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Abstract: We consider a dynamic version of the stochastic block model,
in which the nodes are partitioned into latent classes and the connection
between two nodes is drawn from a Bernoulli distribution depending on the
classes of these two nodes. The temporal evolution is modeled through a
hidden Markov chain on the nodes memberships. We prove the consistency
(as the number of nodes and time steps increase) of the maximum likeli-
hood and variational estimators of the model parameters, and obtain upper
bounds on the rates of convergence of these estimators. We also explore the
particular case where the number of time steps is fixed and connectivity
parameters are allowed to vary.
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1. Introduction

Random graphs are a suitable tool to model and describe interactions in many
kinds of datasets such as biological, ecological, social or transport networks.
Here we are interested in time-evolving networks, which is a powerful tool for
modeling real-world phenomena, where the role or behaviour of the nodes in the
network and the relationships between them are allowed to change over time.
Indeed, it is important to take into account the evolutionary behaviour of the
graphs, instead of just studying separate snapshots as static graphs. We focus on
graphs evolving in discrete time and refer to Holme (2015) for an introduction
to dynamic networks.

A myriad of dynamic graph models has been introduced in the past few
years, see for instance Zhang, Moore and Newman (2017). We focus here on
those which are based on the (static) stochastic block model (SBM, Holland,
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Laskey and Leinhardt, 1983) in which the nodes are partitioned into classes. In
the SBM, class memberships of the nodes are represented by latent variables
and the connection between two nodes is drawn from a distribution depending
on the classes of these two nodes (a Bernoulli distribution in the case of binary
graphs). A first dynamic version of the SBM with discrete time is proposed in
Yang et al. (2011). There, the nodes are partitioned into @ classes and the graphs
are binary or weighted. The nodes are allowed to change membership over time,
and these changes are governed by independent Markov chains with values in
the @Q classes, while the connection probabilities are constant over time. Xu and
Hero (2014) introduce a state-space model on the logit of the connection proba-
bilities for dynamic (binary) networks with connection probabilities and group
memberships varying over time. Unfortunately, their model presents parameter
identifiability issues (Matias and Miele, 2017). Xu (2015) proposes a stochastic
block transition model in which the presence or absence of an edge between two
nodes at a particular time affects the presence or absence of such an edge at a
future time. There, the nodes can change classes over time, new nodes can enter
the network, and the connection probabilities are allowed to vary over time.
The model in Matias and Miele (2017) and in Becker and Holzmann (2018) is
quite similar to that of Yang et al. (2011) except that it allows the connec-
tion probabilities to vary and the latter is moreover nonparametric. Bartolucci,
Marino and Pandolfi (2018) extend the model of Yang et al. (2011) to deal with
different forms of reciprocity in directed graphs, by directly modeling dyadic
relations and with the assumption that the dyads are conditionally indepen-
dent given the latent variables. Paul and Chen (2016) and Han, Xu and Airoldi
(2015) study multi-graph SBM, arising in settings including dynamic networks
and multi-layer networks where each layer corresponds to a type of edge. In
these two models, the nodes memberships stay constant over the layers. Pensky
(2019); Pensky et al. (2019) study a dynamic SBM for undirected and binary
edges where both connection probabilities and group memberships vary over
time, assuming that the connection probabilities between groups are a smooth
function of time. Xing, Fu and Song (2010) and Ho, Song and Xing (2011)
introduce dynamic versions of the mixed-membership stochastic block model,
allowing each actor to carry out different roles when interacting with different
peers. Zreik, Latouche and Bouveyron (2016) introduce the dynamic random
subgraph model, given a known decomposition of the graph into subgraphs, in
which the latent class membership depends on the subgraph membership and
the edges are categorical variables, their types being sampled from a distribution
depending on the latent classes of the two nodes. There, a state-space model is
used to characterize the temporal evolution of the latent classes proportions.
As far as estimation is concerned, different methods of inference are proposed
to estimate groups and model parameters. The maximum likelihood estimator
(MLE) is not tractable in the SBM, thus neither in its dynamic versions. Vari-
ational methods are rather popular to approximate that MLE (Xing, Fu and
Song, 2010; Ho, Song and Xing, 2011; Han, Xu and Airoldi, 2015; Paul and
Chen, 2016; Zreik, Latouche and Bouveyron, 2016; Matias and Miele, 2017;
Bartolucci, Marino and Pandolfi, 2018). Yang et al. (2011) rely on Gibbs sam-
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pling and simulated annealing. Pensky et al. (2019) propose an estimator of
the connection probabilities matrix at each time step by a discrete kernel-type
method and obtain a clustering of the nodes thanks to spectral clustering on
this estimated matrix. They also give an estimator for the number of clusters.
Spectral clustering algorithms are also used by Han, Xu and Airoldi (2015) on
the mean graph over time and by Liu et al. (2018) who use eigenvector smooth-
ing to get some similarity across time periods (and allow the number of classes
to be unknown and possibly varying over time).

Some theoretical results on the convergence of the procedures have been
proven, mainly for static graphs. In the static SBM, Celisse, Daudin and Pierre
(2012) prove the consistency of the MLE and variational estimates as the number
of nodes increases, and Bickel et al. (2013) establish their asymptotic normality.
Mariadassou and Matias (2015) have a different approach and give sufficient
conditions for the groups posterior distribution to converge to a Dirac mass lo-
cated at the actual groups configuration, for every parameter in a neighborhood
of the true one. Rohe, Chatterjee and Yu (2011) give asymptotic results on the
normalized graph Laplacian and its eigenvectors for the spectral clustering algo-
rithm, allowing the number of clusters to grow with the number of nodes. They
also provide bounds on the number of misclustered nodes, requiring an assump-
tion on the degree distribution. Lei and Rinaldo (2015) prove consistency for the
recovery of communities in the spectral clustering on the adjacency matrix, with
milder conditions on the degrees, and also extend this result to degree corrected
stochastic block models. Klopp, Tsybakov and Verzelen (2017) derive oracle
inequalities for the connection probabilities estimator and obtain minimax es-
timation rates, including the sparse case where the density of edges converges
to zero as the number of nodes increase thus extending previous results of Gao,
Lu and Zhou (2015). Gaucher and Klopp (2019) propose a bound on the risk
of the maximum likelihood estimator of network connection probabilities, and
show that it is minimax optimal in the sparse graphon model.

In the dynamic setting, fewer theoretical results have been established. Pen-
sky (2019) derives a penalized least squares estimator of the connection proba-
bilities adaptive to the number of blocks and which does not require knowledge
of the number of classes Q). She shows that it satisfies an oracle inequality. Under
the additional assumption that at most ny nodes change groups between two
time steps, this estimator attains minimax lower bounds for the risk. She also
introduces a dynamic graphon model and shows that the estimators (that do
not require knowledge of a degree of smoothness of the graphon function) are
minimax optimal within a logarithmic factor of the number of time steps. Based
on the same dynamic SBM with at most ny nodes changing groups between two
time steps, Pensky et al. (2019) give an upper bound for the (non asymptotic)
error of their estimators of the connection probabilities matrix and group mem-
berships (and also an estimator for the number of clusters). Han, Xu and Airoldi
(2015) show consistency (as the number of time steps increases but the num-
ber of nodes is fixed) of two estimators of the class memberships for dynamic
SBM (and more generally multi-graph SBM) in which the nodes memberships
are constant over time but the connection probabilities are allowed to vary and
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the considered graphs are binary and symmetric. They show that the spectral
clustering (on the mean graph over time) estimator of the class memberships
is consistent under some stationarity and ergodicity conditions on the connec-
tion probabilities. They also prove that the MLE of the class memberships is
consistent (i.e. that the fraction of misclustered nodes converges to 0) in the
general case (without any structure on the connection probabilities), provided
certain sufficient conditions are satisfied. In their multi-layer model, Paul and
Chen (2016) give minimax rates of misclassification under certain conditions on
the growth of the types of relations, number of nodes and number of classes,
extending the result of Han, Xu and Airoldi (2015).

Here, we consider a dynamic version of the binary SBM as in Yang et al.
(2011), where each node is allowed to change group membership at each time
step according to a Markov chain, independently of other nodes. We prove the
consistency of the connectivity parameter MLE and, under some additional con-
ditions, of the transition matrix MLE, when the number of nodes and of time
steps are increasing. We also give upper bounds on the rates of convergence
of these estimators. While these upper bounds are known to be non optimal in
the static case where asymptotic normality is obtained with classical parametric
rates of convergence (Bickel et al., 2013), these are the first to be established
in a dynamic setting for the MLE. As already mentioned, the log-likelihood
is intractable (except for very small values of the number of nodes n and the
number of time steps 7)), as it requires to sum over Q"7 terms. Thus, while
its consistency remains an important result, the estimator cannot be computed.
A possible alternative is to rely on a variational estimator to approximate the
MLE (see for instance Matias and Miele, 2017). We also establish the consis-
tency of the variational estimator of the connectivity parameter and under some
additional assumptions, that of the variational estimator of the transition ma-
trix and obtain the same upper bounds on the rates of convergence as for the
MLE. In the particular case where the number of time steps 7T is fixed, we also
consider the model of Matias and Miele (2017), in which the connection proba-
bilities are allowed to vary over time and generalise these results with only the
number of nodes increasing. When 7' = 1, we not only recover the results of
Celisse, Daudin and Pierre (2012) but extend these by giving rates of conver-
gence. Unlike the model studied in Han, Xu and Airoldi (2015) and Paul and
Chen (2016), the node memberships in our model evolve over time. Our context
is different from Pensky (2019) that focuses on least squares estimate.

This article is organized as follows. Section 2 introduces our model and nota-
tion. More precisely, Section 2.1 describes the dynamic stochastic block model
as introduced in Yang et al. (2011), Section 2.2 gives the assumptions we make
on the model parameters, Section 2.3 describes the dynamic stochastic block
model as in Matias and Miele (2017) for the finite time case and Section 2.4
states the expression of the likelihood of this model to define the MLE. Section 3
establishes the consistency and upper bounds of the rates of convergence for the
MLE of the connection probabilities in Section 3.1 and of the transition ma-
trix in Section 3.2. Section 4 is dedicated to variational estimators: Section 4.1
and 4.2 establish the consistency of the variational estimators of the connection
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probabilities and transition matrix, respectively, along with upper bounds of the
associated rates of convergence. All the proofs of the main results are postponed
to Section 5, except those for the fixed T case that are in Appendix A, while
the more technical proofs are deferred to Appendix B.

2. Model and notation
2.1. Dynamic stochastic block model

We consider a set of n vertices, forming a sequence of binary undirected graphs
with no self-loops at each time t = 1,...,T. The case of a set of directed
graphs, with or without self-loops, may be handled similarly. These vertices are
assumed to be split into @ latent classes, and we denote by Z! the label of the
i-th vertex at time t. Letting Z; = (Z},..., Z]'), we assume that the {Z;}1<i<n
are independent and identically distributed (iid) and each Z; is a homogeneous
and stationary Markov chain with transition probabilities

P(ZT =12 =q)=yq, V1<q1<Q

where I' = (74)1<q.1<@ is a stochastic matrix, i.e. with nonnegative coefficients
and with each row summing to one. We let o« = (a1,...,aq) the stationary
distribution of the Markov chain. For any ¢ € [1,n], the probability distribution
of Z; is then

T-1

Pg(Zi) = (XZil H FYZ;*ZQ.HFI'
t=1

We will also denote Z! = (Z!,..., Z!) the configuration at time t and Z1'T =
(Z',...,2") = (Z})1<t<Ta<izn.

Consider X" = {X};}1<i j<n the symmetric binary adjacency matrix of the
graph at time ¢ such that for every nodes 1 < 4,j < n, we have X}, = 0 and
X}; = X!;. Bach X" follows a stochastic block model so that, conditional on the
latent groups {Zf}1<i<n, the {X};}1<i j<n are independent Bernoulli random
variables

X412 = .28 = 1~ Blxy)

where (mq1)1<q1<q € [0,1]9" are the connectivity parameters. More precisely,
conditional on the whole sequence of latent groups {Z!}1<t<7.1<i<n, the graphs
XET = X' ... X" are assumed to be independent, each X! having a dis-
tribution depending only on {Z!}i<i<,. The model is thus parameterized by
0= T,m), withD' = (yq)1<q,1<@ and m = (74)1<q,i<q- Note that 7 is a symmet-
ric matrix in the undirected setup. We denote by Py (resp. Ey) the probability
distribution (resp. expectation) of all the random variables {Z}, X} }+>1.ij>1,
under the parameter value 6. In the following, we assume that we observe
{ij}lgi,j,gn, 1<t<7 and we denote the true parameter value by 8* = (I'*, 7*) =
(Vi) 1<a,1<@s (T71)1<q,1<@), With corresponding probability distribution Py- and
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expectation Eg+, and by o* = (a;)1<4<q the (true) stationary distribution cor-
responding to the transition matrix I'*. We also let 14 denote the indicator
function of the set A and A° the complementary set of A in the ambient set.
For any integer M > 1, the set [1, M] is the set of integers between 1 and M.
For any finite set A, let |A| denote its cardinality. For any configuration 27,
we denote Ny(2!) (resp. Ny (257T)) the number of nodes assigned to class ¢ by
the configuration z* (resp. the number of transitions from class g to class [ in

configuration 2%7), that is

T—1 n

Ny =i [Lnlizf =g} and  Nu() =330, e, (1)

t=1 i=1

We also define for any two parameters § = (I',7) and 6’ = (I, 7’) the following
distances

’ _ o I _ A
I = 7lloe = | max |mg —my| and I =T = max lyg — gl

2.2. Assumptions

The assumptions we make on the model parameters are the following.

1. Forevery 1 < g # ¢’ < Q, there exists some [ € [1, Q] such that 7y # 7.
2. There exists some 0 < § < 1/Q such that for any (¢,1) € [1,Q]?, we have

Yql € [5, 1-— 5].
3. There exists some ¢ > 0 such that for any (g,1) € [1,Q]?, we have 7y €
[C? 1- C]

Assumption 1 is necessary for identifiability of the model. Indeed, if it does not
hold, we cannot distinguish between classes ¢ and ¢’. Assumption 2 ensures that
each Markov chain Z; is irreducible, aperiodic and recurrent. This assumption
could be weakened at the cost of technicalities. In particular, it implies that
the stationary distribution « exists. Moreover, Assumption 2 also implies that
for any ¢ € [1,Q], we have oy € [§,1 — J]. Note that this can be seen as
an equivalent of Assumption 2 in Celisse, Daudin and Pierre (2012) (on the
probability distribution of the class memberships) in the dynamic case. Celisse,
Daudin and Pierre (2012) however also have an additional assumption that is
an empirical version of this assumption (which states that the observed class
proportions are bounded away from 0) that is true with high probability. We
do not make such an assumption and use the fact that the probability of this
event converges to 1. Assumption 3 is technical and could also be weakened with
additional technicalities. For example, Celisse, Daudin and Pierre (2012) also
consider the case 7y € {0,1} (i.e. 7y € {0,1} U [(,1 — (]) whereas we do not.
The whole parameter set defined by these constraints is denoted by ©. In the
following, we assume that 8* € ©.

In what follows, we work up to label permutation on the groups. Indeed, as
in any latent group model, the parameters can only be recovered up to label
switching on the latent groups. We then define the following notation for any
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permutation o € G with G¢ the set of permutations on 1, Q]

00 = (FU, 77(7) = ((70’(q)0(l))1§q,l§Qv (ﬂ'o(q)a(l))lﬁfblSQ) .

2.3. Finite time case

If the number of time steps T is fixed, it is possible to let the connection prob-
abilities vary over time. We then consider this case, the connection parameter
now being 787 = (x',...,7T) with n* = (n};)1<41<q for every ¢ € [1,T] and
mh = Po(X}; = 1| 2} = q, Z} = 1) for any (t,q,1) € [1,T] x [1,Q]*. Note that
this is the more general model of Matias and Miele (2017), in which the model
parameter is § = (I, 7%T"). Moreover, we introduce the following Assumptions 1’
and 3’ that are alternate versions of Assumptions 1 and 3 respectively for the
finite time case.

1% For every t € [1,T], for every 1 < q # ¢’ < Q, there exists some [ € [1,Q]
such that 7, # ml,,.

3’ There exists some ¢ > 0 such that for every ¢t € [1,T], for any (q,1) €
[1,Q[?, we have m}; € [¢,1—(].

Assumption 1’ (resp. Assumption 3’) expresses that for every t € [1,T], =t
satisfies Assumption 1 (resp. Assumption 3). We also introduce the following
additional assumption, which ensures (together with Assumption 1°) that the
model is identifiable (up to a label permutation). See Matias and Miele (2017).

4. For every ¢ € [1,Q], for every ti,ty € [1,T], i = 72 = myq and
{m4q;q € [1,Q]} are @ distinct values.
Assumption 4 states that the diagonal of m does not change over time, and
that its values are distinct. We denote by ©7 the set of parameters satisfying
Assumptions 1°, 2, 3’ and 4. As before, we assume in the following that 6* € @7

in the fixed T case. We also define as before for any 757 and 7/ 'T the distance
1:T /1:T t /'t

i — T = max ™ — T .

| oo = (g yelfepa.y ot~ Tl

2.4. Likelihood

The conditional log-likelihood and the log-likelihood write

T
0e(6; ZT) =1ogPo(X T | Z7T) = > "logPy(X' | Z")

t=1

T

t=11<i<j<n

and ((0) =logPe(XT) =log [ 3 el py(Z1T = 1T | |
ZITE[[]"Q]]’”T

(2)



4164 L. Longepierre and C. Matias

respectively. We then denote the maximum likelihood estimator (MLE) by
0 = (I, #) = argmax £(0).
6co
In the next section, we study separately the consistency of the connectivity
parameter estimator 7 and that of the transition matrix estimator I'.

3. Consistency of the maximum likelihood estimate
3.1. Connectivity parameter

We first prove the consistency of the maximum likelihood estimator of the con-
nectivity parameter m = (7g;)1<4,1<@ When the number of nodes and time steps
increase. We denote the normalized log-likelihood by

2y =

MmT(F,ﬂ') = m

2
% looP Xl:T
n(n—1)T og Py ( )

and introduce the quantities, for any A = (aqi)1<q,1<q@ € A with A the set of
Q X @ stochastic matrices,

M(m, A) = Z agaf Z aqq an [Ty log gy + (1 — my) log(1 — mqnr)]

1<q,l<Q 1<q',l'<Q
and M(m) = sup M(nm, A) = M(7, A,), (3)
AeA

where A, = argmax 4 4 M(7, A). It is worth noticing that M(r), which will be
the limiting value for M, r(I',w) when n and T increase (see below), does not
depend on TI'.

Theorem 1. For any sequence {rn r}nr>1 increasing to infinity, if log(T) =
o(n), we have for all e > 0

(T, 7)€ Vvn

We then conclude on the consistency of the maximum likelihood estimator
of the connection probabilities with the following corollary. Note that we also
obtain an upper bound of the rate of convergence of this estimator.

M( sup | M (T, m) — M(x)| > T) 0
n,T'—+oo

Corollary 1. For any sequence {ry r}nr>1 increasing to infinity such that
T = o(n'/*) and if log(T) = o(n), we have for every ¢ >0

€rn, T

Poe . * oA _ .
0 (;élg; 7 = 7o lloo > n1/4> mo

We want to get equivalent consistency results if the number of time steps
T is fixed and only the number of nodes n increases. In that case, denoting
by 6 = (f‘,frl‘T) the MLE of 6, we have the following Corollary that is the
equivalent of Corollary 1.
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Corollary 2. If the number of time steps T is fized, we have for every e > 0
and for any sequence {ryp},>1 increasing to infinity such that r,, = o(n/*)

: *1:T _ ~1:T €'n
Por (i, 17 =871 > ) 00

denoting 71T = (ﬁé)te[[l,T]]'

This result states that minses,, [|[7*7 — 77 || converges to 0 in Pg--

probability as n increases, i.e. the MLE of the connection probabilities is consis-
tent up to label switching, and gives an upper bound of the rate of convergence
of the MLE of the connection probabilities. The particular case when T' =1 is
then a stronger result than that of Celisse, Daudin and Pierre (2012) where no
rate of convergence is given.

Remark 1. Note that in Corollaries 1 and 2, the results still hold for any
sequences T, T and Ty, increasing to infinity, respectively. However, we are in-
terested in sequences increasing slowly to infinity, giving the strongest results,
namely the smallest lower bounds. Indeed, whenever these assumptions are not
satisfied, the lower bounds appearing in the inequalities are larger, and the results
may even become trivial.

3.2. Latent transition matric

We now prove that the MLE for the transition matrix I' is consistent when the
number of nodes and time steps increase.

Lemma 1. Any critical point 0 = (I',%) of the likelihood function ((-) is such
that I satisfies the fized point equation

T-—1 Z?:l Pé (th =g, ZZI_H-I =1 | Xl:T)

(g, 1) € [L,QI%, g = =L -
(@) € [LQP, Au IS Bz — g XT) @

There are two different possible cases for the MLE 0

e Either 6 is a critical point of the likelihood function. Then I' satisfies
equation (4).

e Or 6 is not a critical point (this can happen if it belongs to the boundary
of ©) and we assume that there exists I' such that (I',#) € © and (I, %)
satisfies equation (4) (at least for n and T large enough). We then choose as
our estimator (f, 7). By an abuse of notation, we will denote this estimator
0 = (', %) and call it MLE in the following.

1:T

In what follows, for any fixed configuration z**, any 6 € © and any € > 0,

we consider the event

. P (leT # Zl:T | Xl:T)
LT 9 €)= o
E(z7,0,¢) Po(Z1T = 21T | X 1T > €
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The following result establishes that asymptotically, any estimator that correctly
estimates the transition probability matrix 7 also recovers the group member-
ships. This result is similar to Theorem 1 in Mariadassou and Matias (2015).

Theorem 2. For any estimator beo (at least for n and T large enough), if
log(T') = o(n), there exist some positive constants C, Cy,Ca, Cs3, Cy such that for
any € > 0, for any positive sequence {yn r}nr>1 such that log(l/y, 1) = o(n),
any n € (0,0) and for n and T large enough, we have

Py (E(2Y7,0, ey ) < QT exp(—20n) + B (|7 — 7° oo > v )

+ C’nT{ exp l — (8§ —n)*Cin + Caylog(nT) — Cy log(eyan)]

b

with {vn,1tnr>1 @ sequence decreasing to 0 such that v, v = o(+/log(nT)/n).
Theorem 3. If log(T) = o(n), for any € > 0 and {rnr}nr>1 any sequence
increasing to infinity such that r, 7 = o (\/nT/ log n) , we have for any o € &g

Viogn
vnT

with {vn,1tn1r>1 @ sequence decreasing to 0 such that v, r = o(+/log(nT)/n).

Corollary 3. Assume thatlog(T) = o(n) and minscs,, ||o—7"|lcoc = 0P, (Vn,T)
with {vn,7}n1T>1 @ sequence decreasing to 0 such that v, v = o(y/log(nT)/n).
Then for any € > 0 and {r,r}nr>1 any sequence increasing to infinity such

that rp 7 =0 (\/nT/ log n), we have the convergence

Viogn 0
vnT n,T— o0

Remark 2. Note that the upper bound obtained in Corollary 1 on the rate of
convergence in probability of 7t does not ensure that min,cs, ||To — 7|0 =
0Py (Un, ) holds. While the latter has never been established (to our knowledge),
it is a reasonable assumption.

1 T))?
- ng + 3nlog(nT)
n?

+ exp

[T — T |loo > Un,1) + 0(1)

Py- <||fg —T"oo > €rnr ) < Q*(3Q + )Py (

Pg- ( min [Ty — T™||0 > €rpr
oceGqg

We want an equivalent result than that of Corollary 3 when the number of
time steps T is fixed, and the connection probabilities are varying over time
(the connection parameter being m = 7'" = (z',... 7T) with 7" = (n};)q.0)-
For that, we are going to need an equivalent of Theorem 2 in that case.

Theorem 4. For any fized T > 2, for any estimator g e ©T (at least for n
large enough), there exist some positive constants C, Cy, Ca,Cs, Cy such that for
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any € > 0, for any positive sequence {y, }n>1 such that log(1/y,) = o(n), any
n € (0,6) and for n large enough, we have

Py~ (5’(Z1:T,é7 eyn)) < QT exp(—2n°n) + P (|77 — 77| > vp)

+ CnT{ exp [ — (6 —=n)*Cin + Cylog(nT) — Oy log(eyn)l

}

whenever {vy, }n>1 is a sequence decreasing to O such that v, = o(y/log(n)/n).

(log(nT))

n

+exp | —Cs + 5nlog(nT)

The following corollary gives the expected result.

Corollary 4. Let the number of time steps T > 2 be fized. Assume that
minges, |727 = 7 oo = op,. (vn) with {va}n>1 a sequence decreasing to
0 such that vy, = o(+/log(n)/n). Then for any € > 0 and {r,}n>1 any sequence

increasing to infinity such that r, = o (\/n/ log n), we have the convergence
. V1
Py- (min Ty = T*[lo > €rn Og"> ——0.
7€6q Vvn n—00

The proof of Corollary 4 is the same as that of Corollary 3 but relying on
Theorem 4 instead of Theorem 2 and is therefore omitted.

Remark 3. Asin Remark 1 for Corollaries 1 and 2, the results of Corollaries 3
and 4 still hold for sequences ry, v and r,, increasing to infinity at any rate.

4. Variational estimators

In practice, we cannot compute the MLE except for very small values of n and T,
because it involves a summation over all the Q™" possible latent configurations.
We cannot either use the Expectation-Maximization (EM) algorithm to approx-
imate it because it involves the computation of the conditional distribution of
the latent variables given the observations which is not tractable. A common
solution is to use the Variational Expectation-Maximization (VEM) algorithm
that optimizes a lower bound of the log-likelihood (see for example Daudin, Pi-
card and Robin (2008)). Let us denote Z{, = 1:_, for every ¢,i and g. Using
the same approach as in Matias and Mlele (2017) for the VEM algorithm in the
dynamic SBM, we consider a variational approximation of the conditional distri-
bution of the latent variable Z%7 given the observed variable X7 in the class of

probability distributions parameterized by x = (7,7) = ({qu}t’i,m {nfqz}t,i,q,l)
of the form

T
W(Z8T) = H@X Y[zl 1z

t=2
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n

Q i T-1 77;?1 AN nk
ST e T T (%)
agpe

i=1 t=1 1<q,I<Q \ '

i.e. with Qy such that Eq[Z{ Z}"'] = !, and Eq [Z},] = 7. Notice that
QuzZt =112t =q) =ty /7, = nfql/zgzl Nigq - The quantity to optimize

in the VEM algorithm is then
T (x,0) = £(0) = KL(Qy, Po(-| X)) = Eq, [logPe(X ', Z17)] +H(Qy)

with K L(-,-) denoting the Kullback-Leibler divergence and H(-) denoting the
entropy. Define

X(0) = (7(0),7(0)) = argmax J(x,0),
xE[O,l]T2"2Q3

and the variational estimator of 6

0 = (T, %) = argmax J (x(0),6).
0ce

Moreover, we denote ¥ = (7,7) = x(0) = (7(6),7(0)). In practice, the VEM
algorithm is an iterative algorithm that maximizes the function [J alternatively
with respect to x and 6 in order to find 6.

4.1. Connectivity parameter

Theorem 5. For any sequence {rn r}nr>1 increasing to infinity, if log(T) =
o(n), we have for all e >0
€Tn, T

2
Po- | su — 0.
’ <9eg Vvn > n,T—-+o00

n(n—1)T
We conclude on the consistency of the connection probabilities variational
estimators as n and T increase thanks to the following corollary.

J(x(0),0) — M(m)| >

Corollary 5. For any sequence {rn r}nr>1 increasing to infinity such that
Tp,T = o(n'/*), we have for any e > 0

1 - €Tn, T
—Py- ( mi —* L) ——— 0.
2 (U%éfglfo ™ lloo > /) e

We have the equivalent following corollary for a fixed number of time steps.

Corollary 6. If the number of time steps T is fized, we have for every ¢ > 0
and for any sequence {r,}n>1 increasing to infinity such that r, = o(n'/*)

1 : ~1:T *1:T €T'n
oo (i 187 =T > )

Remark 4. As for Corollaries 1 to 4, the results of Corollaries 5 and 6 still
hold for any sequences r, T and r, increasing to infinity.
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4.2. Latent transition matrix
We now prove that [ is consistent when the number of nodes and time steps
increase.
Lemma 2. Any critical point (%, 0) of the function J(-,-) is such that I' satisfies
the fixed-point equation

DY D Yl

V(g l) € [1,Q1, Ay ===l Tt (5)
t
Zi:l t=1 Tiq

We assume that (X, 6) is a critical point of J(-,-). Then we have the fixed-
point equation

DRSSt/ I ()
DIYRD Sk A ()

The following theorem gives the consistency and a rate of convergence of this
estimator, under an assumption on the rate of convergence of 7.

V(q,l) € [[laQ]]27 ;}'/ql =

(6)

Theorem 6. If log(T) = o(n), for any € > 0 and {ry,1r}nr>1 any sequence
increasing to infinity such that v, = o0 (x/nT/ log n) and for any o € Gq

Vlogn
vnT

Fo- (llfa — Moo > ernr > < 2Q°(3Q + DPy- (|76 — 7*[loc > vn,7)

+0o(1)

with {vn,1tnr>1 @ sequence decreasing to 0 such that v, r = o(y/log(nT)/n).
Corollary 7. Assume thatlog(T) = o(n) and minges,, |76 —7*||cc = 0, (Vn,1)
with {vn,7}n1>1 @ sequence decreasing to 0 such that v, v = o(y/log(nT)/n).

Then for any € > 0 and {r, v}n1>1 any sequence increasing to infinity such

that 7 =0 (\/nT/ log n), we have the convergence

N Vi
Py- (min T = T*[los > €rn.r Og") 0.
0€BGq vnT n,T— o0

The proof of Corollary 7 is the same as that of Corollary 3, using Theorem 6
instead of Theorem 3 and is therefore omitted.

When the number of time steps T is fixed and the connection probabilities
can vary over time, we have the following Corollary that is the equivalent of
Corollary 7.

Corollary 8. Let the number of time steps T > 2 be fized. Assume that
minyee,, 757 — 75 || = 0p,. (Un) with {vp}n>1 a sequence decreasing to

0 such that vy, = o(y/log(n)/n). Then for any € > 0 and {r,}n>1 any sequence
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increasing to infinity such that r, = o (\/n/ log n), we have the convergence

V1
\/ﬁ n—o00

The proof of Corollary 8 is the same as that of Corollary 7 but relying on
Theorem 4 instead of Theorem 2 and is therefore omitted.

Remark 5. As for Corollaries 1 to 6, the results of Corollaries 7 and 8 still
hold for any sequences r, T and ry, increasing to infinity.

Py« ( min [Ty — T*s0 > €y
oceGq

5. Proofs of main results
5.1. Proof of Theorem 1

The proof follows the lines of the proof of Theorem 3.6 in Celisse, Daudin and
Pierre (2012). Nonetheless, our result is sharper as we establish an upper bound
of the rate of convergence (in probability) of the normalised likelihood. We fix
some f € © and introduce the quantities

2T = argmax  logPe(XET | Z1T = 21T, (7)
Zl:Te[[17Q]]’n.T
Z'T = argmax Eg- [log Po(X 1T | Z1T = 21T ‘ ZLT} . (8)

Zl:TEH]-,Q]]nT
Note that Z1T is a random variable that depends on Z%T and that

T
21T = argmax Zlog}P’g(Xt | Z! = 2"
BT e[1,Q]"T 1=

= | argmaxlogPy(X' | Z' = 2),...,argmax logPe(XT | ZT = 2) | . (9)
z€[1,Q" z€[1,Q"
Similarly, for any ¢ € [1,T], we have

Z! = argmax Eg- logPy(X" | Z" = 2) | Z7].
ze[1,Q"
We bound the difference between M,, r(I', 7) and M(7) by introducing three

intermediate terms so that we can write, for any sequence {r, r}n r>1 and any
e>0

€rn. T
Py~ (sup My, r(I',7) — M(m)| > : )
sup My (. m) = Mi(m)| > 52

2 1:T
T logPg(X™7)

< Py (sup nin—1

0co

lOng(XlzT ‘ Zl:T — 21:T)

2 > €Tn, T
n(n—1)T 3v/n
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Py = _logP XI:T Zl:T _ LT
o <31€18 n(n—1)T 0g Py | 250
_ #Eg* [IOgPG(XLT | ZuT _ ZLT) ‘ ZLT} ETn, T
n(n—1)T NG
2 ~
+ Py~ (sup - _FE, [lo Py(X LT | 24T = Z1T ‘ZLT:|
pco |n(n —1)T g Py | )

— M(r)| > ;T\’;ET ) . (10)

In the following, we prove separately the convergence (in Pp--probability) to
zero of the three terms of this sum (while controlling for the rate of these
convergences). Before starting, let us remark that we have

lOgPQ(Xl:T | Zl:T — Zl:T)

T
= Z Z ij longzzj + (1 - ij) IOg(]- - szz;’f) (11)

t=11<i<j<n
and  Eg- [logIF)e(XliT | g T _ ZI:T) ‘ ZI:T}
T
= Z Z Tyt 4 10g Totzt + (1= pe)log(l — Wzgz;)~ (12)
t=11<i<j<n s

In particular, for every ¢ € [1,T], we have

st — argmax Z Xilogms,., + (1 — X{;)log(1 —m,2,),
#=(21,2) EMLRI" 1<ici<n

7t = argmax Z Tyt e 1087220 + (1= T 5e) log(1 — 72,2 ).
Z:(Zl ’’’’’ Zﬂ)eﬂvaﬂn 1§1<J§n 177 177

First term of the right-hand side of (10). We let

2
T o |2 JoePo(XYTY - 2 oo Po(X VT | zUT — 51T
! nn—1)T og Py ) n(n—1)T 0g Py( | 27)
2 T
< g O MloBPo(XT | X —log (X! 20 = 2] (13
t=1

Lemma 3. For every t € [1,T], we have
[log Py (X*| X 71) — log Py(X'|Z" = 2")| < [logPe (2" = 2| X171
Going back to (13) and applying Lemma 3, we get

2
T <

T
N m Z |10g]P>9(Zt = ét ‘ X11t71)|

t=1
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Zlog]P’g =zt x L),

nfl

Now, using classical dependency rules in directed acyclic graphs (see e.g. Lau-
ritzen, 1996) combined with Assumption 2, we get

T
2
T<—7§1 E Po(Zt = 3t | zt—1 — »t-1
b= n(n—l)Tt: o8 {9( | 27

thleﬂl,Q]]n
x Po(Zt1 = 5t~1 ‘Xl:t—l)}

TL — 1 Zlog Z 6”P9(Zt_1 = -1 |X1:t—1)

= 2t=1e[1,Q]™
Py — anogé =

This implies that Pg«(supycg T1 > €rn,r/(3v/n)) = 0 as soon as er, r/y/n >
61log(1/6)/(n—1). Then for any sequence {r, r}n r>1 increasing to infinity, for
any € > 0, we have that Py« (supgcg 71 > €rn,7/(3y/n)) — 0 as n and T increase.

— log(1/9).

Second term of the right-hand side of (10). Let us denote

Ty(Z"T) = log P(X VT | Z1T = 21T

2
n(n — 1T
2

_ E*[l P XszlT ZlT ‘ZI:T:| .
—n(n—l)T o~ |log Py ( | )

For the sake of clarity, we study this term on the event {Z'7 = 2*T} where

2T e [1,Q]" is a fixed configuration. This event induces the definition of
ZET following Equation (8) as

Z%T —  argmax K- [logpe(XlzT | ZUT = 1Ty | 70T Z*I:T} ’

or equivalently for every ¢t € [1,T7],

7t — argmasx Z w;‘;tzft logm,,., + (1 — W;k;tzft) log(1 —m,2,).
z2=(21,..,2n)€[1,Q]"™ 1<i<j<n ! /

By definition of 217 and ZvT respectively, we have the two inequalities

log Py(X 1T | Z1T = 28T > log Pe(X VT | 24T = Z4T)



Consistency of the ML and variational estimators in a dynamic SBM 4173

and
Eg- {bg]P’e(Xl:T PAREP A } 7' = z*l:T:|
> Eg- [log]P’g(XlT | ZVT = 31T ‘ ZUT _ z*l:T:| ’
implying the lower and upper bounds
log Po(X T | ZVT = Z¥T) — Eyp- [log Po(X 1T | 24T = Z1:T) ‘ T _ Z*LT]
< logBy(X*T| 217 = 547) By [log By(XT | 27 = ZV7) | 247 = 217]
< logPo(X 1T | 21T = 31T _E,. [log]P’g(Xl T | gUT _ 1T ‘ JUT _ T}

Taking the absolute value gives us an upper bound for Ty (z*1T)

TQ(Z*LT)

< max

1 P Xl:T Zl:T: 1:T
S prelnE gumy 471(”_1)71 og Py ( | z)

— By [log]pe(Xl:T | 78T — 1T | guT :Z*I:T} .

Using Equations (11) and (12), we then obtain the following upper bound for
T, (Z*l:T)

TQ(Z*l:T)

T
Tyt 4t
< Xt — 7 o) log [ ——— .
_leggaleT}nnflTZ Z (” ﬂ-zitzjt> 0g<17r t)

t
t=11<i<j<n 2%

We use the following concentration result to conclude.

Lemma 4. Let €, > 0 and {z, 1}nr>1 0 sequence of positive real numbers.
We let P}. (+) denote the probability conditional on {Z%T = 2*YT} under param-
eter 0, i.e. Py (-) = Pps (- | ZVT = 2*1T). Denoting A = 2log[(1 — ¢)/¢] > 0,
we have for any 0 € ©

* *
P;. sup sup o W 1T Z Z *tz;t)

28T e[L,QIM rel¢,1-¢ t=11<i<j<n

>e|4+2e T

<P (1+B8)A . A/xp1/2 +<1 1) (A/2)zp

Vnn—1)T/2  y/n(n—1)T/2 B 3)n(n-1)T/2
< Laa/(m(n-1)T)>e +2¢ 7 (14)

with Q@ = (1+B)A/n(n — )T/2+A\/n(n — 1)Txn r/4+(1/B+1/3)(A/2) 2 7.
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Let us choose x, 1 = log(n) in the above lemma. For any ¢ > 0, for any
sequence {r, 7}, r>1 increasing to infinity, we have for n and T' large enough

€'n, T > 2Q)
3vn ~ n(n—1)T"

Then for n and T large enough, the first term in the right-hand side of inequality
(14) is equal to 0 and we have

IN

. €rn. T
Pi. (sup Th(z*HT) > =22 >
0 (9e@ o ) 3v/n

and Py~ <sup To(Z'T) > ern’T)

2
n

9co 3vn

E * *1: €'n,T T *1:T
S I[D * SupT V4 LT > —7> ]PJQ* Zl =2z S
S ’ <9ee =) 3vn ( )

3w

Third term of the right-hand side of (10). Let us denote

T (24T = - TEH* [logPH(XI:T | Z1T = Z1T) ‘ Zl:T} — M(n)

n(n—1)

2 a _
=TT ;]E(,* [1ogIP>9(Xt | 7t = Z) ’ Zf] — M, Ay)|.

For any fixed configuration 2 € [[1,Q]", analogous to Equation (12), we write
Eq- [log Py(X' | 2t = 2Y) ’ Zf]

= E szzjt. longlg,z; +(1- 77}}2;) log(1 — 7TZ§,Z;_,)
1<i<j<n

Z 7'('2;25_ log 7.t + (1- W}Z,Z;) log(1 — '/TZEZ;_,)
1<i#j<n

> > (mylogmy

1<q,L,q" V' <Q 1<i#j<n

N = N =

+ (1 —mg) log(1 — 7Tq'l'))]l{zf:q,z;:l,z;:q/,z;:l/}

1 * *
= — E qu/(Zt, Zt)Cu/(Zt, Zt) (ﬂ-ql 1og7rq/l/ + (1 — 7qu) log(l — Wq/l/)) R
1<q,l,¢’ . '<Q

where Cu(Z%,2Y) = |{i € [1,n];Z} = q,2! = ¢'}| is the (random variable)
number of nodes classified in group ¢ in the current (random) configuration Z*,
while they belong to group ¢’ in (deterministic) configuration z!. Recall that
Ny(z") is the number of nodes assigned to class ¢ by the configuration z* and
let us denote al,,, = agq (Z*,2") = Cyqr (2%, 2") /N4(Z") the (random) proportion
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of vertices from class ¢ in Z* attributed to class ¢’ by 2zt. We write

2
4E*[l Po(Xt | Zt = 2t Zt}
nin—1) " ogPy(X7| )
N, (Z)Ny(2 . .
= Magq,afl, (milog g + (1 — ;) log(1 — mgrr))
n(n —1)

1<q,l,q",l'<Q

= O (A", 1),

with A* = (aéq')lﬁmq/SQ' . -

Now extending these notations to the case where 2! = Z*, we let A" =
(@hy)1<a.0'<Q ‘where by = age(Z', Z"). We remark that the definition of Z*
implies that A’ = argmax y:¢ 4¢(z1.m) (A", 7) with A*(Z"7T) the (random)
subset of stochastic matrices defined for every ¢ € [1,T] by

Q
ANZET) = {A = (nq1/Ng(Z"))12q1<qi nar € [0, Ng(ZN)], Y ng = Nq(Zt)}'
=1

Let us also denote Af = argmax g 4t (z1ry M(m, A). Then
T

. 1 -
supTy(Z7) < sup o3 |@H(A m) — Mi(r, )
0€0 T€el¢,1-¢]@Q? T =1

T
1 ~ _
< s o3 |RN(ANm) - M, AL

Tel(1-¢]R* T =1

1 T
. _
+TZ sup [ Mi(m, A7) — M(r, Ar)] . (15)
t=17€[(,1-¢]?

We start by stating a concentration lemma on the random variable N,(Z") for
any g € [1,Q] and any ¢ € [1,T7].

Lemma 5. For any 0 € © and any n € (0,9), let

(0) = {47 € QI v e L TLve € QL P > 0, ).

n
Then Py (Z¥1 € Q,(0)) > 1 — QT exp(—2n*n).

Building on the previous concentration lemma, the following one gives the
convergence in Py«-probability of the second term in the right-hand side of (15).

Lemma 6. For anye > 0, anyn € (0,9) and {rn,1}n,r>1 any positive sequence,

> [ A—
T= reica—q@? 6V
< QT exp (=20°n) + ycoey/m/ern 1 (5-)] (16)
with ¢ = 6(1 — §)2(1 — ) log(1/¢)Q*.

T
Py- (l Z sup  |M(m, AL) — M(m, Ag)| ErnI)
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Then taking any n € (0,0), for any € > 0, for any sequence {r, 7}, r>1
increasing to infinity, we have the following inequality for n and 7" large enough

6cy/n

Tn,T > 6(5—7])717 (17)

implying that the probability in Lemma 6 converges to 0 as n and T increase
for any € > 0, as long as logT = o(n). Now, for the first term in the right-hand
side of (15), note that we have for every 7 and every ¢

- T

M(m, AL) > M(m, A')  because AL = argmax 4 40 M(, A).

{ (AL, ) > ®F(AL 1)  because A = argmax . 40 DF(A, )

At ) < ®t(A, 1) and

0 < ®F(A?, ) — M(7, AL) < BF(A?, 1) — M(mr, A?)
or M(m, At) > ®'(A!, 1) and

0 < M(m, A) — (At ) < M(m, AL) — B (AL 7).

In both cases, we get that |®f(A?, ) — M(r, AL)| < sup 4e 4 |PH(A, 7) —M(7r, A)]
for every t and 7, thus obtaining the upper bound

T
1 - _
swp = 3 |04 m) — M, AL)
T€l(,1-¢]9* * =1

1 T

< T sup sup |®*(A", ) — M(m, A")].

t=1 m€[¢,1-(]Q? A'€A
Letting

A(() = sup sup |7 logm+ (1 —7)log(1l — )| € (0,400)
mn€[¢,1=(] m€[¢,1-¢]

and recalling that 0 < ay < 1 (for every ¢,l € [1,Q]) for every A =
(aqi)1<qi<q € A, we have

sup sup |@'(A", m) — M(m, A")|

Te[(,1-¢]Q* ATEA
N (ZYYNy (71
< sup sup ’ (M ; *) al g afy

mel(1-¢]R? ATEA <1 T <Q

nin—1) R

X (ﬂ';l log g + (1 — 7)) log (1 — wq/l/))

<AQQ* Y

1<q,l<Q

‘Nq(Zt)Nl(Zt) s
n(n —1) Ya
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Finally, we bound the first term of the right-hand-side of (15) as follows

sup ‘q)t ) — M(m, A%)
mel¢,1- c]@2
Z")Ny( Zt) -
1<ql<Q t=1
Applying Markov’s Inequality, we obtain
- €rn. T
Py- sup ‘<I>t 7) — M(m, AL)| > :
( cca-qar T Gv/n
1 (Zt)Nl(Zt) €Ern. T
< IP) . = q PN N > s
= Zl: o (Tt_l nn—1) 1Y 7 6AOQWn

*
l

il

GA 4 NZtNZt
Q\/_Z ZE [ N(Z')

*
o
€Tn, T n(n —1) a

The following lemma gives an upper bound of the expectation appearing in the
previous inequality, for any ¢, € [1,Q].

6A( Q4\/_ ZE |: N Zl Nl(Zl) * ok

e
€n, T n(n—1) 7

Lemma 7. For any q,l € [1,Q] and any t € [1,T], we have the following
inequality

N (ZYN(ZY)
e |G

This leads to

Pg*< sup ‘cpt ) — M(r, AL)| >
o2 T

ern7T> < 12A(¢)Q%n
mel¢,1-(]

6vn | ~ erpr(n—1)

Then for any € > 0, for any sequence {7, 7}, r>1 increasing to infinity, we have
the convergence

P9*< sup QZT ‘@t ) — M(rr, A*) >ernT/(6f)> .

re[¢,1—C] n,T'— oo
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We proved the convergence to 0 of the three terms in the right-hand side of (10)
for any sequence {r,, 1}, r>1 increasing to infinity and as long as log T' = o(n).
This gives the expected result and concludes the proof. O

5.2. Proof of Corollary 1

To prove this corollary, we establish the following lemma that allows us to
obtain a rate of convergence of 7 to 7* from a rate of convergence of M, r to
M. Note that this lemma is a bit more general than what we need and gives an
equivalent result when the number of time steps 7" is fixed, which will be useful
for Corollary 2.

Lemma 8. Let {F, r}nr>1 be any random functions on the set © (resp.
OT) and M (resp. MT ) defined as before. Assume that there ewists a sequence
{vn,r}n1r>1 (resp. {vn}n>1) a sequence decreasing to 0 such that for every e > 0,
we have the following convergence as n,T — co (resp. n — o0)

Py« | sup |Fpor(T,m)—M(n)| > evpp | —0
(D,m)ed n,T— 00

resp. Po= sup  |Fp (T, 75" =M (z"7)| > ev, | —— 0.
(T, m)eeT o

If for anyn and T, 0 = (I',#%) (resp. 0 = (I',#%7T) ) is defined as the mazimizer
of Fo.r on the set ©, (resp. ©T ) we have the following convergence

Pg~ < min ||y — 7o > e,/vn’T> — 0
ceGq

n,T'—oo
. ~1:T *«1:T / _—
(resp. Po+ <017,,.I,I;ITI1€C‘5Q ||7Tgl:T -7 oo > € ’Un> n—»00 0)
with 7?3,3% = (ﬁit)te[[LTﬂ'

The result of Corollary 1 is then a direct consequence of Theorem 1 (choosing
the sequence {ri7T}n,t21) and Lemma 8 applied with F,, 7 = M, 7. O

5.3. Proof of Theorem 2

The proof follows the lines of the proof of Theorem 3.8 in Celisse, Daudin and
Pierre (2012). Nonetheless, our result is sharper as we will establish an upper
bound of the rate of convergence (in probability) of the quantity at stake. For
any € > 0, any sequence {y, r}nr>1 and n € (0,0), we write

P (E(Z5T, 0, eyn.r))

_ Z P- (E(Z*I:T’é,eymT);Zl:T _ Z*I:T) < Py- (leT c Q;(Q*))
2T e[1,Q]"T
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P Zl:T *1:T Xl:T
+ Z {PO* ( 9( 7& z | ) > €Y ‘ Zl:T — Z*l:T)
(6%)

o 1:T — *1:T 1:T
21T eq, IP)G (Z z |X )

% ]P)G* (Zl:T _ Z*l:T) } (19)

with ©,(0*) as defined in Lemma 5. We will establish that there exist some
positive constants C, Cy, Cy, Cs, C4 such that for any fixed configuration z*%7 €
Q,(0%), any € > 0, any positive sequence {yn 7}n r>1 such that log(1/y,.r) =
o(n) and n and T large enough, we have

P Zl:T «1:T Xl:T
Py- 0( . #z . | . ) > €ynt ‘ ZUT _ 1T
]P)(;(Zl.T — Z*I.T | XLT) ’

S PO* (H,ﬁ_ _ 71—*”00 > Un,T | ZI:T _ Z*l:T)

. ch{ exp [ (5 n)Cun + Cylog(nT) + Cs 1og<1/<eyn,T>>]

}. (20)

Combined with (19) and applying Lemma 5, this gives the desired result. So
now we focus on establishing (20).

In what follows, we consider a fixed configuration z***7 € Q,(6*) and in-
troduce the Hamming distance between z*1*7 and any other configuration 27

defined as
T n
25T = 2# T = Z Z Lo gose.

t=1 i=1

2
_o, (10;51(42LT)) + 3nlog(nT)

Un,T

+ exp

We let Pj.(-) denote the probability conditional on {Z%T = z*1T} under pa-
rameter 0 = 0%, ie. Ph.(-) = Pp«(- | ZVT = 2*1'T). In the following, we will
often use the fact that the variables {X/;} are independent under Pj. (with

mean value 7., ..) so that we can rely on Hoeffding’s Inequality. We introduce
i “j

a sequence {vp, }n,r>1 decreasing to 0 and Q,, r the event defined as
Q1 = |7 = 7o < Vn,7}

We bound the probability of interest in (20) by splitting it on the two com-
plementary events ), r and Q%,T' For any ¢ > 0 and any positive sequence

{yn,T}n,Tzl
P Zl:T *1:T Xl:T
P ot LT £ 1~T| 1~T) > €Yn.T
Py(Z1T = 22T | X1T) ’

PV(ZLT 7& Z*l:T | Xl:T)
* C * 0
< Pp- ( n,T) + Py [{Pé(zl:T = LT | X1T) > Gy”vT} n Q”vT} ’ (21)
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Thus, the proof of (20) boils down to establishing the desired upper bound on
the second term appearing in the right-hand side of (21). We have

PV(ZLT 7& Z*l:T | Xl:T)
T |\ B, n Q,
? Hpg(Zl=T = T | X1T) > €y .,T} N ,T:|

nT . . .

]P)“(Zl'T — Zl.T | Xl.T) €Yn T

< P;. H A . > - }an,T:| ;

; ;1 0 Pé(le = *1:T | Xl.T) Qr(nT)r+1
(% S5 AP E T

by using the bound (@ —1)" (") < Q"(nT)" on the number of terms in the sum
over {2171 ||z — 2*1T||o = r} (for each value of 7). Then,

Pv(ZliT £ 21T | Xl:T)
* [
Pa* |:{IP§(Z1T — Z*I:T | Xl:T) > Eyan} N Qn,T:|

nT . Pé(zl:T — Zl:T | Xl:T)
<> > 0- |4 o8 P, (Z1T = o+ | X 1T
r=1 21T 0

3

[ E AN e TP

> log(eyn,r) —rlogQ — (r +1) log(nT)} N Qn,T:|

nT . . .
. H:DV(ZLT — Zl'T | Xl.T)
SZ Z 0 log ’ 1T — *1:T 1:T
P;(Z1T = 2T [ XIT)
r=1 21T
21T —2*1:T || g =

> —log(1/(€yn, 1)) — 37 log(nT)} N QmT} , (22)

as long as nT > Q. For any configuration 257 such that ||217 — 2*1T||g = 7, we
denote by r(1),...,r(T) the number of differences between the two configura-
tions at each time step ¢ € [1, 77, i.e. r(t) = [|z* — 2*![|o such that r = >, r(¢).
Moreover, for any parameter m, we define D, 7(z'7 ) the subset of indexes
(i,7,t) € [1,n]* x [1,T] such that i < j for which the parameter m differs
between the configuration z*'7 and 27, namely

Dn,T(Zl:Tﬂr) = {(i7j7t) € In,T;’/Tzfth. 7& sz‘z;.“} )

with I, 7 = {(i,,t) € [1,n]? x [1,T];i < j} the set of indexes over which we
sum to compute the conditional log-likelihood. In what follows, we abbreviate
to D* (resp. D), the set D,, 7(25T,7*) (resp. Dy, 7(257, #%)). Next lemma gives
a decomposition of the main term at stake in (22).
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Lemma 9. We have the decomposition

]P)e“(ZLT — Zl:T | Xl:T)

log , - — = Uy + Uz — Us,
]pé(Zl.T = LT | X1T)
where
. w*tzt . 1 =7
Uy = | Z X}, log - + (1 - X{;)log E——
(i,3,t)€D* 2 %j Zi %
n T—1 n
"y ¢ t+1
+ Zlog P log —~— 5 (23)
= t=1 i=1 peapitt
(ﬁ'z‘zt ﬂ-:tzt)(ij Trzfzf)
Uy = log |1 -2 4 24
2= >, log|le—— 2 (24
(i,5,t)€D*UD Zi%j Zi%j
(ﬁnz“z;f -7 2rt *t)(Xt ﬂ-:*tz*t)
Us = log |1 - L 25
3 Z . o8 * 71'**1 *t(]- - W**t *t) ( )
(i,4,t)eD*UD Zi % Zi %

Combining (22) and Lemma 9, we obtain

Pé(zl:T — Zl:T | Xl:T) - "0
Py(Z'T = 17T | X1T) €Yn,T T

;. >

Zl:T?éZ*l:T

< > P;*{{U1+U2U3>log(

r=1 21T,
21T — o1 THO -

) - ariog(ut) {0 |

€Yn, T
(26)

We then decompose

Py. HUl 4+ Uy —Us > —log ( ) - 3r log(nT)} N Qn’T]

€Yn,T
< Pp. HUl 4+ U — Us>—log (ey > —3r log(nT)}ﬂ Qnr N{|Us] < rlog(nT)}}
n,T’
+ Py Q.0 N {|Us| > rlog(nT)}]
< Py HUl +Us; > —log ( ) —4r 1og(nT)} N Qn,T}
€Yn, T
+ Py Q0 N {|Us| > rlog(nT)}]
< Pp. {Ul > —log <
€Yn, T

+ Py [Q, 0 N {|Us| > rlog(nT)}]. (27)

) —5r log(nT)} + Py [ 7 N {|Uz| > rlog(nT)}]
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We handle these three terms separately in the following. From now on, we
consider a configuration 27 such that [[2¥7 — 2*5T g = r = 3, r(2).

First term in the right-hand side of (27). Recall that U; is given by (23).
We can further decompose this term

T =T
" " ziz} EAE
U = E (Xij - ”z,%tzft) log — 1 "
) v T st ot — Tt
(i,5,t)eD* %% Zi%;j
*
T ¢t 1—n Stat
+ * 10 ZiZj + (1 _ * )10 41]
Tyt e 108 — Tty +t ) 108
L v T st xt v 1 -7k
(i,5,t)€D* 2 % zftay
T-1 n 'Y t t+1
t=1 i=1 72” i

For n and T large enough such that I € [5,1 — 6]Q2 (implying for the corre-
sponding stationary distribution & € [5,1 — §]%), we have

n < T—-1 n
Q1 Vot ottt
1 7 1 7
DR e B DELE e
i=1 i t=1 i=1 Z; %
< T-1 n
a, 1 "}/ ¢ t+1
jijfﬂ{zl¢z*1}10g A D2 Mttt ety log g““‘;j
; t=1 i=1 2ty
1-6 1-
<r(1) logT+Z r(t +1)]log 3 < 2rlog

To handle the term U;, we need to lower bound the cardinality of the set D*.
This is the purpose of Lemma 10 which is a generalization of Proposition B.4
in Celisse, Daudin and Pierre (2012). This can be done for all the configurations

2T and all the configurations z**7 that belong to some €2,(6).

Lemma 10. For any n € (0,5), any parameter 0 € ©, any configuration z'*T
and any 2*V7 € Q,(0) such that ||z5T — 2*V7T | g = r, we have

_ 2
|Dn’T(21:T7ﬂ_)’ Z %nr_

Combining Lemma 10 with the previous bound, we get that

T—1 n N oot
(|D* 1 1 %%
| | (Z 0g & + Z Og'uy ot *¢+1>
t=1 1=1 Z;i 'z
o 1-9 8 1—-6
1 < ] 2
S ZE R TR O T ER i S (28)
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We also have

(D p~t >

(i,3,t)€D*
* *
_k(ﬂ'ql, 7Tq/l/)

7r*f t
LZJ

*f *f IOg
m* ot ut

7' J
< max
@b Vsm, #F

with k(z,y) = zlog(z/y)

(]. *TF *f *1)10g

+ (1 —2)log[(1 — 2)/(1 —y)] for (z,y) €

4183

1—7r,t
L_]

: >
Z,L 'Zj

1_7T *t okt

(0,1)%. The

function k is positive for every (z,y) such that x # y, hence, introducing the

ﬂ—;'l')/27

. * : *
notation K™ = ming g 1w 77, , k(3

max —k(my, ma) = —2K* <0.

q,l,q’ 7l/§7";l 7'57{;/1/

So, by (28), we have for n large enough

1 Wztz‘ L=
* |\ — " t
(‘D |) Z 71' *t *t logﬂ —i—(l—ﬂ'zjtz;t)]OgHi*J
(i,5,t)€D* 2t ;t z;“tz;‘t
T—1 n et
L Z; S 7K*.
B =1 i=1 Y xt *t+1
This leads to
]P’z* (U1 > u)
¢ ﬁ;zé 1—7* ot *t
* * i ] Zi *
< Pg- Z (X3 — Wz;tz;f) log g — — |D¥|K* >u
(@.5,t)eD* et 2zt

for any v > 0 and large enough n. Moreover, thanks to Hoeffding’s Inequality

and Assumption 3,

Pg* (Ul > u)

* t * Tr:fzf 1 - ﬂ.:ﬁkfzft . .

=Fe , Z (X _sz'*”zft)log T L—m5 >u+|DTK
(,3,t)€D* zrtz; 2tz
u? + |D*[2K*2 + 2u|D* | K*
=P |- D*|C,
|D*|C¢
< |D*|2K*2+2uID*K*} [ 2uK*] [ ID*IK*T
S eXp |~ * = P = eXp | — )
|D*|C¢ C¢ Ce

where C¢ is a constant depending on (. Finally using Lemma 10, we have

Py. (U1 > —log(1/(eyn,)) — 5rlog(nT))
< oxp g1/ (e 1)) + 5rlog(n) = e -

IN

exp | log(1/ (e 1))+ 5rlog(nT)] 2

2K*} [
exp | —nr
¢

|D* |K*2

G

(8 —m)*K*2
AC,
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Second term in the right-hand side of (27). We have

ﬁ—z?zt - Trzt )(Xt : zt)
17 i ;
Us = Z log |1+ — (1 ] i
(3,4,t)eD*UD zizt 2tz
< ¥ (Tarzt = 72, ) (XGy = 7hese)
B = ﬂ-*t t(]- - 7T*t t)
(4,3,t)€D*UD i z; 252t
For any ¢,1,¢',1" € [1,Q], we introduce the sets
Fogr = Fqlq/l/(zl:T7z*1 T) ={(i,4,t) € In1; zf =g, z; _ l’zrt _ q/,z;-‘t — 1)
Fql = Fql(zlzT) = Ulﬁq’vl’gQquq/l/ = {(i,j,t) € InT§ zf — q’Z;% — l}

Gagv = Gagu (21, 25 7 ) (D" U D) N Fagr
={(i,4,t) € lni 2l = q,25 = 1,2 = ¢, ;' =1
and (W;‘;z; # W:;tz;t or %z;z; # %z;‘tz;t)}
Gg = Gu(zYT, 2 YT 7 7)== (D* U D) N Fy
={(6,5,0) € Inrs2f = ¢, = Land (Wl 7 Whepee OF Tt # ovese) ).

Then we bound

ﬁ-QZ B Tr;;l t *
U] < Z (1 —7%) § (X5 — qu)]lz;?:q,z;:z
1<q1<Q " 4! @’ | jepub
=] *
Tql — T
q ql : N
S Z 77.* (1 — ) Z (X'L_] - 7qu)
1<q,1<Q "4t A’ (i, t)EGq
= *
Tgl — T
q ql ¢
i * ¥ E (Xl] T xt *r)
(L =m) |
1<q,1<Q 4 a’ | (ijt)eCy

—+ *
Tql —Fql‘
+

Z (W:;tz;t - W;l)

1—m
1<q,l1<Q ql( ql) (i,5,t)EG g1

~ *
Tql — T
q ql
t *
= Aoy | 2 Kb
1<qi<Q "4 al’ | (i,5,)€G
=~ *
‘ﬂ-ql T

+ Z(ﬂ';’l’ =T Gaigrr]|- (29)

1<q,1<Q (L= 73) Y
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For every v > 0, we thus have

Py (1w 0 {[U2] > u})

1<q1<Q " 4| (1,5t €Cq

=] *
Tql —7qu’

’ﬁ'ql -t

ql
+ ]P);* Z * (1 — ) Z (71':;/1/ - W;l)|quq’l’| > ’LL/2 n Q”%T
1<q,i<Q "4t a’ 1<q 1'<Q

(30)

We start by dealing with the first term of the right-hand side of (30). Notice
that on the event Q,, 7, we have ‘(frql — 7))/ (wh (L= 75))| < vnr/C? for every

q,1 € [1,Q]. The next lemma establishes that any set D,, (%7, 7) is included
in a larger set, whose cardinality is bounded. In particular, the random set D
is included in a larger deterministic subset.

Lemma 11. Let 25T and z*%T denote two configurations such that ||z%T —
2*VT|g = r. Then for any parameter m = (Tq)1<q.1<qQ, we have

Do (25T, m) C Dnr(287) = {(i,4,1) € [1,n]* x [1,T1; (1, 25) # (27, 25) }

70
and ’DmT(zl:T)‘ < 2nr.

As the set G is random (because D is random), we write

* 'ﬁ-ql B ﬂ—:;l‘ t *
PO* E 771_* (1—7'('*) E (X,L'j_ﬂ—z;«tz;t) >’LL/2 an,T
1<qi<Q "4 a’ (4,4,t)eGq

55 B ST I e A | PO

i 7 2v T
1<¢,1<Q |(i,4,t)€Gqr "

* t * 'LLC2
S Z ]P)e* Z Z (X” - ’ﬂ-z;«tz»_«t) > s

J 2v
DCD, 1 (217) 1<q,1<Q |(i,4,t) €FnD nT

where now D is a deterministic set. By a union bound and Hoeffding’s inequality,
we have for any D C D,, r(z1'T)

A Y > &G =) > uc”

2v
1<q,l<Q |(4,5,t)EFunND n, T
2
Z ug
< Q2 max P;* (Xf] - W:*tz*t,) >
1<¢,1<Q i % 2vp. T

(t,4,t)eFuND
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2u%¢t 1
<2Q%exp | ——5———— | .
— 2
dop 7Q* | D)

This leads to

* ‘%ql B ﬂ-;l‘ t *
Py * Py (Xij = Moeee)| > /2 0 N
(L =m) | 7'z;
1<q,l<Q ¢ q (4,7, t)EGq
w2¢t 1
< E 2Q%exp | ——5— —
dvp 7Q*|D|

DCDT,,,T(ZLT)

2nr
2 24 1
Z Z 2Q2 exp 7;’144_
v 2Q* k
k=1 DCD,, r(z"T);|D|=k "

2nr
<2Q? Z(Qnr)k exp ( 20¢C 1 ) < 2Q%exp <_ﬂ> (2nr)2nr L,

T 402 O 2 04
— dvy 2Q* 2nr dvy, 2Q*nr

IN

For the second term of (30), we get from a union bound and from Lemma 11
(that gives an upper bound for |D* U D|) that

P;. >

1<q,l<@Q

(Tq — WZl)

(L —m)

S (mh = m)|Gagrl| > w/2 5 N Qr

1<q’,l'<Q

u¢?
B[ | X - mlCuerl| >
Un,T

1<q,I<Q 1<, 1’ <Q '

2
ug
<Q? max Pj. Z (7l — NG|l > ———
= q'l ql qlq’l 2
1<q,1<Q <iT<o 20, 7Q
2
ug
< QP (201 > ——
= Q 7] ( 2’Un7TQ2 9
because |7r;,l, - W;‘l| < 1, implying that

Z(”Z’l' - 7T:1<l)|quq’l" = Z |Gaqr| = |Gal = |Fu 0 (D" U D)

q’ U q’
< D281 < 200

Finally, we have the following upper bound for the second term of (27)

4 2
B (0 01 {IUs] > rlog(nT)}) < 20 exp (Ti%‘iiﬁ”? ) (20?741
n, T

+ @8 (snir > S,

4Q%n
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Third term in the right-hand side of (27). We want to bound (in prob-
ability) the last term Us. Distinguishing between the cases where ij =0 and
X}; = 1, we have

Us = Z log

(i,j,t)eD*UD

1+

(ﬁ'szz;‘t - W:ftz;t)(thj - W;;*tz;t)]

* *
Tt *t(l T xt *t)
z;tz] 27t z]

(Trzf‘f'zf’." '/T:g«tzﬁ)
= > (1-Xj)log |1 — —— i
1- ** *t
(i,j,t)eD*uf)< ( Mortas )
+ (ﬁ-zftz;" - W:;tzjt)
+ Xijlog |1+ =
i %5
= > X <(1 — X!)log |1 “(’fl ‘iﬂ
1<q,l<Q (4,5,t)eD*UD Tql
T —
+ Xitj log |1+ (qli*ql)] >]lz>}<t_q v
o 1'=q,7]

For any (gq,1) € [1,Q]?, we further introduce the sets

Fp = Uicqv<qFgva ={(0,5,t) € Inr; 2" = ¢, 2" =1}

G;l =Ui<qr<QGqrq = (l)”< U D) N Fq*l = {(i,j, t) e D* U D; Z;kt =q, Z;t = l}
Centering the ij (under the distribution P}.), we get

Us = Z Z (o — ij) log |1— —(ﬁ-ql__ ﬂ-*:;l)
(I—7m2)

1<q,l<Q (4,5,t)eD*UD

1+(ql

=),
_ Wt ot
* z}t=q,z3t=l
7qu ’ J

+ (ij —my) log

. (Tqr —751)
D SR o (A I
1<q,l<Q (4,5,t)eD*UD at
(Tqr —7g)
+ ﬂ—;l IOg 1 + qi*ql ]lz;‘t:q,z;‘t:l
T
(Tqr —7g) (Tqr — ) .
= > (10% L+ ———| —log 1—(1(1_7”*‘1) > (X -
1<q,1<Q al al (1., t)EGE,
(gt — ) Tgl — o)
+ Z |Gl ((17r;‘l)log llH + 7y log 1+—( 1 ” a! .
1<q.1<Q (1= Tal

Then, on the event {2, 7 and for n and 7" large enough such that |(74 —7;)/(1—
)| < 1/2 and |(7g — 7y;)/my| < 1/2 for every g and I, using the fact that



4188 L. Longepierre and C. Matias

[log(1 + z)| < 2|z| for x € [-1/2,1/2], we have

Un, T * Un,T *
|U3‘ < 4T Z Z (ij - 7.rql) +4 2 Z ‘qu“

1<q,1<Q | (5,4,1) €GY, 1<q,l<Q

Then, for every u > 0,

p * t * UC
PG* (Qn,T N {|U3| > ’LL}) < Py. Z - Z (XZJ - 7qu) > —81)n_T
1<q,1<Q |(4,4,)€GY, ,
0% 'Un,T al 8
1<q,l<Q
For the first term of (31), using Hoeffding’s inequality as before,
* t * UC
A DR ID S
.. Un. T
1<q,I<Q |(4.5,t)€GY J
2nr uc
<> > P | D | D (Xh-m)| >
k=1 DCDy ¢ (z47T);|D|=k 1<q,1<Q | (i.,) e DNF, n,T

82Q*?2 nr

< 2Q%(2nr)?" M exp < L) .

For the second term of (31), we use

U
Py | vnr Y |G;l|>§

1<q,l=Q

Finally, we have the following upper bound for the third term of (27)

Py (Qn, 7 N{|Us| > rlog(nT)}) < 2Q%(2nr)?" L exp (— 82Q4v27Tn

P3. >
o <Un’T 16n

Combining the 3 bounds on the right-hand-side of (27).

Py ({U1 + Uz — Us > —log(1/(eyn, 1)) — 3rlog(nT)} N Q1)

< exp |[log(1/(eyn,T)) + 5rlog(nT)] QCI'(:} o [_m%}

r(log(nT))¢?

(31)

)
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4 2 2
2 2nr+1 7¢*(log(nT)) 2k ¢*log(nT)
+ 2Q (2’[7,7“) exp [—W + Q I[Dex Un,T > 4@7271
2 2nr+1 _ r(log(nT))*¢? * log(nT')¢
+2Q%(2nr) exp [ 782Q4v37Tn + P | vnr > —en )

Now we choose the sequence v, r such that v, = o(y/log(nT)/n) which
is sufficient to imply that the quantities Pj. (vn,7 > ¢*log(nT)/(4Q*n)) and
Py, (vn, 7 > log(nT)(/(16n)) vanish as n and T increase. For large enough val-
ues of n and T and with C7, Cs, C3,Cy and k positive constants only depending
on @, and K*, we then have

Py ({Ur + Uz — Us > —log(1/(eyn,r)) — 3rlog(nT)} Ny 1)

2K* 5 —n)2K*?
< exp |[log(1/(eyn,T)) + 5rlog(nT)] c ] exp {nr%
¢ ¢
2 2nr+1 _rC4(log(nT))2
+2Q°(2nr) exp l 746241),2%741
2 2nr+1 _r(log(nT))2C2
+2Q°(2nr) exp —82Q4’072L,Tn
< exp [ — (8 = n)2Cynr + Cylog(nT)r + Cy log(l/(eyn,T))]
2
+ kexp |3nrlog(nT) — C’gw . (32)
nv;

Let us introduce

UpT = exXp [—(5 - n)QCln + Cylog(nT) 4+ Cy log(l/(eyn’T))]
(log(nT))?
L

n,T

+ 3nlog(nT)

WnT = €XP [03

Now we go back to (26). Noticing that the number of configurations 27 such

T
that [|257 — 2*57T|y = r is equal to (n >(Q —1)", we have
r

IP)“(ZLT 7& Z*l:T | Xl:T)
]P)** U > n n Qn
0 ({Pé(zlzT — o UT | X 1T €y ,T} ,T>

nT nT nT nT
< ; ( . )(Q—l)rufﬁ—&-; ( . )(Q_me:f‘p

<[4 Quar]™” = 1+ & ([1+ Qupr]™ —1).

Finally, notice that as long as logT = o(n) and log(1/yn 1) = o(n) (resp. as
long as v, 7 = o(y/log(nT)/n)), we have nTu,r (resp. nTw,r) converges to 0.
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Then we obtain for some universal positive constant C' and large enough n and
T

. ({IP; (ZlT%Z*1T|X1T)
Pj.

P (Zl T — 1T | Xt T) > €Yp T} n Qn,T) < CTLT(UnT + U/nT).

This leads directly to inequality (20). d

5.4. Proof of Theorem 3

We fix some 0 € G and study the convergence in Py«-probability of Y440 ()
to vy with I" as defined by the fixed point equation (4), i.e.

T— n 4
Vol@ot) = o1 L Py (ZE=q. 28 =1 XM
o(q)o(l) — o Z |
t:ll Zi:l ]P)éo (Zzt — q ‘ X1T)

First, let us denote

)ﬂ
L

1

Agj= ——
o (T 1)

M

N
Il
fa

Py (Zf=q.Z["' =1| X"T),

~+

—_

M=

!

1

BT

P (Zi =q| Xy,

o
Il

14

Il
-

Then we can write the quantity at stake as

Aq Agi — agyy

1 1
Y L = * %
ot i = g~ = g i (g o)
q

to obtain the following upper bound on the probability of interest

. Vdiogn Agi—agvy € Vdlogn
Py- — <Py |20 _Tala) € VIOBT
0 <|’YU(Q)UU) ’qu| > €Tn, T \/ﬁ =16 B, > 2rn7T \/ﬁ
1 € logn
]P) . * %k _ —Tn .
+ Py (ozq'yql _Bq _a; > o n.T — > (33)

First term of the right-hand side of (33). For the first term in (33), for
any 0 < A < (implying A < o for any ¢ € [1,Q]),

P (‘Aq,l—@;’ygl S €, \/logn>
o\ |/ 5
B, 2 v/
A l*a*PY*l €
= Pp- ‘u > =y, V By >al =X\ | Py (Bg > aj — A
( Bq 2 \/_ ( q q )

€ Vlogn

Tn
2 T vnT

A L= OZ*’Y*I
+ Py ‘7% 49

Bq<a2—)\>]P’9* (Bg < aj—))
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Vlogn
vnT

< Py (|Aq)l — asfﬁ;l’ > %rmT (o — )\)) + Py~ (Bq <ay— )\) . (34)

> €rp, T V\}%”) for any

First, we upper bound the probability Py« (‘Aq’l — gV

€ > 0, using the following lemma.

Lemma 12. If log(T) = o(n), for any € > 0, for any sequence {ry r}tnr>1

increasing to infinity such that r, o = o (\/nT/ log n) and any n € (0,9), we
have for any o € Gq

T—1 n
1 . Viogn
Py | | ——— P, (Zi=q,Z =1 XYT) —aiyh| > erpr~—e
’ (n(T—l)tzzu_Zl i (Zi=a2 X e 1T

<Py ([ = 7" [loc > vn,7) + 0(1)

with vy, a sequence decreasing to 0 such that v, v = o (\/log(nT)/n)

Then, for the second term of (34), notice that B, = ZzQ:1 Ay and that

Zlel Yy = 1. We then have, if log(T) = o(n) and v, = o (\/log(nT)/n),
using Lemma 12 again,

Q
Po- (By < af — \) =Pg- (By — a < =) = Py- <Z(Aq,l — i) < /\>
=1

Mo

Pg* (Aq)l — a;’}/;l < —)\/Q)

1

Me

< D Po (|Agr — agvp| > A/Q)

l
< QPp- (|6 — 7*|loc > vn,1) + 0(1).

Il
—

Finally, for the first term of (33), if y,, 7 is such that 1/y, r =0 (\ /nT/ log(n)),
ifvpr =0 (\/log(nT)/n) and as long as log(T') = o(n), we obtain

(‘ Agi — agyy € Viogn
Pos | | ——=—| > crnr—F—x
Bq 2 vnT

| — T |loo > n,1) + 0(1).

(35)

> <(Q+ 1)Py«(

Second term of the right-hand side of (33). For the second term of (33),
we split it on two complementary events as before. For any 0 < A < §, we have

1 € «/logn>

*
B, «

q

Py~ <a;’>/;l > 5’/‘”7'1" \/ﬁ
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1 1 € Viogn
=Pp |y | =— — —| > =rpnr——r= | By > — XN | Py« (By > aF — A
0 <q7ql Bq a; 2 T \/TL_T q q ) 0 ( q q )
1 1 € Vviogn
+Pos [V | =— — —| > zrpr— | B, <l — X | Py« (B, < — A
9<q7ql Bq Oz; 2 ’T\/TL_T q q > 9(‘1 q )
1 € Vlogn
<Py |V |l=— — —| > =rpr———=— | Bys > a — X | Pg+ (B, > — X
“’(ﬂqqu ap| T2 Ve | T )"(‘? i)
+Po- (Bg < — N). (36)

We already gave an upper bound on the second term in the right-hand side
of (36). Let us give one for the first term. Notice that as o > ¢ and if B, >
ag —A>0d—A>0, we have by the mean value theorem

1 1 1
— — —| < ——=5 |B;—a}l.
‘Bq ar| = G-N? [Ba = e
We can then write for the first term in the right-hand side of (36), as long as
log(T") = o(n), for {yn,r}tnr>1 such that 1/y,r = o (\/nT/ logn> and with

vp, 7 such that v, p =0 (\/log(nT)/n), still using Lemma, 12

1 1 € Vdlogn
Py (it | o — | > Srr Y2 B > af — A | Py (B, > — A
0 (O‘quql B, o o/ T q = Oy > o ( = Qq )

>

< Pg* (‘Bq — OéZ

Q
<p9*<

> (Agr— ag)
Q 2
d— A V1
< ZIP@* (‘Aqyl —alyy| > ( ) €y ogn>

(6 — )\)Qer Viogn
207, " VT

=1
% n,T
£ 20575,Q vnT
< QP+ (|T6 — 7*[loc > vn,1) + 0(1).

We finally obtain for the second term of the right-hand side of (33)

€ Viogn .
Py | o~ | =— — — —rp | < 2QPg- (|| — 7| oo - 1).
e@w% %>fIﬁJQ9W 7l > vn7) + 0(1)

(37)
We conclude the proof by summing the upper bounds obtained in (35) and (37)

. \/logn>
Po | |Yo(q)o (1) = vg1| >€rn < (3Q + 1)Py-
e(h(«;)() Yot Tn T~ (3Q +1)Po-(

|e — T |loo > vn1) +0(1)
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and by noticing that

. \/logn> ( . \/logn>
Py« | |Tg =T| 00 > €rn < Py | 1o ()o () —Vor| > €rnr——n= |-
o (oDl X280} < 50 B (w2l > ernr

O

5.5. Proof of Corollary 3

Denoting by o, v the permutation minimizing the distance between 7 (per-
muted) and 7* for every (n,T) € [1,n] x [1,T], i.e. 057 = argmin, g, |75 —

7*|s0, We apply Theorem 3 to éan,T in order to get

0l
VnT

Po- (min | I, — I'||oo > €rp,r
S Te)

. 1
O e )
= VT
< Q*(3Q + 1)Py- ( min ||, — 7o > vn,T) +o(l) —— 0. O
ceBGq n,T— o0

5.6. Proof of Theorem 5

We use the following lemma, that states that the quantity we optimize in the
VEM algorithm and the log-likelihood are asymptotically equivalent.

Lemma 13. We have the following inequality Py« -a.s.

2 2

T(x(6),0) - < 21og(1/9)

beb n(n —1)

oco |n(n —1)T

We have that for any € > 0, for n and T large enough,

2 2 €rn. T
Py - v _ ,
' (S‘ég a7 MO0 =G 1)TM)’ G )
2log(1/6) _ erpr
< Py« 2 =
=t ( -1 )7
We then conclude by combining this result with Theorem 1. O

5.7. Proof of Corollary 5

This is a direct consequence of Theorem 5 and Lemma 8 applied with the func-
tions Fn7T = Wj()%(), ) O
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5.8. Proof of Theorem 6

This proof is quite similar to that of Theorem 3. We fix some 0 € G and study
the convergence in Pg«-probability of Y,(q)o() to 7y with I' as defined by the
fixed point equation (5), i.e.

S S il (0s)

T—1 ~¢ 5
Z?:l t=1 qu(ﬁg)

Yo(q)ol) =

First, let us denote

Then we can write the quantity at stake as

~ * Aql * ‘Ll_a;ry;l * *(1 1)
Folol) = Vo = == =V = —a———+agvm |5 — = |-
(q)o(l) q B, q B, qlq B, a;

We follow the line of the proof of Theorem 3, using Lemma 14 below instead of
Lemma 12 in order to obtain the result.

Lemma 14. For any € > 0, for any sequence {ry 1 }n1r>1 increasing to infinity
such that rpr =0 (\/nT/ log n) and any n € (0,0), we have for any o € &g

n T-1
! t t+1 * %k
mZZQX(ég)(ZZ =4q, ZZ :l) *O[q’yql

i=1 t=1

> €rp,T

vnT

< 2Py (|| — 7" [loo > vn,1) + 0(1)
with vy, a sequence decreasing to 0 such that v, 7 = o(y/log(nT)/n). O
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Appendix A: Proofs of main results for the finite time case
A.1. Proof of Corollary 2

When the number of time steps is fixed and the connection probabilities vary
over time, the conditional log-likelihood is

T
(0:25T) =% > Xjlogmyez + (1 - X})log(l — 70

t=11<i<j<n

and the likelihood ¢7(f) is defined as in (2) with ¢Z(-) instead of £.(-). The

maximum likelihood estimator is then

0 = (I, 75T = argmax (T (6).
6ceT
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As before, we denote the normalized log-likelihood M, 7(T', 7+T) = 2/(n(n —
1)T)¢T (). We introduce the following limiting quantity

T T

1 1
MT (71 Ty = =Y M((r) == sup M(x, A).
(m) Tf; (") T;:lAeA( )

We follow the lines of the proof of Theorem 1 in order to prove that we have for
any sequence y, — +oo, for all ¢ >0

(T, 7 T)e@T ’ \/ﬁ n—r+00

Pp- < sup  |My (L, 7x"T) =M (2"7)| > 69—”) — 0. (38)
Choosing y,, = r2, we then use Lemma 8 to conclude that, as r2/y/n = o(1) by
assumption, for any € > 0,

Py- ( min |7kl — 7T > ern/n1/4> — 0.
al,...,0Te6q n—oo

In particular, for every t € [1,T], #* converges in Py«-probability to 7*! up to

label switching. Then, let us prove that on the event {ming: _ ,rce, 71T —
ﬂ;}? oo < ernn*1/4} (whose probability converges to 1), for n large enough,
the permutation ¢! minimizing the distance between 7*! and ﬁgt is the same

for every t € [1,T]. We consider n large enough such that

—1/4 : * *

€rpn < min |m;, —7p|/4.

" 1< @ 1Taa = mill/

Denoting by ol , ..., 0L the permutations (depending on n) minimizing |77 —

71';}? lloo, we have that, for any 1 < ¢ # ¢ < T, if some ¢,l € [1,Q] are such
that ¢!, (¢) = o (1), then

~1 oAt oAt
Mot @0t (@) = Mottt ) = Totl (ot 0)

and on the event we consider

st ~t ~t/ wt!
Taq = Tot (@0t (@) T ot o, @) ~

*t ~t At *t
< Imgq = For @t | T 1o yorr @y — Tt

*t|:

‘W;(t; — Ty *t/| =

|7T;Z — Ty

<2er,n Y*< min |1t —7t|/2
-0 1§q¢l§@|qq il/2

implying that ¢ = . This means that on this event, the permutation ¢!, min-

imizing the distance between 7*' and 7!, is the same for every ¢ € [1,77]. We
can conclude that

Py ( min ||727 — 75T > ern/n1/4)
ceSq

=1—Py- ( min ||7?(1,:T — 71'*1:T||Oo < ern/n1/4> — 0. O
0c€Gq

n—oo
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A.2. Proof of Theorem 4

First, let us introduce some notations, as in the proof of Theorem 2. For any
fixed configuration z*%7 € Q,, we define for any configuration 27 and any
parameter 6

Do (M7, T o= {(0,5,t) € i whys # o}

and forany 1 <t < T

D! p (27t = {(z,j) € [1,n]%i < j and 7k, . # ﬂ';*tzﬁ},
’ i“j i %

and as before, we abbreviate to D* (resp. lu))7 the set D,, (25T, 7*1T) (resp.
Dy, (25T, #17T)). We also introduce for any ¢,l,¢’,1’ € [1,Q] the quantities
Faqv, Fa, Gaqr and Gy as before, accordingly to this definition of the set
D, r(zYT 74T, Finally, we introduce for any t € [1,7] and ¢,l,¢',1’ € [1,Q]
the quantities

F;lq'l' = thlq/l/(zt, Z*t)

={(i,7) € [1,n]?i < j and 2} = q,zt» =1,z = q',zjt =10}

Fql = Ft (2") = Ur<g < FL agr =100,7) € [[l,n]}Q;i <jand zf = q,z5 =1}

szlq/l/ = quq/l/(Zt Z*t *t, vt) = (D*t U Dt) lq’l/
={(i,j) e [,n]*i<jand 2f = q. 25 =L,z = ¢, 2" =1
and (ﬂ—ztzt. 7& ’n—zf‘tz’ft or ﬂ—i’?zt. 7& ﬁ—,tz*tz’ft)}
et} (] i K
Gfﬂ = Gzl(zt, 2t 7t = (D*' U DYHN F;l

={(i,j) € [1,n]*i < jand 2z} = ¢, 2} =1
and (Wzng; # W:.L'z’.” or ﬁ’if;zf; # ﬁ’i?‘tz"ft)}'
i3 v 7j 17 KR

Note that we can get an equivalent of Lemma 10 with a similar proof that

gives ghat for any configuration z***7 in Q,,, for any configuration z*7 and any
0 e

~?
’Dn,T(zlzT,ﬂl:Tﬂ > T
In the same way, we have an equivalent of Lemma 11 (with a similar proof) that

gives that for any 2* and z*! two configurations at time ¢ such that ||2* —2*||o =
r(t) and any parameter 7° = (7})1<41<q@, We have

Dy, r(2',7") € Dy, p(2') = {(i,5) € [l x [1,T]; (2, 25) # (2, 2")}
and |D}, (z")| < Qm"(t). (39)

Going back to the proof of Theorem 4, we follow the line of that of Theorem 2,
with a few changes. We get the same decomposition as in equation (26), replacing
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7 by !, T in the definitions of Uy, U, and Us, and replacing the event Q.
by Q, = {||#*T — V7| < v,}. For Uy, the proof does not change. For Us,

we write (instead of (29))

‘U2| < Z Z l)(Xt 7’/T )]lzfzq,zjzl
q

(i,4,t)eD*UD 1<q,l<Q

T 7th *t
ql — Tql t *t
< Z Z (1 —7r*t) Z (XU —7qu)
t=11<q,I<Q ol a7 (ij)eat,
T vt xt
< Tql ~ Tql Xt ot
SHOID LR S SRE
i=11<qi<Q " T Nl g 1 i)ect,
T 7th _ ,n_*t
al al t ot
<2 (1 — 7t > > (Xh-mh)
t=1 1Sq7l§Q ql ql q,’ll ( 7])€quqlll
*t
t
+Z > > (mih = )| Glige |-
17,”) (ql )l qlql|

t=11<q,I<Q ql ql/ g1

For every u > 0, we thus have

Py ({|U2] >u} NQy,)
~t *t

T Tt =
th;]P;* 3 ﬁ S K-> gm0

1<q1<Q ! @7 1<q' 1'<Q (i))EG!, )
T st okt
" ‘ﬂ—ql 7qu wt u 0
+ E ]P)g* E m E (7T /l/—’/T )|quq’l’| >ﬁ n n
t=1 1<q,l<Q " 4t a’ 1<q <@

(40)

We start by dealing with the first term of (40). Notice that on the event Q,,, we
have |7l — 7t | /(mhf (1 = i) < wn/¢? for every g,1 € [1,Q]. As the set G, is

random (because Dt is random), we write for every t € [1,T], using (39),

T

* ﬁ-ttzl 7qu : wt U
]Pe* —*t (XZ_] - ﬂ-q’l’) > — ﬂ Qn
Z H1 — mxt) Z , Z 2T
1<qi<Q Tl a7 1<q' ' <Q (i,§)€GY,

uC?

S BRI M M| Ee

1<¢,I<Q |1<¢",'<Q (4,§)€GY,
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2
< Y R(T| Y Y &em) g

DCDY, 1(2) 1<q,1<Q |1<¢' 1'<Q (i,j)€FL,ND

where now D is a deterministic set. By a union bound and Hoeffding’s inequality,
we have for any D C D}, 1(2)

* t UCQ
XIS ID DD SRR FEs

1<q,1<Q [1<q',I'<Q (i,j)€F!,ND

Z Z . ug?
S Q2 max Pe* (_X,Ltj - 7Tq/tl/) > Py raY)
1<a,<Q - 2T0,Q
1<¢",l'<Q (i,5)€F},ND
¢t 1
< 2Q? il NI I
<20%ew (~yis0n )

This leads to, for the first term of (40),

(%21 - 77:;;)

ot (1 =m5)

T
2Fi(y 2
t=1

1<q,l<Q

Z Z 7r,l, >% NnQy,

1<q',1'<Q (i,5)€Gt,
a ) w241
<Y ¥ (- gaagip)

d ¢t 1
P2 )

t=1 k=1 DCD} ,.(2t);|D|=k

<2Q? i exp | — —u2C4 (27”L7“(t))2"7"(t)+1
= P\ T a2 (t)
< 2Q*T exp (— L) (2nr)?nr

4T?02 Q*nr

For the second term of (40), we get from a union bound and from (39) that

T ~t *t
(Tt 1) U
IRAREDS ﬁ > Wl —mDIGhugrl| > 55 p N
t=1 1<q,l<Q | " at /| 1<q 1'<Q
< 2 d JP) *t G UCZ
> Q Z 1<qual‘}<(Q 0+ Z (ﬂ-q’l’ - >| qlq’l’| > QT’UnQ2
t= 1<q',I'<Q

2 ug®
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Finally, we have the following upper bound for U,

P;. (Q, N {|Us| > rlog(nT)}) < 2Q°T exp (—%) (2nr)?nrtt

¢2 log(nT)) -

2 *
+Q°TP,. <vn > 10°Tn

For the third term Us, denoting G} = Ui<y <Gl = {(i,5) € D* UD; 2t =
q,2;" = 1}, we have

Us = Z Z ((W;f — X%)log [1 _ %1

1<q,l1<Q (4,5,t)e D*UD ql
(ﬁ-t _71-*t)
+ (Xltj - W;f) IOg 1+ qlg*tql ]lzzﬁt:qu‘;t:l
Tl
(%Zz - W:;klt)
+ Z Z ((171’21)10g 1*m
1<q,l<Q (5,5,t)e D*UD ql
(ﬁ't _ﬂ.*t)
+ w;f log [1+ ~a gt/ o gt ﬂz:t=q,z;§t=l
Tl
(ﬁ—tl - W*lt)
- Z <1Og 14— _—d”
t=11<q,I<Q ql

(g1 — o) %
a (

i,J)EG

1 (%zz - W;zt)
e
ql

(g — mql)
+milog |1 — —2—2=| ],
d (1-— wat)
Then, we have on the event ), and for n large enough such that |(7vrél —

mat)/matl < 1/2 and (7}, — 7)) /(1 — mif)| < 1/2 for every ¢ and [, using
the fact that |log(1l + x)| < 2|x| for z € [-1/2,1/2],

T T
|U3\SZ4%" ol Yy - +Z4%" S G
t=1 t=1

1<q,1<Q |(4,5)€G 1<q,l<Q

T
Y Y |c;;(<1—w;;>1og

t=11<q,1<Q

Then, for every u > 0,

T
* * * 'LLC
Py (N {|Us| >u}) < Y B | > Soo(xh-mh| >

t=1

S8v, T
1<q,1<Q |(i,)€Qz} o
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T
\ ug
Y P (v Y |G >gr | (41)
t=1

1<ql<@Q

For the first term of (41), using Hoeffding’s inequality as before,

ZPE* Z Z (X§; —mi))| > u¢/(8v,T)

t=1 q,l (i,j)EG;t
T 2nr(t)
<2 > E (X X (Xh-mh]>u¢/(EuT)
t=1 k=1 DCD! ,.(z*);|D|=k a.l |(i,)EFND
2,2
2 u=¢ 2nr+1
< 2Q°T exp <82T2Q4v%n74> (2nr) ,

and for the second term of (41),

ug
E P | vn g < TP | vn .
o | v = ! > =0 (U ~ 16an>

Finally, we have the following upper bound for Us

¢2(1 T))2 nr
Y
Clog(nT)
16Tn )

P5. (2, N {|U3| > rlog(nT)}) < 2Q*T exp (—
+ TP} (vn >

Now we choose the sequence v, such that v, = o(y/logn/n) which is sufficient
to imply that the quantities

Py (v > (*log(nT)/(4Q*Tn)) and Pj. (v, > (log(nT)/(16Tn))
vanish as n increases and we gather the three upper bounds. For large enough

values of n and with Cy, Cs, Cs, Cy and k positive constants only depending
on @, ¢, K* and T, we then have

Py ({Ur + Uz = Uz > —log(1/(eyn)) — 3rlog(nT)} N y)

< exp | og(1/ () + rog(nT)) 5 exp | nr OB

r¢*(log(nT))?
C4éf§gu2i) ) (Qnr)Qnr+1

rC2(log(nT))?
22;(2)2(%7212 ) (QHT)QMH

+2Q°T exp (—

+2Q°T exp (—
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< exp [—(6 — n)*Cinr + Calog(nT)r + Cylog(1/(eyn))]
(log(nT))%] '

2
nvy,

+ K exp {5nr log(nT) — Cs

Then, introducing

un = exp [—(6 — n)>Cin + Calog(nT) + Cylog(1/(eyy))]
(log(nT))

n

W, = exp |:03 + 5n log(nT)} ,
we conclude as in the proof of Theorem 2, noticing that nT'u,r (resp. nTwyr)
converges to 0 as n increases as long as log(1/y,) = o(n) (resp. as long as

v, = o(y/log(n)/n)). O

A.3. Proof of Corollary 6

As in the proof of Theorem 5, using the convergence in Equation (38) and
Lemma 13, we obtain for any € > 0

2

mj(fd@),e) _ M (1T

Py~ (sup
€O

We then conclude by using Lemma 8 applied with F;, 7 = n(n%l)Tj()z(), 9. O

Appendix B: Proofs of technical lemmas
B.1. Proof of Lemma 1

As in the proof of Lemma E.2 from Celisse, Daudin and Pierre (2012), we
use the method of Lagrange multipliers to find the fixed-point equation of
the critical point. Recall that § = (I',7) and let us denote the likelihood
L(T,7r) == expl(f) = Pp(X 1) and the conditional likelihood L.(z%T,7) =
Po(X 1T | Z1T = 21'T). Recall the definition of Ny (2%7T) in (1) and that

n
1.7
Po(Z'7T = 21T) = H %JI\l’qz(z )Ha%.
1<q,1<Q i=1

We compute the derivative of the Lagrangian with respect to each parameter ;.

9 Q Q
qu lL(Faﬁ) + Z Am (I;’Ynlk - 1)

m=1

0 (Z LC(ZLT,TF)PQ(ZLT _ Zl:T)) + Aq

3%1 L1T

) N 1:T ) )
_ ZLC(ZLT,W) ql(z )Pg(zl'T _ Zl.T) +)\q

LLT Yal
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T-1 n
1 . . .
(RS e = )
i=1
=1

oy
|

PG(Xl:T7ZZ?5 =gq, Zz‘tH = [) + )\quql> .

At the critical point § = (¥, %), we obtain that for each (¢,1) € [1,Q]? we have
-1 n
Ja o< > P(XHT, 20 = q, 2T = 1)
t=1 i=1
where oc means ‘proportional to’. The constraint ), yq = 1 gives the normal-

izing term and we obtain

L S e Py(X T 2 =g, 2 =)
T SIS R (X 2 =)
T-1 Z;LZIP (Zt _ q,Zt+1 l |X1 T)

t=1
T—1
t=1 Zi:l ]P)é(Zz‘t =q| X":T)

B.2. Proof of Lemma 2

We can write the quantity to optimize

T (x,0) = Eq, [logPe(X ", Z"T)] + H(Qy)
=Eq, [logIP’g(XlzT ‘ leT)] + Eq, [logIPﬂg(Zl’T)] — Eq, [logQX(leT)]

T
= Eq, ZZXitj logﬂzfzjt. +(1- Xitj) log(1 — Wzgz;)

t=1 i<j
n T-1
+ Eq, Zlogazl —I—ZZ]ogfyztzH_l
- tan 1
— Eq, Zlog(@x +ZZlog(@X (Zi zh
i=1 i=1 t=1
= ZZZ [X{;logmg + (1 — X};) log(1 — mg1)]
t=11i<j ¢,
n Q
+ZZ 1 1ogaq+ZZqullog%l—ZZ log
i=1 g=1 i=1 ¢q,l t=1 i=1 g=1
n T-1
=33 ok log (42)
i=1 t=1 gq,l

Using this expression, we can obtain directly the expected fixed-point equation
for the variational estimator of the transition probability from ¢ to I. O
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B.3. Proof of Lemma 3

We rely on the notation introduced in the proof of Theorem 1. For any ¢ € [1,T],
using classical dependency rules in directed acyclic graphs and the expression (9)
of 2!, we write

logPp(Xt | X171 = 10gZ]P’9(Xt | Zt = 2DPy(Zt = 21 | X1

Zt
<log |Py(X'| 2t = Z]P’g b= gt X
=logPs(X" | 2" = 2")

and thus
logPe (X | X171 —logPy(X' | ZF = 2%) < 0. (43)

Using Bayes’ rule, we have
logPp( X' | X1 = logPy(X*, Z8 | XH71) —logPe(Z" | X1).

Taking the expectation of this quantity with respect to any distribution Q on
7', we obtain

log Py(X" | X' 1) =Eq [logPe(X", Z' | X" 1]+ KL (Q; Pe(Z" | X)) +H(Q)
>Eq [logPy(X", 2" | X 1] + H(Q)
>Eq [logPe(X" | Z")] +Eqg [logPe(Z" | X7 1)] + H(Q),
where KL (Q; Py(Z" | X*)) = Eq [log Q(Z") — logPe(Z" | X**)] is a Kullback-
Leibler divergence (thus non negative) and H(Q) = —Eg [log Q(Z")] is the en-
tropy of Q.
Taking now Q as the Dirac distribution located on 2!, we have H(Q) = 0 and
logPo(X' | X71) > logPy(X' | Z8 = 2%) + logPp(ZF = 2* | X™171).  (44)
Now, combining Inequalities (43) and (44), we obtain

logPe(Z% = 2% | X171 < logPe(X! | X171) —logPp(X' | Z¢ = 2%) <0,

giving the expected result. O

B.4. Proof of Lemma /4

To prove this lemma, we first establish a control of the expectation of the random
variable appearing in the statement.
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Lemma 15. We have the following inequality for z*T and z%T any configu-
rations and any 6 € ©

T
2
Eg+ sup _ (XL — 7 )
(21T eI x (¢ 1—¢e? [ = 1T ; ; { !
% IOg . ;T J ZI.T _ Z*l T
zfz§
2
<4 —————A
“\nn-1T

with A = 2log[(1 — ¢)/(].

We now turn to the proof of Lemma 4. Let us first recall Talagrand’s inequal-
ity (see for e.g. Massart, 2007, page 170, Equation (5.50)).

Theorem (Talagrand’s inequality). Let {Y};}1<icj<ni<i<r denote indepen-
dent and centered random variables. Define

Vg = {g h<icjcna<i<r €G, Saxl(g) = > Z 1940

1<i<j<n t=1

where G € R™M"=UT/2 Let ys further assume that there exist b> 0 and 02 > 0

such that |Yig;| < b for every (i,5,t) € [1,n]* x [1,T] and any g € G and
SUDgeg D icj 2y Var(y; 9t) < a%. Then, for every B > 0 and z > 0, for any
finite set {g1,...,ganmn-vyr/2} of elements of G, we have

P max Sn.r(9)

9€{g1s-- 1 Gon(n—1)T/2 }
>E max Spr(g)| 1+ B) + V2022 +b(B ! +3
g6{917---,$]2n(n71)T/2}

<e " (45)

First, notice that we have argmin_ci.;_¢log(w/(1 — @)) = ¢ and also

argmax ¢ ¢ 1—¢ log(@/(1 — @)) =1 — ( so that we have

P5. sup
(21T m)e n — 1

11.QI"T x[¢.1-¢1R?

ot .
" * 2,]
S P@* Héaéx n(n — 1 E E szﬁtzjt) log (71 _ wf > > €

{¢c.1—¢yn(n—1T/2 t=1 i<j

E E * i%j
sztz;_«t)log (m) > €
i%j

t=1 i<j
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with @ = {@} ;}1<icj<ni<i<r. The set {(,1 — ¢yn=UT/2 is finite, of size
2(n=1T/2 Tt us now apply Talagrand’s inequality t(Z) our setup. Note that for
every (i,4,t) € [1,n]? x [1,T], for any 7 € [¢,1 — (]9, we have

(X = 7o) log |
L= T ) log [ ———L—
Y FiE 1- Tyt z;‘

almost surely thanks to Assumption 3, and with A as defined in Lemma 15.
Combining this result with Lemma 15 and writing

<log[(1-¢)/¢l= =

Q=(1+B)AV/n(n—1)T/2+ \/n(n — D)T(A/2)22 1 + (1/8 +1/3)(A/2) 1,

we have for any € > 0, for any 8 > 0, applying Talagrand’s inequality with
b=A/2 and 0% = n(n — 1)T/2(A/2)?,

T

2 byt
Py sup — (XL =7t ) log | ——2— || > ¢
(21T 1)e nin—1)T ;; : Zi % 1—7‘(sz§

[L.QI"T x[¢,1 - ¢1@7

wt .
< ** - *t *t LY
S = 3R mg(l_ﬁ )>

{¢,1—¢yn(n—1T/2 t=1 i<j

< ]P)Z* €< rgzéx ( Z Z { *t ;«t)

{¢,1—¢yn(n—1)T/2 t=1 i<j

+ IPj. max T Z Z { **tzjf,)

{¢,1—¢yn(n—1T/2 t=1 i<y

1 i _2 9
7108 l—wj; ” n(n—1)T

2
<Py | ——=0 2e T < 1 _ 2¢ ~ T
= Iy (n(n—l)T >€>+ € < lecoo/(nn— 1)) + 2€

B.5. Proof of Lemma 5

For any n € (0,6), Hoeffding’s inequality (see for example Theorem 2.8 from
Boucheron, Lugosi and Massart, 2013) gives that

Py <\ﬁ eLTLvg e 1.l Y2 5 o, —n)
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1 n
=1-P <3t € [1,7],3q € [1,QJ; - z;llzzzq <oy — 77)
1=

Q
>1- ZZexp (727]271) >1—QTexp (7277271) ,

q=1t=1

which concludes the proof. O

B.6. Proof of Lemma 6

First notice that argmax 4 4 M(m, A) may not be unique, it is in fact a closed
subset of A. However, we choose a fixed element A, in this subset in the follow-
ing. Letting € > 0 and n € (0, §) and using Lemma 5, we can split the probability
as

T
1 _ _
Py« | = E sup ’M(mAfT) — M(W,Aﬂ)’ > )
(T t=1 m€(¢,1-¢]** 6v/n

T

1 _ — ET.

<P, ({— S aup  [Mr AL - M, Ay)| > 8 } a an*))
T = rerca-qe? Gv/n

+ QT exp (—2772n) ,

recalling that

0, (6) = {T € [LQI vt e LT vg € 1) M) > o n}-

We thus want to bound the quantity
T
Py~ (Tl Z sup  |M(m, AL) — M(m, Aq)| > ern/(G\/ﬁ)>
t=1 me[¢,1-¢] 9

on the event {Z*T € Q, (%)}, which means bounding

T
1 - - €r
Py | — M(r, At) — M(r, A, n
0 (T;_Me[s?ipz\ (m, AL) — M(r, Ay)| > NG

2 e an*)) |

Let us denote for any matrix P = (P;j)1<i<n,i<j<m Of size m x n the norm
|Plloc = max(; jyeqi,m]x[1,n] | Pij]- Then note that, for any matrix A with coef-

ficients in [0, 1], for any m € [(,1 — C]QQ, using Assumption 2 and 3,
(M(ﬂ', A) —M(, fvl))

< Za;a?‘2|dqq/d”/ —dqq/dll/| sup |7T;l IOg’]Tq/l/ +(1—7r;l)log(1—7rq/l/)|
a,! q Tel¢,1 - ¢]Q?
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<2(1-0)*(1—¢)log(1/¢) Z Z |Gqq @ — Ggqraur|
gl ¢l
<2(1-8)%(1 = () log(1/Q)Q"2]| A ~ Arloc = ¢ A~ Arl oo
with ¢ = 4(1 — 6)2(1 — ¢) log(1/¢)Q*. On the event £,,(0*) we then have

T
1 - - €r
Po- | — sup | (m, AL) —M(W,AW” > 2
( = 1#6(1* ¢Je? Gy/n

- - er
=1-—Py- ( ’M(W,Aﬁr) —M(’/T,Aﬂ—)| <=z )
S reicr - " 6y

_ _ €r
<1—Pyg | VEt€[1,T], sup Mi(7, Az ) = M(m, A7) < —~
mel¢,1-¢@? ( ) Gvn
< 1—Pp- (v,f c [[LT]]’VT( c [(:, 1-— C]Qz, (M(?T,Aw) _M(T“A?n')) < 66\77%>

S 1—1[1)0* <Vt€ Hl,T]],V’]TE [C’l—C]Q273}i c At(Zl:T);

(M(w, A,) —M(n, A)) < 66\7%)

< 1—Pp- <Vte[[1,T]],v7re[g,1<]Q JA € AYZYTY A - Arloo < 62%).

We then show that for any € > 0, for every ¢ € [1,7] and every 7 € [, 1~ C]Q2
for any n such that n > 6¢y/n/[er, (8 — n)], there exists some A € A (ZVT)
such that |4 — A;|ee < €ern/(6¢y/n), ie. such that for every g,1, g — Gqi| <
ern/(6cy/n). For every 1 < ¢ < @, we can construct /ulq. = (Gq1,.-.,0q0Q) a8
follows. On the event ,(6%), for every ¢ € [1,Q], for any n such that n >
6cy/n/lern (6 —n)], we have Ny(Z')er, /(6¢y/n) > 1 for every ¢ € [1,T]. We then
construct (7g)1<1<q as follows and take dg, = 4 /Ny(Z1T) for every | € [1,Q].

e for [ = 1 choose 741 as the closest integer to N,(Z')as . It is in the
interval (Ny(Z")ag — 1, Ny(Z')a, + 1) so we have |ag1 — g1 /Ny(ZY)| <
1/N,(Z") < er,,/(6¢y/n). Moreover, note that 0 < ;1 < Ny(Z"') because
0< Nq(Zt)aql < Nq(Zt)-

e Repeat for [ =2,...,Q

—if Zl, L (Ny(Z)agr — itqr) > 0 choose i, as the closest bigger (or
equal) integer to Ny (Z")ay.

— if Zz' 1( (ZHag — figr) < 0 choose 1y as the closest smaller (or
equal) integer to N, (Z")ay.

As before, 14 is in the interval (Ny(Z')agu — 1, Ny(Z"aqu + 1) so we

have |dql g /Ng(ZY)| < 1/Ny(Z¥T) < rn/(Gc\/_) Moreover we have
0 < ng < Ny(Z') because 0 < N, (Z")ag < N,(Z'). We also have (by
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induction)

l

Z(Nq(Zt)dql’ - ﬁql’)

I'=1

-1

Z (Nq(Zt)dql’ - hql’) + Nq(Zt)dql — Tgl
'=1

<1

In the end, we have |ElQ:1(Nq(Zt)Equ —Ng)| < 1ie. |[Ng,(Z%) — Zlel gl < 1,
meaning that Zlel g = Ny(Z'), both Ny(Z") and Zlel Ng being integers.
Then, if n > 6¢y/n/[ern(d — n)], there exists A e AY(ZYT) such that ||A —
Arlloo < €rp/(6cy/n). This leads to

T
]. At 1 Grn
Py- (T;M(w,A,,) —M(m, Ar)| > 6ﬁ>

<QT eXP(*2772”) +1- ]1n>60\/ﬁ/[e7'n(6—7])]

which concludes the proof. O

B.7. Proof of Lemma 7

We can upper bound the expectation as follows

Ny(ZHNi(Z1)

(N2 D\ N2 L (NEY
:Ee*_<qT_%>ﬁ+% o1 o
[| NV, (21 Ny(Z1 Ny(Z*

< 4| Eo-

()

We have for any ¢ € [1,Q]

N(Z2]

(35 -]

B 5027] = S8 [t

J
= Zaz + Za,’f = nay +n(n — 1)0422.
i i#]

This implies that

NQ(Zl) * ? Nq(Zl)2 *2 1 * n—1 *2 *2

]E@* (nO[q :Eg* T 7Oéq :ﬁanr n Olq 70[(]
1 * *
:an(l—ozq),
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and identically

N(zYhy L\ N(Z)2) | o o n
Eg+ l(ﬁ—al = Eg- m + o —2n—0él

This leads to

N(ZYYN(Z1Y) 1 n n
Ko« S\ VTN T k% < Za*(1 — a* * *2
0 H n(n—1) | = naq( o) (n—l)Qaq+n—1aq
+a, _n—lal n—lial
< 1 n 1 n n
“V(n-12 n-1 (n—1)2
Vn
<2 46
~Tn—-1 (46)
using the fact that 0 < o <1 for every ¢ € [1,Q]. |

B.8. Proof of Lemma 8

We first consider the case when T" — oo, and 7 is constant over time. We use
the following lemma.

Lemma 16. For any 6 € O, we have for € small enough (precisely 0 < € <
ming <z <@ Maxi<i<q [Ty — ml/2)
i 7y — 7l > € = M(r") — M(r) > 2o
min — — —€”.
Juin Mo — T oo > € T T o €
This gives an upper bound on the probability of interest
TR « . . 26% ,
Py min 17te — T |loo > €x/Un1 | <P+ | M(7™) — M(7) > @6 UnT |-

ce6q
By definition of § = (I', #), we write
M(r*) = F,p(I,7%) + M(7*) — Fo 1

F )
S Fn,T(F7ﬁ-) + M(ﬂ-*) - Fn

(T,
T fa ﬂ-*)v
implying that

M(r*) — M(#) < |Fpp(D,7) — M(fr)] + [M(w*) ~ Fup(D, w*)} .
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We then obtain the following upper bound, that converges to 0 as n and T
increase by assumption,

TR . o . 52
Py- ( min (|7, — 7" |lco > €, /vn,T) < Py- (Fn,T(F,w) - M(#) > @621)”,7“)

ceGq
A 62 9

+ Py« (M(Tl’*) — F,%T(F,ﬂ-*) > @e vn,T>.
When the number of time steps T is fixed and 7 is allowed to vary over time,
the proof is almost the same. Indeed, min,:  ,res, |7ty — 75T oo > €y/tn
means that there exists ¢ € [1,T] such that mingres,, |75 — 7|00 > €/, and
we can apply Lemma 16 to this 7! to obtain that M(7*!) —M(#?) > 2€26%v,, /Q2.
This implies that M7T (7*1'T) — MT(#1T) > 262520, /(TQ?), which allows to
conclude in the same way as before. O

B.9. Proof of Lemma 9

We have

Pé(zl:T — Zl:T | Xl:T)

]P“(ZI:T = 1T | Xl:T)

P(X1T|ZlT 1T) +1 P(ZlT_ZlT)
P(XlTlZlT_ *1T> g]P)(ZlT_Z*lT)

t ot 1_7Ttt
o (1—Xt)log7’J
Tz

log

= log

Il
MH
|M
N
e
~
)
| 5
N

t %t 1—7T t okt
t=11<i<j<n e 2} z]
n le T-1 n Yyt 1
+§10gu’+§ log ——
1 1
i—1 2 =1 =1 Jeptett

We decompose this sum as

Pé(zl:T — Zl:T I Xl:T)
]P)é(Zl:T = *1:T | Xl:T)

I Tr*tzt. L=77
=> > (x4 log —== + (1 — Xj;) log T ————*
T 1=,

log

t=11<i<j<n

3 J T J
n dz.l T—1 n ’yztz'f‘H
+ E log — + E E log ——
i=1 25t t=1 i=1 szZ*tz*Hl
T o *
. Tatat Wz:tz;t, 1-— 7Tzfz’f 1-— Z*tZ;t
+ E E Xi;log ——~ +(1- )log - .
- _ Tt Tpxtpxt — Tt t 1- ﬂ’z*tz*ft
t=1 1§1<]§’ﬂ Zizj i j ziZ]» K J
(47)

In the first sum of the right-hand side of (47), the terms are different from zero
only for triplets (4, 7,t) in D*. Similarly in the last sum, the terms are different
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from zero for triplets (i, j,¢) in D* U D. As a consequence, we obtain

Pé(zl:T — Zl:T | Xl:T)

log
[pé(leT = LT | X1T)
7T*t St . 1 -7 Stat
— E log e E (1 - Xj;)log 71 d
L m* ot ot 1 -7
(¢,5,t)eD* 2 % Zi Zj
n Q1 T-1 n 2ttt
+ E log L + E E log
i=1 ; T T
o o T*
N 1 ’R’tht mr 2t *t (1 Xt )1 1-— 7thzt 1- Z:x’fz;kt
E og — Ay og v
N Ty ¢ Tont et “ =T L= Tt
(i,4,t)€ED*UD zjz; Fi % 2 %) i
We now write the last sum in the right-hand side as
. ’ﬁ'ztzt W:*tzﬂ . 1 —ﬁ' t t 1-— *t ot
E X ].Og *7 i Fi J_+(1—Xij)log - _ Zi %
N T bt 7Tz.*fz’f“ ﬂ-ztzt 1-— Tyt yout
(i,§,t)eD*UD S B i%j LN
o * *
. szzj szz; sztz;t
= E XZ-]- log| 1+ —7F——] +log ——
o Tt ot Trz?*tz*ft
(ij)€D*UD "% L
¢ Motz = W:;:zy 1- W;;tz;t
+(17Xij) log|1—- —+——] +log—7—"—
2% i %j

Distinguishing between the cases where ij =1 and ij = 0, we obtain

~ * 9 _ *
t Trzfzg ﬂ-zf"z;“ ¢ 1- T‘-zfz; 1 ﬂ-z;‘tz;ft
> X!log ——= 5 4 (1 - X.)log :
b - - i 1—7* 1— 7
9 Tyt Tpxtyxt T ¢ T ywt yxt
(¢,3,t)eD*UD %) v i%j v

= > log o i L
(i,4,t)eD*UD ( -

— log 1+ Lo * S
> T

T wt %
(i.d.t)€D*UD ris7t)
In the end, we decompose
Pé(zl:T — Zl:T ‘ Xl:T)
log T _ 1T | Y17
Py(ZET = BT | X1T)
7r*t St L—77 .
= Z X3 log 55 +(1 - X!)log ——
*t ¥t J 1— 7%
(i,,t)€D* Zj i 7

~ T-1 n

+Zn:10g i +ZZlog s i
i=1 ',

t+1
t=1 i=1 t*+
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+ Z log

(i,j,t)eD*UD

- Z log

(i,5,t)€D*UD

(’ﬁ—zjﬁtz;(t — W::tz;t)(X'fj - ,/T:;‘tz;f‘)‘|
)

* *
ﬂ-z*tz*t(l - Trz*“z*t)
i %) i %5

which gives the result.

B.10. Proof of Lemma 10
We first notice that

|Dn,T(21:T, 71')’ _

sz, € [1,n]* x [1,T]; 7, t;éﬂ'zi*tz;_t}‘
XT:HZJ )€ [1,n]?, z#wz*tz*t}’.

t=1

N~ N

For every t € [1,T], we can apply Proposition B.4. from Celisse, Daudin and
Pierre (2012), as their Assumption (A4) is required to hold only for z*! (see
proof) and is valid on ,(6) with the constant § — n. We obtain

(6 —n)°

‘{(27.]) € [[17nﬂ2;77zfz; 7& ﬂ-zftz;“}‘ > 2 nr(t)

We conclude by noticing that Zthl r(t)=r.

B.11. Proof of Lemma 11

The inclusion of the sets is straightforward. Now we have

(i,7,t) € [1,n]* x [1, T]; e t7é7r =t ft}

() € Tl % I T (42 # (54,50}
(i,3,8) € [L 2 x 1T 24 # 2} + [{(ig.0) € [l x [0, T 24 # 237

IN

{
<
<

IN

IN

T
2 Z nr(t < 2nr.
t=1

B.12. Proof of Lemma 12

First, let us decompose the quantity at stake as follows

T-1 n
1 . Vdlogn
Py« | | ————— P, (Z!=gq, ZZHl =1| XY —aivyy| > €Tn.T
(2o ) ein| > e
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T—-1 n

Zl T)
< . t_ t+1_ 1:T (
_]P’9< T—1) ZZPGU (Zi=4q,Z; Xt — 7(T71)
t=1 i=1
V1 Ny (Z5T V1
> Srp 2L L, <"ﬂ() — iy > rar Og”) :
2 vnT n(T— 1) 2 vnT
(48)

and upper bound the two terms in the right-hand side of (48). For the first one
we will follow the proof of Theorem 3.9 from Celisse, Daudin and Pierre (2012).
Let 257 denote a fixed configuration. We work on the set {Z17 = 21T} and
write

Vl(zl:T)
T—1 n .
1 . N, l(Zl'T)
— Z]P)A (Z?:qZ-t+1:l|X1‘T)— q
[ 7 E _
n(T'—1) — P n(T —1)
T—1 n .
1 t_ 141 1:T qu(zl'T)
< am D NP (Zl=4q.2 XYY Doy @)~ w1
t=1 i=1
1 T—1 n
. t t+1 1:T
+ T 1) P (ZE=4q.Z XYY Loty 0y
t=1 i=1
1 T—1 n
t ooty _ ot t+1 1:T
< n(T — 1) (1 _Péa ((Zi7Zi )=(z27 )| X )) (zt,2 1 =(q,0)
t=1 i=1
1 T—1 n
t+1 t+1 1:T
+ n(T — 1) Péa ((Zf)ZZ_"‘ ) a (th7 z+ ) |X )]l(zf,z:+1)7é(q7l)
t=1 i=1
<P (ZVT £ 2N XN
Then
VAl
Py- (vl(le) > Srar Og”)
2 vnT

= Ey- [Pg* (Vl(ZLT) > frn,T

€ Vlogn .
<Z{P9*(é ZlT#Z1T|X1T) Zrn,T g ‘ZlT 1.T)

21:T

% ]P’e* (ZI:T —_ ZI:T) }

_ . Péo (Zl:T 7& Zl:T | Xl:T) € ’—logn Z1 T 1;T
= Z o P, (ZLT = 1T | X1T) > Zr"»T ’

21:T

% ]P)G* (ZI:T _ Zl:T) }
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< QT exp(—2n°n) + Py- (

|7?r<7 - 7T*Hoo > Un,T)

4/nT
CnT —(6 —n)*C Cylog(nT) 4 Cylog [ —————
+ Cnlexp ( 77) 1n+Ca Og(n )+ 4 10g <€Tn’T\/m>
1 )2
+ CnT exp —C’g(()g(ig)) + 3nlog(nT) (49)
n,T

where the last inequality comes from Theorem 2 where the bound is uniform
with respect to 257,
Now, for the second term of (48), we use the following lemma.

Lemma 17. There exist c1,co > 0 such that for any € > 0, for any sequence
{Tn,T}n,TZh we have, as long as EranM/(Qa*fy*l\/_) 1

€ Viogn 9 9
Py- —ry | < — . 0
9 ( > 27° T W ) <e¢ exp( Co€ ’rn,T) (50)
We then combine the two upper bounds obtained in (49) and (50) in order
to conclude, the assumption er,, 7/log n/(2a*7*l vnT) < 1 being satisfied for

n and T large enough because r,, v = o(+/nT'/logn). We obtain the expected
result, using the fact that log(T") = o(n), that r,, 1 increases to infinity and that

Un,T = 0 (\/W/n),

ql(ZLT) * %
(T —1) Yl

T—1 n

Py- ( Ay SN P (2 =q. 2" =11 X)) —aivy >eyn,T>
t=1 i=1

< Py« (J|te — 7| co > Vn,1) + 0(1). O

B.13. Proof of Lemma 13

We have the following inequalities by definition of 2Y7, J(x,#) and x(6) and
because the Kullback-Leibler divergence is non-negative

J(EHT,0) < T(x(0),0) < £(0) < Le(0,217), (51)

with J (247, 0) = £(0) — KL(6;1.m,Py(-|X1T)). We write this Kullback-Leibler

divergence (from Py(-|X'T) to Qy = dz1r, with x = (7,7) such that 7/, = 2,
st opt+l

and nj,, = 2f 2;"") as follows

KL(651.m,Po(-| X)) = — log Py (17| X 1T,
We then obtain

TE,0) = 1ogo(X"T) +ogPo(ETXMT) = (X JET) + log o()

'AlT —l—Zloga 1—|—ZZlog7t st

i=1 t=2
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Combined with (51), this leads to the following inequality for any parameter
0ecO

T (R(0),0) = £0)] < |T (27, 0) — £.(0,2"7T)|
n n T
< - Zlogaég - ZZIOgVé?_Ié? < nTlog(1/4).
i=1 i=1 t=2 v
We can conclude that
2 . 2 21log(1/0)
_ 9),0) - ——0(0)| < —=L—2. O
Slelg n(n—l)Tj(X( ),9) n(in— 1T ( )‘ - n-1

B.14. Proof of Lemma 14

This proof is quite similar to that of Lemma 12. For any € > 0, let us write

1 Viogn
Po- | |77 o (ZE=q, 2 =1) — ot | > e,
6 ( Tl(T — 1) ; s QX(QU)( % q, 4; ) aq’yql €Tn, T \/ﬁ
1 U Ng(Z¥Ty| e  logn
<Py | | ——— o (Zt=q, 7T =) - 24 >Sr
>~ 19 (‘ TL(T — 1) XZ: < QX(G(,)( i 4q, 4; ) TL(T — 1) 2 , T \/n_T

=1
+ Py (‘qu(ZL ) art| s S Tvlogn>
n(T a'q 2" /nT

and upper bound the two probabilities in the right-hand side of this inequality.
We already proved in Lemma 12 that the second term converges to 0 thanks to
the assumptions on the sequence {7, 7}, r>1. For the first term, let 21T denote
a fixed configuration. Let us work on the set {Z1T = 21T} and use the same
method as in the proof of Lemma 12,

n T-1
1
(T —1) YD Qe Z =0z =)
=1 t=1
1 n T-1
Ta(l-1) D0 Qi Zi= a2 =00, ey
i=1 t=1
1 n T-1
_ t _ t+1 _
TGy z; Zl Qo) (Zi =0 27 =Dy oty gy
i=1 t=
leading to
1 S t t+1 Ng(25T) T 4, 1:T
- Z = Z :l — < 2 S0 Z : : .
n(T —1) ;;Qx(%)( =D ) n(T—1)| " Qi) ( #2)

Then we obtain

n T-1 .
1 Nu(Z5T)| e Viogn
Poe | |———— o (Zt=q zit =) - 22 s 2y
' <”<T1);;QW”’( AT =gy | g
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<ZP9*< X ZlT# LT 5 ZrnT\/logn ’21T :T) Pe*(leTzzl:T)-

21T

For each 2T, we use the following lemma.

Lemma 18. Denoting P,(-) = IP’(;U(ZLT = | X*T), we have the following

inequality for any configuration z%7

0, (7 = Bo ()] < /= 08 (B (1)),

This gives us

. ) Vdiogn . .
Po. (Q. - (ZVT £ 1Ty s &, ’ZLT _ LT
o (QX(Oa)( Fz277)> 4TU,T JnT z

. . ~ . . Toe n .
= Fo- (‘@m)(ZLT # 21T = By (217 # 217)| > gT s ] ZMT = LT)

~ . . V1 . .
+]P)9* <]PU(Z1'T 7§ Zl-T) > Ern,T ogn } ZI.T — Zl.T)

8
1 ~ \/l
< Py- \/—— log (Pg(zliT)> > Ern T ogn ‘ BT = LT
2 8
. . . V1 . .
+ Py (]PU(ZLT #21T) > grn,T—Og” } 77 = zl'T)
- e2r2 logn
< Py Po- Zl:T 1.T 1— n, T ‘ Zl:T _ 1.7
<P, ( (247 4 A7) > 1 —exp (- 2L 2ET .
~ ) . V1 . .
+ Py (Pg(zl-T #21T) > Sy p B | 2T zl-T) . (52)
8 nT
Noticing that the assumptions on {ry, 7}, r>1 imply that
e“r: nlogn 1
—log [1 — exp ( ?i2+Tg> =o(n) and —log [rn,T%] = o(n),

we can conclude by applying the result of Theorem 2 with the estimator 0,
(T'y, 7o) for both terms of the right-hand side of (52).

o

B.15. Proof of Lemma 15

The proof follows the lines of the proof of Lemma C.3. from Celisse, Daudin
and Pierre (2012). Let Ej.[] denote the expectation given Z'T = z*1:7T je.
Ej.[] = Eg-[- | Z¥T = 2*'T]. Introducing a ghost sample {X }ij¢ that is



Consistency of the ML and variational estimators in a dynamic SBM 4219

independent of {X{;}; j; and has the same distribution, we write

E=FE; S * )lo e
= ory n(n—1)T T Meptay) 08 t
(2t ,71')6 t=1 z<] Zj
11,0177 x[¢,1-¢1Q?

2
= E}. —
0 (Zf;l};)e n(n — 1)T

11,Q17T x[¢,1-¢] Q2

. ot ot
x E. ZZ(Xt X};) log # { XY

< Ej. < K. sup _
= o (=17 1) n(in— 1T
[1.QInT x[¢.1-¢]Q?

T - Tt t
t t Zi%j t
X E E (Xij - Xij)log (71 — )‘ ‘ {Xij}i,j,t
t=1i<j 2%

<EZ, sup log —_— ,

0*,X,X (1T m)e ;; 1—7 2t
1,017 x[¢.1-¢)@

where Ef. ¢ [] denotes the expectation with respect to {X, X} = {X. i Xt it

under the true parameter 6* and given Z'T = 2*'T_ At this point, we notice

that, if {,}; ;¢ = € are n°T independent Rademacher variables, then the ran-
dom variables

T Tt t
€ ZZGEJ'(X% - )log <L>

t=1 i<j
Tt 2t
and E E i) log | ————
Lt
t=11i<j i %

follow the same distribution, which implies that

E* . su Z Z € ) lo 771’254

0+, X, X mp U & 1— ¢
(z- ,TF)E 5 t=1 i<j J
ﬂl,QﬂnTx[c,l—dQ
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=E sup E E ;) log ety
0=, X, X _ _
(z1T,m)e R n(n 1 t=1 i<j 1 Metz
11,177 x[¢,1-¢1Q

As a consequence, we have

T

2 % Tatat

E<E! S, ) LOxt ) o |

0*,X,X (zlsz;n;)r)e n(n—1)T € ZZEU( ij 2]) og T
Hva]]”TX[,C,lfc]Q2 t=1 i<j et

7Tzfz;
< Ej. su € -lo %
<E P T ZZU 3 E——
1%

(z4T,m)e t=1 i<j
[1.Q1"7T x[¢,1-¢]Q?
T
2 ~ ﬂ-zfzt.
+ Ej- sup ﬁEﬁ g g €;; X}, log 17]
(=T m)e TL(TL— ) t=1 i<y _Trzfz§

11.QI"7T x[¢,1-¢]Q?

< 2E0* sup m Z Z €L] log ﬁ
i %

(Zl:T,TF)E
11.QI"7T x[¢,1-¢]Q?

Then using Jensen’s inequality, Assumption 3 and the bound Var, (eﬁintj) <1
we get

[ 2
2 Tatzt
E < 2E;. —— | E, X log | ———
- 0 (21871"1’17)()6 n(n— 1)T ;;6 Og( sz’z;:)
110177 x[¢,1-¢)Q?
< 2E;. sup 2 Var, Z Z €;;X{;log &
=~ (zl:T,ﬂ')G TL(TL — 1)T =1 i<y - ’/TZ:Z;
L[1.Q1nT x[¢,1-¢)@7
[ 2 — )T 2
< 2Ej. | —= sup log T n(n—1) A,
n(n— 1T rcici-q 1—m 2 n(n—1)T
where A = 2log[(1 — ¢)/(], concluding the proof. O

B.16. Proof of Lemma 16

We assume that mingeg,, |70 — 7*||oc > €. Without loss of generality, assume
that the permutation (or one of the permutations) minimizing this distance is
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the identity. Let us write, using the fact that I the identity matrix of size
@ maximizes in A (over the set of @ x @ stochastic matrices) the quantity
M(7*, A) (see the proof of Theorem 3.6 in Celisse, Daudin and Pierre (2012))
and denoting (Ggq)q,qe1,] the coefficients of A, (thus depending on ),

*

. T y 1—7
M(7) Za o Z Qqq Qi |:7qu log —= + (1 — 7};) log ——

/ l’ ’]Tq/l/ ]_ —7Tq/l/

_§ :0‘ o E :aqq’all’ Tt Tq'1’)

/l/

denoting K(p1,p2) = p1log(p1/p2) + (1 — p1)log[(1 — p1)/(1 — p2)] > O the
Kullback-Leibler divergence from a Bernoulli distribution with parameter ps to
a Bernoulli distribution with parameter p;. For every ¢, there exists ¢ = f(q)
such that @,y > 1/Q because A, is a stochastic matrix. Using Assumption 2,
we obtain

M(7*) — M(7 Qz ZK (Tq1s T (@) 1) Qz Z — T )

thanks to a result on Kullback-Leibler divergence for Bernoulli distributions (see
for instance Bubeck (2010), Chapter 10, Section 2, Lemma 10.3). We then want
to show that there exist ¢, such that |7r — Teq)f)] > €

e If f is a permutation, the assumption min,eg,, |7, — 7|/ > € gives the
expected result.

e If f is not a permutation, it is not injective and there exist ¢; # g2 such
that f(q1) = f(g2). Thanks to Assumption 1, take Iy € [1, Q] such that
|7TQ1l0 - 7qulol = IMaX;e[1,Q] |7TQ1l - qul| > 0. Then

Taste = T @) £00) |+ 1T a2) £10) = Tate]
2 |Tg10 = T (@) £o) + T (a2 f0) ~ Taste| = 1Tgit0 = Taate| >0

leading to either
Tauto = M@0 s0)] 2 gyt = Tap1l/2 > €
or |7TQ210 f(qz)f(lo)l = |7T;1l0 - 7T:zkzlol/? > €,
using the fact that e < mini<g2y <@ maxi<i<q |7y — 77l /2.

So, as there exist g, [ such that |77 — 7 q)r@)| > €, we have

B.17. Proof of Lemma 17

For any node i € [1,n], the Markov chain {Z!};>; is geometrically ergodic
because its transition matrix I' satisfies Doeblin’s condition thanks to Assump-
tion 2. For any z € [1,Q], let us denote ¢, the Dirac mass at z. There exists a
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positive constant A and some r € (0,1) such that Vq € [1,Q] and Vt > 1, we
have
1841 = atf| 7, < AF,

where || - |7y is the total variation norm. This leads to
1 1
|6, — ozHTV =3 || 6,1 — ozH1 =3 Z IT*(q,1) — oy| < Ar'.
1e[1,Q]

We now consider the Markov chain {Z' = (Z},...,Z!)}i>1 of the n nodes
evolving through time. Note that it is irreducible and aperiodic. Moreover, its
transition matrix is given by P, = I'®", the n-th Kronecker power of I' and its
stationary distribution is a®™. For any z = (z1,...,2,) € [1,Q]", let us denote
Un,x = ®F_16,,. For every t > 1, we can decompose

P = 0y, = | £02) (rony = 0

(e

(6zbrt) Xn

D

(z1-2n) el Q)"

TV

® (6.,T%) —a®"

i=1

TV TV

1

n n
HFt(zi,zl’») - Hozz; .
i=1

=1

N = N

‘We use

n n n n
HFt(zi,z:—) — HO‘ZQ = Z H o T (21, 7)) — ] H (b2 T) 21
i=1 i=1 i=1 k=i+1

So, reorganizing the terms, we write

H“"»ZPvtz - O‘®n||TV

1 n i—1 n
< 5 Z Z H aZ; |Ft(zi7 Z;) — Oy H (:LLZIC]‘—‘t)z,/C
(2] .20 )€[1,Q] " i=1 j=1 k=i+1
1 n
< 522@4 .. .Zazéilz ’Ft(zi, zi) — ZF“ Zn, 20)
=1 z] zi_q z
1 n
< 522 IT(2,2]) — a21<| < nArt.
i=1 z;

Let us recall the definition of an e-mixing time. For any Markov transition matrix
M over the set X with stationary distribution «, for any € > 0, the e-mixing
time of the Markov chain is defined as

7(€) = min{t > 1;max |0, M* — a7y < e}
zeX
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Denoting by 7,(€) the e-mixing time of the Markov chain {Z'};>1, we thus

obtain
log(nA/e)

log(1/r) ~

Now, we introduce a new Markov chain Y = {Y*};>;, that is defined by

Ta(€) <

Yi= (2,2 vit>1.

Notice that it is irreducible and aperiodic, with stationary distribution p defined
for every state (¢%,...,q%, ¢/t ..., ¢itY) by

p(qt q:ﬂqiﬁ»l q:;rl) = Oéqf N qufl’yqiq?rl .. .’yq%q%Jrl.

.....

It is easily seen that for any e > 0, its e-mixing time 7y, (€) equals 7,(e) + 1.
We apply Theorem 3 from Chung et al. (2012), for any n < 1/8, considering the
weight function f(Y*) = 371, for every t > 1 (of expectation najyy; under the
stationary distribution). Then Ny (Z'7T) = ZtT;ll f(Y"), and denoting €, r =
ern,mVlogn/ (2057, vnT), we obtain that there exist c1,co > 0 such that for
any € > 0, as long as €, 7 <1

— e QY| > 5T

Py T
’ ( (T —1) 2" /T
=Py (Ngu(Z"") > (1 + en,1)neiy (T — 1))

+ Py (Nu(Z"T) < (1= €n r)nafys (T — 1))

2 * ok
€ 7O (T —1)
< cpexp (— E 72;1(77) < crexp (—c2€rp 7)) - O]

qu(Zl:T)

€ @)

B.18. Proof of Lemma 18

For any configuration 27

1 .
v < \/§KL(Q>Q((§G)7PU)

1 - 1 -
- 1T _ 1:T
§¢JQ@APASVQMQM@))

the third inequality being true because by definition Qx(éa) minimizes K L(-,P,)
over the set of variational distributions. O

Qua,)(2"7) = Bo(z™™)| < Qs — Bo
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