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Abstract: We consider a dynamic version of the stochastic block model,
in which the nodes are partitioned into latent classes and the connection
between two nodes is drawn from a Bernoulli distribution depending on the
classes of these two nodes. The temporal evolution is modeled through a
hidden Markov chain on the nodes memberships. We prove the consistency
(as the number of nodes and time steps increase) of the maximum likeli-
hood and variational estimators of the model parameters, and obtain upper
bounds on the rates of convergence of these estimators. We also explore the
particular case where the number of time steps is fixed and connectivity
parameters are allowed to vary.
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1. Introduction

Random graphs are a suitable tool to model and describe interactions in many
kinds of datasets such as biological, ecological, social or transport networks.
Here we are interested in time-evolving networks, which is a powerful tool for
modeling real-world phenomena, where the role or behaviour of the nodes in the
network and the relationships between them are allowed to change over time.
Indeed, it is important to take into account the evolutionary behaviour of the
graphs, instead of just studying separate snapshots as static graphs. We focus on
graphs evolving in discrete time and refer to Holme (2015) for an introduction
to dynamic networks.

A myriad of dynamic graph models has been introduced in the past few
years, see for instance Zhang, Moore and Newman (2017). We focus here on
those which are based on the (static) stochastic block model (SBM, Holland,
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Laskey and Leinhardt, 1983) in which the nodes are partitioned into classes. In
the SBM, class memberships of the nodes are represented by latent variables
and the connection between two nodes is drawn from a distribution depending
on the classes of these two nodes (a Bernoulli distribution in the case of binary
graphs). A first dynamic version of the SBM with discrete time is proposed in
Yang et al. (2011). There, the nodes are partitioned intoQ classes and the graphs
are binary or weighted. The nodes are allowed to change membership over time,
and these changes are governed by independent Markov chains with values in
the Q classes, while the connection probabilities are constant over time. Xu and
Hero (2014) introduce a state-space model on the logit of the connection proba-
bilities for dynamic (binary) networks with connection probabilities and group
memberships varying over time. Unfortunately, their model presents parameter
identifiability issues (Matias and Miele, 2017). Xu (2015) proposes a stochastic
block transition model in which the presence or absence of an edge between two
nodes at a particular time affects the presence or absence of such an edge at a
future time. There, the nodes can change classes over time, new nodes can enter
the network, and the connection probabilities are allowed to vary over time.
The model in Matias and Miele (2017) and in Becker and Holzmann (2018) is
quite similar to that of Yang et al. (2011) except that it allows the connec-
tion probabilities to vary and the latter is moreover nonparametric. Bartolucci,
Marino and Pandolfi (2018) extend the model of Yang et al. (2011) to deal with
different forms of reciprocity in directed graphs, by directly modeling dyadic
relations and with the assumption that the dyads are conditionally indepen-
dent given the latent variables. Paul and Chen (2016) and Han, Xu and Airoldi
(2015) study multi-graph SBM, arising in settings including dynamic networks
and multi-layer networks where each layer corresponds to a type of edge. In
these two models, the nodes memberships stay constant over the layers. Pensky
(2019); Pensky et al. (2019) study a dynamic SBM for undirected and binary
edges where both connection probabilities and group memberships vary over
time, assuming that the connection probabilities between groups are a smooth
function of time. Xing, Fu and Song (2010) and Ho, Song and Xing (2011)
introduce dynamic versions of the mixed-membership stochastic block model,
allowing each actor to carry out different roles when interacting with different
peers. Zreik, Latouche and Bouveyron (2016) introduce the dynamic random
subgraph model, given a known decomposition of the graph into subgraphs, in
which the latent class membership depends on the subgraph membership and
the edges are categorical variables, their types being sampled from a distribution
depending on the latent classes of the two nodes. There, a state-space model is
used to characterize the temporal evolution of the latent classes proportions.

As far as estimation is concerned, different methods of inference are proposed
to estimate groups and model parameters. The maximum likelihood estimator
(MLE) is not tractable in the SBM, thus neither in its dynamic versions. Vari-
ational methods are rather popular to approximate that MLE (Xing, Fu and
Song, 2010; Ho, Song and Xing, 2011; Han, Xu and Airoldi, 2015; Paul and
Chen, 2016; Zreik, Latouche and Bouveyron, 2016; Matias and Miele, 2017;
Bartolucci, Marino and Pandolfi, 2018). Yang et al. (2011) rely on Gibbs sam-
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pling and simulated annealing. Pensky et al. (2019) propose an estimator of
the connection probabilities matrix at each time step by a discrete kernel-type
method and obtain a clustering of the nodes thanks to spectral clustering on
this estimated matrix. They also give an estimator for the number of clusters.
Spectral clustering algorithms are also used by Han, Xu and Airoldi (2015) on
the mean graph over time and by Liu et al. (2018) who use eigenvector smooth-
ing to get some similarity across time periods (and allow the number of classes
to be unknown and possibly varying over time).

Some theoretical results on the convergence of the procedures have been
proven, mainly for static graphs. In the static SBM, Celisse, Daudin and Pierre
(2012) prove the consistency of the MLE and variational estimates as the number
of nodes increases, and Bickel et al. (2013) establish their asymptotic normality.
Mariadassou and Matias (2015) have a different approach and give sufficient
conditions for the groups posterior distribution to converge to a Dirac mass lo-
cated at the actual groups configuration, for every parameter in a neighborhood
of the true one. Rohe, Chatterjee and Yu (2011) give asymptotic results on the
normalized graph Laplacian and its eigenvectors for the spectral clustering algo-
rithm, allowing the number of clusters to grow with the number of nodes. They
also provide bounds on the number of misclustered nodes, requiring an assump-
tion on the degree distribution. Lei and Rinaldo (2015) prove consistency for the
recovery of communities in the spectral clustering on the adjacency matrix, with
milder conditions on the degrees, and also extend this result to degree corrected
stochastic block models. Klopp, Tsybakov and Verzelen (2017) derive oracle
inequalities for the connection probabilities estimator and obtain minimax es-
timation rates, including the sparse case where the density of edges converges
to zero as the number of nodes increase thus extending previous results of Gao,
Lu and Zhou (2015). Gaucher and Klopp (2019) propose a bound on the risk
of the maximum likelihood estimator of network connection probabilities, and
show that it is minimax optimal in the sparse graphon model.

In the dynamic setting, fewer theoretical results have been established. Pen-
sky (2019) derives a penalized least squares estimator of the connection proba-
bilities adaptive to the number of blocks and which does not require knowledge
of the number of classes Q. She shows that it satisfies an oracle inequality. Under
the additional assumption that at most n0 nodes change groups between two
time steps, this estimator attains minimax lower bounds for the risk. She also
introduces a dynamic graphon model and shows that the estimators (that do
not require knowledge of a degree of smoothness of the graphon function) are
minimax optimal within a logarithmic factor of the number of time steps. Based
on the same dynamic SBM with at most n0 nodes changing groups between two
time steps, Pensky et al. (2019) give an upper bound for the (non asymptotic)
error of their estimators of the connection probabilities matrix and group mem-
berships (and also an estimator for the number of clusters). Han, Xu and Airoldi
(2015) show consistency (as the number of time steps increases but the num-
ber of nodes is fixed) of two estimators of the class memberships for dynamic
SBM (and more generally multi-graph SBM) in which the nodes memberships
are constant over time but the connection probabilities are allowed to vary and
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the considered graphs are binary and symmetric. They show that the spectral
clustering (on the mean graph over time) estimator of the class memberships
is consistent under some stationarity and ergodicity conditions on the connec-
tion probabilities. They also prove that the MLE of the class memberships is
consistent (i.e. that the fraction of misclustered nodes converges to 0) in the
general case (without any structure on the connection probabilities), provided
certain sufficient conditions are satisfied. In their multi-layer model, Paul and
Chen (2016) give minimax rates of misclassification under certain conditions on
the growth of the types of relations, number of nodes and number of classes,
extending the result of Han, Xu and Airoldi (2015).

Here, we consider a dynamic version of the binary SBM as in Yang et al.
(2011), where each node is allowed to change group membership at each time
step according to a Markov chain, independently of other nodes. We prove the
consistency of the connectivity parameter MLE and, under some additional con-
ditions, of the transition matrix MLE, when the number of nodes and of time
steps are increasing. We also give upper bounds on the rates of convergence
of these estimators. While these upper bounds are known to be non optimal in
the static case where asymptotic normality is obtained with classical parametric
rates of convergence (Bickel et al., 2013), these are the first to be established
in a dynamic setting for the MLE. As already mentioned, the log-likelihood
is intractable (except for very small values of the number of nodes n and the
number of time steps T ), as it requires to sum over QnT terms. Thus, while
its consistency remains an important result, the estimator cannot be computed.
A possible alternative is to rely on a variational estimator to approximate the
MLE (see for instance Matias and Miele, 2017). We also establish the consis-
tency of the variational estimator of the connectivity parameter and under some
additional assumptions, that of the variational estimator of the transition ma-
trix and obtain the same upper bounds on the rates of convergence as for the
MLE. In the particular case where the number of time steps T is fixed, we also
consider the model of Matias and Miele (2017), in which the connection proba-
bilities are allowed to vary over time and generalise these results with only the
number of nodes increasing. When T = 1, we not only recover the results of
Celisse, Daudin and Pierre (2012) but extend these by giving rates of conver-
gence. Unlike the model studied in Han, Xu and Airoldi (2015) and Paul and
Chen (2016), the node memberships in our model evolve over time. Our context
is different from Pensky (2019) that focuses on least squares estimate.

This article is organized as follows. Section 2 introduces our model and nota-
tion. More precisely, Section 2.1 describes the dynamic stochastic block model
as introduced in Yang et al. (2011), Section 2.2 gives the assumptions we make
on the model parameters, Section 2.3 describes the dynamic stochastic block
model as in Matias and Miele (2017) for the finite time case and Section 2.4
states the expression of the likelihood of this model to define the MLE. Section 3
establishes the consistency and upper bounds of the rates of convergence for the
MLE of the connection probabilities in Section 3.1 and of the transition ma-
trix in Section 3.2. Section 4 is dedicated to variational estimators: Section 4.1
and 4.2 establish the consistency of the variational estimators of the connection
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probabilities and transition matrix, respectively, along with upper bounds of the
associated rates of convergence. All the proofs of the main results are postponed
to Section 5, except those for the fixed T case that are in Appendix A, while
the more technical proofs are deferred to Appendix B.

2. Model and notation

2.1. Dynamic stochastic block model

We consider a set of n vertices, forming a sequence of binary undirected graphs
with no self-loops at each time t = 1, . . . , T . The case of a set of directed
graphs, with or without self-loops, may be handled similarly. These vertices are
assumed to be split into Q latent classes, and we denote by Zt

i the label of the
i-th vertex at time t. Letting Zi = (Z1

i , . . . , Z
T
i ), we assume that the {Zi}1≤i≤n

are independent and identically distributed (iid) and each Zi is a homogeneous
and stationary Markov chain with transition probabilities

P(Zt+1
i = l | Zt

i = q) = γql, ∀1 ≤ q, l ≤ Q

where Γ = (γql)1≤q,l≤Q is a stochastic matrix, i.e. with nonnegative coefficients
and with each row summing to one. We let α = (α1, . . . , αQ) the stationary
distribution of the Markov chain. For any i ∈ �1, n�, the probability distribution
of Zi is then

Pθ(Zi) = αZ1
i

T−1∏
t=1

γZt
iZ

t+1
i

.

We will also denote Zt = (Zt
1, . . . , Z

t
n) the configuration at time t and Z1:T =

(Z1, . . . , ZT ) = (Zt
i )1≤t≤T,1≤i≤n.

Consider Xt = {Xt
ij}1≤i,j≤n the symmetric binary adjacency matrix of the

graph at time t such that for every nodes 1 ≤ i, j ≤ n, we have Xt
ii = 0 and

Xt
ij = Xt

ji. Each Xt follows a stochastic block model so that, conditional on the
latent groups {Zt

i}1≤i≤n, the {Xt
ij}1≤i,j≤n are independent Bernoulli random

variables
Xt

ij | Zt
i = q, Zt

j = l ∼ B(πql)

where (πql)1≤q,l≤Q ∈ [0, 1]Q
2

are the connectivity parameters. More precisely,
conditional on the whole sequence of latent groups {Zt

i}1≤t≤T,1≤i≤n, the graphs
X1:T = X1, . . . , XT are assumed to be independent, each Xt having a dis-
tribution depending only on {Zt

i}1≤i≤n. The model is thus parameterized by
θ = (Γ, π), with Γ = (γql)1≤q,l≤Q and π = (πql)1≤q,l≤Q. Note that π is a symmet-
ric matrix in the undirected setup. We denote by Pθ (resp. Eθ) the probability
distribution (resp. expectation) of all the random variables {Zt

i , X
t
ij}t≥1;i,j≥1,

under the parameter value θ. In the following, we assume that we observe
{Xt

ij}1≤i,j,≤n, 1≤t≤T and we denote the true parameter value by θ∗ = (Γ∗, π∗) =
((γ∗

ql)1≤q,l≤Q, (π
∗
ql)1≤q,l≤Q), with corresponding probability distribution Pθ∗ and
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expectation Eθ∗ , and by α∗ = (α∗
q)1≤q≤Q the (true) stationary distribution cor-

responding to the transition matrix Γ∗. We also let 1A denote the indicator
function of the set A and Ac the complementary set of A in the ambient set.
For any integer M ≥ 1, the set �1,M� is the set of integers between 1 and M .
For any finite set A, let |A| denote its cardinality. For any configuration z1:T ,
we denote Nq(z

t) (resp. Nql(z
1:T )) the number of nodes assigned to class q by

the configuration zt (resp. the number of transitions from class q to class l in
configuration z1:T ), that is

Nq(z
t) = |{i ∈ �1, n�; zti = q}| and Nql(z

1:T ) =

T−1∑
t=1

n∑
i=1

1zt
i=q,zt+1

i =l. (1)

We also define for any two parameters θ = (Γ, π) and θ′ = (Γ′, π′) the following
distances

‖π − π′‖∞ = max
1≤q,l≤Q

|πql − π′
ql| and ‖Γ− Γ′‖∞ = max

1≤q,l≤Q
|γql − γ′

ql|.

2.2. Assumptions

The assumptions we make on the model parameters are the following.

1. For every 1 ≤ q 	= q′ ≤ Q, there exists some l ∈ �1, Q� such that πql 	= πq′l.
2. There exists some 0 < δ < 1/Q such that for any (q, l) ∈ �1, Q�2, we have

γql ∈ [δ, 1− δ].
3. There exists some ζ > 0 such that for any (q, l) ∈ �1, Q�2, we have πql ∈

[ζ, 1− ζ].

Assumption 1 is necessary for identifiability of the model. Indeed, if it does not
hold, we cannot distinguish between classes q and q′. Assumption 2 ensures that
each Markov chain Zi is irreducible, aperiodic and recurrent. This assumption
could be weakened at the cost of technicalities. In particular, it implies that
the stationary distribution α exists. Moreover, Assumption 2 also implies that
for any q ∈ �1, Q�, we have αq ∈ [δ, 1 − δ]. Note that this can be seen as
an equivalent of Assumption 2 in Celisse, Daudin and Pierre (2012) (on the
probability distribution of the class memberships) in the dynamic case. Celisse,
Daudin and Pierre (2012) however also have an additional assumption that is
an empirical version of this assumption (which states that the observed class
proportions are bounded away from 0) that is true with high probability. We
do not make such an assumption and use the fact that the probability of this
event converges to 1. Assumption 3 is technical and could also be weakened with
additional technicalities. For example, Celisse, Daudin and Pierre (2012) also
consider the case πql ∈ {0, 1} (i.e. πql ∈ {0, 1} ∪ [ζ, 1 − ζ]) whereas we do not.
The whole parameter set defined by these constraints is denoted by Θ. In the
following, we assume that θ∗ ∈ Θ.

In what follows, we work up to label permutation on the groups. Indeed, as
in any latent group model, the parameters can only be recovered up to label
switching on the latent groups. We then define the following notation for any
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permutation σ ∈ SQ with SQ the set of permutations on �1, Q�

θσ = (Γσ, πσ) =
(
(γσ(q)σ(l))1≤q,l≤Q, (πσ(q)σ(l))1≤q,l≤Q

)
.

2.3. Finite time case

If the number of time steps T is fixed, it is possible to let the connection prob-
abilities vary over time. We then consider this case, the connection parameter
now being π1:T = (π1, . . . , πT ) with πt = (πt

ql)1≤q,l≤Q for every t ∈ �1, T � and

πt
ql = Pθ(X

t
ij = 1 | Zt

i = q, Zt
j = l) for any (t, q, l) ∈ �1, T � × �1, Q�2. Note that

this is the more general model of Matias and Miele (2017), in which the model
parameter is θ = (Γ, π1:T ). Moreover, we introduce the following Assumptions 1’
and 3’ that are alternate versions of Assumptions 1 and 3 respectively for the
finite time case.

1’. For every t ∈ �1, T �, for every 1 ≤ q 	= q′ ≤ Q, there exists some l ∈ �1, Q�
such that πt

ql 	= πt
q′l.

3’. There exists some ζ > 0 such that for every t ∈ �1, T �, for any (q, l) ∈
�1, Q�2, we have πt

ql ∈ [ζ, 1− ζ].

Assumption 1’ (resp. Assumption 3’) expresses that for every t ∈ �1, T �, πt

satisfies Assumption 1 (resp. Assumption 3). We also introduce the following
additional assumption, which ensures (together with Assumption 1’) that the
model is identifiable (up to a label permutation). See Matias and Miele (2017).

4. For every q ∈ �1, Q�, for every t1, t2 ∈ �1, T �, πt1
qq = πt2

qq := πqq and
{πqq; q ∈ �1, Q�} are Q distinct values.

Assumption 4 states that the diagonal of π does not change over time, and
that its values are distinct. We denote by ΘT the set of parameters satisfying
Assumptions 1’, 2, 3’ and 4. As before, we assume in the following that θ∗ ∈ ΘT

in the fixed T case. We also define as before for any π1:T and π′ 1:T the distance

‖π1:T − π′ 1:T ‖∞ = max
(q,l,t)∈�1,Q�2×�1,T �

|πt
ql − π′ t

ql |.

2.4. Likelihood

The conditional log-likelihood and the log-likelihood write

	c(θ;Z
1:T ) = logPθ(X

1:T | Z1:T ) =

T∑
t=1

logPθ(X
t | Zt)

=
T∑

t=1

∑
1≤i<j≤n

Xt
ij log πZt

iZ
t
j
+ (1−Xt

ij) log(1− πZt
iZ

t
j
)

and 	(θ) = logPθ(X
1:T ) = log

⎛
⎝ ∑

z1:T∈�1,Q�nT

e�c(θ;z
1:T )Pθ(Z

1:T = z1:T )

⎞
⎠ ,

(2)
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respectively. We then denote the maximum likelihood estimator (MLE) by

θ̂ = (Γ̂, π̂) = argmax
θ∈Θ

	(θ).

In the next section, we study separately the consistency of the connectivity
parameter estimator π̂ and that of the transition matrix estimator Γ̂.

3. Consistency of the maximum likelihood estimate

3.1. Connectivity parameter

We first prove the consistency of the maximum likelihood estimator of the con-
nectivity parameter π = (πql)1≤q,l≤Q when the number of nodes and time steps
increase. We denote the normalized log-likelihood by

Mn,T (Γ, π) =
2

n(n− 1)T
	(θ) =

2

n(n− 1)T
logPθ(X

1:T )

and introduce the quantities, for any A = (aql)1≤q,l≤Q ∈ A with A the set of
Q×Q stochastic matrices,

M(π,A) =
∑

1≤q,l≤Q

α∗
qα

∗
l

∑
1≤q′,l′≤Q

aqq′all′ [π
∗
ql log πq′l′ + (1− π∗

ql) log(1− πq′l′)]

and M(π) = sup
A∈A

M(π,A) = M(π, Āπ), (3)

where Āπ = argmaxA∈A M(π,A). It is worth noticing that M(π), which will be
the limiting value for Mn,T (Γ, π) when n and T increase (see below), does not
depend on Γ.

Theorem 1. For any sequence {rn,T }n,T≥1 increasing to infinity, if log(T ) =
o(n), we have for all ε > 0

Pθ∗

(
sup

(Γ,π)∈Θ

|Mn,T (Γ, π)−M(π)| > εrn,T√
n

)
−−−−−−→
n,T→+∞

0.

We then conclude on the consistency of the maximum likelihood estimator
of the connection probabilities with the following corollary. Note that we also
obtain an upper bound of the rate of convergence of this estimator.

Corollary 1. For any sequence {rn,T }n,T≥1 increasing to infinity such that
rn,T = o(n1/4) and if log(T ) = o(n), we have for every ε > 0

Pθ∗

(
min
σ∈SQ

‖π∗ − π̂σ‖∞ >
εrn,T
n1/4

)
−−−−−→
n,T→∞

0.

We want to get equivalent consistency results if the number of time steps
T is fixed and only the number of nodes n increases. In that case, denoting
by θ̂ = (Γ̂, π̂1:T ) the MLE of θ, we have the following Corollary that is the
equivalent of Corollary 1.
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Corollary 2. If the number of time steps T is fixed, we have for every ε > 0
and for any sequence {rn}n≥1 increasing to infinity such that rn = o(n1/4)

Pθ∗

(
min
σ∈SQ

‖π∗1:T − π̂1:T
σ ‖∞ >

εrn
n1/4

)
−−−−→
n→∞

0,

denoting π̂1:T
σ = (π̂t

σ)t∈�1,T �.

This result states that minσ∈SQ
‖π∗1:T − π̂1:T

σ ‖∞ converges to 0 in Pθ∗ -
probability as n increases, i.e. the MLE of the connection probabilities is consis-
tent up to label switching, and gives an upper bound of the rate of convergence
of the MLE of the connection probabilities. The particular case when T = 1 is
then a stronger result than that of Celisse, Daudin and Pierre (2012) where no
rate of convergence is given.

Remark 1. Note that in Corollaries 1 and 2, the results still hold for any
sequences rn,T and rn increasing to infinity, respectively. However, we are in-
terested in sequences increasing slowly to infinity, giving the strongest results,
namely the smallest lower bounds. Indeed, whenever these assumptions are not
satisfied, the lower bounds appearing in the inequalities are larger, and the results
may even become trivial.

3.2. Latent transition matrix

We now prove that the MLE for the transition matrix Γ is consistent when the
number of nodes and time steps increase.

Lemma 1. Any critical point θ̆ = (Γ̆, π̆) of the likelihood function 	(·) is such
that Γ̆ satisfies the fixed point equation

∀(q, l) ∈ �1, Q�2, γ̆ql =

∑T−1
t=1

∑n
i=1 Pθ̆

(
Zt
i = q, Zt+1

i = l |X1:T
)

∑T−1
t=1

∑n
i=1 Pθ̆ (Z

t
i = q |X1:T )

. (4)

There are two different possible cases for the MLE θ̂

• Either θ̂ is a critical point of the likelihood function. Then Γ̂ satisfies
equation (4).

• Or θ̂ is not a critical point (this can happen if it belongs to the boundary
of Θ) and we assume that there exists Γ̆ such that (Γ̆, π̂) ∈ Θ and (Γ̆, π̂)
satisfies equation (4) (at least for n and T large enough). We then choose as
our estimator (Γ̆, π̂). By an abuse of notation, we will denote this estimator

θ̂ = (Γ̂, π̂) and call it MLE in the following.

In what follows, for any fixed configuration z1:T , any θ ∈ Θ and any ε > 0,
we consider the event

E(z1:T , θ, ε) :=
{
Pθ(Z

1:T 	= z1:T |X1:T )

Pθ(Z1:T = z1:T |X1:T )
> ε

}
.
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The following result establishes that asymptotically, any estimator that correctly
estimates the transition probability matrix π also recovers the group member-
ships. This result is similar to Theorem 1 in Mariadassou and Matias (2015).

Theorem 2. For any estimator θ̆ ∈ Θ (at least for n and T large enough), if
log(T ) = o(n), there exist some positive constants C,C1, C2, C3, C4 such that for
any ε > 0, for any positive sequence {yn,T }n,T≥1 such that log(1/yn,T ) = o(n),
any η ∈ (0, δ) and for n and T large enough, we have

Pθ∗

(
E(Z1:T , θ̆, εyn,T )

)
≤ QT exp(−2η2n) + Pθ∗ (‖π̆ − π∗‖∞ > vn,T )

+ CnT

{
exp

[
− (δ − η)2C1n+ C2 log(nT )− C4 log(εyn,T )

]

+ exp

[
− C3

(log(nT ))2

nv2n,T
+ 3n log(nT )

]}
,

with {vn,T }n,T≥1 a sequence decreasing to 0 such that vn,T = o(
√

log(nT )/n).

Theorem 3. If log(T ) = o(n), for any ε > 0 and {rn,T }n,T≥1 any sequence

increasing to infinity such that rn,T = o
(√

nT/ log n
)
, we have for any σ ∈ SQ

Pθ∗

(
‖Γ̂σ − Γ∗‖∞ > εrn,T

√
logn√
nT

)
≤ Q2(3Q+ 1)Pθ∗(‖π̂σ − π∗‖∞ > vn,T ) + o(1)

with {vn,T }n,T≥1 a sequence decreasing to 0 such that vn,T = o(
√

log(nT )/n).

Corollary 3. Assume that log(T ) = o(n) and minσ∈SQ
‖π̂σ−π∗‖∞ = oPθ∗ (vn,T )

with {vn,T }n,T≥1 a sequence decreasing to 0 such that vn,T = o(
√

log(nT )/n).
Then for any ε > 0 and {rn,T }n,T≥1 any sequence increasing to infinity such

that rn,T = o
(√

nT/ log n
)
, we have the convergence

Pθ∗

(
min
σ∈SQ

‖Γ̂σ − Γ∗‖∞ > εrn,T

√
logn√
nT

)
−−−−−→
n,T→∞

0.

Remark 2. Note that the upper bound obtained in Corollary 1 on the rate of
convergence in probability of π̂ does not ensure that minσ∈SQ

‖π̂σ − π∗‖∞ =
oPθ∗ (vn,T ) holds. While the latter has never been established (to our knowledge),
it is a reasonable assumption.

We want an equivalent result than that of Corollary 3 when the number of
time steps T is fixed, and the connection probabilities are varying over time
(the connection parameter being π = π1:T = (π1, . . . , πT ) with πt = (πt

ql)q,l).
For that, we are going to need an equivalent of Theorem 2 in that case.

Theorem 4. For any fixed T ≥ 2, for any estimator θ̆ ∈ ΘT (at least for n
large enough), there exist some positive constants C,C1, C2, C3, C4 such that for
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any ε > 0, for any positive sequence {yn}n≥1 such that log(1/yn) = o(n), any
η ∈ (0, δ) and for n large enough, we have

Pθ∗

(
E(Z1:T , θ̆, εyn)

)
≤ QT exp(−2η2n) + Pθ∗

(
‖π̆1:T − π∗1:T ‖∞ > vn

)
+ CnT

{
exp

[
− (δ − η)2C1n+ C2 log(nT )− C4 log(εyn)

]

+ exp

[
− C3

(log(nT ))2

nv2n
+ 5n log(nT )

]}
,

whenever {vn}n≥1 is a sequence decreasing to 0 such that vn = o(
√

log(n)/n).

The following corollary gives the expected result.

Corollary 4. Let the number of time steps T ≥ 2 be fixed. Assume that
minσ∈SQ

‖π̂1:T
σ − π∗1:T ‖∞ = oPθ∗ (vn) with {vn}n≥1 a sequence decreasing to

0 such that vn = o(
√

log(n)/n). Then for any ε > 0 and {rn}n≥1 any sequence

increasing to infinity such that rn = o
(√

n/ log n
)
, we have the convergence

Pθ∗

(
min
σ∈SQ

‖Γ̂σ − Γ∗‖∞ > εrn

√
logn√
n

)
−−−−→
n→∞

0.

The proof of Corollary 4 is the same as that of Corollary 3 but relying on
Theorem 4 instead of Theorem 2 and is therefore omitted.

Remark 3. As in Remark 1 for Corollaries 1 and 2, the results of Corollaries 3
and 4 still hold for sequences rn,T and rn increasing to infinity at any rate.

4. Variational estimators

In practice, we cannot compute the MLE except for very small values of n and T ,
because it involves a summation over all the QnT possible latent configurations.
We cannot either use the Expectation-Maximization (EM) algorithm to approx-
imate it because it involves the computation of the conditional distribution of
the latent variables given the observations which is not tractable. A common
solution is to use the Variational Expectation-Maximization (VEM) algorithm
that optimizes a lower bound of the log-likelihood (see for example Daudin, Pi-
card and Robin (2008)). Let us denote Zt

iq = 1Zt
i=q for every t, i and q. Using

the same approach as in Matias and Miele (2017) for the VEM algorithm in the
dynamic SBM, we consider a variational approximation of the conditional distri-
bution of the latent variable Z1:T given the observed variableX1:T in the class of

probability distributions parameterized by χ = (τ, η) =
(
{τ tiq}t,i,q, {ηtiql}t,i,q,l

)
of the form

Qχ(Z
1:T ) =

n∏
i=1

Qχ(Z
1
i )

T∏
t=2

Qχ(Z
t
i | Zt−1

i )
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=
n∏

i=1

⎧⎨
⎩

[
Q∏

q=1

(τ1iq)
Z1

iq

]
T−1∏
t=1

∏
1≤q,l≤Q

(
ηtiql
τ tiq

)Zt
iqZ

t+1
il

⎫⎬
⎭ ,

i.e. with Qχ such that EQχ

[
Zt
iqZ

t+1
il

]
= ηtiql and EQχ

[
Zt
iq

]
= τ tiq. Notice that

Qχ(Z
t+1
i = l | Zt

i = q) = ηtiql/τ
t
iq = ηtiql/

∑Q
q′=1 η

t
iqq′ . The quantity to optimize

in the VEM algorithm is then

J (χ, θ) = 	(θ)−KL(Qχ,Pθ(·|X1:T )) = EQχ

[
logPθ(X

1:T , Z1:T )
]
+H(Qχ)

with KL(·, ·) denoting the Kullback-Leibler divergence and H(·) denoting the
entropy. Define

χ̂(θ) = (τ̂(θ), η̂(θ)) = argmax
χ∈[0,1]T2n2Q3

J (χ, θ),

and the variational estimator of θ

θ̃ = (Γ̃, π̃) = argmax
θ∈Θ

J (χ̂(θ), θ).

Moreover, we denote χ̃ = (τ̃ , η̃) = χ̂(θ̃) = (τ̂(θ̃), η̂(θ̃)). In practice, the VEM
algorithm is an iterative algorithm that maximizes the function J alternatively
with respect to χ and θ in order to find θ̃.

4.1. Connectivity parameter

Theorem 5. For any sequence {rn,T }n,T≥1 increasing to infinity, if log(T ) =
o(n), we have for all ε > 0

Pθ∗

(
sup
θ∈Θ

∣∣∣∣ 2

n(n− 1)T
J (χ̂(θ), θ)−M(π)

∣∣∣∣ > εrn,T√
n

)
−→

n,T→+∞
0.

We conclude on the consistency of the connection probabilities variational
estimators as n and T increase thanks to the following corollary.

Corollary 5. For any sequence {rn,T }n,T≥1 increasing to infinity such that
rn,T = o(n1/4), we have for any ε > 0

1

2
Pθ∗

(
min
σ∈SQ

‖π̃σ − π∗‖∞ >
εrn,T
n1/4

)
−−−−−→
n,T→∞

0.

We have the equivalent following corollary for a fixed number of time steps.

Corollary 6. If the number of time steps T is fixed, we have for every ε > 0
and for any sequence {rn}n≥1 increasing to infinity such that rn = o(n1/4)

1

2
Pθ∗

(
min
σ∈SQ

‖π̃1:T
σ − π∗1:T ‖∞ >

εrn
n1/4

)
−−−−→
n→∞

0.

Remark 4. As for Corollaries 1 to 4, the results of Corollaries 5 and 6 still
hold for any sequences rn,T and rn increasing to infinity.
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4.2. Latent transition matrix

We now prove that Γ̃ is consistent when the number of nodes and time steps
increase.

Lemma 2. Any critical point (χ̆, θ̆) of the function J (·, ·) is such that Γ̆ satisfies
the fixed-point equation

∀(q, l) ∈ �1, Q�2, γ̆ql =

∑n
i=1

∑T−1
t=1 η̆tiql∑n

i=1

∑T−1
t=1 τ̆ tiq

. (5)

We assume that (χ̃, θ̃) is a critical point of J (·, ·). Then we have the fixed-
point equation

∀(q, l) ∈ �1, Q�2, γ̃ql =

∑n
i=1

∑T−1
t=1 η̂tiql(θ̃)∑n

i=1

∑T−1
t=1 τ̂ tiq(θ̃)

. (6)

The following theorem gives the consistency and a rate of convergence of this
estimator, under an assumption on the rate of convergence of π̃.

Theorem 6. If log(T ) = o(n), for any ε > 0 and {rn,T }n,T≥1 any sequence

increasing to infinity such that rn,T = o
(√

nT/ log n
)
and for any σ ∈ SQ

Pθ∗

(
‖Γ̃σ − Γ∗‖∞ > εrn,T

√
logn√
nT

)
≤ 2Q2(3Q+ 1)Pθ∗ (‖π̃σ − π∗‖∞ > vn,T )

+ o(1)

with {vn,T }n,T≥1 a sequence decreasing to 0 such that vn,T = o(
√

log(nT )/n).

Corollary 7. Assume that log(T ) = o(n) and minσ∈SQ
‖π̃σ−π∗‖∞ = oPθ∗ (vn,T )

with {vn,T }n,T≥1 a sequence decreasing to 0 such that vn,T = o(
√

log(nT )/n).
Then for any ε > 0 and {rn,T }n,T≥1 any sequence increasing to infinity such

that rn,T = o
(√

nT/ log n
)
, we have the convergence

Pθ∗

(
min
σ∈SQ

‖Γ̃σ − Γ∗‖∞ > εrn,T

√
logn√
nT

)
−−−−−→
n,T→∞

0.

The proof of Corollary 7 is the same as that of Corollary 3, using Theorem 6
instead of Theorem 3 and is therefore omitted.

When the number of time steps T is fixed and the connection probabilities
can vary over time, we have the following Corollary that is the equivalent of
Corollary 7.

Corollary 8. Let the number of time steps T ≥ 2 be fixed. Assume that
minσ∈SQ

‖π̃1:T
σ − π∗1:T ‖∞ = oPθ∗ (vn) with {vn}n≥1 a sequence decreasing to

0 such that vn = o(
√

log(n)/n). Then for any ε > 0 and {rn}n≥1 any sequence



4170 L. Longepierre and C. Matias

increasing to infinity such that rn = o
(√

n/ logn
)
, we have the convergence

Pθ∗

(
min
σ∈SQ

‖Γ̃σ − Γ∗‖∞ > εrn

√
logn√
n

)
−−−−→
n→∞

0.

The proof of Corollary 8 is the same as that of Corollary 7 but relying on
Theorem 4 instead of Theorem 2 and is therefore omitted.

Remark 5. As for Corollaries 1 to 6, the results of Corollaries 7 and 8 still
hold for any sequences rn,T and rn increasing to infinity.

5. Proofs of main results

5.1. Proof of Theorem 1

The proof follows the lines of the proof of Theorem 3.6 in Celisse, Daudin and
Pierre (2012). Nonetheless, our result is sharper as we establish an upper bound
of the rate of convergence (in probability) of the normalised likelihood. We fix
some θ ∈ Θ and introduce the quantities

ẑ1:T = argmax
z1:T∈�1,Q�nT

logPθ(X
1:T | Z1:T = z1:T ), (7)

Z̃1:T = argmax
z1:T∈�1,Q�nT

Eθ∗

[
logPθ(X

1:T | Z1:T = z1:T )
∣∣∣ Z1:T

]
. (8)

Note that Z̃1:T is a random variable that depends on Z1:T and that

ẑ1:T = argmax
z1:T∈�1,Q�nT

T∑
t=1

logPθ(X
t | Zt = zt)

=

(
argmax
z∈�1,Q�n

logPθ(X
1 | Z1 = z), . . . , argmax

z∈�1,Q�n

logPθ(X
T | ZT = z)

)
. (9)

Similarly, for any t ∈ �1, T �, we have

Z̃t = argmax
z∈�1,Q�n

Eθ∗
[
logPθ(X

t | Zt = z) | Zt
]
.

We bound the difference between Mn,T (Γ, π) and M(π) by introducing three
intermediate terms so that we can write, for any sequence {rn,T }n,T≥1 and any
ε > 0

Pθ∗

(
sup
θ∈Θ

|Mn,T (Γ, π)−M(π)| > εrn,T√
n

)

≤ Pθ∗

(
sup
θ∈Θ

∣∣∣∣ 2

n(n− 1)T
logPθ(X

1:T )

− 2

n(n− 1)T
logPθ(X

1:T | Z1:T = ẑ1:T )

∣∣∣∣ > εrn,T
3
√
n

)
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+ Pθ∗

(
sup
θ∈Θ

∣∣∣∣ 2

n(n− 1)T
logPθ(X

1:T | Z1:T = ẑ1:T )

− 2

n(n− 1)T
Eθ∗

[
logPθ(X

1:T | Z1:T = Z̃1:T )
∣∣∣ Z1:T

] ∣∣∣∣ > εrn,T
3
√
n

)

+ Pθ∗

(
sup
θ∈Θ

∣∣∣∣ 2

n(n− 1)T
Eθ∗

[
logPθ(X

1:T | Z1:T = Z̃1:T )
∣∣∣ Z1:T

]

−M(π)
∣∣ > εrn,T

3
√
n

)
. (10)

In the following, we prove separately the convergence (in Pθ∗ -probability) to
zero of the three terms of this sum (while controlling for the rate of these
convergences). Before starting, let us remark that we have

logPθ(X
1:T | Z1:T = z1:T )

=

T∑
t=1

∑
1≤i<j≤n

Xt
ij log πzt

iz
t
j
+ (1−Xt

ij) log(1− πzt
iz

t
j
) (11)

and Eθ∗

[
logPθ(X

1:T | Z1:T = z1:T )
∣∣∣ Z1:T

]

=

T∑
t=1

∑
1≤i<j≤n

π∗
Zt

iZ
t
j
log πzt

iz
t
j
+ (1− π∗

Zt
iZ

t
j
) log(1− πzt

iz
t
j
). (12)

In particular, for every t ∈ �1, T �, we have

ẑt = argmax
z=(z1,...,zn)∈�1,Q�n

∑
1≤i<j≤n

Xt
ij log πzizj + (1−Xt

ij) log(1− πzizj ),

Z̃t = argmax
z=(z1,...,zn)∈�1,Q�n

∑
1≤i<j≤n

π∗
Zt

iZ
t
j
log πzizj + (1− π∗

Zt
iZ

t
j
) log(1− πzizj ).

First term of the right-hand side of (10). We let

T1 :=

∣∣∣∣ 2

n(n− 1)T
logPθ(X

1:T )− 2

n(n− 1)T
logPθ(X

1:T | Z1:T = ẑ1:T )

∣∣∣∣
≤ 2

n(n− 1)T

T∑
t=1

∣∣logPθ(X
t |X1:t−1)− logPθ(X

t | Zt = ẑt)
∣∣ . (13)

Lemma 3. For every t ∈ �1, T �, we have∣∣logPθ(X
t|X1:t−1)− logPθ(X

t|Zt = ẑt)
∣∣ ≤ ∣∣logPθ(Z

t = ẑt|X1:t−1)
∣∣ .

Going back to (13) and applying Lemma 3, we get

T1 ≤ 2

n(n− 1)T

T∑
t=1

∣∣logPθ(Z
t = ẑt |X1:t−1)

∣∣
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≤ − 2

n(n− 1)T

T∑
t=1

logPθ(Z
t = ẑt |X1:t−1).

Now, using classical dependency rules in directed acyclic graphs (see e.g. Lau-
ritzen, 1996) combined with Assumption 2, we get

T1 ≤ − 2

n(n− 1)T

T∑
t=1

log
∑

zt−1∈�1,Q�n

{
Pθ(Z

t = ẑt | Zt−1 = zt−1)

× Pθ(Z
t−1 = zt−1 |X1:t−1)

}

≤ − 2

n(n− 1)T

T∑
t=1

log
∑

zt−1∈�1,Q�n

δnPθ(Z
t−1 = zt−1 |X1:t−1)

≤ − 2

n(n− 1)T

T∑
t=1

n log δ =
2

n− 1
log(1/δ).

This implies that Pθ∗(supθ∈Θ T1 > εrn,T /(3
√
n)) = 0 as soon as εrn,T /

√
n ≥

6 log(1/δ)/(n− 1). Then for any sequence {rn,T }n,T≥1 increasing to infinity, for
any ε > 0, we have that Pθ∗(supθ∈Θ T1 > εrn,T /(3

√
n)) → 0 as n and T increase.

Second term of the right-hand side of (10). Let us denote

T2(Z
1:T ) :=

∣∣∣∣ 2

n(n− 1)T
logPθ(X

1:T | Z1:T = ẑ1:T )

− 2

n(n− 1)T
Eθ∗

[
logPθ(X

1:T |Z1:T = Z̃1:T )
∣∣∣ Z1:T

] ∣∣∣∣.
For the sake of clarity, we study this term on the event {Z1:T = z∗1:T } where
z∗1:T ∈ �1, Q�nT is a fixed configuration. This event induces the definition of
Z̃1:T following Equation (8) as

Z̃1:T = argmax
z1:T∈�1,Q�nT

Eθ∗

[
logPθ(X

1:T | Z1:T = z1:T )
∣∣∣ Z1:T = z∗1:T

]
,

or equivalently for every t ∈ �1, T �,

Z̃t = argmax
z=(z1,...,zn)∈�1,Q�n

∑
1≤i<j≤n

π∗
z∗t
i z∗t

j
log πzizj + (1− π∗

z∗t
i z∗t

j
) log(1− πzizj ).

By definition of ẑ1:T and Z̃1:T respectively, we have the two inequalities

logPθ(X
1:T | Z1:T = ẑ1:T ) ≥ logPθ(X

1:T | Z1:T = Z̃1:T )
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and

Eθ∗

[
logPθ(X

1:T | Z1:T = Z̃1:T )
∣∣∣ Z1:T = z∗1:T

]
≥ Eθ∗

[
logPθ(X

1:T | Z1:T = ẑ1:T )
∣∣∣ Z1:T = z∗1:T

]
,

implying the lower and upper bounds

logPθ(X
1:T | Z1:T = Z̃1:T )− Eθ∗

[
logPθ(X

1:T | Z1:T = Z̃1:T )
∣∣∣ Z1:T = z∗1:T

]
≤ logPθ(X

1:T | Z1:T = ẑ1:T )− Eθ∗

[
logPθ(X

1:T | Z1:T = Z̃1:T )
∣∣∣ Z1:T = z∗1:T

]
≤ logPθ(X

1:T |Z1:T = ẑ1:T )−Eθ∗

[
logPθ(X

1:T | Z1:T = ẑ1:T )
∣∣∣ Z1:T = z∗1:T

]
.

Taking the absolute value gives us an upper bound for T2(z
∗1:T )

T2(z
∗1:T )

≤ max
z1:T∈{ẑ1:T ,Z̃1:T }

2

n(n− 1)T

∣∣∣∣ logPθ(X
1:T | Z1:T = z1:T )

− Eθ∗

[
logPθ(X

1:T | Z1:T = z1:T )
∣∣∣ Z1:T = z∗1:T

] ∣∣∣∣.
Using Equations (11) and (12), we then obtain the following upper bound for
T2(z

∗1:T )

T2(z
∗1:T )

≤ max
z1:T∈{ẑ1:T ,Z̃1:T }

∣∣∣∣∣∣
2

n(n− 1)T

T∑
t=1

∑
1≤i<j≤n

(Xt
ij − π∗

z∗t
i z∗t

j
) log

(
πzt

iz
t
j

1− πzt
iz

t
j

)∣∣∣∣∣∣ .
We use the following concentration result to conclude.

Lemma 4. Let ε, β > 0 and {xn,T }n,T≥1 a sequence of positive real numbers.
We let P∗

θ∗(·) denote the probability conditional on {Z1:T = z∗1:T } under param-
eter θ∗, i.e. P∗

θ∗(·) = Pθ∗(· | Z1:T = z∗1:T ). Denoting Λ = 2 log[(1 − ζ)/ζ] > 0,
we have for any θ ∈ Θ

P∗
θ∗

⎛
⎝ sup

z1:T∈�1,Q�nT

sup
π∈[ζ,1−ζ]Q2

2

n(n− 1)T

∣∣∣∣∣∣
T∑

t=1

∑
1≤i<j≤n

(Xt
ij − π∗

z∗t
i z∗t

j
)

× log

(
πzt

iz
t
j

1− πzt
iz

t
j

) ∣∣∣∣∣∣ > ε

⎞
⎠

≤ P∗
θ∗

[
(1+β)Λ√
n(n− 1)T/2

+
Λ

√
xn,T /2√

n(n− 1)T/2
+

(
1

β
+

1

3

)
(Λ/2)xn,T

n(n− 1)T/2
>ε

]
+2e−xn,T

≤ 12Ω/(n(n−1)T )>ε +2e−xn,T (14)

with Ω = (1+β)Λ
√

n(n− 1)T/2+Λ
√

n(n− 1)Txn,T /4+(1/β+1/3)(Λ/2)xn,T .
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Let us choose xn,T = log(n) in the above lemma. For any ε > 0, for any
sequence {rn,T }n,T≥1 increasing to infinity, we have for n and T large enough

εrn,T
3
√
n

≥ 2Ω

n(n− 1)T
.

Then for n and T large enough, the first term in the right-hand side of inequality
(14) is equal to 0 and we have

P∗
θ∗

(
sup
θ∈Θ

T2(z
∗1:T ) >

εrn,T
3
√
n

)
≤ 2

n

and Pθ∗

(
sup
θ∈Θ

T2(Z
1:T ) >

εrn,T
3
√
n

)

≤
∑
z∗1:T

P∗
θ∗

(
sup
θ∈Θ

T2(z
∗1:T ) >

εrn,T
3
√
n

)
Pθ∗(Z1:T = z∗1:T ) ≤ 2

n
.

Third term of the right-hand side of (10). Let us denote

T3(Z
1:T ) :=

∣∣∣∣ 2

n(n− 1)T
Eθ∗

[
logPθ(X

1:T | Z1:T = Z̃1:T )
∣∣∣ Z1:T

]
−M(π)

∣∣∣∣
=

∣∣∣∣∣ 2

n(n− 1)T

T∑
t=1

Eθ∗

[
logPθ(X

t | Zt = Z̃t)
∣∣∣ Zt

]
−M(π, Āπ)

∣∣∣∣∣ .
For any fixed configuration zt ∈ �1, Q�n, analogous to Equation (12), we write

Eθ∗

[
logPθ(X

t | Zt = zt)
∣∣∣ Zt

]
=

∑
1≤i<j≤n

π∗
Zt

iZ
t
j
log πzt

iz
t
j
+ (1− π∗

Zt
iZ

t
j
) log(1− πzt

iz
t
j
)

=
1

2

∑
1≤i 	=j≤n

π∗
Zt

iZ
t
j
log πzt

iz
t
j
+ (1− π∗

Zt
iZ

t
j
) log(1− πzt

iz
t
j
)

=
1

2

∑
1≤q,l,q′,l′≤Q

∑
1≤i 	=j≤n

(
π∗
ql log πq′l′

+ (1− π∗
ql) log(1− πq′l′)

)
1{Zt

i=q,Zt
j=l,zt

i=q′,zt
j=l′}

=
1

2

∑
1≤q,l,q′,l′≤Q

Cqq′(Z
t, zt)Cll′(Z

t, zt)
(
π∗
ql log πq′l′ + (1− π∗

ql) log(1− πq′l′)
)
,

where Cqq′(Z
t, zt) = |{i ∈ �1, n�;Zt

i = q, zti = q′}| is the (random variable)
number of nodes classified in group q in the current (random) configuration Zt,
while they belong to group q′ in (deterministic) configuration zt. Recall that
Nq(z

t) is the number of nodes assigned to class q by the configuration zt and
let us denote atqq′ = aqq′(Z

t, zt) = Cqq′(Z
t, zt)/Nq(Z

t) the (random) proportion
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of vertices from class q in Zt attributed to class q′ by zt. We write

2

n(n− 1)
Eθ∗

[
logPθ(X

t | Zt = zt)
∣∣∣ Zt

]

=
∑

1≤q,l,q′,l′≤Q

Nq(Z
t)Nl(Z

t)

n(n− 1)
atqq′a

t
ll′

(
π∗
ql log πq′l′ + (1− π∗

ql) log(1− πq′l′)
)

:= Φt(At, π),

with At = (atqq′)1≤q,q′≤Q.

Now extending these notations to the case where zt = Z̃t, we let Ãt =
(ãtqq′)1≤q,q′≤Q where ãtqq′ = aqq′(Z

t, Z̃t). We remark that the definition of Z̃t

implies that Ãt = argmaxAt∈At(Z1:T ) Φ
t(At, π) with At(Z1:T ) the (random)

subset of stochastic matrices defined for every t ∈ �1, T � by

At(Z1:T ) =
{
A = (nql/Nq(Z

t))1≤q,l≤Q;nql ∈ �0, Nq(Z
t)�,

Q∑
l=1

nql = Nq(Z
t)

}
.

Let us also denote Āt
π = argmaxA∈At(Z1:T ) M(π,A). Then

sup
θ∈Θ

T3(Z
1:T ) ≤ sup

π∈[ζ,1−ζ]Q2

1

T

T∑
t=1

∣∣∣Φt(Ãt, π)−M(π, Āπ)
∣∣∣

≤ sup
π∈[ζ,1−ζ]Q2

1

T

T∑
t=1

∣∣∣Φt(Ãt, π)−M(π, Āt
π)

∣∣∣
+

1

T

T∑
t=1

sup
π∈[ζ,1−ζ]Q2

∣∣M(π, Āt
π)−M(π, Āπ)

∣∣ . (15)

We start by stating a concentration lemma on the random variable Nq(Z
t) for

any q ∈ �1, Q� and any t ∈ �1, T �.

Lemma 5. For any θ ∈ Θ and any η ∈ (0, δ), let

Ωη(θ) :=

{
z1:T ∈ �1, Q�nT ; ∀t ∈ �1, T �, ∀q ∈ �1, Q�,

Nq(z
t)

n
≥ αq − η

}
.

Then Pθ

(
Z1:T ∈ Ωη(θ)

)
≥ 1−QT exp(−2η2n).

Building on the previous concentration lemma, the following one gives the
convergence in Pθ∗ -probability of the second term in the right-hand side of (15).

Lemma 6. For any ε > 0, any η ∈ (0, δ) and {rn,T }n,T≥1 any positive sequence,

Pθ∗

(
1

T

T∑
t=1

sup
π∈[ζ,1−ζ]Q2

∣∣M(π, Āt
π)−M(π, Āπ)

∣∣ > εrn,T
6
√
n

)

≤ QT exp
(
−2η2n

)
+ 1n≤6c

√
n/[εrn,T (δ−η)] (16)

with c = 6(1− δ)2(1− ζ) log(1/ζ)Q4.
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Then taking any η ∈ (0, δ), for any ε > 0, for any sequence {rn,T }n,T≥1

increasing to infinity, we have the following inequality for n and T large enough

rn,T >
6c
√
n

ε(δ − η)n
, (17)

implying that the probability in Lemma 6 converges to 0 as n and T increase
for any ε > 0, as long as log T = o(n). Now, for the first term in the right-hand
side of (15), note that we have for every π and every t{

Φt(Ãt, π) ≥ Φt(Āt
π, π) because Ãt = argmaxA∈At Φt(A, π)

M(π, Āt
π) ≥ M(π, Ãt) because Āt

π = argmaxA∈At M(π,A).

Then, either M(π, Āt
π) ≤ Φt(Ãt, π) and

0 ≤ Φt(Ãt, π)−M(π, Āt
π) ≤ Φt(Ãt, π)−M(π, Ãt)

or M(π, Āt
π) ≥ Φt(Ãt, π) and

0 ≤ M(π, Āt
π)− Φt(Ãt, π) ≤ M(π, Āt

π)− Φt(Āt
π, π).

In both cases, we get that |Φt(Ãt, π)−M(π, Āt
π)| ≤ supA∈A |Φt(A, π)−M(π,A)|

for every t and π, thus obtaining the upper bound

sup
π∈[ζ,1−ζ]Q2

1

T

T∑
t=1

∣∣∣Φt(Ãt, π)−M(π, Āt
π)

∣∣∣
≤ 1

T

T∑
t=1

sup
π∈[ζ,1−ζ]Q2

sup
At∈A

∣∣Φt(At, π)−M(π,At)
∣∣ .

Letting

Δ(ζ) = sup
π∈[ζ,1−ζ]

sup
π∗∈[ζ,1−ζ]

|π∗ log π + (1− π∗) log(1− π)| ∈ (0,+∞)

and recalling that 0 ≤ aql ≤ 1 (for every q, l ∈ �1, Q�) for every A =
(aql)1≤q,l≤Q ∈ A, we have

sup
π∈[ζ,1−ζ]Q2

sup
At∈A

∣∣Φt(At, π)−M(π,At)
∣∣

≤ sup
π∈[ζ,1−ζ]Q2

sup
At∈A

∑
1≤q,l,q′,l′≤Q

∣∣∣∣
(
Nq(Z

t)Nl(Z
t)

n(n− 1)
− α∗

qα
∗
l

)
atqq′a

t
ll′

×
(
π∗
ql log πq′l′ + (1− π∗

ql) log(1− πq′l′)
) ∣∣∣∣

≤ Δ(ζ)Q2
∑

1≤q,l≤Q

∣∣∣∣Nq(Z
t)Nl(Z

t)

n(n− 1)
− α∗

qα
∗
l

∣∣∣∣ .
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Finally, we bound the first term of the right-hand-side of (15) as follows

sup
π∈[ζ,1−ζ]Q2

1

T

T∑
t=1

∣∣∣Φt(Ãt, π)−M(π, Āt
π)

∣∣∣
≤ Δ(ζ)Q2

∑
1≤q,l≤Q

1

T

T∑
t=1

∣∣∣∣Nq(Z
t)Nl(Z

t)

n(n− 1)
− α∗

qα
∗
l

∣∣∣∣ . (18)

Applying Markov’s Inequality, we obtain

Pθ∗

(
sup

π∈[ζ,1−ζ]Q2

1

T

T∑
t=1

∣∣∣Φt(Ãt, π)−M(π, Āt
π)

∣∣∣ > εrn,T
6
√
n

)

≤
∑
q,l

Pθ∗

(
1

T

T∑
t=1

∣∣∣∣Nq(Z
t)Nl(Z

t)

n(n− 1)
− α∗

qα
∗
l

∣∣∣∣ > εrn,T
6Δ(ζ)Q4

√
n

)

≤ 6Δ(ζ)Q4
√
n

εrn,T

∑
q,l

1

T

T∑
t=1

Eθ∗

[∣∣∣∣Nq(Z
t)Nl(Z

t)

n(n− 1)
− α∗

qα
∗
l

∣∣∣∣
]

≤ 6Δ(ζ)Q4
√
n

εrn,T

∑
q,l

Eθ∗

[∣∣∣∣Nq(Z
1)Nl(Z

1)

n(n− 1)
− α∗

qα
∗
l

∣∣∣∣
]
.

The following lemma gives an upper bound of the expectation appearing in the
previous inequality, for any q, l ∈ �1, Q�.

Lemma 7. For any q, l ∈ �1, Q� and any t ∈ �1, T �, we have the following
inequality

Eθ∗

[∣∣∣∣Nq(Z
t)Nl(Z

t)

n(n− 1)
− α∗

qα
∗
l

∣∣∣∣
]
≤ 2

√
n

n− 1
.

This leads to

Pθ∗

(
sup

π∈[ζ,1−ζ]Q2

1

T

T∑
t=1

∣∣∣Φt(Ãt, π)−M(π, Āt
π)

∣∣∣ > εrn,T
6
√
n

)
≤ 12Δ(ζ)Q6n

εrn,T (n− 1)
.

Then for any ε > 0, for any sequence {rn,T }n,T≥1 increasing to infinity, we have
the convergence

Pθ∗

(
sup

π∈[ζ,1−ζ]Q2

1

T

T∑
t=1

∣∣∣Φt(Ãt, π)−M(π, Āt
π)

∣∣∣ > εrn,T /(6
√
n)

)
−−−−−→
n,T→∞

0.
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We proved the convergence to 0 of the three terms in the right-hand side of (10)
for any sequence {rn,T }n,T≥1 increasing to infinity and as long as log T = o(n).
This gives the expected result and concludes the proof.

5.2. Proof of Corollary 1

To prove this corollary, we establish the following lemma that allows us to
obtain a rate of convergence of π̂ to π∗ from a rate of convergence of Mn,T to
M. Note that this lemma is a bit more general than what we need and gives an
equivalent result when the number of time steps T is fixed, which will be useful
for Corollary 2.

Lemma 8. Let {Fn,T }n,T≥1 be any random functions on the set Θ (resp.
ΘT ) and M (resp. MT ) defined as before. Assume that there exists a sequence
{vn,T }n,T≥1 (resp. {vn}n≥1) a sequence decreasing to 0 such that for every ε > 0,
we have the following convergence as n, T → ∞ (resp. n → ∞)

Pθ∗

(
sup

(Γ,π)∈Θ

|Fn,T (Γ, π)−M(π)| > εvn,T

)
−−−−−→
n,T→∞

0

(
resp. Pθ∗

(
sup

(Γ,π)∈ΘT

∣∣Fn,T (Γ, π
1:T )−MT (π1:T )

∣∣ > εvn

)
−−−−→
n→∞

0

)
.

If for any n and T , θ̂ = (Γ̂, π̂) (resp. θ̂ = (Γ̂, π̂1:T )) is defined as the maximizer
of Fn,T on the set Θ, (resp. ΘT ) we have the following convergence

Pθ∗

(
min
σ∈SQ

‖π̂σ − π∗‖∞ > ε
√
vn,T

)
−−−−−→
n,T→∞

0

(
resp. Pθ∗

(
min

σ1,...,σT∈SQ

‖π̂1:T
σ1:T − π∗1:T ‖∞ > ε

√
vn

)
−−−−→
n→∞

0

)

with π̂1:T
σ1:T = (π̂t

σt)t∈�1,T �.

The result of Corollary 1 is then a direct consequence of Theorem 1 (choosing
the sequence {r2n,T }n,t≥1) and Lemma 8 applied with Fn,T = Mn,T .

5.3. Proof of Theorem 2

The proof follows the lines of the proof of Theorem 3.8 in Celisse, Daudin and
Pierre (2012). Nonetheless, our result is sharper as we will establish an upper
bound of the rate of convergence (in probability) of the quantity at stake. For
any ε > 0, any sequence {yn,T }n,T≥1 and η ∈ (0, δ), we write

Pθ∗(E(Z1:T , θ̆, εyn,T ))

=
∑

z∗1:T∈�1,Q�nT

Pθ∗(E(z∗1:T , θ̆, εyn,T );Z1:T = z∗1:T ) ≤ Pθ∗(Z1:T ∈ Ωc
η(θ

∗))
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+
∑

z∗1:T∈Ωη(θ∗)

{
Pθ∗

(
Pθ̆

(
Z1:T 	= z∗1:T |X1:T

)
Pθ̆ (Z

1:T = z∗1:T |X1:T )
> εyn,T

∣∣∣ Z1:T = z∗1:T

)

× Pθ∗
(
Z1:T = z∗1:T

) }
(19)

with Ωη(θ
∗) as defined in Lemma 5. We will establish that there exist some

positive constants C,C1, C2, C3, C4 such that for any fixed configuration z∗1:T ∈
Ωη(θ

∗), any ε > 0, any positive sequence {yn,T }n,T≥1 such that log(1/yn,T ) =
o(n) and n and T large enough, we have

Pθ∗

[
Pθ̆(Z

1:T 	= z∗1:T |X1:T )

Pθ̆(Z
1:T = z∗1:T |X1:T )

> εyn,T

∣∣∣ Z1:T = z∗1:T
]

≤ Pθ∗
(
‖π̆ − π∗‖∞ > vn,T | Z1:T = z∗1:T

)
+ CnT

{
exp

[
− (δ − η)2C1n+ C2 log(nT ) + C4 log(1/(εyn,T ))

]

+ exp

[
− C3

(log(nT ))2

nv2n,T
+ 3n log(nT )

]}
. (20)

Combined with (19) and applying Lemma 5, this gives the desired result. So
now we focus on establishing (20).

In what follows, we consider a fixed configuration z∗1:T ∈ Ωη(θ
∗) and in-

troduce the Hamming distance between z∗1:T and any other configuration z1:T

defined as

‖z1:T − z∗1:T ‖0 =

T∑
t=1

n∑
i=1

1zt
i 	=z∗t

i
.

We let P∗
θ∗(·) denote the probability conditional on {Z1:T = z∗1:T } under pa-

rameter θ = θ∗, i.e. P∗
θ∗(·) = Pθ∗(· | Z1:T = z∗1:T ). In the following, we will

often use the fact that the variables {Xt
ij} are independent under P∗

θ∗ (with
mean value π∗

z∗t
i z∗t

j
) so that we can rely on Hoeffding’s Inequality. We introduce

a sequence {vn,T }n,T≥1 decreasing to 0 and Ωn,T the event defined as

Ωn,T = {‖π̆ − π∗‖∞ ≤ vn,T }.

We bound the probability of interest in (20) by splitting it on the two com-
plementary events Ωn,T and Ωc

n,T . For any ε > 0 and any positive sequence
{yn,T }n,T≥1

P∗
θ∗

[
Pθ̆(Z

1:T 	= z∗1:T |X1:T )

Pθ̆(Z
1:T = z∗1:T |X1:T )

> εyn,T

]

≤ P∗
θ∗

(
Ωc

n,T

)
+ P∗

θ∗

[{
Pθ̆(Z

1:T 	= z∗1:T |X1:T )

Pθ̆(Z
1:T = z∗1:T |X1:T )

> εyn,T

}
∩ Ωn,T

]
. (21)
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Thus, the proof of (20) boils down to establishing the desired upper bound on
the second term appearing in the right-hand side of (21). We have

P∗
θ∗

[{
Pθ̆(Z

1:T 	= z∗1:T |X1:T )

Pθ̆(Z
1:T = z∗1:T |X1:T )

> εyn,T

}
∩ Ωn,T

]

≤
nT∑
r=1

∑
z1:T ;

‖z1:T −z∗1:T ‖0=r

P∗
θ∗

[{
Pθ̆(Z

1:T = z1:T |X1:T )

Pθ̆(Z
1:T = z∗1:T |X1:T )

>
εyn,T

Qr(nT )r+1

}
∩ Ωn,T

]
,

by using the bound (Q−1)r
(
nT
r

)
≤ Qr(nT )r on the number of terms in the sum

over {z1:T ; ‖z1:T − z∗1:T ‖0 = r} (for each value of r). Then,

P∗
θ∗

[{
Pθ̆(Z

1:T 	= z∗1:T |X1:T )

Pθ̆(Z
1:T = z∗1:T |X1:T )

> εyn,T

}
∩ Ωn,T

]

≤
nT∑
r=1

∑
z1:T ;

‖z1:T −z∗1:T ‖0=r

P∗
θ∗

[{
log

Pθ̆(Z
1:T = z1:T |X1:T )

Pθ̆(Z
1:T = z∗1:T |X1:T )

> log(εyn,T )− r logQ− (r + 1) log(nT )

}
∩ Ωn,T

]

≤
nT∑
r=1

∑
z1:T ;

‖z1:T −z∗1:T ‖0=r

P∗
θ∗

[{
log

Pθ̆(Z
1:T = z1:T |X1:T )

Pθ̆(Z
1:T = z∗1:T |X1:T )

> − log(1/(εyn,T ))− 3r log(nT )

}
∩ Ωn,T

]
, (22)

as long as nT ≥ Q. For any configuration z1:T such that ‖z1:T − z∗1:T ‖0 = r, we
denote by r(1), . . . , r(T ) the number of differences between the two configura-
tions at each time step t ∈ �1, T �, i.e. r(t) = ‖zt − z∗t‖0 such that r =

∑
t r(t).

Moreover, for any parameter π, we define Dn,T (z
1:T , π) the subset of indexes

(i, j, t) ∈ �1, n�2 × �1, T � such that i < j for which the parameter π differs
between the configuration z∗1:T and z1:T , namely

Dn,T (z
1:T , π) :=

{
(i, j, t) ∈ In,T ;πzt

iz
t
j
	= πz∗t

i z∗t
j

}
,

with In,T = {(i, j, t) ∈ �1, n�2 × �1, T �; i < j} the set of indexes over which we
sum to compute the conditional log-likelihood. In what follows, we abbreviate
to D∗ (resp. D̆), the set Dn,T (z

1:T , π∗) (resp. Dn,T (z
1:T , π̆)). Next lemma gives

a decomposition of the main term at stake in (22).
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Lemma 9. We have the decomposition

log
Pθ̆(Z

1:T = z1:T |X1:T )

Pθ̆(Z
1:T = z∗1:T |X1:T )

= U1 + U2 − U3,

where

U1 :=
∑

(i,j,t)∈D∗

(
Xt

ij log
π∗
zt
iz

t
j

π∗
z∗t
i z∗t

j

+ (1−Xt
ij) log

1− π∗
zt
iz

t
j

1− π∗
z∗t
i z∗t

j

)

+
n∑

i=1

log
ᾰz1

i

ᾰz∗1
i

+
T−1∑
t=1

n∑
i=1

log
γ̆zt

iz
t+1
i

γ̆z∗t
i z∗t+1

i

, (23)

U2 :=
∑

(i,j,t)∈D∗∪D̆

log

[
1 +

(π̆zt
iz

t
j
− π∗

zt
iz

t
j
)(Xt

ij − π∗
zt
iz

t
j
)

π∗
zt
iz

t
j
(1− π∗

zt
iz

t
j
)

]
, (24)

U3 :=
∑

(i,j,t)∈D∗∪D̆

log

[
1 +

(π̆z∗t
i z∗t

j
− π∗

z∗t
i z∗t

j
)(Xt

ij − π∗
z∗t
i z∗t

j
)

π∗
z∗t
i z∗t

j
(1− π∗

z∗t
i z∗t

j
)

]
. (25)

Combining (22) and Lemma 9, we obtain

P∗
θ∗

⎡
⎣

⎧⎨
⎩

∑
z1:T 	=z∗1:T

Pθ̆(Z
1:T = z1:T |X1:T )

Pθ̆(Z
1:T = z∗1:T |X1:T )

> εyn,T

⎫⎬
⎭ ∩ Ωn,T

⎤
⎦

≤
nT∑
r=1

∑
z1:T ;

‖z1:T −z∗1:T ‖0=r

P∗
θ∗

[ {
U1 + U2 − U3 > − log

(
1

εyn,T

)
− 3r log(nT )

}
∩ Ωn,T

]
.

(26)

We then decompose

P∗
θ∗

[{
U1 +U2 − U3 > − log

(
1

εyn,T

)
− 3r log(nT )

}
∩ Ωn,T

]

≤ P∗
θ∗

[{
U1 +U2 − U3>− log

(
1

εyn,T

)
− 3r log(nT )

}
∩ Ωn,T ∩ {|U3| ≤ r log(nT )}

]
+ P∗

θ∗ [Ωn,T ∩ {|U3| > r log(nT )}]

≤ P∗
θ∗

[{
U1 +U2 > − log

(
1

εyn,T

)
− 4r log(nT )

}
∩ Ωn,T

]
+ P∗

θ∗ [Ωn,T ∩ {|U3| > r log(nT )}]

≤ P∗
θ∗

[
U1 > − log

(
1

εyn,T

)
− 5r log(nT )

]
+P∗

θ∗ [Ωn,T ∩ {|U2| > r log(nT )}]

+ P∗
θ∗ [Ωn,T ∩ {|U3| > r log(nT )}] . (27)
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We handle these three terms separately in the following. From now on, we
consider a configuration z1:T such that ‖z1:T − z∗1:T ‖0 = r =

∑
t r(t).

First term in the right-hand side of (27). Recall that U1 is given by (23).
We can further decompose this term

U1 =
∑

(i,j,t)∈D∗

(
(Xt

ij − π∗
z∗t
i z∗t

j
) log

π∗
zt
iz

t
j

π∗
z∗t
i z∗t

j

1− π∗
z∗t
i z∗t

j

1− π∗
zt
iz

t
j

)

+
∑

(i,j,t)∈D∗

(
π∗
z∗t
i z∗t

j
log

π∗
zt
iz

t
j

π∗
z∗t
i z∗t

j

+ (1− π∗
z∗t
i z∗t

j
) log

1− π∗
zt
iz

t
j

1− π∗
z∗t
i z∗t

j

)

+

n∑
i=1

log
ᾰz1

i

ᾰz∗1
i

+

T−1∑
t=1

n∑
i=1

log
γ̆zt

iz
t+1
i

γ̆z∗t
i z∗t+1

i

.

For n and T large enough such that Γ̆ ∈ [δ, 1 − δ]Q
2

(implying for the corre-
sponding stationary distribution ᾰ ∈ [δ, 1− δ]Q), we have

n∑
i=1

log
ᾰz1

i

ᾰz∗1
i

+
T−1∑
t=1

n∑
i=1

log
γ̆zt

iz
t+1
i

γ̆z∗t
i z∗t+1

i

=

n∑
i=1

1{z1
i 	=z∗1

i } log
ᾰz1

i

ᾰz∗1
i

+

T−1∑
t=1

n∑
i=1

1{(zt
i ,z

t+1
i ) 	=(z∗t

i ,z∗t+1
i )} log

γ̆zt
iz

t+1
i

γ̆z∗t
i z∗t+1

i

≤ r(1) log
1− δ

δ
+

T−1∑
t=1

[r(t) + r(t+ 1)] log
1− δ

δ
≤ 2r log

1− δ

δ
.

To handle the term U1, we need to lower bound the cardinality of the set D∗.
This is the purpose of Lemma 10 which is a generalization of Proposition B.4
in Celisse, Daudin and Pierre (2012). This can be done for all the configurations
z1:T and all the configurations z∗1:T that belong to some Ωη(θ).

Lemma 10. For any η ∈ (0, δ), any parameter θ ∈ Θ, any configuration z1:T

and any z∗1:T ∈ Ωη(θ) such that ‖z1:T − z∗1:T ‖0 = r, we have

∣∣Dn,T (z
1:T , π)

∣∣ ≥ (δ − η)2

4
nr.

Combining Lemma 10 with the previous bound, we get that

(|D∗|)−1

(
n∑

i=1

log
ᾰz1

i

ᾰz∗1
i

+

T−1∑
t=1

n∑
i=1

log
γ̆zt

iz
t+1
i

γ̆z∗t
i z∗t+1

i

)

≤ 2r

|D∗| log
1− δ

δ
≤ 8

n(δ − η)2
log

1− δ

δ
−−−−−→
n→+∞

0. (28)
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We also have

(|D∗|)−1
∑

(i,j,t)∈D∗

(
π∗
z∗t
i z∗t

j
log

π∗
zt
iz

t
j

π∗
z∗t
i z∗t

j

+ (1− π∗
z∗t
i z∗t

j
) log

1− π∗
zt
iz

t
j

1− π∗
z∗t
i z∗t

j

)

≤ max
q,l,q′,l′;π∗

ql 	=π∗
q′l′

−k(π∗
ql, π

∗
q′l′)

with k(x, y) = x log(x/y) + (1 − x) log[(1 − x)/(1 − y)] for (x, y) ∈ (0, 1)2. The
function k is positive for every (x, y) such that x 	= y, hence, introducing the
notation K∗ = minq,l,q′,l′;π∗

ql 	=π∗
q′l′

k(π∗
ql, π

∗
q′l′)/2,

max
q,l,q′,l′;π∗

ql 	=π∗
q′l′

−k(π∗
ql, π

∗
q′l′) := −2K∗ < 0.

So, by (28), we have for n large enough

(|D∗|)−1

{ ∑
(i,j,t)∈D∗

(
π∗
z∗t
i z∗t

j
log

π∗
zt
iz

t
j

π∗
z∗t
i z∗t

j

+ (1− π∗
z∗t
i z∗t

j
) log

1− π∗
zt
iz

t
j

1− π∗
z∗t
i z∗t

j

)

+

n∑
i=1

log
ᾰz1

i

ᾰz∗1
i

+

T−1∑
t=1

n∑
i=1

log
γ̆zt

iz
t+1
i

γ̆z∗t
i z∗t+1

i

}
≤ −K∗.

This leads to

P∗
θ∗(U1 > u)

≤ P∗
θ∗

⎡
⎣ ∑
(i,j,t)∈D∗

(
(Xt

ij − π∗
z∗t
i z∗t

j
) log

π∗
zt
iz

t
j

π∗
z∗t
i z∗t

j

1− π∗
z∗t
i z∗t

j

1− π∗
zt
iz

t
j

)
− |D∗|K∗ > u

⎤
⎦

for any u > 0 and large enough n. Moreover, thanks to Hoeffding’s Inequality
and Assumption 3,

P∗
θ∗(U1 > u)

≤ P∗
θ∗

⎛
⎝ ∑

(i,j,t)∈D∗

(
(Xt

ij − π∗
z∗t
i z∗t

j
) log

π∗
zt
iz

t
j

π∗
z∗t
i z∗t

j

1− π∗
z∗t
i z∗t

j

1− π∗
zt
iz

t
j

)
> u+ |D∗|K∗

⎞
⎠

≤ exp

[
−u2 + |D∗|2K∗2 + 2u|D∗|K∗

|D∗|Cζ

]

≤ exp

[
−|D∗|2K∗2 + 2u|D∗|K∗

|D∗|Cζ

]
= exp

[
−2uK∗

Cζ

]
exp

[
−|D∗|K∗2

Cζ

]
,

where Cζ is a constant depending on ζ. Finally using Lemma 10, we have

P∗
θ∗ (U1 > − log(1/(εyn,T ))− 5r log(nT ))

≤ exp

[
[log(1/(εyn,T )) + 5r log(nT )]

2K∗

Cζ

]
exp

[
−|D∗|K∗2

Cζ

]

≤ exp

[
[log(1/(εyn,T )) + 5r log(nT )]

2K∗

Cζ

]
exp

[
−nr

(δ − η)
2
K∗2

4Cζ

]
.
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Second term in the right-hand side of (27). We have

U2 :=
∑

(i,j,t)∈D∗∪D̆

log

[
1 +

(π̆zt
iz

t
j
− π∗

zt
iz

t
j
)(Xt

ij − π∗
zt
iz

t
j
)

π∗
zt
iz

t
j
(1− π∗

zt
iz

t
j
)

]

≤
∑

(i,j,t)∈D∗∪D̆

(π̆zt
iz

t
j
− π∗

zt
iz

t
j
)(Xt

ij − π∗
zt
iz

t
j
)

π∗
zt
iz

t
j
(1− π∗

zt
iz

t
j
)

.

For any q, l, q′, l′ ∈ �1, Q�, we introduce the sets

Fqlq′l′ = Fqlq′l′(z
1:T , z∗1:T ) := {(i, j, t) ∈ In,T ; z

t
i = q, ztj = l, z∗ti = q′, z∗tj = l′}

Fql = Fql(z
1:T ) := ∪1≤q′,l′≤QFqlq′l′ = {(i, j, t) ∈ In,T ; z

t
i = q, ztj = l}

Gqlq′l′ = Gqlq′l′(z
1:T , z∗1:T , π∗, π̆) := (D∗ ∪ D̆) ∩ Fqlq′l′

= {(i, j, t) ∈ In,T ; z
t
i = q, ztj = l, z∗ti = q′, z∗tj = l′

and (π∗
zt
iz

t
j
	= π∗

z∗t
i z∗t

j
or π̆zt

iz
t
j
	= π̆z∗t

i z∗t
j
)}

Gql = Gql(z
1:T , z∗1:T , π∗, π̆) := (D∗ ∪ D̆) ∩ Fql

= {(i, j, t) ∈ In,T ; z
t
i = q, ztj = l and (π∗

zt
iz

t
j
	= π∗

z∗t
i z∗t

j
or π̆zt

iz
t
j
	= π̆z∗t

i z∗t
j
)}.

Then we bound

|U2| ≤
∑

1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑

(i,j,t)∈D∗∪D̆

(Xt
ij − π∗

ql)1zt
i=q,zt

j=l

∣∣∣∣∣∣
≤

∑
1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑

(i,j,t)∈Gql

(Xt
ij − π∗

ql)

∣∣∣∣∣∣
≤

∑
1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑

(i,j,t)∈Gql

(Xt
ij − π∗

z∗t
i z∗t

j
)

∣∣∣∣∣∣
+

∑
1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑

(i,j,t)∈Gql

(π∗
z∗t
i z∗t

j
− π∗

ql)

∣∣∣∣∣∣
≤

∑
1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑

(i,j,t)∈Gql

(Xt
ij − π∗

z∗t
i z∗t

j
)

∣∣∣∣∣∣
+

∑
1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑
q′,l′

(π∗
q′l′ − π∗

ql)|Gqlq′l′ |

∣∣∣∣∣∣ . (29)
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For every u > 0, we thus have

P∗
θ∗(Ωn,T ∩ {|U2| > u})

≤ P∗
θ∗

⎛
⎝

⎧⎨
⎩

∑
1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑

(i,j,t)∈Gql

(Xt
ij − π∗

z∗t
i z∗t

j
)

∣∣∣∣∣∣ > u/2

⎫⎬
⎭ ∩ Ωn,T

⎞
⎠

+ P∗
θ∗

⎛
⎝

⎧⎨
⎩

∑
1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑

1≤q′,l′≤Q

(π∗
q′l′ − π∗

ql)|Gqlq′l′ |

∣∣∣∣∣∣ >u/2

⎫⎬
⎭∩ Ωn,T

⎞
⎠.

(30)

We start by dealing with the first term of the right-hand side of (30). Notice

that on the event Ωn,T , we have
∣∣∣(π̆ql − π∗

ql)/(π
∗
ql(1− π∗

ql))
∣∣∣ ≤ vn,T /ζ

2 for every

q, l ∈ �1, Q�. The next lemma establishes that any set Dn,T (z
1:T , π) is included

in a larger set, whose cardinality is bounded. In particular, the random set D̆
is included in a larger deterministic subset.

Lemma 11. Let z1:T and z∗1:T denote two configurations such that ‖z1:T −
z∗1:T ‖0 = r. Then for any parameter π = (πql)1≤q,l≤Q, we have

Dn,T (z
1:T , π) ⊂ Dn,T (z

1:T ) :=
{
(i, j, t) ∈ �1, n�2 × �1, T �; (zti , z

t
j) 	= (z∗ti , z∗tj )

}
and

∣∣Dn,T (z
1:T )

∣∣ ≤ 2nr.

As the set Gql is random (because D̆ is random), we write

P∗
θ∗

⎛
⎝

⎧⎨
⎩

∑
1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑

(i,j,t)∈Gql

(Xt
ij − π∗

z∗t
i z∗t

j
)

∣∣∣∣∣∣ > u/2

⎫⎬
⎭ ∩ Ωn,T

⎞
⎠

≤ P∗
θ∗

⎛
⎝ ∑

1≤q,l≤Q

∣∣∣∣∣∣
∑

(i,j,t)∈Gql

(Xt
ij − π∗

z∗t
i z∗t

j
)

∣∣∣∣∣∣ >
uζ2

2vn,T

⎞
⎠

≤
∑

D⊂Dn,T (z1:T )

P∗
θ∗

⎛
⎝ ∑

1≤q,l≤Q

∣∣∣∣∣∣
∑

(i,j,t)∈Fql∩D

(Xt
ij − π∗

z∗t
i z∗t

j
)

∣∣∣∣∣∣ >
uζ2

2vn,T

⎞
⎠ ,

where nowD is a deterministic set. By a union bound and Hoeffding’s inequality,
we have for any D ⊂ Dn,T (z

1:T )

P∗
θ∗

⎛
⎝ ∑

1≤q,l≤Q

∣∣∣∣∣∣
∑

(i,j,t)∈Fql∩D

(Xt
ij − π∗

z∗t
i z∗t

j
)

∣∣∣∣∣∣ >
uζ2

2vn,T

⎞
⎠

≤ Q2 max
1≤q,l≤Q

P∗
θ∗

⎛
⎝

∣∣∣∣∣∣
∑

(i,j,t)∈Fql∩D

(Xt
ij − π∗

z∗t
i z∗t

j
)

∣∣∣∣∣∣ >
uζ2

2vn,T

⎞
⎠
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≤ 2Q2 exp

(
− 2u2ζ4

4v2n,TQ
4

1

|D|

)
.

This leads to

P∗
θ∗

⎛
⎝

⎧⎨
⎩

∑
1≤q,l≤Q

∣∣∣π̆ql − π∗
ql

∣∣∣
π∗
ql(1− π∗

ql)

∣∣∣∣∣∣
∑

(i,j,t)∈Gql

(Xt
ij − π∗

z∗t
i z∗t

j
)

∣∣∣∣∣∣ > u/2

⎫⎬
⎭ ∩ Ωn,T

⎞
⎠

≤
∑

D⊂Dn,T (z1:T )

2Q2 exp

(
− 2u2ζ4

4v2n,TQ
4

1

|D|

)

≤
2nr∑
k=1

∑
D⊂Dn,T (z1:T );|D|=k

2Q2 exp

(
− 2u2ζ4

4v2n,TQ
4

1

k

)

≤ 2Q2
2nr∑
k=1

(2nr)k exp

(
− 2u2ζ4

4v2n,TQ
4

1

2nr

)
≤ 2Q2 exp

(
− u2ζ4

4v2n,TQ
4nr

)
(2nr)2nr+1.

For the second term of (30), we get from a union bound and from Lemma 11
(that gives an upper bound for |D∗ ∪ D̆|) that

P∗
θ∗

⎛
⎝

⎧⎨
⎩

∑
1≤q,l≤Q

∣∣∣∣∣ (π̆ql − π∗
ql)

π∗
ql(1− π∗

ql)

∣∣∣∣∣
∣∣∣∣∣∣

∑
1≤q′,l′≤Q

(π∗
q′l′ − π∗

ql)|Gqlq′l′ |

∣∣∣∣∣∣ > u/2

⎫⎬
⎭ ∩ Ωn,T

⎞
⎠

≤ P∗
θ∗

⎛
⎝ ∑

1≤q,l≤Q

∣∣∣∣∣∣
∑

1≤q′,l′≤Q

(π∗
q′l′ − π∗

ql)|Gqlq′l′ |

∣∣∣∣∣∣ >
uζ2

2vn,T

⎞
⎠

≤ Q2 max
1≤q,l≤Q

P∗
θ∗

⎛
⎝

∣∣∣∣∣∣
∑

1≤q′,l′≤Q

(π∗
q′l′ − π∗

ql)|Gqlq′l′ |

∣∣∣∣∣∣ >
uζ2

2vn,TQ2

⎞
⎠

≤ Q2P∗
θ∗

(
2nr >

uζ2

2vn,TQ2

)
,

because |π∗
q′l′ − π∗

ql| ≤ 1, implying that∣∣∣∣∣∣
∑
q′,l′

(π∗
q′l′ − π∗

ql)|Gqlq′l′ |

∣∣∣∣∣∣ ≤
∑
q′,l′

|Gqlq′l′ | = |Gql| = |Fql ∩ (D∗ ∪ D̆)|

≤ |Dn,T (z
1:T )| ≤ 2nr.

Finally, we have the following upper bound for the second term of (27)

P∗
θ∗ (Ωn,T ∩ {|U2| > r log(nT )}) ≤ 2Q2 exp

(
−rζ4(log(nT ))2

4Q4v2n,Tn

)
(2nr)2nr+1

+Q2P∗
θ∗

(
vn,T >

ζ2 log(nT )

4Q2n

)
.
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Third term in the right-hand side of (27). We want to bound (in prob-
ability) the last term U3. Distinguishing between the cases where Xt

ij = 0 and
Xt

ij = 1, we have

U3 :=
∑

(i,j,t)∈D∗∪D̆

log

[
1 +

(π̆z∗t
i z∗t

j
− π∗

z∗t
i z∗t

j
)(Xt

ij − π∗
z∗t
i z∗t

j
)

π∗
z∗t
i z∗t

j
(1− π∗

z∗t
i z∗t

j
)

]

=
∑

(i,j,t)∈D∗∪D̆

(
(1−Xt

ij) log

[
1−

(π̆z∗t
i z∗t

j
− π∗

z∗t
i z∗t

j
)

(1− π∗
z∗t
i z∗t

j
)

]

+Xt
ij log

[
1 +

(π̆z∗t
i z∗t

j
− π∗

z∗t
i z∗t

j
)

π∗
z∗t
i z∗t

j

] )

=
∑

1≤q,l≤Q

∑
(i,j,t)∈D∗∪D̆

(
(1−Xt

ij) log

[
1−

(π̆ql − π∗
ql)

(1− π∗
ql)

]

+Xt
ij log

[
1 +

(π̆ql − π∗
ql)

π∗
ql

] )
1z∗t

i =q,z∗t
j =l.

For any (q, l) ∈ �1, Q�2, we further introduce the sets

F ∗
ql = ∪1≤q′,l′≤QFq′l′ql = {(i, j, t) ∈ In,T ; z

∗t
i = q, z∗tj = l}

G∗
ql = ∪1≤q′,l′≤QGq′l′ql = (D∗ ∪ D̆) ∩ F ∗

ql = {(i, j, t) ∈ D∗ ∪ D̆; z∗ti = q, z∗tj = l}.

Centering the Xt
ij (under the distribution P∗

θ∗), we get

U3 =
∑

1≤q,l≤Q

∑
(i,j,t)∈D∗∪D̆

(
(π∗

ql −Xt
ij) log

[
1−

(π̆ql −π∗
ql)

(1−π∗
ql)

]

+ (Xt
ij −π∗

ql) log

[
1 +

(π̆ql −π∗
ql)

π∗
ql

] )
1z∗t

i =q,z∗t
j =l

+
∑

1≤q,l≤Q

∑
(i,j,t)∈D∗∪D̆

(
(1−π∗

ql) log

[
1−

(π̆ql −π∗
ql)

(1−π∗
ql)

]

+ π∗
ql log

[
1 +

(π̆ql −π∗
ql)

π∗
ql

] )
1z∗t

i =q,z∗t
j =l

=
∑

1≤q,l≤Q

(
log

[
1 +

(π̆ql −π∗
ql)

π∗
ql

]
− log

[
1−

(π̆ql −π∗
ql)

(1−π∗
ql)

]) ∑
(i,j,t)∈G∗

ql

(Xt
ij −π∗

ql)

+
∑

1≤q,l≤Q

|G∗
ql|

(
(1−π∗

ql) log

[
1−

(π̆ql −π∗
ql)

(1−π∗
ql)

]
+ π∗

ql log

[
1 +

(π̆ql −π∗
ql)

π∗
ql

])
.

Then, on the event Ωn,T and for n and T large enough such that |(π̆ql−π∗
ql)/(1−

π∗
ql)| ≤ 1/2 and |(π̆ql − π∗

ql)/π
∗
ql| ≤ 1/2 for every q and l, using the fact that
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| log(1 + x)| ≤ 2|x| for x ∈ [−1/2, 1/2], we have

|U3| ≤ 4
vn,T
ζ

∑
1≤q,l≤Q

∣∣∣∣∣∣
∑

(i,j,t)∈G∗
ql

(Xt
ij − π∗

ql)

∣∣∣∣∣∣ + 4
vn,T
ζ

∑
1≤q,l≤Q

|G∗
ql|.

Then, for every u > 0,

P∗
θ∗ (Ωn,T ∩ {|U3| > u}) ≤ P∗

θ∗

⎛
⎝ ∑

1≤q,l≤Q

∣∣∣∣∣∣
∑

(i,j,t)∈G∗
ql

(Xt
ij − π∗

ql)

∣∣∣∣∣∣ >
uζ

8vn,T

⎞
⎠

+ P∗
θ∗

⎛
⎝vn,T

∑
1≤q,l≤Q

|G∗
ql| >

uζ

8

⎞
⎠ . (31)

For the first term of (31), using Hoeffding’s inequality as before,

P∗
θ∗

⎛
⎝ ∑

1≤q,l≤Q

∣∣∣∣∣∣
∑

(i,j,t)∈G∗
ql

(Xt
ij − π∗

ql)

∣∣∣∣∣∣ >
uζ

8vn,T

⎞
⎠

≤
2nr∑
k=1

∑
D⊂Dn,T (z1:T );|D|=k

P∗
θ∗

⎛
⎝ ∑

1≤q,l≤Q

∣∣∣∣∣∣
∑

(i,j,t)∈D∩F∗
ql

(Xt
ij − π∗

ql)

∣∣∣∣∣∣ >
uζ

8vn,T

⎞
⎠

≤ 2Q2(2nr)2nr+1 exp

(
− u2ζ2

82Q4v2n,Tnr

)
.

For the second term of (31), we use

P∗
θ∗

⎛
⎝vn,T

∑
1≤q,l≤Q

|G∗
ql| >

uζ

8

⎞
⎠ ≤ P∗

θ∗

(
vn,T >

uζ

16nr

)
.

Finally, we have the following upper bound for the third term of (27)

P∗
θ∗ (Ωn,T ∩ {|U3| > r log(nT )}) ≤ 2Q2(2nr)2nr+1 exp

(
−r(log(nT ))2ζ2

82Q4v2n,Tn

)

+ P∗
θ∗

(
vn,T >

log(nT )ζ

16n

)
.

Combining the 3 bounds on the right-hand-side of (27).

P∗
θ∗ ({U1 + U2 − U3 > − log(1/(εyn,T ))− 3r log(nT )} ∩ Ωn,T )

≤ exp

[
[log(1/(εyn,T )) + 5r log(nT )]

2K∗

Cζ

]
exp

[
−nr

(δ − η)2K∗2

4Cζ

]
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+ 2Q2(2nr)2nr+1 exp

[
−rζ4(log(nT ))2

4Q4v2n,Tn

]
+Q2P∗

θ∗

(
vn,T >

ζ2 log(nT )

4Q2n

)

+ 2Q2(2nr)2nr+1 exp

[
−r(log(nT ))2ζ2

82Q4v2n,Tn

]
+ P∗

θ∗

(
vn,T >

log(nT )ζ

16n

)
.

Now we choose the sequence vn,T such that vn,T = o(
√

log(nT )/n) which
is sufficient to imply that the quantities P∗

θ∗
(
vn,T > ζ2 log(nT )/(4Q2n)

)
and

P∗
θ∗ (vn,T > log(nT )ζ/(16n)) vanish as n and T increase. For large enough val-

ues of n and T and with C1, C2, C3, C4 and κ positive constants only depending
on Q, ζ and K∗, we then have

P∗
θ∗ ({U1 + U2 − U3 > − log(1/(εyn,T ))− 3r log(nT )} ∩ Ωn,T )

≤ exp

[
[log(1/(εyn,T )) + 5r log(nT )]

2K∗

Cζ

]
exp

[
−nr

(δ − η)2K∗2

4Cζ

]

+ 2Q2(2nr)2nr+1 exp

[
−rζ4(log(nT ))2

4Q4v2n,Tn

]

+ 2Q2(2nr)2nr+1 exp

[
−r(log(nT ))2ζ2

82Q4v2n,Tn

]

≤ exp

[
− (δ − η)2C1nr + C2 log(nT )r + C4 log(1/(εyn,T ))

]

+ κ exp

[
3nr log(nT )− C3

(log(nT ))2r

nv2n,T

]
. (32)

Let us introduce

unT = exp
[
−(δ − η)2C1n+ C2 log(nT ) + C4 log(1/(εyn,T ))

]
wnT = exp

[
−C3

(log(nT ))2

nv2n,T
+ 3n log(nT )

]
.

Now we go back to (26). Noticing that the number of configurations z1:T such

that ‖z1:T − z∗1:T ‖0 = r is equal to

(
nT

r

)
(Q− 1)r, we have

P∗
θ∗

({
Pθ̆(Z

1:T 	= z∗1:T |X1:T )

Pθ̆(Z
1:T = z∗1:T |X1:T )

> εyn,T

}
∩ Ωn,T

)

≤
nT∑
r=1

(
nT

r

)
(Q− 1)rur

nT +

nT∑
r=1

(
nT

r

)
(Q− 1)rκwr

nT

≤ [1 +QunT ]
nT − 1 + κ

(
[1 +QwnT ]

nT − 1
)
.

Finally, notice that as long as log T = o(n) and log(1/yn,T ) = o(n) (resp. as

long as vn,T = o(
√

log(nT )/n)), we have nTunT (resp. nTwnT ) converges to 0.
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Then we obtain for some universal positive constant C and large enough n and
T

P∗
θ∗

({
Pθ̆(Z

1:T 	= z∗1:T |X1:T )

Pθ̆(Z
1:T = z∗1:T |X1:T )

> εyn,T

}
∩ Ωn,T

)
≤ CnT (unT + wnT ).

This leads directly to inequality (20).

5.4. Proof of Theorem 3

We fix some σ ∈ SQ and study the convergence in Pθ∗ -probability of γ̂σ(q)σ(l)
to γ∗

ql with Γ̂ as defined by the fixed point equation (4), i.e.

γ̂σ(q)σ(l) =

∑T−1
t=1

∑n
i=1 Pθ̂σ

(
Zt
i = q, Zt+1

i = l |X1:T
)

∑T−1
t=1

∑n
i=1 Pθ̂σ

(Zt
i = q |X1:T )

.

First, let us denote

Aq,l =
1

n(T − 1)

T−1∑
t=1

n∑
i=1

Pθ̂σ

(
Zt
i = q, Zt+1

i = l |X1:T
)
,

Bq =
1

n(T − 1)

T−1∑
t=1

n∑
i=1

Pθ̂σ

(
Zt
i = q |X1:T

)
.

Then we can write the quantity at stake as

γ̂σ(q)σ(l) − γ∗
ql =

Aq,l

Bq
− γ∗

ql =
Aq,l − α∗

qγ
∗
ql

Bq
+ α∗

qγ
∗
ql

(
1

Bq
− 1

α∗
q

)

to obtain the following upper bound on the probability of interest

Pθ∗

(∣∣γ̂σ(q)σ(l) − γ∗
ql

∣∣ > εrn,T

√
logn√
nT

)
≤ Pθ∗

(∣∣∣∣Aq,l −α∗
qγ

∗
ql

Bq

∣∣∣∣ > ε

2
rn,T

√
logn√
nT

)

+ Pθ∗

(
α∗
qγ

∗
ql

∣∣∣∣ 1

Bq
− 1

α∗
q

∣∣∣∣ > ε

2
rn,T

√
log n√
nT

)
. (33)

First term of the right-hand side of (33). For the first term in (33), for
any 0 < λ < δ (implying λ < α∗

q for any q ∈ �1, Q�),

Pθ∗

(∣∣∣∣Aq,l − α∗
qγ

∗
ql

Bq

∣∣∣∣ > ε

2
rn,T

√
logn√
nT

)

= Pθ∗

(∣∣∣∣Aq,l − α∗
qγ

∗
ql

Bq

∣∣∣∣ > ε

2
rn,T

√
logn√
nT

∣∣∣∣∣ Bq ≥ α∗
q − λ

)
Pθ∗

(
Bq ≥ α∗

q − λ
)

+ Pθ∗

(∣∣∣∣Aq,l − α∗
qγ

∗
ql

Bq

∣∣∣∣ > ε

2
rn,T

√
logn√
nT

∣∣∣∣∣ Bq < α∗
q − λ

)
Pθ∗

(
Bq < α∗

q − λ
)
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≤ Pθ∗

(∣∣Aq,l − α∗
qγ

∗
ql

∣∣ > ε

2
rn,T

√
logn√
nT

(α∗
q − λ)

)
+ Pθ∗

(
Bq < α∗

q − λ
)
. (34)

First, we upper bound the probability Pθ∗

(∣∣∣Aq,l − α∗
qγ

∗
ql

∣∣∣ > εrn,T
√
logn√
nT

)
for any

ε > 0, using the following lemma.

Lemma 12. If log(T ) = o(n), for any ε > 0, for any sequence {rn,T }n,T≥1

increasing to infinity such that rn,T = o
(√

nT/ log n
)

and any η ∈ (0, δ), we

have for any σ ∈ SQ

Pθ∗

(∣∣∣∣∣ 1

n(T − 1)

T−1∑
t=1

n∑
i=1

Pθ̂σ

(
Zt
i = q, Zt+1

i = l |X1:T
)
−α∗

qγ
∗
ql

∣∣∣∣∣>εrn,T

√
logn√
nT

)

≤ Pθ∗ (‖π̂σ −π∗‖∞ > vn,T ) + o(1)

with vn,T a sequence decreasing to 0 such that vn,T = o
(√

log(nT )/n
)
.

Then, for the second term of (34), notice that Bq =
∑Q

l=1 Aq,l and that∑Q
l=1 γ

∗
ql = 1. We then have, if log(T ) = o(n) and vn,T = o

(√
log(nT )/n

)
,

using Lemma 12 again,

Pθ∗
(
Bq < α∗

q − λ
)
= Pθ∗

(
Bq − α∗

q < −λ
)
= Pθ∗

(
Q∑
l=1

(Aq,l − α∗
qγ

∗
ql) < −λ

)

≤
Q∑
l=1

Pθ∗
(
Aq,l − α∗

qγ
∗
ql < −λ/Q

)

≤
Q∑
l=1

Pθ∗
(∣∣Aq,l − α∗

qγ
∗
ql

∣∣ > λ/Q
)

≤ QPθ∗ (‖π̂σ − π∗‖∞ > vn,T ) + o(1).

Finally, for the first term of (33), if yn,T is such that 1/yn,T = o
(√

nT/ log(n)
)
,

if vn,T = o
(√

log(nT )/n
)
and as long as log(T ) = o(n), we obtain

Pθ∗

(∣∣∣∣Aq,l − α∗
qγ

∗
ql

Bq

∣∣∣∣ > ε

2
rn,T

√
logn√
nT

)
≤ (Q+ 1)Pθ∗(‖π̂σ − π∗‖∞ > vn,T ) + o(1).

(35)

Second term of the right-hand side of (33). For the second term of (33),
we split it on two complementary events as before. For any 0 < λ < δ, we have

Pθ∗

(
α∗
qγ

∗
ql

∣∣∣∣ 1

Bq
− 1

α∗
q

∣∣∣∣ > ε

2
rn,T

√
logn√
nT

)
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= Pθ∗

(
α∗
qγ

∗
ql

∣∣∣∣ 1

Bq
− 1

α∗
q

∣∣∣∣ > ε

2
rn,T

√
logn√
nT

∣∣∣∣∣ Bq ≥ α∗
q − λ

)
Pθ∗

(
Bq ≥ α∗

q − λ
)

+ Pθ∗

(
α∗
qγ

∗
ql

∣∣∣∣ 1

Bq
− 1

α∗
q

∣∣∣∣ > ε

2
rn,T

√
logn√
nT

∣∣∣∣∣ Bq < α∗
q − λ

)
Pθ∗

(
Bq < α∗

q − λ
)

≤ Pθ∗

(
α∗
qγ

∗
ql

∣∣∣∣ 1

Bq
− 1

α∗
q

∣∣∣∣ > ε

2
rn,T

√
logn√
nT

∣∣∣∣∣ Bq ≥ α∗
q − λ

)
Pθ∗

(
Bq ≥ α∗

q − λ
)

+ Pθ∗
(
Bq < α∗

q − λ
)
. (36)

We already gave an upper bound on the second term in the right-hand side
of (36). Let us give one for the first term. Notice that as α∗

q ≥ δ and if Bq ≥
α∗
q − λ ≥ δ − λ > 0, we have by the mean value theorem

∣∣∣∣ 1

Bq
− 1

α∗
q

∣∣∣∣ ≤ 1

(δ − λ)2
∣∣Bq − α∗

q

∣∣ .
We can then write for the first term in the right-hand side of (36), as long as

log(T ) = o(n), for {yn,T }n,T≥1 such that 1/yn,T = o
(√

nT/ log n
)

and with

vn,T such that vn,T = o
(√

log(nT )/n
)
, still using Lemma 12

Pθ∗

(
α∗
qγ

∗
ql

∣∣∣∣ 1

Bq
− 1

α∗
q

∣∣∣∣ > ε

2
rn,T

√
logn√
nT

∣∣∣∣∣ Bq ≥ α∗
q − λ

)
Pθ∗

(
Bq ≥ α∗

q − λ
)

≤ Pθ∗

(∣∣Bq − α∗
q

∣∣ > (δ − λ)2ε

2α∗
qγ

∗
ql

rn,T

√
logn√
nT

)

≤ Pθ∗

(∣∣∣∣∣
Q∑
l=1

(Aq,l − α∗
qγ

∗
ql)

∣∣∣∣∣ > (δ − λ)2ε

2α∗
qγ

∗
ql

rn,T

√
logn√
nT

)

≤
Q∑
l=1

Pθ∗

(∣∣Aq,l − α∗
qγ

∗
ql

∣∣ > (δ − λ)2ε

2α∗
qγ

∗
qlQ

rn,T

√
logn√
nT

)

≤ QPθ∗ (‖π̂σ − π∗‖∞ > vn,T ) + o(1).

We finally obtain for the second term of the right-hand side of (33)

Pθ∗

(
α∗
qγ

∗
ql

∣∣∣∣ 1

Bq
− 1

α∗
q

∣∣∣∣ > ε

2
rn,T

√
logn√
nT

)
≤ 2QPθ∗ (‖π̂σ − π∗‖∞ > vn,T ) + o(1).

(37)

We conclude the proof by summing the upper bounds obtained in (35) and (37)

Pθ∗

(∣∣γ̂σ(q)σ(l)− γ∗
ql

∣∣ >εrn,T

√
logn√
nT

)
≤ (3Q+1)Pθ∗(‖π̂σ −π∗‖∞ >vn,T ) + o(1)
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and by noticing that

Pθ∗

(
‖Γ̂σ−Γ∗‖∞ >εrn,T

√
logn√
nT

)
≤

∑
1≤q,l≤Q

Pθ∗

(
|γ̂σ(q)σ(l)−γ∗

ql|>εrn,T

√
logn√
nT

)
.

5.5. Proof of Corollary 3

Denoting by σn,T the permutation minimizing the distance between π̂ (per-
muted) and π∗ for every (n, T ) ∈ �1, n� × �1, T �, i.e. σn,T = argminσ∈SQ

‖π̂σ −
π∗‖∞, we apply Theorem 3 to θ̂σn,T

in order to get

Pθ∗

(
min
σ∈SQ

‖ Γ̂σ − Γ∗‖∞ > εrn,T

√
logn√
nT

)

≤ Pθ∗

(
‖ Γ̂σn,T

− Γ∗‖∞ > εrn,T

√
log n√
nT

)

≤ Q2(3Q+ 1)Pθ∗

(
min
σ∈SQ

‖π̂σ − π∗‖∞ > vn,T

)
+ o(1) −−−−−→

n,T→∞
0.

5.6. Proof of Theorem 5

We use the following lemma, that states that the quantity we optimize in the
VEM algorithm and the log-likelihood are asymptotically equivalent.

Lemma 13. We have the following inequality Pθ∗-a.s.

sup
θ∈Θ

∣∣∣∣ 2

n(n− 1)T
J (χ̂(θ), θ)− 2

n(n− 1)T
	(θ)

∣∣∣∣ ≤ 2 log(1/δ)

n− 1
.

We have that for any ε > 0, for n and T large enough,

Pθ∗

(
sup
θ∈Θ

∣∣∣∣ 2

n(n− 1)T
J (χ̂(θ), θ)− 2

n(n− 1)T
	(θ)

∣∣∣∣ > εrn,T√
n

)

≤ Pθ∗

(
2 log(1/δ)

n− 1
>

εrn,T√
n

)
= 0

We then conclude by combining this result with Theorem 1.

5.7. Proof of Corollary 5

This is a direct consequence of Theorem 5 and Lemma 8 applied with the func-
tions Fn,T = 2

n(n−1)T J (χ̂(·), ·).
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5.8. Proof of Theorem 6

This proof is quite similar to that of Theorem 3. We fix some σ ∈ SQ and study

the convergence in Pθ∗ -probability of γ̃σ(q)σ(l) to γ∗
ql with Γ̃ as defined by the

fixed point equation (5), i.e.

γ̃σ(q)σ(l) =

∑n
i=1

∑T−1
t=1 η̂tiql(θ̃σ)∑n

i=1

∑T−1
t=1 τ̂ tiq(θ̃σ)

.

First, let us denote

Aq,l =
1

n(T − 1)

n∑
i=1

T−1∑
t=1

η̂tiql(θ̃σ) =
1

n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)
(Zt

i = q, Zt+1
i = l),

Bq =
1

n(T − 1)

n∑
i=1

T−1∑
t=1

τ̂ tiq(θ̃σ) =
1

n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)
(Zt

i = q).

Then we can write the quantity at stake as

γ̃σ(q)σ(l) − γ∗
ql =

Aq,l

Bq
− γ∗

ql =
Aq,l − α∗

qγ
∗
ql

Bq
+ α∗

qγ
∗
ql

(
1

Bq
− 1

α∗
q

)
.

We follow the line of the proof of Theorem 3, using Lemma 14 below instead of
Lemma 12 in order to obtain the result.

Lemma 14. For any ε > 0, for any sequence {rn,T }n,T≥1 increasing to infinity

such that rn,T = o
(√

nT/ log n
)
and any η ∈ (0, δ), we have for any σ ∈ SQ

Pθ∗

(∣∣∣∣∣ 1

n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)
(Zt

i = q, Zt+1
i = l)− α∗

qγ
∗
ql

∣∣∣∣∣ > εrn,T

√
logn√
nT

)

≤ 2Pθ∗ (‖π̃σ − π∗‖∞ > vn,T ) + o(1)

with vn,T a sequence decreasing to 0 such that vn,T = o(
√

log(nT )/n).
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Appendix A: Proofs of main results for the finite time case

A.1. Proof of Corollary 2

When the number of time steps is fixed and the connection probabilities vary
over time, the conditional log-likelihood is

	Tc (θ;Z
1:T ) =

T∑
t=1

∑
1≤i<j≤n

Xt
ij log π

t
Zt

iZ
t
j
+ (1−Xt

ij) log(1− πt
Zt

iZ
t
j
)

and the likelihood 	T (θ) is defined as in (2) with 	Tc (·) instead of 	c(·). The
maximum likelihood estimator is then

θ̂ = (Γ̂, π̂1:T ) = argmax
θ∈ΘT

	T (θ).
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As before, we denote the normalized log-likelihood Mn,T (Γ, π
1:T ) = 2/(n(n −

1)T )	T (θ). We introduce the following limiting quantity

MT (π1:T ) =
1

T

T∑
t=1

M(πt) =
1

T

T∑
t=1

sup
A∈A

M(πt, A).

We follow the lines of the proof of Theorem 1 in order to prove that we have for
any sequence yn → +∞, for all ε > 0

Pθ∗

(
sup

(Γ,π1:T )∈ΘT

∣∣Mn,T (Γ, π
1:T )−MT (π1:T )

∣∣ > εyn√
n

)
−→

n→+∞
0. (38)

Choosing yn = r2n, we then use Lemma 8 to conclude that, as r2n/
√
n = o(1) by

assumption, for any ε > 0,

Pθ∗

(
min

σ1,...,σT∈SQ

‖π̂1:T
σ1:T − π∗1:T ‖∞ > εrn/n

1/4

)
−−−−→
n→∞

0.

In particular, for every t ∈ �1, T �, π̂t converges in Pθ∗ -probability to π∗t up to
label switching. Then, let us prove that on the event {minσ1,...,σT∈SQ

‖π̂1:T −
π∗1:T
σ1:T ‖∞ ≤ εrnn

−1/4} (whose probability converges to 1), for n large enough,
the permutation σt minimizing the distance between π∗t and π̂t

σt is the same
for every t ∈ �1, T �. We consider n large enough such that

εrnn
−1/4 < min

1≤q 	=l≤Q
|π∗

qq − π∗
ll|/4.

Denoting by σ1
m, . . . , σT

m the permutations (depending on n) minimizing ‖π̂1:T −
π∗1:T
σ1:T ‖∞, we have that, for any 1 ≤ t 	= t′ ≤ T , if some q, l ∈ �1, Q� are such

that σt
m(q) = σt′

m(l), then

π̂t
σt
m(q)σt

m(q) = π̂t
σt′
m(l)σt′

m(l)
= π̂t′

σt′
m(l)σt′

m(l)

and on the event we consider

|π∗t
qq − π∗t

ll | = |π∗t
qq − π∗t′

ll | = |π∗t
qq − π̂t

σt
m(q)σt

m(q) + π̂t′

σt′
m(l)σt′

m(l)
− π∗t′

ll |

≤ |π∗t
qq − π̂t

σt
m(q)σt

m(q)|+ |π̂t′

σt′
m(l)σt′

m(l)
− π∗t′

ll |

≤ 2εrnn
−1/4 < min

1≤q 	=l≤Q
|π∗

qq − π∗
ll|/2,

implying that q = l. This means that on this event, the permutation σt
m min-

imizing the distance between π∗t and π̂t
σt is the same for every t ∈ �1, T �. We

can conclude that

Pθ∗

(
min
σ∈SQ

‖π̂1:T
σ − π∗1:T ‖∞ > εrn/n

1/4

)

= 1− Pθ∗

(
min
σ∈SQ

‖π̂1:T
σ − π∗1:T ‖∞ ≤ εrn/n

1/4

)
−−−−→
n→∞

0.
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A.2. Proof of Theorem 4

First, let us introduce some notations, as in the proof of Theorem 2. For any
fixed configuration z∗1:T ∈ Ωη, we define for any configuration z1:T and any
parameter θ

Dn,T (z
1:T , π1:T ) :=

{
(i, j, t) ∈ In,T ;π

t
zt
iz

t
j
	= πt

z∗t
i z∗t

j

}
and for any 1 ≤ t ≤ T

Dt
n,T (z

t, πt) :=
{
(i, j) ∈ �1, n�2; i < j and πt

zt
iz

t
j
	= πt

z∗t
i z∗t

j

}
,

and as before, we abbreviate to D∗ (resp. D̆), the set Dn,T (z
1:T , π∗1:T ) (resp.

Dn,T (z
1:T , π̆1:T )). We also introduce for any q, l, q′, l′ ∈ �1, Q� the quantities

Fqlq′l′ , Fql, Gqlq′l′ and Gql as before, accordingly to this definition of the set
Dn,T (z

1:T , π1:T ). Finally, we introduce for any t ∈ �1, T � and q, l, q′, l′ ∈ �1, Q�
the quantities

F t
qlq′l′ = F t

qlq′l′(z
t, z∗t)

:= {(i, j) ∈ �1, n�2; i < j and zti = q, ztj = l, z∗ti = q′, z∗tj = l′}
F t
ql = F t

ql(z
t) := ∪1≤q′,l′≤QF

t
qlq′l′ = {(i, j) ∈ �1, n�2; i < j and zti = q, ztj = l}

Gt
qlq′l′ = Gt

qlq′l′(z
t, z∗t, π∗t, π̆t) := (D∗t ∪ D̆t) ∩ F t

qlq′l′

= {(i, j) ∈ �1, n�2; i < j and zti = q, ztj = l, z∗ti = q′, z∗tj = l′

and (π∗t
zt
iz

t
j
	= π∗t

z∗t
i z∗t

j
or π̆t

zt
iz

t
j
	= π̆t

z∗t
i z∗t

j
)}

Gt
ql = Gt

ql(z
t, z∗t, π∗t, π̆t) := (D∗t ∪ D̆t) ∩ F t

ql

= {(i, j) ∈ �1, n�2; i < j and zti = q, ztj = l

and (π∗t
zt
iz

t
j
	= π∗t

z∗t
i z∗t

j
or π̆t

zt
iz

t
j
	= π̆t

z∗t
i z∗t

j
)}.

Note that we can get an equivalent of Lemma 10 with a similar proof that
gives that for any configuration z∗1:T in Ωη, for any configuration z1:T and any
θ ∈ ΘT , ∣∣Dn,T (z

1:T , π1:T )
∣∣ ≥ γ2

4
nr.

In the same way, we have an equivalent of Lemma 11 (with a similar proof) that
gives that for any zt and z∗t two configurations at time t such that ‖zt−z∗t‖0 =
r(t) and any parameter πt = (πt

ql)1≤q,l≤Q, we have

Dt
n,T (z

t, πt) ⊂ Dt
n,T (z

t) :=
{
(i, j) ∈ �1, n�2 × �1, T �; (zti , z

t
j) 	= (z∗ti , z∗tj )

}
and

∣∣Dt
n,T (z

t)
∣∣ ≤ 2nr(t). (39)

Going back to the proof of Theorem 4, we follow the line of that of Theorem 2,
with a few changes. We get the same decomposition as in equation (26), replacing
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π by π1, . . . , πT in the definitions of U1, U2 and U3, and replacing the event Ωn,T

by Ωn = {‖π̂1:T − π∗1:T ‖∞ ≤ vn}. For U1, the proof does not change. For U2,
we write (instead of (29))

|U2| ≤

∣∣∣∣∣∣
∑

(i,j,t)∈D∗∪D̆

∑
1≤q,l≤Q

π̆t
ql − π∗t

ql

π∗t
ql (1− π∗t

ql )
(Xt

ij − π∗t
ql )1zt

i=q,zt
j=l

∣∣∣∣∣∣
≤

T∑
t=1

∑
1≤q,l≤Q

∣∣∣∣∣∣
π̆t
ql − π∗t

ql

π∗t
ql (1− π∗t

ql )

∑
(i,j)∈Gt

ql

(Xt
ij − π∗t

ql )

∣∣∣∣∣∣
≤

T∑
t=1

∑
1≤q,l≤Q

∣∣∣π̆t
ql − π∗t

ql

∣∣∣
π∗t
ql (1− π∗t

ql )

∣∣∣∣∣∣∣
∑
q′,l′

∑
(i,j)∈Gt

qlq′l′

(Xt
ij − π∗t

ql )

∣∣∣∣∣∣∣
≤

T∑
t=1

∑
1≤q,l≤Q

∣∣∣π̆t
ql − π∗t

ql

∣∣∣
π∗t
ql (1− π∗t

ql )

∣∣∣∣∣∣∣
∑
q′,l′

∑
(i,j)∈Gt

qlq′l′

(Xt
ij − π∗t

q′l′)

∣∣∣∣∣∣∣
+

T∑
t=1

∑
1≤q,l≤Q

∣∣∣π̆t
ql − π∗t

ql

∣∣∣
π∗t
ql (1− π∗t

ql )

∣∣∣∣∣∣
∑
q′,l′

(π∗t
q′l′ − π∗t

ql )|Gt
qlq′l′ |

∣∣∣∣∣∣ .
For every u > 0, we thus have

P∗
θ∗ ({|U2|>u} ∩ Ωn)

≤
T∑

t=1

P∗
θ∗

⎛
⎝

⎧⎨
⎩

∑
1≤q,l≤Q

∣∣∣π̆t
ql −π∗t

ql

∣∣∣
π∗t
ql (1−π∗t

ql )

∣∣∣∣∣∣∣
∑

1≤q′,l′≤Q

∑
(i,j)∈Gt

qlq′l′

(Xt
ij −π∗t

q′l′)

∣∣∣∣∣∣∣ >
u

2T

⎫⎬
⎭∩ Ωn

⎞
⎠

+
T∑

t=1

P∗
θ∗

⎛
⎝

⎧⎨
⎩

∑
1≤q,l≤Q

∣∣∣π̆t
ql −π∗t

ql

∣∣∣
π∗t
ql (1−π∗t

ql )

∣∣∣∣∣∣
∑

1≤q′,l′≤Q

(π∗t
q′l′ −π∗t

ql )|Gt
qlq′l′ |

∣∣∣∣∣∣ >
u

2T

⎫⎬
⎭∩ Ωn

⎞
⎠.

(40)

We start by dealing with the first term of (40). Notice that on the event Ωn, we

have
∣∣∣π̆t

ql − π∗t
ql

∣∣∣ /(π∗t
ql (1− π∗t

ql )) ≤ vn/ζ
2 for every q, l ∈ �1, Q�. As the set Gt

ql is

random (because D̆t is random), we write for every t ∈ �1, T �, using (39),

P∗
θ∗

⎛
⎝

⎧⎨
⎩

∑
1≤q,l≤Q

∣∣∣π̆t
ql − π∗t

ql

∣∣∣
π∗t
ql (1− π∗t

ql )

∣∣∣∣∣∣
∑

1≤q′,l′≤Q

∑
(i,j)∈Gt

ql

(Xt
ij − π∗t

q′l′)

∣∣∣∣∣∣ >
u

2T

⎫⎬
⎭ ∩ Ωn

⎞
⎠

≤ P∗
θ∗

⎛
⎝ ∑

1≤q,l≤Q

∣∣∣∣∣∣
∑

1≤q′,l′≤Q

∑
(i,j)∈Gt

ql

(Xt
ij − π∗t

q′l′)

∣∣∣∣∣∣ >
uζ2

2Tvn

⎞
⎠
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≤
∑

D⊂Dt
n,T (zt)

P∗
θ∗

⎛
⎝ ∑

1≤q,l≤Q

∣∣∣∣∣∣
∑

1≤q′,l′≤Q

∑
(i,j)∈F t

ql∩D

(Xt
ij − π∗t

q′l′)

∣∣∣∣∣∣ >
uζ2

2Tvn

⎞
⎠

where nowD is a deterministic set. By a union bound and Hoeffding’s inequality,
we have for any D ⊂ Dt

n,T (z
t)

P∗
θ∗

⎛
⎝ ∑

1≤q,l≤Q

∣∣∣∣∣∣
∑

1≤q′,l′≤Q

∑
(i,j)∈F t

ql∩D

(Xt
ij − π∗t

q′l′)

∣∣∣∣∣∣ >
uζ2

2Tvn

⎞
⎠

≤ Q2 max
1≤q,l≤Q

P∗
θ∗

⎛
⎝

∣∣∣∣∣∣
∑

1≤q′,l′≤Q

∑
(i,j)∈F t

ql∩D

(Xt
ij − π∗t

q′l′)

∣∣∣∣∣∣ >
uζ2

2TvnQ2

⎞
⎠

≤ 2Q2 exp

(
− 2u2ζ4

4T 2v2nQ
4

1

|D|

)
.

This leads to, for the first term of (40),

T∑
t=1

P∗
θ∗

⎛
⎝

⎧⎨
⎩

∑
1≤q,l≤Q

∣∣∣∣∣ (π̆t
ql −π∗t

ql )

π∗t
ql (1−π∗t

ql )

∣∣∣∣∣
∣∣∣∣∣∣

∑
1≤q′,l′≤Q

∑
(i,j)∈Gt

ql

(Xt
ij −π∗t

q′l′)

∣∣∣∣∣∣>
u

2T

⎫⎬
⎭∩ Ωn

⎞
⎠

≤
T∑

t=1

∑
D⊂Dt

n,T (zt)

2Q2 exp

(
− 2u2ζ4

4T 2v2nQ
4

1

|D|

)

≤
T∑

t=1

2nr(t)∑
k=1

∑
D⊂Dt

n,T (zt);|D|=k

2Q2 exp

(
− 2u2ζ4

4T 2v2nQ
4

1

k

)

≤ 2Q2
T∑

t=1

exp

(
− u2ζ4

4T 2v2nQ
4nr(t)

)
(2nr(t))2nr(t)+1

≤ 2Q2T exp

(
− u2ζ4

4T 2v2nQ
4nr

)
(2nr)2nr+1.

For the second term of (40), we get from a union bound and from (39) that

T∑
t=1

P∗
θ∗

⎛
⎝

⎧⎨
⎩

∑
1≤q,l≤Q

∣∣∣∣∣ (π̆t
ql −π∗t

ql )

π∗t
ql (1−π∗t

ql )

∣∣∣∣∣
∣∣∣∣∣∣

∑
1≤q′,l′≤Q

(π∗t
q′l′ −π∗t

ql )|Gt
qlq′l′ |

∣∣∣∣∣∣ >
u

2T

⎫⎬
⎭ ∩ Ωn

⎞
⎠

≤ Q2
T∑

t=1

max
1≤q,l≤Q

P∗
θ∗

⎛
⎝

∣∣∣∣∣∣
∑

1≤q′,l′≤Q

(π∗t
q′l′ −π∗t

ql )|Gt
qlq′l′ |

∣∣∣∣∣∣ >
uζ2

2TvnQ2

⎞
⎠

≤ Q2TP∗
θ∗

(
2nr >

uζ2

2vnTQ2

)
.
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Finally, we have the following upper bound for U2

P∗
θ∗ (Ωn ∩ {|U2| > r log(nT )}) ≤ 2Q2T exp

(
−rζ4(log(nT ))2

4Q4T 2v2nn

)
(2nr)2nr+1

+Q2TP∗
θ∗

(
vn >

ζ2 log(nT )

4Q2Tn

)
.

For the third term U3, denoting G∗t
ql = ∪1≤q′,l′≤QG

t
ql = {(i, j) ∈ D∗t ∪ D̆t; z∗ti =

q, z∗tj = l}, we have

U3 =
∑

1≤q,l≤Q

∑
(i,j,t)∈D∗∪D̆

(
(π∗t

ql −Xt
ij) log

[
1−

(π̆t
ql − π∗t

ql )

(1− π∗t
ql )

]

+ (Xt
ij − π∗t

ql ) log

[
1 +

(π̆t
ql − π∗t

ql )

π∗t
ql

] )
1z∗t

i =q,z∗t
j =l

+
∑

1≤q,l≤Q

∑
(i,j,t)∈D∗∪D̆

(
(1− π∗

ql) log

[
1−

(π̆t
ql − π∗t

ql )

(1− π∗t
ql )

]

+ π∗t
ql log

[
1 +

(π̆t
ql − π∗t

ql )

π∗t
ql

] )
1z∗t

i =q,z∗t
j =l

=

T∑
t=1

∑
1≤q,l≤Q

(
log

[
1 +

(π̆t
ql − π∗t

ql )

π∗t
ql

]

− log

[
1−

(π̆t
ql − π∗t

ql )

(1− π∗t
ql )

] ) ∑
(i,j)∈G∗t

ql

(Xt
ij − π∗t

ql )

+

T∑
t=1

∑
1≤q,l≤Q

|G∗t
ql |

(
(1− π∗t

ql ) log

[
1 +

(π̆t
ql − π∗t

ql )

π∗t
ql

]

+ π∗t
ql log

[
1−

(π̆t
ql − π∗t

ql )

(1− π∗t
ql )

] )
.

Then, we have on the event Ωn and for n large enough such that |(π̆t
ql −

π∗t
ql )/π

∗t
ql | ≤ 1/2 and |(π̆t

ql − π∗t
ql )/(1 − π∗t

ql )| ≤ 1/2 for every q and l, using
the fact that | log(1 + x)| ≤ 2|x| for x ∈ [−1/2, 1/2],

|U3| ≤
T∑

t=1

4
vn
ζ

∑
1≤q,l≤Q

∣∣∣∣∣∣
∑

(i,j)∈G∗t
ql

(Xt
ij − π∗t

ql )

∣∣∣∣∣∣ +
T∑

t=1

4
vn
ζ

∑
1≤q,l≤Q

|G∗t
ql |.

Then, for every u > 0,

P∗
θ∗ (Ωn ∩ {|U3| > u}) ≤

T∑
t=1

P∗
θ∗

⎛
⎝ ∑

1≤q,l≤Q

∣∣∣∣∣∣
∑

(i,j)∈Q∗t
ql

(Xt
ij − π∗t

ql )

∣∣∣∣∣∣ >
uζ

8vnT

⎞
⎠
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+

T∑
t=1

P∗
θ∗

⎛
⎝vn

∑
1≤q,l≤Q

|G∗t
ql | >

uζ

8T

⎞
⎠ . (41)

For the first term of (41), using Hoeffding’s inequality as before,

T∑
t=1

P∗
θ∗

⎛
⎝∑

q,l

∣∣∣∣∣∣
∑

(i,j)∈G∗t
ql

(Xt
ij − π∗t

ql )

∣∣∣∣∣∣ > uζ/(8vnT )

⎞
⎠

≤
T∑

t=1

2nr(t)∑
k=1

∑
D⊂Dt

n,T (zt);|D|=k

P∗
θ∗

⎛
⎝∑

q,l

∣∣∣∣∣∣
∑

(i,j)∈F∗t
ql ∩D

(Xt
ij − π∗t

ql )

∣∣∣∣∣∣ > uζ/(8vnT )

⎞
⎠

≤ 2Q2T exp

(
− u2ζ2

82T 2Q4v2nnr

)
(2nr)2nr+1,

and for the second term of (41),

T∑
t=1

P∗
θ∗

⎛
⎝vn

∑
q,l

|G∗t
ql | >

uζ

8T

⎞
⎠ ≤ TP∗

θ∗

(
vn >

uζ

16Tnr

)
.

Finally, we have the following upper bound for U3

P∗
θ∗ (Ωn ∩ {|U3| > r log(nT )}) ≤ 2Q2T exp

(
−rζ2(log(nT ))2

82T 2Q4v2nn

)
(2nr)2nr+1

+ TP∗
θ∗

(
vn >

ζ log(nT )

16Tn

)
.

Now we choose the sequence vn such that vn = o(
√
logn/n) which is sufficient

to imply that the quantities

P∗
θ∗

(
vn > ζ2 log(nT )/(4Q2Tn)

)
and P∗

θ∗ (vn > ζ log(nT )/(16Tn))

vanish as n increases and we gather the three upper bounds. For large enough
values of n and with C1, C2, C3, C4 and κ positive constants only depending
on Q, ζ, K∗ and T , we then have

P∗
θ∗ ({U1 + U2 − U3 > − log(1/(εyn))− 3r log(nT )} ∩ Ωn)

≤ exp

[
(log(1/(εyn)) + 5r log(nT ))

2K∗

Cζ

]
exp

[
−nr

(δ − η)2K∗2

4Cζ

]

+ 2Q2T exp

(
−rζ4(log(nT ))2

4Q4T 2v2nn

)
(2nr)2nr+1

+ 2Q2T exp

(
−rζ2(log(nT ))2

82T 2Q4v2nn

)
(2nr)2nr+1
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≤ exp
[
−(δ − η)2C1nr + C2 log(nT )r + C4 log(1/(εyn))

]
+ κ exp

[
5nr log(nT )− C3

(log(nT ))2r

nv2n

]
.

Then, introducing

unT = exp
[
−(δ − η)2C1n+ C2 log(nT ) + C4 log(1/(εyn))

]
wnT = exp

[
−C3

(log(nT ))2

nv2n
+ 5n log(nT )

]
,

we conclude as in the proof of Theorem 2, noticing that nTunT (resp. nTwnT )
converges to 0 as n increases as long as log(1/yn) = o(n) (resp. as long as
vn = o(

√
log(n)/n)).

A.3. Proof of Corollary 6

As in the proof of Theorem 5, using the convergence in Equation (38) and
Lemma 13, we obtain for any ε > 0

Pθ∗

(
sup
θ∈Θ

∣∣∣∣ 2

n(n− 1)T
J (χ̂(θ), θ)−MT (π1:T )

∣∣∣∣ > εr2n√
n

)
−→

n→+∞
0.

We then conclude by using Lemma 8 applied with Fn,T = 2
n(n−1)T J (χ̂(·), ·).

Appendix B: Proofs of technical lemmas

B.1. Proof of Lemma 1

As in the proof of Lemma E.2 from Celisse, Daudin and Pierre (2012), we
use the method of Lagrange multipliers to find the fixed-point equation of
the critical point. Recall that θ = (Γ, π) and let us denote the likelihood
L(Γ, π) := exp 	(θ) = Pθ(X

1:T ) and the conditional likelihood Lc(z
1:T , π) =

Pθ(X
1:T | Z1:T = z1:T ). Recall the definition of Nql(z

1:T ) in (1) and that

Pθ(Z
1:T = z1:T ) =

∏
1≤q,l≤Q

γ
Nql(z

1:T )
ql

n∏
i=1

α1
z1
i
.

We compute the derivative of the Lagrangian with respect to each parameter γql.

∂

∂γql

[
L(Γ, π) +

Q∑
m=1

λm

(
Q∑

k=1

γmk − 1

)]

=
∂

∂γql

(∑
z1:T

Lc(z
1:T , π)Pθ(Z

1:T = z1:T )

)
+ λq

=
∑
z1:T

Lc(z
1:T , π)

Nql(z
1:T )

γql
Pθ(Z

1:T = z1:T ) + λq
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=
1

γql

(
T−1∑
t=1

n∑
i=1

∑
z1:T

Lc(z
1:T , π)Pθ(Z

1:T = z1:T )1zt
i=q,zt+1

i =l + λqγql

)

=
1

γql

(
T−1∑
t=1

n∑
i=1

Pθ(X
1:T , Zt

i = q, Zt+1
i = l) + λqγql

)
.

At the critical point θ̆ = (γ̆, π̆), we obtain that for each (q, l) ∈ �1, Q�2 we have

γ̆ql ∝
T−1∑
t=1

n∑
i=1

Pθ̆(X
1:T , Zt

i = q, Zt+1
i = l)

where ∝ means ‘proportional to’. The constraint
∑

l γql = 1 gives the normal-
izing term and we obtain

γ̆ql =

∑T−1
t=1

∑n
i=1 Pθ̆(X

1:T , Zt
i = q, Zt+1

i = l)∑T−1
t=1

∑n
i=1 Pθ̆(X

1:T , Zt
i = q)

=

∑T−1
t=1

∑n
i=1 Pθ̆(Z

t
i = q, Zt+1

i = l |X1:T )∑T−1
t=1

∑n
i=1 Pθ̆(Z

t
i = q |X1:T )

.

B.2. Proof of Lemma 2

We can write the quantity to optimize

J (χ, θ) = EQχ

[
logPθ(X

1:T , Z1:T )
]
+H(Qχ)

= EQχ

[
logPθ(X

1:T | Z1:T )
]
+ EQχ

[
logPθ(Z

1:T )
]
− EQχ

[
logQχ(Z

1:T )
]

= EQχ

⎡
⎣ T∑

t=1

∑
i<j

Xt
ij log πZt

iZ
t
j
+ (1−Xt

ij) log(1− πZt
iZ

t
j
)

⎤
⎦

+ EQχ

[
n∑

i=1

logαZ1
i
+

n∑
i=1

T−1∑
t=1

log γZt
iZ

t+1
i

]

− EQχ

[
n∑

i=1

logQχ(Z
1
i ) +

n∑
i=1

T−1∑
t=1

logQχ(Z
t+1
i | Zt

i )

]

=

T∑
t=1

∑
i<j

∑
q,l

τ tiqτ
t
jl

[
Xt

ij log πql + (1−Xt
ij) log(1− πql)

]

+

n∑
i=1

Q∑
q=1

τ1iq logαq +

n∑
i=1

∑
q,l

T−1∑
t=1

ηtiql log γql −
n∑

i=1

Q∑
q=1

τ1iq log τ
1
iq

−
n∑

i=1

T−1∑
t=1

∑
q,l

ηtiql log
ηtiql
τ tiq

. (42)

Using this expression, we can obtain directly the expected fixed-point equation
for the variational estimator of the transition probability from q to l.
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B.3. Proof of Lemma 3

We rely on the notation introduced in the proof of Theorem 1. For any t ∈ �1, T �,
using classical dependency rules in directed acyclic graphs and the expression (9)
of ẑt, we write

logPθ(X
t |X1:t−1) = log

∑
zt

Pθ(X
t | Zt = zt)Pθ(Z

t = zt |X1:t−1)

≤ log

[
Pθ(X

t | Zt = ẑt)
∑
zt

Pθ(Z
t = zt |X1:t−1)

]

= logPθ(X
t | Zt = ẑt)

and thus

logPθ(X
t |X1:t−1)− logPθ(X

t | Zt = ẑt) ≤ 0. (43)

Using Bayes’ rule, we have

logPθ(X
t |X1:t−1) = logPθ(X

t, Zt |X1:t−1)− logPθ(Z
t |X1:t).

Taking the expectation of this quantity with respect to any distribution Q on
Zt, we obtain

logPθ(X
t |X1:t−1)=EQ

[
logPθ(X

t, Zt |X1:t−1)
]
+KL

(
Q;Pθ(Z

t |X1:t)
)
+H(Q)

≥EQ

[
logPθ(X

t, Zt |X1:t−1)
]
+H(Q)

≥EQ

[
logPθ(X

t | Zt)
]
+ EQ

[
logPθ(Z

t |X1:t−1)
]
+H(Q),

where KL
(
Q;Pθ(Z

t |X1:t)
)
= EQ

[
logQ(Zt)− logPθ(Z

t |X1:t)
]
is a Kullback-

Leibler divergence (thus non negative) and H(Q) = −EQ [logQ(Zt)] is the en-
tropy of Q.

Taking now Q as the Dirac distribution located on ẑt, we have H(Q) = 0 and

logPθ(X
t |X1:t−1) ≥ logPθ(X

t | Zt = ẑt) + logPθ(Z
t = ẑt |X1:t−1). (44)

Now, combining Inequalities (43) and (44), we obtain

logPθ(Z
t = ẑt |X1:t−1) ≤ logPθ(X

t |X1:t−1)− logPθ(X
t | Zt = ẑt) ≤ 0,

giving the expected result.

B.4. Proof of Lemma 4

To prove this lemma, we first establish a control of the expectation of the random
variable appearing in the statement.
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Lemma 15. We have the following inequality for z∗1:T and z1:T any configu-
rations and any θ ∈ Θ

Eθ∗

⎡
⎣ sup

(z1:T ,π)∈�1,Q�nT×[ζ,1−ζ]Q2

∣∣∣∣∣∣
2

n(n− 1)T

T∑
t=1

∑
i<j

{
(Xt

ij − π∗
z∗t
i z∗t

j
)

× log

(
πzt

iz
t
j

1− πzt
iz

t
j

) }∣∣∣∣∣∣
∣∣∣∣∣ Z1:T = z∗1:T

⎤
⎦

≤
√

2

n(n− 1)T
Λ

with Λ = 2 log[(1− ζ)/ζ].

We now turn to the proof of Lemma 4. Let us first recall Talagrand’s inequal-
ity (see for e.g. Massart, 2007, page 170, Equation (5.50)).

Theorem (Talagrand’s inequality). Let {Y t
ij}1≤i<j≤n,1≤t≤T denote indepen-

dent and centered random variables. Define

∀g := {gtij}1≤i<j≤n,1≤t≤T ∈ G, Sn,T (g) =
∑

1≤i<j≤n

T∑
t=1

Y t
ijg

t
ij ,

where G ⊂ Rn(n−1)T/2. Let us further assume that there exist b > 0 and σ2 > 0
such that |Y t

ijg
t
ij | ≤ b for every (i, j, t) ∈ �1, n�2 × �1, T � and any g ∈ G and

supg∈G
∑

i<j

∑
t Var(Y

t
ijg

t
ij) ≤ σ2. Then, for every β > 0 and x > 0, for any

finite set {g1, . . . , g2n(n−1)T/2} of elements of G, we have

P

(
max

g∈{g1,...,g2n(n−1)T/2}
Sn,T (g)

≥ E

[
max

g∈{g1,...,g2n(n−1)T/2}
Sn,T (g)

]
(1 + β) +

√
2σ2x+ b(β−1 + 3−1)x

)

≤ e−x. (45)

First, notice that we have argmin�∈[ζ,1−ζ] log(�/(1 − �)) = ζ and also
argmax�∈[ζ,1−ζ] log(�/(1−�)) = 1− ζ so that we have

P∗
θ∗

⎛
⎜⎜⎝ sup

(z1:T ,π)∈
�1,Q�nT ×[ζ,1−ζ]Q

2

2

n(n− 1)T

∣∣∣∣∣∣
T∑

t=1

∑
i<j

(Xt
ij − π∗

z∗t
i z∗t

j
) log

(
πzt

iz
t
j

1− πzt
iz

t
j

)∣∣∣∣∣∣ > ε

⎞
⎟⎟⎠

≤ P∗
θ∗

⎛
⎝ max

�∈
{ζ,1−ζ}n(n−1)T/2

2

n(n− 1)T

∣∣∣∣∣∣
T∑

t=1

∑
i<j

(Xt
ij − π∗

z∗t
i z∗t

j
) log

(
�t

i,j

1−�t
i,j

)∣∣∣∣∣∣ > ε

⎞
⎠
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with � := {�t
i,j}1≤i<j≤n,1≤t≤T . The set {ζ, 1 − ζ}n(n−1)T/2 is finite, of size

2n(n−1)T/2. Let us now apply Talagrand’s inequality to our setup. Note that for
every (i, j, t) ∈ �1, n�2 × �1, T �, for any π ∈ [ζ, 1− ζ]Q

2

, we have∣∣∣∣∣(Xt
ij − π∗

z∗t
i z∗t

j
) log

(
πzt

iz
t
j

1− πzt
iz

t
j

)∣∣∣∣∣ ≤ log[(1− ζ)/ζ] =
Λ

2

almost surely thanks to Assumption 3, and with Λ as defined in Lemma 15.
Combining this result with Lemma 15 and writing

Ω = (1+ β)Λ
√

n(n− 1)T/2+
√
n(n− 1)T (Λ/2)2xn,T + (1/β +1/3)(Λ/2)xn,T ,

we have for any ε > 0, for any β > 0, applying Talagrand’s inequality with
b = Λ/2 and σ2 = n(n− 1)T/2(Λ/2)2,

P∗
θ∗

⎛
⎜⎜⎝ sup

(z1:T ,π)∈
�1,Q�nT ×[ζ,1− ζ]Q

2

2

n(n− 1)T

∣∣∣∣∣∣
T∑

t=1

∑
i<j

(Xt
ij −π∗

z∗t
i z∗t

j
) log

(
πzt

iz
t
j

1−πzt
iz

t
j

)∣∣∣∣∣∣ > ε

⎞
⎟⎟⎠

≤ P∗
θ∗

⎛
⎝ max

�∈
{ζ,1− ζ}n(n− 1)T/2

2

n(n− 1)T

∣∣∣∣∣∣
T∑

t=1

∑
i<j

(Xt
ij −π∗

z∗t
i z∗t

j
) log

(
�t

i,j

1−�t
i,j

)∣∣∣∣∣∣ > ε

⎞
⎠

≤ P∗
θ∗

⎛
⎝ε < max

�∈
{ζ,1− ζ}n(n− 1)T/2

2

n(n− 1)T

∣∣∣∣∣∣
T∑

t=1

∑
i<j

{
(Xt

ij −π∗
z∗t
i z∗t

j
)

× log

(
�t

i,j

1−�t
i,j

) }∣∣∣∣∣∣ ≤
2

n(n− 1)T
Ω

⎞
⎠

+ P∗
θ∗

⎛
⎝ max

�∈
{ζ,1− ζ}n(n− 1)T/2

2

n(n− 1)T

∣∣∣∣∣∣
T∑

t=1

∑
i<j

{
(Xt

ij −π∗
z∗t
i z∗t

j
)

× log

(
�t

i,j

1−�t
i,j

) }∣∣∣∣∣∣ >
2

n(n− 1)T
Ω

⎞
⎠

≤ P∗
θ∗

(
2

n(n− 1)T
Ω > ε

)
+ 2e−xn,T ≤ 1ε<2Ω/(n(n− 1)T ) + 2e−xn,T .

B.5. Proof of Lemma 5

For any η ∈ (0, δ), Hoeffding’s inequality (see for example Theorem 2.8 from
Boucheron, Lugosi and Massart, 2013) gives that

Pθ

(
∀t ∈ �1, T �, ∀q ∈ �1, Q�,

Nq(Z
t)

n
≥ αq − η

)
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= 1− Pθ

(
∃t ∈ �1, T �, ∃q ∈ �1, Q�;

1

n

n∑
i=1

1Zt
i=q < αq − η

)

≥ 1−
Q∑

q=1

T∑
t=1

exp
(
−2η2n

)
≥ 1−QT exp

(
−2η2n

)
,

which concludes the proof.

B.6. Proof of Lemma 6

First notice that argmaxA∈A M(π,A) may not be unique, it is in fact a closed
subset of A. However, we choose a fixed element Āπ in this subset in the follow-
ing. Letting ε > 0 and η ∈ (0, δ) and using Lemma 5, we can split the probability
as

Pθ∗

(
1

T

T∑
t=1

sup
π∈[ζ,1−ζ]Q2

∣∣M(π, Āt
π)−M(π, Āπ)

∣∣ > εrn
6
√
n

)

≤ Pθ∗

({
1

T

T∑
t=1

sup
π∈[ζ,1−ζ]Q2

∣∣M(π, Āt
π)−M(π, Āπ)

∣∣ > εrn
6
√
n

}
∩ Ωη(θ

∗)

)

+QT exp
(
−2η2n

)
,

recalling that

Ωη(θ) :=

{
z1:T ∈ �1, Q�nT ; ∀t ∈ �1, T �, ∀q ∈ �1, Q�,

Nq(z
t)

n
≥ αq − η

}
.

We thus want to bound the quantity

Pθ∗

(
T−1

T∑
t=1

sup
π∈[ζ,1−ζ]Q2

∣∣M(π, Āt
π)−M(π, Āπ)

∣∣ > εrn/(6
√
n)

)

on the event
{
Z1:T ∈ Ωη(θ

∗)
}
, which means bounding

Pθ∗

(
1

T

T∑
t=1

sup
π∈[ζ,1−ζ]Q2

∣∣M(π, Āt
π)−M(π, Āπ)

∣∣ > εrn
6
√
n

∣∣∣∣∣ Z1:T ∈ Ωη(θ
∗)

)
.

Let us denote for any matrix P = (Pij)1≤i≤n,1≤j≤m of size m × n the norm

‖P‖∞ = max(i,j)∈�1,m�×�1,n� |Pij |. Then note that, for any matrix Ă with coef-

ficients in [0, 1], for any π ∈ [ζ, 1− ζ]Q
2

, using Assumption 2 and 3,(
M(π, Āπ)−M(π, Ă)

)
≤

∑
q,l

α∗
qα

∗
l

∑
q′,l′

|āqq′ āll′ − ăqq′ ăll′ | sup
π∈[ζ,1− ζ]Q2

|π∗
ql log πq′l′ +(1−π∗

ql) log(1−πq′l′)|
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≤ 2(1− δ)2(1− ζ) log(1/ζ)
∑
q,l

∑
q′,l′

|āqq′ āll′ − ăqq′ ăll′ |

≤ 2(1− δ)2(1− ζ) log(1/ζ)Q42‖Ă− Āπ‖∞ := c‖Ă− Āπ‖∞

with c = 4(1− δ)2(1− ζ) log(1/ζ)Q4. On the event Ωη(θ
∗) we then have

Pθ∗

(
1

T

T∑
t=1

sup
π∈[ζ,1− ζ]Q2

∣∣M(π, Āt
π)−M(π, Āπ)

∣∣ > εrn
6
√
n

)

= 1−Pθ∗

(
1

T

T∑
t=1

sup
π∈[ζ,1− ζ]Q2

∣∣M(π, Āt
π)−M(π, Āπ)

∣∣ ≤ εrn
6
√
n

)

≤ 1−Pθ∗

(
∀t∈ �1, T �, sup

π∈[ζ,1− ζ]Q2

(
M(π, Āπ)−M(π, Āt

π)
)
≤ εrn

6
√
n

)

≤ 1−Pθ∗

(
∀t∈ �1, T �, ∀π ∈ [ζ, 1− ζ]Q

2

,
(
M(π, Āπ)−M(π, Āt

π)
)
≤ εrn

6
√
n

)

≤ 1−Pθ∗

(
∀t∈ �1, T �, ∀π ∈ [ζ, 1− ζ]Q

2

, ∃Ă ∈ At(Z1:T );

(
M(π, Āπ)−M(π, Ă)

)
≤ εrn

6
√
n

)

≤ 1−Pθ∗

(
∀t∈ �1, T �, ∀π ∈ [ζ, 1− ζ]Q

2

, ∃Ă ∈ At(Z1:T ); ‖Ă− Āπ‖∞ <
εrn
6c
√
n

)
.

We then show that for any ε > 0, for every t ∈ �1, T � and every π ∈ [ζ, 1− ζ]Q
2

,
for any n such that n > 6c

√
n/[εrn(δ − η)], there exists some Ă ∈ At(Z1:T )

such that ‖Ă − Āπ‖∞ < εrn/(6c
√
n), i.e. such that for every q, l, |ăql − āql| <

εrn/(6c
√
n). For every 1 ≤ q ≤ Q, we can construct Ăq· = (ăq1, . . . , ăqQ) as

follows. On the event Ωη(θ
∗), for every q ∈ �1, Q�, for any n such that n >

6c
√
n/[εrn(δ−η)], we have Nq(Z

t)εrn/(6c
√
n) > 1 for every t ∈ �1, T �. We then

construct (n̆ql)1≤l≤Q as follows and take ăql = n̆ql/Nq(Z
1:T ) for every l ∈ �1, Q�.

• for l = 1 choose n̆q1 as the closest integer to Nq(Z
t)āq1. It is in the

interval (Nq(Z
t)āq1 − 1, Nq(Z

t)āq1 + 1) so we have |āq1 − n̆q1/Nq(Z
t)| <

1/Nq(Z
t) < εrn/(6c

√
n). Moreover, note that 0 ≤ n̆q1 ≤ Nq(Z

t) because
0 ≤ Nq(Z

t)āq1 ≤ Nq(Z
t).

• Repeat for l = 2, . . . , Q

– if
∑l−1

l′=1(Nq(Z
t)āql′ − n̆ql′) ≥ 0 choose n̆ql as the closest bigger (or

equal) integer to Nq(Z
t)āql.

– if
∑l−1

l′=1(Nq(Z
t)āql′ − n̆ql′) < 0 choose n̆ql as the closest smaller (or

equal) integer to Nq(Z
t)āql.

As before, n̆ql is in the interval (Nq(Z
t)āql − 1, Nq(Z

t)āql + 1) so we
have |āql − n̆ql/Nq(Z

t)| < 1/Nq(Z
1:T ) < εrn/(6c

√
n). Moreover we have

0 ≤ n̆ql ≤ Nq(Z
t) because 0 ≤ Nq(Z

t)āql ≤ Nq(Z
t). We also have (by
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induction)∣∣∣∣∣
l∑

l′=1

(Nq(Z
t)āql′ − n̆ql′)

∣∣∣∣∣=
∣∣∣∣∣
l−1∑
l′=1

(
Nq(Z

t)āql′ − n̆ql′
)
+Nq(Z

t)āql − n̆ql

∣∣∣∣∣< 1.

In the end, we have |
∑Q

l=1(Nq(Z
t)āql − n̆ql)| < 1 i.e. |Nq(Z

t)−
∑Q

l=1 n̆ql| < 1,

meaning that
∑Q

l=1 n̆ql = Nq(Z
t), both Nq(Z

t) and
∑Q

l=1 n̆ql being integers.

Then, if n > 6c
√
n/[εrn(δ − η)], there exists Ă ∈ At(Z1:T ) such that ‖Ă −

Āπ‖∞ < εrn/(6c
√
n). This leads to

Pθ∗

(
1

T

T∑
t=1

∣∣M(π, Āt
π)−M(π, Āπ)

∣∣ > εrn
6
√
n

)

≤ QT exp(−2η2n) + 1− 1n>6c
√
n/[εrn(δ−η)]

which concludes the proof.

B.7. Proof of Lemma 7

We can upper bound the expectation as follows

Eθ∗

[∣∣∣∣Nq(Z
1)Nl(Z

1)

n(n− 1)
− α∗

qα
∗
l

∣∣∣∣
]

= Eθ∗

[∣∣∣∣
(
Nq(Z

1)

n
− α∗

q

)
Nl(Z

1)

n− 1
+ α∗

q

(
Nl(Z

1)

n− 1
− α∗

l

)∣∣∣∣
]

≤ Eθ∗

[∣∣∣∣Nq(Z
1)

n
− α∗

q

∣∣∣∣ Nl(Z
1)

n− 1

]
+ α∗

qEθ∗

[∣∣∣∣Nl(Z
1)

n− 1
− α∗

l

∣∣∣∣
]

≤

√√√√Eθ∗

[(
Nq(Z1)

n
− α∗

q

)2
]
Eθ∗

[
Nl(Z1)2

(n− 1)2

]
+ α∗

q

√√√√Eθ∗

[(
Nl(Z1)

n− 1
− α∗

l

)2
]
.

We have for any q ∈ �1, Q�

Eθ∗
[
Nq(Z

1)2
]
=

∑
i,j

Eθ∗

[
1Z1

i =q1Z1
j=q

]

=
∑
i

α∗
q +

∑
i 	=j

α∗2
q = nα∗

q + n(n− 1)α∗2
q .

This implies that

Eθ∗

[(
Nq(Z

1)

n
− α∗

q

)2
]
= Eθ∗

[
Nq(Z

1)2

n2

]
− α∗2

q =
1

n
α∗
q +

n− 1

n
α∗2
q − α∗2

q

=
1

n
α∗
q(1− α∗

q),



Consistency of the ML and variational estimators in a dynamic SBM 4211

and identically

Eθ∗

[(
Nl(Z

1)

n− 1
− α∗

l

)2
]
= Eθ∗

[
Nl(Z

1)2

(n− 1)2

]
+ α∗2

l − 2
n

n− 1
α∗2
l

=
n

(n− 1)2
α∗
l −

1

n− 1
α∗2
l

=
1

n− 1
α∗
l

(
n

n− 1
− α∗

l

)
.

This leads to

Eθ∗

[∣∣∣∣Nq(Z
1)Nl(Z

1)

n(n− 1)
− α∗

qα
∗
l

∣∣∣∣
]
≤

√
1

n
α∗
q(1− α∗

q)

(
n

(n− 1)2
α∗
q +

n

n− 1
α∗2
q

)

+ α∗
q

√
1

n− 1
α∗
l

(
n

n− 1
− α∗

l

)

≤
√

1

(n− 1)2
+

1

n− 1
+

√
n

(n− 1)2

≤ 2

√
n

n− 1
, (46)

using the fact that 0 ≤ α∗
q ≤ 1 for every q ∈ �1, Q�.

B.8. Proof of Lemma 8

We first consider the case when T → ∞, and π is constant over time. We use
the following lemma.

Lemma 16. For any θ ∈ Θ, we have for ε small enough (precisely 0 < ε <
min1≤q 	=q′≤Q max1≤l≤Q |π∗

ql − π∗
q′l|/2)

min
σ∈SQ

‖πσ − π∗‖∞ > ε =⇒ M(π∗)−M(π) >
2δ2

Q2
ε2.

This gives an upper bound on the probability of interest

Pθ∗

(
min
σ∈SQ

‖π̂σ − π∗‖∞ > ε
√
vn,T

)
≤ Pθ∗

(
M(π∗)−M(π̂) >

2δ2

Q2
ε2vn,T

)
.

By definition of θ̂ = (Γ̂, π̂), we write

M(π∗) = Fn,T (Γ̂, π
∗) +M(π∗)− Fn,T (Γ̂, π

∗)

≤ Fn,T (Γ̂, π̂) +M(π∗)− Fn,T (Γ̂, π
∗),

implying that

M(π∗)−M(π̂) ≤
[
Fn,T (Γ̂, π̂)−M(π̂)

]
+

[
M(π∗)− Fn,T (Γ̂, π

∗)
]
.
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We then obtain the following upper bound, that converges to 0 as n and T
increase by assumption,

Pθ∗

(
min
σ∈SQ

‖π̂σ − π∗‖∞ > ε
√
vn,T

)
≤ Pθ∗

(
Fn,T (Γ̂, π̂)−M(π̂) >

δ2

Q2
ε2vn,T

)

+ Pθ∗

(
M(π∗)− Fn,T (Γ̂, π

∗) >
δ2

Q2
ε2vn,T

)
.

When the number of time steps T is fixed and π is allowed to vary over time,
the proof is almost the same. Indeed, minσ1,...,σT∈SQ

‖π̂1:T
σ1:T − π∗1:T ‖∞ > ε

√
vn

means that there exists t ∈ �1, T � such that minσt∈SQ
‖π̂t

σt −π∗t‖∞ > ε
√
vn and

we can apply Lemma 16 to this π̂t to obtain that M(π∗t)−M(π̂t) > 2ε2δ2vn/Q
2.

This implies that MT (π∗1:T ) − MT (π̂1:T ) > 2ε2δ2vn/(TQ
2), which allows to

conclude in the same way as before.

B.9. Proof of Lemma 9

We have

log
Pθ̆(Z

1:T = z1:T |X1:T )

Pθ̆(Z
1:T = z∗1:T |X1:T )

= log
Pθ̆(X

1:T | Z1:T = z1:T )

Pθ̆(X
1:T | Z1:T = z∗1:T )

+ log
Pθ̆(Z

1:T = z1:T )

Pθ̆(Z
1:T = z∗1:T )

=

T∑
t=1

∑
1≤i<j≤n

(
Xt

ij log
π̆zt

iz
t
j

π̆z∗t
i z∗t

j

+ (1−Xt
ij) log

1− π̆zt
iz

t
j

1− π̆z∗t
i z∗t

j

)

+

n∑
i=1

log
ᾰz1

i

ᾰz∗1
i

+

T−1∑
t=1

n∑
i=1

log
γ̆zt

iz
t+1
i

γ̆z∗t
i z∗t+1

i

.

We decompose this sum as

log
Pθ̆(Z

1:T = z1:T |X1:T )

Pθ̆(Z
1:T = z∗1:T |X1:T )

=

T∑
t=1

∑
1≤i<j≤n

(
Xt

ij log
π∗
zt
iz

t
j

π∗
z∗t
i z∗t

j

+ (1−Xt
ij) log

1− π∗
zt
iz

t
j

1− π∗
z∗t
i z∗t

j

)

+

n∑
i=1

log
ᾰz1

i

ᾰz∗1
i

+

T−1∑
t=1

n∑
i=1

log
γ̆zt

iz
t+1
i

γ̆z∗t
i z∗t+1

i

+

T∑
t=1

∑
1≤i<j≤n

(
Xt

ij log
π̆zt

iz
t
j

π∗
zt
iz

t
j

π∗
z∗t
i z∗t

j

π̆z∗t
i z∗t

j

+ (1−Xt
ij) log

1− π̆zt
iz

t
j

1− π∗
zt
iz

t
j

1− π∗
z∗t
i z∗t

j

1− π̆z∗t
i z∗t

j

)
.

(47)

In the first sum of the right-hand side of (47), the terms are different from zero
only for triplets (i, j, t) in D∗. Similarly in the last sum, the terms are different



Consistency of the ML and variational estimators in a dynamic SBM 4213

from zero for triplets (i, j, t) in D∗ ∪ D̆. As a consequence, we obtain

log
Pθ̆(Z

1:T = z1:T |X1:T )

Pθ̆(Z
1:T = z∗1:T |X1:T )

=
∑

(i,j,t)∈D∗

(
Xt

ij log
π∗
zt
iz

t
j

π∗
z∗t
i z∗t

j

+ (1−Xt
ij) log

1− π∗
zt
iz

t
j

1− π∗
z∗t
i z∗t

j

)

+

n∑
i=1

log
ᾰz1

i

ᾰz∗1
i

+

T−1∑
t=1

n∑
i=1

log
γ̆zt

iz
t+1
i

γ̆z∗t
i z∗t+1

i

+
∑

(i,j,t)∈D∗∪D̆

(
Xt

ij log
π̆zt

iz
t
j

π∗
zt
iz

t
j

π∗
z∗t
i z∗t

j

π̆z∗t
i z∗t

j

+ (1−Xt
ij) log

1− π̆zt
iz

t
j

1− π∗
zt
iz

t
j

1− π∗
z∗t
i z∗t

j

1− π̆z∗t
i z∗

j

)
.

We now write the last sum in the right-hand side as

∑
(i,j,t)∈D∗∪D̆

(
Xt

ij log
π̆zt

iz
t
j

π∗
zt
iz

t
j

π∗
z∗t
i z∗t

j

π̆z∗t
i z∗t

j

+ (1−Xt
ij) log

1− π̆zt
iz

t
j

1− π∗
zt
iz

t
j

1− π∗
z∗t
i z∗t

j

1− π̆z∗t
i z∗t

j

)

=
∑

(i,j,t)∈D∗∪D̆

{
Xt

ij

[
log

(
1 +

π̆zt
iz

t
j
− π∗

zt
iz

t
j

π∗
zt
iz

t
j

)
+ log

π∗
z∗t
i z∗t

j

π̆z∗t
i z∗t

j

]

+ (1−Xt
ij)

[
log

(
1−

π̆zt
iz

t
j
− π∗

zt
iz

t
j

1− π∗
zt
iz

t
j

)
+ log

1− π∗
z∗t
i z∗t

j

1− π̆z∗t
i z∗t

j

] }
.

Distinguishing between the cases where Xt
ij = 1 and Xt

ij = 0, we obtain

∑
(i,j,t)∈D∗∪D̆

(
Xt

ij log
π̆zt

iz
t
j

π∗
zt
iz

t
j

π∗
z∗t
i z∗t

j

π̆z∗t
i z∗t

j

+ (1−Xt
ij) log

1− π̆zt
iz

t
j

1− π∗
zt
iz

t
j

1− π∗
z∗t
i z∗t

j

1− π̆z∗t
i z∗t

j

)

=
∑

(i,j,t)∈D∗∪D̆

log

[
1 +

(π̆zt
iz

t
j
− π∗

zt
iz

t
j
)(Xt

ij − π∗
zt
iz

t
j
)

π∗
zt
iz

t
j
(1− π∗

zt
iz

t
j
)

]

−
∑

(i,j,t)∈D∗∪D̆

log

[
1 +

(π̆z∗t
i z∗t

j
− π∗

z∗t
i z∗t

j
)(Xt

ij − π∗
z∗t
i z∗t

j
)

π∗
z∗t
i z∗t

j
(1− π∗

z∗t
i z∗t

j
)

]
.

In the end, we decompose

log
Pθ̆(Z

1:T = z1:T |X1:T )

Pθ̆(Z
1:T = z∗1:T |X1:T )

=
∑

(i,j,t)∈D∗

(
Xt

ij log
π∗
zt
iz

t
j

π∗
z∗t
i z∗t

j

+ (1−Xt
ij) log

1− π∗
zt
iz

t
j

1− π∗
z∗t
i z∗t

j

)

+
n∑

i=1

log
ᾰz1

i

ᾰz∗1
i

+
T−1∑
t=1

n∑
i=1

log
γ̆zt

iz
t+1
i

γ̆z∗t
i z∗t+1

i
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+
∑

(i,j,t)∈D∗∪D̆

log

[
1 +

(π̆zt
iz

t
j
− π∗

zt
iz

t
j
)(Xt

ij − π∗
zt
iz

t
j
)

π∗
zt
iz

t
j
(1− π∗

zt
iz

t
j
)

]

−
∑

(i,j,t)∈D∗∪D̆

log

[
1 +

(π̆z∗t
i z∗t

j
− π∗

z∗t
i z∗t

j
)(Xt

ij − π∗
z∗t
i z∗t

j
)

π∗
z∗t
i z∗t

j
(1− π∗

z∗t
i z∗t

j
)

]
,

which gives the result.

B.10. Proof of Lemma 10

We first notice that

∣∣Dn,T (z
1:T , π)

∣∣ = 1

2

∣∣∣{(i, j, t) ∈ �1, n�2 × �1, T �;πzt
iz

t
j
	= πz∗t

i z∗t
j

}∣∣∣
=

1

2

T∑
t=1

∣∣∣{(i, j) ∈ �1, n�2;πzt
iz

t
j
	= πz∗t

i z∗t
j

}∣∣∣ .
For every t ∈ �1, T �, we can apply Proposition B.4. from Celisse, Daudin and
Pierre (2012), as their Assumption (A4) is required to hold only for z∗t (see
proof) and is valid on Ωη(θ) with the constant δ − η. We obtain

∣∣∣{(i, j) ∈ �1, n�2;πzt
iz

t
j
	= πz∗t

i z∗t
j

}∣∣∣ ≥ (δ − η)2

2
nr(t).

We conclude by noticing that
∑T

t=1 r(t) = r.

B.11. Proof of Lemma 11

The inclusion of the sets is straightforward. Now we have∣∣∣{(i, j, t)∈ �1, n�2 × �1, T �;πzt
iz

t
j
	= πz∗t

i z∗t
j

}∣∣∣
≤

∣∣{(i, j, t)∈ �1, n�2 × �1, T �; (zti , z
t
j) 	= (z∗ti , z∗tj )

}∣∣
≤

∣∣{(i, j, t)∈ �1, n�2 × �1, T �; zti 	= z∗ti
}∣∣ + ∣∣{(i, j, t)∈ �1, n�2 × �1, T �; ztj 	= z∗tj

}∣∣
≤ 2

T∑
t=1

nr(t) ≤ 2nr.

B.12. Proof of Lemma 12

First, let us decompose the quantity at stake as follows

Pθ∗

(∣∣∣∣∣ 1

n(T − 1)

T−1∑
t=1

n∑
i=1

Pθ̂σ

(
Zt
i = q, Zt+1

i = l |X1:T
)
−α∗

qγ
∗
ql

∣∣∣∣∣ > εrn,T

√
logn√
nT

)
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≤ Pθ∗

(∣∣∣∣∣ 1

n(T − 1)

T−1∑
t=1

n∑
i=1

Pθ̂σ

(
Zt
i = q, Zt+1

i = l |X1:T
)
− Nql(Z

1:T )

n(T − 1)

∣∣∣∣∣
>

ε

2
rn,T

√
logn√
nT

)
+ Pθ∗

(∣∣∣∣Nql(Z
1:T )

n(T − 1)
− α∗

qγ
∗
ql

∣∣∣∣ > ε

2
rn,T

√
logn√
nT

)
,

(48)

and upper bound the two terms in the right-hand side of (48). For the first one
we will follow the proof of Theorem 3.9 from Celisse, Daudin and Pierre (2012).
Let z1:T denote a fixed configuration. We work on the set {Z1:T = z1:T } and
write

V1(z
1:T )

:=

∣∣∣∣∣ 1

n(T − 1)

T−1∑
t=1

n∑
i=1

Pθ̂σ

(
Zt
i = q, Zt+1

i = l |X1:T
)
− Nql(z

1:T )

n(T − 1)

∣∣∣∣∣
≤

∣∣∣∣∣ 1

n(T − 1)

T−1∑
t=1

n∑
i=1

Pθ̂σ

(
Zt
i = q, Zt+1

i = l |X1:T
)
1(zt

i ,z
t+1
i )=(q,l) −

Nql(z
1:T )

n(T − 1)

∣∣∣∣∣
+

1

n(T − 1)

T−1∑
t=1

n∑
i=1

Pθ̂σ

(
Zt
i = q, Zt+1

i = l |X1:T
)
1(zt

i ,z
t+1
i ) 	=(q,l)

≤ 1

n(T − 1)

T−1∑
t=1

n∑
i=1

(
1− Pθ̂σ

(
(Zt

i , Z
t+1
i ) = (zti , z

t+1
i ) |X1:T

))
1(zt

i ,z
t+1
i )=(q,l)

+
1

n(T − 1)

T−1∑
t=1

n∑
i=1

Pθ̂σ

(
(Zt

i , Z
t+1
i ) 	= (zti , z

t+1
i ) |X1:T

)
1(zt

i ,z
t+1
i ) 	=(q,l)

≤ 2Pθ̂σ

(
Z1:T 	= z1:T |X1:T

)
.

Then

Pθ∗

(
V1(Z

1:T ) >
ε

2
rn,T

√
logn√
nT

)

= Eθ∗

[
Pθ∗

(
V1(Z

1:T ) >
ε

2
rn,T

√
logn√
nT

∣∣∣ Z1:T

)]

≤
∑
z1:T

{
Pθ∗

(
Pθ̂σ

(
Z1:T 	= z1:T |X1:T

)
>

ε

4
rn,T

√
logn√
nT

∣∣∣ Z1:T = z1:T
)

× Pθ∗
(
Z1:T = z1:T

) }

≤
∑
z1:T

{
Pθ∗

(
Pθ̂σ

(
Z1:T 	= z1:T |X1:T

)
Pθ̂σ

(Z1:T = z1:T |X1:T )
>

ε

4
rn,T

√
logn√
nT

∣∣∣ Z1:T = z1:T

)

× Pθ∗
(
Z1:T = z1:T

) }
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≤ QT exp(−2η2n) + Pθ∗ (‖π̂σ − π∗‖∞ > vn,T )

+ CnT exp

[
−(δ − η)2C1n+ C2 log(nT ) + C4 log

(
4
√
nT

εrn,T
√
logn

)]

+ CnT exp

[
−C3

(log(nT ))2

nv2n,T
+ 3n log(nT )

]
, (49)

where the last inequality comes from Theorem 2 where the bound is uniform
with respect to z1:T .

Now, for the second term of (48), we use the following lemma.

Lemma 17. There exist c1, c2 > 0 such that for any ε > 0, for any sequence
{rn,T }n,T≥1, we have, as long as εrn,T

√
logn/(2α∗

qγ
∗
ql

√
nT ) < 1,

Pθ∗

(∣∣∣∣Nql(Z
1:T )

n(T − 1)
− α∗

qγ
∗
ql

∣∣∣∣ > ε

2
rn,T

√
logn√
nT

)
≤ c1 exp

(
−c2ε

2r2n,T
)
. (50)

We then combine the two upper bounds obtained in (49) and (50) in order
to conclude, the assumption εrn,T

√
logn/(2α∗

qγ
∗
ql

√
nT ) < 1 being satisfied for

n and T large enough because rn,T = o(
√

nT/ log n). We obtain the expected
result, using the fact that log(T ) = o(n), that rn,T increases to infinity and that

vn,T = o
(√

log(nT )/n
)
,

Pθ∗

(∣∣∣∣∣ 1

n(T − 1)

T−1∑
t=1

n∑
i=1

Pθ̂σ

(
Zt
i = q, Zt+1

i = l |X1:T
)
− α∗

qγ
∗
ql

∣∣∣∣∣ > εyn,T

)

≤ Pθ∗ (‖π̂σ − π∗‖∞ > vn,T ) + o(1).

B.13. Proof of Lemma 13

We have the following inequalities by definition of ẑ1:T , J (χ, θ) and χ̂(θ) and
because the Kullback-Leibler divergence is non-negative

J (ẑ1:T , θ) ≤ J (χ̂(θ), θ) ≤ 	(θ) ≤ 	c(θ, ẑ
1:T ), (51)

with J (ẑ1:T , θ) = 	(θ) −KL(δẑ1:T ,Pθ(·|X1:T )). We write this Kullback-Leibler
divergence (from Pθ(·|X1:T ) to Qχ = δẑ1:T , with χ = (τ, η) such that τ tiq = ẑtiq
and ηtiql = ẑtiq ẑ

t+1
il ) as follows

KL(δẑ1:T ,Pθ(·|X1:T )) =− logPθ(ẑ
1:T |X1:T ).

We then obtain

J (ẑ1:T , θ) = logPθ(X
1:T ) + logPθ(ẑ

1:T |X1:T ) = Pθ(X
1:T |ẑ1:T ) + logPθ(ẑ

1:T )

= 	c(θ; ẑ
1:T ) +

n∑
i=1

logαẑ1
i
+

n∑
i=1

T∑
t=2

log γẑt−1
i ẑt

i
.
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Combined with (51), this leads to the following inequality for any parameter
θ ∈ Θ

|J (χ̂(θ), θ)− 	(θ)| ≤
∣∣J (ẑ1:T , θ)− 	c(θ, ẑ

1:T )
∣∣

≤ −
n∑

i=1

logαẑ1
i
−

n∑
i=1

T∑
t=2

log γẑt−1
i ẑt

i
≤ nT log(1/δ).

We can conclude that

sup
θ∈Θ

∣∣∣∣ 2

n(n− 1)T
J (χ̂(θ), θ)− 2

n(n− 1)T
	(θ)

∣∣∣∣ ≤ 2 log(1/δ)

n− 1
.

B.14. Proof of Lemma 14

This proof is quite similar to that of Lemma 12. For any ε > 0, let us write

Pθ∗

(∣∣∣∣∣ 1

n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)
(Zt

i = q, Zt+1
i = l)− α∗

qγ
∗
ql

∣∣∣∣∣ > εrn,T

√
logn√
nT

)

≤ Pθ∗

(∣∣∣∣∣ 1

n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)
(Zt

i = q, Zt+1
i = l)− Nql(Z

1:T )

n(T − 1)

∣∣∣∣∣> ε

2
rn,T

√
logn√
nT

)

+ Pθ∗

(∣∣∣∣Nql(Z
1:T )

n(T − 1)
− α∗

qγ
∗
ql

∣∣∣∣ > ε

2
rn,T

√
logn√
nT

)

and upper bound the two probabilities in the right-hand side of this inequality.
We already proved in Lemma 12 that the second term converges to 0 thanks to
the assumptions on the sequence {rn,T }n,T≥1. For the first term, let z1:T denote
a fixed configuration. Let us work on the set {Z1:T = z1:T } and use the same
method as in the proof of Lemma 12,

1

n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)
(Zt

i = q, Zt+1
i = l)

=
1

n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)
(Zt

i = q, Zt+1
i = l)1zt

i=q,zt+1
i =l

+
1

n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)
(Zt

i = q, Zt+1
i = l)1(zt

i ,z
t+1
i ) 	=(q,l),

leading to∣∣∣∣∣ 1

n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)
(Zt

i = q, Zt+1
i = l)− Nql(z

1:T )

n(T − 1)

∣∣∣∣∣ ≤ 2Qχ̂(θ̃σ)
(Z1:T 	= z1:T ).

Then we obtain

Pθ∗

(∣∣∣∣∣ 1

n(T − 1)

n∑
i=1

T−1∑
t=1

Qχ̂(θ̃σ)
(Zt

i = q, Zt+1
i = l)− Nql(Z

1:T )

n(T − 1)

∣∣∣∣∣> ε

2
rn,T

√
logn√
nT

)
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≤
∑
z1:T

Pθ∗

(
Qχ̂(θ̃σ)

(Z1:T 	= z1:T )>
ε

4
rn,T

√
logn√
nT

∣∣∣ Z1:T = z1:T
)
Pθ∗

(
Z1:T = z1:T

)
.

For each z1:T , we use the following lemma.

Lemma 18. Denoting P̃σ(·) = Pθ̃σ
(Z1:T = · | X1:T ), we have the following

inequality for any configuration z1:T

∣∣∣Qχ̂(θ̃σ)
(z1:T )− P̃σ(z

1:T )
∣∣∣ ≤

√
−1

2
log

(
P̃σ(z1:T )

)
.

This gives us

Pθ∗

(
Qχ̂(θ̃σ)

(Z1:T 	= z1:T ) >
ε

4
rn,T

√
logn√
nT

∣∣∣ Z1:T = z1:T
)

≤ Pθ∗

(∣∣∣Qχ̂(θ̃σ)
(Z1:T 	= z1:T )− P̃σ(Z

1:T 	= z1:T )
∣∣∣ > ε

8
rn,T

√
logn√
nT

∣∣∣ Z1:T = z1:T
)

+ Pθ∗

(
P̃σ(Z

1:T 	= z1:T ) >
ε

8
rn,T

√
logn√
nT

∣∣∣ Z1:T = z1:T
)

≤ Pθ∗

(√
−1

2
log

(
P̃σ(z1:T )

)
>

ε

8
rn,T

√
log n√
nT

∣∣∣ Z1:T = z1:T

)

+ Pθ∗

(
P̃σ(Z

1:T 	= z1:T ) >
ε

8
rn,T

√
logn√
nT

∣∣∣ Z1:T = z1:T
)

≤ Pθ∗

(
P̃σ(Z

1:T 	= z1:T ) > 1− exp

(
−
ε2r2n,T log n

32nT

) ∣∣∣ Z1:T = z1:T

)

+ Pθ∗

(
P̃σ(Z

1:T 	= z1:T ) >
ε

8
rn,T

√
logn√
nT

∣∣∣ Z1:T = z1:T
)
. (52)

Noticing that the assumptions on {rn,T }n,T≥1 imply that

− log

[
1− exp

(
−
ε2r2n,T logn

32nT

)]
= o(n) and − log

[
rn,T

√
logn√
nT

]
= o(n),

we can conclude by applying the result of Theorem 2 with the estimator θ̃σ =
(Γ̃σ, π̃σ) for both terms of the right-hand side of (52).

B.15. Proof of Lemma 15

The proof follows the lines of the proof of Lemma C.3. from Celisse, Daudin
and Pierre (2012). Let E∗

θ∗ [·] denote the expectation given Z1:T = z∗1:T , i.e.

E∗
θ∗ [·] = Eθ∗ [· | Z1:T = z∗1:T ]. Introducing a ghost sample {X̃t

ij}i,j,t that is
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independent of {Xt
ij}i,j,t and has the same distribution, we write

E := E∗
θ∗

⎡
⎢⎢⎣ sup

(z1:T ,π)∈
�1,Q�nT ×[ζ,1−ζ]Q

2

∣∣∣∣∣∣
2

n(n− 1)T

T∑
t=1

∑
i<j

(Xt
ij − π∗

z∗t
i z∗t

j
) log

(
πzt

iz
t
j

1− πzt
iz

t
j

)∣∣∣∣∣∣
⎤
⎥⎥⎦

= E∗
θ∗

⎧⎪⎪⎨
⎪⎪⎩ sup

(z1:T ,π)∈
�1,Q�nT ×[ζ,1−ζ]Q

2

∣∣∣∣∣∣
2

n(n− 1)T

× E∗
θ∗

⎡
⎣ T∑

t=1

∑
i<j

(Xt
ij − X̃t

ij) log

⎛
⎝ πzt

iz
t
j

1− πzt
iz

t
j

⎞
⎠ ∣∣∣ {Xt

ij}i,j,t

⎤
⎦

∣∣∣∣∣∣
⎫⎪⎪⎬
⎪⎪⎭

≤ E∗
θ∗

⎧⎪⎪⎨
⎪⎪⎩E∗

θ∗

⎡
⎢⎢⎣ sup

(z1:T ,π)∈
�1,Q�nT ×[ζ,1−ζ]Q

2

2

n(n− 1)T

×

∣∣∣∣∣∣
T∑

t=1

∑
i<j

(Xt
ij − X̃t

ij) log

(
πzt

iz
t
j

1− πzt
iz

t
j

)∣∣∣∣∣∣
∣∣∣ {Xt

ij}i,j,t

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

≤ E∗
θ∗,X,X̃

⎡
⎢⎢⎣ sup

(z1:T ,π)∈
�1,Q�nT ×[ζ,1−ζ]Q

2

2

n(n− 1)T

∣∣∣∣∣∣
T∑

t=1

∑
i<j

(Xt
ij − X̃t

ij) log

(
πzt

iz
t
j

1− πzt
iz

t
j

)∣∣∣∣∣∣
⎤
⎥⎥⎦,

where E∗
θ∗,X,X̃

[·] denotes the expectation with respect to {X, X̃} = {Xt
ij , X̃

t
ij}i,j,t

under the true parameter θ∗ and given Z1:T = z∗1:T . At this point, we notice
that, if {εtij}i,j,t := ε are n2T independent Rademacher variables, then the ran-
dom variables

Eε

∣∣∣∣∣∣
T∑

t=1

∑
i<j

εtij(X
t
ij − X̃t

ij) log

(
πzt

iz
t
j

1− πzt
iz

t
j

)∣∣∣∣∣∣
and

∣∣∣∣∣∣
T∑

t=1

∑
i<j

(Xt
ij − X̃t

ij) log

(
πzt

iz
t
j

1− πzt
iz

t
j

)∣∣∣∣∣∣
follow the same distribution, which implies that

E∗
θ∗,X,X̃

⎡
⎢⎢⎣ sup

(z1:T ,π)∈
�1,Q�nT ×[ζ,1−ζ]Q

2

2

n(n− 1)T
Eε

∣∣∣∣∣∣
T∑

t=1

∑
i<j

εtij(X
t
ij − X̃t

ij) log

(
πzt

iz
t
j

1−πzt
iz

t
j

)∣∣∣∣∣∣
⎤
⎥⎥⎦
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= E∗
θ∗,X,X̃

⎡
⎢⎢⎣ sup

(z1:T ,π)∈
�1,Q�nT ×[ζ,1−ζ]Q

2

2

n(n− 1)T

∣∣∣∣∣∣
T∑

t=1

∑
i<j

(Xt
ij − X̃t

ij) log

(
πzt

iz
t
j

1− πzt
iz

t
j

)∣∣∣∣∣∣
⎤
⎥⎥⎦ .

As a consequence, we have

E≤ E∗
θ∗,X,X̃

⎡
⎢⎢⎣ sup

(z1:T ,π)∈
�1,Q�nT ×[ζ,1−ζ]Q

2

2

n(n− 1)T
Eε

∣∣∣∣∣∣
T∑

t=1

∑
i<j

εtij(X
t
ij − X̃t

ij) log

(
πzt

iz
t
j

1− πzt
iz

t
j

)∣∣∣∣∣∣
⎤
⎥⎥⎦

≤ E∗
θ∗

⎡
⎢⎢⎣ sup

(z1:T ,π)∈
�1,Q�nT ×[ζ,1−ζ]Q

2

2

n(n− 1)T
Eε

∣∣∣∣∣∣
T∑

t=1

∑
i<j

εtijX
t
ij log

(
πzt

iz
t
j

1− πzt
iz

t
j

)∣∣∣∣∣∣
⎤
⎥⎥⎦

+ E∗
θ∗

⎡
⎢⎢⎣ sup

(z1:T ,π)∈
�1,Q�nT ×[ζ,1−ζ]Q

2

2

n(n− 1)T
Eε

∣∣∣∣∣∣
T∑

t=1

∑
i<j

εtijX̃
t
ij log

(
πzt

iz
t
j

1− πzt
iz

t
j

)∣∣∣∣∣∣
⎤
⎥⎥⎦

≤ 2E∗
θ∗

⎡
⎢⎢⎣ sup

(z1:T ,π)∈
�1,Q�nT ×[ζ,1−ζ]Q

2

2

n(n− 1)T
Eε

∣∣∣∣∣∣
T∑

t=1

∑
i<j

εtijX
t
ij log

(
πzt

iz
t
j

1− πzt
iz

t
j

)∣∣∣∣∣∣
⎤
⎥⎥⎦ .

Then using Jensen’s inequality, Assumption 3 and the bound Varε(ε
t
ijX

t
ij) ≤ 1,

we get

E ≤ 2E∗
θ∗

⎡
⎢⎢⎣ sup

(z1:T ,π)∈
�1,Q�nT ×[ζ,1−ζ]Q

2

2

n(n− 1)T

√√√√√√Eε

⎡
⎢⎣
⎛
⎝ T∑

t=1

∑
i<j

εtijX
t
ij log

(
πzt

iz
t
j

1− πzt
iz

t
j

)⎞⎠
2
⎤
⎥⎦

⎤
⎥⎥⎦

≤ 2E∗
θ∗

⎡
⎢⎢⎣ sup

(z1:T ,π)∈
�1,Q�nT ×[ζ,1−ζ]Q

2

2

n(n− 1)T

√√√√√Varε

⎡
⎣ T∑

t=1

∑
i<j

εtijX
t
ij log

(
πzt

iz
t
j

1− πzt
iz

t
j

)⎤
⎦

⎤
⎥⎥⎦

≤ 2E∗
θ∗

[
2

n(n− 1)T
sup

π∈[ζ,1−ζ]

log

(
π

1− π

) √
n(n− 1)T

2

]
≤

√
2

n(n− 1)T
Λ,

where Λ = 2 log[(1− ζ)/ζ], concluding the proof.

B.16. Proof of Lemma 16

We assume that minσ∈SQ
‖πσ − π∗‖∞ > ε. Without loss of generality, assume

that the permutation (or one of the permutations) minimizing this distance is
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the identity. Let us write, using the fact that IQ the identity matrix of size
Q maximizes in A (over the set of Q × Q stochastic matrices) the quantity
M(π∗, A) (see the proof of Theorem 3.6 in Celisse, Daudin and Pierre (2012))
and denoting (āqq′)q,q′∈�1,Q� the coefficients of Āπ (thus depending on π),

M(π∗)−M(π) =
∑
q,l

α∗
qα

∗
l

∑
q′,l′

āqq′ āll′

[
π∗
ql log

π∗
ql

πq′l′
+ (1− π∗

ql) log
1− π∗

ql

1− πq′l′

]

=
∑
q,l

α∗
qα

∗
l

∑
q′,l′

āqq′ āll′K(π∗
ql, πq′l′)

denoting K(p1, p2) = p1 log(p1/p2) + (1 − p1) log[(1 − p1)/(1 − p2)] > 0 the
Kullback-Leibler divergence from a Bernoulli distribution with parameter p2 to
a Bernoulli distribution with parameter p1. For every q, there exists q′ := f(q)
such that āqq′ ≥ 1/Q because Āπ is a stochastic matrix. Using Assumption 2,
we obtain

M(π∗)−M(π) ≥ δ2

Q2

∑
q,l

K(π∗
ql, πf(q)f(l)) ≥

δ2

Q2

∑
q,l

2(π∗
ql − πf(q)f(l))

2

thanks to a result on Kullback-Leibler divergence for Bernoulli distributions (see
for instance Bubeck (2010), Chapter 10, Section 2, Lemma 10.3). We then want
to show that there exist q, l such that |π∗

ql − πf(q)f(l)| > ε.

• If f is a permutation, the assumption minσ∈SQ
‖πσ − π∗‖∞ > ε gives the

expected result.
• If f is not a permutation, it is not injective and there exist q1 	= q2 such

that f(q1) = f(q2). Thanks to Assumption 1, take l0 ∈ �1, Q� such that
|πq1l0 − πq2l0 | = maxl∈�1,Q� |πq1l − πq2l| > 0. Then

|π∗
q1l0 − πf(q1)f(l0)|+ |πf(q2)f(l0) − π∗

q2l0 |
≥ |π∗

q1l0 − πf(q1)f(l0) + πf(q2)f(l0) − π∗
q2l0 | = |π∗

q1l0 − π∗
q2l0 | > 0

leading to either

|π∗
q1l0 − πf(q1)f(l0)| ≥ |π∗

q1l0 − π∗
q2l0 |/2 > ε

or |π∗
q2l0 − πf(q2)f(l0)| ≥ |π∗

q1l0 − π∗
q2l0 |/2 > ε,

using the fact that ε < min1≤q 	=q′≤Q max1≤l≤Q |π∗
ql − π∗

q′l|/2.
So, as there exist q, l such that |π∗

ql − πf(q)f(l)| > ε, we have

M(π∗)−M(π) >
2δ2

Q2
ε2.

B.17. Proof of Lemma 17

For any node i ∈ �1, n�, the Markov chain {Zt
i}t≥1 is geometrically ergodic

because its transition matrix Γ satisfies Doeblin’s condition thanks to Assump-
tion 2. For any z ∈ �1, Q�, let us denote δz the Dirac mass at z. There exists a
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positive constant A and some r ∈ (0, 1) such that ∀q ∈ �1, Q� and ∀t ≥ 1, we
have ∥∥δqΓt − α

∥∥
TV

≤ Art,

where ‖ · ‖TV is the total variation norm. This leads to∥∥δqΓt − α
∥∥
TV

=
1

2

∥∥δqΓt − α
∥∥
1
=

1

2

∑
l∈�1,Q�

|Γt(q, l)− αl| ≤ Art.

We now consider the Markov chain {Zt = (Zt
1, . . . , Z

t
n)}t≥1 of the n nodes

evolving through time. Note that it is irreducible and aperiodic. Moreover, its
transition matrix is given by Pn = Γ⊗n, the n-th Kronecker power of Γ and its
stationary distribution is α⊗n. For any z = (z1, . . . , zn) ∈ �1, Q�n, let us denote
μn,z = ⊗n

i=1δzi . For every t ≥ 1, we can decompose

∥∥μn,zP
t
n − α⊗n

∥∥
TV

=

∥∥∥∥
(

n
⊗
i=1

δzi

)
(Γ⊗n)t − α⊗n

∥∥∥∥
TV

=

∥∥∥∥
(

n
⊗
i=1

δzi

)
(Γt)⊗n − α⊗n

∥∥∥∥
TV

=

∥∥∥∥ n
⊗
i=1

(
δziΓ

t
)
− α⊗n

∥∥∥∥
TV

=
1

2

∥∥∥∥ n
⊗
i=1

(
δziΓ

t
)
− α⊗n

∥∥∥∥
1

=
1

2

∑
(z′

1,...,z
′
n)∈�1,Q�n

∣∣∣∣∣
n∏

i=1

Γt(zi, z
′
i)−

n∏
i=1

αz′
i

∣∣∣∣∣ .
We use

n∏
i=1

Γt(zi, z
′
i)−

n∏
i=1

αz′
i
=

n∑
i=1

⎧⎨
⎩

⎛
⎝i−1∏

j=1

αz′
j

⎞
⎠[

Γt(zi, z
′
i)− αz′

i

] n∏
k=i+1

(μzkΓ
t)z′

k

⎫⎬
⎭ .

So, reorganizing the terms, we write∥∥μn,zP
t
n − α⊗n

∥∥
TV

≤ 1

2

∑
(z′

1,...,z
′
n)∈�1,Q�n

n∑
i=1

⎧⎨
⎩

⎛
⎝i−1∏

j=1

αz′
j

⎞
⎠ ∣∣Γt(zi, z

′
i)− αz′

i

∣∣ n∏
k=i+1

(μzkΓ
t)z′

k

⎫⎬
⎭

≤ 1

2

n∑
i=1

∑
z′
1

αz′
1
. . .

∑
z′
i−1

αz′
i−1

∑
z′
i

∣∣Γt(zi, z
′
i)−αz′

i

∣∣ ∑
z′
i+1

Γt(zi+1, z
′
i+1) . . .

∑
z′
n

Γt(zn, z
′
n)

≤ 1

2

n∑
i=1

∑
z′
i

∣∣Γt(zi, z
′
i)− αz′

i

∣∣ ≤ nArt.

Let us recall the definition of an ε-mixing time. For any Markov transition matrix
M over the set X with stationary distribution α, for any ε > 0, the ε-mixing
time of the Markov chain is defined as

τ(ε) = min{t ≥ 1;max
x∈X

‖δxM t − α‖TV ≤ ε}.
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Denoting by τn(ε) the ε-mixing time of the Markov chain {Zt}t≥1, we thus
obtain

τn(ε) ≤
log(nA/ε)

log(1/r)
.

Now, we introduce a new Markov chain Y = {Y t}t≥1, that is defined by

Y t = (Zt, Zt+1) ∀t ≥ 1.

Notice that it is irreducible and aperiodic, with stationary distribution ρ defined
for every state (qt1, . . . , q

t
n, q

t+1
1 , . . . , qt+1

n ) by

ρ(qt1,...,qtn,q
t+1
1 ,...,qt+1

n ) = αqt1
. . . αqtn

γqt1q
t+1
1

. . . γqtnq
t+1
n

.

It is easily seen that for any ε > 0, its ε-mixing time τY,n(ε) equals τn(ε) + 1.
We apply Theorem 3 from Chung et al. (2012), for any η ≤ 1/8, considering the
weight function f(Y t) =

∑n
i=1 for every t ≥ 1 (of expectation nα∗

qγ
∗
ql under the

stationary distribution). Then Nql(Z
1:T ) =

∑T−1
t=1 f(Y t), and denoting εn,T =

εrn,T
√
logn/(2α∗

qγ
∗
ql

√
nT ), we obtain that there exist c1, c2 > 0 such that for

any ε > 0, as long as εn,T ≤ 1

Pθ∗

(∣∣∣∣Nql(Z
1:T )

n(T − 1)
− α∗

qγ
∗
ql

∣∣∣∣ > ε

2
rn,T

√
logn√
nT

)
= Pθ∗

(
Nql(Z

1:T ) > (1 + εn,T )nα
∗
qγ

∗
ql(T − 1)

)
+ Pθ∗

(
Nql(Z

1:T ) < (1− εn,T )nα
∗
qγ

∗
ql(T − 1)

)
≤ c1 exp

(
−
ε2n,Tnα

∗
qγ

∗
ql(T − 1)

72τY,n(η)

)
≤ c1 exp

(
−c2ε

2r2n,T
)
.

B.18. Proof of Lemma 18

For any configuration z1:T ,

∣∣∣Qχ̂(θ̃σ)
(z1:T )− P̃σ(z

1:T )
∣∣∣ ≤ ∥∥∥Qχ̂(θ̃σ)

− P̃σ

∥∥∥
TV

≤
√

1

2
KL(Qχ̂(θ̃σ)

, P̃σ)

≤
√

1

2
KL(δz1:T , P̃σ) ≤

√
−1

2
log

(
P̃σ(z1:T )

)
,

the third inequality being true because by definition Qχ̂(θ̃σ)
minimizes KL(·, P̃σ)

over the set of variational distributions.


	Introduction
	Model and notation
	Dynamic stochastic block model
	Assumptions
	Finite time case
	Likelihood

	Consistency of the maximum likelihood estimate
	Connectivity parameter
	Latent transition matrix

	Variational estimators
	Connectivity parameter
	Latent transition matrix

	Proofs of main results
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Corollary 3
	Proof of Theorem 5
	Proof of Corollary 5
	Proof of Theorem 6

	References
	Proofs of main results for the finite time case
	Proof of Corollary 2
	Proof of Theorem 4
	Proof of Corollary 6

	Proofs of technical lemmas
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 12
	Proof of Lemma 13
	Proof of Lemma 14
	Proof of Lemma 15
	Proof of Lemma 16
	Proof of Lemma 17
	Proof of Lemma 18


