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Abstract: Frequentist conditions for asymptotic consistency of Bayesian
procedures with 4.7.d. data focus on lower bounds for prior mass in Kullback-
Leibler neighbourhoods of the data distribution. The goal of this paper is
to investigate the flexibility in these criteria. We derive a versatile new
posterior consistency theorem, which is used to consider Kullback-Leibler
consistency and indicate when it is sufficient to have a prior that charges
metric balls instead of KL-neighbourhoods. We generalize our proposal to
sieved models with Barron’s negligible prior mass condition and to separa-
ble models with variations on Walker’s condition. Results are also applied
in semi-parametric consistency: support boundary estimation is considered
explicitly and consistency is proved in a model for which Kullback-Leibler
priors do not exist. As a further demonstration of applicability, we con-
sider metric consistency at a rate: under a mild integrability condition, the
second-order Ghosal-Ghosh-van der Vaart prior mass condition can be re-
laxed to a lower bound for ordinary KL-neighbourhoods. The posterior rate
is derived in a parametric model for heavy-tailed distributions in which the
Ghosal-Ghosh-van der Vaart condition cannot be satisfied by any prior.
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1. Introduction and main result

Aside from computational issues, the most restrictive aspects of non-parametric
Bayesian methods result from limited availability of priors. In general, distri-
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butions on infinite dimensional spaces are relatively hard to define and control
technically, so unnecessary elimination of candidate priors is highly undesirable.
Specifying to frequentist asymptotic aspects, the conditions that Bayesian limit
theorems pose on priors play a crucial role and have received much attention,
as reviewed in several excellent overview texts [14, 17, 16] over the years. It is
the goal of this paper to extend the range of criteria on the prior for posterior
consistency and convergence at a rate [15], showing asymptotic suitability for
a wider range of priors. From the outset, we accept that this may go at the
expense of additional model conditions.

1.1. Introduction

Doob [10] studied posterior limits with the help of his martingale convergence
theory and gave the first general posterior consistency theorem for i.i.d. data.
Notwithstanding the generality of its Bayesian interpretation, Doob’s theorem is
not quite satisfactory to the frequentist interested in non-parametric statistics,
in that Doob’s prior null set of possible inconsistency can be very large, as was
stressed by Schwartz [33] and amplified by Freedman [11, 12, 9]. To frequentists
Freedman’s counterexamples discredited Bayesian methods for non-parametric
statistics greatly. The resulting under-appreciation was hard to justify, given
Schwartz’s 1965 posterior consistency theorem [34] for i.i.d. data: posteriors are
consistent in the frequentist sense, if consistent uniform tests exist and the prior
IT is a so-called Kullback-Leibler prior: for all § > 0,

P
n(peo . —Pologd—PO<5)>O. (1.1)

Although there are alternatives [24], for example those based on Le Cam’s in-
equality [25, 28], condition (1.1) has become the standard. Schwartz’s theorem
does not cover all examples, however.

Example 1.1. Consider i.i.d. X1, Xs,... from a distribution Py with Lebesgue
density po : R — R that is supported on an interval of known width (say, 1) but
unknown location. The model is parametrized in terms of a density n supported
on [0,1] with n(x) > 0 for all z € [0,1] and a location 6 € R:

po.y(x) =n(z —0) Ljgg11)(2).
Note that if # does not equal 6,
— Py, log P’ _ 00,
6,n

for all n, . Therefore Kullback-Leibler neighbourhoods do not have any extent
in the 6-direction and no prior can be a Kullback-Leibler prior in this model.
Even in a simple model of uniform distributions {U[0,6] : 6 € [0,1]}, any prior
that is KL must have a non-zero point-mass at § = 1. (See example 7.2 for
more.)
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Schwartz’s theorem for posterior consistency in metric parameter spaces re-
quires that the model is of finite entropy with respect to the Hellinger metric.
That condition is rather restrictive and can be mitigated in several ways. The
(testing) problem was noted by Le Cam (see the Le Cam-dimension of the model
[26]) and his solution can be applied in Schwartz’s setting too. A more Bayesian
solution partitions the model sequentially into subsets of bounded Hellinger
metric entropy and subsets of negligible prior mass (see, for example, [2] and
section 4.4.2 of [17]). Walker has proposed a method that does not depend on
finite covers but adds a summability condition to condition (1.1) [39]. (For more,
see subsection 4.2.)

In metric parameter spaces, consistency can be strengthened to posterior
convergence at a rate: extensions of Schwartz’s theorem [15, 35] apply Barron’s
sieve idea and a minimax test construction [4, 5], in combination with a second-
order Kullback-Leibler condition on the prior:

dP dP \? L Cne?
H(Pe@ - —Polog o <, Po(logd—Po) <ei) >e~Cnen (1.2)
for some C' > 0 and large enough n, to conclude that the posterior concentrates
its mass in Hellinger balls around Py of radii €,, — 0. But again, not all examples
are covered: below, heavy-tailed distributions are found for which integrability
of squared log-density ratios is violated.

Ezample 1.2. Consider an i.i.d. sample of integers X7, X5, ... from a distribution
P,, (a > 1), defined by,

pa(k):Pa(X:k):Ziamv (13)

for all k > 2, with Z, = >, -,k %(logk)™® < co. As it turns out, for a = 1,
b>1, B
2
—P, log Py < o0, P, (log &> = 00.
Pa Pa

Therefore, Schwartz’s condition (1.1) for the prior of a can be satisfied but
there exists no prior such that (1.2) is satisfied for all Py in the model. (See
example 7.3 for more.) In fact, if we change the third power of the log-factor in
the denominator of (1.3) to a square, Schwartz’s KL-priors also do not exist.

Schwartz’s theorem and its rate-specific version have become the standard
frequentist tools for the asymptotic analysis of Bayesian posteriors, almost to
the point of exclusivity. As a consequence, lower bounds for prior mass in
Kullback-Leibler neighbourhoods c.f. (1.1) and (1.2) are virtually the only crite-
ria frequentists apply to priors in non-parametric asymptotic analyses (notable
exceptions are made in the examples of [7, 8, 18] as well as [16]; see, however,
lemma 3.1 below). Since these lower bounds on prior weights of Kullback-Leibler-
neighbourhoods are sufficient conditions applicable for i.i.d. data, it is not clear
if other criteria for the prior can be formulated. The goal of this paper is to
increase flexibility in criteria for prior choice, by formulating a greater variety
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of suitability conditions for priors. The goal is not to generalize conditions of
Schwartz’s theorem or to sharpen its assertion; rather we want to show that
stringency with regard to the prior can be relaxed at the expense of stringency
with regard to conditions on the model.

1.2. Main result

The main result is summarized in the next theorem: we have in mind a fixed
model subset V' (e.g. the complement of a fixed neighbourhood of Py) for which
we want to demonstrate asymptotically vanishing posterior mass. Following the
ideas of [34, 26, 4, 5] the set V is covered by a finite collection of subsets
Vi,..., VN to be tested against Py separately with the help of the minimax
theorem: each V; is matched with a model subset B; (which can be thought of
as a ‘neighbourhood’ of Py if the model is well-specified) such that II(B;) > 0 and
inequality (1.5) below is satisfied. The B; are often chosen as Kullback-Leibler
neighbourhoods (as in Schwartz’s theorem), but under a moment condition on
likelihood ratios larger neighbourhoods can act as alternatives.

Throughout this paper and in the formulation below, we assume that the
model is dominated and we use posterior (2.1). Let co(V) denote the convex
hull of V and let P! (n > 1), denote the n-fold prior predictive distributions:
PI(A) = [ P"(A)dIL(P), for all A € o(X,...,X,). Furthermore, for given
a € [0, 1], model subsets B, W and a given distribution Py, define,

dPy\«
W,B;a) = sup sup Py(— ) , 1.4
(W Bio) = sup s P75 4
(and 7p, (W, B) = inf,ep0,1] 7p, (W, B; a); see appendix B).

Theorem 1.3. Let the model & be given and let Xy, Xo, ... be i.i.d.-Py dis-
tributed. Assume that Pj < PT{I for allm > 1. For some N > 1 let Vq,..., VN

be measurable model subsets. If there exist measurable model subsets By, ..., By
such that for every 1 <i < N,
WPO(CO(V;)v BZ) <1, (15)

I(B;) > 0 and supgep, Po(dP/dQ) < oo for all P € V;, then,

(V| Xy,..., X, ) 2%, (1.6)

for any V C UlgigN Vi.

Although this angle will not be pursued further in this paper, it is noted
that Py is not required to be in the model & so that the theorem applies
both to well- and to mis-specified models [21] in the form stated. Furthermore,
in subsection 3.1 it is shown that condition (1.5) is equivalent in quite some
generality to separation of B; and co(V;) in Kullback-Leibler divergence with
respect to Py,

d dP
sup —Fy logd—Q < inf —-PF

log —, 1.7
QEB; Py peco(vy) dPy (L.7)
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underlining the fundamental nature of condition (1.1). But even with this equiv-
alence in mind, the theorem is uncommitted regarding the nature of the V;, and,
more importantly, we may use any B; that (i) allow uniform control of Py(p/q)%,
and (1) allow convenient choice of a prior such that II(B;) > 0. The two require-
ments on B; leave room for trade-offs between being ‘small enough’ to satisfy
(i), but ‘large enough’ to enable a choice for II that leads to (ii). The freedom
to choose B’s and II lends the method the desired flexibility.

In what follows it is shown that Schwartz’s theorem, Barron’s sieve general-
ization, Walker’s theorem and posterior rates of convergence can all be related
to theorem 1.3. In section 2, the denominator the posterior is considered in de-
tail and theorem 1.3 is proved. In section 3 we establish that condition (1.5) is
equivalent to KL-separation. Based on that, Schwartz’s theorem is re-derived
with several variations, e.g. posterior consistency in Kullback-Leibler divergence
and Hellinger consistency with priors that charge metric balls. In section 4 sep-
arable models are considered and in section 5 we consider posterior rates. To
provide an example of how our proposals enhance flexibility, corollary 5.3 shows
that condition (1.2) can be replaced by a Schwartz-type KL-condition: for some
K >0,

dP 2
H(Pe P —Pologﬁ < ei) > e Knen,
0

under a very simple integrability condition on the model.

Section 6 applies the results to semi-parametric estimation of support bound-
ary points for a density on a bounded interval in R [23]. The last section con-
tains a short discussion on applications, including consistency in non-parametric
density estimation with various Dirichlet mixtures, and counterexamples 1.1
and 1.2. The appendices A, B and C contain two notes on supports, properties
of Hellinger transforms and proofs, respectively.

2. Posterior consistency

To establish the basics, the model (2, %) is a measurable space consisting
of Markov kernels P on a sample space (27, «): the map A — P(A) is a
probability measure for every P € & and the map P — P(A) is measurable
for every A € o/. Assuming the model is dominated by a o-finite measure (with
density p for P € &), a prior probability measure II on (&2, %) gives rise to
the posterior:

(Al X0 = [ TIoxoane) /[ Tlsxoane). e
=1 i=1

We take the frequentist i.i.d. perspective, i.e. we assume that there exists a
distribution Py on (27, %) such that (X1,...,X,) ~ PJ'. As a consequence
expression (2.1) does not make sense automatically: for the denominator to be
non-zero with Pj-probability one, we impose that,

Py < P, (2.2)
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for every n > 1, where P is the prior predictive distribution. If (2.2) is not
satisfied, expression (2.1) for the posterior is ill-defined for infinitely many n > 1
with P;°-probability one. The following proposition provides sufficient condition
to prevent this.

Proposition 2.1. If Py lies in the Hellinger support of the prior 11, then P§' <«
P for alln > 1. Particularly, if Il is a KL-prior, then P} < P for alln > 1.

So under Schwartz’s prior mass condition, one does not worry about condi-
tion (2.2); it plays a role only if one is interested in priors that are not Kullback-
Leibler priors (as in example 7.2, for instance).

FEzxzample 2.2. To illustrate the denominator problem by example, consider the
following regression problem with one-sided error distributions: one observes
pairs (X;,Y;) € R2, i > 1, of real-valued random variables related through
Y = f(X) + e for some non-negative regression function f, such that for all
0 >0, P(f(X) <) >0. Errors eq, ea, ... are independent of X and i.i.d., with
a shared marginal distribution supported on [, 00), for some unknown 6 € R to
be estimated. The problem occurs when the statistician believes that his errors
are positive with probability one, while their true distribution assigns (small
but) non-zero probability to negative outcomes. (In finance examples abound,
arising when one anticipates non-negative returns (for example a hedged return,
the total return on a bond or an auction price) based on an incomplete or
simplified model for downside risk.)

The statistician makes a choice for the prior II that reflects his belief, placing
no mass on negative values for . When sequential i.i.d. draws are conducted,
sooner or later a negative value of the error will occur in conjunction with a small
value of f(X), resulting in a negative value for Y. But negative f(X) + e have
probability zero according to all distributions in a subset of the model of prior
mass one: sooner or later, the likelihood evaluates to zero II-almost-everywhere
in the model, resulting in a posterior that is ill-defined.

2.1. A sketch of the proof of theorem 1.3

Our first lemma asserts that, under the condition that certain specific test-
sequences for covers of complements exist, posterior concentration in neighbour-
hoods follows. The proof is inspired by Le Cam’s dimensionality restrictions and
more broadly, by [34, 26, 4, 5, 28, 15, 17]. The argument is essentially an applica-
tion of the minimax theorem (see section 16.4 of [28], section 45 of [36]), adapted
as in [21]. The essential difference between lemma 2.3 and other Bayesian limit
theorems is that posterior numerator and denominator are dealt with simul-
taneously rather than separately, so that the prior II is one of the factors that
determines testing power and can be balanced against model properties directly.

In the following lemma V is a fixed set (e.g. the complement of an open
neighbourhood of Py) for which we want to prove asymptotically vanishing
posterior mass. We cover V by a finite number of model subsets V1, ..., Vi such
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that for each V;, a special type of test sequence exists. In the next subsection,
we give conditions for the existence of such sequences.

Lemma 2.3. Assume that Py < PI for all m > 1. For some N > 1, let
Vi,..., VN be a finite collection of measurable model subsets. If there exist con-
stants D; > 0 and test sequences (¢;.) for all 1 <i < N such that,

n

dpP
Pl + sup Pl——(1 — ¢ ) < e "Pi, 2.3
0¢7 +;UI‘2 OdP};I( (b,)—e ( )

for large enough n, then any V C |J, <, Vi receives posterior mass zero asymp-
totically, o

I(V|Xy,. .., X,) 22220, (2.4)

The condition that covers of the model have to be of finite order is restrictive
and problems arise already in parametric context. In such cases application
of the theorem requires a bit more refinement [26] (see example C.1), or the
alternatives of section 4.

Le Cam [26, 27, 28] and Birgé [4, 5] propose a seminal approach to testing
that combines the minimax theorem with the Hellinger geometry of the model.
Here we stay close to the methods of [21] which are inspired by the above and
their application in [15]. Define V™ = {P™: P € V} and denote its convex hull
by co(V™); elements from co(V"™) are denoted P,. The following lemma says
that testing power is bounded in terms of Hellinger transforms [28].

Lemma 2.4. Letn > 1, V € % be given; assume that P} (dP"/dP!) < oo for
all P € V. Then there exists a test sequence (¢y,) such that,

apn AP, \
Plé, + sup PP (1—¢,) <  su inf P”<—”) . 25
0 Pn Pe?/ 0 dPE( o) PnGCOI()Vn) 0<a<i O \dPI (25)

Given IT and a measurable B such that II(B) > 0, define the local prior
predictive distributions P B by conditioning the prior predictive on B:

PIIB(4) = / Q" (4)dII(Q|B), (2.6)

for all n > 1 and A € o(Xy,...,X,). The following lemma formulates an
upper bound for the right-hand side of inequality (2.5), which prescribes the
(n-independent) form of the central requirement of theorem 1.3.

Lemma 2.5. Let IT be given, fit n > 1. Let V,B € A be such that II(B) > 0
and for all P € V, supgep Po(dP/dQ) < oo. Then there exists a test function
On + L —[0,1] such that,

dpPm

Pr¢,, + sup P} 1- ¢,

Od) PEI‘)/ 0 dPTIL-I( d) ) .
< inf H(B)a/[ sup P (dp)ardn(cgw) =0
T 0<a<1 Peco(V) 0 aQ '

Theorem 1.3 is the conclusion of lemma 2.3 upon substitution of lemmas 2.4
and 2.5.
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3. Variations on Schwartz’s theorem

In this section we apply theorem 1.3 to re-derive Schwartz’s theorem, sharpen its
assertion to consistency in Kullback-Leibler divergence and we consider model
conditions that allow priors charging metric balls rather than Kullback-Leibler
neighbourhoods.

3.1. Schwartz’s theorem and Kullback-Leibler priors

The strategy to prove posterior consistency in a certain topology (or more gen-
erally, to prove posterior concentration outside a set V) now runs as follows:
one looks for a finite cover of V' by model subsets V;, (1 < i < N) satisfying
the inequalities (1.5) for subsets B; that are as large as possible and neighbour-
hoods of Py in an appropriate sense. Subsequently we try to find (a o-algebra
# on & and) a prior II : B — [0,1] such that (B; € £ and) II(B;) > 0 for
all 1 < ¢ < N. In this regard the following lemma offers guidance, because it
relates testing power to Kullback-Leibler separation of the sets B and W in
definition (1.4). It is stressed that in applications the sets W; are convex hulls
of model subsets V.

Lemma 3.1. Let Py € B C & and W C & be given and assume that there
exists an a € (0,1) such that for all Q € B and P € W, Py(dP/dQ)* < oc.
Then,

mp, (W, B) <1, (3.1)

if and only if, 10 P
sup —FPylog — < inf —F,log —. 3.2
Qe% 0 gdPo pow 0 gdPo (3.2)

Quite generally, lemma 3.1 shows that model subsets are consistently testable
if and only if they can be separated from neighbourhoods of Py in Kullback-
Leibler divergence. This illustrates the fundamental nature of Schwartz’s prior
mass requirement and undermines hopes for useful priors that charge different
neighbourhoods of P, in general. However, this does not exclude the possibility
of gaining freedom in the choice of the prior by strengthening requirements on
the model, as we hope to demonstrate with the rest of this paper.

Due to the fact that Kullback-Leibler divergence dominates Hellinger dis-
tance, Schwartz’s theorem can be proved from theorem 1.3 and lemma 3.1 (at
least, for models that have supgep Po(dP/dQ) < oo for all P € V and B a
Kullback-Leibler neighbourhood of Py). Schwartz’s theorem does not fully ex-
ploit the room that (3.2) offers, because it stops short of asserting posterior con-
sistency in Kullback-Leibler divergence. However it is well-known [39, 16], that
Kullback-Leibler consistency does not require much more than Schwartz’s con-
ditions. The following theorem provides posterior Kullback-Leibler consistency
without requiring more of the prior, by imposing an integrability condition on
the model.
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Theorem 3.2. Let Py and the model be such that for some Kullback-Leibler
neighbourhood B of Py, supgep Po(dP/dQ) < oo for all P € &. Let 11 be a
Kullback-Leibler prior. For any € > 0, assume that {P : —Pylog(dP/dPy) > €}

is covered by a finite number N > 1 of model subsets Vi,...,Vy such that,
dP
inf —Pylog— >0 3.3
Pelt:r(l)(%) 0708 dP, ’ (3.3)

for all1 <i < N. Then for i.i.d.-Py distributed X1, Xo, ...,
I(PeP: —Pylog(dP/dPy) < ¢ | X1,..., Xn) 222251, (3.4)

To appreciate how a finite cover of Kullback-Leibler neighbourhoods may oc-
cur in models, consider the following example that relies on relative compactness
with respect to the uniform norm for log-densities.

Ezample 3.3. Let ¢ > 0 be given and assume that the complement V of a
Kullback-Leibler ball of radius € > 0 contains N points P, ..., Py such that
the convex sets,

Vi={Pe P :|dP/dP; — 1| < Le},

cover V. Finiteness of the cover can be guaranteed, for example with the Ascoli-
Arzela theorem, if the model describes data taking values in a fixed bounded
interval in R and the associated family of log-densities is bounded and equicon-
tinuous. (Other ways to find suitable covers refer to || - ||o-entropy or brack-
eting numbers for log-likelihood ratios [38].) Then any P € co(V;) satisfies
|dP/dP; — 1||sc < %€ as well, and hence, log(dP/dP;) < log(l + i¢) < le.
As a result,

dP dP
_Pologd—P0 >e— Pylog iP > %6,

and (3.3) holds. In such models, any prior IT satisfying (1.1) leads to a posterior
that is consistent with respect to Kullback-Leibler divergence.

3.2. Priors that charge metric balls

In this subsection we discuss model conditions that allow one to relax Schwartz’s
condition for the prior, to the condition that the prior has full support in
Hellinger (or other) metric topologies. Given some Py and a suitable (metric)
neighbourhood B, we impose that for all @ € B and any P € &, p/q € L2(Q)
(with norm denoted || - ||2,¢). Under this condition the Cauchy-Schwarz inequal-
ity leads to,

PO(§>1/2 :/(%‘J)lmpéﬂpmdu
= /pé/2p1/2d,u—/(1 B (%)1/2) (%)1/2(2)1/2%2

1/2 HpH1/2
q

1
<1-SH(R. PP+ H(P, Q)| 2| .
2 q112,Q 2,Q
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Combined with lemma 2.3 this gives the following theorem.

Theorem 3.4. Assume the model &2 has finite Hellinger metric entropy num-
bers. Furthermore assume that there exists a constant L > 0 and a Hellinger
ball B’ centred on Py such that for all P € & and Q € B',

2 1/2
p ‘ p
- = —d L. .
Hq’z@ (/ q M) < (35)

Finally assume that for any Hellinger neighbourhood B of Py, II(B) > 0. Then
the posterior is Hellinger consistent, Py-almost-surely.

Next choose 1 < r < co. Analogous to the Hellinger metric (r = 2), define,
for all P,Q probability measures, Matusita’s r-metric distance [30],

d,(P,Q) = (/‘pl/r _ ql/r|rdu)1/r,

(based on any o-finite p that dominates P and Q). Applying Holder’s inequality
where we applied Cauchy-Schwarz before we arrive at the following theorem
concerning priors that charge d,-balls.

Theorem 3.5. Let 1 < r < oo be given and let the model & be has finite d,.-
metric entropy numbers. Let X1, Xo, ... be i.i.d.-Py distributed for some Py €
2. Assume that the prior is such that Py < P for alln > 1 and satisfies,

I(PeP:d(P),P)<d)>0, (3.6)

for all § > 0. In addition, assume that there is an L > 0 and a d,.-ball B such
that for all P € & and Q € B, Py(p/q)*/™ ' < L*, where 1/r +1/s = 1. Then
the posterior is consistent for the d,.-metric, Py-almost-surely.

Remark 3.6. For the models under discussion, we note the following general
construction of so-called net priors [25, 28, 13, 15, 20]: denote the metric on
& by d. Initially, assume that & has finite d-metric entropy numbers. Let
(nm) be any sequence such that 7, > 0 for all m > 1 and n,, } 0. For fixed
m > 1, let Pi,..., Py, denote an 1n,,-net for &2 and define II,, to be the
measure that places mass 1/M,, at every P;, (1 <1i < M,,). Choose a sequence
(Am) such that X,, > 0 for all m > 1 and ) -, Ay, = 1, to define the net
prior IT = 3>~ Ay IL,,. A net prior assigns non-zero mass to every open set.
In addition, lower-bounds for prior mass in metric balls are proportional to
inverses of upper bounds for metric entropy numbers, provided we choose (A,)
appropriately. In case & is not totally bounded, one may generalize the above
construction by choosing an sieve (K,,) of relatively compact submodels.

Net priors, or more generally, Borel priors of full support are helpful if one

is interested in the construction of Kullback-Leibler priors, at least, if the cor-
responding topology is fine enough.

Lemma 3.7. If for every P € &2, the Kullback-Leibler divergence &2 — R :
Q — —Plog(dQ/dP) is continuous, then a Borel prior of full support is a
Kullback-Leibler prior.
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When discussing consistency, requirements on the model like (3.5) are present
to guarantee continuity of the Kullback-Leibler-divergence. For example, the
perceptive reader may have recognized in (3.5) sufficiency to invoke theorem 5
of [41] which provides an upper bound for the Kullback-Leibler divergence in
terms of the Hellinger distance. The latter is a stronger, Lipschitz-like variation
on the continuity condition of the above lemma.

4. Posterior consistency on separable models

Requiring finiteness of the order of the cover in theorem 1.3 and lemma 2.3 is
somewhat crude. There are several ways out: firstly, in subsection 4.1 we explore
the possibility of letting a sieve of totally bounded submodels approximate the
full model analogous to Barron’s theorem. Secondly, Hellinger consistency of the
posterior on separable models formed the assertion of a remarkable theorem of
Walker for a Kullback-Leibler prior that also satisfies a summability condition
[39]. In subsection 4.2 we show that variations on Walker’s theorem can be
derived with the methods of section 2.

4.1. Generalization to sieves

When the model is (a measurable subset of) a Polish space, inner regularity guar-
antees that the model is approximated in prior measure by (relatively) compact
submodels. Since the latter are of finite metric entropy, a proof is conceivable
based on a sieve of compact submodels with complements of ‘negligible’ prior
mass.

Theorem 4.1. Let Xy, Xo,... be i.i.d. — Py for some Py € & and let V be
given. Assume that P < P for all n > 1 and that there exist constants
K,L > 0 and a sequence of submodels (%)) such that for large enough n > 1,

(i.) there is a cover Vi,...,Vy, for V.N P, of order N,, < exp(3Ln) with
tests ¢1.p,. .., 0N, n such that,

n
nL

Py i + SUP Po ;l‘I;H( L—¢in) <e ™7,
forall1 <i< Np;
(i.) the prior mass (P \ £,,) < exp(—nK) and,
K
o (i) =
for some model subset B such that II(B) > 0.
Then TI(V | X1,. .., X, ) 22255 0.

Condition (i.) of theorem 4.1 corresponds with condition (2.3) and upper
bounds for testing power of the preceding subsections remain applicable. More
particularly, condition (i.) has the following alternative.
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(i’.) there exist a model subset B with II(B) > 0 and a cover Vi,...,Vx, for
VN2, of order N,, < exp(3Ln), such that for every 1 <i < N,

7py (co(V;),B) < ek,

and supge g Po(dP/dQ) < oo for all P € V;.

Condition (ii.) of theorem 4.1 defines what ‘negligibility’ of prior mass outside
the sieve means. If we think of B as a small neighbourhood around Py, it appears
that the freedom to choose B small enables upper bounds for the l.h.s. of (4.1)
arbitrarily close to one. In such cases, condition (i.) reduces to the requirement
that II(Z \ &,,) decreases exponentially [1]. The following example illustrates
this point.

Ezxample 4.2. Assume that X, X, ... are i.i.d.-FPy for some Py in a model &
that is dominated by a o-finite measure u. Consider a prior II that charges all
Loo(p)-balls around log py (where pg, p denote the u-densities for Py, P respec-
tively):

II(Pe 2 : |logp—logpolec <€) >0,

for all € > 0. Note that, for all P € £,
) [y, [
q

whenever || logq — logpoHOo < e. Hence, a sieve (7,) satisfying condition (7.)
such that II(Z\ &,,) < exp(—nK") for some small K’ > 0 would suffice in this
case and similar ones.

A generalization of condition (ii.) of theorem 4.1 involving n-dependent
choices for B can be found in appendix C. Theorem 4.1 is applied in the support
boundary problem of section 6, see remark 6.4.

4.2. Variations on Walker’s theorem

In this subsection we abandon constructions based on finite covers altogether
and require only that the cover is countable. Le Cam’s dimensionality restrictions
[26, 27] are related to in example C.1. More generally, a natural setting arises
when we consider models that are separable in some metric topology, in which
case countable covers by balls of any radius exist.

Theorem 4.3. Let & and 11 be given and assume that Py < P for alln > 1.
Let V' be a model subset, with a countable cover Vi, Vs, ... and By, Ba, ... such
that for all i > 1, we have II(B;) > 0 and for all P € V;, supgep, Po(dP/dQ) <
oo. Then,

a

V|Xy,..., X <Z inf

0<a<1 H WPO(CO(V;)aBi;Oé) : (4.2)
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Compare the upper bound in (4.2) to that of example C.1. Two corollaries
show how theorem 4.3 is related to Walker’s condition [39]. Note that in the
first, the prior is not required to be a KL-prior.

Corollary 4.4. Let & and 11 be given and assume that Pi < P for alln > 1.
Let V' be a model subset, with a countable cover Vi, Vs, ..., and a B C & such
that II(B) > 0 and for alli > 1, P € Vi, supge g Po(dP/dQ) < oo. Furthermore,
assume that,

dP\1/2
sup sup sup P0<—) <1. (4.3)
i>1 Peco(V;) QEB dQ

If the prior satisfies the summability condition,

> I(V)'? < o, (4.4)

i>1

then the posterior satisfies, (V| X1,..., X,) Loras

For another perspective on Walker’s condition, see exercises 8.11-8.12 in [16].
The second corollary does not impose model conditions like (4.3), and, instead,
requires a Kullback-Leibler prior that satisfies a slightly different summability
condition.

Corollary 4.5. Let & be separable in the Hellinger topology. Assume that
there is Kullback-Leibler neighbourhood B of Py such that for all P € 22,
supgep Po(dP/dQ) < oo. Let 11 be a Kullback-Leibler prior such that for all
/B > 07
SV < oo, (4.5)
i>1
where the Vi, (i > 1) are any cover of &2 by Hellinger balls of a fixed radius.
Then the posterior is Py-almost-surely Hellinger consistent.

5. Posterior rates of convergence

Minimax rates of convergence for (estimators based on) posterior distributions
were considered more or less simultaneously in Ghosal, Ghosh and van der
Vaart [15] and Shen and Wasserman [35], with conditions that display very close
resemblance. Both pose (1.2) as the condition on the prior and both appear to
be inspired by Wong and Shen [41], as well as Ghosal et al. [13] and/or Barron
et al. [2], which concern posterior consistency based on controlled bracketing
entropy for a sieve, up to subsets of negligible prior mass, following ideas that
were first laid down in [1]. In [40] Walker, Lijoi and Priinster extend the results
of [39] to posterior rates of convergence.

Note that methods proposed in the preceding sections hold at finite values of
n > 1: the hypothesis B,V as well as the constant « can be made n-dependent
without changing the basic building blocks. As such, not much needs to be
adapted to preceding results to extend also to rates of posterior convergence.
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Below we follow Barron’s ideas again and sharpen theorem 4.1 to accomodate
rates of posterior convergence. For the theorem below, we endow the model with
a metric d and assume that the prior is Borel with respect to the associated
metric topology.

Theorem 5.1. Let X1, X5,... be i.i.d. — Py for some Py € &. Assume that
the prior 11 is such that Py < P for alln > 1. Let (e,) be a sequence with
én 4 0 and ne2 — oo. Define V,, = {P € & : d(P,Py) > €,}, a sequence
of measurable submodels &2, C & and measurable model subsets B,, such that
supgep, Po(dP/dQ) < oo for all P € V,. Assume that, for sufficiently large
n>1,

(i) thereis an L > 0 such that V,NP,, has a cover V1, Vp2,..., Vo N, C Py
of order N,, < exp(3Lne2), such that for all1 <i < N,

7wy (co(Vini), By ) < e b, (5.1)
(ii) there is a K > 0 such that II(P\Z,) < e~ Kne and II(B,) > e*%’“i,
while also,
dP
sup  sup P()(d—) <efen, (5.2)
PeP\P, QEB, Q
Then, (P € P : d(P,Py) > en | X1,...,Xpn) 250.

This theorem has been formulated generally and this generality obscures the
interpretation of conditions somewhat: the first condition plays the same role
as the entropy condition in the Ghosal-Ghosh-van der Vaart theorem; it en-
ables construction of a suitable minimax test. Sufficiency of prior mass around
P, forms part of the second condition, which also assures that the sieve ap-
proximates the model closely enough, by upper-bounding prior mass outside
the sieve. Under an integrability condition, condition (5.1) for the sets co(V,,;)
and B, follows from a minimal amount of separation of co(V, ;) and B, in
Kullback-Leibler divergence.

Lemma 5.2. Consider two model subsets B, W such that Py € B. Suppose that
for some a € (0,1), Po(dP/dQ)* is finite for all P € W, Q € B. If, for some
A >0,

dqQ dP
—Pylog— < inf —Pylog— — A 5.3
oop 008 Py = pew 0B g T (5:3)
then there exists an o € (0,1) such that,
7, (B, W) < e @A,
Conversely, if for some A > 0,
dqQ dP
—Pylog— > inf —FPylog— — A
o OB Ry T ety 0% g T

then mp,(B,W;a) > e~*2 for all a € (0,1).
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Lemma 5.2 says that if B and W are separated in Kullback-Leibler diver-
gence by some small difference A, then the logarithm of the Hellinger transform
log wp, (B, W) is upper-bounded by a multiple of —A. This emphasizes the role
played by the Kullback-Leibler divergence and illustrates the associated limi-
tation: not all models have integrable likelihood ratios, and Kullback-Leibler
divergences that are infinite make inequality (5.3) void.

With lemma 5.2 in hand, we can simplify and specify theorem 5.1 consider-
ably, to bring us closer to the Ghosal-Ghosh-van der Vaart theorem. For sim-
plicity of presentation, we do not incorporate Barron’s negligible prior mass
argument (although one could trivially).

Corollary 5.3. Let X1,X5,... be i.i.d.-Py for some Py € &2. Specify that the
metric on & is the Hellinger metric H; define (e,) with €, | 0 and ne? — oo,
and take V,, = {P € & : H(Py,,P) > Me,}, for M > 0, and B, = {Q €
P . —Pylog(dQ/dPy) < €2}. Assume that for n large enough and all P € V,,,
sup{Py(dP/dQ) : Q € B, } < oo. If, for large enough n > 1,

(i) there is an L > 0, such that N(e,, 2, H) < oLne? :
(i) there is a K > 0, such that

P
H(P € P ~Pylog g < ei) > ¢~ Kne, (5.4)

then II(P e & : H(P, Py) > Men|X1,...,Xn)i>0, for M large enough.

Comparison with inequality (1.2) shows that the requirement on the prior
is in terms of Schwartz’s KL-neighbourhoods rather than the second-order KL-
neighbourhoods of (1.2), a convenience that comes at the expense of an integra-
bility condition for likelihood ratios. (It is noted that Ghosal and van der Vaart
[16] provide a refinement of [15] that also does not involve second-order KL-
neighbourhoods. The simplicity of the integrability condition of corollary 5.3
seems preferable to the technical intricacy of their theorem 8.11, however.)

For an analysis of example 1.2 using corollary 5.3, see example 7.3.

6. Marginal consistency

In this section, we consider a problem of the following basic, semi-parametric
type [3]: let © be an open subset of R¥ parametrizing the parameter of interest 6
and let H be a measurable (and typically infinite-dimensional) parameter space
for the nuisance parameter n. The model is & = {Fy, : § € ©,n € H} where
©OxH— Z:(0,n) — Py, is a Markov kernel on the sample space (2", &)
describing the distributions of individual points from an infinite i.i.d. sample
X1, Xo,... € 2. Given a metric g : © x © — [0,00) and a prior measure II on
O x H we say that the posterior is marginally consistent for the parameter of
interest, if for all € > 0,

P,

(P, € P:9(0,00)>eneH | Xi,...,X,) —2, (6.1)
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for all 8y € © and 19 € H. Marginal consistency amounts to consistency with
respect to the pseudo-metric d: & x & — [0, 00), d(Pgm, Pg/,n/) =g(0,0), for
allf,0’ € © and 1,7’ € H. The following theorem is a formulation of theorem 1.3
specific to marginal consistency.

Theorem 6.1. Let &7 = {Fy, : 0 € ©,1 € H} be a model for data X1, Xo,. ..
assumed distributed i.i.d.-Py for some Py € & in the Hellinger support of 11.
Let € > 0 be given, define V ={Py, € & : ¢9(0,00) > €,n € H} and assume
that Vi, ..., VN form a finite cover of V. If there exist model subsets By, ..., By
such that for every 1 <i < N,

mp,(co(V;), B;) < 1,

I(B;) > 0 and supgep, Po(dP/dQ) < oo for all P € V;, then the posterior is
marginally consistent, Py-almost-surely.

6.1. Density support boundaries

Consistent support boundary estimation (see [19], or [31] for a more recent,
Bayesian reference), though easy from the perspective of point-estimation, is
not a triviality when using Bayesian methods because one is required to specify
a nuisance space [32]. The Bernstein-Von Mises phenomenon for this type of
problem is studied in Kleijn and Knapik [23] and leads to exponential rather
than normal limiting form for the posterior. Below, we prove consistency using
theorem 1.3 and note that the result generalizes relatively straightforwardly to
rates (see below).

The model is defined as follows: for some constant o > 0 define the parameter
of interest to lie in the space © = {0 = (01,602) € R? : 0 < 03— 0, < o} equipped
with the Euclidean norm || - ||. Let H be a collection of Lebesgue probability
densities 7 : [0,1] — [0, 00) with a a modulus of continuity f (i.e. a continuous,
monotone increasing f : (0,a) — (0,00) (for some a > 0) with f(0+) = 0), such
that,

neH

inf min{/oend,u,/ll_endu} > f(e), (0<e<a). (6.2)

The model & = {Py, : 0 € ©,n € H} is defined in terms of Lebesgue densities
of the following semi-parametric form,

1 Xr — 91
p9,n($) = 92 _ 01 n(92 _ 91) 1{91S$§92}’

for some (01,602) € © and n € H. A condition like (6.2) is necessarily part of
the analysis, because questions concerning support boundary points make sense
only if the distributions under consideration put mass in every neighbourhood
of 61 and 0. (Let || - ||s,o denote the Ly(Q)-norm, for s > 1.)
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Theorem 6.2. For some o > 0, let © be {(01,02) € R? : 0 < 0 — 01 < o}
and let the space H with associated function f asin (6.2) be given. Assume that
there exists an s > 1 such that the sets B,

dP,
B= P . H— 1 st
{Qe Qo= }
satisfy II(B) > 0 for all 6 > 0. Also assume there exists a constant K > 0 such
that for all P € & and Q € B, ||dP/dQ|,q < K, where 1/r +1/s = 1. If
X1, Xo,... form an i.i.d.-Py sample for Py = Py, ,, € & then,

(0O : |0—0p) <e| X, .., Xn) 2251, (6.3)

for all e > 0.

FEzxample 6.3. To apply theorem 6.2, let Py = Py, ,, be a distribution on R
with Lebesgue density pp : R — [0,00) supported on an interval [0g 1,600 2] of
a width smaller than or equal to a (known) constant ¢ > 0. Furthermore, let
g :[0,1] — [0,00) be a known Lebesgue probability density such that g(z) > 0
for all z € (0, 1). For some constant M > 0 consider the subset Cys of C10, 1] of
all continuous A : [0, 1] — [0, 00) such that e~ < h < eM. To define the model’s
dependence on the nuisance parameter h, let H contain all 7 : [0,1] — [0, 00)
that are Esscher transforms [29] of the form,

__ g(@) (=)
Jo 9(y) h(y) dy’

for some h € Cjy and all z € [0, 1]. To define a prior on H, let U ~ U[—M, M] be
uniformly distributed on [—M, M| and let W = {W(z) : z € [0, 1]} be Brownian
motion on [0,1], independent of U. Note that it is possible to condition the
process Z(x) =U +W(x) on —M < Z(z) < M for all x € [0,1] (or reflect Z in
z=—M and z = M). Define the distribution of 7 under the prior Iy by taking
h =e?. On O let Il denote a prior with a Lebesgue density that is continuous
and strictly positive on ©. One verifies easily that the model satisfies (6.2) with
f defined by,

n(x)

1

10 = min{ [ge)do, [ gte) s}

—€

for all € > 0 small enough. The prior mass requirement is satisfied because the
distribution of the process Z has full support relative to the uniform norm in
the collection of all continuous functions on [0, 1] bounded by M.

Remark 6.4. If the assumed bound o > 0 is set to infinity, testing power is lost
(see the proof of theorem 6.2, or note that if one pictures distributions P of wider
and wider support, the minimal mass bound (6.2) implies less and less mass
remains to lower-bound P(py = 0) and Py(p = 0)). To see that the bound is of a
technical rather than essential nature, note that if a model of bounded-support
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distributions satisfies (6.2) and is uniformly tight, such a constant o > 0 exists.
Consequently, a sequence of models with growing o’s can be used: for given
Py = Py, 1z, there is a lower bound ¢ > 0 such that the model of theorem 6.2 is
well-specified for all ¢ > &. So if 0, — 00, the corresponding models &, are
well-specified for large enough m and the posteriors on those &, are consistent,
c.f. theorem 6.2. By diagonalization there exists a sequence (0,(n))n>1 that
traverses (o,,) slowly enough in order to guarantee that consistency obtains
while we increase m(n) with the sample size n.

To know exactly how slowly we should let o go to infinity, we use theorem 4.1:
let o, increase with n and define &, = {Py, € & : |01 — 02| < 0,,,n € H}.
Since N,, = 4 for all n > 1 (namely the sets Vi 1, V_1, V42 and V_ 5 in the
proof of theorem 6.2) any constant L > 0 will do, as long as,

n f(e/o,) — oo.

(Similarly, rates of convergence can be studied with the choice ¢ = ¢,: the
modulus of continuity f then determines how €,, o, and other n-dependencies
must be fine-tuned.) A glance at inequality (C.8) suggests that condition (4.1)
applies, if we choose II such that,

H(P9777 EP: |0y —02 >0n,m€E H) <e K

for some K > 0. For example, if the family H consists of densities that display
jumps at both 8; and 6 of some minimal size § > 0, then f(z) > %(Sl‘ for
values of > 0 that are close enough to z = 0. Consequently, for a model
in which support boundaries represent discontinuous jumps, marginal posterior
consistency obtains if we let o, = o(n). If H consists of densities that are
continuous (k = 0) or k > 1 times continuously differentiable at the boundary
points, then f(z) is lower-bounded by a multiple of z**2, which implies that o,
must be of order o(n!/#+2).

7. Conclusion and examples

Schwartz’s theorem is central to the frequentist perspective on Bayesian non-
parametric statistics and it has been in place for more than fifty years: it is
beautiful and powerful, in that it applies to a very wide class of models. However,
its generality with respect to the model implies that it is rather stringent with
respect to the prior. Since choices for non-parametric priors are usually not
abundant, overly stringent criteria form a problem. In this paper, an attempt
has been made to demonstrate that there is more flexibility in the criteria for
the prior, if one is willing to accept more strict model conditions.

7.1. Some easy examples

Because Hellinger consistent density estimation using mixtures is a well-studied
subject, especially with Dirichlet priors, we discuss that example below in quite
some generality, to illustrate practicality of the proposed methods.
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Example 7.1. Consider a model & for observation of one of two real-valued,
dependent random variables X, Z, assuming that if we would observe Z, the
distribution for X would be known: X|Z = z is assumed to have a Lebesgue den-
sity p(-|z) : R — R such that z — p(z|z) is bounded and continuous for every z.
We observe only an i.i.d. sample X1, Xo, ... from Py € & and the corresponding
Z1,Zs, ... remain hidden. The model & then consists of distributions Pr for X
with Lebesgue densities of the form,

pr(z) = / plz]z) dF(2),

where the parameter F' represents the unknown distribution of Z. For reasons
explained below, assume that Z € [0, 1], so that the space Z of all distribu-
tions on [0, 1] is compact in Prokhorov’s weak topology. Note that for any fixed
z € R, F — pp(x) is weakly continuous. By Scheffé’s lemma this pointwise con-
tinuity implies weak-to-total-variational continuity of the map F' + Pp, which
is equivalent to weak-to-Hellinger continuity. Since Z is weakly compact, this
implies that the model & is Hellinger compact (and consequently, Hellinger
entropy numbers are all finite). Additionally we make the assumption that the
Lo-condition (3.5) is satisfied; for example in the well-known normal location
mixture model, where X|Z = z is distributed normally with mean z [14], the
family & = {pr : F € 2} is contained in an envelope that allows straightfor-
ward verification of (3.5) (for details, see the proof of theorem 3.2 in [21]).

With finite entropy numbers and (3.5) established, note that any prior IT
on & that is Borel for the weak topology induces a prior that is Borel for the
Hellinger topology on the model &2. If the weak support of II equals Z then the
induced Hellinger support includes &2. For instance, a Dirichlet prior for F' with
base measure of full support on [0, 1] will suffice to conclude from theorem 3.4
that the posterior is Hellinger consistent. Other priors on &, like Gibbs-type
measures of full weak support [6] would also suffice. In fact, consistency applies
for any bounded, continuous (and some semi-continuous) kernel(s) z — p(x|z)
such that mixture densities satisfy (3.5).

To conclude we demonstrate that the approach advocated in this paper ap-
plies in counterexamples 1.1 and 1.2.

Example 7.2. Assume that the width of the support of pg is equal to one. The
model consists of densities 1 supported on [0, 1] shifted over 6 in R,

Po.y(x) = n(x — 0) 19,941y ().

Consider H with some prior Iy and a prior IIg on ©® = R with a Lebesgue
density that is continuous and strictly positive on all of R. Note that if 8 # ¢’
the Kullback-Leibler divergence of Py, with respect to Py, is infinite, for
all n,n" € H. As noted, KL-neighbourhoods do not have any extent in the 6-
direction, however, the construction of example 6.3 remains applicable. In fact,
in the present, fixed-width simplification, the situation is more transparent: if
we write Py = Py, n, and V =V UV_ with Vi ={Py,, : 0 > 0y+e¢,m € H} and
Vo =A{Py,, : 0 < by—¢€,n e H} for some € > 0, then we choose By = {Py,, :
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00+%€<0<90+€,77€H} and B_ :{Pg,,,:90—e<9<90—%e,n€H}, SO
that TI(By) > 0. Consider only o = 0 and notice that the mismatch in extent
of supports implies that,

Polp>0)<1—f(e) <1,

for all P € co(Vy), based on (6.2). If H is chosen such that for all P € Vi,
supgep. Po(p/q) < oo, then (6.3) follows (even regardless of the prior on H,
which is remarkable). Larger spaces H can be considered if the sets By are
restricted appropriately while maintaining II(By) > 0. Conclude that for the
estimation of an unknown 6y € R, Schwartz’s theorem does not apply, while
example 6.3 remains in effect.

Ezample 7.3. Recall example 1.2: the sample X1, Xo, ... consists of .i.d. integers
from a distribution P,, (a > 1), defined by,

1 1
pa(k) = Pa(X = ]f) = ZW’

for all £ > 2 (with normalization Z,). The parameter a is smooth and the Fisher
information is non-singular, so a can be estimated at parametric rate, but as
noted, there exists no prior for the parameter a such that condition (1.2) can
be satisfied for all Py in the model. Corollary 5.3 remains valid, however, and
demonstrates that the posterior converges at /n-rate. Because corollary 5.3 is
formulated for totally-bounded parameter spaces only, without a negligiblility
condition like (5.2), we restrict the parameter a to a bounded interval I = [1, L],
for some L > 1. (However the result below is expected to hold also without this
restriction.)

For any rate €, that is slower than n , write €, = n’l/zMn, with M,, — oo
and note that we only have to consider M, that diverge very slowly, i.e. €, that
are arbitrarily close to the parametric rate. Also note that there exist constants
My, My > 0 such that,

~1/2

M} (b—a)® < —Pylog(ps/pa) < M3(b—a)?, (7.1)

Define V,, = {P : H(P, Py) > Me,} for some M > 0. We cover V,, with Hellinger
balls V,,; (1 <i < N,,) of radius %Msn. Note that H(Py, P.) < Ms|c— b| for all
bcel, so N, =N(3Me,, Z,H) < N((M/2Ms)en, I, |- |) < 2Ms|I|/(Me,,).

Defining also B,, = {Q : —Pylog(dQ/dP,) < €2}, we note that B,, C {P, :
|b—a| < €,/M;}. Hence, for any a > 1, any P, € V,, and any P, with [b —a| <
€n/Ma, we have,

b
(I w1
Dy Z, = Za k*(log k)3 k¢ — Z.

because b < ¢ if M is chosen large enough. Since I is compact and I - R : b —
Zy is continuous, b — Z, is bounded, so that for every P. € V,, ;, the integrability
condition sup{P,(dP./dQ) : Q € By} < oo holds. Due to the second inequality
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of (7.1), any Borel prior on I of full support is a KL-prior. More specifically,
if we choose the uniform prior on I, II(B,,) > II(b € I : |b—a| < €,/M3) >
(|I|M3)~te,. Conclude that the conditions of corollary 5.3 are met for any rate
above n~1/ 2. s0 the posterior for a converges at parametric rate.

Appendix A: Two notes on supports

Remark A.1. Throughout the main text, the focus is on expectations of the
form Py(p/q)® where p and ¢ are probability densities and Py is the marginal
for the i.i.d. sample. Because the central point of lemma 2.3 concerns only Py-
expectations, an indicator 1y,,~0} () may be thought of as implicitly present in
all calculations; because we look at moments of p/g, an indicator 1p>0y (x) can
also be thought of as implicit; because we require finiteness of Py(p/q), ¢ > 0 is
implicit whenever pg > 0 and p > 0, so in expressions of this form an indicator
Lig>03 (z) is also implicit.

Remark A.2. It is easy to misinterpret KL-divergence in cases where distribu-
tions have mismatching domains. Le Cam (1986) and Le Cam-Yang (1990) make
it explicit that where ever a RN-derivative dPy/dPy, is used, it concerns only
the Py, -dominated part of Py. With that in mind we define the KL-divergence
as,

KL(00:0) = — Py, log 51];0 —/{ . log 22 (2) dz, (A1)
o z:po, (T

which connects properly with Schwartz’s proof for sufficiency of prior mass (since
with a Py, -distributed sample, log-likelihood ratios converge to KL-divergences
of the form (A.1)).

Appendix B: Some properties of Hellinger transforms

Given two finite measures p and v, the Hellinger transform is defined as follows

forall 0 <a <1: o 1-a
potir) = [ ()" () do

where ¢ is a o-finite measure that dominates both p and v (e.g. o = p+ v).
For P and @ such that Py(dP/dQ) < oo define dvpg = (dP/dQ)dP, and
note that,
dP\«
PO(E) = pa(vP,0, Po) = p1—a(Po,vP,Q)-
Properties of the Hellinger transform that are used in the main text are listed
in the following lemma, which extends lemma 6.3 in [21].

Lemma B.1. For a probability measure P and a finite measure v (with densities
p and r respectively), the function p : [0,1] = R : a — po(v, P) is convex on
[0, 1] with:

pa(v,P) = P(r>0), asalO, pa(v,P) = v(p>0), asatl
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Furthermore, the function o — po (v, P) is continuously differentiable on [0, 1]
with derivative,

dpe (v, P)
do

(which may be equal to —o0).

= Ploso (1) los(r/p),

Proof. The function a — e*¥ is convex on (0,1) for all y € [—o00, o), implying
the convexity of a — po(v, P) = P(r/p)* on (0,1). The function a — y* =
el°8¥ ig continuous on [0,1] for any y > 0, is decreasing for y < 1, increasing
for y > 1 and constant for y = 1. By monotone convergence, as « | 0,

V(];)>a1{o<p<r} T V(i—))ol{o<p<r} =v(0<p<r).

By the dominated convergence theorem (note that (p/r)/?1,>,} upper-bounds
(p/7r)*1p>ry for a < 1/2) we have,

«@ 0
v(B) Lpzny = v (8) 1z = v 2 1),

as « J 0. Combining the two preceding displays, we have p, (v, P) = P(p/r)* —
P(r > 0) as a | 0. Upon substitution of & by 1 — «, one finds that p, (v, P) —
vip>0)asatl.

Let ap € [0,1] be given. By the convexity of a — e®¥ for all y € R, the
map a — fo(y) = (e — e*¥) /(o — o) decreases to ye®¥ as a | ag, and it
increases to ye®°¥ as a 1 «ag. First consider the case that a > ag: for y < 0 we
have f,(y) <0, while for y > 0,

! 1
faly) < sup  ye®V < yeV < Zelatay,
ap<a’'<a €

so that fo(y) <0V e’le(o‘“)ylyzo. Consequently, we have:

(r)ao e(a_QO)lOg(r/p) — 1 \L (/r'

(e 7)) r
—) log(—), as a | ag,
p o — Qo p p

and is bounded above by 0V e~!(r/p)*0 21,5, for small € > o — g > 0, which
is P-integrable for small enough e. We conclude that,

= a (PalrP) = pay (4, P) L Pl (g)“" 1og(;’;), as o | aq,

by monotone convergence. For a < ag a similar argument can be given. Con-
vexity of a+— P 1,5¢ (r/p)® log(r/p) implies continuity of the derivative. |

Appendix C: Proofs

This section contains all proofs of theorems and lemmas in the main text.
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C.1. Proofs for section 2

Proof of proposition 2.1. For any A € o, := o(Xy,...,X,) and any model
subset U’ such that II(U’) > 0,

Ry (4) < / PHAYAIPI) + sup [P(4) ~ Py(A)]

Now assume that A is a null-set of P.'; since II(U’) > 0, [ P"(A)dlI(P|U’) = 0.
For some ¢ > 0, take U’ = {P : |P"(A) — PJ(A)| < €}, note that U’ contains
a total-variational neighbourhood and therefore a Hellinger neighbourhood, to
conclude that Pj'(A) < € for all € > 0. Since every Hellinger ball contains
a Kullback-Leibler-ball, (1.1) implies that II(U) > 0 for every Hellinger ball
U. O

Proof of lemma 2.3. For a set V covered by measurable Vi, ..., Vy, almost-sure
convergence per individual V; implies the assertion. So we fix some 1 < i < N
and note that,

PrI(Vi| Xq, ..., X,) < Pioin + PRIL(V; | Xy, ..o, X)) (1 — @in)-

By Fubini’s theorem,

dpP"
PrI(Vi| X1, ..., X)) (1 — i) = Pgl/ ﬁ(l — ¢in) dII(P)
Vi T (C.1)

n

dP
< II(V; Plr——

(1 - ¢i,n)~
From (2.3) we conclude that PII(V;| X1, .., X,) < e "Pi, for large enough n.
Apply Markov’s inequality to find that,

PRIV X1, X)) 2 e 200 ) < e,
so that the first Borel-Cantelli lemma guarantees,

Pé’o(limsup(H(VAXl, coy Xn) — 67%[)1’) > 0) =0.

n—oo
Replicating this argument for all 1 <7 < N, assertion (2.4) follows. |

Ezample C.1. Suppose that we wish to prove consistency relative to some metric
d on & but coverings of the model by d-balls are not finite. Then we may try
the following construction: for € > 0, we define W = {P € & : d(P, Py) > ¢}
and W, = {P € & : 2""1e < d(P,Py)) < 2¥¢}, (k > 1). Assume that the
covering numbers Ny := Ny (2¥~2¢, Wy, d) of the model subsets W}, (related to
the so-called Le Cam dimension of the model [26]) are finite. Let Vi 1,..., Vi n,
be d-balls of radius 25~2¢ covering Wj. Assume that for every d-ball V4 ;, (1 <
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i < Ny), there exists a test sequence (@x.;n)n>1 such that (2.3) is satisfied with
Dy, > d2(vk7l,’ Py). Then, for every n > 1,
<SS BmiXy LX) <Y Nee e
k>11<i< Ny k>1

If we show that the right-hand side goes to zero as n — oo, the posterior is
d-consistent.

Proof of lemma 2.4. According to lemma 6.1 of [21] (see the minimax theo-
rem 45.8 in Strasser (1985) [36] and [28], p. 478) there exists a test (¢,) that
minimizes the l.h.s. of (2.5) and,

apP» dP,
sup ( P'on + P'—=(1—¢,)) < su inf (P" + P —2(1— .
PEI‘)/( 0 ¢ 0 dP};I( (b )) PHGCOI()V"L) (;b 0 ¢ 0 dP,rl;[( ¢))
The infimal ¢ equals 1(gp, /gpri>1y. For any a € [0,1],

. [dP . AP\
/1{dPT,,/dP};[>1}dP0 +/ﬁ1{dpn/dpgg1}dpo < /(ﬁ) dFy,

which enables an upper-bound for testing power,

dP, . dP, \«

sup (P”¢+P"— 1—¢)§ sup  inf P”( ) ,
Preco(vi) L 0 dP]! ( ) Pucco(v) 0<a<i  © \dP]I

in terms of the Hellinger transform. O

The following lemma reduces the testing criterion to an n-independent con-
dition, c.f. (1.5).
Proof of lemma 2.5. Let 0 < a < 1 be given. Note that for all n > 1, PI[(A4) >

I1(B) PE'B(A) for all A € o(Xy,...,X,). Combining that with the convexity
of z — 7% on (0,00), we see that,

pg(%)a <1(B)~° Pg(di%f <1(B)~° Py/(ng)adH(QlB)-
(C.2)

With the use of Fubini’s theorem and lemma 6.2 in Kleijn and van der Vaart
(2006) [21] which says that Hellinger transforms factorize when taken over con-
vex hulls of products, we find:

dP, \ @
su inf II(B 70‘/P” "\ dII(Q|B
P,Lecor()vn) 0<a<1 (B) 0 (dQ”) (@IB)

< inf H(B)_O‘/ sup )Pg‘(%
< inf H(B)—a/[ sup Po(d—g)ardn(cgw).

T 0<a<1 Peco(v)  Nd

) an@lp)

T 0<a<l P, €co(Vn
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Applying (C.2) with a = 1, P, = P", and using that for all P € V, Py(dP/dQ)
is bounded uniformly over B, we see that also P3'(dP"/dPY) < co. By (2.5),
we obtain (2.7). O

C.2. Proofs for section 3

Proof of lemma 3.1. Assume that (3.2) holds. Lemma B.1 says that o —
Py(dP/dQ)% is convex and continuously differentiable on (0,a). So for all a €

(0, a),

AP\ dP\« dP
sup sup Pyl—=) <1+« sup sup Py|— ) log—. C.3
QeIJ)BPeII/)V O(dQ) - Qe%pe%/)[/ O(dQ) ng (C.3)
The function P P
«
a+— sup sup Py — ) log—,
s sup Po(G5) 18 G

is convex (hence continuous on (0, a) and upper-semi-continuous at 0) and, due
to (3.2), strictly negative at o = 0. As a consequence, there exists an interval
[0, 0] on which the function in the above display is strictly negative. Based
on (C.3) there exists an ag € [0, 1] such that supp g Po(dP/dQ)* < 1 and
we conclude that (3.1) holds. Conversely, assume that (3.2) does not hold. Let
PeW, Qe B and « € [0,1] be given; by Jensen’s inequality,

PO(Z—S)(X > eXp(aPo log 3—;) = eXp(a(PO log j?i — Pylog j—g()))

Therefore,

dP\ dQ dP
sup sup F (—) > ex (a sup —Fp lo —) ex (—a inf —Pylo —),
Qe%PeiI/)V '\dQ P Qe% 008 R, ) P\ plw T R,

which is greater than or equal to one for all a € [0, 1]. O

Proof of theorem 3.2. For every 1 < i < N, there exists a constant b; > 0 such
that for every P € W; := co(V;), —Pylog(dP/dP,) > b;. Denoting the Kullback-
Leibler radius of B by b > 0, we define B; = {P € & : —Pylog(dP/dPy) < b;Ab}
to satisfy (3.2). Note that, by assumption, II(B;) > 0 and supge g, Po(dP/dQ) <
oo for all P € &. Every total-variational neighbourhood of P, contains a
Kullback-Leibler neighbourhood, so combination of lemma 3.1, lemma 2.5 and
theorem 1.3 proves posterior consistency in Kullback-Leibler divergence c.f.
(3.4). |

Proof of theorem 3.4. Proposition 2.1 guarantees that P} < Pl for all n > 1.
For given € > 0, let V denote {P € & : H(P,Py) > 2¢}. Since & is totally
bounded in the Hellinger metric, there exist Pj,..., Py such that the model
subsets V; = {P € & : H(P,P;) < €} form a cover of V. On the basis of the
constant L of (3.5), define B = {Q € & : H(Q, Py) < €2/(4L) A €'}, where ¢
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is the Hellinger radius of B’. Since Hellinger balls are convex, we have for all
1<i<N,

p 1/2 9 _1l.
sup supP0<—> <1—32e"<e 4%,
Peco(V;) QeB q

N

By the Cauchy-Schwarz inequality, for every P € V|

an(2) < 2], 2], < 2 <
QeB q QeB'l q 112,Q 1q112,Q

According to lemmas 2.5 and 2.3, the posterior is consistent. O

Proof of theorem 3.5. Reasoning like in the introduction of subsection 3.2, but
now with Holder’s inequality, one finds,

P, (%)”T < p1yr(P, Po) +d, (P, Q) (Po(p/q)S/T)l/s

Let € > 0 be given and let V be the complement of a d,.-ball of radius 2¢. Cover
V by N d,-balls V4,...,Vy of radii ¢ (which are convex) and note that for all
1<i< Nand P €V, d.(P,Py) > e It is shown in the corollary of theorem 1
of [37] that,

1/2

M)I/Q(l _ idr(P, PO)ZT) 7

pl/r(POaP) < ( r

and with K = (2(r — 1)/r)/2, it follows that,

1/r
B(2)" < KO-t e 1 (n.Q)
Since (1 — z)1/2 <1 — 1a for 2 € (0,1), the choice § = (K/16)L~(/""De>" in
(3.6) guarantees that Py(p/q)'/" < K(1 — (1/16)¢*") forall 1 <i < N, P €V}
and @ € B. If s > r, Jensen’s inequality implies that supgecp Po(p/q) < oo;
if s < 7, supgep Po(p/q) < oo by assumption. According to lemma 2.5 and
lemma 2.3, the posterior is consistent. O

Proof of lemma 3.7. Continuity implies that every Kullback-Leibler ball around
Py contains an open neighbourhood of F. O

C.3. Proofs for section 4

Proof of theorem 4.1. For given V and n > 1, denote the cover of condition (3.)
by Vi,...,Vn, with tests ¢; ,, 1 <7 < N,. Define ,, = max; ¢; , and decom-
pose the n-th posterior for V' as follows,

PV N P X1, .., X)) (1 — ) + PRIL(V \ P X1, ..., Xn)-
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Note Pytpn < SN P¢in < Nyexp(—nL) < exp(—3nL), and,

(v N ynp(l,..., DL — )

< ZPO I(V; N P X1, Xn) (1 — 1)

=1
Ny
S H(‘/zmyn|X1;aXn)(1_¢z,n)
i=1
N,
~ dpP" —nL 7lnL
Szz:lglelp,POdPH( _(bi,n)SNne " <e2 ;

where we have followed the steps in the proof of theorem 1.3. Using again the
local prior predictive distribution pHIB of (2.6), the third term satisfies,

II(V\ Z,|X1,...,Xn) < PRII(Z\ 9n|X1, ey Xn)

B /ﬂ\yn Fy (jﬁ;)dH(P) ﬁ /@\ﬂn By (di];?;)dﬂ(P)

H(gz \ f@n) 1 7éKn
< W PES;;{)@W CSQIEIIJ)B [PO(p/Q)] <II(B)~ :

Like at the end of the proof of lemma 2.3, an application of the Borel-Cantelli
proves the assertion. O

Proof of theorem 4.3. By monotone convergence,

PYI(V[X1, ..., X) < PPI(Uin1Vi | X1, Xn) <3 BRTI(VA X, -, Xo).

i>1
We treat the terms in the sum separately with the help of test sequences (¢; ),
for all « > 1, following the proof of lemma 2.3:

n

(VX1 Xn) < 30 (Pigin + (V) sup Py dpn(
i>1

~6in)). (C4)

Like in the proof of lemma 2.5, the assumptions that supgp, Po(dP/dQ) < oo
and II(B;) > 0, imply that Pg(dP"/dP!l) < oo, for all P € V;. So ¢;, can be
chosen in such a way that,

n

P din + 1(V;) sup Fy dPH( — Pin)

p (C.5)
— inf (V;) P
PnESCl'lJI()VL-") 12 ( o ¢ + (V) odpn( cb))

by the minimax theorem. To minimize the r.h.s., choose ¢ as follows,

dpPm

X1y, X)) = 1{(X1,...,Xn) € 2™ (V)

(X1, X0) > 1},
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and follow the proof of lemma 2.5 to conclude that the r.h.s. of (C.5) is upper

bounded by,
oo (Vi) ap
inf [ su sup B ( }
020t (Bi)* Lpceo(viy geb dQ)
Combine with (C.4) to arrive at the assertion. O

Proof of corollary 4.4. Fix oo = 1/2 and B; = B in (4.2) and use (4.3) to arrive
at,
I(V|Xy,..., Xn) ST(B) 21— 7)™ Y TI(V;)'2,
i>1
(for some constant 0 < v < 1) which goes to zero at geometric rate, if (4.4)
holds, so that TI(V|X1,..., X,) =220, 0

Proof of corollary 4.5. Given € > 0, define V.= {P : H(P,Py) > ¢} and let
{Vi : i > 1} denote a countable collection of Hellinger balls of radius }e with
centre points in V that cover V, so that,

inf inf H(P, P > 3¢ C.6
121 peco(Vi) (P, Po) = ge. (C-6)

Inspection of the proof of lemma 3.1 reveals that it generalizes to the statement
that: P
inf supsup sup Po( ) <1,
0<a<l i>1 QEB Peco(V;) dQ

if and only if, B and the co(V;) are KL-separated:

dQ
sup —FPylog — < inf inf —PFPylog—.
Qe% 0708 dPo i>1 Peco(V;) 008 dPO

Note that (C.6) serves as a lower bound for the r.h.s. of the previous display,
which enables the choice B = {P € & : —Pylog(p/po) < €/4} to guarantee that
there exist constants 0 < o',y < 1 such that,

(V[Xy,..., X,) < TH(B) ™ (1 — )™ Y11V,
i>1

which goes to zero since II(B) > 0 and the sum is finite by assumption. O

C.4. Proofs for section 5

Proof of theorem 5.1. Fix n > 1 large enough to satisfy conditions (i) and (7).
According to lemma 2.5, there exist test functions ¢, ; : X" — [0,1] for all
1 <4 < N, such that, for all « € [0, 1],

dpPm
PO(bnz"" sup PO

PeV., dHH ( - (bn,i) < H(Bn)_aﬂ-Po (CO(Vn,i)7 By; a)n.
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Define v, = max; ¢, ; and decompose the n-th posterior for V,, = {P € & :
d(P, Py) > €,}, as follows,

H(VYn|X1a s 7Xn) < P(;Ll[}'n
+ PRIV, N P | X1y, X ) (L = ) + PRII(P \ | X1, .., X)),
The first term is upper-bounded as follows,

Np
o " oK _IVpe?
P(;Lwn < Z P(?d)n,i < NnH(Bn) TP, (CO(Vn,i)a By 05) < e( 2 D) y

i=1

for all « € [0, 1]. The second term is bounded by,

Nn
MV, N P, |X1, .., X)) (1= 9,) < Zpgln(vn,i\xl, LX) (1 =)

Nn n

dP
< P(;LH(VTLVZ|X175 )( d)nz <Z sup PO

Pe dHH ( - ¢n,1)
1 n,i

< NnH(Bn)_aﬂ'Po (CO(Vn,i)7Bn; a)" < e(%—L)nez

for all « € [0, 1]. The third term requires condition (i),

PRII(P2\ P | X1, Xn)

dpPm 1 dP™
- pr(E_Var(p) < ——— / pr(—%__\am(p)
/93\9% 0 (dP,{I) (B,) Jonm, ° (dPr?lB”)
K 2

(2 \ Zy) n K
— 7 su sup |Py(dP/d < e 2"n,
- II(By) Pe@ﬁ% Qegﬂ[ b(dP/ Q)] -

Choosing 0 < a < 2L/ K, all three contributions go to zero as n — oo. ([

Proof of lemma 5.2. Assume that (5.3) holds. Like in the proof of lemma 3.1,
we have for all a € (0, a),

dP\«
Po(Eo) <14 , C.7
a (i) = 1ot ©n

where the function z : [0,a) — R is given by,

a dP
z(a) = sup sup P log —.
(@)= sup sup, O(dQ> )

The function z is convex and increasing, hence continuous on (0, a) and upper-
semicontinuous at a = 0 and maximal at o = a. Clearly, we have,
dP

dP dQ
lim z(a) < sup sup Pylo = sup —Fylo —fmf —FPylog —,
A = S B, oo g — S~ 8 gy VR,
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and the right-hand side is less than or equal to —A. By the continuity of z,
there exists an a’ € (0,a) such that, z(a) < —2A for all a € (0,a’). Combining
(C.7) with the latter conclusion, we see that, for all & € (0,a’),

dl "
W <11 < e @ A
(B, W) = o<12f<1glé% i PO(dQ) sl-jeldse ’

where o = 1a. Conversely, assume that (5.3) does not hold. Let P € W, Q € B

and « € [0,1] be given; by Jensen’s inequality,

PO(ZQ) > exp(aPo log %) = exp(a(Po log% — Pylog 3;20))

Therefore, for all a € (0, 1),

—al
sup sup Po( ) >e . O
Qe Pew  NdQ

Proof of corollary 5.3. Take &, = &2 for all n > 1. Note that (5.4) implies that
II is a Kullback-Leibler prior, which implies that P} < P!l Let V,, = {P €
P . HP,P) > ¢,} and B, = {P € & : —Pylog(dP/dP,) < €2/8}. By
condition (7) there is a cover of V;, consisting of Hellinger balls of radii €, /2 of
order N,, = N(en, P, H) < exp(Lne?). Note that for every 1 < i < N,, and all
P € co(Vy.i), we have —Pylog(dP/dPy) > H?(P,Py) > (H(Vy, Po) — €,/2)% =
€2 /4, while —Pylog(dQ/dPy) < €2/8 for all Q € B,,. According to lemma 5.2,
the separation in Kullback-Leibler divergence between B,, and V,, implies that
TP, (co(Vn,i),Bn) < e~% for some a > 0. Possibly after rescaling of €, by
an n-independent constant (which leads to larger «, effectively), wp, satisfies
condition (5.1). The assertion then follows from theorem 5.1. |

C.5. Proofs for section 6

Proof of theorem 6.2. Let € > 0 be given and consider the (equivalent) metric
g O x 0O — [0,00) defined by ¢(0,6") = max{|0; — 01],|02 — 05|}. Define
V={Py, € Z:9(0,0) > €}. Concentrate on the cases & = 0+ and o = 1—;
pick 0 < § < f(e/o)/(2K) and define B as in theorem 6.2. Lemma B.1 says that
forall Pe V and Q € B,

() =R>0.

dPN\1- dPy
PO(dQ) 7/ dQ Lpo>0,p>0,g>0} AP

dP,
< P(py > 0) /‘ 2~ 1 1gn0y aP

dPO

<Pw>0)+ |7 - < P(po>0) + 3£(5),

sQHdQ rnQ
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by Holder’s inequality. Note that every total-variational neighbourhood of P
contains a model subset of the form B and, by assumption, II(B) > 0, so
that proposition 2.1 guarantees that PJ' < P! for all n > 1. For all P € V,
supgep Po(dP/dQ) < 1+ 5 f(e/o) < oo and for all Q € B, we have,

OgigilPo(g—g) < min{ Py(p > 0), P(po > 0)} + 1 £(£),
as an upper bound for testing power.

Choose Py, P with parameters (6,70) and (6,7), writing Po = Pg, ,.60.4) .m0
and P = Py, g,),n- By definition of V, the support intervals for p and po are
disjoint by an interval of length greater than or equal to €. Cover V by four
sets, V+,1 = {PG,n : 91 > 90,1 +ene H}7 V—,l = {PG,n : 01 < 00,1 BRIUAS H}a
V+72 = {Pg’n 10y > 00’2 +eneE H} and V,’Q = {P9J7 10y < 90’2 — €N € H}
For P € co(Vy 1), we have,

9011+6 00,1+¢€ 1 — 0
0) Z/ po(x)dxz/ 770( T 0l )diﬂ

90,1 00,1

Py(p

€/(00,2—060,1) p
= / no(z)dz > / no(z)dz > f(£),
0 0

using (6.2). For P € co(V_ 1), with some I > 1 write P = Zle A; Py with
Zf:l )\i =1 and )\i Z 0, R = P@hm for Hi = (9@1,9@2) with 9@1 S (90,1 — ¢ and
n; € H, for all 1 <4 < I. Note that,

I I 0;,1+¢€
P(poZO)ZZ/\iPi(pOZO)ZZ)\i/e pi(z) dx
i—1 i1 i
! ei’1+6 ]. xTr — 9 1
= )\7. i & dx
ZZ:; /(;i,1 i — 91‘,177 <9i,2 - 9i,1)
I €/(0i2—0;1) I g
=3 m@de= Y n [T nle)dez 1(2).
i=1 0 i=1 0

using (6.2). Analogously we obtain bounds for P € co(V, ) and P € co(V_ 2),
giving rise to the inequalities

sup. min{Py(p > 0), P(po > 0)} <1— f(£), (C.8)
Peco(V.)

for V. equal to Vi 1, V_ 1, V4 2 and V_ 5. Combination of lemma 2.5 and theo-
rem 1.3 now shows that,

H(g(0700) <6|X17"'7Xn)m1.

The topology associated with the metric g on © is equivalent to the restriction
to © of the usual norm topology on R?, so that consistency with respect to the
pseudo-metric g is equivalent to (6.3). O
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