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Abstract: Active learning is a type of sequential design for supervised
machine learning, in which the learning algorithm sequentially requests the
labels of selected instances from a large pool of unlabeled data points. The
objective is to produce a classifier of relatively low risk, as measured under
the 0-1 loss, ideally using fewer label requests than the number of random
labeled data points sufficient to achieve the same. This work investigates the
potential uses of surrogate loss functions in the context of active learning.
Specifically, it presents an active learning algorithm based on an arbitrary
classification-calibrated surrogate loss function, along with an analysis of
the number of label requests sufficient for the classifier returned by the
algorithm to achieve a given risk under the 0-1 loss. Interestingly, these
results cannot be obtained by simply optimizing the surrogate risk via
active learning to an extent sufficient to provide a guarantee on the 0-1
loss, as is common practice in the analysis of surrogate losses for passive
learning. Some of the results have additional implications for the use of
surrogate losses in passive learning.
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1. Introduction

In supervised machine learning, we are tasked with learning a classifier whose
probability of making a mistake (i.e., error rate) is small. The study of when
it is possible to learn an accurate classifier via a computationally efficient al-
gorithm, and how to go about doing so, is a subtle and difficult topic, owing
largely to nonconvexity of the loss function: namely, the 0-1 loss. While there is
certainly an active literature on developing computationally efficient methods
that succeed at this task, even under various noise conditions [e.g., 2, 30–32], it
seems fair to say that at present, many of these advances have not yet reached
the level of robustness, efficiency, and simplicity required for most applications.
In the mean time, practitioners have turned to various heuristics in the design
of practical learning methods, in attempts to circumvent these tough computa-
tional problems. One of the most common such heuristics is the use of a convex
surrogate loss function in place of the 0-1 loss in various optimizations performed
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by the learning method. The convexity of the surrogate loss allows these opti-
mizations to be performed efficiently, so that the methods can be applied within
a reasonable execution time, using modest computational resources. Although
classifiers arrived at in this way are not always guaranteed to be good classifiers
when performance is measured under the 0-1 loss, in practice this heuristic has
often proven quite effective. In light of this fact, most modern learning methods
either explicitly make use of a surrogate loss in the formulation of optimiza-
tion problems (e.g., SVM), or implicitly optimize a surrogate loss via iterative
descent (e.g., AdaBoost). Indeed, the choice of a surrogate loss is often as fun-
damental a part of the process of approaching a learning problem as the choice
of hypothesis class or learning bias. Thus it seems essential that we come to
some understanding of how best to make use of surrogate losses in the design of
learning methods, so that in the favorable scenario that this heuristic actually
does work, we have methods taking full advantage of it.

In this work, we are primarily interested in how best to use surrogate losses in
the context of active learning, which is a type of sequential design in which the
learning algorithm is presented with a large pool of unlabeled data points (i.e.,
only the covariates are observable), and can sequentially request to observe the
labels (response variables) of individual instances from the pool. The objective
in active learning is to produce a classifier of low error rate while accessing a
smaller number of labels than would be required for a method based on random
labeled data points (i.e., passive learning) to achieve the same. We take as our
starting point that we have committed to use a given surrogate loss, and we
restrict our attention to just those scenarios in which this heuristic actually
does work: specifically, where the minimizer of the surrogate risk also minimizes
the error rate, and is contained in our function class. We are then interested
in how best to make use of the surrogate loss toward the goal of producing a
classifier with relatively small error rate.

In passive learning, the most common approach to using a surrogate loss
is to minimize the empirical surrogate risk on the labeled data. One can then
derive guarantees on the error rate of this strategy by bounding the surrogate
risk via concentration inequalities, and then converting these guarantees on
the surrogate risk into guarantees on the error rate, a technique pioneered by
Bartlett, Jordan, and McAuliffe [6] and Zhang [51]. Interestingly, we find that
this direct approach is not appropriate in the context of active learning: that is,
optimizing the surrogate risk to a sufficient extent to guarantee small error rate
generally cannot yield large improvements over passive learning. While at first
this finding might seem quite negative, it leaves open the possibility of methods
making use of the surrogate loss in alternative ways, which still guarantee low
error rate and computational efficiency, but for which these guarantees arise via
a less direct route. Indeed, since we are interested in the surrogate loss only
insofar as it helps us to optimize the error rate with computational efficiency,
we may even consider methods that provide no guarantees on the achieved
surrogate risk whatsoever (even in the limit).

In the present work, we propose such an alternative approach to the use
of surrogate losses in active learning. The insight leading to this approach is
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that, if we are truly only interested in achieving low 0-1 loss, then once we
have identified the sign of the optimal function at a given point, we need not
optimize the value of the function at that location any further, and can therefore
focus the label requests elsewhere. Based on this insight, we construct an active
learning strategy that optimizes the empirical surrogate risk over increasingly
focused subsets of the instance space, and derive bounds on the number of
label requests the method requires to achieve a given error rate. In many cases,
these bounds reflect strong improvements over the analogous results for passive
learning by minimizing the given surrogate loss. As a byproduct of this analysis,
we find this insight has implications for the use of certain surrogate losses in
passive learning as well, though to a lesser extent.

Most of the mathematical tools used in this analysis are inspired by tech-
niques for the study of active learning developed over the past decade [4, 23,
24, 36], in conjunction with the results of Bartlett, Jordan, and McAuliffe [6]
bounding the excess error rate in terms of the excess surrogate risk, and the
works of Koltchinskii [34] and Bartlett, Bousquet, and Mendelson [8] on local
Rademacher complexity bounds.

1.1. Related work

There are many previous works on the topic of surrogate losses in the context
of passive learning. Perhaps the most relevant to our results below are the work
of Bartlett, Jordan, and McAuliffe [6] and the related work of Zhang [51]. These
develop a general theory for converting results on excess risk under the surro-
gate loss into results on excess risk under the 0-1 loss. Below, we describe the
conclusions of that work in detail, and we build on many of the basic definitions
and insights pioneered in it.

Another related line of research, explored by Audibert and Tsybakov [3],
studies “plug-in rules,” which make use of regression estimates obtained by op-
timizing a surrogate loss, and are then rounded to {−1,+1} values to obtain
classifiers. They prove minimax optimality results under smoothness assump-
tions on the actual regression function. Under similar conditions, Minsker [41]
studies an analogous active learning method, which again makes use of a surro-
gate loss, and obtains improvements in label complexity compared to the passive
learning method of Audibert and Tsybakov [3]. Minsker’s active learning work
has also recently been strengthened and extended in [27, 38]. Remarkably, as
discussed by Audibert and Tsybakov [3], the rates of convergence obtained in
such works are often better than the known results for methods that directly
optimize the 0-1 loss, under analogous complexity assumptions on the Bayes
optimal classifier (rather than the regression function). As a result, these works
raise interesting questions about whether the general analysis of methods that
optimize the 0-1 loss remain tight under complexity assumptions on the re-
gression function, and potentially also about the design of optimal methods for
classification when assumptions are phrased in terms of the regression function.

In the present work, we focus our attention on scenarios where the main pur-
pose of using the surrogate loss is to ease the computational problems associated
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with minimizing an empirical risk, so that our statistical results might typically
be strongest when the surrogate loss is the 0-1 loss itself, even if in some cases
stronger results might in principle be achievable from assumptions involving the
surrogate loss [as in 3, 41]. As such, in the specific scenarios studied by Minsker
[41], our results are generally not optimal; rather, the main strength of our anal-
ysis lies in its generality. In this sense, our results are more closely related to
those of Bartlett, Jordan, and McAuliffe [6] and Zhang [51] than to those of
Audibert and Tsybakov [3] and Minsker [41]. That said, we note that several
important elements of the design and analysis of the active learning method
below are already hinted at to some extent in the work of Minsker [41], albeit
in a form that also relies heavily on the assumptions and function class specific
to that work; the present work takes the general perspective, developing theory
and methods applicable to any function class and surrogate loss function.

Our approach to the design of active learning methods below follows the
well-studied strategy of disagreement-based active learning, an approach pio-
neered by Balcan, Beygelzimer, and Langford [4], and further developed by
several later works [e.g., 14, 24, 25, 36]. The basic strategy maintains a set V of
plausible candidates for the optimal classifier, and requests the labels of samples
disagreed-upon by classifiers in V ; it periodically updates the set V by eliminat-
ing classifiers making an excessive number of mistakes on the requested labels.
The analysis of the number of label requests sufficient for this technique to
achieve a given error rate in the general case was explored by Hanneke [22, 24],
Dasgupta, Hsu, and Monteleoni [14], Koltchinskii [36], and others, and the re-
sults are typically expressed in terms of a quantity known as the disagreement
coefficient. In the present work, we modify the disagreement-based active learn-
ing strategy by updating the set V , not based on the number of mistakes, but
rather based on the empirical surrogate risk on the queried samples. We derive
bounds on the number of label requests this method requires to achieve a given
excess error rate, in terms of properties of the surrogate loss. In particular, when
the surrogate loss is chosen to be the 0-1 loss itself, this method behaves nearly-
identically to previously-studied methods [25, 36], and in this special case, our
results match those established in the literature (with some small refinements
in the logarithmic factors).

There are several interesting works on active learning methods that optimize
a general loss function. Beygelzimer, Dasgupta, and Langford [9] and Koltchin-
skii [36] have both proposed such methods, and analyzed the number of label
requests the methods make before achieving a given excess risk for that loss
function. The former method is based on importance weighted sampling, while
the latter makes clear an interesting connection to local Rademacher complex-
ities. One natural idea for approaching the problem of active learning with a
surrogate loss is to run one of these methods with the surrogate loss. The results
of Bartlett, Jordan, and McAuliffe [6] allow us to determine a sufficiently small
value γ such that any function with excess surrogate risk at most γ has excess
error rate at most ε. Thus, by evaluating the established bounds on the number
of label requests sufficient for these active learning methods to achieve excess
surrogate risk γ, we immediately have a result on the number of label requests



4650 S. Hanneke and L. Yang

sufficient for them to achieve excess error rate ε. This is a common strategy
for constructing and analyzing passive learning methods based on a surrogate
loss. However, as we discuss below, this strategy does not generally lead to the
best results for active learning, and often will not be much better than results
available for related passive learning methods. Instead, the method we propose
does not aim to optimize the surrogate risk overall, but rather optimizes it on a
sequence of increasingly-focused subregions of the instance space, and thereby
provides a smaller bound on the number of label requests sufficient to guarantee
excess error rate ε.

2. Definitions

Let (X ,BX ) be a measurable space, where X is called the instance space. Let
Y = {−1,+1}, and equip the space X × Y with its product σ-algebra: B =
BX ⊗ 2Y . Let R̄ = R ∪ {−∞,∞}, let F∗ denote the set of all measurable
functions g : X → R̄, and let F ⊆ F∗, where F is called the function class.
Throughout, we fix a distribution PXY over X × Y , and we denote by P the
marginal distribution of PXY over X . In the analysis below, we make the usual
simplifying assumption that the events and functions in the definitions and
proofs are indeed measurable. In most cases, this holds under simple conditions
on F and PXY [see e.g., 48]; when this is not the case, one may turn to outer
probabilities. However, we will not discuss these technical issues further.

For any h ∈ F∗, and any distribution P over X × Y , denote the error rate
by er(h;P ) = P ((x, y) : sign(h(x)) �= y); when P = PXY , we abbreviate this as
er(h) = er(h;PXY ). Also, let η(X;P ) be a version of P(Y = 1|X), for (X,Y ) ∼
P ; when P = PXY , abbreviate this as η(X) = η(X;PXY ). In particular, note
that er(h;P ) is minimized at any h with sign(h(·)) = sign(η(·;P ) − 1/2). For
any H ⊆ F∗, define the region of sign-disagreement DIS(H) = {x ∈ X : ∃h, g ∈
H s.t. sign(h(x)) �= sign(g(x))}. Additionally, denote by [H] = {f ∈ F∗ : ∀x ∈
X , infh∈H h(x) ≤ f(x) ≤ suph∈H h(x)} the minimal bracket set containing H.

We will use standard big-O notation to express asymptotic dependences.
Specifically, for f, g : (0,∞) → [0,∞), we write f(ε) = O(g(ε)) or g(ε) =
Ω(f(ε)) if lim supε→0 f(ε)/g(ε) < ∞; we write f(ε) = Θ(g(ε)) if both f(ε) =
O(g(ε)) and f(ε) = Ω(g(ε)), and we write f(ε) = o(g(ε)) if lim supε→0 f(ε)/g(ε)
= 0.

Our interest here is learning from data, so let Z = {(X1, Y1), (X2, Y2), . . .}
denote a sequence of independent PXY -distributed random variables, referred to
as the labeled data sequence, while {X1, X2, . . .} is referred to as the unlabeled
data sequence. For m ∈ N, we also denote Zm = {(X1, Y1), . . . , (Xm, Ym)}.
Throughout, we will let δ ∈ (0, 1/4) denote an arbitrary confidence parameter,
which will be referenced in the methods and theorem statements.

The active learning protocol is defined as follows. An active learning algo-
rithm is initially permitted access to the sequence X1, X2, . . . of unlabeled data.
It may then select an index i1 ∈ N and request to observe Yi1 ; after observing
Yi1 , it may select another index i2 ∈ N, request to observe Yi2 , and so on. After
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a number of such label requests not exceeding a given budget n, the algorithm
halts and returns a function ĥ ∈ F∗. Formally, this protocol specifies a type of
decision rule mapping the random sequence Z to a function ĥ, where ĥ is condi-
tionally independent of Z given X1, X2, . . . and (i1, Yi1), (i2, Yi2), . . . , (in, Yin),
where each ik is conditionally independent of Z and ik+1, . . . , in givenX1, X2, . . .
and (i1, Yi1), . . . , (ik−1, Yik−1

).

2.1. Surrogate loss functions for classification

Throughout, we let � : R̄ → [0,∞] denote an arbitrary surrogate loss
function. For simplicity, suppose |z| < ∞ ⇒ �(z) < ∞. Define �̄ =
1∨sup(x,y)∈X×Y suph∈F �(yh(x)). We will generally suppose �̄ < ∞. In practice,
this is more often a constraint on F and X than on �: that is, we could have �
unbounded, but due to some normalization of the functions h ∈ F , � is bounded
on the corresponding set of values. For any g ∈ F∗ and distribution P over
X × Y , let R�(g;P ) = E [�(g(X)Y )], where (X,Y )∼P . This is the �-risk of g
under P . When P =PXY , abbreviate this as R�(g)=R�(g;PXY ).

We will be interested in loss functions � whose point-wise minimizer nec-
essarily also optimizes the 0-1 loss. This property was nicely characterized by
Bartlett, Jordan, and McAuliffe [6] as follows. For η0 ∈ [0, 1], define ��(η0) =
infz∈R̄(η0�(z) + (1 − η0)�(−z)), and ��−(η0) = infz∈R̄:z(2η0−1)≤0(η0�(z) +(1 −
η0)�(−z)). Then the surrogate loss � is said to be classification-calibrated if,
∀η0 ∈ [0, 1] \ {1/2}, ��−(η0) > ��(η0). In our context, for X ∼ P , ��(η(X)) repre-
sents the minimum value of the conditional �-risk at X, so that E[��(η(X))] =
infh∈F∗ R�(h), while �

�
−(η(X)) represents the minimum conditional �-risk at X,

subject to having a sub-optimal conditional error rate at X: i.e., sign(h(X)) �=
sign(η(X)− 1/2). Thus, being classification-calibrated implies the minimizer of
the conditional �-risk at X necessarily has the same sign as the minimizer of
the conditional error rate at X. Since we are only interested here in using �
as a reasonable surrogate for the 0-1 loss, for the remainder of this article we
suppose � is classification-calibrated.

Though not strictly necessary for our results below, it will be convenient
for us to suppose that, for all η0 ∈ [0, 1], this infimum value ��(η0) is actu-
ally obtained as η0�(z

�(η0)) + (1 − η0)�(−z�(η0)) for some z�(η0) ∈ R̄ (not
necessarily unique). For instance, this is the case for any nonincreasing right-
continuous �, or continuous and convex �, which include most of the cases we
are interested in using as surrogate losses anyway. The proofs can be modified
in a natural way to handle the general case, simply substituting any z with
conditional risk sufficiently close to the infimum value. For any distribution P ,
denote f�

P (x) = z�(η(x;P )) for all x ∈ X . In particular, note that f�
P obtains

R�(f
�
P ;P ) = infg∈F∗ R�(g;P ). Furthermore, since � is classification-calibrated,

we have sign(f�
P (x)) = sign(η(x;P ) − 1/2) for all x ∈ X with η(x;P ) �= 1/2,

and hence er(f�
P ;P ) = infh∈F∗ er(h;P ) as well. When P = PXY , we abbreviate

by f� = f�
PXY

.
All of our main results below rely on the assumption that f� ∈ F . When

combined with the fact that � is classification-calibrated, this essentially stands
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as a formal representation of the informal assumption that the surrogate loss �
was chosen wisely: that is, that functions in F with relatively low surrogate risk
necessarily have relatively low error rate. However, it should be noted that this is
often a very strong assumption, significantly restricting the allowed distributions
PXY . For instance, for many losses � in practical use (e.g., the quadratic loss),
when F is a parametric family, the assumption that f� ∈ F essentially restricts
the allowed functions η(·) to also form a parametric family. This fact underscores
the need for great care in selecting a surrogate loss when approaching a given
learning problem in practice. In principle, one can relax this assumption slightly,
at the expense of significantly more-complicated theorem statements, and we
include some superficial remarks on this in Appendix F. However, it seems any
truly-substantial relaxation would require a significantly different approach.

For any distribution P over X ×Y , and any h, g ∈ F∗, define the loss distance

D�(h, g;P ) =

√
E

[
(�(h(X)Y )− �(g(X)Y ))

2
]
, where (X,Y ) ∼ P . Also define

the loss diameter of H ⊆ F∗ as D�(H;P ) = suph,g∈H D�(h, g;P ), and the �-risk
ε-minimal set of H as H(ε; �, P ) = {h ∈ H : R�(h;P ) − infg∈H R�(g;P ) ≤ ε}.
When P = PXY , we abbreviate these as D�(h, g) = D�(h, g;PXY ), D�(H) =
D�(H;PXY ), and H(ε; �) = H(ε; �,PXY ). Also define analogous quantities for
the 0-1 loss. Define the distance ΔP (h, g) = P ((x, y) : sign(h(x)) �= sign(g(x)))
and radius radius(H;P ) = suph∈H ΔP (h, f

�
P ). Also define the ε-minimal set of

H as H(ε; 01, P ) = {h ∈ H : er(h;P ) − infg∈H er(g;P ) ≤ ε}, and for r > 0,
define the r-ball centered at h in H by BH,P (h, r) = {g ∈ H : ΔP (h, g) ≤ r}.
When P = PXY , we abbreviate these as Δ(h, g) = ΔPXY

(h, g), radius(H) =
radius(H;PXY ), H(ε; 01) = H(ε; 01,PXY ), and BH(h, r) = BH,PXY

(h, r); when
H = F , further abbreviate B(h, r) = BF (h, r).

The following definition will enable us to transform guarantees on the excess
surrogate risk into guarantees on the excess error rate.

Definition 1. For any distribution P over X × Y, and any ε ∈ [0, 1], define

Γ�(ε;P ) = sup ({γ > 0 : F∗(γ; �, P ) ⊆ F∗(ε; 01, P )} ∪ {0}) .

Also, for any γ ∈ [0,∞), define the inverse

E�(γ;P ) = inf {ε > 0 : γ ≤ Γ�(ε;P )} .

When P = PXY , abbreviate Γ�(ε) = Γ�(ε;PXY ) and E�(γ) = E�(γ;PXY ).

By definition, Γ� has the property that

∀h ∈ F∗, ∀ε ∈ [0, 1], R�(h)− R�(f
�) < Γ�(ε) =⇒ er(h)− er(f�) ≤ ε. (1)

In fact, Γ� is defined to be maximal with this property, in that any Γ′
� for

which (1) is satisfied must have Γ′
�(ε) ≤ Γ�(ε) for all ε ∈ [0, 1]. For this reason,

we will be interested in calculating lower bounds on Γ�. Bartlett, Jordan, and
McAuliffe [6] studied various ways to obtain concrete, calculable lower bounds

of this type. Specifically, for ζ ∈ [−1, 1], define ψ̃�(ζ) = ��−

(
1+ζ
2

)
− ��

(
1+ζ
2

)
,
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and let ψ� be the largest convex lower bound of ψ̃� on [0, 1], which is well-defined
in this context [6]; for convenience, also define ψ�(x) for x ∈ (1,∞) arbitrarily,
subject to maintaining convexity of ψ�. Bartlett, Jordan, and McAuliffe [6] show
ψ� is continuous and nondecreasing on (0, 1), and in fact that x �→ ψ� (x) /x is
nondecreasing on (0,∞). They also show every h ∈ F∗ has ψ�(er(h)− er(f�)) ≤
R�(h)−R�(f

�), so that ψ� ≤ Γ�, and they find this inequality can be tight for a
particular choice of PXY . They further study more subtle relationships between
excess �-risk and excess error rate holding for any classification-calibrated �. In
particular, following the argument in the proof of their Theorem 3, one can show
that ∀h ∈ F∗,

Δ(h, f�) · ψ�

(
er(h)− er(f�)

2Δ(h, f�)

)
≤ R�(h)− R�(f

�).

The implication of this in our context is the following. Fix any nondecreasing
function Ψ� : [0, 1] → [0,∞) such that ∀ε ≥ 0,

Ψ�(ε) ≤ radius(F∗(ε; 01))ψ�

(
ε

2radius(F∗(ε; 01))

)
. (2)

Any h ∈ F∗ with R�(h)− R�(f
�) < Ψ�(ε) also has Δ(h, f�)ψ�

(
er(h)−er(f�)
2Δ(h,f�)

)
<

Ψ�(ε); combined with the fact that x �→ ψ�(x)/x is nondecreasing on (0, 1),

this implies radius(F∗(er(h)−er(f�); 01))ψ�

(
er(h)−er(f�)

2radius(F∗(er(h)−er(f�);01))

)
< Ψ�(ε);

this means Ψ�(er(h)− er(f�)) < Ψ�(ε), and monotonicity of Ψ� implies er(h)−
er(f�) < ε. Altogether, this implies Ψ�(ε) ≤ Γ�(ε), so that R�(h) − R�(f

�) <
Ψ�(ε) =⇒ er(h) − er(f�) < ε. In fact, though we do not present the details
here, with only minor modifications to the proofs below, when f� ∈ F , all of our
results involving Γ�(ε) also hold while replacing Γ�(ε) with any nondecreasing Ψ′

�

s.t. ∀ε ≥ 0, Ψ′
�(ε) ≤ radius(F(ε; 01))ψ�

(
ε

2radius(F(ε;01))

)
, which can sometimes

lead to tighter results.
Some of our stronger results below will be stated for a restricted family

of losses, originally explored by Bartlett, Jordan, and McAuliffe [6]: namely,
smooth losses with convexity quantified by a polynomial, as described in the
following condition.

Condition 2. F is convex, with ∀x ∈ X , supf∈F |f(x)| ≤ B̄ for some constant

B̄ ∈ (0,∞), and there exists a pseudometric d� : [−B̄, B̄]2 → [0, d̄�] for some
constant d̄� ∈ (0,∞), and constants L,C� ∈ (0,∞) and r� ∈ (0,∞] such that
∀x, y ∈ [−B̄, B̄], |�(x)− �(y)| ≤ Ld�(x, y), and the function

δ̄�(ε)=inf

({
1

2
�(x)+

1

2
�(y)− �

(
1

2
x+

1

2
y

)
: x, y∈ [−B̄,B̄], d�(x, y) ≥ ε

}
∪{∞}

)

satisfies ∀ε ∈ [0,∞), δ̄�(ε) ≥ C�ε
r� .

In particular, note that if F is convex, and the functions in F are uniformly
bounded, and � is convex and continuous, then Condition 2 is always satisfied
(though possibly with r� = ∞) by taking d�(x, y) = |x− y|/(4B̄).
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2.2. A few examples of loss functions

Here we briefly mention a few loss functions � in common practical use, all of
which are classification-calibrated. These examples are taken directly from the
work of Bartlett, Jordan, and McAuliffe [6], which additionally discusses many
other interesting examples of classification-calibrated loss functions and their
corresponding ψ� functions.

Example 1 The quadratic loss (or squared loss), specified as �(x) = (1− x)2,
is often used in so-called plug-in classifiers [3], which approach the problem
of learning a classifier by estimating the regression function E[Y |X = x] =
2η(x) − 1, and then taking the sign of this estimator to get a binary classifier.
The quadratic loss has the convenient property that for any distribution P over
X × Y , f�

P (·) = 2η(·;P )− 1, so that it is straightforward to describe the set of
distributions P satisfying the assumption f�

P ∈ F . In classification, this loss is
sometimes modified as �(x) = max{1 − x, 0}2, called the truncated quadratic
loss. Bartlett, Jordan, and McAuliffe [6] show that for the quadratic loss (with or
without truncation), ψ�(x) = x2, and Condition 2 is satisfied with L = 2(B̄+1),
C� = 1/4, r� = 2.

Example 2 The exponential loss is specified as �(x) = e−x. This loss func-
tion appears in many contexts in machine learning; for instance, the popular
AdaBoost method can be viewed as an algorithm that greedily optimizes the
exponential loss [18]. Bartlett, Jordan, and McAuliffe [6] show that under the

exponential loss, f�(x) = 1
2 ln

(
η(x)

1−η(x)

)
and ψ�(x) = 1−

√
1− x2, which is tightly

approximated by x2/2 for small x. They also show this loss satisfies the condi-
tions on � in Condition 2 with d�(x, y) = |x−y|, L = eB̄ , C� = e−B̄/8, and r� = 2.
Note, however, that for noise-free distributions, we would need f�(x) = ±∞,
which means most common function classes F could not be expected to contain
f� for this loss in the noise-free case.

Example 3 The hinge loss, specified as �(x) = max {1− x, 0}, is another
common surrogate loss in machine learning practice today. For instance, it is
used in the objective of the Support Vector Machine (along with a regulariza-
tion term) [13]. Bartlett, Jordan, and McAuliffe [6] show that for the hinge loss,
f�(x) = sign(η(x) − 1/2) and ψ�(x) = |x|. The hinge loss is Lipschitz contin-
uous, with Lipschitz constant 1. However, for the remaining conditions on � in
Condition 2, any x, y ≤ 1 have 1

2�(x) +
1
2�(y) = �( 12x + 1

2y), so that δ̄�(ε) = 0;
hence, r� = ∞ is required.

3. Methods based on optimizing the surrogate risk

Perhaps the simplest way to use a surrogate loss is to optimize R�(h) over
h ∈ F until identifying h ∈ F with R�(h) − R�(f

�) < Γ�(ε), at which point we
are guaranteed er(h)− er(f�) ≤ ε. In this section, we introduce a classic passive
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learning method based on this strategy, and discuss the potential drawbacks of
this approach for active learning.

3.1. Passive learning: empirical risk minimization

In the context of passive learning, the method of empirical �-risk minimization is
one of the most-studied methods for optimizing R�(h) over h ∈ F . To define this
method, we first introduce some notation. For any m ∈ N, g :X → R̄, and S=
{(x1, y1), . . . , (xm, ym)} ∈ (X ×Y)m, we overload the R�(g; ·) notation, defining
the empirical �-risk as R�(g;S) = m−1

∑m
i=1 �(g(xi)yi): that is, R�(g;S) is the

�-risk of g under the uniform distribution on S. At times it will be convenient to
keep track of the indices for a subsequence of Z, and for this reason we further
overload the notation, so that for any Q = {(i1, y1), . . . , (im, ym)} ∈ (N× Y)m,
we define S[Q] = {(Xi1 , y1), . . . , (Xim , ym)} and R�(g;Q) = R�(g;S[Q]). For
completeness, we also generally define R�(g; ∅) = 0.

The method of empirical �-risk minimization, here denoted by ERM�(H,Zm),

is characterized by the property that it returns ĥ = argminh∈H R�(h;Zm). This
is a well-studied and classical passive learning method, presently in popular use
in applications, and as such it will serve as our baseline passive learning method
for comparison. We review several known performance guarantees for ERM�

below.

3.2. Negative results for active learning

As mentioned, there are several active learning methods designed to optimize a
general loss function [9, 36]. However, it turns out that for many interesting loss
functions, the number of labels required for active learning to achieve a given
excess surrogate risk value is not significantly smaller than that sufficient for
passive learning by ERM�.

Specifically, consider a problem with X = {x0, x1}, a fixed B̄ ∈ (0,∞), and
F as the set of all functions f with (f(x0), f(x1)) ∈ [−B̄, B̄] × (0, B̄]. Let z ∈
(0, 1/2) be a constant, let η(x1) = 1/2+z, and suppose that � is a classification-
calibrated loss with �̄ < ∞ such that for any η(x0) ∈ [4/6, 5/6], we have f� ∈ F
(the latter condition could equivalently be stated as a constraint on B̄). Given
a small value ε ∈ (0, z), let P({x1}) = ε/(2z), P({x0}) = 1−P({x1}). For this
problem, any function h with sign(h(x1)) = −1 has er(h)− er(f�) ≥ ε, so that
Γ�(ε) ≤ (ε/(2z))(��−(η(x1)) − ��(η(x1))); since � is classification-calibrated and
�̄ < ∞, this implies Γ�(ε) ≤ cε, for some �-dependent c ∈ (0,∞). Any function
h with R�(h)−R�(f

�) ≤ cε for this problem must have E[�(h(X)Y )|X = x0]−
E[�(f�(X)Y )|X = x0] ≤ cε/P({x0}) = O(ε). Existing results of Hanneke and
Yang [28] (with a slight modification to rescale for η(x0) ∈ [4/6, 5/6]) imply that,
for many classification-calibrated losses �, the minimax optimal number of labels
sufficient for an active learning algorithm to achieve this latter guarantee is
Θ(1/ε). Hanneke and Yang [28] specifically show this for losses � that are strictly
positive, decreasing, strictly convex, and twice differentiable with continuous
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second derivative; however, that result can easily be extended to a wide variety
of other classification-calibrated losses, such as the quadratic loss, which satisfy
these conditions in a neighborhood of 0. It is also known [6] (see also below)
that for many such losses (specifically, those satisfying Condition 2 with r� = 2),
Θ(1/ε) random labeled samples are sufficient for ERM� to achieve this same
guarantee, so that error bounds based purely on the surrogate risk of the function
produced by an active learning method in this scenario can be at most a constant
factor smaller than those provable for passive learning methods.

Below, we provide an active learning algorithm and analysis of its perfor-
mance which, in the scenario above (with r� = 2), guarantees expected excess
error rate less than ε, using a number of label requests O(log(1/ε) log log(1/ε)).
The implication is that, to identify the improvements achievable by active learn-
ing with a surrogate loss, it is not sufficient to merely analyze the surrogate risk
of the function produced by a given active learning algorithm. Indeed, since we
are not particularly interested in the surrogate risk itself, we may even consider
active learning algorithms that do not actually optimize R�(h) over h ∈ F (even
in the limit).

4. Alternative use of the surrogate loss

Given that we are interested in � only insofar as it helps us to optimize the er-
ror rate with computational efficiency, we might ask whether there is a method
that makes more effective use of � for optimizing the error rate, while main-
taining the computational advantages. To explore this question, we propose the
following method, which generalizes the methods of Koltchinskii [36] and Han-
neke [25]. Results similar to those proven below should also hold for analogous
generalizations of the related methods of [4, 9, 14].

Algorithm 1:
Input: surrogate loss �, unlabeled sample budget u, labeled sample budget n
Output: classifier ĥ

0. V ← F , Q ← {}, m ← 1, t ← 0
1. While m < u and t < n
2. m ← m+ 1
3. If Xm ∈ DIS(V )
4. Request label Ym and let Q ← Q ∪ {(m,Ym)}, t ← t+ 1
5. If log2(m) ∈ N

6. V ←
{
h ∈ V : R�(h;Q)− infg∈V R�(g;Q) ≤ T̂�(V ;Q,m)

}
7. Q ← {}
8. Return ĥ = argminh∈V R�(h;Q)

The intuition behind this algorithm is that, since we are only interested in
achieving low error rate, once we have identified sign(f�(x)) for a given x ∈ X ,

there is no need to further optimize the value E[�(ĥ(X)Y )|X = x]. Thus, as
long as we maintain f� ∈ V , the data points Xm /∈ DIS(V ) are typically less
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informative than those Xm ∈ DIS(V ). We therefore focus the label requests on
those Xm ∈ DIS(V ), since there remains some uncertainty about sign(f�(Xm))
for these points. The algorithm updates V periodically (Step 6), removing those
functions h whose excess empirical risks (under the current sampling distri-
bution) are relatively large; by setting this threshold T̂� appropriately, we can
guarantee the excess empirical risk of f� is smaller than T̂�. Thus, the algo-
rithm maintains f� ∈ V as an invariant, while shrinking the sampling region
DIS(V ). The actual definition of T̂� sufficient for the results stated below will be
specified in Section 6.3 below, based on data-dependent concentration inequal-
ities.

In practice, the set V can be maintained implicitly, simply by keeping track
of the constraints (Step 6) that define it. Then the condition in Step 3 can
be checked by solving two constraint satisfaction problems (one for each sign).

Likewise, the value infg∈V R�(g;Q) in these constraints, as well as the final ĥ, can
be found by solving constrained optimization problems. Thus, for convex loss
functions and convex finite-dimensional classes of function, these steps typically
have computationally efficient realizations as convex optimization problems, as
long as the T̂� values can also be obtained efficiently.

We include general results on the performance of Algorithm 1 in Section 6
below. For now, we briefly sketch the main ideas of the analysis, in rough out-
line. For any measurable U ⊆ X , and any h, g ∈ F∗, define the spliced function
hU,g(x) = h(x)1U (x) + g(x)1X\U (x). For a set H ⊆ F∗, denote HU,g = {hU,g :
h ∈ H}. In the special case g = f�, we abbreviate these as hU = hU,f� and
HU = {hU : h ∈ H}. As mentioned, the idea in the analysis is to argue that
Algorithm 1 maintains f� ∈ V , while also removing from V any function with
relatively large error rate, within a certain number of rounds. More explic-
itly, upon reaching m satisfying the condition in Step 5, if we denote Lm =
{(1 +m/2, Y1+m/2), . . . , (m,Ym)}, then since every (m′, Ym′) ∈ Lm is either in
Q or else Xm′ /∈ DIS(V ), every h ∈ V has (R�(h;Q) − infg∈V R�(g;Q))|Q| =
(R�(hDIS(V );Lm) − infg∈V R�(gDIS(V );Lm))m2 . We therefore define T̂�(V ;Q,m)
to provide a concentration inequality R�(f

�;Lm) − infg∈V R�(gDIS(V );Lm) ≤
2|Q|
m T̂�(V ;Q,m), thus maintaining that f� ∈ V in Step 6. This also implies

that, if VDIS(V ) ⊆ [F ](22−j ; �) upon reaching Step 5 (for some j ∈ Z), then
V ⊆ F(E�(2

2−j); 01). One can then show that, upon reaching m of a certain

size uj (quantified below), the value 2|Q|
m T̂�(V ;Q,m) will be small enough that,

in combination with concentration of R�(hDIS(V );Lm) values, after the update
in Step 6, only functions h ∈ V with R�(hDIS(V )) − R�(f

�) < 2−j will re-
main: that is, after the update, VDIS(V ) ⊆ [F ](2−j ; �). By induction, upon
reaching m of a sufficiently large size ujε (quantified below), every h ∈ V
has R�(hDIS(V )) − R�(f

�) < Γ�(ε), which implies er(h) − er(f�) ≤ ε. This
provides a sufficient size of u to obtain excess error rate ε. Next, we note
that the algorithm requests a label Ym only if Xm ∈ DIS(V ). The above
reveals that, if uj−1 < m ≤ uj , then V ⊆ F(E�(2

2−j); 01), which implies
DIS(V ) ⊆ DIS(F(E�(2

2−j); 01)). Thus, the number of labels the algorithm re-
quests among indices m with uj−1 < m ≤ uj is at most the number with
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Xm ∈ DIS(F(E�(2
2−j); 01)), a number which can easily by upper bounded by a

simple Chernoff bound. This provides a sufficient size of n for the algorithm to
obtain excess error rate ε.

The number of label requests sufficient for Algorithm 1 to obtain excess
error rate ε can often (though not always) be significantly smaller than the
number of random labeled data points sufficient for ERM� to achieve the same.
This is typically the case when P(DIS(F(ε; 01))) → 0 as ε → 0. When this is
the case, the number of labels requested by the algorithm is sublinear in the
number of unlabeled samples it processes. Not surprisingly, the magnitude of
the improvements of Algorithm 1 over ERM� can be quantified in terms of
the rate at which P(DIS(F(ε; 01))) vanishes as ε → 0. In the next section, we
quantify this rate in terms of a complexity measure known as the disagreement
coefficient.

5. Main results

We provide a general analysis of Algorithm 1 in Section 6.4 below. For now,
we summarize a few of the most interesting implications of that analysis, under
commonly-studied complexity conditions: namely, VC subgraph classes and en-
tropy conditions. Detailed derivations for all of these results (from the abstract
theorems) are included in Section 7 below. Appendix C further includes a brief
discussion of VC major classes and VC hull classes. In the interest of making
the results more concise and explicit, we express them in terms of well-known
conditions relating distances to excess risks. We also express them in terms of a
lower bound on Γ�(ε) of the type in (2), with convenient properties that allow
for closed-form expression of the results. Throughout, we use the convenient
notation Log(x) = max{ln(x), 1}, defined for all x ∈ (0,∞).

5.1. Diameter conditions

To begin, we first state some general characterizations relating distances to ex-
cess risks; these characterizations will make it easier to express our results more
concretely below, and make for a more straightforward comparison between re-
sults for the above methods. The following condition, introduced by Mammen
and Tsybakov [40] and Tsybakov [45], is a well-known noise condition, about
which there is now an extensive literature [e.g., 6, 24, 25, 34].

Condition 3. For some a ∈ [1,∞) and α ∈ [0, 1], for every g ∈ F∗,

Δ(g, f�) ≤ a (er(g)− er(f�))
α
.

Condition 3 is equivalently expressed in terms of certain noise conditions [6,
40, 45]. Specifically, satisfying Condition 3 with some α < 1 is equivalent to the
existence of some a′ ∈ [1,∞) such that, for all ε > 0, P (x : |η(x)− 1/2| ≤ ε) ≤
a′εα/(1−α), which is often referred to as a low noise condition. Additionally,
satisfying Condition 3 with α = 1 is equivalent to having some a′ ∈ [1,∞)
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such that P (x : |η(x)− 1/2| ≤ 1/a′) = 0, often referred to as a bounded noise
condition.

For simplicity, we formulate our results in terms of a and α from Condition 3.
However, for the abstract results in this section, the results remain valid under
the weaker condition that replaces F∗ by F , and adds the condition that f� ∈ F .
In fact, the specific results in this section also remain valid using this weaker
condition while additionally replacing (2) with the F-specific Ψ′

� requirement
mentioned in Section 2.1, as remarked above.

An analogous condition can be defined for the surrogate loss function, as
follows. Essentially-similar notions have been explored by Bartlett, Jordan, and
McAuliffe [6] and Koltchinskii [34].

Condition 4. For some b ∈ [1,∞) and β ∈ [0, 1], for every g ∈ [F ],

D� (g, f
�
P ;P )

2 ≤ b (R�(g;P )− R�(f
�
P ;P ))

β
.

Note that these conditions are always satisfied for some values of a, b, α, β,
since α = β = 0 trivially satisfies the conditions. However, in more benign
scenarios, values of α and β strictly greater than 0 can be satisfied. Furthermore,
for some loss functions �, Condition 4 can even be satisfied universally, in the
sense that it holds for a particular value of β > 0 for all distributions. In
particular, Bartlett, Jordan, and McAuliffe [6] show that this is the case under
Condition 2, as stated in the following lemma (see [6] for the proof).

Lemma 5. Suppose Condition 2 is satisfied. Let b = (2C�d̄
min{r�−2,0}
� )−βL2 and

β = min{1, 2
r�
}. Then every distribution P over X × Y with f�

P ∈ [F ] satisfies
Condition 4 with these values of b and β.

Under Condition 3, it is particularly straightforward to obtain bounds on
Γ�(ε) based on a function Ψ�(ε) satisfying (2). For instance, since x �→ xψ�(1/x)
is nonincreasing on (0,∞) [6], the function

Ψ�(ε) = aεαψ�

(
ε1−α/(2a)

)
(3)

satisfies Ψ�(ε) ≤ Γ�(ε) [6]. Furthermore, for classification-calibrated �, Ψ� in
(3) is strictly increasing, nonnegative, and continuous on (0, 1) [6], and has
Ψ�(0) = 0; thus, the inverse, defined for γ > 0 by Ψ−1

� (γ) = inf({ε > 0 : γ ≤
Ψ�(ε)} ∪ {1}), is strictly increasing, nonnegative, and continuous on (0,Ψ�(1)).
Furthermore, one can easily show x �→ Ψ−1

� (x)/x is nonincreasing on (0,∞).
Also note that ∀γ > 0,E�(γ) ≤ Ψ−1

� (γ).
For any distribution P over X × Y and any H ⊆ [F ] with f�

P ∈ H, let

GH = {(x, y) �→ �(h(x)y) : h ∈ H},
and GH,P = {(x, y) �→ �(h(x)y)− �(f�

P (x)y) : h ∈ H}. (4)

Below, we let G∗ denote the set of measurable functions g : X × Y → R̄. Also,
for G ⊆ G∗, let F(G) = supg∈G |g| denote the minimal envelope function for G,
and for g ∈ G∗ let ‖g‖2P =

∫
g2dP denote the squared L2(P ) seminorm of g; we

will generally assume F(G) is measurable in the discussion below.
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5.2. The disagreement coefficient

In order to more concisely state our results, it will be convenient to bound
P(DIS(H)) by a linear function of radius(H), for radius(H) in a given range.
This type of relaxation has been used extensively in the active learning literature
[5, 9, 14, 19, 22–25, 36, 44, 50], and the coefficient in the linear function is
typically referred to as the disagreement coefficient. Specifically, the following
definition is due to Hanneke [22, 24]; related quantities have been explored by
Alexander [1] and Giné and Koltchinskii [20].

Definition 6. For any r0 > 0, define the disagreement coefficient of a function
h : X → R with respect to F under P as

θh(r0) = sup
r>r0

P(DIS(B(h, r)))

r
∨ 1.

If f� ∈ F , define the disagreement coefficient of the class F as θ(r0) = θf�(r0).

The value of θ(ε) has been studied and bounded for various function classes
F under various conditions on P . In many cases of interest, θ(ε) is known to
be bounded by a finite constant [5, 19, 22, 24, 39], while in other cases, θ(ε)
may have an interesting dependence on ε [5, 44, 50]. The reader is referred
to the works of Hanneke [24, 25] for detailed discussions on the disagreement
coefficient.

5.3. VC subgraph classes

We begin with results for VC subgraph classes. For a collection A of sets, a set
of points {z1, . . . , zk} is said to be shattered by A if |{A ∩ {z1, . . . , zk} : A ∈
A}| = 2k. The VC dimension vc(A) of A is then defined as the largest integer k
for which there exist k points {z1, . . . , zk} shattered by A [49]; if no such largest
k exists, we define vc(A) = ∞. For a set G of real-valued functions, denote
by vc(G) the VC dimension of the collection {{(x, y) : y < g(x)} : g ∈ G} of
subgraphs of functions in G (called the pseudo-dimension [29, 43]); to simplify
the results below, we adopt the convention that when the VC dimension of this
collection is 0, we let vc(G) = 1. G is said to be a VC subgraph class if vc(G) < ∞
[47].

Because we are interested in results concerning values of R�(h) − R�(f
�),

for functions h in certain subsets H ⊆ [F ], we will formulate results below in
terms of vc(GH). In some special cases, such as monotonic �, these results can
be rephrased directly in terms of vc(H) if desired [e.g., 17, 29].

Following Giné and Koltchinskii [20], for r > 0, define BH,P (f
�
P , r; �) = {g ∈

H : D�(g, f
�
P ;P )2 ≤ r}, and for r0 ≥ 0, define

τ�(r0;H, P ) = sup
r>r0

∥∥∥F(GBH,P (f�
P ,r;�),P

)∥∥∥2
P

r
∨ 1.
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When P = PXY , abbreviate this as τ�(r0;H) = τ�(r0;H,PXY ), and when H =
F , further abbreviate τ�(r0) = τ�(r0;F ,PXY ).

We can now state the following theorem, providing a sample size sufficient
for ERM� to obtain excess error rate ε. This result is implicit in the work of
Giné and Koltchinskii [20].

Theorem 7. For a universal constant c ∈ [1,∞), if PXY satisfies Condition 3
and Condition 4, � is classification-calibrated, f� ∈ F , and Ψ� is as in (3), then
for any ε ∈ (0, 1), letting τ� = τ�

(
bΨ�(ε)

β
)
, for any m ∈ N with

m ≥ c

(
b

Ψ�(ε)2−β
+

�̄

Ψ�(ε)

)
(vc(GF )Log (τ�) + Log (1/δ)) , (5)

with probability at least 1−δ, ERM�(F ,Zm) produces ĥ with er(ĥ)−er(f�) ≤ ε.

As noted by Giné and Koltchinskii [20], in the special case when � is itself the
0-1 loss (� = 1[−∞,0]) and F is a set of {−1,+1}-valued classifiers, (5) simplifies
quite nicely, since then ‖F(GBF,PXY

(f�,r;�),PXY
)‖2PXY

= P (DIS (B (f�, r))), so

that τ�(r0) = θ(r0); in this case, we also have vc(GF ) = vc(F) and Ψ�(ε) = ε/2,
and we can take β = α and b = a, so that it suffices to have

m ≥ caεα−2 (vc(F)Log (θ) + Log (1/δ)) ,

where θ = θ (aεα) and c ∈ [1,∞) is a universal constant. This is sometimes
proportional to the minimax number of samples for passive learning [11, 24, 44].

Next, we turn to the analysis of Algorithm 1 under these same conditions.
Suppose PXY satisfies Conditions 3 and 4, and for γ0 ≥ 0, define

χ�(γ0) = sup
γ>γ0

P (DIS (B (f�, aE� (γ)
α
)))

bγβ
∨ 1.

We claim the following theorem, bounding the number of samples (labeled and
unlabeled) sufficient for Algorithm 1 to obtain excess error rate ε, under the
same conditions as Theorem 7. As mentioned above, the specific definition of
T̂� sufficient for this theorem will be formally specified in Section 6.3. Also, the
specification of ŝ will be given in the proof, in Appendix B.

Theorem 8. For a universal constant c ∈ [1,∞), if PXY satisfies Condition 3
and Condition 4, � is classification-calibrated, f� ∈ F , and Ψ� is as in (3), for
any ε ∈ (0, 1), letting θ = θ (aεα), χ� = χ�(Ψ�(ε)), A1 = vc(GF )Log(χ��̄) +

Log(1/δ), C1 = min
{

1
1−2(α−1) ,Log(�̄/Ψ�(ε))

}
, and B1 = min

{
C1,

1
1−2(β−1)

}
,

if u, n ∈ N satisfy

u ≥ c

(
b

Ψ�(ε)2−β
+

�̄

Ψ�(ε)

)
A1, (6)

n ≥ cθaεα
(
b(A1 + Log(B1))B1

Ψ�(ε)2−β
+

�̄(A1 + Log(C1))C1

Ψ�(ε)

)
, (7)
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then, with arguments �, u, and n, and an appropriate ŝ function, Algorithm
1 uses at most u unlabeled samples and makes at most n label requests, and with
probability at least 1− δ, returns a function ĥ with er(ĥ)− er(f�) ≤ ε.

To be clear, in specifying B1 and C1, we adopt the convention that 1/0 = ∞
so that B1 and C1 are well-defined even when α = 1 or β = 1. When α < 1,
the dependence on ε in (7) is O

(
θεαΨ�(ε)

β−2Log(χ�)
)
, while in the case α =

β = 1, it is O (θLog(1/ε)(Log(θ) + Log(Log(1/ε)))). Comparing Theorem 8 to
Theorem 7, the conditions on u in (6) and m in (5) are almost identical, aside
from a logarithmic factor, so that the total number of data points indicated is
roughly the same. However, the number of labels indicated by (7) may often be
significantly smaller than the condition in (5), multiplying it by roughly θaεα.
This reduction is particularly strong when θ is bounded by a finite constant and
α is large. Moreover, this is the same type of improvement known to occur when
� is itself the 0-1 loss [24]; in particular, in this special case, (7) is sometimes
nearly minimax [24, 44]. Regarding the slight difference between (6) and (5)
from replacing τ� by χ��̄, the effect is somewhat mixed, and which of these is
smaller may depend on F and �. For � the 0-1 loss, τ� = χ��̄ = θ(a(ε/2)α).

In the case when � satisfies Condition 2, we can derive the following some-
times-stronger result with the help of Lemma 5.

Theorem 9. For a universal constant c ∈ [1,∞), if PXY satisfies Condition 3,
� is classification-calibrated and satisfies Condition 2, f� ∈ F , Ψ� is as in (3),
and b and β are as in Lemma 5, then for any ε ∈ (0, 1), letting θ = θ(aεα) and

A2 = vc(GF )Log
((

�̄2/b
)
(aθεα/Ψ�(ε))

β
)
+ Log (1/δ), and letting C1 be as in

Theorem 8, if u, n ∈ N satisfy

u ≥ c

(
b (aθεα)

1−β

Ψ�(ε)2−β
+

�̄

Ψ�(ε)

)
A2, (8)

n ≥ c

(
b

(
aθεα

Ψ�(ε)

)2−β

+ �̄

(
aθεα

Ψ�(ε)

))
(A2 + Log(C1))C1, (9)

then, with arguments �, u, and n, and an appropriate ŝ function, Algorithm
1 uses at most u unlabeled samples and makes at most n label requests, and with
probability at least 1− δ, returns a function ĥ with er(ĥ)− er(f�) ≤ ε.

The constraint on u in (8) has O

(
(θεα)1−β

Ψ�(ε)2−β Log

((
θεα

Ψ�(ε)

)β
))

dependence on

ε, while the constraint on n in (9) has O

((
θεα

Ψ�(ε)

)2−β

Log

((
θεα

Ψ�(ε)

)β
))

in the

case α < 1, or O
(
θ2−βLog(1/ε)Log

(
θβLog(1/ε)

))
in the case α = 1. This is

noteworthy when θ is small while α > 0 and r� > 2, for at least two reasons.
First, the sufficient size of n in (9) is smaller than that in Theorem 8, multiplying

by roughly (aθεα)
1−β

. Second, even the sufficient number of unlabeled samples in
(8) may be smaller than the sufficient number of labeled samples for ERM� from

Theorem 7, again multiplying by roughly (aθεα)
1−β

. Thus, in the case � satisfies
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Condition 2 with r� > 2, when Theorem 7 is tight, even with access to a fully
labeled data set, we may still prefer to use Algorithm 1 rather than ERM�. This
is somewhat surprising, since (as (9) indicates) we expect Algorithm 1 to ignore
the vast majority of the labels in this case. That said, it is not clear whether
there exist natural losses � of this type for which Theorem 7 is competitive with
results for methods directly based on the 0-1 loss. Thus, these improvements in
u and n in Theorem 9 may simply indicate that Algorithm 1 is, to some extent,
compensating for a choice of � that would otherwise lead to suboptimal error
rates.

5.4. Entropy conditions

In this section, we consider characterizations of the complexity of F in terms
of entropy conditions. As with the above results, detailed derivations of all of
these results are presented in Section 7.3 below, based on the abstract theorems
presented in Section 6.4.

For a distribution P over X ×Y , a set G ⊆ G∗, and ε ≥ 0, let N (ε,G, L2(P ))
denote the size of a minimal ε-cover of G (that is, the minimum number of balls
of radius at most ε sufficient to cover G), where distances are measured in terms
of the L2(P ) pseudo-metric: (f, g) �→ ‖f − g‖P . Also, for functions g1 ≤ g2, a
bracket [g1, g2] is the set of functions g ∈ G∗ with g1 ≤ g ≤ g2; [g1, g2] is called
an ε-bracket under L2(P ) if ‖g1 − g2‖P < ε. Then N[](ε,G, L2(P )) denotes the
smallest number of ε-brackets (under L2(P )) sufficient to cover G.

The following represent two commonly-studied conditions.

Condition 10. For some q ≥ 1, ρ ∈ (0, 1), F ≥ F(GF,PXY
), either ∀ε > 0,

lnN[](ε‖F‖PXY
,GF , L2(PXY )) ≤ qε−2ρ, (10)

or for all finitely discrete P , ∀ε > 0,

lnN (ε‖F‖P ,GF , L2(P )) ≤ qε−2ρ. (11)

The following theorem is a classic result on the performance of ERM� under
the above conditions [e.g., 6, 47].

Theorem 11. For a universal constant c ∈ [1,∞), if PXY satisfies Condition 3
and Condition 4, F and PXY satisfy Condition 10, � is classification-calibrated,
f� ∈ F , and Ψ� is as in (3), then for any ε ∈ (0, 1) and m with

m ≥ c
q‖F‖2ρPXY

(1− ρ)2

(
b1−ρ

Ψ�(ε)2−β(1−ρ)
+

�̄1−ρ

Ψ�(ε)1+ρ

)

+ c

(
b

Ψ�(ε)2−β
+

�̄

Ψ�(ε)

)
Log

(
1

δ

)
,

with probability at least 1−δ, ERM�(F ,Zm) produces ĥ with er(ĥ)−er(f�) ≤ ε.
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Turning to the analogous setting for active learning, we are able to establish
the following theorem on the performance of Algorithm 1 under these same
conditions.

Theorem 12. For a universal constant c ∈ [1,∞), if PXY satisfies Condition 3
and Condition 4, F and PXY satisfy Condition 10, � is classification-calibrated,
f� ∈ F , and Ψ� is as in (3), then for any ε ∈ (0, 1), letting B1 and C1 be as in

Theorem 8, B2 = min
{
B1,

1
1−2−ρ

}
, C2 = min

{
C1,

1
1−2−ρ

}
, and abbreviating

θ = θ (aεα), if u, n ∈ N satisfy

u ≥ c
q‖F‖2ρPXY

(1− ρ)2

(
b1−ρ

Ψ�(ε)2−β(1−ρ)
+

�̄1−ρ

Ψ�(ε)1+ρ

)

+ c

(
b

Ψ�(ε)2−β
+

�̄

Ψ�(ε)

)
Log

(
1

δ

)
, (12)

n ≥ cθaεα
q‖F‖2ρPXY

(1− ρ)2

(
b1−ρB2

Ψ�(ε)2−β(1−ρ)
+

�̄1−ρC2

Ψ�(ε)1+ρ

)

+ cθaεα
(
bB1Log(B1/δ)

Ψ�(ε)2−β
+

�̄C1Log(C1/δ)

Ψ�(ε)

)
, (13)

then, with arguments �, u, and n, and an appropriate ŝ function, Algorithm
1 uses at most u unlabeled samples and makes at most n label requests, and with
probability at least 1− δ, returns a function ĥ with er(ĥ)− er(f�) ≤ ε.

The constraint on u in (12) is identical (up to constant factors) to the sample
size in Theorem 11 sufficient for ERM� to achieve the same. In contrast, when
θ is small, the constraint on n in (13) improves this, multiplying by a factor
∝ θaεα.

As before, when � satisfies Condition 2, we can derive sometimes-stronger
results via Lemma 5. In this case, we will distinguish between the cases of (11)
and (10), as we find a slightly stronger result for the former. We begin with the
following result, under the uniform entropy condition (11).

Theorem 13. For a universal constant c ∈ [1,∞), if PXY satisfies Condition 3,
� is classification-calibrated and satisfies Condition 2, f� ∈ F , Ψ� is as in (3),
b and β are as in Lemma 5, and (11) is satisfied with F ≤ �̄ (∀ finitely discrete
P , ∀ε > 0), then ∀ε ∈ (0, 1), for C1 as in Theorem 8 and θ = θ (aεα), if

u ≥ c

(
q�̄2ρ

(1− ρ)2

)((
b1−ρ

Ψ�(ε)

)(
aθεα

Ψ�(ε)

)1−β(1−ρ)

+

(
�̄1−ρ

Ψ�(ε)

)(
aθεα

Ψ�(ε)

)ρ
)

+ c

((
b

Ψ�(ε)

)(
aθεα

Ψ�(ε)

)1−β

+
�̄

Ψ�(ε)

)
Log

(
1

δ

)
,

n ≥ c

(
q�̄2ρC1

(1− ρ)2

)(
b1−ρ

(
aθεα

Ψ�(ε)

)2−β(1−ρ)

+ �̄1−ρ

(
aθεα

Ψ�(ε)

)1+ρ
)
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+ c

(
b

(
aθεα

Ψ�(ε)

)2−β

+ �̄

(
aθεα

Ψ�(ε)

))
C1Log

(
C1

δ

)
,

then, with arguments �, u, and n, and an appropriate ŝ function, Algorithm
1 uses at most u unlabeled samples and makes at most n label requests, and with
probability at least 1− δ, returns a function ĥ with er(ĥ)− er(f�) ≤ ε.

Compared to Theorem 12, the constraints for u and n here may have improved

dependences on ε, multiplying by O
(
(θεα)

1−β(1−ρ)
)
. Furthermore, for small θ,

these are also smaller than the size of m for ERM�(F ,Zm) from Theorem 11.
Next, we turn to the bracketing entropy condition (10). For simplicity, we

will only consider the case that (10) is satisfied with F = �̄ constant. In this
case, we have the following result.

Theorem 14. For a universal constant c ∈ [1,∞), if PXY satisfies Condition 3,
� is classification-calibrated and satisfies Condition 2, f� ∈ F , Ψ� is as in (3),
b and β are as in Lemma 5, and (10) is satisfied with F = �̄, then ∀ε ∈ (0, 1),
letting C1 be as in Theorem 8, C2 be as in Theorem 12, and θ = θ (aεα), if

u ≥ c

(
q�̄2ρ

(1− ρ)2

)((
b1−ρ

Ψ�(ε)1+ρ

)(
aθεα

Ψ�(ε)

)(1−β)(1−ρ)

+
�̄1−ρ

Ψ�(ε)1+ρ

)

+ c

((
b

Ψ�(ε)

)(
aθεα

Ψ�(ε)

)1−β

+
�̄

Ψ�(ε)

)
Log

(
1

δ

)
,

n ≥ c

(
q�̄2ρC2

(1− ρ)2

)((
b1−ρ

Ψ�(ε)ρ

)(
aθεα

Ψ�(ε)

)1+(1−β)(1−ρ)

+
�̄1−ρaθεα

Ψ�(ε)1+ρ

)

+ c

(
b

(
aθεα

Ψ�(ε)

)2−β

+ �̄

(
aθεα

Ψ�(ε)

))
C1Log

(
C1

δ

)
,

then, with arguments �, u, and n, and an appropriate ŝ function, Algorithm
1 uses at most u unlabeled samples and makes at most n label requests, and with
probability at least 1− δ, returns a function ĥ with er(ĥ)− er(f�) ≤ ε.

Compared to Theorem 12, the dependence on ε in the sizes for both u and

n may be smaller here, multiplying by O
(
(θεα)

(1−β)(1−ρ)
)
, which is sometimes

significant, though not quite as dramatic a reduction as we found under (11) in
Theorem 13. As with Theorem 13, when θ(εα) = o(ε−α), the sizes of u and n
indicated by Theorem 14 are smaller than the results for ERM�(F ,Zm) from
Theorem 11.

5.5. An example: discrete distributions

As a concrete example applying the above results, we find that Algorithm
1 generally provides some benefits for discrete P distributions. To describe
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these benefits quantitatively, consider the special case where ∃x1, x2, . . . ∈ X
with P({xi}) = 90

π4i4 , and η(x) ∈ [0, ν0] ∪ [1 − ν0, 1] for each x ∈ X , where
ν0 ∈ [0, 1/2) is a constant. Set F = {f ∈ F∗ : supx∈X |f(x)| ≤ 1}, and
take � to be the quadratic loss (in which case �̄ = 4). In particular, since
f�(x) = 2η(x) − 1 ∈ [−1, 1], the condition f� ∈ F is satisfied in this scenario.
We will use Theorem 12 to bound the number of labels sufficient for Algorithm
1 to achieve excess error rate ε. For any g ∈ F∗, we have er(g) − er(f�) =∑

i∈N
1DIS({g,f�})(xi)|1 − 2η(xi)|P({xi}) ≥ (1 − 2ν0)Δ(g, f�), so that Condi-

tion 3 is satisfied with α = 1 and a = 1/(1 − 2ν0). Furthermore, F is convex,
and this � satisfies Condition 2, with β = 1 and b = 32 in Lemma 5. Also, since
ψ�(x) = x2 here [6], we have that Ψ�(ε) = ε2−α/(4a) = (1 − 2ν0)ε/4. Addi-
tionally, this scenario satisfies (10) in Condition 10 with q = 7

ω and ρ = 1
3 + ω,

for any choice of ω ∈ (0, 1/2]; we include a simple proof of this fact in Ap-
pendix B.1. Finally, we bound θ(r0) for r0 ∈ (0, 1]. For any r ∈ (0, 1), we have
DIS(B(f�, r)) ∩ {xi : i ∈ N} =

{
xi :

90
π4i4 ≤ r

}
, so that P(DIS(B(f�, r))) �∑

i�r−1/4 i−4 � r3/4. Therefore, θ(r0) � r
−1/4
0 .

Plugging these values into Theorem 12, and choosing ω =
(
ln
(

1
(1−2ν0)ε

))−1

,

we find that there is a label budget n, sufficient to guarantee er(ĥ)− er(f�) ≤ ε
with probability at least 1 − δ in Algorithm 1, with dependence
Θ
(
ε−7/12Log(1/ε)

)
on ε. For comparison, the corresponding bound for ERM�

from Theorem 11 has dependence Θ
(
ε−4/3Log(1/ε)

)
. This is larger than the

above bound by a factor Θ
(
ε−3/4

)
. Furthermore, one can show an Ω(ε−4/3)

lower bound on the sample size necessary to obtain ε minimax expected excess
error rate for passive learning in this scenario. Thus, Algorithm 1 achieves a
significant improvement over the guarantees achievable by all passive learning
methods. The details of this minimax lower bound are included in Appendix B.1.

5.6. An example: linear functions

As another example applying the above results, consider the class of homoge-
neous linear functions. Specifically, fix any k ∈ N with k ≥ 5, X = {x ∈ R

k :
‖x‖ ≤ 1}, and consider the class F = {x �→ w · x : w ∈ R

k, ‖w‖ ≤ 1}. Take
� as the quadratic loss (in which case �̄ = 4). Together with the assumption of
f� ∈ F , this restricts PXY to have η(x) = (w · x + 1)/2 (almost everywhere),
for some w ∈ R

k with ‖w‖ ≤ 1. Furthermore, this � satisfies Condition 2, with
β = 1 and b = 32 in Lemma 5, and has Ψ�(ε) = ε2−α/(4a). It is also known
that vc(GF ) � k (following from arguments of [16, 29]). Additionally, for this
class F , it is known that if P has a density (with respect to Lebesgue measure),
then θ(ε) = o(1/ε) [26]. Together, these facts imply that, if P has a density, the
sufficient size of n in Theorem 9 has dependence on ε that is o

(
εα−2Log(1/ε)

)
.

We also note that, by varying P , it is possible to realize any α value in (0, 1] in
Condition 3 [see 12, 15].

To exhibit a concrete example, consider the simple scenario of P uniform on
{x ∈ R

k : ‖x‖ = 1}, and suppose PXY is such that f� ∈ F . For simplicity, also
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suppose the w ∈ R
k with f�(x) = w · x satisfies ‖w‖ = 1. In this case, one can

show that Condition 3 is satisfied with a ∝ k1/4 and α = 1/2. For completeness,
a proof of this is included in Appendix B.2. It is also known that θ(ε) ≤ π

√
k for

this scenario [22]. Plugging all of this into Theorem 9 reveals that, for Algorithm
1 to achieve excess error rate ε with probability at least 1− δ (given sufficiently
large u), it suffices to have a label budget n of size at least

c
k

ε

(
kLog

(
k

ε

)
+ Log

(
1

δ

))
,

for a universal constant c > 0. In contrast, Theorem 7 gives a sufficient sample

size for ERM�(F , ·) proportional to k1/4

ε3/2
(kLog(k) + Log(1/δ)), which is signifi-

cantly larger than the above size of n for ε sufficiently small. To our knowledge,
it is not presently known what the optimal sample complexity of passive learn-
ing is for this scenario, so that in contrast to the previous example, here we can
only claim an improvement in the upper bound. We note that Dekel, Gentile,
and Sridharan [15] have also studied active learning with this F and � under
the same assumption of f� ∈ F , and established a similar result to the above
(with slightly better dependence on k but slightly worse logarithmic factors),
via a learning method tailored specifically to this function class.

6. General theorems

The remainder of the article is devoted to a general analysis of Algorithm 1,
from which we derive the more-explicit theorems stated above. The results are
formulated analogously to localization arguments common in the literature on
empirical risk minimization, but with a slight twist to introduce a relevant sub-
region to the argument. As such, we begin with a discussion of general localized
sample complexity bounds.

6.1. Localized sample complexities

The derivation of localized excess risk bounds is essentially motivated as fol-
lows. We are interested in bounding the excess �-risk of the ĥ returned by
ERM�(H,Zm). Suppose we have a coarse guarantee U�(H,m) on this value:

that is, R�(ĥ) − infh∈H R�(h) ≤ U�(H,m). In a sense, this guarantee identifies
a set H′ ⊆ H of functions that a priori may have the potential to be returned
by ERM�(H,Zm) (namely, H′ = H(U�(H,m); �)), while those in H\H′ do not.
With this information in hand, we can think of H′ as a kind of effective function
class, and we can think of ERM�(H,Zm) as equivalent to ERM�(H′,Zm). We

may then repeat this same reasoning, now thinking of ĥ as the function returned
by ERM�(H′,Zm): that is, we calculate U�(H′,m) to determine a further sub-
set H′′ = H′(U�(H′,m); �) ⊆ H′ of functions that we again expect to contain

the empirical minimizer ĥ, so that ERM�(H′,Zm) = ERM�(H′′,Zm), and so
on. This repeats until we identify a fixed-point set H(∞) of functions such that
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H(∞)(U�(H(∞),m); �) = H(∞), so that no further reduction is possible. Follow-
ing this chain of reasoning back to the beginning, we find that ERM�(H,Zm) =

ERM�(H(∞),Zm), so that the function ĥ returned by ERM�(H,Zm) has excess
�-risk at most U�(H(∞),m), which may be significantly smaller than U�(H,m),
depending on how U�(H,m) varies with H.

To formalize this fixed-point argument for ERM�(H,Zm), Koltchinskii [34]
makes use of the following quantities to define the coarse bound U�(H,m) [see
also 8, 20]. For any H ⊆ [F ], m ∈ N, s ∈ [1,∞), and any distribution P on
X × Y , letting S ∼ Pm, define

φ�(H;m,P ) = E

[
sup

h,g∈H
(R�(h;P )− R�(g;P ))− (R�(h;S)− R�(g;S))

]
,

Ū�(H;P,m, s) = K̄1φ�(H;m,P ) + K̄2D�(H;P )

√
s

m
+

K̄3�̄s

m
,

Ũ�(H;P,m, s) = K̃

(
φ�(H;m,P ) + D�(H;P )

√
s

m
+

�̄s

m

)
,

where K̄1, K̄2, K̄3, and K̃ are appropriately chosen constants.
We will be interested in having access to these quantities in the context of our

algorithms; however, since PXY is not directly accessible to the algorithm, we
will need to approximate these by data-dependent estimators. Toward this end,
we define the following quantities, again taken from the work of Koltchinskii [34].
For any H ⊆ [F ], q ∈ N, and S = {(x1, y1), . . . , (xq, yq)} ∈ (X × {−1,+1})q,
let H(ε; �, S) = {h ∈ H : R�(h;S)− infg∈H R�(g;S) ≤ ε}; then for any sequence
Ξ = {ξk}qk=1 ∈ {−1,+1}q, and any s ∈ [1,∞), define

φ̂�(H;S,Ξ) = sup
h,g∈H

1

q

q∑
k=1

ξk · (�(h(xk)yk)− �(g(xk)yk)) ,

D̂�(H;S)2 = sup
h,g∈H

1

q

q∑
k=1

(�(h(xk)yk)− �(g(xk)yk))
2
,

Û�(H;S,Ξ, s) = 12φ̂�(H;S,Ξ) + 34D̂�(H;S)

√
s

q
+

752�̄s

q
.

For completeness, let φ̂�(H; ∅, ∅) = D̂�(H; ∅) = 0, and Û�(H; ∅, ∅, s) = 752�̄s.
The above U quantities (with appropriate choices of K̄1, K̄2, K̄3, and K̃) can

be formally related to each other and to the excess �-risk of functions in H via
the following general result; this variant is due to Koltchinskii [34].

Lemma 15. For any H ⊆ [F ], s ∈ [1,∞), distribution P over X × Y, and
any m ∈ N, if S ∼ Pm and Ξ = {ξ1, . . . , ξm} ∼ Uniform({−1,+1})m are
independent, and h∗ ∈ H has R�(h

∗;P ) = infh∈H R�(h;P ), then with probability
at least 1− 6e−s, the following claims hold.

∀h ∈ H,R�(h;P )− R�(h
∗;P ) ≤ R�(h;S)− R�(h

∗;S) + Ū�(H;P,m, s),
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∀h ∈ H,R�(h;S)− inf
g∈H

R�(g;S) ≤ R�(h;P )− R�(h
∗;P ) + Ū�(H;P,m, s),

Ū�(H;P,m, s) < Û�(H;S,Ξ, s) < Ũ�(H;P,m, s).

We typically expect the quantities Ū , Û , and Ũ to be roughly within constant
factors of each other. Following Koltchinskii [34] and Giné and Koltchinskii [20],
we can use this result to derive localized bounds on the number of samples
sufficient for ERM�(H,Zm) to achieve a given excess �-risk. Specifically, for
H ⊆ [F ], distribution P over X × Y , values γ, γ1, γ2 ≥ 0, s ∈ [1,∞), and any
function s : (0,∞)2 → [1,∞), define the following quantities.

M̄�(γ1, γ2;H, P, s) = min
{
m ∈ N : Ū�(H(γ2; �, P );P,m, s) < γ1

}
,

M̄�(γ;H, P, s) = sup
γ′≥γ

M̄�(γ
′/2, γ′;H, P, s(γ, γ′)),

M̃�(γ1, γ2;H, P, s) = min
{
m ∈ N : Ũ�(H(γ2; �, P );P,m, s) ≤ γ1

}
,

M̃�(γ;H, P, s) = sup
γ′≥γ

M̃�(γ
′/2, γ′;H, P, s(γ, γ′)).

These quantities are well-defined for γ1, γ2, γ > 0 when limm→∞ φ�(H;m,P ) =
0. In other cases, for completeness, we define them to be ∞.

In particular, the quantity M̄�(γ;F ,PXY , s) is used in Theorem 17 below to
quantify the performance of ERM�(F ,Zm). The primary practical challenge in
calculating M̄�(γ;H, P, s) is handling the φ�(H(γ′; �, P );m,P ) quantity. In the
literature, the typical (only?) way such calculations are approached is by first
deriving a bound on φ�(H′;m,P ) for every H′ ⊆ H in terms of some natural
measure of complexity for the full class H (e.g., entropy numbers) and some
very basic measure of complexity for H′: most often D�(H′;P ) and sometimes a
seminorm of an envelope function. After this, one then proceeds to bound these
basic measures of complexity for the specific subsets H(γ′; �, P ), as a function of
γ′. Composing these two results is then sufficient to bound φ�(H(γ′; �, P );m,P ).
For instance, bounds based on an entropy integral tend to follow this strategy.
This approach effectively decomposes the problem of calculating the complexity
of H(γ′; �, P ) into the problem of calculating the complexity of H and the prob-
lem of calculating some more basic properties of H(γ′; �, P ). See [6, 20, 34, 47],
or Section 7.1 below, for several explicit examples of this technique.

Another technique often (though not always) used in conjunction with the
above strategy when deriving explicit rates of convergence is to relax
D�(H(γ′; �, P );P ) to D�(F∗(γ′; �, P );P ) or D�([H](γ′; �, P );P ). This relaxation
can sometimes be a source of slack; however, in many interesting cases, such as
for certain losses or noise conditions, this approach can still lead to nearly tight
bounds [6, 40, 45].

For our purposes, it is convenient to make these common techniques explicit in
the results. This will make the benefits of our proposed method more apparent,
while still allowing us to state results in a form abstract enough to encompass
the more-specific complexity measures referenced in the theorems of Section 5.
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Toward this end, we have the following definition (recall the definitions of hU,g

and HU,g from Section 4 above).

Definition 16. For every distribution P over X × Y, let φ̊�(σ,H;m,P ) be a
quantity defined for every σ ∈ [0,∞], H ⊆ [F ], and m ∈ N, such that the
following conditions are satisfied when f�

P ∈ H.

If 0 ≤ σ ≤ σ′,H ⊆ H′ ⊆ [F ],U ⊆ X , and m′ ≤ m,

then φ̊�(σ,HU,f�
P
;m,P ) ≤ φ̊�(σ

′,H′;m′, P ). (14)

∀σ ≥ D�(H;P ), φ�(H;m,P ) ≤ φ̊�(σ,H;m,P ). (15)

For instance, most bounds based on entropy integrals can be made to satisfy
this. Section 7.1 states explicit examples of quantities φ̊� from the literature that
satisfy this definition. Given a function φ̊� of this type, we define the following
quantity for m ∈ N, s ∈ [1,∞), ζ ∈ [0,∞], H ⊆ [F ], and a distribution P over
X × Y .

Ů�(H, ζ;P,m, s)

= K̃

(
φ̊�(D�([H](ζ; �, P );P ),H;m,P ) + D�([H](ζ; �, P );P )

√
s

m
+

�̄s

m

)
.

Note that when f�
P ∈ H, since D�([H](γ; �, P );P ) ≥ D�(H(γ; �, P );P ), Defi-

nition 16 implies φ�(H(γ; �, P );m,P ) ≤ φ̊�(D�([H](γ; �, P );P ),H(γ; �, P );m,P ),

and furthermore H(γ; �, P ) ⊆ H so that φ̊�(D�([H](γ; �, P );P ),H(γ; �, P );m,P )

≤ φ̊�(D�([H](γ; �, P );P ),H;m,P ). Thus,

Ũ�(H(γ; �, P );P,m, s) ≤ Ů�(H(γ; �, P ), γ;P,m, s) ≤ Ů�(H, γ;P,m, s). (16)

Furthermore, when f�
P ∈ H, for any measurable U ⊆ U ′ ⊆ X , any γ′ ≥ γ ≥ 0,

and any H′ ⊆ [F ] with H ⊆ H′,

Ů�(HU,f�
P
, γ;P,m, s) ≤ Ů�(H′

U ′,f�
P
, γ′;P,m, s). (17)

Note that the fact that we use D�([H](γ; �, P );P ) instead of D�(H(γ; �, P );P )
in the definition of Ů� is crucial for these inequalities to hold; specifically, it is
not necessarily true that D�(HU,f�

P
(γ; �, P );P ) ≤ D�(HU ′,f�

P
(γ; �, P );P ), but it

is always the case that [HU,f�
P
](γ; �, P ) ⊆ [HU ′,f�

P
](γ; �, P ) when f�

P ∈ [H], and
therefore D�([HU,f�

P
](γ; �, P );P ) ≤ D�([HU ′,f�

P
](γ; �, P );P ).

Finally, for H ⊆ [F ], distribution P over X × Y , values γ, γ1, γ2 ≥ 0, s ∈
[1,∞), and any function s : (0,∞)2 → [1,∞), define

M̊�(γ1, γ2;H, P, s) = min
{
m ∈ N : Ů�(H, γ2;P,m, s) ≤ γ1

}
,

M̊�(γ;H, P, s) = sup
γ′≥γ

M̊�(γ
′/2, γ′;H, P, s(γ, γ′)).

For completeness, define M̊�(γ1, γ2;H, P, s) = ∞ when Ů�(H, γ2;P,m, s) > γ1
for every m ∈ N.



Surrogate losses in passive and active learning 4671

It will often be convenient to isolate the terms in Ů� when inverting for a
sufficient m, thus arriving at an upper bound on M̊�. Specifically, define

Ṁ�(γ1, γ2;H, P, s) = min

{
m ∈ N : D�([H](γ2; �, P );P )

√
s

m
+

�̄s

m
≤ γ1

}
,

M̈�(γ1, γ2;H, P ) = min
{
m ∈ N : φ̊� (D�([H](γ2; �, P );P ),H;m,P ) ≤ γ1

}
.

This way, for c̃ = 1/(2K̃), we have

M̊�(γ1, γ2;H, P, s) ≤ max
{
M̈�(c̃γ1, γ2;H, P ), Ṁ�(c̃γ1, γ2;H, P, s)

}
. (18)

Also note that we clearly have

Ṁ�(γ1, γ2;H, P, s) ≤ s ·max

{
4D�([H](γ2; �, P ); �, P )2

γ2
1

,
2�̄

γ1

}
, (19)

so that, in the task of bounding M̊�, we can simply focus on bounding M̈�.
We will express our main abstract results below in terms of the incremental

values M̊�(γ1, γ2;H,PXY , s); the quantity M̊�(γ;H,PXY , s) will also be useful
in deriving explicit results for ERM�. When f�

P ∈ H, (16) implies

M̄�(γ;H, P, s) ≤ M̃�(γ;H, P, s) ≤ M̊�(γ;H, P, s). (20)

6.2. General analysis of empirical risk minimization

Based on Lemma 15 and the above definitions, one can derive a bound on the
number of labeled data points m sufficient for ERM�(F ,Zm) to achieve a given
excess error rate. Specifically, the following theorem is due to Koltchinskii [34]
(slightly modified here, following Giné and Koltchinskii [20], to allow for general
s functions). It will be useful for deriving Theorems 7 and 11. For ε > 0, let
Zε = {j ∈ Z : 2j ≥ ε}.

Theorem 17. Fix any function s : (0,∞)2 → [1,∞). If f� ∈ F , then for any

m ≥ M̄�(Γ�(ε);F ,PXY , s), with probability at least 1 −
∑

j∈ZΓ�(ε)
6e−s(Γ�(ε),2

j),

ERM�(F ,Zm) produces a function ĥ such that er(ĥ)− er(f�) ≤ ε.

6.3. Specification of T̂� in Algorithm 1

The quantity T̂� in Algorithm 1 can be defined in one of several possible ways. In
our present abstract context, we consider the following definition. Let {ξ′k}k∈N

denote independent Rademacher random variables (i.e., uniform in {−1,+1}),
also independent from Z; these should be considered internal random variables
used by the algorithm, which is therefore a randomized algorithm. For any
q ∈ N ∪ {0} and Q = {(i1, y1), . . . , (iq, yq)} ∈ (N × {−1,+1})q, let Ξ[Q] =
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{ξ′ik}
q
k=1, and for s ≥ 1, define Û�(H;Q, s) = Û�(H;S[Q],Ξ[Q], s), where S[Q] =

{(Xi1 , y1), . . . , (Xiq , yq)}, as previously defined. Then we can define the quantity

T̂� in the method above as

T̂�(H;Q,m) = Û�(H;Q, ŝ(m)), (21)

for some ŝ : N → [1,∞). This definition has the appealing property that it
allows us to interpret the update in Step 6 in two complementary ways: as com-
paring the empirical risks of functions in V under samples from the conditional
distribution of (X,Y ) given X ∈ DIS(V ), and as comparing the empirical risks
of the functions in VDIS(V ) under samples from the original distribution PXY .

Our abstract results below are based on this definition of T̂�. This can some-
times be problematic due to the computational challenge of the optimization
problems in the definitions of φ̂� and D̂�. There has been considerable work on
calculating and bounding φ̂� for various classes F and losses � [e.g., 7, 33], but it
is not always feasible. However, the specific theorems stated in Section 5 above
continue to hold if we instead take T̂� based on a well-chosen upper bound on
the respective Ů� function, such as those obtained in the derivations of those
respective results below; we provide descriptions of such efficiently-computable
relaxations, for each of these results, in Appendix D (though in some cases,
these bounds have a mild dependence on PXY via certain parameters of the
specific noise conditions considered there).

6.4. General analysis of Algorithm 1

The following theorem represents our main abstract result. The key steps in its
proof were already sketched above in Section 4. The complete proof is included
in Appendix A.

Theorem 18. Fix any function ŝ : N → [1,∞). Let j� = −�log2(�̄)�, uj�−2 =
uj�−1 = 1, and for each integer j ≥ j�, let Fj=F(E�(2

2−j); 01)DIS(F(E�(22−j);01)),
Uj = DIS(Fj), and suppose uj ∈ N satisfies log2(uj) ∈ N and

uj ≥ 2M̊�(2
−j−1, 22−j ;Fj ,PXY , ŝ(uj)) ∨ uj−1 ∨ 2uj−2. (22)

Suppose f� ∈ F . For any ε ∈ (0, 1), s ∈ [1,∞), letting jε = �log2(1/Γ�(ε))�, if

u ≥ ujε and n ≥ s+ 2e

jε∑
j=j�

P(Uj)uj ,

then, with arguments �, u, and n, Algorithm 1 uses at most u unlabeled samples,

requests at most n labels, and with probability at least 1−2−s−
∑log2(ujε )

i=1 6e−ŝ(2i),

returns a function ĥ with er(ĥ)− er(f�) ≤ ε.

In defining and calculating the values M̊� in Theorem 18, it is sometimes
convenient to use the alternative interpretation of Algorithm 1, in terms of
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sampling the set S[Q] from the conditional distribution given the region of
disagreement. Specifically, for any measurable U ⊆ X with P(U) > 0, define
the probability measure PU (·) = PXY (·|U × Y): that is, PU is the conditional
distribution of (X,Y ) ∼ PXY given that X ∈ U . Generally, for any probability
measure P on X × Y , and any measurable U ⊆ X × Y with P (U) > 0, define
PU (·) = P (·|U). Also, for any H ⊆ F∗, define the region of value-disagreement
DISF(H) = {x ∈ X : ∃h, g ∈ H s.t. h(x) �= g(x)}, and denote by DISF(H) =
DISF(H) × Y . The following lemma then allows us to replace calculations in
terms of Fj and PXY with calculations in terms of F(E�(2

1−j); 01) and PDIS(Fj).
Its proof is included in Appendix A.

Lemma 19. Let φ̊� be any function satisfying Definition 16. Let P be any
distribution over X ×Y. For any σ ≥ 0, H ⊆ [F ], m ∈ N, if P

(
DISF(H)

)
> 0,

define

φ̊′
�(σ,H;m,P ) =

32

⎛
⎜⎝ inf

U=U ′×Y:
U ′⊇DISF(H)

P (U)φ̊�

(
σ√
P (U)

,H; �(1/2)P (U)m�, PU

)
+

�̄

m
+ σ

√
1

m

⎞
⎟⎠ ,

(23)

and otherwise φ̊′
�(σ,H;m,P ) = 0. Then φ̊′

� also satisfies Definition 16.

Plugging this φ̊′
� function into Theorem 18 immediately yields the following

corollary; the proof is included in Appendix A.

Corollary 20. Fix any function ŝ : N → [1,∞). Let j� = −�log2(�̄)�, define
uj�−2 = uj�−1 = 1, and for each integer j ≥ j�, let Fj and Uj be as in Theo-
rem 18, and if P(Uj) > 0, suppose uj ∈ N satisfies log2(uj) ∈ N and

uj ≥ 4P(Uj)
−1M̊�

(
2−j−7

P(Uj)
,
22−j

P(Uj)
;Fj ,PUj , ŝ(uj)

)
∨ uj−1 ∨ 2uj−2. (24)

If P(Uj) = 0, let uj ∈ N satisfy log2(uj) ∈ N and uj ≥ K̃�̄ŝ(uj)2
j+2∨uj∨2uj−2.

Suppose f� ∈ F . For any ε ∈ (0, 1), s ∈ [1,∞), letting jε = �log2(1/Γ�(ε))�, if

u ≥ ujε and n ≥ s+ 2e

jε∑
j=j�

P(Uj)uj ,

then, with arguments �, u, and n, Algorithm 1 uses at most u unlabeled samples,

requests at most n labels, and with probability at least 1−2−s−
∑log2(ujε )

i=1 6e−ŝ(2i),

returns a function ĥ with er(ĥ)− er(f�) ≤ ε.

7. Derivations of the explicit results

We are now ready to present derivations of the explicit results of Section 5, based
on the general results of the previous section. To simplify the presentation, we



4674 S. Hanneke and L. Yang

often omit numerical constant factors in the inequalities below, and for this we
use the common notation f(x) � g(x) to mean that f(x) ≤ cg(x) for some
implicit numerical constant c ∈ (0,∞).

7.1. Specification of φ̊�

We begin by recalling a few well-known bounds on the φ� function, which lead
to a more concrete instance of a function φ̊� satisfying Definition 16.

Uniform Entropy : The first bound is based on the work of van der Vaart and
Wellner [48]; related bounds have been studied by Giné and Koltchinskii [20],
Giné, Koltchinskii, and Wellner [21], van der Vaart and Wellner [47], and others.
For σ ≥ 0 and F ∈ G∗, define the function

J(σ,G,F) = sup
Π

∫ σ

0

√
1 + lnN (ε‖F‖Π,G, L2(Π))dε,

where Π ranges over all finitely discrete probability measures.
Fix any distribution P on X ×Y . Since J(σ,GH,F) = J(σ,GH,P ,F), it follows

from Theorem 2.1 of van der Vaart and Wellner [48] (and a triangle inequality)
that for some universal constant c ∈ [1,∞), for any m ∈ N, F ≥ F(GH,P ), and
σ ≥ D�(H;P ),

φ�(H;m,P ) ≤ (25)

cJ

(
σ

‖F‖P
,GH,F

)
‖F‖P

⎛
⎝ 1√

m
+

J
(

σ
‖F‖P

,GH,F
)
‖F‖P �̄

σ2m

⎞
⎠ .

Based on (25), it is straightforward to define a function φ̊� that satisfies Defini-
tion 16. Specifically, define

φ̊
(1)
� (σ,H;m,P ) =

inf
F≥F(GH,P )

inf
λ≥σ

cJ

(
λ

‖F‖P
,GH,F

)
‖F‖P

⎛
⎝ 1√

m
+

J
(

λ
‖F‖P

,GH,F
)
‖F‖P �̄

λ2m

⎞
⎠ ,

(26)

for c as in (25). By (25), φ̊
(1)
� satisfies (15). Also note that m �→ φ̊

(1)
� (σ,H;m,P )

is nonincreasing, while σ �→ φ̊
(1)
� (σ,H;m,P ) is nondecreasing. Furthermore,

H �→ N (ε,GH, L2(Π)) is nondecreasing for all Π, so thatH �→ J(σ,GH,F) is non-
decreasing as well; since H �→ F(GH,P ) is also nondecreasing, we see that H �→
φ̊
(1)
� (σ,H;m,P ) is nondecreasing. Similarly, for U ⊆ X , N (ε,GHU,f�

P
, L2(Π)) ≤

N (ε,GH, L2(Π)) for all Π, so that J(σ,GHU,f�
P
,F) ≤ J(σ,GH,F). Since

F(GHU,f�
P
,P ) ≤ F(GH,P ), we have φ̊

(1)
� (σ,HU,f�

P
;m,P ) ≤ φ̊

(1)
� (σ,H;m,P ) as well.

Thus, to satisfy Definition 16, it suffices to take φ̊� = φ̊
(1)
� .
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Bracketing Entropy : Our second bound is a classic result in empirical process
theory. For σ ≥ 0, define the function

J[](σ,G, P ) =

∫ σ

0

√
1 + lnN[](ε,G, L2(P ))dε.

Fix any H ⊆ [F ], and let GH and GH,P be as above. Then since J[](σ,GH, P ) =
J[](σ,GH,P , P ), Lemma 3.4.2 of [47] and a triangle inequality imply that for
some universal constant c ∈ [1,∞), for any m ∈ N and σ ≥ D�(H;P ),

φ�(H;m,P ) ≤ cJ[] (σ,GH, P )

(
1√
m

+
J[] (σ,GH, P ) �̄

σ2m

)
. (27)

As-is, the right side of (27) nearly satisfies Definition 16 already. Only a small
change is needed for the requirement of monotonicity in σ. Specifically, define

φ̊
(2)
� (σ,H;m,P ) = inf

λ≥σ
cJ[] (λ,GH, P )

(
1√
m

+
J[] (λ,GH, P ) �̄

λ2m

)
, (28)

for c as in (27). Then taking φ̊� = φ̊
(2)
� suffices to satisfy Definition 16.

Since Definition 16 is satisfied for both φ̊
(1)
� and φ̊

(2)
� , it is also satisfied for

φ̊� = min
{
φ̊
(1)
� , φ̊

(2)
�

}
. The remainder of this section takes this as the specifica-

tion of the φ̊� function.

7.2. VC subgraph classes

The following is a classic result for VC subgraph classes [see e.g., 47], derived
from the works of Pollard [42] and Haussler [29].

Lemma 21. For any G ⊆ G∗, for any measurable F ≥ F(G), for any distribution
Π such that ‖F‖Π > 0, for any ε ∈ (0, 1),

N (ε‖F‖Π,G, L2(Π)) ≤ A(G)
(
1

ε

)2vc(G)
,

where A(G) � (vc(G) + 1)(16e)vc(G).

In particular, Lemma 21 implies that any G ⊆ G∗ has, ∀σ ∈ (0, 1],

J(σ,G,F) ≤
∫ σ

0

√
ln(eA(G)) + 2vc(G) ln(1/ε)dε � σ

√
vc(G)Log(1/σ). (29)

Applying these observations to J(σ,GH,P ,F) for H ⊆ [F ] and F ≥ F(GH,P ),
noting J(σ,GH,F) = J(σ,GH,P ,F) and vc(GH,P ) = vc(GH), and plugging the

resulting bound into (26) yields the following well-known bound on φ̊
(1)
� due to

Giné and Koltchinskii [20]. For any m ∈ N and σ > 0,
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φ̊
(1)
� (σ,H;m,P )

� inf
λ≥σ

λ

√√√√vc(GH)Log
(

‖F(GH,P )‖P

λ

)
m

+
vc(GH)�̄Log

(
‖F(GH,P )‖P

λ

)
m

. (30)

Specifically, to arrive at (30), we relaxed the infF≥F(GH,P ) in (26) by taking F ≥
F(GH,P ) such that ‖F‖P = max{σ, ‖F(GH,P )‖P }, thus maintaining λ/‖F‖P ∈
(0, 1] for the minimizing λ value, so that (29) remains valid; we also used the
fact that Log ≥ 1, which gives us Log(‖F‖P /λ) = Log(‖F(GH,P )‖P /λ) for this
case.

In particular, (30) implies

M̈�(γ1, γ2;H, P )

� inf
σ≥D�([H](γ2;�,P );P )

(
σ2

γ2
1

+
�̄

γ1

)
vc(GH)Log

(
‖F(GH,P )‖P

σ

)
. (31)

For λ > 0, when f�
P ∈ H and P satisfies Condition 4, (31) implies that,

sup
γ≥λ

M̈�(γ/(4K̃), γ;H(γ; �, P ), P )

�
(

b

λ2−β
+

�̄

λ

)
vc(GH)Log

(
τ�
(
bλβ ;H, P

))
. (32)

Combining this observation with (16), (18), (19), (20), and Theorem 17, we
arrive at a result for the sample complexity of empirical �-risk minimization
with a general VC subgraph class under Conditions 3 and 4. Specifically, for
s : (0,∞)2 → [1,∞), when f� ∈ F , (16) implies that

M̄�(Γ�(ε);F ,PXY , s) ≤ M̃�(Γ�(ε);F ,PXY , s)

= sup
γ≥Γ�(ε)

M̃�(γ/2, γ;F(γ; �),PXY , s(Γ�(ε), γ))

≤ sup
γ≥Γ�(ε)

M̊�(γ/2, γ;F(γ; �),PXY , s(Γ�(ε), γ)). (33)

For PXY satisfying Conditions 3 and 4, applying (18), (19), and (32) to (33),
and taking s(λ, γ) = Log

(
12γ
λδ

)
, we arrive at Theorem 7 (which is implicit in

[20]).
Next, we turn to Theorem 8. Note that vc(GFj ) ≤ vc(GF(E�(22−j);01)) ≤

vc(GF ). Also, ‖F(GFj ,PXY
)‖2PXY

≤ �̄2P
(
DIS

(
F
(
E�

(
22−j

)
; 01

)))
. Thus, for j� ≤

j ≤ �log2(1/Ψ�(ε))�, (31) implies

M̈�(2
−j−2K̃−1, 22−j ;Fj ,PXY ) �

(
b2j(2−β) + �̄2j

)
vc(GF )Log

(
χ� (Ψ�(ε)) �̄

)
.

(34)
With a little additional work to define an appropriate ŝ function and derive

closed-form bounds on the summation in Theorem 18, we arrive at Theorem 8.
The remaining details appear in Appendix B.
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When � satisfies Condition 2, we can derive the sometimes-stronger result
in Theorem 9 via Corollary 20. Specifically, combining (31), (18), (19), and
Lemma 5, we have that if f� ∈ F and Condition 2 is satisfied, then for j ≥ j�
in Corollary 20,

M̊�

(
2−j−7

P(Uj)
,
22−j

P(Uj)
;Fj ,PUj , s

)
(35)

�
(
b
(
2jP(Uj)

)2−β
+ 2j �̄P(Uj)

) (
vc(GF )Log

(
�̄22jβP(Uj)

β/b
)
+ s

)
,

where b and β are as in Lemma 5. Plugging this into Corollary 20, we arrive at
Theorem 9; the remaining details proceed similarly to those of Theorem 8, and
a detailed sketch appears in Appendix B.

7.3. Entropy conditions

Next we turn to problems satisfying entropy conditions. Note that when F
satisfies Condition 10, for 0 ≤ σ ≤ 2‖F‖PXY

,

φ̊�(σ,F ;m,PXY ) � max

⎧⎨
⎩

√
q‖F‖ρPXY

σ1−ρ

(1− ρ)m1/2
,
�̄

1−ρ
1+ρ q

1
1+ρ ‖F‖

2ρ
1+ρ

PXY

(1− ρ)
2

1+ρm
1

1+ρ

⎫⎬
⎭ . (36)

Since D�([F ]) ≤ 2‖F‖PXY
, this implies that for any numerical constant c ∈ (0, 1],

for every γ ∈ (0,∞), if PXY satisfies Condition 4, then

M̈�(cγ, γ;F ,PXY ) �
q‖F‖2ρPXY

(1− ρ)2
max

{
b1−ργβ(1−ρ)−2, �̄1−ργ−(1+ρ)

}
. (37)

Combined with (18), (19), (20), and Theorem 17, taking s(λ, γ) = Log
(
12γ
λδ

)
,

we arrive at the classic result in Theorem 11 [e.g., 6, 47].
The corresponding result for Algorithm 1, namely Theorem 12, follows by

combining (37) with (18), (19), and Theorem 18. The details of the proof follow
analogously to that of Theorem 8, and are therefore omitted for brevity.

Next, we turn to deriving the corresponding results stated above under Con-
dition 2. As discussed above, we treat separately the cases of (11) and (10).

First, suppose (11) holds (for all P , ε) with F ≤ �̄. Following the derivation of
(37) above, combined with (19), (18), and Lemma 5, for j ≥ j� in Corollary 20,

M̊�

(
2−j−7

P(Uj)
,
22−j

P(Uj)
;Fj ,PUj , s

)
�
(
b
(
2jP(Uj)

)2−β
+ �̄2jP(Uj)

)
s

+
q�̄2ρ

(1− ρ)2

(
b1−ρ

(
2jP(Uj)

)2−β(1−ρ)
+ �̄1−ρ

(
2jP(Uj)

)1+ρ
)
,

where b and β are from Lemma 5. This immediately leads to Theorem 13 by
reasoning analogous to the proof of Theorem 9.
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The case (10) can be treated similarly, though the result we obtain (Theo-
rem 14) is slightly weaker. Suppose (10) is satisfied with F = �̄ constant. In this
case, �̄ ≥ F(GFj ,PUj

), whileN[](ε�̄,GFj , L2(PUj ))=N[](ε�̄
√
P(Uj),GFj ,L2(PXY ))

≤ N[](ε�̄
√
P(Uj),GF , L2(PXY )), so that Fj and PUj also satisfy (10) with F = �̄:

lnN[]

(
ε�̄,GFj , L2(PUj )

)
≤ qP(Uj)

−ρε−2ρ.

Thus, based on (37), (18), (19), and Lemma 5, we have that if f� ∈ F and
Condition 2 is satisfied, then for j ≥ j� in Corollary 20,

M̊�

(
2−j−7

P(Uj)
,
22−j

P(Uj)
;Fj ,PUj , s

)
�
(
b
(
2jP(Uj)

)2−β
+ �̄2jP(Uj)

)
s

+

(
q�̄2ρ

(1− ρ)2

)
P(Uj)

−ρ
(
b1−ρ

(
2jP(Uj)

)2−β(1−ρ)
+ �̄1−ρ

(
2jP(Uj)

)1+ρ
)
,

where b and β are as in Lemma 5. Combining this with Corollary 20 and rea-
soning analogously to the proof of Theorem 9, we obtain Theorem 14.

Appendix A: Main proofs

This appendix includes the proofs of the main abstract results from Section 6.

Proof of Theorem 18. Fix any ε ∈ (0, 1), s ∈ [1,∞), values uj satisfying (22),
and consider running Algorithm 1 with values of u and n satisfying the con-
ditions specified in Theorem 18. The proof has two main components: first,
showing that, with high probability, f� ∈ V is maintained as an invariant, and
second, showing that, with high probability, the set V will be sufficiently re-
duced to provide the guarantee on ĥ after at most the stated number of label
requests, given the value of u is as large as stated. Both of these components
are served by the following application of Lemma 15.

Let S denote the set of values of m obtained in Algorithm 1 for which
log2(m) ∈ N. For each m ∈ S, let V (m) and Qm denote the values of V
and Q (respectively) upon reaching Step 5 on the round that Algorithm 1 ob-
tains that value of m, and let Ṽ (m) denote the value of V upon complet-
ing Step 6 on that round; also denote Dm = DIS(V (m)) and Lm = {(1 +
m/2, Y1+m/2), . . . , (m,Ym)}, and define Ṽ (1) = F and D1 = DIS(F).

Consider any m ∈ S, and note that ∀h, g ∈ V (m),

(|Qm| ∨ 1) (R�(h;Qm)− R�(g;Qm))

=
m

2
(R�(hDm ;Lm)− R�(gDm ;Lm)) , (38)

and furthermore that

(|Qm| ∨ 1)Û�(V
(m);Qm, ŝ(m)) =

m

2
Û�(V

(m)
Dm

;Lm, ŝ(m)). (39)
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Applying Lemma 15 under the conditional distribution given V (m), combined
with the law of total probability, we have that, for every m ∈ N with log2(m) ∈
N, on an event of probability at least 1−6e−ŝ(m), if f� ∈ V (m) and m ∈ S, then

letting Ûm = Û�

(
V

(m)
Dm

;Lm, ŝ(m)
)
, every hDm ∈ V

(m)
Dm

has

R�(hDm)− R�(f
�) < R�(hDm ;Lm)− R�(f

�;Lm) + Ûm, (40)

R�(hDm ;Lm)− min
gDm∈V

(m)
Dm

R�(gDm ;Lm) < R�(hDm)− R�(f
�) + Ûm, (41)

and furthermore

Ûm < Ũ�

(
V

(m)
Dm

;PXY ,m/2, ŝ(m)
)
. (42)

By a union bound, on an event of probability at least 1−
∑log2(ujε )

i=1 6e−ŝ(2i), for
every m ∈ S with m ≤ ujε and f� ∈ V (m), the inequalities (40), (41), and (42)
hold. Call this event E.

In particular, note that on the event E, for any m ∈ S with m ≤ ujε and
f� ∈ V (m), since f�

Dm
= f�, (38), (41), and (39) imply

(|Qm| ∨ 1)

(
R�(f

�;Qm)− inf
g∈V (m)

R�(g;Qm)

)

=
m

2

(
R�(f

�;Lm)− inf
gDm∈V

(m)
Dm

R�(gDm ;Qm)

)

<
m

2
Ûm = (|Qm| ∨ 1)Û�(V

(m);Qm, ŝ(m)),

so that f� ∈ Ṽ (m) as well. Since f� ∈ V (2), and every m ∈ S with m > 2 has
V (m) = Ṽ (m/2), by induction we have that, on the event E, every m ∈ S with
m ≤ ujε has f� ∈ V (m) and f� ∈ Ṽ (m); this also implies that (40), (41), and
(42) all hold for these values of m on the event E.

We next prove by induction that, on the event E, ∀j∈ {j�−2, j�−1, j�, . . . , jε},
if uj ∈ S∪{1}, then Ṽ

(uj)
Duj

⊆ [F ](2−j ; �) and Ṽ (uj) ⊆ F
(
E�(2

−j); 01

)
. This claim

is trivially satisfied for j ∈ {j� − 2, j� − 1}, since in that case [F ](2−j ; �) =

[F ] ⊇ Ṽ
(uj)
Duj

and F(E�(2
−j); 01) = F , so that these values can serve as our

base case. Now take as an inductive hypothesis that, for some j ∈ {j�, . . . , jε},
if uj−2 ∈ S ∪ {1}, then on the event E, Ṽ

(uj−2)
Duj−2

⊆ [F ](22−j ; �) and Ṽ (uj−2) ⊆
F
(
E�(2

2−j); 01

)
, and suppose the event E occurs. If uj /∈ S, the claim is trivially

satisfied; otherwise, suppose uj ∈ S, which further implies uj−2 ∈ S∪{1}. Since
uj ≤ ujε , for any h ∈ Ṽ (uj), (40) implies

uj

2

(
R�(hDuj

)− R�(f
�)
)
<

uj

2

(
R�(hDuj

;Luj )− R�(f
�;Luj ) + Ûuj

)
.

Since we have already established that f� ∈ V (uj), (38) and (39) imply
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uj

2

(
R�(hDuj

;Luj )− R�(f
�;Luj ) + Ûuj

)
= (|Quj | ∨ 1)

(
R�(h;Quj )− R�(f

�;Quj ) + Û�(V
(uj);Quj , ŝ(uj))

)
.

The definition of Ṽ (uj) from Step 6 implies

(|Quj | ∨ 1)
(
R�(h;Quj )− R�(f

�;Quj ) + Û�(V
(uj);Quj , ŝ(uj))

)
≤ (|Quj | ∨ 1)

(
2Û�(V

(uj);Quj , ŝ(uj))
)
.

By (39) and (42),

(|Quj |∨1)
(
2Û�(V

(uj);Quj , ŝ(uj))
)
=ujÛuj <ujŨ�

(
V

(uj)
Duj

;PXY , uj/2, ŝ(uj)
)
.

Altogether, we have that, ∀h ∈ Ṽ (uj),

R�(hDuj
)− R�(f

�) < 2Ũ�

(
V

(uj)
Duj

;PXY , uj/2, ŝ(uj)
)
. (43)

By definition of M̊�, monotonicity of m �→ Ů�(·, ·; ·,m, ·), and the condition on
uj in (22), we know that

Ů�

(
Fj , 2

2−j ;PXY , uj/2, ŝ(uj)
)
≤ 2−j−1.

The fact that uj ≥ 2uj−2, combined with the inductive hypothesis, implies

V (uj) ⊆ Ṽ (uj−2) ⊆ F
(
E�(2

2−j); 01

)
.

This also implies Duj ⊆ DIS(F(E�(2
2−j); 01)). Combined with (17), these imply

Ů�

(
V

(uj)
Duj

, 22−j ;PXY , uj/2, ŝ(uj)
)
≤ 2−j−1.

Together with (16), this implies

Ũ�

(
V

(uj)
Duj

(22−j ; �);PXY , uj/2, ŝ(uj)
)
≤ 2−j−1.

The inductive hypothesis implies V
(uj)
Duj

= V
(uj)
Duj

(22−j ; �), which means

Ũ�

(
V

(uj)
Duj

;PXY , uj/2, ŝ(uj)
)
≤ 2−j−1.

Plugging this into (43) implies, ∀h ∈ Ṽ (uj),

R�(hDuj
)− R�(f

�) < 2−j . (44)

In particular, since f� ∈ F , we always have Ṽ
(uj)
Duj

⊆ [F ], so that (44) establishes

that Ṽ
(uj)
Duj

⊆ [F ](2−j ; �). Furthermore, since f� ∈ V (uj) on E, sign(hDuj
) =
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sign(h) for every h ∈ Ṽ (uj), so that every h ∈ Ṽ (uj) has er(h) = er(hDuj
), and

therefore (by definition of E�(·)), (44) implies

er(h)− er(f�) = er(hDuj
)− er(f�) ≤ E�

(
2−j

)
.

This implies Ṽ (uj) ⊆ F
(
E�(2

−j); 01

)
, which completes the inductive proof. This

implies that, on the event E, if ujε ∈ S, then (by monotonicity of E�(·) and the
fact that E�(Γ�(ε)) ≤ ε)

Ṽ (ujε ) ⊆ F(E�(2
−jε); 01) ⊆ F(E�(Γ�(ε)); 01) ⊆ F(ε; 01).

In particular, since the update in Step 6 always keeps at least one element in
V , the function ĥ in Step 8 exists, and has ĥ ∈ Ṽ (ujε ) (if ujε ∈ S). Thus, on

the event E, if ujε ∈ S, then er(ĥ) − er(f�) ≤ ε. Therefore, since u ≥ ujε , to
complete the proof it suffices to show that taking n of the size indicated in the
theorem statement suffices to guarantee ujε ∈ S, on an event (which includes
E) having at least the stated probability.

Note that for any j ∈ {j�, . . . , jε} with uj−1 ∈ S ∪ {1}, every m ∈ {uj−1 +

1, . . . , uj} ∩ S has V (m) ⊆ Ṽ (uj−1); furthermore, we showed above that on the

event E, if uj−1 ∈ S, then Ṽ (uj−1) ⊆ F(E�(2
1−j); 01), so that DIS(V (m)) ⊆

DIS(Ṽ (uj−1)) ⊆ DIS(F(E�(2
1−j); 01)) ⊆ Uj . Thus, on the event E, to guarantee

ujε ∈ S, it suffices to have

n ≥
jε∑

j=j�

uj∑
m=uj−1+1

1Uj (Xm).

Noting that this is a sum of independent Bernoulli random variables, a Chernoff
bound implies that on an event E′ of probability at least 1− 2−s,

jε∑
j=j�

uj∑
m=uj−1+1

1Uj (Xm) ≤ s+ 2e

jε∑
j=j�

uj∑
m=uj−1+1

P(Uj)

= s+ 2e

jε∑
j=j�

P(Uj)(uj − uj−1) ≤ s+ 2e

jε∑
j=j�

P(Uj)uj .

Thus, for n satisfying the condition in the theorem statement, on the event
E ∩ E′, we have ujε ∈ S, and therefore (as proven above) er(ĥ) − er(f�) ≤ ε.
Finally, a union bound implies that the event E ∩ E′ has probability at least

1− 2−s −
log2(ujε )∑

i=1

6e−ŝ(2i),

as required.
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Proof of Lemma 19. If P
(
DISF(H)

)
= 0, then φ�(H;m,P ) = 0, so that in this

case, φ̊′
� trivially satisfies (15). Otherwise, suppose P

(
DISF(H)

)
> 0. By the

classic symmetrization inequality [e.g., 47, Lemma 2.3.1],

φ�(H;m,P ) ≤ 2E
[∣∣∣φ̂�(H;S,Ξ[m])

∣∣∣] ,
where S ∼ Pm and Ξ[m] = {ξ1, . . . , ξm} ∼ Uniform({−1,+1}m) are indepen-

dent. Fix any measurable U ⊇ DISF(H). Then

E

[∣∣∣φ̂�(H;S,Ξ[m])
∣∣∣] = E

[∣∣∣φ̂�(H;S ∩ U ,Ξ[|S∩U|])
∣∣∣ |S ∩ U|

m

]
, (45)

where Ξ[q] = {ξ1, . . . , ξq} for any q ∈ {0, . . . ,m}. By the classic desymmetriza-
tion inequality [see e.g., 35], applied under the conditional distribution given
|S ∩ U|, the right hand side of (45) is at most

E

[
2φ�(H; |S ∩ U|, PU )

|S ∩ U|
m

]
+ sup

h,g∈H
|R�(h;PU )− R�(g;PU )|

E

[√
|S ∩ U|

]
m

.

(46)
By Jensen’s inequality, the second term in (46) is at most

sup
h,g∈H

|R�(h;PU )− R�(g;PU )|
√

P (U)
m

≤ D�(H;PU )

√
P (U)
m

= D�(H;P )

√
1

m
.

Decomposing based on |S ∩ U|, the first term in (46) is at most

E

[
2φ�(H; |S ∩ U|, PU )

|S ∩ U|
m

1 [|S ∩ U| ≥ (1/2)P (U)m]

]
+ 2�̄P (U)P (|S ∩ U| < (1/2)P (U)m) . (47)

Since |S ∩ U| ≥ (1/2)P (U)m ⇒ |S ∩ U| ≥ �(1/2)P (U)m�, and φ�(H; q, PU ) is
nonincreasing in q, the first term in (47) is at most

2φ�(H; �(1/2)P (U)m�, PU )E

[
|S ∩ U|

m

]
= 2φ�(H; �(1/2)P (U)m�, PU )P (U),

while a Chernoff bound implies the second term in (47) is at most

2�̄P (U) exp {−P (U)m/8} ≤ 16�̄

m
.

Plugging back into (46), we have

φ�(H;m,P ) ≤ 4φ�(H; �(1/2)P (U)m�, PU )P (U) + 32�̄

m
+ 2D�(H;P )

√
1

m
. (48)
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Next, note that, for any σ ≥ D�(H;P ), σ√
P (U)

≥ D�(H;PU ). Also, if U = U ′×Y
for some U ′ ⊇ DISF(H), then f�

PU
= f�

P , so that if f�
P ∈ H, (15) implies

φ�(H; �(1/2)P (U)m�, PU ) ≤ φ̊�

(
σ√
P (U)

,H; �(1/2)P (U)m�, PU

)
. (49)

Combining (48) with (49), we see that φ̊′
� satisfies the condition (15) of Defini-

tion 16.
Furthermore, by the fact that φ̊� satisfies (14) of Definition 16, combined

with the monotonicity imposed by the infimum in the definition of φ̊′
�, it is easy

to check that φ̊′
� also satisfies (14) of Definition 16. In particular, note that any

H′′ ⊆ H′ ⊆ [F ] and U ′′ ⊆ X have DISF(H′′
U ′′) ⊆ DISF(H′), so that the range of

U in the infimum is never smaller for H = H′′
U ′′ relative to that for H = H′.

Proof of Corollary 20. Let φ̊′
� be as in Lemma 19, and define for any m ∈ N,

s ∈ [1,∞), ζ ∈ [0,∞], and H ⊆ [F ],

Ů ′
�(H, ζ;PXY ,m, s)

= K̃

(
φ̊′
�(D�([H](ζ; �)),H;m,PXY ) + D�([H](ζ; �))

√
s

m
+

�̄s

m

)
.

That is, Ů ′
� is the function Ů� that would result from using φ̊′

� in place of φ̊�.
Let U = DISF(H), and suppose P(U) > 0. Then since DISF([H]) = DISF(H)
implies

D�([H](ζ; �)) = D�([H](ζ; �);PU )
√
P(U)

= D�([H](ζ/P(U); �,PU );PU )
√
P(U),

a little algebra reveals that for m ≥ 2P(U)−1,

Ů ′
�(H, ζ;PXY ,m, s) ≤ 33P(U)Ů�(H, ζ/P(U);PU , �(1/2)P(U)m�, s). (50)

In particular, for j ≥ j�, taking H = Fj , we have (from the definition of Fj)
U = DISF(H) = DIS(H) = Uj , so that when P(Uj) > 0, any

m ≥ 2P(Uj)
−1M̊�

(
2−j−1

33P(Uj)
,
22−j

P(Uj)
;Fj ,PUj , ŝ(2m)

)

suffices to make the right side of (50) (with s = ŝ(2m) and ζ = 22−j) at most
2−j−1; in particular, this means taking uj equal to 2m∨uj−1∨2uj−2 for any such

m (with log2(m) ∈ N) suffices to satisfy (22) (with the M̊� in (22) defined with

respect to the φ̊′
� function); monotonicity of ζ �→ M̊�

(
ζ, 22−j

P(Uj)
;Fj ,PUj , ŝ(2m)

)
implies (24) is a sufficient condition for this. In the special case where P(Uj) = 0,

Ů ′
�(Fj , 2

2−j ;PXY ,m, s) = K̃ �̄s
m , so that taking uj ≥ K̃�̄ŝ(uj)2

j+2∨uj−1∨2uj−1

suffices to satisfy (22) (again, with the M̊� in (22) defined in terms of φ̊′
�).

Plugging these values into Theorem 18 completes the proof.
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Appendix B: Proofs of results in Section 5

This appendix includes the remaining details of the proof of Theorem 8, to com-
plete the derivations from Section 7.2, and also presents the remaining essential
details for the proof of Theorem 9.

Proof of Theorem 8. Let j̃ε = �log2(1/Ψ�(ε))�. For j� ≤ j ≤ j̃ε, define sj =

Log

(
48(2+j̃ε−j)

2

δ

)
, and let uj = 2�log2(u

′
j), where

u′
j = c′

(
b2j(2−β) + �̄2j

) (
vc (GF ) Log

(
χ��̄

)
+ sj

)
, (51)

for an appropriate universal constant c′ ∈ [1,∞). A bit of calculus reveals that
for j�+2 ≤ j ≤ j̃ε, u

′
j ≥ u′

j−1 and u′
j ≥ 2u′

j−2, so that uj ≥ uj−1 and uj ≥ 2uj−2

as well; this is also trivially satisfied for j ∈ {j�, j� + 1} if we take uj−2 = 1 in
these cases (as in Theorem 18). Combining this fact with (34), (18), and (19),
we find that, for an appropriate choice of the constant c′, these uj satisfy (22)
when we define ŝ such that, for every j ∈ {j�, . . . , j̃ε}, ∀m ∈ {2uj−1, . . . , uj}
with log2(m) ∈ N,

ŝ(m) = Log

(
12 log2 (4uj/m)

2 (
2 + j̃ε − j

)2
δ

)
.

Additionally, let s = log2(2/δ).
Next, note that, since Ψ�(ε) ≤ Γ�(ε) and uj is nondecreasing in j,

ujε ≤ uj̃ε
≤ 26c′

(
b

Ψ�(ε)2−β
+

�̄

Ψ�(ε)

)(
vc (GF ) Log

(
χ��̄

)
+ Log(1/δ)

)
,

so that, for any c ≥ 26c′, we have u ≥ uiε , as required by Theorem 18.
For Uj as in Theorem 18, note that by Condition 3 and the definition of θ,

P (Uj) = P
(
DIS

(
F
(
E�

(
22−j

)
; 01

)))
≤ P

(
DIS

(
B
(
f�, aE�

(
22−j

)α)))
≤ θmax

{
aE�

(
22−j

)α
, aεα

}
≤ θmax

{
aΨ−1

�

(
22−j

)α
, aεα

}
.

Because Ψ� is strictly increasing on (0, 1), for j ≤ j̃ε, Ψ
−1
�

(
22−j

)
≥ ε, so that

this last expression is equal to θaΨ−1
�

(
22−j

)α
. This implies

jε∑
j=j�

P (Uj)uj ≤
j̃ε∑

j=j�

P (Uj)uj

�
j̃ε∑

j=j�

aθΨ−1
�

(
22−j

)α (
b2j(2−β) + �̄2j

) (
A1 + Log

(
2 + j̃ε − j

))
. (52)
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We can change the order of summation in the above expression by letting i =
j̃ε − j and summing from 0 to N = jε − j�. In particular, since 2j̃ε ≤ 2/Ψ�(ε),
(52) is at most

N∑
i=0

aθΨ−1
�

(
22−j̃ε2i

)α
(
4b2i(β−2)

Ψ�(ε)2−β
+

2�̄2−i

Ψ�(ε)

)
(A1 + Log(i+ 2)) . (53)

Since x �→ Ψ−1
� (x)/x is nonincreasing on (0,∞), we have Ψ−1

�

(
22−j̃ε2i

)
≤

2i+2Ψ−1
�

(
2−j̃ε

)
, and since Ψ−1

� is increasing, this latter expression is at most

2i+2Ψ−1
� (Ψ�(ε)) = 2i+2ε. Thus, (53) is at most

16aθεα
N∑
i=0

(
b2i(α+β−2)

Ψ�(ε)2−β
+

�̄2i(α−1)

Ψ�(ε)

)
(A1 + Log(i+ 2)) . (54)

In general, Log(i+ 2) ≤ Log(N + 2), so that
∑N

i=0 2
i(α+β−2) (A1 + Log(i+ 2))

≤ (A1 + Log(N + 2))(N + 1) and
∑N

i=0 2
i(α−1) (A1 + Log(i+ 2)) ≤ (A1 +

Log(N + 2))(N + 1). When α + β < 2 holds, we also have
∑N

i=0 2
i(α+β−2) ≤∑∞

i=0 2
i(α+β−2) = 1

1−2(α+β−2) and furthermore
∑N

i=0 2
i(α+β−2)Log(i + 2) ≤∑∞

i=0 2
i(α+β−2)Log(i + 2) ≤ 2

1−2(α+β−2)Log
(

1
1−2(α+β−2)

)
. Similarly, if α < 1,∑N

i=0 2
i(α−1) ≤

∑∞
i=0 2

i(α−1) = 1
1−2(α−1) and likewise

∑N
i=0 2

i(α−1)Log(i+ 2) ≤∑∞
i=0 2

i(α−1)Log(i+2) ≤ 2
1−2(α−1)Log

(
1

1−2(α−1)

)
. By combining these observa-

tions (along with a convention that 1
1−2(α−1) = ∞ when α = 1, and 1

1−2(α+β−2) =

∞ when α = β = 1), and noting that 1
1−2(α+β−2) /min

{
1

1−2(α−1) ,
1

1−2(β−1)

}
∈

[1/2, 1], we find that (54) is

� aθεα
(
b(A1 + Log(B1))B1

Ψ�(ε)2−β
+

�̄(A1 + Log(C1))C1

Ψ�(ε)

)
.

Thus, for an appropriately large numerical constant c, any n satisfying (7) has

n ≥ s+ 2e

j̃ε∑
j=j�

P(Uj)uj ,

as required by Theorem 18.
Finally, we need to show the success probability from Theorem 18 is at least

1− δ, for ŝ and s as above. Toward this end, note that

log2(ujε )∑
i=1

6e−ŝ(2i) ≤
j̃ε∑

j=j�

log2(uj)∑
i=log2(uj−1)+1

δ

2 (2 + log2(uj)− i)
2 (

2 + j̃ε − j
)2

=

j̃ε∑
j=j�

log2(uj/uj−1)−1∑
t=0

δ

2(2 + t)2
(
2 + j̃ε − j

)2
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<

j̃ε∑
j=j�

δ

2
(
2 + j̃ε − j

)2 <

∞∑
t=0

δ

2(2 + t)2
< δ/2.

Noting that 2−s = δ/2, we find that indeed

1− 2−s −
log2(ujε )∑

i=1

6e−ŝ(2i) ≥ 1− δ.

Therefore, Theorem 18 implies the stated result.

We note that the values ŝ(m) used in the proof of Theorem 8 have a di-
rect dependence on the parameters b, β, a, α, and χ�. Such a dependence may
be undesirable for many applications, where information about these values is
not available. However, one can easily follow this same proof, taking ŝ(m) =

Log
(

12 log2(2m)2

δ

)
instead, which only leads to an increase by a log log factor:

specifically, replacing the factor of A1 in (6), and the factors (A1+Log(B1)) and
(A1+Log(C1)) in (7), with a factor of (A1+Log(Log(�̄/Ψ�(ε)))). It is not clear
whether it is always possible to achieve the slightly tighter result of Theorem 8
without having direct access to the values b, β, a, α, and χ� in the algorithm.

Proof Sketch of Theorem 9. The proof follows analogously to the proof of The-
orem 8, with the exception that now, for each integer j with j� ≤ j ≤ j̃ε, we
replace the definition of u′

j from (51) with the following definition. Letting

cj = vc(GF )Log
((

�̄2/b
) (

aθ2jΨ−1
� (22−j)α

)β)
,

define
u′
j = c′

(
b2j(2−β)

(
aθΨ−1

� (22−j)α
)1−β

+ �̄2j
)
(cj + sj) ,

where c′ ∈ [1,∞) is an appropriate universal constant, and sj is as in the proof
of Theorem 8. With this substitution in place, the values uj and s, and function
ŝ, are then defined as in the proof of Theorem 8. Since x �→ xΨ−1

� (1/x) is
nondecreasing, a bit of calculus reveals uj ≥ uj−1 and uj ≥ 2uj−2. Combined
with (35), (19), (18), and Lemma 5, this implies we can choose the constant c′ so
that these uj satisfy (24). By an identical argument to that used in Theorem 8,
we have

1− 2−s −
log2(ujε )∑

i=1

6e−ŝ(2i) ≥ 1− δ.

It remains only to show that any values of u and n satisfying (8) and (9),
respectively, necessarily also satisfy the respective conditions for u and n in
Corollary 20.

Toward this end, note that since x �→ xΨ−1
� (1/x) is nondecreasing on (0,∞),

we have that

ujε ≤ uj̃ε
�
(
b (aθεα)

1−β

Ψ�(ε)2−β
+

�̄

Ψ�(ε)

)
A2.
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Thus, for an appropriate choice of c, any u satisfying (8) has u ≥ ujε , as required
by Corollary 20.

Finally, note that for Uj as in Theorem 18, and ij = j̃ε − j,

jε∑
j=j�

P(Uj)uj ≤
jε∑

j=j�

aθΨ−1
� (22−j)αuj

�
j̃ε∑

j=j�

b
(
aθ2jΨ−1

� (22−j)α
)2−β

(A2 + Log (ij + 2))

+

j̃ε∑
j=j�

�̄aθ2jΨ−1
� (22−j)α (A2 + Log (ij + 2)) .

By changing the order of summation, now summing over values of ij from 0 to

N = j̃ε − j� ≤ log2(4�̄/Ψ�(ε)), and noting 2j̃ε ≤ 2/Ψ�(ε), and Ψ−1
� (2−j̃ε22+i) ≤

22+iε for i ≥ 0, this last expression is

�
N∑
i=0

b

(
aθ2i(α−1)εα

Ψ�(ε)

)2−β

(A2 + Log (i+ 2)) (55)

+

N∑
i=0

�̄aθ2i(α−1)εα

Ψ�(ε)
(A2 + Log (i+ 2)) .

Considering these sums separately, we have
∑N

i=0 2
i(α−1)(2−β)(A2 + Log(i +

2)) ≤ (N + 1)(A2 + Log(N + 2)) and
∑N

i=0 2
i(α−1)(A2 + Log(i + 2)) ≤ (N+

1)(A2 +Log(N +2)). When α < 1, we have
∑N

i=0 2
i(α−1)(2−β)(A2 +Log(i+

2))≤
∑∞

i=0 2
i(α−1)(2−β)(A2 + Log(i + 2)) ≤ 2

1−2(α−1)(2−β)Log
(

1
1−2(α−1)(2−β)

)
+

A2

1−2(α−1)(2−β) , and
∑N

i=0 2
i(α−1)(A2 + Log(i + 2)) ≤ 2

1−2(α−1)Log
(

1
1−2(α−1)

)
+

A2

1−2(α−1) . Thus, noting that 1
1−2(α−1)(2−β) /

1
1−2(α−1) ∈ [1/2, 1], we generally have∑N

i=0 2
i(α−1)(2−β)(A2+Log(i+2)) � C1(A2+Log(C1)) and

∑N
i=0 2

i(α−1)(A2+
Log(i + 2)) � C1(A2 + Log(C1)). Plugging this into (55), we find that for
an appropriately large numerical constant c, any n satisfying (9) has n ≥∑jε

j=j�
P(Uj)uj , as required by Corollary 20.

We note that, as in Theorem 8, the values ŝ used to obtain Theorem 9 have a
direct dependence on certain values, which are typically not directly accessible in
practice: in this case, a, α, and θ. However, as was the case for Theorem 8, we can

obtain only slightly worse results by instead taking ŝ(m) = Log
(

12 log2(2m)2

δ

)
,

which again only leads to an increase by a log log factor: replacing the factor
of A2 in (8), and the factor of (A2 + Log(C1)) in (9), with a factor of (A2 +
Log(Log(�̄/Ψ�(ε)))). As before, it is not clear whether the slightly tighter result
of Theorem 9 is always available, without requiring direct dependence on these
quantities.
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B.1. Derivations for Section 5.5

For completeness, we include here derivations of quantities appearing in the
example given in Section 5.5. We begin with the claim that, for any ω ∈ (0, 1/2],
(10) is satisfied in Condition 10 with the values q = 7

ω and ρ = 1
3+ω. Specifically,

for a given ε > 0, let iε =
⌈

3
ε2/3

⌉
, and let Gε be the set of functions g in G∗ with

g(x, y) ∈ {jε/
√
2 : j ∈ {0, . . . , �4

√
2/ε� − 1}} for each x ∈ {xi : 1 ≤ i ≤ iε}

and y ∈ Y , and g(x, y) = 0 for every x ∈ X \ {xi : 1 ≤ i ≤ iε} and y ∈ Y .
For each g ∈ Gε, let g

′ be the function in G∗ with g′(x, y) = g(x, y) + ε/
√
2 for

each x ∈ {xi : 1 ≤ i ≤ iε} and y ∈ Y , and g′(x, y) = 4 for each x ∈ X \ {xi :
1 ≤ i ≤ iε} and y ∈ Y . Note that

⋃
g∈Gε

[g, g′] contains all functions g in G∗

having 0 ≤ g(x, y) ≤ 4 for all x ∈ X and y ∈ Y ; in particular, this implies it

contains GF . Furthermore, for each g ∈ Gε, ‖g − g′‖2PXY
=

∑iε
i=1

ε2

2 P({xi}) +∑∞
i=iε+1 16P({xi}) ≤ ε2

2 + 16·90
π4

∫∞
iε

1
x4 dx = ε2

2 + 16·30
π4

1
i3ε

≤ ε2

2 + 16·30
27π4 ε

2 < ε2, so

that [g, g′] is an ε-bracket under L2(PXY ). Therefore, N[] (ε,GF , L2(PXY )) ≤
|Gε| = �4

√
2/ε�2iε , so that (taking F = �̄ = 4, constant, in Condition 10)

lnN[] (4ε,GF , L2(PXY )) ≤ 2
⌈

3
(4ε)2/3

⌉
ln
(⌈√

2
ε

⌉)
. Since ln(x) ≤ tx1/t for any

x, t ≥ 1, this is at most 7
ω ε

−2( 1
3+ω) when ε ∈ (0, 1), for any value ω ∈ (0, 1/2].

This is trivially also an upper bound on lnN[] (4ε,GF , L2(PXY )) for all ε ≥ 1

(since N[] (4ε,GF , L2(PXY )) = 1 in that case). Thus, (10) is satisfied with q = 7
ω

and ρ = 1
3 + ω, for any choice of ω ∈ (0, 1/2], as claimed.

Next, we present a proof of the claimed Ω(ε−4/3) lower bound on the sample
size required to obtain an ε bound on the minimax expected excess error rate
of passive learning methods in the example scenario. We approach this with the
classic technique of Assouad (see e.g., [46]). Specifically, fix any ε ∈ (0, (1 −
2ν0)/64), and fix a sample size m ∈ N with m ≤ 2−13(1 − 2ν0)

1/3ε−4/3. Let

j0 =
⌊(

72
107π4

)1/4 ( 1−2ν0

ε

)1/3⌋
, j1 =

⌊
1

24/3

(
1−2ν0

ε

)1/3⌋
, and k = j1 − j0 + 1. In

particular, a simple calculation reveals k ≥ 27
250

(
1−2ν0

ε

)1/3
. Now for any binary

vector v = (v1, . . . , vk) ∈ {0, 1}k, define Pv as the probability measure on X ×Y
with marginal P on X (as specified in the construction), η(xi;Pv) = 1 for
i ∈ N\{j0, . . . , j1}, and η(xi;Pv) = ν0+(1−2ν0)vi−j0+1 for i ∈ {j0, . . . , j1}. Then
note that for any v, v′ ∈ {0, 1}k with ‖v − v′‖1 = 1, the total variation distance
‖Pv − Pv′‖ between the corresponding distributions is at most 90

π4j40
(1 − 2ν0).

This further implies ‖Pm
v − Pm

v′ ‖ ≤ m‖Pv − Pv′‖ ≤ 2−13 90
π4j40

(
1−2ν0

ε

)4/3
< 1

2 .

Therefore, Theorem 2.12(ii) of [46] implies that, for any estimator v̂ : (X ×
Y)m → {0, 1}k (possibly randomized), there exists a choice v ∈ {0, 1}k such

that, defining PXY = Pv, we have E [‖v̂(Zm)− v‖1] ≥ k
4 ≥ 27

1000

(
1−2ν0

ε

)1/3
.

In particular, for any passive learning algorithm A :(X × Y)m → F∗, we can

define a vector v̂ based on the returned function f̂ from A by letting v̂i =
(sign(f̂(xi+j0−1)) + 1)/2 for each i ∈ {1, . . . , k}. Then we note that for any

v ∈ {0, 1}k, if PXY = Pv, then er(f̂) − er(f�) ≥ 90
π4j41

(1 − 2ν0)‖v̂ − v‖1. Thus,
there exists a choice of v ∈ {0, 1}k such that, defining PXY = Pv, we have
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that for f̂ = A(Zm), E
[
er(f̂)− er(f�)

]
≥ 90

π4j41
(1 − 2ν0) · 27

1000

(
1−2ν0

ε

)1/3
> ε.

Thus, since these Pv distributions satisfy the description of the construction in
Section 5.5, we see that to guarantee expected excess error rate at most ε for
all PXY fitting the description in the construction, any passive learning method
would require the sample size m for its input labeled data set to be greater than
2−13(1−2ν0)

1/3ε−4/3 = Ω(ε−4/3), as claimed. In particular, this agrees with the
dependence on ε derived for ERM� in Section 5.5 (up to a logarithmic factor).
In contrast, the analysis of Algorithm 1 in Section 5.5 reveals that (by choosing

δ = ε/2), Algorithm 1 can achieve E[er(ĥ) − er(f�)] ≤ ε for all such PXY with
a number of label requests n having only O(ε−7/12Log(1/ε)) dependence on
ε, a significant decrease compared to the Ω(ε−4/3) lower bound we have just
established for all passive learning methods.

B.2. Derivations for Section 5.6

For completeness, we include here a derivation of the parameters a and α
for which the distributions PXY in the example in Section 5.6 satisfy Con-
dition 3. Specifically, as in Section 5.6, let � be the quadratic loss, fix an inte-
ger k ≥ 5, suppose P is uniform on {x ∈ R

k : ‖x‖ = 1}, and suppose PXY

is such that f�(x) = w∗ · x for some w∗ ∈ R
k with ‖w∗‖ = 1. In particu-

lar, for this choice of �, this implies η(x) = (w∗ · x + 1)/2. For any f ∈ F∗,
er(f)− er(f�) = E

[
|1− 2η(X)|

∣∣X ∈ DIS({f, f�})
]
Δ(f, f�), for X ∼ P . There-

fore, among functions f ∈ F∗ with a given value p of Δ(f, f�), the functions with
minimal er(f)− er(f�) are those that minimize E

[
|2η(X)−1|

∣∣X∈DIS({f, f�})
]

subject to P(DIS({f, f�})) = p; since |2η(x)−1| = |w∗ ·x| is increasing in |w∗ ·x|
and t �→ P(x : |w∗ · x| ≤ t) is continuous, any f ∈ F∗ of minimal er(f)− er(f�)
subject to Δ(f, f�) = p has DIS({f, f�}) = {x : |w∗ ·x| ≤ γp} (up to probability
zero differences) for some γp ∈ [0, 1] chosen so that P(x : |w∗ · x| ≤ γp) = p;
in particular, the minimum value of er(f) − er(f�) among such functions f is
E [|w∗ ·X|1[|w∗ ·X| ≤ γp]]. Fix such a function fp with DIS({fp, f�}) ={x :
|w∗ · x| ≤ γp}.

For X ∼ P , one can show that the [0, 1]-valued random variable |w∗ ·X| has
density function g(t) = 2Γ(k/2)√

πΓ((k−1)/2)
(1 − t2)

k−3
2 , where Γ is the usual gamma

function (see [37] for a derivation of the CDF, from which this g can be derived).
Thus,

E [|w∗ ·X|1[|w∗ ·X| ≤ γp]] =

∫ γp

0

2Γ(k/2)√
πΓ((k − 1)/2)

t(1− t2)
k−3
2 dt

=
2Γ(k/2)√

πΓ((k − 1)/2)

1

k − 1

(
1− (1− γ2

p)
k−1
2

)
.

When γp ≤ 1√
k−3

, some basic calculus reveals 1 − (1 − γ2
p)

k−1
2 ≥ γ2

p
k−1
2e . Since

one can also verify that 2Γ(k/2)√
πΓ((k−1)/2)

≥
√

k/3, we have that if p is such that

γp ≤ 1√
k−3

, then er(fp) − er(f�) ≥
√
kγ2

p

2e
√
3
. It also holds that Δ(fp, f

�) = P(x :



4690 S. Hanneke and L. Yang

|w∗ · x| ≤ γp) ≤
√
kγp [see e.g., 22]. Together, we have that if γp ≤ 1√

k−3
, then

Δ(fp, f
�) ≤

√
kγp =

√
2e(3k)1/4

(√
kγ2

p

2e
√
3

)1/2

≤
√
2e(3k)1/4 (er(fp)− er(f�))

1/2
.

Noting that γp is continuous in p, with γ0 = 0 and γ1 = 1, the intermediate

value theorem implies ∃p∗ ∈ [0, 1] with γp∗ = 1√
k−3

. Since
√
2e(3k)1/4

(√
kγ2

p∗
2e

√
3

)1/2
=
√

k
k−3 > 1, we have

√
2e(3k)1/4 (er(fp∗)− er(f�))

1/2
> 1. Now for any p with

γp > 1√
k−3

, we have DIS({fp, f�}) ⊇ DIS({fp∗ , f
�}), which implies er(fp) ≥

er(fp∗). Therefore,
√
2e(3k)1/4 (er(fp)− er(f�))

1/2
> 1 ≥ Δ(fp, f

�). Thus, we

have established that Δ(fp, f
�) ≤

√
2e(3k)1/4 (er(fp)− er(f�))

1/2
for every p ∈

[0, 1]. Since, for every p ∈ [0, 1], fp was chosen to minimize er(fp)−er(f�) subject

to Δ(fp, f
�) = p, we have Δ(f, f�) ≤

√
2e(3k)1/4 (er(f)− er(f�))

1/2
for every

f ∈ F∗: that is, that Condition 3 holds with a =
√
2e(3k)1/4 and α = 1/2.

Appendix C: Remarks on VC major and VC hull classes

In addition to VC Subgraph classes, and scenarios satisfying general entropy
conditions, another widely-studied family of function classes includes VC major
classes. Specifically, we say G is a VC major class with index d if d = vc({{z :
g(z) ≥ t} : g ∈ G, t ∈ R}) < ∞. We can derive results for VC major classes,
analogously to the above, as follows. For brevity, we leave many of the details
as an exercise for the reader. For any VC major class G ⊆ G∗ with index d,
by reasoning similar to that of Giné and Koltchinskii [20], one can show that if
F = �̄1U ≥ F(G) for some measurable U ⊆ X × Y , then for any distribution P
and ε > 0,

lnN (ε‖F‖P ,G, L2(P )) � d

ε
log

(
�̄

ε

)
log

(
1

ε

)
.

This implies that for F a VC major class, and � classification-calibrated and ei-
ther nonincreasing or Lipschitz on[−suph∈F supx∈X |h(x)|,suph∈F supx∈X |h(x)|],
if f� ∈ F and PXY satisfies Condition 3 and Condition 4, then the conditions of
Theorem 18 can be satisfied with the probability bound being at least 1− δ, for

some u = Õ
(

θ1/2εα/2

Ψ�(ε)2−β/2 +Ψ�(ε)
β−2

)
and n = Õ

(
θ3/2ε3α/2

Ψ�(ε)2−β/2 + θεαΨ�(ε)
β−2

)
,

where θ = θ(aεα), and Õ(·) hides logarithmic and constant factors. Under Con-
dition 2, with β as in Lemma 5, the conditions of Corollary 20 can be satisfied
with the probability bound being at least 1 − δ, for some u =

Õ

((
1

Ψ�(ε)

)(
θεα

Ψ�(ε)

)1−β/2
)

and n = Õ

((
θεα

Ψ�(ε)

)2−β/2
)
. When θ is small, these

values of n (and indeed u) compare favorably to the value ofm=Õ
(
Ψ�(ε)

β/2−2
)
,

derived analogously from Theorem 17, sufficient for ERM�(F ,Zm) to achieve
the same [see 20].

For example, for X = [0, 1] and F the class of all nondecreasing functions
mapping X to [−1, 1], F is a VC major class with index 1, and θ(0) ≤ 2 for all
distributions P . Thus, for instance, if η is nondecreasing and � is the quadratic
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loss, then f� ∈ F , and Algorithm 1 achieves excess error rate ε with high
probability for some u = Õ

(
ε2α−3

)
and n = Õ

(
ε3(α−1)

)
.

VC major classes are contained in special types of VC hull classes, which are
more generally defined as follows. Let C be a VC Subgraph class of functions on
X , with bounded envelope, and for B ∈ (0,∞), let

F = Bconv(C) =

⎧⎨
⎩x �→ B

∑
j

λjhj(x) :
∑
j

|λj | ≤ 1, hj ∈ C

⎫⎬
⎭

denote the scaled symmetric convex hull of C; then F is called a VC hull class.
For instance, these spaces are often used in conjunction with the popular Ad-
aBoost learning algorithm. One can derive results for VC hull classes follow-
ing analogously to the above, using established bounds on the uniform covering
numbers of VC hull classes [see 47, Corollary 2.6.12], and noting that for any VC
hull class F with envelope function F, and any U ⊆ X , FU is also a VC hull class,
with envelope function F1U . Specifically, one can use these observations to de-
rive the following results. For a VC hull class F = Bconv(C), if � is classification-
calibrated and Lipschitz on [− suph∈F supx∈X |h(x)|, suph∈F supx∈X |h(x)|],
f� ∈ F , and PXY satisfies Condition 3 and Condition 4, then letting d =
2vc(C), the conditions of Theorem 18 can be satisfied with the probability

bound having value at least 1 − δ, for some u = Õ
(
(θεα)

d
d+2 Ψ�(ε)

2β
d+2−2

)
and

n = Õ
(
(θεα)

2d+2
d+2 Ψ�(ε)

2β
d+2−2

)
. Under Condition 2, with β as in Lemma 5, the

conditions of Corollary 20 can be satisfied with the probability being at least

1 − δ, for some u = Õ

((
1

Ψ�(ε)

)(
θεα

Ψ�(ε)

)1− 2β
d+2

)
and n = Õ

((
θεα

Ψ�(ε)

)2− 2β
d+2

)
.

Compare these to the value m = Õ
(
Ψ�(ε)

2β
d+2−2

)
, derived analogously from

Theorem 17, sufficient for ERM�(F ,Zm) to achieve the same general guarantee
[see also 6, 10]. However, it is not clear whether these results for active learning
with VC hull classes have any practical implications, since we do not know of any
scenarios where this sufficient value of m reflects a tight analysis of ERM�(F , ·)
while simultaneously being significantly larger than either of the above sufficient
n values.

Appendix D: Computationally efficient updates

As mentioned in Section 6.3, though convenient in the sense that it offers a
completely abstract and unified approach, the choice of T̂�(V ;Q,m) given by
(21) may often make Algorithm 1 computationally inefficient. However, for each
of the applications studied in this work, we can relax this T̂� function to a
computationally-accessible value, which will then allow the algorithm to be ef-
ficient under convexity conditions on the loss and class of functions.

In particular, in the application to VC Subgraph classes, Theorem 8 remains
valid if we instead define T̂� as follows. If we let V

(m) and Qm denote the sets V
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and Q upon reaching Step 5 for any given value of m with log2(m) ∈ N realized
in Algorithm 1, then consider defining T̂� in Step 6 inductively by letting

γ̂m/2 =
8(|Qm/2| ∨ 1)

m

(
T̂�(V

(m/2);Qm/2,m/2) ∧ �̄
)

(or γ̂m/2 = �̄ if m = 2), and taking (with a slight abuse of notation to allow T̂�

to depend on sets V (m′) and Qm′ with m′ < m)

T̂�(V
(m);Qm,m) =

c0
m/2

|Qm| ∨ 1

⎛
⎜⎜⎝
√√√√γ̂β

m/2

b

m

(
vc(GF )Log

(
�̄(|Qm|+ ŝ(m))

mbγ̂β
m/2

)
+ ŝ(m)

)

+
�̄

m

(
vc(GF )Log

(
�̄(|Qm|+ ŝ(m))

mbγ̂β
m/2

)
+ ŝ(m)

)⎞
⎟⎟⎠, (56)

for an appropriate universal constant c0. This value is essentially derived by

bounding m/2
|Q|∨1 Ũ�(VDIS(V );PXY ,m/2, ŝ(m)) (which is a bound on (21) by

Lemma 15), based on (30) and Condition 4 (and a Chernoff bound to argue
|Qm| ≈ P(DIS(V ))m/2); since the sample sizes derived for u and n in The-
orem 8 are based on these relaxations anyway, they remain sufficient (with
slight changes to the constant factors) for these relaxed T̂� values. We include a
more detailed proof that these values of T̂� suffice to achieve Theorem 8 in Ap-
pendix E.1. Note that we have introduced a dependence on b and β in (56). These
values would indeed be available for some applications, such as when they are de-
rived from Lemma 5 when Condition 2 is satisfied; however, in other cases, there
may be more-favorable values of b and β than given by Lemma 5, dependent
on the specific PXY distribution, and in these cases direct observation of these
values might not be available. Thus, there remains an interesting open question
of whether there exists a function T̂�(V ;Q,m), which is efficiently computable
(under convexity assumptions) and yet preserves the validity of Theorem 8.

In the special case where Condition 2 is satisfied, it is also possible to define
a value for T̂� that is computationally accessible, and preserves the validity of
Theorem 9. Specifically, consider instead defining T̂� in Step 6 as

T̂�(V ;Q,m)

= �̄ ∧ c0 max

⎧⎪⎪⎨
⎪⎪⎩
(

b
|Q|∨1

(
vc(GF )Log

(
�̄2

b

(
|Q|

bvc(GF )

) β
2−β

)
+ ŝ(m)

)) 1
2−β

�̄
|Q|∨1

(
vc(GF )Log

(
�̄2

b

(
|Q|

�̄vc(GF )

)β
)
+ ŝ(m)

) ,

(57)
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for b and β as in Lemma 5, and for an appropriate universal constant c0. This
value is essentially derived (following 34) by using Lemma 15 under the condi-
tional distribution PDIS(V ), in conjunction with a localization technique similar
to that employed in the derivation of Theorem 17. Appendix E.2 includes a
proof that the conclusions of Theorem 9 remain valid for this specification of
T̂� in place of (21). That these conclusions remain valid for this bound on ex-
cess conditional risks should not be too surprising, since Theorem 9 is itself
proven by considering concentration under the conditional distributions PUj via
Corollary 20. Note that, unlike the analogous result for Theorem 8 based on
(56) above, in this case all of the quantities in T̂�(V ;Q,m) are directly observ-
able (in particular, b and β), aside from any possible dependence arising in the
specification of ŝ.

It is also possible to define computationally tractable values of T̂�(V ;Q,m)
in scenarios satisfying the entropy conditions (Condition 10), while preserving
the validity of Theorem 12. This substitution can be derived analogously to (56)
above, this time leading to the definition

T̂�

(
V (m);Qm,m

)
=

c0
m/2

|Qm| ∨ 1

⎛
⎜⎜⎝max

⎧⎪⎪⎨
⎪⎪⎩

√
q‖F‖ρPXY

(
bγ̂β

m/2

) 1−ρ
2

(1− ρ)m1/2
,
�̄

1−ρ
1+ρ q

1
1+ρ ‖F‖

2ρ
1+ρ

PXY

(1− ρ)
2

1+ρm
1

1+ρ

⎫⎪⎪⎬
⎪⎪⎭

+

√
bγ̂β

m/2

ŝ(m)

m
+

�̄ŝ(m)

m

⎞
⎟⎟⎠, (58)

where γ̂m/2 is defined (inductively) as above, and c0 is an appropriately large
universal constant. By essentially the same argument used for (56) (see Ap-
pendix E.1), one can show that using (58) in place of (21) preserves the validity
of Theorem 12; for brevity, the details are omitted.

In the case that Condition 2 and (11) are satisfied, it is possible to define a
computationally accessible quantity T̂�(V ;Q,m), while preserving the validity
of Theorem 13. Specifically, following the same reasoning used to arrive at (57),
except using (36) instead of (30), we find that while replacing (21) with the
definition

T̂� (V ;Q,m) =

�̄ ∧ c0

⎛
⎝max

{(
q�̄2ρb1−ρ

(1− ρ)2(|Q| ∨ 1)

) 1
2−β(1−ρ)

,
�̄q

1
1+ρ

(1− ρ)
2

1+ρ (|Q| ∨ 1)
1

1+ρ

}

+

(
bŝ(m)

|Q| ∨ 1

) 1
2−β

+
�̄ŝ(m)

|Q| ∨ 1

⎞
⎠, (59)
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for b and β as in Lemma 5 and for an appropriate universal constant c0, the
conclusions of Theorem 13 remain valid. The proof follows similarly to the proof
(in Appendix E.2) that (57) preserves the validity of Theorem 9, and is omitted
for brevity.

Finally, in the case that Condition 2 and (10) are satisfied, we can again de-
rive an efficiently computable value of T̂�(V ;Q,m), which in this case preserves
the validity of Theorem 14. Specifically, noting that the reasoning preceding
Theorem 14 also implies lnN[]

(
ε�̄,GV , L2(PDIS(V ))

)
≤ qP(DIS(V ))−ρε−2ρ, and

following the reasoning leading to (59) while replacing q with qP(DIS(V ))−ρ,
combined with a Chernoff bound to argue P(DIS(V )) ≈ 2|Q|/m in the algo-
rithm, we find that Theorem 14 remains valid after replacing (21) with the
definition

T̂�(V ;Q,m) =

�̄ ∧ c0

⎛
⎝max

{(
qmρ�̄2ρb1−ρ

(1− ρ)2(|Q| ∨ 1)1+ρ

) 1
2−β(1−ρ)

,
�̄q

1
1+ρm

ρ
1+ρ

(1− ρ)
2

1+ρ (|Q| ∨ 1)

}

+

(
bŝ(m)

|Q| ∨ 1

) 1
2−β

+
�̄ŝ(m)

|Q| ∨ 1

⎞
⎠,

for an appropriate universal constant c0, and where b and β are as in Lemma 5.
The proof is essentially similar to that given for (57) in Appendix E.2, and is
omitted for brevity.

Appendix E: Proofs for efficiently computable updates

Here we include more detailed proofs of the arguments leading to computation-
ally efficient variants of Algorithm 1, for which the specific results proven in
this work for the given applications remain valid. Specifically, we focus on the
application to VC Subgraph classes here; the applications to scenarios satisfying
the entropy conditions follow analogously. Throughout this section, we adopt
the notational conventions introduced in the proof of Theorem 18 (e.g., V (m),
Ṽ (m), Qm, Lm, S), except in each instance here these are defined in the context
of applying Algorithm 1 with the respective stated variant of T̂�.

E.1. Proof of Theorem 8 under (56)

We begin by showing that if we specify T̂�(V ;Q,m) as in (56), the conclusions of
Theorem 8 remain valid. Fix any ŝ function (to be specified below), and fix any
value of ε ∈ (0, 1). First note that, for any m with log2(m) ∈ N, by a Chernoff
bound and the law of total probability, on an event E′′

m of probability at least
1− 21−ŝ(m), if m ∈ S, then

(1/2)mP(Dm)−
√

ŝ(m)mP(Dm) ≤ |Qm| ≤ ŝ(m) + emP(Dm). (60)
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Also recall that, for any m with log2(m) ∈ N, by Lemma 15 and the law of total
probability, on an event Em of probability at least 1 − 6e−ŝ(m), if m ∈ S and
f� ∈ V (m), then

(|Qm| ∨ 1)

(
R�(f

�;Qm)− inf
g∈V (m)

R�(g;Qm)

)

=
m

2

(
R�(f

�;Lm)− inf
gDm∈V

(m)
Dm

R�(gDm ;Lm)

)

<
m

2
Ũ�

(
V

(m)
Dm

;PXY ,m/2, ŝ(m)
)

(61)

and ∀h ∈ Ṽ (m),

m

2
(R�(hDm)− R�(f

�))

<
m

2

(
R�(hDm ;Lm)− R�(f

�;Lm) + Ũ�

(
V

(m)
Dm

;PXY ,m/2, ŝ(m)
)
∧ �̄

)
= |Qm| (R�(h;Qm)− R�(f

�;Qm)) +
m

2

(
Ũ�

(
V

(m)
Dm

;PXY ,m/2, ŝ(m)
)
∧ �̄

)
≤ (|Qm| ∨ 1)T̂�

(
V (m);Qm,m

)
+

m

2

(
Ũ�

(
V

(m)
Dm

;PXY ,m/2, ŝ(m)
)
∧ �̄

)
. (62)

Fix a value iε ∈ N (an appropriate value for which will be determined below),
and let χ� = χ�(Ψ�(ε)). For m ∈ N with log2(m) ∈ N, let

T̃�(m) = c2

(
b

m

(
vc(GF )Log(χ��̄) + ŝ(m)

)) 1
2−β

+ c2
�̄

m

(
vc(GF )Log(χ��̄) + ŝ(m)

)
,

for an appropriate universal constant c2 ∈ [1,∞) (to be determined below);
for completeness, also define T̃�(1) = �̄. We will now prove by induction that,
for an appropriate value of the constant c0 in (56), for any m′ with log2(m

′)∈
{1, . . . , iε}, on the event

⋂log2(m
′)−1

i=1 E2i ∩ E′′
2i+1 , if m′ ∈ S, then f� ∈ V (m′),

V
(m′)
Dm′ ⊆ [F ](γ̂m′/2; �) ⊆ [F ](2T̃�(m

′/2) ∨Ψ�(ε); �),

V (m′) ⊆ F(E�(γ̂m′/2); 01) ⊆ F(E�(2T̃�(m
′/2) ∨Ψ�(ε)); 01),

Ũ�

(
V

(m′)
Dm′ ;PXY ,m

′/2, ŝ(m′)
)
∧ �̄ ≤ |Qm′ | ∨ 1

m′/2

(
T̂�

(
V (m′);Qm′ ,m′

)
∧ �̄

)
,

and if γ̂m′/2 ≥ Ψ�(ε),

|Qm′ | ∨ 1

m′/2

(
T̂�

(
V (m′);Qm′ ,m′

)
∧ �̄

)
≤ T̃�(m

′).

As a base case for this inductive argument, we note that for m′ = 2, we have (by
definition) γ̂m′/2 = �̄, and furthermore (if c0 ∧ c2 ≥ 2) T̂�(V

(2);Q2, 2) ≥ �̄ and
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T̃�(1) ≥ �̄, so that the claimed inclusions and inequalities trivially hold. Now,
for the inductive step, take as an inductive hypothesis that the claim is satisfied
for m′ = m for some m ∈ N with log2(m) ∈ {1, . . . , iε − 1}. Suppose the event⋂log2(m)

i=1 E2i ∩ E′′
2i+1 occurs, and that 2m ∈ S. By the inductive hypothesis,

combined with (61) and the fact that (|Qm| ∨ 1)R�(f
�;Qm) ≤ (m/2)�̄, we have

(|Qm| ∨ 1)

(
R�(f

�;Qm)− inf
g∈V (m)

R�(g;Qm)

)

≤ m

2

(
Ũ�

(
V

(m)
Dm

;PXY ,m/2, ŝ(m)
)
∧ �̄

)
≤ (|Qm| ∨ 1)T̂�

(
V (m);Qm,m

)
.

Therefore, f� ∈ Ṽ (m) as well, which implies f� ∈ V (2m) = Ṽ (m). Furthermore,
by (62), the inductive hypothesis, and the definition of Ṽ (m) from Step 6, ∀h ∈
V (2m) = Ṽ (m),

R�(hDm)− R�(f
�) < 2

|Qm| ∨ 1

m/2

(
T̂�

(
V (m);Qm,m

)
∧ �̄

)
,

and if γ̂m/2 ≥ Ψ�(ε), then this is at most 2T̃�(m).

Since γ̂m = 2 |Qm|∨1
m/2

(
T̂�

(
V (m);Qm,m

)
∧ �̄

)
, and R�(hD2m) ≤ R�(hDm) for

every h ∈ V (2m), we have V
(2m)
D2m

⊆ [F ](γ̂m; �) ⊆ [F ](2T̃�(m) ∨ Ψ�(ε); �). By

definition of E�(·), we also have er(hD2m)−er(f�) ≤ E�(γ̂m) for every h ∈ V (2m);
since f� ∈ V (2m), we have sign(hD2m) = sign(h), so that er(h)−er(f�) ≤ E�(γ̂m)
as well: that is, V (2m) ⊆ F(E�(γ̂m); 01) ⊆ F(E�(2T̃�(m) ∨Ψ�(ε)); 01). Combining
these facts with (15), (30), Condition 4, monotonicity of vc(GHU ) in both U and
H, and the fact that ‖F(G

V
(2m)
D2m

,PXY
)‖2PXY

≤ �̄2P(D2m), we have that

Ũ�

(
V

(2m)
D2m

;PXY ,m, ŝ(2m)
)
≤ c1

√√√√
bγ̂β

m

vc(GF )Log
(

�̄P(D2m)

bγ̂β
m

)
+ ŝ(2m)

m

+ c1�̄
vc(GF )Log

(
�̄P(D2m)

bγ̂β
m

)
+ ŝ(2m)

m
, (63)

for some universal constant c1 ∈ [1,∞). By (60), we have P(D2m) ≤ 3
m (|Q2m|+

ŝ(2m)), so that the right hand side of (63) is at most

c1

√√√√
bγ̂β

m

vc(GF )Log
(

�̄6(|Q2m|+ŝ(2m))

2mbγ̂β
m

)
+ ŝ(2m)

m

+ c1�̄
vc(GF )Log

(
�̄6(|Q2m|+ŝ(2m))

2mbγ̂β
m

)
+ ŝ(2m)

m

≤ 8c1

√√√√
bγ̂β

m

vc(GF )Log
(

�̄(|Q2m|+ŝ(2m))

2mbγ̂β
m

)
+ ŝ(2m)

2m
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+ 8c1�̄
vc(GF )Log

(
�̄(|Q2m|+ŝ(2m))

2mbγ̂β
m

)
+ ŝ(2m)

2m
.

Thus, if we take c0 = 8c1 in the definition of T̂� in (56), then we have

Ũ�

(
V

(2m)
D2m

;PXY ,m, ŝ(2m)
)
∧ �̄ ≤ |Q2m| ∨ 1

m

(
T̂�

(
V (2m);Q2m, 2m

)
∧ �̄

)
.

Furthermore, (60) implies |Q2m| ≤ ŝ(2m)+2emP(D2m). In particular, if ŝ(2m)
> 2emP(D2m), then

|Q2m| ∨ 1

m

(
T̂�

(
V (2m);Q2m, 2m

)
∧ �̄

)
≤ ŝ(2m) + 2emP(D2m)

m
�̄ ≤ 2ŝ(2m)�̄

m
,

and taking any c2 ≥ 4 guarantees this last quantity is at most T̃�(2m). On the
other hand, if ŝ(2m) ≤ 2emP(D2m), then |Q2m| ≤ 4emP(D2m), and we have
already established that V (2m) ⊆ F(E�(γ̂m); 01), so that

|Q2m| ∨ 1

m

(
T̂�

(
V (2m);Q2m, 2m

)
∧ �̄

)

≤ 8c1

√√√√
bγ̂β

m

vc(GF )Log
(

�̄3eP(DIS(F(E�(γ̂m);01)))

bγ̂β
m

)
+ ŝ(2m)

2m

+ 8c1�̄
vc(GF )Log

(
�̄3eP(DIS(F(E�(γ̂m);01)))

bγ̂β
m

)
+ ŝ(2m)

2m
. (64)

If γ̂m ≥ Ψ�(ε), then this is at most

8c1

⎛
⎝
√
bγ̂β

m
vc(GF )Log

(
3eχ��̄

)
+ ŝ(2m)

2m
+ �̄

vc(GF )Log
(
3eχ��̄

)
+ ŝ(2m)

2m

⎞
⎠

≤ 48c1

⎛
⎝
√
bγ̂β

m
vc(GF )Log

(
χ��̄

)
+ ŝ(2m)

2m
+ �̄

vc(GF )Log
(
χ��̄

)
+ ŝ(2m)

2m

⎞
⎠ .

For brevity, let K = vc(GF )Log(χ� �̄)+ŝ(2m)
2m . As argued above, γ̂m ≤ 2T̃�(m), so

that the right hand side of the above inequality is at most

48
√
2c1

(√
bT̃�(m)βK + �̄K

)
.

Then since ŝ(m) ≤ 2ŝ(2m), the above expression is at most

48 · 4c1
√
c2

(√
b
(
(bK)

1
2−β ∨ �̄K

)β

K + �̄K

)
. (65)
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If �̄K ≤ (bK)
1

2−β , then (65) is equal

48 · 4c1
√
c2

(
(bK)

1
2−β + �̄K

)
.

On the other hand, if �̄K > (bK)
1

2−β , then (65) is equal

48 · 4c1
√
c2

(√
bK(�̄K)β + �̄K

)

< 48 · 4c1
√
c2

(√
(�̄K)2−β(�̄K)β + �̄K

)
= 48 · 8c1

√
c2�̄K.

In all of the above cases, taking c2 = 9 · 214c21 in the definition of T̃� yields

|Q2m| ∨ 1

m

(
T̂�

(
V (2m);Q2m, 2m

)
∧ �̄

)
≤ T̃�(2m).

This completes the inductive step, so that we have proven that the claim holds
for all m′ with log2(m

′) ∈ {1, . . . , iε}.
Let j� = −�log2(�̄)�, j̃ε = �log2(1/Ψ�(ε))�, and for each j ∈ {j�, . . . , j̃ε}, let

sj = log2

(
144(2+j̃ε−j)2

δ

)
, define

m′
j = 32c22

(
b2j(2−β) + �̄2j

) (
vc(GF )Log(χ��̄) + sj

)
,

and let mj = 2�log2(m
′
j). Also define mj�−1 = 1. Using this notation, we can now

define the relevant values of the ŝ function as follows. For each j ∈ {j�, . . . , j̃ε},
and each m ∈ {mj−1 + 1, . . . ,mj} with log2(m) ∈ N, define

ŝ(m) = log2

(
16 log2(4mj/m)2(2 + j̃ε − j)2

δ

)
.

In particular, taking iε = log2(mj̃ε
), we have that 2T̃�(2

iε−1) ≤ Ψ�(ε), so

that on the event
⋂iε−1

i=1 E2i ∩ E′′
2i+1 , if we have 2iε ∈ S, then ĥ ∈ V (2iε ) ⊆

F(E�(2T̃�(2
iε−1) ∨ Ψ�(ε)); 01) = F(E�(Ψ�(ε)); 01) ⊆ F(Ψ−1

� (Ψ�(ε)); 01) = F(ε; 01),

so that er(ĥ)− er(f�) ≤ ε.

Furthermore, we established above that, on the event
⋂iε−1

i=1 E2i ∩ E′′
2i+1 ,

for every j ∈ {j�, . . . , j̃ε} with mj ∈ S, and every m ∈ {mj−1 + 1, . . . ,mj}
with log2(m) ∈ N, V (m) ⊆ F(E�(2T̃�(m/2) ∨ Ψ�(ε)); 01) ⊆ F(E�(2T̃�(mj−1) ∨
Ψ�(ε)); 01). Noting that 2T̃�(mj−1) ≤ 21−j , we have

∑
m∈S:m≤mj̃ε

|Qm| ≤
j̃ε∑

j=j�

mj∑
m=mj−1+1

1DIS(F(E�(21−j);01))(Xm).

A Chernoff bound implies that, on an event E′ of probability at least 1 − δ/2,
the right hand side of the above inequality is at most

log2(2/δ) + 2e

j̃ε∑
j=j�

(mj −mj−1)P(DIS(F(E�(2
1−j); 01)))
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≤ log2(2/δ) + 2e

j̃ε∑
j=j�

mjP(DIS(F(Ψ−1
� (21−j); 01))).

By essentially the same reasoning used in the proof of Theorem 8, the right
hand side of this inequality is

� aθεα
(
b(A1 + Log(B1))B1

Ψ�(ε)2−β
+

�̄(A1 + Log(C1))C1

Ψ�(ε)

)
.

Since

mj̃ε
�
(

b

Ψ�(ε)2−β
+

�̄

Ψ�(ε)

)
A1,

the conditions on u and n stated in Theorem 8 (with an appropriate constant

c) suffice to guarantee er(ĥ) − er(f�) ≤ ε on the event E′ ∩
⋂iε−1

i=1 E2i ∩ E′′
2i+1 .

Finally, the proof is completed by noting that a union bound implies the event
E′ ∩

⋂iε−1
i=1 E2i ∩ E′′

2i+1 has probability at least

1− δ

2
−

iε−1∑
i=1

21−ŝ(2i+1) + 6e−ŝ(2i)

≥ 1− δ

2
−

j̃ε∑
j=j�

log2(mj)∑
i=log2(mj−1)+1

δ

2(2 + log2(mj)− i)2(2 + j̃ε − j)2

≥ 1− δ

2
−

j̃ε∑
j=j�

∞∑
k=0

δ

2(2 + k)2(2 + j̃ε − j)2

≥ 1− δ

2
−

j̃ε∑
j=j�

δ

2(2 + j̃ε − j)2
≥ 1− δ

2
−

∞∑
t=0

δ

2(2 + t)2
≥ 1− δ.

Note that, as in Theorem 8, the function ŝ in this proof has a direct depen-
dence on a, α, and χ�, in addition to b and β. As before, with an alternative
definition of ŝ, similar to that mentioned in the discussion following the proof
of Theorem 8, it is possible to remove this dependence, at the expense of the
same logarithmic factors mentioned above.

E.2. Proof of Theorem 9 under (57)

Next, consider the conditions of Theorem 9, and suppose the definition of T̂�

from (57) is used in Step 6. For simplicity, we let V (m) and Qm be defined
(though arbitrarily) even when m /∈ S. Fix a function ŝ (to be specified below)
and any value of ε ∈ (0, 1). We will prove by induction that there exist events
Êm′ , for values m′ with log2(m

′) ∈ N, each with respective probability at least

1 − 12e−ŝ(m′) such that, for every m with log2(m) ∈ N, on
⋂log2(m)

i=1 Ê2i , if

m ∈ S, we have that f� ∈ Ṽ (m) and Ṽ (m) ⊆ V (m)
(
4T̂m; �,PDm

)
, where T̂m =
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T̂�

(
V (m);Qm,m

)
. This claim is trivially satisfied for m = 2, since T̂2 = �̄, so

this will serve as our base case in the inductive proof. Now fix any m > 2 with
log2(m) ∈ N, and take as an inductive hypothesis that there exist events Êm′

for each m′ < m with log2(m
′) ∈ N, such that, on

⋂log2(m)−1
i=1 Ê2i , if m/2 ∈ S,

then f� ∈ Ṽ (m/2). Note that, since V (m) = Ṽ (m/2) (if m ∈ S), we have that

f� ∈ V (m) on
⋂log2(m)−1

i=1 Ê2i by the inductive hypothesis.
For any T > 0, let s (T, γ) = Log

(
γ
T

)
+ ŝ(m). Note that (16), (18), (19),

Lemma 5, (31), and monotonicity of H �→ vc(GH) imply that, if f� ∈ V (m) ⊆ F ,
then

sup
γ≥T

M̃�

(
γ/8, γ;V (m),PDm , s(T, γ)

)

≤ c̄

(
b

T 2−β
+

�̄

T

)(
vc(GF )Log

(
�̄2

bT β

)
+ ŝ(m)

)
, (66)

for an appropriate finite universal constant c̄ ≥ 1. If m ∈ S and T̂m = �̄, then
we trivially have R�(f

�;Qm) − infg∈V (m) R�(g;Qm) ≤ T̂m, so that f� ∈ Ṽ (m),

and furthermore Ṽ (m) = V (m) = V (m)
(
4T̂m; �,PDm

)
. Otherwise, if m ∈ S and

T̂m < �̄, we have that

|Qm| ≥ max

⎧⎪⎪⎨
⎪⎪⎩
(

c0
T̂m

)2−β

b

(
vc(GF )Log

(
�̄2

b

(
|Qm|

bvc(GF )

) β
2−β

)
+ ŝ(m)

)
c0 �̄

T̂m

(
vc(GF )Log

(
�̄2

b

(
|Qm|

�̄vc(GF )

)β
)
+ ŝ(m)

) ,

which implies

|Qm| ≥ max

{(
c0

T̂m

)2−β

b,
c0�̄

T̂m

}(
vc(GF )Log

(
�̄2

bT̂ β
m

)
+ ŝ(m)

)

≥ c0
2

(
b

T̂ 2−β
m

+
�̄

T̂m

)(
vc(GF )Log

(
�̄2

bT̂ β
m

)
+ ŝ(m)

)
.

Combined with (66), this implies that if we take c0 ≥ 2c̄, and if f�∈V (m)⊆F ,
then

|Qm| ≥ sup
γ≥T̂m

M̃�

(
γ/8, γ;V (m),PDm , s(T̂m, γ)

)
. (67)

We now follow the derivation of localized risk bounds by Koltchinskii [34]. Specif-
ically, applying Lemma 15 under the conditional distribution given V (m) and
|Qm|, combined with the law of total probability, there is an event E′′

m of con-

ditional probability at least 1 − 6
∑

j∈ZT̂m

e−s(T̂m,2j) (given V (m) and |Qm|),
such that on E′′

m, if m ∈ S, f� ∈ V (m), and T̂m < �̄ (so that (67) holds), then
∀j ∈ ZT̂m

, the following claims hold for every h ∈ V (m)
(
2j ; �,PDm

)
.

R�(h;PDm)− R�(f
�;PDm) ≤ R�(h;Qm)− R�(f

�;Qm) + 2j−3,

(68)
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R�(h;Qm)− inf
g∈V (m)(2j ;�,PDm )

R�(g;Qm) ≤ R�(h;PDm)− R�(f
�;PDm) + 2j−3.

(69)

Since
∑

j∈ZT̂m

e−s(T̂m,2j) = e−ŝ(m)
∑

j∈ZT̂m

2−j T̂m ≤ 2e−ŝ(m), the law of total

probability implies that there exists an event Êm of probability at least 1 −
12e−ŝ(m), on which this implication holds. In particular, for any h0 ∈ V (m) with
R�(h0;Qm)−R�(f

�;Qm) ≤ 0, (68) implies that for any j ∈ ZT̂m
, if R�(h0;PDm)

−R�(f
�;PDm) ≤ 2j , then R�(h0;PDm) − R�(f

�;PDm) ≤ 2j−3; this inductively
implies that R�(h0;PDm)−R�(f

�;PDm) ≤ T̂m, so that (69) can more simply be
stated as: ∀h ∈ V (m)

(
2j ; �,PDm

)
,

R�(h;Qm)− inf
g∈V (m)

R�(g;Qm) ≤ R�(h;PDm)− R�(f
�;PDm) + 2j−3.

Furthermore, this implies

R�(f
�;Qm)− inf

g∈V (m)
R�(g;Qm) ≤ T̂m, (70)

so that f� ∈ Ṽ (m) in this case as well. Also, (68) and the fact that f� ∈ V (m)

further imply that for any h ∈ V (m) with R�(h;Qm) − infg∈V (m) R�(g;Qm) ≤
T̂m, for any j ∈ Z4T̂m

, if R�(h;PDm) − R�(f
�;PDm) ≤ 2j , then R�(h;PDm) −

R�(f
�;PDm) ≤ T̂m + 2j−3 ≤ 2j−2 + 2j−3 ≤ 2j−1; this inductively implies that

any such h has R�(h;PDm)−R�(f
�;PDm) ≤ 4T̂m. In particular, by definition of

Ṽ (m), this implies Ṽ (m) ⊆ V (m)
(
4T̂m; �,PDm

)
. Since the inductive hypothesis

implies f� ∈ V (m) on
⋂log2(m)−1

i=1 Ê2i if m ∈ S, we have that on
⋂log2(m)

i=1 Ê2i ,

if m ∈ S, then f� ∈ Ṽ (m) and Ṽ (m) ⊆ V (m)
(
4T̂m; �,PDm

)
, which extends the

inductive hypothesis. By the principle of induction, we have established this
claim for every m with log2(m) ∈ N.

Let ĵε =
⌈
log2(�̄/Ψ�(ε))

⌉
. For each j ∈ N ∪ {0}, let εj = �̄2−j , pj =

P
(
DIS

(
F
(
Ψ−1

� (εj) ; 01

)))
, and sj = log2

(
192(2+ĵε−j)2

δ

)
. Let m0 = 1, and for

each j ∈ N, define

m′
j = c′

(
bp1−β

j−1

ε2−β
j

+
�̄

εj

)(
vc(GF )Log

(
�̄2(c′)βpβj−1

bεβj

)
+ sj

)
,

for an appropriate universal constant c′ ∈ [1,∞) (specified below), and let mj =

max
{
2mj−1, 2

1+�log2(m
′
j)
}
. Also, for every j ∈ N and m ∈ {2mj−1, . . . ,mj},

define

ŝ(m) = log2

(
48 log2(4mj/m)2(2 + ĵε − j)2

δ

)
.

In particular, this definition implies ŝ(mj) = sj .
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We next prove by induction that there are events Ê′
j , for j ∈ N ∪ {0}, each

with respective probability at least 1 − 2−sj , such that for every j ∈ N ∪ {0},
on

⋂log2(mj)
i=1 Ê2i ∩

⋂j
j′=0 Ê

′
j′ , if mj ∈ S ∪ {1}, then Ṽ (mj) ⊆ F

(
Ψ−1

� (εj); 01

)
.

This claim is trivially satisfied for j = 0, which therefore serves as the base
case for this inductive proof. Now fix any j ∈ N, and take as an inductive
hypothesis that there exist events Ê′

j′ , as above, for all j′ < j, such that on⋂log2(mj−1)
i=1 Ê2i ∩

⋂j−1
j′=0 Ê

′
j′ , if mj−1 ∈ S, then Ṽ (mj−1) ⊆ F

(
Ψ−1

� (εj−1); 01

)
.

By the above, we have that on
⋂log2(mj)

i=1 Ê2i , if mj ∈ S, then f� ∈ Ṽ (mj) ⊆
V (mj)

(
4T̂mj ; �,PDmj

)
. In particular, this implies that every h ∈ Ṽ (mj) has

R�(hDmj
;PXY )− R�(f

�;PXY ) =
(
R�(h;PDmj

)− R�(f
�;PDmj

)
)
P(Dmj )

≤ 4T̂mjP(Dmj ). (71)

By a Chernoff bound and the law of total probability, on an event Ê′
j of proba-

bility at least 1− 2−sj , if mj ∈ S,

(1/2)mjP(Dmj )−
√

sjmjP(Dm) ≤ |Qmj |. (72)

If mj ∈ S and P(Dmj ) ≤ 16sj
mj

, then 4T̂mjP(Dmj ) ≤ 64�̄sj
mj

≤ 32εj
c′ , so that

with any c′ ≥ 32, (71) would give R�(hDmj
;PXY ) − R�(f

�;PXY ) ≤ εj . Oth-

erwise, (72) implies that on Ê′
j , if mj ∈ S and P(Dmj ) >

16sj
mj

, then |Qmj | ≥
(1/4)mjP(Dmj ). In this latter case, we have

4T̂mjP(Dmj ) ≤

16c0 max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
P(Dmj )

1−β
2−β

(
b

mj

(
vc(GF )Log

(
�̄2

b

(
mjP(Dmj

)

4bvc(GF )

) β
2−β

)
+ sj

)) 1
2−β

�̄
mj

(
vc(GF )Log

(
�̄2

b

(
mjP(Dmj

)

4�̄vc(GF )

)β
)
+ sj

) .

(73)

Since mj ≥ 2mj−1, by the inductive hypothesis, on
⋂log2(mj−1)

i=1 Ê2i ∩
⋂j−1

j′=0 Ê
′
j′ ,

if mj ∈ S, we have V (mj) ⊆ Ṽ (mj−1) ⊆ F
(
Ψ−1

� (εj−1); 01

)
, which implies

P(Dmj ) ≤ P
(
DIS

(
F
(
Ψ−1

� (εj−1) ; 01

)))
= pj−1. In this case, the right hand

side of (73) is at most

16c0 max

⎧⎪⎪⎨
⎪⎪⎩
p

1−β
2−β

j−1

(
b

mj

(
vc(GF )Log

(
�̄2

b

(
mjpj−1

4bvc(GF )

) β
2−β

)
+ sj

)) 1
2−β

�̄
mj

(
vc(GF )Log

(
�̄2

b

(
mjpj−1

4�̄vc(GF )

)β
)
+ sj

) .

The value of m′
j was defined to make this value at most εj , with any value of

c′ ≥ 16c0. Altogether, we have that on
⋂log2(mj)

i=1 Ê2i ∩
⋂j

j′=0 Ê
′
j′ , if mj ∈ S,
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then every h ∈ Ṽ (mj) has R�(hDmj
;PXY ) − R�(f

�;PXY ) ≤ εj ; in particular,

this also implies every h ∈ Ṽ (mj) has er(hDmj
) − er(f�) ≤ Ψ−1

� (εj). Since we

have already proven that f� ∈ V (mj) on this event, and since Ṽ (mj) ⊆ V (m),
we have that every h ∈ Ṽ (m) has er(h) = er(hDm), which therefore implies
er(h)− er(f�) ≤ Ψ−1

� (εj): that is, Ṽ
(mj) ⊆ F

(
Ψ−1

� (εj); 01

)
. This completes the

inductive proof.

The above result implies that, on
⋂log2(mĵε

)

i=1 Ê2i ∩
⋂ĵε

j=0 Ê
′
j , if mĵε

∈ S, then

er(ĥ)− er(f�) ≤ Ψ−1
� (εĵε) ≤ Ψ−1

� (Ψ�(ε)) = ε. In particular, we are guaranteed
to have mĵε

∈ S as long as u ≥ mĵε
and

n >

log2(mĵε
)∑

i=1

min{2i,maxS}∑
m=2i−1+1

1DIS(Ṽ (2i−1))(Xm). (74)

By monotonicity of m �→ DIS
(
Ṽ (m)

)
, the right hand side of (74) is at most

ĵε∑
j=0

min{mj ,maxS}∑
m=mj−1+1

1
DIS(Ṽ (mj−1))(Xm).

Furthermore, on
⋂log2(mĵε

)

i=1 Ê2i ∩
⋂ĵε

j=0 Ê
′
j , the above result implies this is at

most

ĵε∑
j=1

min{mj ,maxS}∑
m=mj−1+1

1DIS(F(Ψ−1
� (εj−1);01))(Xm)

≤
ĵε∑
j=1

mj∑
m=mj−1+1

1DIS(F(Ψ−1
� (εj−1);01))(Xm).

By a Chernoff bound, on an event Ê′′ of probability at least 1− δ/2, the right
hand side of the above is at most

log2(2/δ) +

ĵε∑
j=1

(mj −mj−1)pj−1. (75)

Since εj−1 ≥ �̄21−ĵε ≥ Ψ�(ε), and therefore

pj−1 ≤ P
(
DIS

(
B
(
f�, aΨ−1

� (εj−1)
α
)))

≤ θ
(
aΨ−1

� (εj−1)
α
)
aΨ−1

� (εj−1)
α ≤ θ (aεα) aΨ−1

� (εj−1)
α,

letting ĉj = vc(GF )Log

(
�̄2

b

(
c′θaΨ−1

� (εj−1)
α

εj

)β
)
, we have that

21+�log2(m
′
j) ≤ 4c′

(
b

εj

(
θaΨ−1

� (εj−1)
α

εj

)1−β

+
�̄

εj

)
(ĉj + sj) . (76)
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Since Ψ−1
� (εj−1)

α/εj is nondecreasing in j, the right hand side of (76) at least
doubles when j is increased by one, so that by induction we have that the right
hand side of (76) is also an upper bound on mj . This fact also implies that
ĉj + sj is at most

vc(GF )Log

(
�̄2

b

(
2c′θaΨ−1

� (2Ψ�(ε))
α

Ψ�(ε)

)β
)

+ Log

(
192

δ

)
+ 2Log

(
2 + ĵε − j

)
,

and the fact that x �→ Ψ−1
� (x)/x is nonincreasing implies this is at most

vc(GF )Log

(
�̄2

b

(
4c′θaεα

Ψ�(ε)

)β
)

+ Log

(
192

δ

)
+ 2Log

(
2 + ĵε − j

)

≤ c′′
(
A2 + Log

(
2 + ĵε − j

))
,

where c′′ = ln (768ec′). Furthermore,

Ψ−1
� (εj−1)

α

εj
= 2

Ψ−1
� (2(ĵε−j)εĵε−1)

α

2(ĵε−j)εĵε−1

≤ 2
Ψ−1

� (2(ĵε−j)Ψ�(ε))
α

2(ĵε−j)Ψ�(ε)
≤ 21+(ĵε−j)(α−1) εα

Ψ�(ε)
.

Applying these inequalities to bound mjpj−1, and reversing the order of sum-

mation (now summing over i = ĵε − j), we have that

ĵε∑
j=1

mjpj−1 ≤ 16c′c′′
ĵε−1∑
i=0

b

(
aθ2i(α−1)εα

Ψ�(ε)

)2−β

(A2 + Log(i+ 2))

+ 16c′c′′
ĵε−1∑
i=0

�̄aθ2i(α−1)εα

Ψ�(ε)
(A2 + Log(i+ 2)) .

Note that this is of the same form as (55) in the proof of Theorem 9, so that
following that proof, the right hand side above is at most

144c′c′′

(
b(A2 + Log(C1)C1

(
θaεα

Ψ�(ε)

)2−β

+ �̄(A2 + Log(C1))C1

(
θaεα

Ψ�(ε)

))
.

Therefore, since log2(2/δ) ≤ 3A2, (75) is less than

147c′c′′

(
b(A2 + Log(C1)C1

(
θaεα

Ψ�(ε)

)2−β

+ �̄(A2 + Log(C1))C1

(
θaεα

Ψ�(ε)

))
.

The above inequalities also imply that

mĵε
≤ 32c′c′′

(
b (θaεα)

1−β

Ψ�(ε)2−β
+

�̄

Ψ�(ε)

)
A2.
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Thus, taking c = 147c′c′′ in the statement of Theorem 9 suffices to guarantee
that, for any u and n satisfying the given size constraints, u ≥ mĵε

, and on the

event
⋂log2(mĵε

)

i=1 Ê2i ∩
⋂ĵε

j=0 Ê
′
j ∩ Ê′′, (74) is satisfied, which (as discussed above)

implies er(ĥ)− er(f�) ≤ ε on this event. We complete the proof by noting that,

by a union bound, the event
⋂log2(mĵε

)

i=1 Ê2i ∩
⋂ĵε

j=0 Ê
′
j ∩ Ê′′ has probability at

least

1−
log2(mĵε

)∑
i=1

12e−ŝ(2i) −
ĵε∑
j=0

2−sj − δ

2
,

which is greater than 1− δ, since

log2(mĵε
)∑

i=1

12e−ŝ(2i) ≤
ĵε∑
j=1

log2(mj)∑
i=log2(mj−1)+1

δ

4 log(4mj/2i)2(2 + ĵε − j)2

≤
ĵε∑
j=1

∞∑
k=0

δ

4(2 + k)2(2 + ĵε − j)2
≤

ĵε∑
j=1

δ

4(2 + ĵε − j)2
≤

∞∑
k=0

δ

4(2 + k)2
≤ δ

4
,

and
∑ĵε

j=0 2
−sj ≤

∑ĵε
j=0

δ
192(2+ĵε−j)2

≤
∑∞

k=0
δ

192(2+k)2 ≤ δ
192 .

Appendix F: Remarks on the assumption that f� ∈ F

We conclude with some remarks on the assumption that f� ∈ F (used through-
out this article). As noted in Section 2.1, this assumption is often very strong.
While the specific assumption that f� ∈ F adds a certain elegance to the theory
developed in this work, one natural question is to what extent it can be relaxed
without changing the essence of the approach considered here. For instance,
in passive learning, one can generalize the abstract results on empirical risk
minimization (stated in Theorem 17) to hold under the weaker condition that
argminh∈F R�(h) = argminh∈F er(h). However, this simple relaxation appears
insufficient for the approach to active learning considered here. Specifically, for
our analysis, we would require that an error minimizer argminh∈F er(h) also be
an (approximate) minimizer of R�(h;P ) in F , not merely for P = PXY , but also
for certain conditional distributions PXY (·|DIS(V )×Y), for sets V ⊆ F arising
in the algorithm. In principle, the results in this work can be generalized to pro-
vide guarantees when this condition (suitably formalized) is satisfied. However,
the statements of the results become considerably more involved, and moreover
we do not know of concise, general, a priori conditions on F , �, and PXY , un-
der which this property will hold. Beyond this, it appears our analysis does not
easily extend to the important problem of active learning with surrogate losses
in the general case, where results would presumably need to be expressed in
terms of the approximation loss inff∈F R�(f)−R�(f

�) or related quantities (as
observed for passive learning [6]). It seems such a generalization would require
a significantly different approach.
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