen in way to yield good finite sample performance. In practice, selecting
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inappropriate model parameters or initialization may worsen the performance
of the algorithm, resulting in possibly sublinear convergence rate.

3.2. Main result

Our main result establishes linear convergence of GDT iterates to Θ∗ up to
statistical error. Since the factorization of Θ∗ is not unique, we turn to measure
the subspace distance of the iterates (U t, V t) to the balanced decomposition
U∗(V ∗)� = Θ∗.

Subspace distance Let Z∗ =

[
U∗

V ∗

]
where Θ∗ = U∗V ∗� and σi(U

∗) =

σi(V
∗) for each i = 1, ..., r. Define the subspace distance between Z =

[
U
V

]
and Z∗ =

[
U∗

V ∗

]
as

d2(Z,Z∗) = min
O∈O(r)

{
‖U − U∗O‖2F + ‖V − V ∗O‖2F

}
.

With this, we are ready to state our main result.

Theorem 1. Suppose the conditions (RSC/RSS), (I) are satisfied and the
step size η satisfies (3.4)–(3.6). Then after T iterations of GDT (Algorithm 1),
we have

d2(ZT , Z∗) ≤ βT · d2(Z0, Z∗) +
ξ2η

1− β
· L+ μ

L · μ · e2stat. (3.7)

Furthermore, for ΘT = UT (V T )� we have

‖ΘT −Θ∗‖2F ≤ 4σ1(Θ
∗) ·
[
βT · d2(Z0, Z∗) +

ξ2η

1− β
· L+ μ

L · μ · e2stat
]
. (3.8)

The proof sketch of Theorem 1 is given in the following section. Conceptually,
Theorem 1 provides a minimal set of conditions for convergence of GDT. The
first term in equations (3.7) and (3.8) correspond to the optimization error,
whereas the second term corresponds to the statistical error. These bounds
show that the distance between the iterates and Θ∗ drop exponentially up to the
statistical limit estat, which is problem specific. In statistical learning problem,
it commonly depends on the sample size and the signal-to-noise ratio of the
problem.

Theorem 1 provides convergence in a statistical setting to the “true” parame-
ter Θ∗. However, as mentioned in Section 2, Algorithm 1 and Theorem 1 can also
be used to establish linear convergence to a global minimizer in a deterministic
setting. Suppose (Û , V̂ ) ∈ argminU∈U,V ∈V{f(U, V )} is a global minimizer and

Θ̂ = Û V̂ �. Furthermore, assume that the conditions in Section 3.1 are satisfied
with Θ̂ in place of Θ∗. Then we have that the iterates {Θt} obtained by GDT

converge linearly to a global minimum Θ̂ up to the error êstat defined similar to
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(3.3) with Θ̂ in place of Θ∗. This error comes from sparsity and hard threshold-
ing. In particular, suppose there are no row or column sparsity constraints in
the optimization problem (1.2), so that we do not have hard-thresholding steps
in Algorithm 1. Then we have êstat = 0, so that iterates {Θt} converge linearly

to Θ̂, recovering the result of [144].

3.3. Proof sketch of Theorem 1

In this section we sketch the proof of our main result. The proof combines three
lemmas. We first one quantify the accuracy of the initialization step. The fol-
lowing one quantifies the improvement in the accuracy by one step of GDT. The
third lemma shows that the step size assumed in Theorem 1 satisfies conditions
of the second lemma. Detailed proofs of these lemmas are relegated to Section 6.

Our first lemma quantifies the accuracy of the initialization step.

Lemma 2. Suppose that the input to GDT, Θ0, satisfies initialization condi-
tion (3.2). Then the initial iterates U0 and V 0 obtained in lines 3 and 4 of
Algorithm 1 satisfy

d(Z0, Z∗) ≤ I0, (3.9)

where Z0 =

[
U0

V 0

]
and I0 is defined in (3.1).

The proof of Lemma 2 is given in Section 6.1.

Lemma 3. Suppose the conditions (RSC/RSS), (I) are satisfied. Assume

that the point Z =

[
U
V

]
satisfies d(Z,Z∗) ≤ I0. Let (U

+, V +) denote the next

iterate obtained with Algorithm 1 with the step size η satisfying

η ≤ 1

8‖Z‖22
·min

{ 1

2(μ+ L)
, 1
}
. (3.10)

Then we have

d2(Z+, Z∗) ≤ ξ2
[(

1− η · 2
5
μminσr(Θ

∗)
)
· d2(Z,Z∗) + η · L+ μ

L · μ · e2stat
]
, (3.11)

where ξ2 = 1 + 2√
c−1

.

The proof of Lemma 3 is given in Section 6.2.

Lemma 4. Suppose Z =

[
U
V

]
satisfies d(Z,Z∗) ≤ I0. We have that the choice

of step size (3.4) in Theorem 1 satisfies the condition (3.10) in Lemma 3.

The proof of Lemma 4 is given in Section 6.3.
Combining the three results above, we can complete the proof of Theo-

rem 1. Starting from initialization Θ0 satisfying the initialization condition (3.2),
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Lemma 2 ensures that (3.9) is satisfied for Z0 and Lemma 4 ensures that the
choice of step size (3.4) satisfies the step size condition (3.10) in Lemma 3. We
can then apply Lemma 3 and get the next iterate Z1 = Z+, which satisfies
(3.11). Using the condition on statistical error (3.6), initialization (3.2), and a
simple calculation, we can verify that Z1 satisfies d(Z1, Z∗) ≤ I0. Therefore we
can apply Lemma 2, Lemma 3, and Lemma 4 repeatedly to obtain

d2(Zt+1, Z∗) ≤ β · d2(Zt, Z∗) + ξ2η · L+ μ

L · μ · e2stat,

for each t = 0, 1, ..., T . We then have

d2(ZT , Z∗) ≤ βT · d2(Z0, Z∗) +
ξ2η

1− β
· L+ μ

L · μ · e2stat.

Finally, for ΘT = UT (V T )�, let OT ∈ O(r) be such that

d2(ZT , Z∗) = ‖UT − U∗OT ‖2F + ‖V T − V ∗OT ‖2F .

We have

‖ΘT −Θ∗‖2F = ‖UT (V T )� − U∗OT (V ∗OT )�‖2F

≤
[
‖UT ‖2‖V T − V ∗OT ‖F + ‖V ∗‖2‖UT − U∗OT ‖F

]2
≤ ‖UT ‖22‖V T − V ∗OT ‖2F + ‖V ∗‖22‖UT − U∗OT ‖2F
≤ 2‖Z∗‖22 · d2(ZT , Z∗)

≤ 4σ1(Θ
∗) ·
[
βT · d2(Z0, Z∗) +

ξ2η

1− β
· L+ μ

L · μ · e2stat
]
,

which shows linear convergence up to the statistical error.

4. Application to multi-task learning

In this section, we apply the theory developed in Section 3 on two specific
problems. First, in Section 4.1, we apply GDT algorithm to a multi-task learn-
ing problem. We show that under commonly used statistical conditions the
conditions on the objective function stated in Section 3.1 are satisfied with
high-probability. Next, in Section 4.2 we discuss an application to multi-task
reinforcement learning problem.

4.1. GDT for multi-task learning

We apply GDT algorithm to the problem of multi-task learning, which has been
successfully applied in a wide range of application areas, ranging from neu-
roscience [123], natural language understanding [44], speech recognition [110],
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computer vision [111], and genetics [139] to remote sensing [134], image clas-
sification [82], spam filtering [130], web search [34], disease prediction [146],
and eQTL mapping [77]. By transferring information between related tasks it is
hoped that samples will be better utilized, leading to improved generalization
performance.

We consider the following linear multi-task learning problem

Y = XΘ∗ + E, (4.1)

where Y ∈ R
n×k is the response matrix, X ∈ R

n×p is the matrix of predictors,
Θ∗ ∈ R

p×k is an unknown matrix of coefficients, and E ∈ R
n×k is an unobserved

noise matrix with i.i.d. mean zero and variance σ2 entries. Here n denotes the
sample size, k is the number of responses, and p is the number of predictors. In
general multi-task learning problems, the design matrix X may be different for
different tasks. Throughout the paper we assume a common design matrix X
for simplicity, and it is straightforward to generalize the result to problem with
different X for different tasks.

There are a number of ways to capture relationships between different tasks
and success of different methods relies on this relationship. [48] studied a setting
where linear predictors are close to each other. In a high-dimensional setting,
with large number of variables, it is common to assume that there are a few
variables predictive of all tasks, while others are not predictive [120, 102, 90, 79,
127]. Another popular condition is to assume that the predictors lie in a shared
lower dimensional subspace [7, 6, 140, 8, 126]. In contemporary applications,
however, it is increasingly common that both the number of predictors and the
number of tasks is large compared to the sample size. For example, in a study of
regulatory relationships between genome-wide measurements, where micro-RNA
measurements are used to explain the gene expression levels, it is commonly
assumed that a small number of micro-RNAs regulate genes participating in
few regulatory pathways [91]. In such a setting, it is reasonable to assume that
the coefficients are both sparse and low rank. That is, one believes that the
predictors can be combined into fewer latent features that drive the variation
in the multiple response variables and are composed only of relevant predictor
variables. Compared to a setting where either variables are selected or latent
features are learned, there is much less work on simultaneous variable selection
and rank reduction [19, 37, 38, 111]. In addition, we when both p and k are
large, it is also needed to assume the column sparsity on the matrix Θ∗ to make
estimation feasible [93], a model that has been referred to as the two-way sparse
reduced-rank regression model. We focus on this model here.

Multi-task Model (MTM) In the model (4.1), we assume that the true co-
efficient matrix Θ∗ ∈ Ξ(r, s∗1, s

∗
2). The noise matrix E has i.i.d. sub-Gaussian

elements with variance proxy σ2, which requires that each element eij sat-
isfies E(eij) = 0 and its moment generating function satisfies E[exp(teij)] ≤
exp(σ2t2/2). The design matrix X is considered fixed with columns normalized
to have mean 0 and standard deviation 1. Moreover, we assume X satisfies the
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following Restricted Eigenvalue (RE) condition [100] for some constant κ(s1)
and κ̄(s1).

κ(s1) · ‖θ‖22 ≤ 1

n
‖Xθ‖22 ≤ κ̄(s1) · ‖θ‖22 for all ‖θ‖0 ≤ s1.

We will show that under the condition (MTM), GDT converges linearly
to the optimal coefficient Θ∗ up to a region of statistical error. Compared to
the previous methods for estimating jointly sparse and low rank coefficients
[19, 37, 38, 93], GDT is more scalable and improves estimation accuracy as
illustrated in the simulation Section 5.

In the context of the multi-task learning with the model in (4.1), we are going
to use the least squares loss. The objective function in is f(Θ) = 1

2n‖Y −XΘ‖2F
and we write Θ = UV � with U ∈ R

p×r and V ∈ R
k×r. The constraint set is set

as before as U ∈ U(s1) and V ∈ U(s2) with s1 = c ·s∗1, s2 = c ·s∗2 for some c > 1.
The rank r and the sparsity levels s1, s2 are tuning parameters, which can be
selected using the information criterion as in [111].

In order to apply the results of Theorem 1, we first verify the conditions in
Section 3.1. The condition (RSC/RSS) in is equivalent to

μ
∥∥Θ2 −Θ1

∥∥2
F
≤
〈 1
n
X�X(Θ2 −Θ1),Θ2 −Θ1

〉
≤ L
∥∥Θ2 −Θ1

∥∥2
F
,

and it holds with μ = κ(s1) and L = κ̄(s1).
Next, we discuss how to initialize GDT in the context of multi-task learning.

Under the structural conditions on Θ∗ in the condition (MTM) there are a
number of way to obtain an initial estimator Θ0. For example, we can use
row and column screening [50], group lasso [141], and lasso [118] among other
procedures. Here and in simulations we use the lasso estimator, which takes the
form

Θ0 = arg min
Θ∈Rp×k

1

2n
‖Y −XΘ‖2F + λ‖Θ‖1.

The benefit of this approach is that it is scalable to the high-dimensional setting
and trivially parallelizable, since each column of Θ0 can be estimated separately.
The requirement of the initialization condition (I) is effectively a requirement
on the sample size. Under the condition (MTM), a result of [100] shows that
these conditions are satisfied with n ≥ s∗1s

∗
2 log p log k.

We then characterize the statistical error estat under the condition (MTM).

Lemma 5. Under the condition (MTM), with probability at least 1− (p∨k)−1

we have

estat ≤ Cσ

√
(s∗1 + s∗2)

(
r + log(p ∨ k)

)
n

for some constant C.

The proof of Lemma 5 is given in Section 6.4.

With these conditions, we have the following result on GDT when applied to
the multi-task learning model in (4.1).
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Corollary 6. Suppose that the condition (MTM) is satisfied and the step size
η satisfies (3.4)–(3.6). Then for all

T ≥ C log

[
n

(s∗1 + s∗2)
(
r + log(p ∨ k)

)],
with probability at least 1− (p ∨ k)−1, we have

‖ΘT −Θ∗‖F ≤ Cσ

√
(s∗1 + s∗2)

(
r + log(p ∨ k)

)
n

for some constant C.

Each iteration of the algorithm requires computing the gradient step with
time complexity r(n + r)(p + k). Note that if there is no error term E in the
model (4.1), then Algorithm 1 converges linearly to the true coefficient matrix
Θ∗, since estat = 0 in that case. The error rate in Corollary 6 matches the error
rate of the algorithm proposed in [93]. However, our algorithm does not require
a new independent sample in each iteration and allows for non-Gaussian errors.
Compared to the minimax rate

σ

√
1

n

[
(s∗1 + s∗2)r + s∗1 log

ep

s∗1
+ s∗2 log

ek

s∗2

]
(4.2)

established in [93], both our algorithm and that of [93] match the rate up to a
multiplicative log factor. To the best of our knowledge, achieving the minimax
rate (4.2) with a computationally scalable procedure is still an open problem.
Note, however, that when r is comparable to log(p∨ k) the rates match up to a
constant multiplier. Therefore for large enough T , GDT algorithm attains near
optimal rate.

In case we do not consider column sparsity, that is, when s∗2 = k, Corollary 6
gives error rate

‖ΘT −Θ∗‖F ≤ Cσ

√
kr + s∗1

(
r + log p

)
n

(4.3)

and prediction error

‖XΘT −XΘ∗‖2F ≤ Cσ2
(
kr + s∗1

(
r + log p

))
.

Compared to the prediction error bound kr + s∗1r log
p
s proved in [20], we see

that GDT error is much smaller with r+log p in place of r log p. Moreover, GDT
error matches the prediction error (k + s∗1 − r)r + s∗1 log p established in [111],
as long as k ≥ Cr which is typically satisfied.

As mentioned before, in practice we use the criterion in [19] to select the
rank r. In order to obtain a consistent rank estimator with high probability,
the procedure in [19] requires that σr∗(XΘ∗) is lower bounded. We emphasize
that although this condition is not required to obtain a near minimax optimal
statistical error, it does affect the convergence rate of the GDT algorithm.
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4.2. Application to multi-task reinforcement learning

Reinforcement learning (RL) and approximate dynamic programming (ADP)
are popular algorithms that help decision makers find optimal policies for deci-
sion making problems under uncertainty that can be cast in the framework of
Markov Decision Processes (MDP) [15, 116]. Similar to many other approaches,
when the sample size is small these algorithms may have poor performance. A
possible workaround then is to simultaneously solve multiple related tasks and
take advantage of their similarity and shared structure. This approach is called
multi-task reinforcement learning (MTRL) and has been studied extensively
[83, 131, 113]. In this section we show how GDT algorithm can be applied to
the MTRL problem.

A Markov decision process (MDP) is represented by a 5-tuple M =
(S,A, P,R, γ) where S represents the state space (which we assume to be fi-
nite for simplicity); A is a finite set of actions; Pa(s, s

′) = Pr(st+1 = s′ | st =
s, at = a) is the Markovian transition kernel that measures the probability that
action a in state s at time t will lead to state s′ at time t + 1 (we assume Pa

to be time homogeneous); R(s, a) is the state-action reward function measuring
the instantaneous reward received when taking action a in state s; and γ is
the discount factor. The core problem of MDP is to find a deterministic policy
π : S → A that specifies the action to take when decision maker is in some state
s. Define the Bellman operator

T Q(s, a) = R(s, a) + γ
∑
s′

Pa(s, s
′)max

a′
Q(s′, a′),

where Q : S × A → R is the state-action value function. The MDP can then
be solved by calculating the optimal state-action value function Q∗ which gives
the total discounted reward obtained starting in state s and taking action a,
and then following the optimal policy in subsequent time steps. Given Q∗, the
optimal policy is recovered by the greedy policy: π∗(s) = argmaxa∈A Q∗(s, a).

In MTRL the objective is to solve k related tasks simultaneously where each
task k0 ∈ {1, . . . , k} corresponds to an MDP: Mk0 = (S,A, Pk0 , Rk0 , γk0). Thus,
these k tasks share the same state and action space but each task has a different
transition dynamics Pk0 , state-action reward function Rk0 , and discount factor
γk0 . The decision maker’s goal is to find an optimal policy for each MDP. If these
MDPs do not share any information or structure, then it is straightforward to
solve each of them separately. Here we assume the MDPs do share some structure
so that the k tasks can be learned together with smaller sample complexity than
learning them separately.

We follow the structure in [26] and solve this MTRL problem by the fitted-
Q iteration (FQI) algorithm [47], one of the most popular method for ADP.
In contrast to exact value iteration (Qt = T Qt−1), in FQI this iteration is
approximated by solving a regression problem by representing Q(s, a) as a linear
function in some features representing the state-action pairs. To be more specific,
we denote ϕ(s) = [ϕ1(s), ϕ2(s), ..., ϕps(s)] as the feature mapping for state s
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Algorithm 2 Multi-Task Reinforcement Learning with GDT

Input: States Sk = {si}ns
i=1 ⊆ S.

Initialize Θ0 = 0
for t = 1 to T do

for a = 1 to |A| do
for k0 = 1 to k, i = 1 to ns do

Generate samples rti,a,k0
= Rk0

(si, a) and s′ti,a,k0
∼ Pa,k0

(si, s
′)

Calculate yti,a,k0
= rti,a,k0

+ γmaxa′ Q̂t−1
k0

(s′ti,a,k0
, a′)

end for
end for
Estimate Θt using GDT algorithm with X =

{
X((si, a), ·) = φ(si, a)

�}
si∈Sk,a∈A

and

Y =
{
Y ((si, a), k0) = yti,a,k0

}
si∈S,a∈A,k0∈[k]

.

end for
Output: ΘT

where ϕi : S → R denotes the ith feature. We then extend the state-feature
vector ϕ to a feature vector mapping state s and action a as:

φ(s, a) = [ 0, 0, ..., 0︸ ︷︷ ︸
(a−1)×ps times

, ϕ1(s), ϕ2(s), ..., ϕps(s), 0, 0, ..., 0︸ ︷︷ ︸
(|A|−a)×ps times

] ∈ R
p,

where p = |A| × ps. Finally, for MDP k0, we represent the state-action value
function Qk0(·, ·) as an |S| × |A| dimensional column vector with:

Qk0(s, a) = φ(s, a)� ·Θk0

where Θk0 is a p × 1 dimensional column vector. If Θ ∈ R
p×k represents the

matrix with columns Θk0 , k ∈ {1, . . . , k}, then we see that given the Qk0(s, a)
state-action value functions, estimating the Θ matrix is just a Multi-Task Learn-
ing problem of the form (4.1) with the response matrix Y

.
= Q ∈ R

n×k where
n = |S|×|A| denotes the “sample size” with rows indexed by pairs (s, a) ∈ S×A,
X

.
= Φ ∈ R

n×p represents the matrix of predictors (features) with (s, a)th row
as φ(s, a), and Θ∗ is the unknown matrix of ADP coefficients. Consistent with
the GDT algorithm, to exploit shared sparsity and structure across the k MDP
tasks, we will subsequently assume that the coefficient matrix Θ∗ is row sparse
and low rank.

Algorithm 2 provides details of MTRL with GDT. We assume we have access
to the generative model of the k MDPs so that we can sample reward r and
state s′ from R(s, a) and Pa(s, s

′). With “design states” Sk ⊆ S, ns
.
= |Sk|

given as input, for each action a and each state s ∈ Sk, FQI first generates
samples (reward r and transition state s′) from the generative model of each
MDP. These samples form a new dataset according to

yti,a,k0
= rti,a,k0

+ γmax
a′

Q̂t−1
k0

(s′
t
i,a,k0

, a′).

Here Q̂t−1
k0

is calculated using the coefficient matrix from previous iteration:

Q̂t−1
k0

(s′
t
i,a,k0

, a′) = φ(s′
t
i,a,k0

, a′)� ·Θt−1
k0
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We then build dataset Dt
k0

=
{
(si, a), y

t
i,a,k0

}
si∈Sk,a∈A

with s as predictor

and y as response, and apply GDT algorithm on the dataset {Dt
k0
}kk0=1 to

get estimator Θt. This completes an iteration t and we repeat this process
until convergence. Finally the optimal policy πt

k0
is given by greedy policy:

πt
k0
(s) = argmaxa∈A Q̂t

k0
(s, a) at each iteration t.

To derive theoretical result analogous to [26], we further assume R(s, a) ∈
[0, 1] and hence the maximum cumulative discounted reward Qmax = 1/(1− γ).
Since each task is a meaningful MDP, we do not assume sparsity on columns.
Suppose sups ‖ϕ(s)‖2 ≤ L, we have the following theoretical result:

Theorem 7. Suppose the linear model holds and suppose the conditions in
Section 3 are satisfied for each Θ∗

a with rank r and row sparsity s∗1, then after

T iterations, with probability at least
(
1− (p ∧ k)−1

)T
we have

1

k

k∑
k0=1

∥∥∥Q∗
k0

−Q
πT
k0

k0

∥∥∥2
2
≤ C

(1− γ)4

[
1

n
Q2

maxL
4
(
r +

s∗1
k
(r + log p)

)]

+
4Q2

max

(1− γ)4

[
CβT + γT

]2
for some constant C.

Proof. We start from the intermediate result in [96]:

∣∣∣Q∗
k0

−Q
πT
k0

k0

∣∣∣ ≤ 2γ(1− γT+1)

(1− γ)2

[ T−1∑
t=0

αt|εtk0
|+ αT

∣∣Q∗
t −Q0

t

∣∣],
where

αt =
(1− γ)γT−t−1

1− γT+1
, for t < T , and αT =

(1− γ)γT

1− γT+1
.

The error term εtk0
(s′, b) measures the approximation error in state s′ ∈ S

and action b ∈ A. It can be bounded by∣∣εtk0
(s′, b)

∣∣ = ∣∣ϕ(s′)�Θt
k0,b − ϕ(s′)�Θ∗

k0,b

∣∣ ≤ ∥∥ϕ(s′)∥∥
2

∥∥Θt
k0,b −Θ∗

k0,b

∥∥
2

≤ L
∥∥Θt

k0,b −Θ∗
k0,b

∥∥
2
.

We then have

∣∣∣Q∗
k0

−Q
πT
k0

k0

∣∣∣ ≤ 2γ(1− γT+1)

(1− γ)2

[ T−1∑
t=0

αtLmax
b

∥∥Θt
k0,b −Θ∗

k0,b

∥∥
2
+ 2αTQmax

]
.

Taking average, and plugging in the main result (3.8) and the statistical error
(4.3) we obtain our desired result.
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Fig 1. No error case

5. Experiment

In this section we demonstrate the effectiveness of the GDT algorithm by exten-
sive experiments.1 Section 5.1 shows results on synthetic datasets while Section
5.2 and 5.3 show results on two real datasets.

5.1. Synthetic datasets

We present numerical experiments on MTL problem to support our theoretical
analysis. Throughout this section, we generate the instances by sampling all
entries of design matrix X, all nonzero entries of the true signal U∗ and V ∗,
and all entries of the noise matrix E as i.i.d. standard normal.

Linear convergence We first demonstrate our linear convergence result. Be-
cause it is hard to quantify linear convergence with statistical error, we turn
to show the linear convergence in some special cases. Firstly, as we discussed
after Corollary 6, suppose there is no error term E in the model (4.1), then
Algorithm 1 converges linearly to the true coefficient matrix Θ∗. In this case we
choose p = 100, k = 50, r = 8, s∗1 = s∗2 = 10, and the estimation error is shown
in Figure 1. Secondly, as we discussed at the end of Section 3.2, suppose there
are no row or column sparsity constraints on Θ∗, then Algorithm 1 converges
linearly to global minimum Θ̂. In this case it is more likely that we are in low
dimensions, therefore we choose p = 50. The estimation error is shown in Figure
2. We see that in both cases GDT has linear convergence rate.

Estimation accuracy We compare our algorithm with the Double Projected
Penalization (DPP) method in [93], the thresholding SVD method (TSVD)
method in [91], the exclusive extraction algorithm (EEA) in [37], the two meth-
ods (denoted by RCGL and JRRS) in [20], and the standard Multitask learning
method (MTL, with L2,1 penalty). Here we set n = 50, p = 100, k = 50, r =

1The codes are available at https://github.com/ming93/GDT_nonconvex.

https://github.com/ming93/GDT_nonconvex
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Fig 2. No sparsity case

8, s∗1 = s∗2 = 10. The reason why we choose a relatively small scale is that many
other methods do not scale to high dimensions, as will shown in Table 5. We
will show the effectiveness of our method in high dimensions later. Except for
standard MTL, all the other methods need an estimate of the rank to proceed
for which we apply the rank estimator in [19]. For the methods that rely on tun-
ing parameters, we generate an independent validation set to select the tuning
parameters.

We consider two coefficient matrix settings, one is only row sparse and the
other one is both row sparse and column sparse. We also consider strong signal
and weak signal settings. The strong signal setting is described above and for the
weak signal setting, we divide the true Θ∗ by 5, resulting in a signal for which
recovering true non-zero variables becomes much more difficult. Table 1 (strong
signal, row sparse), Table 2 (strong signal, row and column sparse), Table 3
(weak signal, row sparse) and Table 4 (weak signal, row and column sparse)
report the mean and the standard deviation of prediction errors, estimation
errors and size of selected models based on 50 replications in each setting. We
can see that in all the cases GDT has the lowest estimation error and prediction
error. When the signal is weak, GDT may underselect the number of nonzero
rows/columns, but it still has the best performance.

Running time We then compare the running time of all these methods. We
fix a baseline model size n = 50, p = 80, k = 50, r = 4, s∗1 = s∗2 = 10, and set a
free parameter ζ. For ζ = {1, 5, 10, 20, 50, 100}, each time we increase n, p, s∗1, s

∗
2

by a factor of ζ and increase k, r by a factor of �
√
ζ� and record the running time

(in seconds) of each method for a fixed tolerance level, whenever possible. We run
each algorithm with a fixed reasonable tuning parameter without any validation
step. If for some ζ the algorithm does not converge in 2 hours then we simply
record “>2h” and no longer increase ζ for that method. Table 5 summarizes
the results. We can see that GDT is fast even in very high dimension, while all
of the other methods are computationally expensive. We note that even though
GDT uses the lasso estimator in the initialization step, all the variables are
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Table 1

Strong signal, Row sparse

Estimation error Prediction error |Row support|
GDT 0.0452 ± 0.0110 1.1060 ± 0.0248 10.16 ± 0.51
DPP 0.0584 ± 0.0113 1.1290 ± 0.0357 52.64 ± 15.2
TSVD 0.3169 ± 0.1351 2.4158 ± 0.9899 25.62 ± 8.03
EEA 0.3053 ± 0.0998 1.2349 ± 0.0362 84.28 ± 6.70
RCGL 0.0591 ± 0.0148 1.1101 ± 0.0168 49.60 ± 10.6
JRRS 0.0877 ± 0.0227 1.1857 ± 0.0214 12.26 ± 2.02
MTL 0.0904 ± 0.0243 1.1753 ± 0.0204 73.40 ± 2.67

Table 2

Strong signal, Row sparse and column sparse

Estimation error Prediction error |Row support| |Column support|
GDT 0.0624 ± 0.0121 1.0353 ± 0.0167 10.24 ± 0.65 10.24 ± 0.68
DPP 0.0921 ± 0.0251 1.0790 ± 0.0295 54.10 ± 18.25 10.38 ± 0.60
TSVD 0.3354 ± 0.1053 1.7600 ± 0.3415 28.66 ± 7.27 30.88 ± 8.46
EEA 0.2604 ± 0.1159 1.1023 ± 0.0220 64.44 ± 9.88 12.10 ± 2.69
RCGL 0.1217 ± 0.0325 1.1075 ± 0.0174 42.06 ± 7.93 50 ± 0
JRRS 0.1682 ± 0.0410 1.1612 ± 0.0174 13.96 ± 4.69 50 ± 0
MTL 0.1837 ± 0.0499 1.1652 ± 0.0160 73.50 ± 3.17 50 ± 0

Table 3

Weak signal, Row sparse

Estimation error Prediction error |Row support|
GDT 0.2328 ± 0.0474 1.1282 ± 0.0231 10.08 ± 0.56
DPP 0.2954 ± 0.0640 1.1624 ± 0.0315 47.26 ± 11.7
TSVD 0.5842 ± 0.1020 1.4271 ± 0.0903 30.81 ± 4.72
EEA 0.3802 ± 0.0787 1.1647 ± 0.0206 46.16 ± 8.97
RCGL 0.2775 ± 0.0605 1.1493 ± 0.0291 37.92 ± 14.4
JRRS 0.3600 ± 0.0752 1.1975 ± 0.0392 11.74 ± 1.35
MTL 0.3577 ± 0.0721 1.2140 ± 0.0418 69.92 ± 12.8

Table 4

Weak signal, Row sparse and column sparse

Estimation error Prediction error |Row support| |Column support|
GDT 0.3173 ± 0.0949 1.0380 ± 0.0218 9.56 ± 1.56 10.06 ± 1.21
DPP 0.3899 ± 0.0737 1.0580 ± 0.0216 50.66 ± 12.86 13.52 ± 5.02
TSVD 0.6310 ± 0.1074 1.1372 ± 0.0246 49.94 ± 5.53 43.38 ± 2.55
EEA 0.6016 ± 0.0965 1.0874 ± 0.0197 30.64 ± 8.65 30.64 ± 8.65
RCGL 0.4601 ± 0.0819 1.1017 ± 0.0262 28.9 ± 12.36 50 ± 0
JRRS 0.5535 ± 0.0866 1.1164 ± 0.0262 12.42 ± 6.02 50 ± 0
MTL 0.5776 ± 0.0873 1.1286 ± 0.0296 53.0 ± 18.41 50 ± 0

used in the subsequent iterations and not only the ones selected by the lasso. In
particular, the speed of the method does not come from the initialization step.
Table 6 summarizes the averaged number of iterations with different choices of
ζ with a tolerance value 10−3 on the objective function. We see that the number
of iteration T scales reasonably with the size of the problem.

Effectiveness in high dimension Next, we demonstrate the effectiveness
of GDT algorithm in high dimensions. Table 1 and Table 2 are both in low
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Table 5

Running time comparison (in seconds)

ζ = 1 ζ = 5 ζ = 10 ζ = 20 ζ = 50 ζ = 100
GDT 0.11 0.20 0.51 2.14 29.3 235.8
DPP 0.19 0.61 3.18 17.22 315.4 2489
TSVD 0.07 1.09 6.32 37.8 543 6075
EEA 0.50 35.6 256 >2h >2h >2h
RCGL 0.18 1.02 7.15 36.4 657.4 >2h
JRRS 0.19 0.82 6.36 30.0 610.2 >2h
MTL 0.18 3.12 30.92 184.3 >2h >2h

Table 6

Number of iterations in GDT algorithm with different
choices of ζ

ζ = 1 ζ = 5 ζ = 10 ζ = 20 ζ = 50 ζ = 100
31.9 41.6 33.6 53.0 72.4 153.8

dimensions because we want to compare with other algorithms and they are
slow in high dimensions, as shown in Table 5. Now we run our algorithm only
and we choose p = 5000, k = 3000, r = 50, s∗1 = s∗2 = 100. The estimation error
and objective value are shown in Figure 3 and Figure 4, respectively. In each
figure, iteration 0 is for initialization we obtained by Lasso.

We can see that both estimation error and objective value continue to de-
crease, which demonstrates the effectiveness and necessity of GDT algorithm.
From Figure 3 we also find that early stopping can help to avoid overfitting
(although not too much), especially when n is small.

Effect of sparsity and rank We finally check the effect of the choices of
sparsity level s and rank r on the performance of the algorithm. Here we set
n = 100, p = 500, k = 300, r = 15, s∗1 = s∗2 = 25. We again consider strong
signal and weak signal setting, where we divide the true Θ∗ by 5 for weak
signal setting. Table 7 (strong signal, estimation error), Table 8 (strong signal,
prediction error), Table 9 (strong signal, estimation error), and Table 10 (strong

Fig 3. Estimation error
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Fig 4. Objective value

Table 7

Estimation error of different choices of sparsity level and rank, with strong signal

r = 10 r = 12 r = 15 r = 20 r = 30 r = 50 r = 80 r selected by [19]
s = 15 0.6367 0.6193 0.6080 0.6228 0.6109 0.6241 0.6259 0.6164
s = 20 0.4752 0.4644 0.4562 0.4715 0.4532 0.4536 0.4717 0.4693
s = 25 0.2467 0.1668 0.0238 0.0251 0.0256 0.0261 0.0261 0.0240
s = 30 0.2567 0.1687 0.0288 0.0318 0.0316 0.0310 0.0314 0.0286
s = 40 0.2460 0.1715 0.0411 0.0424 0.0425 0.0413 0.0428 0.0437
s = 50 0.2495 0.1588 0.0559 0.0500 0.0518 0.0523 0.0532 0.0585
s = 80 0.2468 0.1725 0.1166 0.1084 0.1077 0.1095 0.1084 0.1273

signal, prediction error) report the average performance (estimation error and
prediction error) of GDT algorithm with different choices of sparsity level s and
rank r, based on 50 replicates in each setting. The row and column with true
sparsity level and rank are highlighted as bold. In the last column, we select the
rank based on the rank estimator in [19].

From the tables we see that the performance of the algorithm is poor when
we underselect a sparsity level or rank. This is more significant when the signal
is strong, since we are missing too many large nonzero values in the estimator.
This demonstrates the necessity to be conservative when selecting sparsity level
and rank. When both the sparsity level and rank are selected as greater than the
true value, the algorithm performs well in a relatively large range of sparsity
level and rank, especially for prediction error. As a baseline, if we estimate
Θ with Lasso estimator on each column where the regularization parameter
is selected by validation set, the averaged estimation and prediction error is
0.2453 and 1.0902 for strong signal case, and 0.4716 and 1.0636 for weak signal
case. Moreover, we see that overselecting a rank does not harm the performance
too much, compared to overselecting a sparsity level. The rank selected by [19]
performs well, and sometimes it even performs better than any of the fixed ranks.

5.2. Norwegian paper quality dataset

In this section we apply GDT to Norwegian paper quality dataset. This data
was obtained from a controlled experiment that was carried out at a paper
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Table 8

Prediction error of different choices of sparsity level and rank, with strong signal

r = 10 r = 12 r = 15 r = 20 r = 30 r = 50 r = 80 r selected by [19]
s = 15 3.6055 3.6932 3.6038 3.6659 3.6220 3.6203 3.5750 3.5658
s = 20 2.5595 2.5062 2.4969 2.5078 2.4935 2.4514 2.5026 2.4780
s = 25 1.3722 1.1432 1.0096 1.0097 1.0102 1.0103 1.0111 1.0101
s = 30 1.3808 1.1422 1.0129 1.0136 1.0149 1.0152 1.0146 1.0128
s = 40 1.3831 1.1519 1.0176 1.0208 1.0246 1.0262 1.0263 1.0196
s = 50 1.3966 1.1427 1.0252 1.0289 1.0371 1.0410 1.0402 1.0253
s = 80 1.3935 1.1650 1.0415 1.0527 1.0754 1.0969 1.1013 1.0419

Table 9

Estimation error of different choices of sparsity level and rank, with weak signal

r = 10 r = 12 r = 15 r = 20 r = 30 r = 50 r = 80 r selected by [19]
s = 15 0.6292 0.6340 0.6361 0.6313 0.6169 0.6430 0.6276 0.6203
s = 20 0.4733 0.4732 0.4905 0.4714 0.4747 0.4792 0.4734 0.4715
s = 25 0.2525 0.1877 0.1307 0.1296 0.1349 0.1365 0.1474 0.1484
s = 30 0.2704 0.1981 0.1474 0.1396 0.1441 0.1443 0.1364 0.1561
s = 40 0.2677 0.2033 0.1702 0.1772 0.1830 0.1824 0.1820 0.1810
s = 50 0.2695 0.2211 0.2075 0.2156 0.2281 0.2258 0.2254 0.2137
s = 80 0.3114 0.3008 0.2836 0.3060 0.3239 0.3474 0.3461 0.2889

factory in Norway to uncover the effect of three control variables X1, X2, X3

on the quality of the paper which was measured by 13 response variables. Each
of the control variables Xi takes values in {−1, 0, 1}. To account for possible
interactions and nonlinear effects, second order terms were added to the set of
predictors, yielding X1, X2, X3, X

2
1 , X

2
2 , X

2
3 , X1 ·X2, X1 ·X3, X2 ·X3.

The data set can be downloaded from the website of [69] and its structure
clearly indicates that dimension reduction is possible, making it a typical ap-
plication for reduced rank regression methods [69, 4, 20, 111]. Based on the
analysis of [19] and [4] we select the rank r̂ = 3; also suggested by [19] we take
s1 = 6 and s2 = k = 13 which means we have row sparsity only. GDT selects
6 of the original 9 predictors, with X2

1 , X1 ·X2 and X2 ·X3 discarded, which is
consistent with the result in [19].

To compare prediction errors, we split the whole dataset at random, with 70%
for training and 30% for test, and repeat the process 50 times to compare the
performance of the above methods. All tuning parameters are selected by cross
validation and we always center the responses in the training data (and trans-
form the test data accordingly). The average RMSE on test set is shown in Table
11. We can see that GDT is competitive with the best method, demonstrating
its effectiveness on real datasets.

Table 10

Prediction error of different choices of sparsity level and rank, with weak signal

r = 10 r = 12 r = 15 r = 20 r = 30 r = 50 r = 80 r selected by [19]
s = 15 1.2218 1.2173 1.2203 1.2221 1.2304 1.2265 1.2191 1.2256
s = 20 1.1107 1.1055 1.1076 1.1057 1.1059 1.1054 1.1050 1.1051
s = 25 1.0251 1.0150 1.0100 1.0096 1.0103 1.0098 1.0112 1.0110
s = 30 1.0291 1.0166 1.0133 1.0131 1.0142 1.0135 1.0136 1.0140
s = 40 1.0334 1.0235 1.0188 1.0217 1.0255 1.0267 1.0257 1.0202
s = 50 1.0352 1.0264 1.0247 1.0308 1.0390 1.0405 1.0376 1.0250
s = 80 1.0466 1.0396 1.0412 1.0547 1.0732 1.0919 1.0878 1.0390
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Table 11

RMSE on paper quality dataset

GDT DPP TSVD EEA RCGL JRRS MTL
1.002 1.012 1.094 1.161 1.001 1.013 1.014

5.3. Calcium imaging data

As a microscopy technique in neuroscience, calcium imaging is gaining more
and more attentions [59]. It records fluorescent images from neurons and allows
us to identify the spiking activity of the neurons. To achieve this goal, [104]
introduces a spatiotemporal model and we briefly introduce this model here.
More detailed description can be found in [104] and [93]. Denote k = �1 × �2
as the pixels we observe, and denote K as the total number of neurons. The
observation time step is t = 1, ..., T . Let S ∈ R

T×K be the number of spikes
at each time step and for each neuron; A ∈ R

K×k be the nonnegative spatial
footprint for each neuron at each pixel; Y ∈ R

T×k be the observation at each
time step and at each pixel; and E ∈ R

T×k be the observation error. Ignore the
baseline vector for all the pixels, the model in [104] is given by

Y = G−1SA+ E = XΘ∗ + E

where Θ∗ = SA is the coefficient matrix and X = G−1 is observed with

G =

⎛⎜⎜⎜⎜⎝
1 0 . . . 0

−γ 1
. . .

...
...

. . .
. . . 0

0 . . . −γ 1

⎞⎟⎟⎟⎟⎠ .

Here γ is set to be γ = 1 − 1/(frame rate) as suggested by [122]. From the
settings we see that each row of S is the activation for all the neurons, and
therefore it is natural to have S to be row sparse since usually we would not
observe too many activations in a fixed time period; also, each column of A is
the footprint for all the neurons at each pixel, and therefore it is natural to have
A to be column sparse since we expect to see only a few neurons in a fixed area.
Therefore our coefficient matrix Θ∗ = SA would be both row sparse and column
sparse. It is also low rank since it is the product of two “tall” matrices because
the number of neurons K are usually small. Now we see this is a multi-task
learning problem with simultaneous row-sparse, column-sparse and low rank
coefficient matrix where n = p = T and k = �1 × �2.

We consider the calcium imaging data in [3] which is a movie with 559 frames
(acquired at approximately 8.64 frames/sec), where each frame is 135 × 131
pixels. This dataset is also analyzed in [93] and [59]. For this dataset, we have
n = p = 559 and k = 135 × 131 = 17, 685. We use r = 50, more conservative
than the estimator given by [19] and we set s1 = 100 row sparsity and s2 = 3000
column sparsity. Figure 5 shows five most significant manually labeled regions;
Figure 6 are the corresponding signals estimated by our GDT algorithm. We
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Fig 5. Manually selected top 5 labeled regions

Fig 6. Corresponding signals estimated by our GDT algorithm

can see that they match very well, which demonstrates the effectiveness of our
method.

6. Technical proofs

This section collects technical proofs.

6.1. Proof of Lemma 2

Let [Ũ , Σ̃, Ṽ ] = rSVD(Θ0) be the rank r SVD of the matrix Θ0 and let

Θ̃ = Ũ Σ̃(Ṽ )� = arg min
rank(Θ)≤r

‖Θ−Θ0‖F .

Since Θ̃ is the best rank r approximation to Θ0, we have

‖Θ̃−Θ0‖F ≤ ‖Θ0 −Θ∗‖F .

The triangle inequality gives us

‖Θ̃−Θ∗‖F ≤ ‖Θ0 −Θ∗‖F + ‖Θ0 − Θ̃‖F ≤ 2‖Θ0 −Θ∗‖F .

Now that both Θ̃ and Θ∗ are rank r matrices, and according to (3.2) we have

‖Θ̃−Θ∗‖F ≤ 2‖Θ0 −Θ∗‖F ≤ 1

2
σr(Θ

∗).
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Then, Lemma 5.14 in [119] gives us

d2
([

Ũ Σ̃
1
2

Ṽ Σ̃
1
2

]
,

[
U∗

V ∗

])
≤ 2√

2− 1
· ‖Θ̃−Θ∗‖2F

σr(Θ∗)

≤ 2√
2− 1

· 4

σr(Θ∗)
· I20
25ξ2

· σr(Θ
∗)

≤ I20
ξ2

where the second inequality comes from the initialization condition (3.2). Fi-
nally, Lemma 3.3 in [87] gives

d2
([

U0

V 0

]
,

[
U∗

V ∗

])
≤ ξ2d2

([
Ũ Σ̃

1
2

Ṽ Σ̃
1
2

]
,

[
U∗

V ∗

])
≤ I20 .

6.2. Proof of Lemma 3

For notation simplicity, let Z =

[
U
V

]
denote the current iterate and let Z+ =[

U+

V +

]
denote the next iterate. Let SU = S(U) ∪ S(U+) ∪ S(U∗) and SV =

S(V ) ∪ S(V +) ∪ S(V ∗). With some abuse of notation, we define the index set
SZ = SU ∪ SV to represent coordinates of Z corresponding to USU

and VSV
.

For an index set S, let P(U, S) =

[
US

0SC

]
. Let G(U, V ) = f(U, V ) + g(U, V ).

Finally, let ΔU = U − U∗Ô, ΔV = V − V ∗Ô and ΔZ = Z − Z∗Ô. With these
notations, we can write

U+ = Hard(U − η · ∇GU (U, V ), s1) = Hard (U − η · P (∇GU (U, V ), SU ) , s1)

and

V + = Hard(V − η · ∇GV (U, V ), s2) = Hard (V − η · P (∇GV (U, V ), SV ) , s2) .

Let Ô ∈ O(r) be such that

d2(Z,Z∗) = ‖U − U∗Ô‖2F + ‖V − V ∗Ô‖2F .

We have that

d2(Z+, Z∗) = min
O∈O(r)

∥∥∥∥ [ U+

V +

]
−
[

U∗O
V ∗O

] ∥∥∥∥2
F

≤
∥∥∥∥ [ Hard (U − η · P (∇GU (U, V ), SU ) , s1)

Hard (V − η · P (∇GV (U, V ), SV ) , s2)

]
−
[

U∗Ô

V ∗Ô

]∥∥∥∥2
F

≤
(
1 +

2√
c− 1

)∥∥Z − η · P (∇GZ(Z), SZ)− Z∗Ô
∥∥2
F
,
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where the last inequality follows from Lemma 3.3 of [87]. Therefore,

d2(Z+, Z∗) ≤
(
1 +

2√
c− 1

)[
d2(Z,Z∗)−2η · (T1+R1)+2η2 · (T2+R2)

]
(6.1)

where T1=〈P (∇fZ(Z), SZ),ΔZ〉, T2=
∥∥ [∇fZ(Z)]SZ

∥∥2
F
, R2=

∥∥ [∇gZ(Z)]SZ

∥∥2
F
,

and R1 = 〈P (∇gZ(Z), SZ),ΔZ〉.
For the term T1, we have

T1 =
〈
P
(
∇f(UV �)V, SU

)
,ΔU

〉
+
〈
P
(
∇f(UV �)�U, SV

)
,ΔV

〉
=

〈[
∇f(UV �)−∇f(U∗V ∗�)

]
SU ,SV

,
[
UV � − U∗V ∗�

]
SU ,SV

〉
︸ ︷︷ ︸

T11

+

〈[
∇f(U∗V ∗�)

]
SU ,SV

,
[
UV � − U∗V ∗�

]
SU ,SV

〉
︸ ︷︷ ︸

T12

+
〈[

∇f(UV �)
]
SU ,SV

,
[
ΔUΔ

�
V

]
SU ,SV

〉
︸ ︷︷ ︸

T13

.

By restricting all the variables to the low-rank and sparse space, Theorem 2.1.11
of [101] gives

T11 ≥ L · μ
L+ μ

·
∥∥∥UV � − U∗V ∗�

∥∥∥2
F

+
1

L+ μ
·
∥∥∥ [∇f(UV �)−∇f(U∗V ∗�)

]
SU ,SV

∥∥∥2
F

Next, we have

T12 ≥ −
∣∣∣∣〈[∇f(U∗V ∗�)

]
SU ,SV

,
[
UV � − U∗V ∗�

]
SU ,SV

〉∣∣∣∣
(i)

≥ −estat ·
∥∥∥UV � − U∗V ∗�

∥∥∥
F

(ii)

≥ −1

2

L+ μ

L · μ e2stat −
1

2

L · μ
L+ μ

·
∥∥∥UV � − U∗V ∗�

∥∥∥2
F

where in (i) follows from the definition of statistical error and in (ii) we used

the Young’s inequality ab ≤ a2

2ε + εb2

2 , for a, b, ε > 0. Therefore,

T11 + T12 ≥ 1

2

L · μ
L+ μ

·
∥∥∥UV � − U∗V ∗�

∥∥∥2
F
− 1

2

L+ μ

L · μ · e2stat

+
1

L+ μ
·
∥∥∥ [∇f(UV �)−∇f(U∗V ∗�)

]
SU ,SV

∥∥∥2
F
.

(6.2)
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Finally, for the term T13, we have

T13 ≥ −
∣∣∣〈[∇f(UV �)

]
SU ,SV

,
[
ΔUΔ

�
V

]
SU ,SV

〉∣∣∣
≥ −

∣∣∣∣〈[∇f(U∗V ∗�)
]
SU ,SV

,
[
ΔUΔ

�
V

]
SU ,SV

〉∣∣∣∣
−
∣∣∣∣〈[∇f(UV �)−∇f(U∗V ∗�)

]
SU ,SV

,
[
ΔUΔ

�
V

]
SU ,SV

〉∣∣∣∣
≥ −

(
estat +

∥∥∥ [∇f(UV �)−∇f(U∗V ∗�)
]
SU ,SV

∥∥∥
F

)
· d2(Z,Z∗),

where the last inequality follows from the definition of statistical error and the
observation ‖ΔUΔ

�
V ‖F ≤ ‖ΔV ‖F · ‖ΔU‖F ≤ d2(Z,Z∗). Under the assumptions,

d2(Z,Z∗) ≤ 4μminσr(Θ
∗)

5(μ+ L)

and therefore

T13 ≥ −
(
estat +

∥∥∥ [∇f(UV �)−∇f(U∗V ∗�)
]
SU ,SV

∥∥∥
F

)

·
√

4μminσr(Θ∗)

5(μ+ L)
· d(Z,Z∗)

≥ − 1

2(μ+ L)
·
(
e2stat +

∥∥∥ [∇f(UV �)−∇f(U∗V ∗�)
]
SU ,SV

∥∥∥2
F

)
− 4

5
μminσr(Θ

∗) · d2(Z,Z∗).

(6.3)

Combining (6.2) and (6.3) we have

T1 ≥ 1

2

L · μ
L+ μ

·
∥∥∥UV � − U∗V ∗�

∥∥∥2
F︸ ︷︷ ︸

T1a

−4

5
μminσr(Θ

∗) · d2(Z,Z∗)

− 1

2

(
L+ μ

L · μ +
1

L+ μ

)
· e2stat

+
1

2(L+ μ)
·
∥∥∥ [∇f(UV �)−∇f(U∗V ∗�)

]
SU ,SV

∥∥∥2
F
.

(6.4)

For the term T2, we have∥∥∥[∇f(U∗V ∗�)V ]SU

∥∥∥
F
= sup

‖USU
‖F=1

tr
(
∇f(U∗V ∗�)V U�

SU

)
= sup

‖USU
‖F=1

〈∇f(U∗V ∗�), USU
V �〉

≤ estat · ‖V ‖2.
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We then have∥∥∥[∇f(UV �)V ]SU

∥∥∥2
F

=

∣∣∣∣∣∣∣∣[∇f(UV �)V −∇f(U∗V ∗�)V +∇f(U∗V ∗�)V ]SU

∣∣∣∣∣∣∣∣2
F

≤ 2
∥∥∥[∇f(UV �)V −∇f(U∗V ∗�)V ]SU

∥∥∥2
F
+ 2
∥∥∥[∇f(U∗V ∗�)V ]SU

∥∥∥2
F

≤ 2
∥∥∥ [∇f(UV �)−∇f(U∗V ∗�)

]
SU ,SV

∥∥∥2
F
· ‖V ‖22 + 2e2stat · ‖V ‖22

≤ 2

(∥∥∥ [∇f(UV �)−∇f(U∗V ∗�)
]
SU ,SV

∥∥∥2
F
+ e2stat

)
· ‖Z‖22,

where the first inequality follows since ‖A + B‖2F ≤ 2‖A‖2F + 2‖B‖2F , and the
last inequality follows since max(‖U‖2, ‖V ‖2) ≤ ‖Z‖2. Combining the results,
we have

T2 =
∥∥∥[∇f(UV �)V ]SU

∥∥∥2
F
+
∥∥∥[∇f(UV �)�U ]SV

∥∥∥2
F

≤ 4 ·
(∥∥∥ [∇f(UV �)−∇f(U∗V ∗�)

]
SU ,SV

∥∥∥2
F
+ e2stat

)
· ‖Z‖22.

(6.5)

For R1, Lemma B.1 of [103] gives

R1 ≥ 1

8

[∥∥UU� − U∗U∗�∥∥2
F
+
∥∥V V � − V ∗V ∗�∥∥2

F
− 2
∥∥UV � − U∗V ∗�∥∥2

F

]
︸ ︷︷ ︸

R12

+
1

2
‖∇g‖2F︸ ︷︷ ︸
R11

− 1

2
‖∇g‖2 · ‖ΔZ‖2F︸ ︷︷ ︸

R13

. (6.6)

For R12, we have that

R12 + T1a = R12 +
1

8

L · μ
L+ μ

· 4
∥∥∥UV � − U∗V ∗�

∥∥∥2
F

≥ μmin

[∥∥UU� − U∗U∗�∥∥2
F
+
∥∥V V � − V ∗V ∗�∥∥2

F

+ 2
∥∥UV � − U∗V ∗�∥∥2

F

]
= μmin

∥∥ZZ� − Z∗Z∗�∥∥2
F

≥ 4

5
μminσ

2
r(Z

∗) · d2(Z,Z∗)

=
8

5
μminσr(Θ

∗) · d2(Z,Z∗),

(6.7)

where the first inequality follows from the definition of μmin, the second in-
equality follows from Lemma 5.4 of [119], and the last equality follows from
σr(Z

∗) =
√
2σr(Θ∗).
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For R13, recall that ΔZ satisfies (3.9), we have that

R13 ≤ 1

2
‖∇g‖2 · ‖ΔZ‖F ·

√
8

5
μminσr(Θ∗)

≤ 2

5
μminσr(Θ

∗) · d2(Z,Z∗) +
1

4
‖∇g‖2F .

(6.8)

Combining (6.4), (6.6), (6.7), and (6.8), we obtain

T1 +R1 ≥ 2

5
μminσr(Θ

∗) · d2(Z,Z∗) +
1

4
‖∇g‖2F − 1

2

(
L+ μ

L · μ +
1

L+ μ

)
· e2stat

+
1

2(L+ μ)
·
∥∥∥ [∇f(UV �)−∇f(U∗V ∗�)

]
SU ,SV

∥∥∥2
F
.

(6.9)
For R2, we have

R2 = ‖U∇g‖2F + ‖V∇g‖2F ≤ 2‖Z‖22 · ‖∇g‖2F . (6.10)

Combining (6.5), (6.9), and (6.10), we have

d2(Z,Z∗)− 2η · (T1 +R1) + 2η2 · (T2 +R2)

≤
(
1− η · 2

5
μminσr(Θ

∗)

)
· d2(Z,Z∗)

+ η

(
4η · ‖Z‖22 −

1

2(L+ μ)

)
·
∥∥∥ [∇f(UV �)−∇f(U∗V ∗�)

]
SU ,SV

∥∥∥2
F

+ η

(
2η · ‖Z‖22 −

1

4

)
‖∇g‖2F

+ η

(
L+ μ

2μL
+

1

2(L+ μ)
+ 4η · ‖Z‖22

)
· e2stat.

(6.11)
Under the choice of the step size,

η ≤ 1

8‖Z‖22
·min

{ 1

2(μ+ L)
, 1
}
,

the second term and third term in (6.11) are non-positive and we drop them to
get

d2(Z,Z∗)−2η · (T1 +R1) + 2η2 · (T2 +R2)

≤
(
1− η · 2

5
μminσr(Θ

∗)

)
· d2(Z,Z∗) + η · L+ μ

L · μ · e2stat.
(6.12)

Plugging (6.12) into (6.1) we finish the proof.

6.3. Proof of Lemma 4

Comparing (3.4) and (3.10) we see that we only need to show ‖Z‖22 ≤ 2‖Z0‖22.
Let O ∈ O(r) be such that

d2(Z,Z∗) = ‖U − U∗O‖2F + ‖V − V ∗O‖2F .
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By triangular inequality we have

‖Z‖2 ≤ ‖Z∗O‖2 + ‖Z − Z∗O‖2

≤ ‖Z∗‖2 +
√

4

5
μminσr(Θ∗) · 1

μ+ L

≤ ‖Z∗‖2 +
√

4

5
· 1
8

μL

μ+ L
· 1
2
σ2
r(Z

∗) · 1

μ+ L

≤ ‖Z∗‖2 +
√

1

80
σ2
r(Z

∗)

≤ 9

8
‖Z∗‖2,

(6.13)

where the third inequality follows from the definition of μmin and σ2
r(Z

∗) =
2σr(Θ

∗), and the fourth inequality follows from ab
(a+b)2 ≤ 1

4 . Similarly, we have

‖Z0‖2 ≥ ‖Z∗O‖2 − ‖Z0 − Z∗O‖2

≥ ‖Z∗‖2 −
√

1

80
σ2
r(Z

∗)

≥ 7

8
‖Z∗‖2.

(6.14)

Combining (6.13) and (6.14) we have

‖Z‖2 ≤ 9

8
· 8
7
‖Z0‖2 ≤

√
2‖Z0‖2,

which completes the proof.

6.4. Proof of Lemma 5

Let Ω(s,m) denote a collection of subsets of {1, . . . ,m} of size s. Let SU ∈
Ω(s1, p) and SV ∈ Ω(s2, k) be fixed. With some abuse of notation, let W(SU ) =
{U ∈ R

p×2r | ‖USc
U
‖ = 0, ‖USU

‖2 = 1} and W(SV ) = {V ∈ R
k×2r | ‖VSc

V
‖ =

0, ‖VSV
‖F = 1}. Let NU (ε) and NV (ε) be the epsilon net of WU and WV ,

respectively. Using Lemma 10 and Lemma 11 of [124], we know that |NU (ε)| ≤
(3ε−1)2r·s1 , |NV (ε)| ≤ (3ε−1)2r·s2 , and

sup
U∈W(SU )
V ∈W(SV )

1

n
tr
(
E�XUV �) ≤ (1− ε)−2 max

U∈NU (ε)
V ∈NV (ε)

1

n
tr
(
E�XUV �).

For fixed U and V , the random variable tr
(
E�XUV �) is a sub-Gaussian with

variance proxy σ2‖XSU
USU

V �
SV

‖2F . This variance proxy can be bounded as

σ2‖XSU
USU

V �
SV

‖2F ≤ σ2 · max
SU∈Ω(s1,p)

‖(X�X)SUSU
‖2 = nσ2κ̄(s1).
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Using a tail bound for sub-Gaussian random variables, we get

1

n
tr
(
E�XUSU

V �
SV

)
≤ 2σ

√
κ̄(s1) log

1
δ

n

with probability at least 1−δ. To obtain an upper bound on estat, we will apply
the union bound Ω(s1, p), Ω(s2, k), NU (ε) and NV (ε). We set ε = 1

2 and obtain

estat ≤ 8σ

√
κ̄(s1)

n

(
s1 log p+ s2 log k + 2r(s1 + s2) log 6 + log

1

δ

)
with probability at least 1− δ. Taking δ = (p ∨ k)−1 completes the proof.

7. Conclusion

We proposed a new GDT algorithm to efficiently solve for optimization problem
with simultaneous low rank and row and/or column sparsity structure on the
coefficient matrix. We show the linear convergence of GDT algorithm up to
statistical error. As an application, for multi-task learning problem we show that
the statistical error is near optimal compared to the minimax rate. Experiments
on multi-task learning demonstrate competitive performance and much faster
running speed compared to existing methods. For future extensions, it would be
of interest to extend GDT algorithm to non-linear models. Another potential
direction would be to adaptively select the sparsity level s1 and s2 in hard
thresholding step.
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