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Abstract: Two-sample testing is a fundamental problem in statistics. De-
spite its long history, there has been renewed interest in this problem with
the advent of high-dimensional and complex data. Specifically, in the ma-
chine learning literature, there have been recent methodological develop-
ments such as classification accuracy tests. The goal of this work is to
present a regression approach to comparing multivariate distributions of
complex data. Depending on the chosen regression model, our framework
can efficiently handle different types of variables and various structures in
the data, with competitive power under many practical scenarios. Whereas
previous work has been largely limited to global tests which conceal much
of the local information, our approach naturally leads to a local two-sample
testing framework in which we identify local differences between multivari-
ate distributions with statistical confidence. We demonstrate the efficacy
of our approach both theoretically and empirically, under some well-known
parametric and nonparametric regression methods. Our proposed methods
are applied to simulated data as well as a challenging astronomy data set
to assess their practical usefulness.
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1. Introduction

Given two distributions P0 and P1 on R
D, the global two-sample problem is con-

cerned with testing H0 : P0 = P1 versus H1 : P0 �= P1, based on independent
random samples from each distribution. This fundamental problem has a long
history in statistics and has been well-studied in a classical setting (see, e.g.,
Thas, 2010). Recently, however, there has been renewed interest in this field as
modern data we encounter have become more complex and diverse. Traditional
approaches, which focus on low-dimensional and Euclidean data, often fail or
are not easily generalizable to high-dimensional and non-Euclidean data. Addi-
tionally, some recent developments in high-dimensional two-sample testing are
limited to simple alternatives such as location and scale differences (see, Hu and
Bai, 2016, for a recent review). In this context, there is a need to develop a new
tool for the two-sample problem that can efficiently handle complex data and
can detect differences beyond location and scale alternatives.

When the null hypothesis of the global two-sample test is rejected, it is often
valuable (for e.g. scientific discovery, calibration of simulation models, and so
on) to further explore how the two distributions are different. Specifically, as a
follow-up study to the global test, one might wish to identify locally significant
regions where the two distributions differ. This topic, which we refer to as the
local two-sample problem, has been studied by Duong (2013) who uses kernel
density estimators to identify local differences between two density functions.
However, the kernel density approach may perform poorly when distributions
are not in a low-dimensional Euclidean space, and hence another tool is needed
for more challenging settings.
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The goal of this work is to develop a general framework for both global and lo-
cal two-sample problems that overcomes the aforementioned challenges. Specif-
ically, we aim to design a two-sample test that can efficiently handle different
types of variables (e.g. mixed data types) and various structure (e.g. manifold,
irrelevant covariates) in the data. Consequently, the resulting test can have sub-
stantial power for a variety of challenging alternatives. We achieve our goal by
connecting the two-sample problem to a regression problem as follows. Let f0
and f1 be density functions of P0 and P1 with respect to a common dominating
measure. We view f0 and f1 as conditional densities f(x|Y = 0) and f(x|Y = 1)
by introducing an indicator random variable Y ∈ {0, 1}. Then by Bayes’ theo-
rem, the hypothesisH0 : f0(x) = f1(x) for all x ∈ S = {x ∈ R

D : f0(x)+f1(x) >
0} can be verified to be equivalent to the hypothesis that involves the regression
function:

H0 : P(Y = 1|X = x) = P(Y = 1), for all x ∈ S. (1)

We state the corresponding global and local alternative hypotheses as

H1 : P(Y = 1|X = x) �= P(Y = 1), for some x ∈ S, and

H1(x) : P(Y = 1|X = x) �= P(Y = 1), at fixed x ∈ S,

respectively.
Motivated by the above reformulation, we propose a testing procedure that

measures an empirical distance between the regression function P(Y = 1|X = x)
and the class probability P(Y = 1). We refer to this approach as the regression
test. Depending on the choice of regression method, the regression test can adapt
to nontraditional data settings. As we shall see, the power of the test is closely
related to the mean square error of the chosen regression estimator. In addition,
by choosing a nonparametric regression method, the global regression test can
be sensitive to general alternatives beyond location and scale differences. We
will demonstrate the benefits of the regression test with both theoretical and
empirical results.

1.1. Motivating example

We motivate our approach by comparing multivariate distributions of galaxy
morphologies, but the proposed framework benefit other areas of science and
technology as well (involving, e.g., outlier detection, calibration of simulation
models, and comparison of cases and controls). A galaxy’s morphology is the
organization of a galaxy’s light, as projected into our line of sight and observed
at a particular wavelength as a pixelated image. Morphological studies are key to
understanding the evolutionary history of galaxies and to constraining theories
of the Universe; see e.g. Conselice (2014) for a review. So far astronomers have
only been able to study one or two morphological statistics (or projections of
these) at a time instead of an entire ensemble. The reason is a lack of tools
for effectively comparing and jointly analyzing multivariate or high-dimensional



5256 I. Kim et al.

Fig 1. Result of local two-sample test of differences between high- and low-SFR galaxies in
a seven-dimensional morphology space. The red squares indicate regions where the density
of low-star-forming galaxies are significantly higher, and the blue circles indicate regions in
morphology space that are dominated by high-star-forming galaxies; the gray crosses represent
insignificant test points. The galaxies are embedded in a two-dimensional diffusion space for
visualization purposes only (see Appendix B for details); Ψ1 and Ψ2 here denote the first two
coordinates.

data in their native spaces. A global hypothesis test with a binary reject yes/no
answer is also not informative enough to explain how two distributions are
different in a multivariate feature space.

We illustrate the efficacy of the proposed global and local testing frame-
work on the morphology statistics of two galaxy populations with high and low
star-formation rate (SFR), respectively. The challenge here is not only that the
problem involves multivariate data, but also that some of the morphological
statistics are mixed discrete and continuous type with heavy outliers. We effi-
ciently handle this issue by building on the success of random forests regression.
The visualized local two-sample result is shown in Figure 1 and the details of
the analysis can be found in Section 6.

1.2. Related work

In recent years, several attempts have been made to connect binary classification
with two-sample testing. The main idea of this approach is to check whether
the accuracy of a binary classifier is better than chance level and reject the null
if the difference is significant. Such an approach, referred to as an accuracy or
classification test, was conceptualized by Friedman (2003) and has since been
investigated by several authors (Ojala and Garriga, 2010; Olivetti et al., 2015;
Kim et al., 2019; Rosenblatt et al., 2016; Gagnon-Bartsch and Shem-Tov, 2016;
Lopez-Paz and Oquab, 2016; Hediger et al., 2019). In the same manner as our
regression framework, a key strength of the accuracy test is that it offers a flex-
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ible way for the two-sample problem as it can utilize any existing classification
procedure in the literature. However, the classification accuracy framework is
not easily converted to a local two-sample test. In addition, many classifiers
are estimated by dichotomizing regression estimators and the discrete nature
of such classifiers may result in a less powerful test (see Section 5.2 and other
simulation results).

For the global two-sample test, our framework can be viewed as an instance of
goodness-of-fit testing for regression models (e.g. González-Manteiga and Cru-
jeiras, 2013, for a review). There is a substantive literature on this topic including
Hardle and Mammen (1993), Weihrather (1993), González-Manteiga and Cao
(1993), Zheng (1996), Zhang and Dette (2004), Hart (2013) and among oth-
ers. This line of work typically concentrates on comparing differences between
parametric (e.g. linear regression) and nonparametric (e.g. kernel regression) fits
from an asymptotic point of view. For example, Hardle and Mammen (1993)
consider the squared deviation between a parametric regression estimator and
a kernel estimator. They show that their test statistic converges to a normal
distribution under the null hypothesis and justify the use of the wild bootstrap
procedure. However, this type of asymptotic approach is challenging to analyze
beyond kernel-type estimators and often requires strong technical assumptions.
In contrast, our framework is designed to compare any type of regression esti-
mators with a specific constant fit by building upon the permutation principle.
Hence the resulting test is valid in any finite sample sizes. Moreover we present
a unified framework of studying the power of the regression test by taking ad-
vantage of existing results on the estimation error.

For the local two-sample test, our approach has similarities to independent
work by Cazáis and Lhéritier (2015) who estimate the Kullback-Leibler diver-
gence between P(Y = 1|X = x) and P(Y = 1). Our procedure, however, iden-
tifies locally significant areas with statistical confidence whereas Cazáis and
Lhéritier (2015) graphically decide a threshold for the significance.

1.3. Overview of this paper

We outline the paper as follows: In Section 2, we introduce the proposed met-
rics, test statistics and algorithms for the global and local regression tests. In
Section 3, we study theoretical properties of the global regression test. We be-
gin by considering a simple scenario where two populations only differ in their
means in Section 3.1. In this scenario, we show that the regression test based
on Fisher’s linear discriminant analysis (LDA) achieves the same local opti-
mality as the Hotelling’s T 2 test. Moving on to general regression settings in
Section 3.2, we establish a connection between the testing error of the global
regression test and the mean integrated square error (MISE) of the regression
estimator. In Section 4, we turn to the local two-sample problem and investi-
gate general properties of the local regression tests. In Section 4.1, we describe
the testing error of the local regression test in terms of the mean square error
(MSE) of the regression estimator. We further establish an optimality of the
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local regression tests over the Lipschitz class from a minimax point of view in
Section 4.2. When data have intrinsic dimension, we show that the performance
of the local regression tests based on kNN or kernel regression only depends on
intrinsic dimension in Section 4.3. Section 4.4 studies the limiting distribution
of the local permutation statistic to avoid a high computational cost from per-
mutations for large sample size. In Section 5, simulation studies are provided
to illustrate finite sample performance of the global and local regression tests.
In Section 6, we apply the proposed approach to a problem in astronomy and
demonstrate its efficacy. All the proofs are deferred to Appendix A.

Notation Throughout this paper, we denote the class probabilities P(Y = 0)
and P(Y = 1) by π0 and π1, respectively, and write the joint distribution of
(X,Y ) by π0[P0 × δ0] + π1[P1 × δ1] where δk denotes the point mass at k for
k = 0, 1. We denote the corresponding conditional probability P(Y = 1|X = x)
by m(x), which can be explicitly written as

m(x) =
π1f1(x)

π1f1(x) + π0f0(x)
.

We use PX(·) to denote the marginal probability measure ofX and ||Z||2 denotes
the Euclidean norm of a vector Z ∈ R

D. The symbols
p−→ and

d−→ stand for
convergence in probability and in distribution, respectively. We use an � bn if
there exists C > 0 such that an ≤ Cbn for all n. Similarly, an � bn if there exist
constants C,C ′ > 0 such that C ≤ |an/bn| ≤ C ′ for all n. As convention, the
acronym i.i.d. is used to represent independent and identically distributed.

2. Framework

2.1. Metrics

A common metric for comparing two distributions is the difference between two
density functions f0(x) and f1(x); this metric has been used for global and lo-
cal two-sample testing by Anderson et al. (1994) and Duong (2013). Another
natural metric, suggested for global two-sample testing by Keziou and Leoni-
Aubin (2005), Fokianos (2008) and Sugiyama et al. (2011), is the density ratio
f1(x)/f0(x). Although both the density difference and density ratio metrics are
intuitive, there are several weaknesses associated with each of them. For exam-
ple, the estimation of a density difference is largely limited to kernel density
estimators, which are sensitive to the curse of dimensionality. The density ra-
tio, on the other hand, could potentially be estimated using various regression
methods thanks to the following reformulation:

f1(x)

f0(x)
=

π0

π1

m(x)

1−m(x)
,

(see, e.g., Qin and Zhang, 1997). The main weakness of the ratio approach,
however, is that the ratio is highly sensitive to the tail behavior of distributions,
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and it is not even well defined whenm(x) = 1. To overcome these limitations, we
propose an alternative approach which instead compares the regression function
with the class probability. More specifically, we consider

Tglobal =
∫
S

{m(x)− π1}2dPX(x), Tlocal(x) = {m(x)− π1}2 (2)

as global and local measures of the discrepancy between two distributions where
we assume that π1 is a fixed constant within 0 < π1 < 1 throughout this
paper. By construction, both Tglobal and Tlocal(x) are bounded between zero and
one. More importantly, we can take advantage of numerous existing regression
methods (see, e.g., Friedman et al., 2009, for popular methods and descriptions)
when estimating m(x). Hence, our approach maintains the flexibility of the
density ratio approach while avoiding the problem of ill-defined quantities.

2.2. Test statistics and algorithms

Suppose we observe n pairs of samples {(Xi, Yi)}ni=1, where Xi ∈ R
D and

Yi ∈ {0, 1}. Let m̂(x) be an estimate of m(x) based on the samples, and
π̂1 = 1

n

∑n
i=1 I(Yi = 1). Then by plugging these statistics into (2), we define our

global and local test statistics as

T̂global =
1

n

n∑
i=1

{m̂(Xi)− π̂1}2, T̂local(x) = {m̂(x)− π̂1}2. (3)

The null distributions of the proposed test statistics are typically unknown,
and they depend on the choice of regression method as well as the distribution
of the data. Hence, to keep our framework as general as possible, we use a
permutation procedure to set a critical value that yields a valid level α test for
any given regression estimator under any sampling scheme given in Section 2.3.
The proposed permutation framework for global and local two-sample testing
are summarized in Algorithm 1 and Algorithm 2, respectively.

2.3. Sampling schemes

In the two-sample problem, there are two common sampling schemes for obtain-
ing the paired data set {(Xi, Yi)}ni=1, namely i) i.i.d. sampling and ii) separate
sampling defined as follows:

• i.i.d. sampling. Under i.i.d. sampling, we observe n pairs of i.i.d. samples
{(Xi, Yi)}ni=1 from the joint distribution π1[P1 × δ1] + π0[P0 × δ0]. Here
we note that n is fixed in advance. Then n1 =

∑n
i=1 I(Yi = 1) and n0 =

n− n1 are Binomial(n, π1) and Binomial(n, π0), respectively. This setting
is common in applications of supervised learning where the goal is to build
a model that can successfully predict the class label Y given the feature
vector X (e.g. Friedman et al., 2009). Our goal, on the other hand, is
to test whether the two distributions P0 and P1 are the same or not by
leveraging existing methods in the regression literature.
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Algorithm 1: Global Two-Sample Testing via Permutations

Require: samples {Xi, Yi}ni=1, number of permutations B, significance level α,
a regression method.
(1) Calculate the global test statistic T̂global.
(2) Randomly permute {Y1, . . . , Yn}. Calculate the test statistic using the
permuted data.
(3) Repeat the previous step B times to obtain

{
T̂ (1)
global, . . . , T̂

(B)
global

}
.

(4) Approximate the permutation p-value by

p =
1

B + 1

(
1 +

B∑
b=1

I(T̂ (b)
global > T̂global)

)
.

(5) Reject the null hypothesis when p < α. Otherwise, accept the null
hypothesis.

Algorithm 2: Local Two-Sample Testing via Permutations

Require: samples {Xi, Yi}ni=1, test points {xj}kj=1, number of permutations B,
significance level α, a multiple testing procedure, a regression method.
(1) Calculate the test statistic T̂local(xj) at the k test points.
(2) Randomly permute {Y1, . . . , Yn}. Calculate the test statistic using the
permuted data.
(3) Repeat the previous step B times to obtain

{T̂ (1)
local(xj)}kj=1, . . . , {T̂ (B)

local(xj)}kj=1.
(4) Approximate the permutation p-value at each test point xj by

pj =
1

B + 1

(
1 +

B∑
b=1

I(T̂ (b)
local(xj) > T̂local(xj))

)
.

(5) Apply a multiple testing procedure for controlling the FWER or the FDR
at α level.
(6) Return the significant local test points.

• Separate sampling. In the case of separate sampling, n0 and n1 are
predetermined and they are not random. We then observe n0 and n1 in-
dependent sample points from P0 and P1 separately, which provides the
data set {(Xi, Yi)}ni=1 where Yi = 1 if Xi was drawn from P1 and Yi = 0
otherwise.

We can link the separate sampling to the i.i.d. sampling scheme by randomly
ordering the (Xi, Yi) pairs, so that the data points are exchangeable and for
each i ∈ {1, . . . , n}, the conditional distribution of Yi given Xi = x is m(x) =
π1f1(x)/{π1f1(x)+π0f0(x)} where the class probability is given by π1 = n1/n.
Therefore, although the joint distributions of {(Xi, Yi)}ni=1 are different under
i.i.d. and separate sampling schemes, they share the same regression function.
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Remark 2.1. These two sampling schemes are also known as prospective sam-
pling and retrospective (or case-control) sampling, respectively, and their re-
lationships have been studied in different contexts. For example, it has been
shown that the logistic slope estimates have similar behaviors under both sam-
pling schemes (see, e.g. Anderson, 1972; Prentice and Pyke, 1979; Wang and
Carroll, 1993, 1999; Bunea and Barbu, 2009). This result has been extended to
general regression models by Scott and Wild (2001).

3. Global two-sample tests via regression

The choice of regression method in our framework will ultimately decide whether
we achieve competitive statistical power. In Section 3.1, we illustrate the point
that the global regression test can be optimal if we choose a suitable regression
method. For this theoretical purpose, we focus on the regression test based on
Fisher’s LDA and show its optimality. In Section 3.2, we turn our attention
to more general regression settings and characterize the testing error of the
global regression test in terms of the mean integrated square error (MISE) of
the regression estimator.

3.1. Fisher’s linear discriminant analysis

In this section, we consider a simple scenario of two sample normal mean to
highlight the difference between our approach and the classification accuracy
approach. In particular, we prove that the regression test based on Fisher’s LDA
achieves the same local power as Hotelling’s T 2 test. This result has significance
given that i) Hotelling’s test is optimal under the considered scenario and ii)
the classification accuracy test based on Fisher’s LDA is usually underpowered
(Kim et al., 2019; Rosenblatt et al., 2016). To facilitate comparison with the
previous results, which are established under separate sampling, we also consider
the case where n0 and n1 are predetermined throughout this subsection.

Suppose we observe {Xi,0}n0
i=1

i.i.d.∼ N(μ0,Σ) and independently {Xi,1}n1
i=1

i.i.d.∼
N(μ1,Σ). We denote the pooled samples by {Xi}ni=1 = {Xi,0}n0

i=1 ∪ {Xi,1}n1

i=1

where n = n0 + n1. The two-sample problem then becomes the problem of
testing for mean differences as

H0 : μ0 = μ1 versus H1 : μ0 �= μ1. (4)

For this particular problem, Fisher’s LDA is a natural choice for regression,
assuming normality and equal class covariances. Let μ̂i be the sample mean
vector for each group, S be the covariance matrix of the combined samples, i.e.
S = n−1

∑n
i=1(Xi − μ̂)(Xi − μ̂)� where μ̂ = n−1

∑n
i=1 Xi. Then, by putting

π1 = n1/n, the regression estimator based on Fisher’s LDA is given by

m̂LDA(x) (5)

=
π1 exp

{
− 1

2 (x− μ̂1)
�S−1(x− μ̂1)

}
π0 exp

{
− 1

2 (x− μ̂0)�S−1(x− μ̂0)
}
+ π1 exp

{
− 1

2 (x− μ̂1)�S−1(x− μ̂1)
} .
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One of the most popular test statistics for testing (4) is Hotelling’s T 2 statistic,
which yields optimal power for the normal means problem (see, e.g. Anderson,
2003). For the two-sample problem, Hotelling’s T 2 statistic is defined by

T 2
Hotelling =

n0n1

n0 + n1
(μ̂0 − μ̂1)

�S−1
p (μ̂0 − μ̂1),

where Sp is the pooled covariance matrix, that is

Sp =
1

n0 + n1 − 2

(
n0∑
i=1

(Xi,0 − μ̂0)(Xi,0 − μ̂0)
� +

n1∑
i=1

(Xi,1 − μ̂1)(Xi,1 − μ̂1)
�

)
.

On the other hand, the regression test statistic based on Fisher’s LDA is given
by

T̂LDA =
1

n

n∑
i=1

(
m̂LDA(Xi)− π1

)2

.

The next theorem provides a connection between the seemingly unrelated T̂LDA

and T 2
Hotelling statistics. Specifically, it shows that nπ−1

0 π−1
1 T̂LDA is asymptoti-

cally identical to Hotelling’s T 2 statistic under the null. It is also worth pointing
out that the theorem still holds without the normality assumption.

Theorem 3.1. Let {Xi,0}n0

i=1 and {Xi,1}n1

i=1 be random samples under separate
sampling from two multivariate distribution with the mean vectors μ0 and μ1,
respectively, and the same covariance matrix Σ. Assume the pooled samples are
mutually independent and the third moments of X1,0 and X1,1 are finite. Suppose
that Sp and S satisfy S−1

p = Σ−1(1 + oP (1)) and S−1 = Σ−1(1 + oP (1)). Then,
under H0 : μ0 = μ1, it holds that

nT̂LDA = nπ2
0π

2
1(μ̂0 − μ̂1)

�S−1
p (μ̂0 − μ̂1) + oP (1). (6)

Therefore,

nπ−1
0 π−1

1 T̂LDA = T 2
Hotelling + oP (1)

d−→ χ2
D,

where χ2
D is the chi-squared distribution with D degrees of freedom.

Let us now turn to the alternative hypothesis. To begin with, we consider a
family of probability functions that satisfy the following smoothness condition.

Definition 3.1 (Definition 12.2.1 of Lehmann and Romano (2006)). Let
{Pμ, μ ∈ Ω} be a parametric model where Ω is an open subset of RD, and let
fμ(x) = dPμ(x)/dν(x) be the density function with respect to Lebesgue measure
ν. The family {Pμ, μ ∈ Ω} is quadratic mean differentiable (q.m.d.) at μ0 if there

exists a vector of real-valued functions η(·, μ0) = (η1(·, μ0), · · · , ηD(·, μ0))
�
such

that ∫
RD

[√
fμ0+h(x)−

√
fμ0(x)− 〈η(x, μ0), h〉

]2
dν(x) = o(||h||22) (7)

as ||h||2 → 0.
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Such q.m.d. families include fairly large parametric models such as exponen-
tial families in natural form. For our purpose, we focus on location q.m.d. fam-
ilies, denoted by {Pμ, μ ∈ Ω}. Specifically, Pμ is a member of {Pμ, μ ∈ Ω} if its
density satisfies fμ(x) = f(x− μ) for which f(x) has zero mean and covariance
matrix Σ. Next, for given Pμ0 and Pμ1 from {Pμ, μ ∈ Ω}, let us consider the
local alternative

H1,n : μ1 − μ0 = h/
√
n, (8)

where h = (h1, . . . , hD)�. Then, under H1,n, T̂LDA has asymptotic behavior as
follows.

Theorem 3.2. Suppose under separate sampling that {Xi,0}n0
i=1

i.i.d.∼ Pμ0 and
independently {Xi,1}n1

i=1
i.i.d.∼ Pμ1 where Pμi is a member of the location q.m.d. family with the same
covariance matrix Σ and finite third moments. Suppose that Sp and S satisfy
S−1
p = Σ−1(1 + oP (1)) and S−1 = Σ−1(1 + oP (1)). Under the sequence of local

alternatives given in (8), we have

nπ−1
0 π−1

1 T̂LDA = T 2
Hotelling + oP (1)

d−→ χ2
D(λ),

where χ2
D(λ) denotes a noncentral chi-square distribution with D degrees of free-

dom and the noncentral parameter

λ = π0π1h
�Σ−1h.

The results from Theorem 3.1 and Theorem 3.2 imply that our regression
test based on T̂LDA has the same asymptotic local power as Hotelling’s T 2 test.
As a result, the regression test based on T̂LDA is asymptotically optimal against
the local alternatives as Hotelling’s T 2 test.

To illustrate the main point of this section, we compare the performance of
T̂LDA with Hotelling’s T 2 test through Monte Carlo simulations. We randomly
generate n0 = n1 = 100 samples fromN((0, . . . , 0)�,ID) andN((μ, . . . , μ)�,ID),
respectively and set μ2 = 0.05 for D = 5 and μ2 = 0.01 for D = 20. We
also consider two versions of the accuracy-based tests via Fisher’s LDA: the
in-sample (re-substitution) accuracy and the two-fold cross-validated accuracy.
To calculate the cross-validated accuracy, we use the balanced sample splitting
scheme in which the first part of data is used to train the LDA, and the second
part is used to estimate the accuracy of the classifier (see, Definition 1 and 2
of Rosenblatt et al., 2016, for more details). To make a fair comparison, the
critical values of the given tests were all decided by the permutation procedure.
As shown in Figure 2, the regression test based on T̂LDA has comparable power
to Hotelling’s T 2 test that coincides with our theory. On the other hand, the
accuracy tests have less power than Hotelling’s T 2 test.

3.2. The MISE and testing error for global regression

We now turn to more general regression settings and investigate general proper-
ties of the global regression test in both separate and i.i.d. sampling cases. Let
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Fig 2. Power comparisons between Hotelling’s T 2 (Hotelling), T̂LDA (Reg), the in-sample
accuracy (Acc-Resub), and the cross-validated accuracy (Acc-CV) via Fisher’s LDA.

M be a certain class of regression m(x) : S ⊆ R
D 
→ [0, 1] containing constant

functions. Suppose that we have a regression estimator m̂(x) that has the mean
integrated square error as

sup
m∈M

E

∫
S

(m̂(x)−m(x))
2
dPX(x) ≤ C0δn, (9)

where C0 is a positive constant and δn = o(1). In the case of i.i.d. sampling, we
further assume δn ≥ n−1, which is typical for nonparametric regression estima-
tors. Our main interest here is in employing the above MISE to characterize the
testing error of the global regression test. Note that the plug-in global statistic
in (3) is typically a biased estimator of the MISE and the bias differs from case
to case. To simplify our analysis, we consider sample splitting where the half of
data is used to estimate the regression function and the other is used to evalu-
ate the empirical squared error. In detail, given samples (X1, Y1), . . . , (X2n, Y2n),
the regression test statistic based on (random) sample splitting is defined by

T̂ ′
global =

1

n

2n∑
i=n+1

(m̂(Xi)− π̂1)
2
, (10)

where m̂(·) and π̂1 are calculated based on the first half of the data {(X1, Y1), . . . ,
(Xn, Yn)}. In the case of separate sampling, we assume a random ordering in
the entire data set and similarly split it into two parts but with the additional
restriction that class probabilities are the same in both parts. Based on T̂ ′

global,
we argue that for sufficiently large C1 > 0 and n, the testing error of the global
regression test can be arbitrarily small against the class of global alternatives
given by

M(C1δn) =
{
m ∈ M :

∫
S

(m(x)− π1)
2
dPX(x) ≥ C1δn

}
.
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Note that since π1 is assumed to be fixed, the regression function m(x) is com-
pletely determined by f0 and f1. Thus in the following theorem and hereafter, we
use the notation f0, f1 ∈ M to represent m(x) = π1f1(x)/{π0f0(x)+π1f1(x)} ∈
M. Similarly, we write f0, f1∈M0 to signify that π1f1(x)/{π0f0(x)+π1f1(x)} =
π1 for all x ∈ S. With this notation in hand, we state the main theorem of this
subsection.

Theorem 3.3. Consider the case of i.i.d. sampling or separate sampling. In
each case, suppose that we have a regression estimator m̂(·) satisfying (9).

Let tα be the upper α quantile of the permutation distribution of T̂ ′
global based

on m̂(·) where we permute the first half of labels. For fixed α ∈ (0, 1) and
β ∈ (0, 1 − α), we assume that there exists a positive constant C ′

0,α such that
supf0,f1∈M Pf0,f1(tα < C ′

0,αδn) ≥ 1 − β/2. Then there exist positive constants
C1 and N depending on C0, C

′
0,α, α, β such that

• Type I error: sup
f0,f1∈M0

Pf0,f1

(
T̂ ′
global > tα

)
≤ α and

• Type II error: sup
n≥N

sup
f0,f1∈M(C1δn)

Pf0,f1

(
T̂ ′
global ≤ tα

)
≤ β.

Theorem 3.3 uses the assumption that the permutation critical value of the
regression test is uniformly bounded by δn (up to some constant factor) with
high probability. We end this subsection with a class of regression estimators,
which satisfy this assumption. Let us consider a class of regression estimators
with the following representation:

m̂(x) =

n∑
i=1

wi(x)Yi,

where wi(x) ≥ 0 and
∑n

i=1 wi(x) = 1 for all x. In addition, we assume that wi(x)
is a function of {X1, . . . , Xn} but not {Y1, . . . , Yn}. This class of estimators,
often called linear smoothers, contains many popular regression methods such
as k-nearest neighbor (kNN) regression, kernel regression and local polynomial
regression. Focusing on linear smoothers, we provide the following corollary.

Corollary 3.1. Consider the case of i.i.d. sampling or separate sampling. In
each case, let T̂ ′

global be the global regression test statistic in (10) based on a
linear smoother m̂(·) with the property in (9). Let tα be the upper α quantile of

the permutation distribution of T̂ ′
global where we permute the first half of labels.

Then for fixed α ∈ (0, 1) and β ∈ (0, 1 − α), there exist positive constants C1

and N depending on C0, α, β such that

• Type I error: sup
f0,f1∈M0

Pf0,f1

(
T̂ ′
global > tα

)
≤ α and

• Type II error: sup
n≥N

sup
f0,f1∈M(C1δn)

Pf0,f1

(
T̂ ′
global ≤ tα

)
≤ β.
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3.3. Examples

In the case of i.i.d. sampling, the convergence rate δn of commonly used regres-
sion estimators have been well-established and these results can be directly used
to study the testing error of the global regression test. We list several known re-
sults here. More examples can be found in Györfi et al. (2002), Tsybakov (2009)
and Devroye et al. (2013).

• kNN regression. When M is a class of Lipschitz continuous functions,
the convergence rate of kNN estimators satisfies δn = n−2/(2+D) (Györfi
et al., 2002). This can be generalized to a Hölder space with smooth pa-
rameter β in which the rate becomes δn = n−2β/(2β+D) (Györfi et al.,
2002; Ayano, 2012) for 0 < β ≤ 1.5. Furthermore, Kpotufe (2011) shows
that kNN estimators are adaptive to the intrinsic dimension d � D under
appropriate conditions. In this case, the convergence rate becomes much
faster as δn = n−2/(2+d) � n−2/(2+D).

• Kernel regression. Kernel regression estimators also achieve the con-
verge rate as δn = n−2/(2+D) for Lipschitz continuous functions and
more generally as δn = n−2β/(2β+D) for a Hölder space with smooth
parameter 0 < β ≤ 1.5 (Györfi et al., 2002). The adaptivity of ker-
nel regression to the intrinsic dimension has been proved by Kpotufe
and Garg (2013). Following their results, the convergence rate becomes
δn = n−2/(2+d) � n−2/(2+D) when there exists a low-dimensional struc-
ture in the data.

• Local polynomial regression. Let M be a Sobolev space with smooth-
ness α. Then local polynomial regression estimators has the convergence
rate as δn = n−α/(α+d) where d is manifold dimension smaller than the
original dimension D (Bickel and Li, 2007).

• Random forests regression. For Lipschitz continuous functions, Biau
(2012) shows that the random forest estimator converges at rate δn =

n− 0.75
s log 2+0.75 where s is the number of the relevant features. Hence, the

convergence rate of the random forests becomes faster than n−2/(2+D)

when s ≤ D/2 under certain conditions. Wager and Walther (2015) use
the guess-and-check forest algorithm to show that the convergence rate of
the random forest is δn = n− log(ξ)/ log(2ξ) where ξ = 1/(1− 3/4s).

To the best of our knowledge, there has been no detailed investigation of the
regression estimation error under separate sampling. In this case, we cannot di-
rectly take advantage of existing results on regression. However, as the sample
size becomes larger, the difference between i.i.d. sampling and separate sampling
becomes minor. Hence we expect that a reasonable regression estimator behaves
similarly under both sampling schemes in large sample sizes, while a detailed
analysis is necessary in future work. It is also worth noting that for certain
regression methods, consistency results are not significantly affected by sam-
pling scheme. For example, the consistency theory for L1 penalized regression
relies mainly on the assumption about a design matrix, which can be fulfilled
under both sampling schemes (Van de Geer, 2008; Bühlmann and Van De Geer,
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2011). In such a case, the same convergence rate can be established under both
sampling schemes.

4. Local two-sample tests via regression

The global two-sample test only answers the question whether two distributions
are different, whereas in some applications, it would be more valuable to describe
how these two distributions differ in a multivariate space. With this goal in mind,
we now move on to the local two-sample problem and study general properties
of the local regression test.

4.1. The MSE and testing error for local regression

We start by establishing similar results in Section 3.2 for local regression tests.
Given a local point x ∈ S of interest, suppose that a regression estimator has
the mean square error such that

sup
m∈M

E

[
(m̂(x)−m(x))

2
]
≤ C0,xδn,x, (11)

where C0,x is a positive constant and δn,x = o(1). In addition, we assume δn,x ≥
n−1 for i.i.d. sampling. Then the next theorem shows that for sufficiently large
C1,x and n, the local testing error based on the given regression estimator can
be arbitrarily small against the class of local alternatives given by

M(C1,xδn,x) =
{
m ∈ M : (m(x)− π1)

2 ≥ C1,xδn,x

}
.

Theorem 4.1. Consider the case of i.i.d. sampling or separate sampling. In
each case, consider the local regression test statistic T̂local(x) in (3) based on
a linear smoother m̂(x) =

∑n
i=1 wi(x)Yi with the property in (11). Let tα be

the upper α quantile of the permutation distribution of T̂local(x). Then for fixed
α ∈ (0, 1) and β ∈ (0, 1 − α), there exist positive constants C1,x and Nx such
that

• Type I error: sup
f0,f1∈M0

Pf0,f1

(
T̂local(x) > tα

)
≤ α and

• Type II error: sup
n≥Nx

sup
f0,f1∈M(C1,xδn,x)

Pf0,f1

(
T̂local(x) ≤ tα

)
≤ β.

Remark 4.1. Although Theorem 4.1 focuses on a linear smoother, the same
conclusion holds for other regression methods as long as there exists a positive
constant C0,x,α such that the permutation critical value tα is bounded above by
C0,x,αδn with high probability (see Theorem 3.3 for a more formal statement).

In order to keep things as simple and concrete as possible, we next focus
on the Lipschitz class and analyze the optimality of the local regression tests
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from a minimax point of view. In the rest of this section (Section 4.2–4.4), we
concentrate on i.i.d. sampling scheme to take full advantage of known regression
results. However, as we discussed in Section 3.3, similar results are expected to
hold under separate sampling as well.

4.2. Minimax optimality over the Lipschitz class

For a fixed constant L > 0, let us denote the Lipschitz function class by

MLip =
{
m : |m(x)−m(y)| ≤ L||x− y||2 for all x, y ∈ S

}
.

We also denote the collection of α level tests by Φn,α={φ : supf0,f1∈M0
Pf0,f1(φ=

1) ≤ α} and denote the class of Lipschitz local alternatives by

MLip(δn,x) =
{
m ∈ MLip : (m(x)− π1)

2 ≥ δn,x

}
. (12)

With this notation and fixed α ∈ (0, 1) and β ∈ (0, 1 − α), the minimum
separation is defined by

δ�n,x = inf
{
δn,x : inf

φ∈Φn,α

sup
f0,f1∈MLip(δn,x)

Pf0,f1(φ = 0) ≤ β
}
, (13)

which is the smallest distance betweenm(x) and π1 such that the power becomes
nontrivial. Then a test is called minimax rate optimal if it has power uniformly
over MLip(δn,x) such that δn,x � δ�n,x.

In this section, we will investigate minimax rate optimality of local regression
tests over the Lipschitz class under i.i.d. sampling. First we formally state an
upper bound for the local estimation error based on kNN and kernel regression
in Example 4.1 and Example 4.2, respectively. We then use these results to
obtain the upper bound for the minimum separation in Corollary 4.1.

Example 4.1 (kNN regression). For a fixed point x ∈ S, list the data by

(X1,n(x), Y1,n(x)), . . . , (Xn,n(x), Yn,n(x)),

where Xk,n(x) is the kth nearest neighbor of x and Yk,n(x) is its pair. Consider
the kNN regression estimator

m̂kNN (x) =
1

kn

kn∑
i=1

Y(i,n)(x), (14)

and assume that P(X ∈ Bx,ε) > τxε
D where Bx,ε is a ball of radius ε > 0

centered at x and τx > 0. Then

sup
m∈MLip

E

[
(m̂kNN (x)−m(x))

2
]
≤ 1

4kn
+ L2 2Γ(2/D)

Dτ
2/D
x

(
kn
n

)2/D

,
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and for kn = n2/(2+D), we have

sup
m∈MLip

E

[
(m̂kNN (x)−m(x))

2
]
≤ C0,xn

− 2
2+D ,

where C0,x = 1/4 + L2Γ(2/D)D−1τ
−2/D
x .

A similar result can be established for kernel regression estimators as follows.

Example 4.2 (Kernel regression). Given a kernel K : S 
→ [0,∞), the kernel
regression estimator at a fixed point x is given by

m̂ker(x) =

∑n
i=1 YiK

(
x−Xi

hn

)
∑n

i=1 K
(

x−Xi

hn

) . (15)

Assume there exists 0 < r < R and 0 < λ < 1 such that

λI(x ∈ B0,r) ≤ K(x) ≤ I(x ∈ B0,R)

where B0,ε is a ball of radius ε > 0 centered at the origin. Further assume that
P(X ∈ Bx,ε) > τxε

D for some τx > 0. Then

sup
m∈MLip

E

[
(m̂ker(x)−m(x))

2
]
≤

(
1 + λ

4λ2τxrD
+

2e−1

τxrD

)
1

nhD
n

+ L2R2h2
n

and for hn = n−2/(2+D),

sup
f0,f1∈MLip

E

[
(m̂ker(x)−m(x))

2
]
≤ C0,xn

− 2
2+D

where C0,x = (1 + λ)/(4λ2τxr
D) + 2e−1/(τxr

D) + L2R2.

Remark 4.2. Example 4.1 and Example 4.2 are well-known and standard except
that we keep track of the constant C0,x over the Lipschitz class. Similar results
exist in the literature but for slightly different settings. Hence, in Appendix A,
we present detailed proofs for these two examples heavily building on Györfi
et al. (2002). The proofs will also be used to study the performance of the kNN
and kernel local regression tests under the existence of intrinsic dimension in
Proposition 4.1.

From the previous examples together with Theorem 4.1, we conclude that
the minimum separation in (13) satisfies δ�n,x � n−2/(2+D). We summarize this
result in the following corollary.

Corollary 4.1 (Upper bound). Let us denote the local kNN and kernel regres-
sion test statistics by

T̂kNN (x) = (m̂kNN (x)− π̂1)
2, T̂ker(x) = (m̂ker(x)− π̂1)

2, (16)
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and the upper α quantile of the permutation distribution of each statistic by
tα,kNN and tα,ker respectively. Suppose the conditions in Example 4.1 holds
with kn = n2/(D+2). Then for fixed α ∈ (0, 1) and β ∈ (0, 1 − α), there exist
positive constants C1,x and Nx such that

• Type I error: sup
f0,f1∈M0

Pf0,f1

(
T̂kNN (x) > tα,kNN

)
≤ α and

• Type II error: sup
n≥Nx

sup
f0,f1∈MLip(C1,xn−2/(2+D))

Pf0,f1

(
T̂kNN (x) ≤ tα,kNN

)
≤β.

On the other hand, under the conditions in Example 4.2 with hn = n−2/(2+D)

and for fixed α ∈ (0, 1) and β ∈ (0, 1 − α), there exist positive constants C1,x

and Nx such that

• Type I error: sup
f0,f1∈M0

Pf0,f1

(
T̂ker(x) > tα,ker

)
≤ α and

• Type II error: sup
n≥Nx

sup
f0,f1∈MLip(C1,xn−2/(2+D))

Pf0,f1

(
T̂ker(x) ≤ tα,ker

)
≤ β

As a result, the minimum separation satisfies δ�n,x � n−2/(2+D).

Next based on the standard technique to lower bound the testing error (e.g.,
Ingster, 1987; Baraud, 2002), we establish a lower bound for the minimum sep-
aration by n−2/(2+D) � δ�n,x. This results matches with the upper bound in
Corollary 4.1. Therefore, the tests in Corollary 4.1 are minimax rate optimal
and cannot be improved.

Theorem 4.2 (Lower bound). For any given α ∈ (0, 1) and β ∈ (1− α), there
exists a constant C1,x > 0 such that

inf
φ∈Φn,α

sup
f0,f1∈MLip(C1,xn−2/(2+D))

Pf0,f1(φ = 0) ≥ 1− α− β.

Remark 4.3. In the context of two-sample testing, it is sometimes more natural
to make smoothness assumptions on densities f0 and f1 rather than on the
regression function. Here we briefly discuss how to translate the smoothness
condition on f0 and f1 into a condition on the regression function. Suppose that
density functions f0 and f1 are uniformly bounded below by c > 0 (see, e.g. Yang
and Barron, 1999, for a similar assumption). Then some algebra shows that

|m(x)−m(y)| ≤ π0c
−1|f0(x)− f0(y)|+ π1c

−1|f1(x)− f1(y)|.

In other words, if f0 and f1 are Lipschitz continuous (or more generally Hölder
continuous), then the regression function is also Lipschitz continuous with a
different Lipschitz constant. This means that our theoretical results will remain
valid for the class of Lipschitz densities with the boundedness condition.
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4.3. An approach to intrinsic dimension

The previous results show that no test is uniformly powerful when the square
distance between m(x) and π1 is order of n−2/(2+D); therefore it demonstrates
the typical curse of dimensionality. Suppose that data X ∈ S ⊆ R

D has low in-
trinsic dimension d which is smaller than the original dimensionD (e.g. manifold
data). In this case, we would like to have a test whose performance only depends
on intrinsic dimension and thus avoids the curse of dimensionality. For this pur-
pose, we consider the homogeneous measure which captures local dimension of
data.

Definition 4.1. (Definition 2 of Kpotufe, 2011) Fix x ∈ S ⊆ R
D, and r > 0.

Let C > 0 and 1 ≤ d < D. The probability measure P(·) is (C, d)-homogeneous
on Bx,r if we have P(X ∈ Bx,r′) ≤ Cε−d

P(X ∈ Bx,εr′) for all r′ ≤ r and
0 < ε < 1.

Using Definition 4.1, we reproduce Corollary 4.1 and show that the perfor-
mances of the local kNN and kernel regression tests depend on the intrinsic
dimension instead of the original dimension.

Proposition 4.1. Consider the same notations as in Corollary 4.1 and let x ∈
S ⊆ R

D. Suppose the probability measure P(·) is (C, d)-homogeneous on Bx,r.
Then for the kNN regression test with kn = n2/(2+d) and for any β ∈ (0, 1−α),
there exist positive constants C1,x and Nx such that

• Type I error: sup
f0,f1∈M0

Pf0,f1

(
T̂kNN (x) > tα,kNN

)
≤ α and

• Type II error: sup
n≥Nx

sup
f0,f1∈MLip(C1,xn−2/(2+d))

Pf0,f1

(
T̂kNN (x) ≤ tα,kNN

)
≤ β.

On the other hand, for the kernel regression test with hn = n−2/(2+d) and for
any β ∈ (0, 1− α), there exist positive constants C1,x and Nx such that

• Type I error: sup
f0,f1∈M0

Pf0,f1

(
T̂ker(x) > tα,ker

)
≤ α and

• Type II error: sup
n≥Nx

sup
f0,f1∈MLip(C1,xn−2/(2+d))

Pf0,f1

(
T̂ker(x) ≤ tα,ker

)
≤ β.

When the intrinsic dimension is unknown, one can employ a Bonferroni pro-
cedure to obtain the same results in Proposition 4.1. To illustrate the idea,
let kn(i) = n−2/(i+2) for i = 1, . . . , D and denote the resulting kNN tests

by φi(α) = I(T (i)
kNN (x) > t

(i)
α,kNN ) where T (i)

kNN (x) and t
(i)
α,kNN are the kNN test

statistic calculated with kn(i) and the corresponding α level permutation critical
value, respectively. Then the final test is defined by φmax = max1≤i≤D φi(α/D).
By using the union bound, it is easy to see that supf0,f1∈M0

Pf0,f1 (φmax = 1) ≤
α and

sup
n≥Nx

sup
f0,f1∈MLip(C1,xn−2/(2+d))

Pf0,f1 (φmax = 0) ≤ β,
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for certain C1,x and Nx. This shows that the Bonferroni test does not lose any
power in terms of separation rate and it adapts to the unknown intrinsic dimen-
sion. Despite this theoretical guarantee, the Bonferroni approach should be used
with caution in practice. Indeed the Bonferroni test might be too conservative
since it does not take into account the dependency structure among φ1, . . . , φD.

Remark 4.4. For simplicity, we illustrate our idea on the Lipschitz class which
only requires a mild smoothness assumption. Nevertheless our results in Sec-
tion 4.2–4.3 can be extended to a general function class such as Hölder class
(e.g. Chapter 3.2 of Györfi et al., 2002) in a similar way. Indeed, all we need is
a uniform bound for the MSE (11) over a general class, which can be found in
the regression literature (see Section 3.3).

4.4. Limiting distribution of local permutation test statistics

When the sample size is large, calculating the permutation distribution is time-
consuming. Hence it would be useful to investigate the limiting distribution of
the permutation statistic. Based on the combinatorial central limit theorem (e.g.
Bolthausen, 1984), we show that the permutation distribution of our local test
statistic converges to the chi-square distribution with one degree of freedom as
the sample size tends to infinity.

Theorem 4.3. Consider the local regression test statistic T̂local(x) in (3) based
on a linear smoother m̂(x) =

∑n
i=1 wi(x)Yi. Suppose that

max1≤i≤n |wi(x)− 1/n|
{
∑n

i=1(wi(x)− 1/n)2}1/2
p−→ 0 (17)

holds and let

σ2
n =

n

n− 1
π̂1(1− π̂1)

n∑
i=1

(
wi(x)−

1

n

)2

. (18)

Further let η = (η1, . . . , ηn) be a permutation of {1, . . . , n}. Then the permuta-
tion distribution of the one-side local regression statistic converges to the stan-
dard normal distribution as

sup
t∈R

∣∣∣Pη

(
σ−1
n (m̂η(x)− π̂1) ≤ t

∣∣∣Xn

)
− P (N(0, 1) ≤ t)

∣∣∣ p−→ 0.

Here Pη(·|Xn) is the uniform probability measure over permutations conditioned

on (X1, Y1), . . . , (Xn, Yn) and m̂η(x) =
∑n

i=1 wi(x)Yηi . Thereby, σ−2
n T̂local(x)

converges to the chi-square distribution with one degree of freedom as

sup
t∈R

∣∣∣Pη

(
σ−2
n T̂local(x) ≤ t

∣∣∣Xn

)
− P

(
χ2
1 ≤ t

) ∣∣∣ p−→ 0.

We illustrate Theorem 4.3 using kNN and kernel regression and show that
both σ−2

n T̂kNN (x) and σ−2
n T̂ker(x) converge to the chi-square distribution with

one degree of freedom under appropriate conditions.
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Corollary 4.2 (kNN regression). Consider the kNN estimator in (14) with

σ2
n = π̂1(1− π̂1)

(n− 1)(n− k)

n2k
.

Then the permutation distribution of σ−2
n T̂kNN (x) converges to the chi-square

distribution with one degree of freedom when n, k → ∞ and 2k < n.

Corollary 4.3 (Kernel regression). Consider the kernel regression estimator in
(15) and assume that supt |K(t)| = K < ∞,

∫
K2(t)dt < ∞ and

∫
Kh(t)dx = 1

where Kh(t) = h−DK(t/h). Denote the density function of X by f(·). Assume
that 0 < f(x) < ∞ and f(·) is twice differentiable at x. Further assume that

nhD → ∞ and h → 0. Then the permutation distribution of σ−2
n T̂ker(x) con-

verges to the chi-square distribution with one degree of freedom where σ2
n is given

in (18).

5. Simulations

In this section, we carry out simulation studies for global and local two-sample
tests to examine the empirical performance of the proposed methods. Through-
out our simulations, we focus on the separate sampling scenarios under which
other existing two-sample tests are usually investigated. We begin by comparing
the regression test based on random forests (Breiman, 2001) with other bench-
mark competitors in Section 5.1. Next in Section 5.2, we illustrate by an example
that the classification accuracy tests can fail due to their discrete nature while
the corresponding regression tests perform well. We also provide simulation re-
sults for the local regression test in Section 5.3 to validate our approach.

5.1. Random forests two-sample testing

Random forests have been proven to be a powerful tool for regression and clas-
sification problems in many application areas (see e.g., Hamza and Larocque,
2005; Dı́az-Uriarte and De Andres, 2006; Cutler et al., 2007; Chen and Ish-
waran, 2012). Despite the good performance of random forests in classification
and regression problems, only a few works have applied these methods to sta-
tistical inference problems. To the best of our knowledge, only Gagnon-Bartsch
and Shem-Tov (2016) and Hediger et al. (2019) use random forests for the
two-sample problem. Now whereas Gagnon-Bartsch and Shem-Tov (2016) and
Hediger et al. (2019) consider an accuracy test based on random forests, we pro-
pose a regression test based on random forests. The corresponding test statistic
is given by

T̂RF =
1

n

n∑
i=1

(m̂RF (Xi)− π̂1)
2
, (19)

where m̂RF is the regression estimator from the random forest algorithm. For
our simulation study, we implement both the RF accuracy and regression tests
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with the randomForest package (version 4.6-12) in R with default options for
the parameters. We found in our simulation study that the in-sample classi-
fication accuracy of random forests is typically one even under the null case;
therefore, the resulting test has no power against any alternative. For this rea-
son, we instead estimate the classification accuracy from out-of-bag samples
(which is a default option provided by the randomForest package). Throughout
this section, we denote the accuracy test statistic based on random forests by
ÂRF .

5.1.1. Simulation setting

Our simulations analyze two main settings. The first setting includes dense alter-
natives where the two distributions are different over a number of coordinates.
The second setting, on the other hand, considers sparse alternatives where the
two distributions differ in only a few coordinates. We carry out the simulations
via the permutation procedure with 100 random permutations, repeated 300
times for all test statistics. The significance level is controlled at α = 0.05.

Dense Alternatives. For the dense alternatives, we draw random samples of
size n0 = n1 = 20 and dimension D = 5, 20, 50, 100, 150 and 200 from either
multivariate normal distributions N(μ,Σ) or multivariate Cauchy distribution
C(μ,Σ) with different location μ and scale Σ parameters. We consider the fol-
lowing scenarios:

• Dense Normal Location. Test N(0, ID) versus N (μ, ID), where μ =
(0.2, 0.2, . . . , 0.2)�.

• Dense Cauchy Location. Test C(0, ID) versus C(μ, ID), where μ =
(0.3, 0.3, . . . , 0.3)�.

• Dense Normal Scale. Test N(0, ID) versus N(0, JD), where JD is a
diagonal matrix whose diagonal elements are (0.6, 0.6, . . . , 0.6)�.

• Dense Cauchy Scale. Test C(0, ID) versus C (0, JD), where JD is a di-
agonal matrix whose diagonal elements are (0.5, 0.5, . . . , 0.5)�.

Sparse Alternatives. Similarly, we generate random samples with n0 = n1 =
20 and D = 20, 50, 100, 200, 300 and 400 from either multivariate normal distri-
butions or multivariate Cauchy distributions. We consider the following prob-
lems:

• Sparse Normal Location. Test N(0, ID) versus N(μ, ID), where μ =
(2, 0, . . . , 0)�.

• Sparse Cauchy Location. Test C(0, ID) versus C(μ, ID), where μ =
(3, 0, . . . , 0)�.

• Sparse Normal Scale. Test N(0, ID) versus N (0, JD), where JD is a
diagonal matrix with diagonal elements (0.01, 1, . . . , 1)�.

• Sparse Cauchy Scale. Test C(0, ID) versus C (0, JD), where JD is a
diagonal matrix with diagonal elements (0.01, 1, . . . , 1)�.
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As a benchmark competitor, we consider the maximum mean discrepancy
(MMD) test (Gretton et al., 2012) based on

MMD2
n (20)

= − 2

n0n1

n0,n1∑
i,j=1

k(Xi,0, Xi,1) +
1

n2
0

n0∑
i,j=1

k(Xi,0, Xj,0) +
1

n2
1

n1∑
i,j=1

k(Xi,0, Xj,0),

where k(x, y) is the Gaussian kernel with a bandwidth chosen by the median
heuristic, i.e. k(x, y) = exp

(
−||x− y||22/σmedian

)
(see, Gretton et al., 2012, for

details). We also consider the Energy test (Székely and Rizzo, 2004; Baringhaus
and Franz, 2004) based on

Energyn (21)

=
2

n0n1

n0,n1∑
i,j=1

||Xi,0 −Xj,1||2 −
1

n2
0

n0∑
i,j=1

||Xi,0 −Xj,0||2−
1

n2
1

n1∑
i,j=1

||Xi,1−Xj,1||2.

5.1.2. Simulation results

Tables 1–4 summarize our simulation results. We see from Table 1 and 2 that
MMDn and Energyn perform better than the regression test (T̂RF ) and the

accuracy test (ÂRF ) against the dense normal location and scale alternatives.
Indeed, MMDn and Energyn are known to be asymptotically optimal against
the normal location alternative with the identity covariance matrix (Ramdas
et al., 2015). However, they are both moment-based statistics, and hence sen-
sitive to outliers. They are also based on the Euclidean metric. A major issue
of the Euclidean and similar metrics is that they assign weights to the coor-
dinates proportional to their scale without screening for irrelevant variables.
Consequently, neither MMDn nor Energyn can properly deal with sparse alter-
natives, which explains their poor performance against the sparse location and
scale alternatives. On the other hand, the base learner of the random forest al-
gorithm is the decision tree. The usual splitting rule of decision trees is invariant
to absolute values (see e.g., Chapter 9.2 of Friedman et al., 2009), which leads
to robustness against outliers.

Random forests also have the ability to handle sparse alternatives by ran-
domly selecting a few variables during the tree-growing process. By averag-
ing each tree, random forests eventually put more weight on informative vari-
ables. In general, T̂RF and ÂRF are comparable to or more powerful than
MMDn and Energyn under the sparse location and scale alternatives. Finally,
we note from our simulations that the regression test T̂RF exhibits higher
power than the accuracy test ÂRF for the dense as well as the sparse alter-
natives.
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Table 1

Power analysis against dense location alternatives at level α = 0.05

Normal Dense Location Cauchy Dense Location
D 5 20 50 100 150 200 5 20 50 100 150 200

T̂RF 0.123 0.187 0.303 0.417 0.573 0.633 0.157 0.370 0.607 0.803 0.893 0.950

ÂRF 0.070 0.117 0.233 0.340 0.440 0.510 0.093 0.260 0.503 0.693 0.793 0.857
MMDn 0.143 0.290 0.520 0.723 0.880 0.937 0.097 0.057 0.053 0.050 0.060 0.040
Energyn 0.156 0.283 0.530 0.720 0.877 0.940 0.083 0.077 0.073 0.057 0.057 0.057

Table 2

Power analysis against dense scale alternatives at level α = 0.05

Normal Dense Scale Cauchy Dense Scale
D 5 20 50 100 150 200 5 20 50 100 150 200

T̂RF 0.133 0.187 0.260 0.350 0.410 0.473 0.287 0.557 0.790 0.937 0.953 0.970

ÂRF 0.097 0.150 0.200 0.277 0.277 0.290 0.230 0.407 0.663 0.783 0.840 0.877
MMDn 0.210 0.563 0.847 0.993 0.997 1.000 0.380 0.380 0.407 0.407 0.400 0.400
Energyn 0.080 0.263 0.397 0.657 0.847 0.913 0.283 0.293 0.310 0.310 0.313 0.297

Table 3

Power analysis against sparse location alternatives at level α = 0.05

Normal Sparse Location Cauchy Sparse Location
D 20 50 100 200 300 400 20 50 100 200 300 400

T̂RF 0.953 0.880 0.830 0.687 0.600 0.503 0.960 0.933 0.897 0.710 0.643 0.577

ÂRF 0.883 0.817 0.763 0.600 0.523 0.440 0.943 0.877 0.830 0.613 0.540 0.527
MMDn 0.977 0.943 0.770 0.587 0.437 0.360 0.147 0.067 0.057 0.043 0.057 0.027
Energyn 0.977 0.943 0.770 0.587 0.440 0.367 0.157 0.083 0.043 0.037 0.050 0.040

Table 4

Power analysis against sparse scale alternatives at level α = 0.05

Normal Sparse Scale Cauchy Sparse Scale
D 20 50 100 200 300 400 20 50 100 200 300 400

T̂RF 0.630 0.333 0.287 0.167 0.167 0.133 0.830 0.550 0.390 0.257 0.197 0.170

ÂRF 0.603 0.297 0.220 0.130 0.120 0.087 0.743 0.467 0.287 0.207 0.170 0.150
MMDn 0.043 0.057 0.043 0.053 0.060 0.063 0.067 0.033 0.040 0.057 0.063 0.043
Energyn 0.037 0.050 0.043 0.050 0.060 0.063 0.047 0.047 0.040 0.057 0.053 0.037

5.2. A comparison between regression and classification accuracy
tests

As mentioned earlier, many classifiers are typically estimated by dichotomiz-
ing regression estimators. Depending on the alternative, this dichotomization
can result in a less powerful accuracy test than the corresponding regression
test. We specifically demonstrate this point by considering two commonly used
nonparametric regression methods; namely, k-nearest neighbors regression and
kernel regression.

5.2.1. Simulation setting

Recall the kNN estimator and the kernel regression estimator in (14) and (15),
respectively. Using these estimators, the global regression test statistics are given
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Fig 3. Power comparison between the regression test and the classification accuracy test via
k-NN regression at level α = 0.05 for the toy example in Section 5.2.

by

T̂kNN =
1

n

n∑
i=1

(
m̂kNN (Xi)− π̂1

)2

and T̂ker =
1

n

n∑
i=1

(
m̂ker(Xi)− π̂1

)2

.

Here we use the Euclidean distance to measure the pairwise distance between
observations for kNN. On the other hand, we consider the Gaussian kernel with
a diagonal bandwidth matrix with identical components h for kernel regression.
The corresponding accuracy test statistics are

ÂkNN =
1

n

n∑
i=1

I
(
I(m̂kNN (Xi) > 1/2) = Yi

)
and

Âker =
1

n

n∑
i=1

I
(
I(m̂ker(Xi) > 1/2) = Yi

)
,

respectively. For all tests, we reject the null hypothesis when the test statistic
is larger than a permutation critical value.

For the simulation study, we let {X1,0, . . . , Xn0,0}
i.i.d.∼ N(μ0, σ

2
0 × ID) and

{X1,1, . . . , X1,n1}
i.i.d.∼ N(μ1, σ

2
1 × ID) where μ0 = (0, . . . , 0)�, μ1 =

(0.2, . . . , 0.2)�, σ2
0 = 1, and σ2

1 = 1.2. Hence, there exist differences in both
the location and scale parameters. We choose the sample sizes n0 = n1 = 50
and change the dimension from D = 5 to D = 75 by steps of 10. To compare the
performance, we carry out the permutation test with 200 permutations, and the
simulations are repeated 1,000 times to estimate the power of the test. We pro-
vide results for a range of different values of the tuning parameters: k = 5, 15, 25
for the k-NN regression, and h = 5, 15, 25 for the kernel regression.

5.2.2. Simulation results

Simulation results are presented in Figure 3 and 4. From the results, it is seen
that the regression tests consistently outperform the corresponding classification
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Fig 4. Power comparison between the regression test and the classification accuracy test via
kernel regression at level α = 0.05 for the toy example in Section 5.2.

accuracy tests under the given scenario. The power of the accuracy tests even
decreases with dimension, whereas the power of the regression tests steadily in-
creases with dimension. The increase in power with dimension is desirable under
this scenario because each coordinate presents evidence towards the alternative.
The counter-intuitive result for the accuracy tests is due to the fact that the
tests employ a dichotomized regression estimator. To explain it more clearly, we
borrow some results from Mondal et al. (2015). First, it can be shown by the
weak law of large numbers that

1) D−1/2||Xi,0 −Xj,0||2
p−→ σ0

√
2 for 1 ≤ i < j ≤ n0,

2) D−1/2||Xi,1 −Xj,1||2
p−→ σ1

√
2 for 1 ≤ i < j ≤ n1,

3) D−1/2||Xi,0 −Xj,1||2
p−→

√
σ2
0 + σ2

1 + (μ0 − μ1)2

for 1 ≤ i ≤ n0, 1 ≤ j ≤ n1, as D → ∞ while n0 and n1 are fixed. For the
given example, we have σ0

√
2 <

√
σ2
0 + σ2

0 + (μ0 − μ1)2 < σ1

√
2, which implies

that every instance is closer to an instance from the class Y = 0 than to other
instances from the class Y = 1. In other words, the nearest neighbors of any
observation are most likely to be from the class Y = 0. Note that both k-
NN and kernel regression, explicitly or implicitly, use the Euclidean distance to
calculate the proximity between two instances. Therefore, we observe with high
probability that m̂kNN (Xi) and m̂KerR(Xi) are estimated as less than half and
the dichotomized classifiers become

I (m̂kNN (Xi) > 1/2) = I (m̂KerR(Xi) > 1/2) = 0, for all i = 1, . . . , n.

Due to this dichotomization, ÂkNN and ÂKerR converge to the empirical class
probability n0/n under the alternative, resulting in poor power performance. On

the other hand, the regression tests based on T̂kNN and T̂ker can be powerful as
long as m̂kNN (x) and m̂ker(x) significantly deviate from the class probability.
This is indeed the case under the considered scenario and thus explains why the
regression tests outperform the corresponding classification tests.
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Fig 5. Significant local regions for the normal mixture example. The left is the underlying
true model and the right is the result of the local two-sample test. The difference regions are
colored as follows — (a) red: f1(x, y) > f0(x, y), (b) blue: f1(x, y) < f0(x, y) and (c) gray:
insignificant.

5.3. Toy examples for local two-sample testing

Contrary to classification accuracy, our regression approach naturally leads to a
local two-sample testing framework that provides further information on point-
wise differences between two populations. We consider two toy examples to
demonstrate the empirical performance of the local regression test. For the
simulation study, we focus on the local kNN regression statistic in (16) with
kn = n2/(2+D) for the normal mixture example and kn = n2/(2+d) for the mani-
fold example. For both examples, we control the family-wise error rate (FWER)
at α = 0.05 via the Hochberg step up procedure (Hochberg, 1988).

5.3.1. Normal mixture example

In the first example, we consider two normal mixtures in R
2:

f0(x, y) =
1

8

8∑
i=1

φi(x, y) and f1(x, y) =
1

8

8∑
i=1

φ′
i(x, y),

where φi is the bivariate normal density function with means μ1 = (−3,−3),
μ2 = (−3, 1), μ3 = (−1,−1), μ4 = (−1, 3), μ5 = (1,−3), μ6 = (1, 1), μ7 =
(3,−1), μ8 = (3, 3) and covariance matrix Σ = 0.32 × I2. φ

′
i is similarly de-

fined with means μ′
1 = (−3,−1), μ′

2 = (−3, 3), μ′
3 = (−1,−3), μ′

4 = (−1, 1),
μ′
5 = (1,−1), μ′

6 = (1, 3), μ′
7 = (3,−3), μ′

8 = (3, 1) and the same covariance
matrix. We generated n0 = n1 = 2000 samples from f0 and f1 and implemented
Algorithm 2 to capture local significant points. The local tests were performed
at a fixed uniform grid of 50 × 50 points over (x, y) ∈ [−4, 4] × [−4, 4] and the
result is presented in Figure 5.
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5.3.2. Manifold data example

In the second example, we create high-dimensional data with a low-dimensional
manifold structure by generating edge images of size 16×16. Let x, y be integers
on evenly spaced points between −30 and 30 that are 2 units apart. Hence the
size of the domain of (x, y) becomes 16× 16. Given two underlying parameters
θ ∈ [−π, π] and ρ ∈ [−5, 5], an edge image is defined by

I(x, y) = I (x · cos(θ) + y · sin(θ)− ρ > 0) .

For the simulation, we draw n0 = n1 = 100 samples from

(θ0, ρ0) ∼
1

10
Unif([0, π]× [0, 5]) +

9

10
Unif([−π, 0]× [−5, 0]) and

(θ1, ρ1) ∼
9

10
Unif([0, π]× [0, 5]) +

1

10
Unif([−π, 0]× [−5, 0]),

and generate corresponding edge images. As a result, there are two sets of the
edge images supported on R

256. Using these image samples, we implemented
Algorithm 2 to detect local significant points. The local tests were performed
at fixed images whose parameters are defined on a uniform grid of 200 × 200
points over (θ, ρ) ∈ [−π, π] × [−5, 5]. For visualization purpose, we projected
the testing points into the two-dimensional diffusion space (see Appendix B for
details) and the final result is provided in Figure 6.

For both examples, the kNN local regression test performs reasonably well
and detects most of the local differences between two distributions.

6. Application to astronomy data

Continuing our discussion from Section 1.1, we apply our two-sample framework
to galaxies in the COSMOS, EGS, GOODS-North and UDS fields observed by
the Hubble Space Telescope (HST) as part of the CANDELS program.1 For
the analysis, we compute seven morphological statistics that summarize galaxy
images nonparametrically: M, I, D (Freeman et al., 2013), Gini, M20 (Lotz
et al., 2004), C and A (Conselice, 2003). Each statistic (see the references for
details) explains particular aspects of galaxy morphology. In brief, the M, I, D
statistics capture galaxies with disturbed morphologies, Gini and M20 describe
the variance of a galaxy’s stellar light distribution, and the C and A statistics
measure the concentration of light and asymmetry of a galaxy, respectively. We
restrict our study to relatively nearby galaxy observations that have a redshift
(proxy for distance) estimate between 0.56 < z < 1.12. The final data set
consists of 2736 so-called i-band-selected galaxy observations. For each galaxy,
we have seven morphological image statistics along with an estimate of star-
formation rate (SFR).

1http://candels.ucolick.org

http://candels.ucolick.org
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Fig 6. Significant local regions for the manifold data example. The left is the underly-
ing true model and the right is the result of the local two-sample test. The difference
regions are colored as follows — (a) red: f1(x1, . . . , x256) > f0(x1, . . . , x256), (b) blue:
f1(x1, . . . , x256) < f0(x1, . . . , x256) and (c) gray: insignificant. Here Ψ1 and Ψ2 denote the
the first two coordinates of the diffusion map.

Galaxy morphology is closely related to other physical properties such as star
formation rate, mass and metallicity (see, e.g., Snyder et al., 2015). The aim
of this study is to demonstrate that our local two-sample framework can be
valuable in detecting and quantifying dependencies between variables of mod-
erate or high dimension without resorting to low-dimensional projections of
summary statistics. In particular, we demonstrate that local two-sample tests
can identify galaxies that lie in regions of the feature space where the esti-
mated proportion of a particular defined class of objects (such as star-forming
galaxies) differs significantly from the global proportion. Hence, we start by
defining two galaxy classes based on the SFR: we say that a galaxy belongs to
the high-SFR group if its SFR is higher than the upper 25% quantile of the
SFR distribution (log10(SFR) > 1.201), and that it belongs to the low-SFR
group if its SFR is lower than the lower 25% quantile of the SFR distribution
(log10(SFR) < −0.915). We further randomly divide the data into a training
set (n = 684) and a test set (n = 684). We use the training data to construct
the local test statistic in (3), and we perform the local-two sample tests at the
points in the test set (that is, these are the evaluation points in Algorithm 2).
Note that this particular application is especially challenging because the seven
morphological statistics have very different properties, and some of the statis-
tics (M and I) are essentially of mixed discrete and continuous type with heavy
outliers; hence, any metric-based estimator is bound to perform poorly even
after normalizing the variables. Our regression test, however, can by-pass this
problem by leveraging the random forest algorithm. Another advantage of us-
ing random forests is that the algorithm returns variable importance measures
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that can help us identify which morphology statistics are the most important
in distinguishing the two populations (Figure 7).

6.1. Analysis and result

According to our global two-sample test (T̂RF = .188, p < .001), there is a sig-
nificant difference between the low-SFR and the high-SFR populations in terms
of galaxy morphology. We follow up on this result by implementing the local
two-sample testing framework according to Algorithm 2 with FWER control at
α = 0.05 by the Hochberg step up procedure. To visualize locally significant
points from the local test, we use diffusion maps with local scaling (Zelnik-
Manor and Perona, 2005). For more information on our particular application
of diffusion maps, see Appendix B. The main result of the local significance test
is displayed in Figure 1. As we can see, the high-SFR and low-SFR dominated
regions (that is, the regions where fLowSFR < fHighSFR and fLowSFR > fHighSFR,
respectively) are fairly well-separated in morphology space. Figure 1 also shows
some examples of galaxy images at significant test points. By inspecting such
images, we note that the “red” galaxies in the low-SFR dominated regions of the
seven-dimensional space tend to be more concentrated and less disturbed than
their “blue” counterparts in the high-SFR dominated regions — this result is
consistent with previous astronomical studies about irregular galaxies display-
ing merger activities and high star-formation rates. Our test result is further
supported by the variable importance measures in Figure 7: the two most im-
portant morphology statistics in distinguishing between high-SFR and low-SFR
galaxies are the Gini (Lotz et al., 2004) and I (Freeman et al., 2013) morphol-
ogy statistics. Indeed, by definition, the Gini statistic describes the variance of
a galaxy’s stellar light distribution, and the I statistic captures galaxies with
disturbed morphologies.

7. Conclusions

In this work, we presented a new framework for both global and local two-sample
testing via regression. Depending on the chosen regression model, our framework
can efficiently deal with different types of variables and different structures in
the data; thereby, providing tests with competitive power against many practical
alternatives. Compared to other recent approaches in the two-sample literature
(such as classification tests), our framework has the key advantage of being
able to detect locally significant regions in multivariate spaces. Throughout this
work, we studied theoretical properties of the regression tests by building on
existing regression results. We established a connection between the power of
the global and local tests to the MISE and MSE of the corresponding regres-
sion estimators, and we demonstrated practical usefulness of our methods via
simulations.

By taking advantage of permutation tests under the global null hypothesis,
the proposed local testing framework ensures that the type I error rate is less



Two-sample tests via regression 5283

Fig 7. Variable importance measures from random forest regression, as measured by the Mean
Decrease Gini (MDG) metric when splitting the data along the indicated variables. For the
morphology-SFR study, the Gini and I morphology statistics are the two most important
features in distinguishing between high-star-forming and the low-star-forming galaxy popula-
tions.

than or equal to the significance level. When the local null hypothesis H0(x) :
m(x) = π is of interest, on the other hand, there is no such guarantee. In this
case, it would be necessary to use an asymptotic framework and investigate
the limiting behavior of a local test statistic. This topic is reserved for future
work. Another direction for future work is to study the optimality of global
regression tests. Contrary to the local regression test, a regression estimator with
the optimal estimation error rate may not necessarily return minimax optimal
global regression test. We hope that future studies will establish a lower bound
and matching upper bound for the global regression test.

Appendix A: Proofs

A.1. Proof of Theorem 3.1

We start by simplifying m̂LDA(x) as

m̂LDA(Xi)

=
π1 exp

{
− 1

2 (Xi − μ̂1)
�S−1(Xi − μ̂1)

}
π1 exp

{
− 1

2 (Xi − μ̂1)�S−1(Xi − μ̂1)
}
+π0 exp

{
− 1

2 (Xi−μ̂0)�S−1(Xi − μ̂0)
}

=
π1

π1 + π0 exp
{
− 1

2 (Xi − μ̂0)�S−1(Xi − μ̂0) +
1
2 (Xi − μ̂1)�S−1(Xi − μ̂1)

}
=

π1

π1 + π0 exp
{
(Xi − (μ̂0 + μ̂1)/2)

� S−1 (μ̂0 − μ̂1)
}
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and write

Wi = (Xi − (μ̂0 + μ̂1)/2)
� S−1 (μ̂0 − μ̂1) .

For some a ∈ (0, 1), Taylor expansion of f(x) = a/{a + (1 − a)ex} at x = 0
provides ∣∣{m̂LDA(Xi)− π1

}2 − π2
0π

2
1W

2
i

∣∣ ≤ C|Wi|3,

where C is a universal constant. This implies that∣∣∣∣∣
n∑

i=1

{
m̂LDA(Xi)− π1

}2

− π2
0π

2
1

n∑
i=1

W 2
i

∣∣∣∣∣ ≤ C

n∑
i=1

|Wi|3.

Now based on |x+ y|3 ≤ 4|x|3 +4|y|3 and Cauchy-Schwarz inequality, it can be
seen that
n∑

i=1

|Wi|3≤4n
∣∣((μ̂0+μ̂1)/2)

�S−1(μ̂0−μ̂1)
∣∣3+4

n∑
i=1

∣∣X�
i S−1(μ̂0−μ̂1)

∣∣3 = oP (1).

As a result, nT̂LDA can be approximated by

nT̂LDA =
n∑

i=1

{
m̂LDA(Xi)− π1

}2

= π2
0π

2
1

n∑
i=1

W 2
i + oP (1). (22)

Let us denote δn = S−1(μ̂0 − μ̂1) and Δn = (μ̂0 + μ̂1)/2, and recall S =
n−1

∑n
i=1(Xi − μ̂)(Xi − μ̂)� where μ̂ = n−1

∑n
i=1 Xi. Then we observe that

1

n

n∑
i=1

W 2
i =

1

n

n∑
i=1

{
δ�n Xi − δ�n Δn

}2

= δ�n

{
1

n

n∑
i=1

(Xi −Δn) (Xi −Δn)
�
}
δn

= δ�n Sδn + δ�n (μ̂−Δn) (μ̂−Δn)
�
δn

= (μ̂0 − μ̂1)
�S−1(μ̂0 − μ̂1) +Rn,

where Rn = δ�n (μ̂−Δn) (μ̂−Δn)
�
δn. Hence, we have

nT̂LDA = nπ2
0π

2
1

{
(μ̂0 − μ̂1)

�S−1(μ̂0 − μ̂1) +Rn

}
+ oP (1).

We also note that the residual term is negligible under the null, i.e. nπ2
0π

2
1Rn =

oP (1), which results in

nπ−1
0 π−1

1 T̂LDA =
n0n1

n0 + n1
(μ̂0 − μ̂1)

�S−1(μ̂0 − μ̂1) + oP (1)

= T 2
Hotelling + oP (1).

The rest of the proof follows by the limiting property of Hotelling’s T 2.
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A.2. Proof of Theorem 3.2

Proof. First note that the likelihood ratio for testing (8) is given by

Ln =

n1∑
i=1

log
fμ0+h/

√
n(Xi,1)

fμ0(Xi,1)
.

Since {Pμ, μ ∈ Ω} is q.m.d. at μ0, Theorem 12.2.3 of Lehmann and Romano
(2006) under n1/(n0 + n1) → π1 yields that

Ln
d−→ N

(
−π1

2
〈h, I(μ0)h〉, π1〈h, I(μ0)h〉

)
,

where I(μ) is the Fisher information matrix. This implies by Corollary 12.3.1 of
Lehmann and Romano (2006) that the joint distribution of X1,0 and X1,1 under
the null and the alternative are mutually contiguous. Since contiguity implies

nπ−1
0 π−1

1 T̂LDA =
n0n1

n0 + n1
(μ̂0 − μ̂1)

�S−1(μ̂0 − μ̂1) + oP (1),

under H1,n, the result follows by the limiting distribution of Hotelling’s T 2

statistic.

A.3. Proof of Theorem 3.3

Proof. The exact type I error control of the permutation test is well-known
(see e.g. Chapter 15 of Lehmann and Romano, 2006). Strictly speaking, the
considered test is not the usual permutation test since the only first half of
labels are permuted to decide a critical value. However, it also controls the
type I error under H0 due to Theorem 15.2.1 of Lehmann and Romano (2006).
Indeed, this result holds regardless of i.i.d. sampling or separate sampling. Hence
we focus on the type II error control.

• Type II error control (i.i.d. sampling)

We start with the case of i.i.d. sampling. Based on the inequality (x − y)2 ≤
2(x− z)2 + 2(z − y)2, we lower bound the test statistic as

T̂ ′
global =

1

n

2n∑
i=n+1

(m̂(Xi)− π̂1)
2

≥ 1

2n

2n∑
i=n+1

(m(Xi)− π̂1)
2 − 1

n

2n∑
i=n+1

(m̂(Xi)−m(Xi))
2

≥ 1

4n

2n∑
i=n+1

(m(Xi)− π1)
2 − 1

2
(π1 − π̂1)

2 − 1

n

2n∑
i=n+1

(m̂(Xi)−m(Xi))
2
.

(23)
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Define the events A1,A2,A3,A4 such that

A1 =
{
(π1 − π̂1)

2 < C2δn

}
,

A2 =
{ 1

n

2n∑
i=n+1

(m̂(Xi)−m(Xi))
2
< C3δn

}
,

A3 =
{∣∣∣ 1

n

2n∑
i=n+1

(m(Xi)− π1)
2 − E

[
(m(Xi)− π1)

2
] ∣∣∣ < 1

2
E
[
(m(X)− π1)

2
] }

,

A4 =
{
tα < C ′

0,αδn

}
.

Using Markov’s inequality, we have

P (Ac
1) ≤

π1(1− π1)

C2nδn
,

P (Ac
2) ≤

1

C3δn
E

[∫
S

(m̂(x)−m(x))2dPX(x)

]
≤ C0

C3
,

by the condition in (9). For the third event, denote Δn = E
[
(m(X)− π1)

2
]
and

use Chebyshev’s inequality to have

P (Ac
3) ≤

4

nΔ2
n

Var
[
(m(X)− π1)

2
]

≤ 4

nΔ2
n

E
[
(m(X)− π1)

4
]

≤ 4

nΔ2
n

E
[
(m(X)− π1)

2
]

since |m(X)− π1| ≤ 1

≤ 4

C1nδn
,

where the last inequality uses the assumption that Δn ≥ C1δn. Furthermore,
under the assumption on the permutation critical value, P (Ac

4) ≤ β/2. Hence,
we obtain

P ((A1 ∩ A2 ∩ A3 ∩ A4)
c) ≤

4∑
i=1

P (Ac
i ) < β,

by choosing sufficiently large C1, C2, C3 > 0 with the assumption that δn ≥ n−1.
Using (23), the type II error of the regression test is bounded by

P(T̂ ′
global ≤ tα)

≤ P

(
1

4n

2n∑
i=n+1

(m(Xi)−π1)
2− 1

2
(π1−π̂1)

2 − 1

n

2n∑
i=n+1

(m̂(Xi)−m(Xi))
2 ≤ tα

)
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≤ P

({
1

4n

2n∑
i=n+1

(m(Xi)−π1)
2− 1

2
(π1−π̂1)

2− 1

n

2n∑
i=n+1

(m̂(Xi)−m(Xi))
2 ≤ tα

}

⋂{
4⋂

j=1

Aj

})
+ P ((A1 ∩ A2 ∩ A3 ∩ A4)

c)

≤ P (Δn < C4δn) + β,

where C4 can be chosen by C4 = 2C ′
0,α + C2 + 2C3. Now by choosing C1 > C4

for sufficiently large n, the type II error can be bounded by β. Hence the result
follows.

• Type II error control (Separate Sampling)

The proof for separate sampling is almost the same as before except few details.
First, we do not need to define A1 since π1 is known. In terms of A2, apply
Markov’s inequality to obtain

P (Ac
2) ≤ 1

C3δn

{
n0

n
E

[∫
S

(m̂(x)−m(x))2dP0(x)

]

+
n1

n
E

[∫
S

(m̂(x)−m(x))2dP1(x)

]}

=
C0

C3
E

[∫
S

(m̂(x)−m(x))2dPX(x)

]
≤ C0

C3
,

where the last line uses the fact that n0

n P0+
n1

n P1 = PX . Similarly, for the event
A3, we have by Chebyshev’s inequality that

P (Ac
3) ≤

4

Δ2
n

1

n2

2n∑
i=n+1

Var
[
(m(Xi)− π1)

2
]

≤ 4

Δ2
n

1

n2

2n∑
i=n+1

E
[
(m(Xi)− π1)

2
]
=

4

nΔ2
n

E
[
(m(X)− π1)

2
]

≤ 4

C1nδn
.

The rest follows exactly the same as before. Hence the proof is complete.

A.4. Proof of Corollary 3.1

Proof. We prove the corollary by showing that the conditions in Theorem 3.3
are satisfied. In particular, it suffices to verify that for fixed α ∈ (0, 1) and β ∈
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(0, 1−α), there exists a positive constant C ′
0,α such that supf0,f1∈M Pf0,f1(tα <

C ′
0,αδn) ≥ 1− β/2. Then the rest of the proof proceeds the same as before.

• i.i.d. sampling

To start with the case of i.i.d. sampling, let η = (η1, . . . , ηn)
� be a permutation

of {1, . . . , n}. Now conditioned on the data X2n = {(X1, Y1), . . . , (X2n, Y2n)}, we
denote the probability and expectation under permutations by Pη[·] = Pη[·|X2n]
and Eη[·] = Eη[·|X2n] respectively. Then by Markov’s inequality

Pη

(
T̂ ′
global ≥ t

)
= Pη

(
1

n

2n∑
i=n+1

(m̂η(Xi)− π̂1)
2 ≥ t

)

≤ 1

tn

2n∑
i=n+1

Eη

[
(m̂η(Xi)− π̂1)

2
]
,

where m̂η(x) =
∑n

i=1 wi(x)Yηi . Since
∑n

i=1 wi(x) = 1 for any x ∈ S,

Eη [m̂η(x)] =

n∑
i=1

wi(x)Eη[Yηi ] =

n∑
i=1

wi(x)π̂1 = π̂1.

Further note that

Eη

[
(m̂η(x)− π̂1)

2
]
=

n∑
i1=1

n∑
i2=1

wi1(x)wi2(x)Eη

[
(Yηi1

− π̂1)(Yηi2
− π̂1)

]
(24)

≤
n∑

i=1

w2
i (x)Eη

[
(Yηi − π̂1)

2
]

= π̂1(1− π̂1)

n∑
i=1

w2
i (x)

≤ 1

4

n∑
i=1

w2
i (x), (25)

where the first inequality uses Eη

[
(Yηi1

− π̂1)(Yηi2
− π̂1)

]
≤ 0 when i1 �= i2.

Note that the permutation samples are not i.i.d. and thus in order to use
the condition in (9) which holds for i.i.d. samples, we will associate the upper
bound in (25) with i.i.d. samples. To do so, let (Y ∗

1 , . . . , Y
∗
n ) be i.i.d. Bernoulli

random variables with parameter p = 1/2 independent of {X1, . . . , X2n}. Then

EY ∗
[
(m̂(x)− 1/2)2|X1, . . . , X2n

]
= EY ∗

[( n∑
i=1

wi(x)Y
∗
i − 1/2

)2∣∣X1, . . . , X2n

]
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= EY ∗

[( n∑
i=1

wi(x)(Y
∗
i − 1/2)

)2∣∣X1, . . . , X2n

]

=

n∑
i1=1

n∑
i2=1

wi1(x)wi2(x)EY ∗ [(Y ∗
i1 − 1/2)(Y ∗

i2 − 1/2)]

=
1

4

n∑
i=1

w2
i (x).

Therefore, we obtain

Eη

[
(m̂η(x)− π̂1)

2
]
≤ EY ∗

[
(m̂(x)− 1/2)2|X1, . . . , X2n

]
which in turn implies that

Pη

(
T̂ ′
global ≥ t

)
≤ 1

tn

2n∑
i=n+1

EY ∗
[
(m̂(Xi)− 1/2)2|X1, . . . , X2n

]
.

So the critical value of the permutation distribution is bounded by

t∗α ≤ 1

αn

2n∑
i=n+1

EY ∗
[
(m̂(Xi)− 1/2)2|X1, . . . , X2n

]
. (26)

Now choose C ′
0,α such that 2C0/(αβ) ≤ C ′

0,α. Then based on the assumption in
(9) and Markov’s inequality

sup
f0,f1∈M

Pf0,f1

(
t∗α ≥ C ′

0,αδn
)

≤ sup
f0,f1∈M

Pf0,f1

(
1

αn

2n∑
i=n+1

EY ∗
[
(m̂(Xi)− 1/2)2|X1, . . . , X2n

]
≥ C ′

0,αδn

)

≤ C0

C ′
0,αα

≤ β/2.

Hence the proof completes.

• Separate Sampling

Let Y ∗∗
1 , . . . , Y ∗∗

n be Bernoulli random variables with parameter π̂1 such that∑n
i=1 Y

∗∗
i = nπ̂1 and they are independent of X1, . . . , X2n. In the case of sepa-

rate sampling, the proof follows similarly by noting that the right-hand side of
(24) is the same as

n∑
i1=1

n∑
i2=1

wi1(x)wi2(x)Eη

[
(Yηi1

− π̂1)(Yηi2
− π̂1)

]
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=

n∑
i1=1

n∑
i2=1

wi1(x)wi2(x)EY ∗∗
[
(Y ∗∗

i1 − π̂1)(Y
∗∗
i2 − π̂1)

]
= EY ∗∗ [(m̂(x)− π̂1)

2|X1, . . . , Xn].

Now by putting the above quantity into the right-hand side of (26) and following
the same lines afterwards, we complete the proof.

A.5. Proof of Theorem 4.1

This result can be proved by following the same steps in the proof of Theo-
rem 3.3. In fact, it is simpler than the previous proof since it does not involve
sample splitting to estimate the integration error; hence we omit the proof.

A.6. Proof of Example 4.1

Proof. Let mkNN (x) = E[m̂kNN (x)|X1, . . . , Xn]. Then we have the following
decomposition.

E

[
(m̂kNN (x)−m(x))

2
]

= E

[
(m̂kNN (x)−mkNN (x))

2
]

︸ ︷︷ ︸
(I)

+E

[
(mkNN (x)−m(x))

2
]

︸ ︷︷ ︸
(II)

.

For a fixed x, Proposition 8.1 of Biau and Devroye (2015) shows that conditioned
on {X1, . . . , Xn},

(X1,n(x), Y1,n(x)), . . . , ((Xn,n(x), Yn,n(x)))

are independent. Using this independence property,

(I) = E

⎡⎣( 1

kn

kn∑
i=1

(Yi,n(x)−m(Xi,n(x)))

)2
⎤⎦ ≤ 1

4kn
.

Next for (II),

(II) = E

⎡⎣( 1

kn

kn∑
i=1

(m(Xi,n(x))−m(x))

)2
⎤⎦

≤ E

⎡⎣( 1

kn

kn∑
i=1

∣∣m(Xi,n(x))−m(x)
∣∣)2

⎤⎦

≤ E

⎡⎣( L

kn

kn∑
i=1

||Xi,n(x)− x||2

)2
⎤⎦
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where the last inequality uses the Lipschitz condition. Note that for fixed ε > 0

P (||X1,n(x)− x||2 > ε) = (1− P(X ∈ Bx,ε))
n

≤ (1− τxε
D)n ≤ e−τxnε

D
(27)

by the assumption that P(X ∈ Bx,ε) > τxε
D. Hence,

E
[
||X1,n(x)− x||2

]
=

∫ ∞

0

P
(
||X1,n(x)− x||2 >

√
ε
)
dε

≤
∫ ∞

0

e−τxnε
D/2

dε

=
2Γ(2/D)

Dτ
2/D
x

n−2/D. (28)

Similarly to the proof of Theorem 6.2 of Györfi et al. (2002), divide the data
into kn + 1 parts where the first kn parts have size �n/kn� and denote the first

nearest neighbor of x from the jth partition by X̃x
j . This implies that

kn∑
i=1

||Xi,n(x)− x||2 ≤
kn∑
i=1

||X̃x
i − x||2

and by Jensen’s inequality,

(II) ≤ E

⎡⎣( L

kn

kn∑
i=1

||X̃x
i − x||2

)2
⎤⎦ ≤ L2

kn

kn∑
i=1

E

[
||X̃x

i − x||22
]

≤ L2 2Γ(2/D)

Dτ
2/D
x

(
kn
n

)2/D

by the inequality (28). Combining the results, we have

E

[
(m̂kNN (x)−m(x))

2
]
= (I) + (II)

≤ 1

4kn
+ L2 2Γ(2/D)

Dτ
2/D
x

(
kn
n

)2/D

.

This completes the proof.

A.7. Proof of Example 4.2

Proof. Following the proof of Example 4.1, let

mker(x) = E [m̂ker(x)|X1, . . . , Xn]
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and thus

E

[
(m̂ker(x)−m(x))

2
]
= E

[
(m̂ker(x)−mker(x))

2
]

︸ ︷︷ ︸
(I)

+E

[
(mker(x)−m(x))

2
]

︸ ︷︷ ︸
(II)

.

Define an event

An =

{
n∑

i=1

K

(
x−Xi

hn

)
≥ λ

}
.

Then

(I) = E

[
(m̂ker(x)−mker(x))

2
I(An)

]
︸ ︷︷ ︸

(I1)

+E

[
(m̂ker(x)−mker(x))

2
I(Ac

n)
]

︸ ︷︷ ︸
(I2)

.

For (I1), we have

E

[
(m̂ker(x)−mker(x))

2
I(An)|X1, . . . , Xn

]

=

∑n
i=1 Var(Yi|Xi)K

(
x−Xi

hn

)
(∑n

i=1 K
(

x−Xi

hn

))2 I(An)

≤ 1

4
∑n

i=1 K
(

x−Xi

hn

)I ( n∑
i=1

K

(
x−Xi

hn

)
≥ λ

)

≤ 1 + λ−1

4 + 4
∑n

i=1 K
(

x−Xi

hn

)
≤ 1 + λ−1

4 + 4λ
∑n

i=1 I (||x−Xi||2 ≤ rhn)

≤ 1 + λ

4λ2

1

1 +
∑n

i=1 I (||x−Xi||2 ≤ rhn)
.

By Lemma 4.1 of Györfi et al. (2002),

E

[
1

1 +B

]
≤ 1

(n+ 1)p
≤ 1

np
,

where B ∼ Binominal(n, p). Using this result,

(I1) ≤
1 + λ

4λ2

1

nP (X ∈ Bx,rhn)

≤
(

1 + λ

4λ2τxrd

)
1

nhd
n

.
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For (I2), note that (m̂ker(x)−mker(x))
2 ≤ 1 and thus

(I2) ≤ P

(
n∑

i=1

K

(
x−Xi

hn

)
< λ

)

≤ P

(
n∑

i=1

I (||x−Xi||2 ≤ rhn) = 0

)

where the second inequality is because if there exists Xi such that ||x−Xi||2 ≤
rhn, then

∑n
i=1 K

(
x−Xi

hn

)
≥ λ by the assumption on the kernel. In addition,

P

(
n∑

i=1

I (||x−Xi||2 ≤ rhn) = 0

)
= (1− P (X ∈ Bx,rhn))

n

(i)

≤ e−nτxr
DhD

n

(ii)

≤
(

e−1

τxrD

)
1

nhD
n

,

(29)

where (i) uses 1 + x ≤ ex with the assumption P (X ∈ Bx,ε) ≥ τxε
D and (ii)

uses supz ze
−z ≤ e−1. As a result,

(I) = (I1) + (I2) ≤
(

1 + λ

4λ2τxrD
+

e−1

τxrD

)
1

nhD
n

.

For (II), we use Jensen’s inequality and the Lipschitz condition to have

(mker(x)−mker(x))
2

=

⎛⎝∑n
i=1 (m(Xi)−m(x))K

(
x−Xi

hn

)
∑n

i=1 K
(

x−Xi

hn

)
⎞⎠2

I

(
n∑

i=1

K

(
x−Xi

hn

)
> 0

)

+mker(x)
2I

(
n∑

i=1

K

(
x−Xi

hn

)
= 0

)

≤
∑n

i=1 L
2||Xi − x||22K

(
x−Xi

hn

)
∑n

i=1 K
(

x−Xi

hn

) I

(
n∑

i=1

K

(
x−Xi

hn

)
> 0

)

+ I

(
n∑

i=1

K

(
x−Xi

hn

)
= 0

)
.

Since K(x) ≤ I(x ∈ B0,R), we observe that

||Xi − x||22K
(
x−Xi

hn

)
≤ R2h2

nK

(
x−Xi

hn

)
.
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Consequently,

(mker(x)−mker(x))
2 ≤ L2R2h2

n + I

(
n∑

i=1

K

(
x−Xi

hn

)
= 0

)

≤ L2R2h2
n + I

(
n∑

i=1

I (||x−Xi||2 ≤ rhn) = 0

)
,

where the second inequality is by the assumption λI(x ∈ B0,r) ≤ K(x). By
taking the expectation,

(II) ≤ L2R2h2
n + (1− P (X ∈ Bx,rhn))

n
(30)

≤ L2R2h2
n +

(
1− τxr

DhD
n

)n
≤ L2R2h2

n +

(
e−1

τxrD

)
1

nhD
n

.

Therefore, we conclude that

E

[
(m̂ker(x)−m(x))

2
]
= (I) + (II)

≤
(

1 + λ

4λ2τxrD
+

2e−1

τxrD

)
1

nhD
n

+ L2R2h2
n,

which completes the proof.

A.8. Proof of Theorem 4.2

Proof. Suppose X has the uniform distribution over [0, B]D and B > 0. In
addition, assume that for 0 < ε < 1/2, the regression function is given by

m(x) = ε

D∏
i=1

(
1− xi

Bε

)
I (0 ≤ xi ≤ Bε)

+ ε

D∏
i=1

(
B(1− ε)− xi

Bε

)
I{B(1− ε) ≤ xi ≤ B}+ 1

2

(31)

for x = (x1, . . . , xD) ∈ [0, B]D and m(x) = 0 otherwise. Therefore, we have
π1 = π0 = 1/2. Now for any x, z ∈ [0, B]D, the telescoping argument gives

|m(x1, . . . , xD)−m(z1, . . . , zD)|

≤ |m(x1, x2, . . . , xD)−m(z1, x2, . . . , xD)|

+
D−2∑
i=1

|m(z1, . . . , zi, xi+1, . . . , xD)−m(z1, . . . , zi, zi+1, xi+2, . . . , xD)|
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+ |m(z1, z2, . . . , zD−1, xD)−m(z1, z2, . . . , zD)|.

For the first term,

|m(x1, x2, . . . , xD)−m(z1, x2, . . . , xD)|

≤ ε

∣∣∣∣∣ (1− x1

Bε

)
I (0 ≤ x1 ≤ Bε)−

(
1− z1

Bε

)
I (0 ≤ z1 ≤ Bε)

∣∣∣∣∣
×

D∏
i=2

∣∣∣∣∣ (1− xi

Bε

)
I (0 ≤ xi ≤ Bε)

∣∣∣∣∣
+ε

∣∣∣∣∣
(
B(1− ε)− x1

Bε

)
I
{
B(1− ε) ≤ x1 ≤ B

}

−
(
B(1− ε)− z1

Bε

)
I
{
B(1− ε) ≤ z1 ≤ B

}∣∣∣∣∣
×

D∏
i=2

∣∣∣∣∣
(
B(1− ε)− xi

Bε

)
I
{
B(1− ε) ≤ xi ≤ B

}∣∣∣∣∣
≤ ε

∣∣∣∣∣ (1− x1

Bε

)
I (0 ≤ x1 ≤ Bε)−

(
1− z1

Bε

)
I (0 ≤ z1 ≤ Bε)

∣∣∣∣∣
+ε

∣∣∣∣∣
(
B(1− ε)− x1

Bε

)
I
{
B(1− ε) ≤ x1 ≤ B

}

−
(
B(1− ε)− z1

Bε

)
I
{
B(1− ε) ≤ z1 ≤ B

}∣∣∣∣∣
≤ 2

B
|x1 − z1| ≤

2

B
||x− z||2.

Applying the same logic to the other terms, we see that

|m(x)−m(z)| ≤ 2D

B
||x− z||2.

By choosing B = 2D/L, the regression function m(x) becomes L-Lipschitz with

δn,x = |m(x)− π1|2 = ε2 at x = (0, . . . , 0).

Next, we lower bound the testing error. Denote the product and joint mea-
sure of (X,Y ) described above by P0 and P1 respectively. Using the standard
approach to lower bound the testing error (e.g. Baraud, 2002), we obtain that
for any α level test functions φ : {(X1, Y1), . . . , (Xn, Yn)} 
→ {0, 1},

inf
φ∈Φn,α

sup
f0,f1∈MLip(δn,x)

Pf0,f1(φ = 0) ≥ 1− α− TV(Pn
0 , P

n
1 )
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where TV denotes total variation distance. Based on Pinsker’s inequality, we
get

TV(Pn
0 , P

n
1 ) ≤

√
n

2
DKL(P1||P0)

where DKL is the Kullback-Leibler divergence and by the Jensen’s inequality

DKL(P1||P0)

=

∫
π1f(x) log

f(x, Y = 1)

π1f(x)
dx+

∫
(1− π1)f(x) log

f(x, Y = 0)

(1− π1)f(x)
dx

=
1

2

∫
f(x) log

f(x|Y = 1)

f(x)
dx+

1

2

∫
f(x) log

f(x|Y = 0)

f(x)
dx

≤ 1

2

∫
(f(x|Y = 1)− f(x))2

f(x)
dx+

1

2

∫
(f(x|Y = 0)− f(x))2

f(x)
dx.

By the assumption on (X,Y ), X has the marginal density f(x) = B−D and
the conditional densities f(x|Y = 1) = 2B−Dm(x) and f(x|Y = 0) = 2B−D −
f(x|Y = 1) for x ∈ [0, B]D. Therefore,

1

2

∫
(f(x|Y = 1)− f(x))2

f(x)
dx+

1

2

∫
(f(x|Y = 0)− f(x))2

f(x)
dx

=

∫
(f(x|Y = 1)− f(x))2

f(x)
dx

= 4B−D

∫
(m(x)− 1/2)

2
dx.

Using the definition of m(x) in (31), the above integration is calculated by

4B−D

∫
(m(x)− 1/2)

2
dx =

8

3D
ε2+D.

Now by choosing ε = β2/(2+D)3D/(2+D)2−2/(2+D)n−1/(2+D), we have

inf
φ∈Φn,α

sup
f0,f1∈MLip(C1,xn−2/(2+D))

Pf0,f1(φ = 0) ≥ 1− α− β.

This completes the proof.

A.9. Proof of Proposition 4.1

It is enough to show that there exist universal constants C0, C
′
0,α such that

sup
f0,f1∈MLip

E

[
(m̂kNN (x)−m(x))

2
]
≤ C0n

− 2
2+d ,
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sup
f0,f1∈MLip

E

[
(m̂ker(x)−m(x))

2
]
≤ C ′

0,αn
− 2

2+d .

Then we can apply Theorem 4.1 to complete the proof. To start with kNN
regression, we only need to modify (27) and follow the same steps in the proof
of Example 4.1. From the definition of the (C, d)-homogeneous measure, we see
that

P (X ∈ Bx,ε) ≥
εd

C
P (X ∈ Bx,1) = C ′εd.

As a result, (27) becomes

P (||X1,n(x)− x||2 > ε) = (1− P(X ∈ Bx,ε))
n

≤
(
1− C ′εd

)n ≤ e−C′nεd .

Then we end up having

E

[
(m̂kNN (x)−m(x))

2
]
≤ 1

4kn
+ L2 2Γ(2/d)

dC ′2/d

(
kn
n

)2/d

and the result follows by setting kn = n
2

2+d . Similarly, we only need to modify
(29) and (30) in the proof of Example 4.2. By using the (C, d)-homogeneous
measure,

(1− P (X ∈ Bx,rhn))
n ≤

(
1− hd

n

C
P (X ∈ Bx,r)

)n

=
(
1− C ′hd

n

)n
≤ e−C′nhd

n

and apply this result to (29) and (30). We complete the proof by following the
same steps in the proof of Example 4.2.

A.10. Proof of Theorem 4.3

Proof. We use a combinatorial central limit theorem in Bolthausen (1984) to
prove the result. First denote aij = wi(x)Yj for 1 ≤ i, j ≤ n and

μ = na··, σ2
n =

n∑
1≤i,j≤n

(aij − ai· − a·j + a··)
2/(n− 1),

where

ai· =
n∑

j=1

aij/n, a·j =
n∑

i=1

aij/n, a·· =
n∑

1≤i,j≤n

aij/n
2.
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In our case, μ = π̂1 and σ2
n is given in (18). Let dij = aij − ai· − a·j + a·· =

(wi(x)−1/n)(Yj− π̂1). Then using the theorem in Bolthausen (1984), we obtain

sup
t∈R

∣∣∣∣P(
m̂(x)− π̂1

σn
≤ t

∣∣∣X1, . . . , Xn

)
− Φ (t)

∣∣∣∣ ≤ K
1√
n

1
n2

∑
i,j |di,j |3(

1
n2

∑
i,j d

2
i,j

)3/2
,

where K is a universal constant. Note that

1

n2

∑
i,j

|di,j |3 =
1

n

n∑
i=1

∣∣∣wi(x)−
1

n

∣∣∣3 · 1
n

n∑
j=1

∣∣Yj − π̂1

∣∣3
and

1

n2

∑
i,j

d2i,j =
1

n

n∑
i=1

(
wi(x)−

1

n

)2

· 1
n

n∑
j=1

(Yj − π̂1)
2
.

As a result,

1
n2

∑
i,j |di,j |3(

1
n2

∑
i,j d

2
i,j

)3/2
=

1√
n

1
n

∑n
i=1

∣∣∣wi(x)− 1
n

∣∣∣3{
1
n

∑n
i=1

(
wi(x)− 1

n

)2}3/2
·

1
n

∑n
j=1

∣∣Yj − π̂1

∣∣3(
1
n

∑n
j=1 (Yj − π̂1)

2
)3/2

︸ ︷︷ ︸
(II)

≤ max1≤i≤n(wi(x)− 1/n)2∑n
i=1(wi(x)− 1/n)2︸ ︷︷ ︸

(I)

·(II)

Note that (I) = oP (1) under the given assumption and (II) is stochastically
bounded by the law of large number. Thus we conclude that

sup
t∈R

∣∣∣∣P(
m̂(x)− π̂1

σn
≤ t

∣∣∣X1, . . . , Xn

)
− Φ (t)

∣∣∣∣ = oP (1),

which implies the desired result.

A.11. Proof of Corollary 4.2

Proof. For kNN regression, there are k and (n− k) number of k−1 and zero in
{w1(x), . . . , wn(x)} respectively. Hence,

n∑
i=1

(
wi(x)−

1

n

)2

= k

(
1

k
− 1

n

)2

+
n− k

n2
.

Furthermore, under the assumption that 2k < n, we have

max
1≤i≤n

∣∣∣∣wi(x)−
1

n

∣∣∣∣ = 1

k
− 1

n
.



Two-sample tests via regression 5299

After direct calculations, one can show that

max1≤i≤n |wi(x)− 1/n|
{
∑n

i=1(wi(x)− 1/n)2}1/2 → 0,

and thus the result follows.

A.12. Proof of Corollary 4.3

Proof. Note that

m̂ker(x) =
n∑

i=1

wi(x)Yi =

∑n
i=1 YiK

(
x−Xi

hn

)
∑n

i=1 K
(

x−Xi

hn

) =

∑n
i=1 YiKhn (x−Xi)∑n
i=1 Khn (x−Xi)

.

Hence it suffices to show that

max1≤i≤n(wi(x)− 1/n)2∑n
i=1(wi(x)− 1/n)2

=
max1≤i≤n

(
Kh(x−Xi)− 1

n

∑n
j=1 Kh(x−Xj)

)2

∑n
i=1

(
Kh(x−Xi)− 1

n

∑n
j=1 Kh(x−Xj)

)2

p−→ 0.

Using the given condition, the numerator is bounded by

max
1≤i≤n

⎛⎝Kh(x−Xi)−
1

n

n∑
j=1

Kh(x−Xj)

⎞⎠2

≤ 4h−DK2.

Whereas the denominator can be decomposed into two parts:

n∑
i=1

⎛⎝Kh(x−Xi)−
1

n

n∑
j=1

Kh(x−Xj)

⎞⎠2

=

n∑
i=1

K2
h(x−Xi)− 2n

⎛⎝ 1

n

n∑
j=1

Kh(x−Xj)

⎞⎠2

Based on the usual bias-variance decomposition of the kernel density estimation
(Wasserman, 2006), each part can be approximated as

1

nhD

n∑
i=1

K2

(
x−Xi

h

)
= f(x)

∫
K2(u)du+O(h) +OP

(
1√
nhD

)
1

nhD

n∑
i=1

K

(
x−Xi

h

)
= f(x) +O(h2) +OP

(
1√
nhD

)
.
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Now, the sufficient condition can be further bounded by

max1≤i≤n

(
Kh(x−Xi)− 1

n

∑n
j=1 Kh(x−Xj)

)2

∑n
i=1

(
Kh(x−Xi)− 1

n

∑n
j=1 Kh(x−Xj)

)2

≤ 4h−DK2

1
h2D

∑n
i=1 K

2
(
x−Xi

h

)
− 2n

(
1

nhD

∑n
j=1 K

(
x−Xj

h

))2

=
4n−1K2

1
nhD

∑n
i=1 K

2
(
x−Xi

h

)
− 2hD

(
1

nhD

∑n
j=1 K

(
x−Xj

h

))2 . (32)

Then using the previous approximations, the denominator becomes

1

nhD

n∑
i=1

K2

(
x−Xi

h

)
− 2hD

⎛⎝ 1

nhD

n∑
j=1

K

(
x−Xj

h

)⎞⎠2

= f(x)

∫
K2(u)du+O(h) +OP

(
1√
nhD

)

− 2hD

(
f(x) +O(h2) +OP

(
1√
nhD

))2

= f(x)

∫
K2(u)du︸ ︷︷ ︸

>0 by the assumption

+oP (1).

Hence (32) converges to zero in probability and the result follows.

Appendix B: Diffusion maps

Dimensionality reduction methods can be useful for visualizing and describing
low-dimensional structures that are embedded in higher-dimensional spaces. In
this section, we briefly describe diffusion maps (Coifman et al., 2005; Coifman
and Lafon, 2006) and the particular version that we use to visualize the results
of our local two-sample test.

As a starting point for constructing a diffusion map, one first defines a weight
that reflects the local similarity of two points xi and xj in X = {x1, . . . , xn}. A
common choice is the Gaussian kernel

w(xi, xj) = exp

(
−s(xi, xj)

2

ε

)
, (33)

where s(xi, xj) represents (for example, the Euclidean) distance between the
points. These weights are used to build a Markov random walk on the data
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with the transition probability from xi to xj defined as

p(xi, xj) =
w(xi, xj)∑

k∈Ω w(xi, xk)
.

The one-step transition probabilities are stored in an n× n matrix denoted by
P, and then usually propagated by a t-step Markov random walk with transition
probabilities Pt. Instead of choosing a fixed time parameter t, however, we here
combine diffusions at all times (Coifman et al., 2005) and define an averaged
diffusion map2 according to

Ψav : x 
→
[(

λ1

1− λ1

)
ψ1(x),

(
λ2

1− λ2

)
ψ2(x), . . . ,

(
λm

1− λm

)
ψm(x)

]
,

where λi and ψi, respectively, represent the first mth eigenvalues and the cor-
responding right eigenvectors of P.

In our application for galaxy morphologies, we also use a generalization of
the weight in (33) proposed by Zelnik-Manor and Perona (2005) for spectral
clustering. In their paper, the authors show that a data-driven varying band-
width leads to more meaningful clustering results for data with multiple scales
and propose the weight

ŵ(xi, xj) = exp

(
−s(xi, xj)

2

σiσj

)
,

where σi(j) is the distance between xi(j) and its kth neighbor. For our visual-
ization purposes, we choose m = 2 and k = 50, but a range of other values give
similar results.
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