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Abstract: The study of the causal relationships in a stochastic process
(Yt, Zt)t∈Z is a subject of a particular interest in finance and economy.
A widely-used approach is to consider the notion of Granger causality,
which in the case of first order Markovian processes is based on the joint dis-
tribution function of (Yt+1, Zt) given Yt. The measures of Granger causality
proposed so far are global in the sense that if the relationship between Yt+1

and Zt changes with the value taken by Yt, this may not be captured. To cir-
cumvent this limitation, this paper proposes local causality measures based
on the conditional copula of (Yt+1, Zt) given Yt = x. Exploiting results
by [5] on the asymptotic behavior of two kernel-based conditional cop-
ula estimators under α-mixing, the asymptotic normality of nonparametric
estimators of these local measures is deduced and asymptotically valid con-
fidence intervals are built; tests of local non-causality are also developed.
The suitability of the proposed methods is investigated with simulations
and their usefulness is illustrated on the time series of Standard & Poor’s
500 prices and trading volumes.
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1. Introduction

The concept of causality as originally introduced by [27] and [15] is helpful for
studying the dynamic relationships in multivariate time series. This notion is
defined in terms of predictability at horizon one of a random variable (or random
vector) Y from its past and the past of another random variable (or vector) Z.
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Specifically, assume that data are available for the process (Yt, Zt)t∈Z, and let
Yt, Zt be realizations, respectively, of Y and Z up to time t. According to [15],
the causality from Z to Y one period ahead is defined as follows: Z is said to
cause Y if Zt can help predict Yt+1, conditional on Yt.

Many works considered testing the null hypothesis of non-causality. For exam-
ple, [4] investigated tests for multivariate ARMA models. Because the Granger
non-causality is a form of conditional independence, tests can be deduced from
standard conditional independence tests; see [9], for instance. Tests based on
copulas have been proposed by [6]. When the hypothesis of non-causality is
rejected, one may be interested in measuring the strength of this causal rela-
tionship. The first causality measures were proposed by [11] and [12] using the
mean-squared forecast errors, and by [14] based on the Kullback–Leibler in-
formation. Causality measures for short and long run under parametric models
were investigated by [23] and [7]. Mainly inspired by the fact that these measures
suffer from model misspecification, nonparametric mesures where proposed by
[24] and [16] using the Kullback–Leibler information and nonparametric density
copula estimators. Recently, [28] investigated causality measures at multiple
horizons for exchange rate and commodity prices.

It is worth mentioning that all of the above-cited papers focused on character-
izing the global relationship between Yt+1 and Zt, conditional onYt. However, if
the nature of the link between Yt+1 and Zt changes with the value taken by Yt,
it may not be captured by global measures. A possible solution to this issue is to
compute the partial correlation coefficient. However, such an approach implicitly
assumes linear relationships and the measure depends on the marginal behav-
ior. In other words, this strategy would suffer from the same well-documented
drawbacks of the classical Pearson correlation coefficient.

To circumvent these limitations, this paper proposes marginal-free local cau-
sality indices for measuring the strength of the relationship in the pair (Yt+1,Zt)
given a particular value taken by Yt. In order to simplify the presentation, a fo-
cus is put on Markovian models of order one where one considers the dependence
structure of (Yt+1, Zt) given Yt = x ∈ R as captured by its associated bivariate
conditional copula. This approach allows for the definition of nonparametric
measures of local causality that do not suffer from the drawbacks that arise
when using partial correlations. Specifically, let {(Yt, Zt)}t∈Z be a stationary
process and define the local causality distribution function

HZ→Y
x (y, z) = P (Yt+1 ≤ y, Zt ≤ z|Yt = x) . (1)

Assuming that the conditional marginal distributions F1x(y)=P(Yt+1≤y|Yt=x)
and F2x(z) = P (Zt ≤ z|Yt = x) are continuous, Sklar’s Theorem guarantees the
existence of a unique copula CZ→Y

x : [0, 1]2 → [0, 1] such that

HZ→Y
x (y, z) = CZ→Y

x {F1x(y), F2x(z)} .

The bivariate function CZ→Y
x will be called the local causality copula and cor-

responds to the dependence structure of (Yt+1, Zt) given Yt = x.
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The first goal of this paper is to describe nonparametric estimators of CZ→Y
x

and to obtain their large-sample behavior under general α-mixing processes in
the light of results by [5]. Then, local causality indices are defined for measur-
ing the strength of the causal relationship in a bivariate time series and non-
parametric estimators based on the empirical conditional copulas are proposed.
The asymptotic normality of the latter is established using the functional delta
method. These large-sample results are then exploited to develop inferential
methods for local causality measures, including asymptotically valid confidence
intervals and tests for the null hypothesis of local non-causality.

The article is organized as follows. In Section 2, two estimators of the local
causality copula are described and their asymptotic behavior is obtained as an
adaptation of results obtained by [5]. In Section 3, general local causality indices
are defined and the large-sample behavior of nonparametric estimators is investi-
gated. Section 4 addresses the issue of the estimation of the asymptotic variances
and biases, as well as the optimal selection of the bandwidths. Section 5 develops
interval estimates of the local causality measures, as well as tests for the null
hypothesis of local non-causality. Section 6 investigates the sampling properties
of the newly introduced methods when they are based on the Spearman and
Kendall measures of association; their usefulness is illustrated in Section 7 on
financial data. The assumptions under which the asymptotic results hold as well
as the proofs are relegated to the appendix.

2. Estimation of the local causality copula

2.1. Two estimators

Consider a stationary process {(Yt, Zt)}t∈Z that is α-mixing, i.e. its α-mixing
coefficients α(r) are such that α(r) → 0 as r → ∞. Recall that the latter are
defined by α(0) = 1/2 and for each lag r ∈ N,

α(r) = sup
k∈Z

{
sup

(A,B)∈Fk
−∞×F∞

k+r

|P(A ∩B)− P(A)P(B)|
}
,

where Fb
a is the σ-field generated by {(Yt, Zt)}a≤t≤b. In the sequel, one assumes

a realization (Y1, Z1), . . . , (Yn+1, Zn+1) of {(Yt, Zt)}t∈Z.
A first estimator of the local causality copula arises upon noting that CZ→Y

x

can be extracted from HZ→Y
x via

CZ→Y
x (u, v) = HZ→Y

x

{
F−1
1x (u), F−1

2x (v)
}
.

An estimator of the joint conditional distribution HZ→Y
x defined in (1) will then

provide a plug-in estimator of CZ→Y
x . In this paper, one considers estimators

based on the local linear weights defined for each i ∈ {1, . . . , n} by

ωi(x, h) =
1

nh
K

(
Yi − x

h

)
Sn,2(x)−

(
Yi−x
h

)
Sn,1(x)

Sn,0(x)Sn,2(x)− Sn,1(x)2
, (2)
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where h = hn > 0 is a bandwidth parameter that tends to zero as the sample
size n → ∞, K is a symmetric density and for � ∈ {0, 1, 2},

Sn,�(x) =
1

nh

n∑
i=1

(
Yi − x

h

)�

K

(
Yi − x

h

)
.

The local linear estimator of HZ→Y
x is then defined by

HZ→Y
xh (y, z) =

n∑
i=1

ωi(x, h) I (Yi+1 ≤ y, Zi ≤ z) . (3)

The reader is referred to [8] for details on how to derive this kind of estimators.
A natural plug-in estimator of CZ→Y

x is then given by

CZ→Y
xh (u, v) = HZ→Y

xh

{
F−1
1xh(u), F

−1
2xh(v)

}
, (4)

where F−1
1xh and F−1

2xh are the left-continuous generalized inverses of

F1xh(y) =

n∑
i=1

ωi(x, h) I (Yi+1 ≤ y) and F2xh(z) =

n∑
i=1

ωi(x, h) I (Zi ≤ z). (5)

As noted by [26] and [13] in the i.i.d. case, the plug-in estimator CZ→Y
xh may be

severely biased, especially when the conditional marginal distributions strongly
depend on the covariate. For that reason, a second estimator that aims at re-
moving this possible effect of the covariate on the margins is proposed. To this
end, let h1, h2 > 0 be bandwidth parameters that may differ from h, and define
for each i ∈ {1, . . . , n} the pair of pseudo-observations

(Ûih1 , V̂ih2) = (F1Yih1(Yi+1), F2Yih2(Zi)) , (6)

where F1Yih1 and F2Yih2 follow from the definition in (5). Their associated em-
pirical conditional joint distribution is then

GZ→Y
xh (y, z) =

n∑
i=1

ωi(x, h) I
(
Ûih1 ≤ y, V̂ih2 ≤ z

)
.

An alternative estimator of CZ→Y
x based on GZ→Y

xh is

C̃Z→Y
xh (u, v) = GZ→Y

xh

{
G−1

1xh(u), G
−1
2xh(v)

}
, (7)

where G−1
1xh and G−1

2xh are the left-continuous generalized inverses of

G1xh(y) =

n∑
i=1

ωi(x, h) I
(
Ûih1 ≤ y

)
and G2xh(z) =

n∑
i=1

ωi(x, h) I
(
V̂ih2 ≤ z

)
.

Remark 2.1. Altough it will not be further treated in this paper, copula-based
local causality could be extended beyond horizon one. In other words, one could
consider the local causality copula that arises from the conditional distribution of
(Yt+1, Zt) given (Yt−k+1, . . . , Yt) = x ∈ Rk. The only difference would consists
in using multivariate local linear weights ω1(x, h1, . . . , hk), . . ., ωn(x, h1, . . . , hk)
instead of ω1(x, h), . . . , ωn(x, h). See [19], for instance, for more details on mul-
tivariate local linear weights.
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2.2. Weak convergence

In their paper, [5] obtained the weak convergence of two local linear estimators
of conditional copulas from a realization of a general three-dimensional α-mixing
process (ε1t, ε2t, ε3t)t∈Z, where ε3t is the conditioning variable, i.e. the covariate.
The setup here is therefore a special case of [5] where ε1t = Yt+1, ε2t = Zt and
ε3t = Yt. Before describing the results, let fY be the density associated to the
stationary process {Yt}t∈Z and define

a1 =
1

2

∫
R

z2K(z) dz and a2 =

∫
R

{K(z)}2 dz.

Moreover, let αZ→Y
x be a Gaussian process on [0, 1]2 such that for κ defined in

Assumption (N ) and ḦZ→Y
x = ∂2HZ→Y

x /∂2x,

E
{
αZ→Y
x (u, v)

}
= κ a1 Ḧ

Z→Y
x

{
F−1
1x (u), F−1

2x (v)
}
.

Also, defining σ2
C(u, v, u

′, v′) = C {min(u, u′),min(v, v′)} − C(u, v)C(u′, v′) for
an arbitrary copula C, the covariance function of αx is

Cov
{
αZ→Y
x (u, v), αZ→Y

x (u′, v′)
}
=

a2
fY (x)

σ2
CZ→Y

x
(u, v, u′, v′).

As a special case of Proposition 2 in [5], and for a fixed value of x ∈ R, one can
then conclude that under Assumptions (S), (C), (L), (H) and (N ) described in
Appendix A.1, the process CZ→Y

xh =
√
nh
(
CZ→Y

xh − CZ→Y
x

)
converges weakly in

the space �∞([0, 1]2) of bounded functions on [0, 1]2 to

CZ→Y
x (u, v) = αZ→Y

x (u, v)− C [1]
x (u, v)αZ→Y

x (u, 1)− C [2]
x (u, v)αZ→Y

x (1, v),

where C
[1]
x (u, v) = ∂CZ→Y

x (u, v)/∂u and C
[2]
x (u, v) = ∂CZ→Y

x (u, v)/∂v.

Before stating the result on the weak convergence of C̃Z→Y
xh =

√
nh(C̃Z→Y

xh −
CZ→Y

x ), introduce the Gaussian process GZ→Y
x on [0, 1]2 such that for C̈Z→Y

x =
∂2CZ→Y

x /∂2x,
E
{
GZ→Y

x (u, v)
}
= κ a1 C̈

Z→Y
x (u, v)

and whose covariance function is the same as that of αx. Then one can invoke
Proposition 3 of [5] and conclude that as long as Assumptions (S), (C), (L), (H�)

and (N �) in Appendix A.2 hold, and for a fixed value of x ∈ R, C̃xh converges
weakly in �∞([0, 1]2) to

C̃Z→Y
x (u, v) = GZ→Y

x (u, v)− C [1]
x (u, v)GZ→Y

x (u, 1)− C [2]
x (u, v)GZ→Y

x (1, v).

As noted by [5] in the general case, the asymptotic behavior of the limit processes

CZ→Y
xh and C̃Z→Y

xh under α-mixing is the same as that under serial independence.
In other words, their respective limits are the same as those identified by [26].
Thus, the impact of time-dependency is asymptotically negligible, somewhat as
a consequence of Assumption (S) on the α-mixing coefficients combined with
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the use of a kernel function that smooths the covariate space in a shrinking
neighborhood of x as n goes to infinity. Observe that when CZ→Y

xh and C̃Z→Y
xh

are computed with the same bandwidth h, the limit processes CZ→Y
x and C̃Z→Y

x

have the same covariance structure given implicitly by

γx(u, v, u
′, v′) = Cov

{
CZ→Y

x (u, v),CZ→Y
x (u′, v′)

}
.

Their bias functions are however different, since E{Cx(u, v)} = κ a1 Bx(u, v) and

E{C̃x(u, v)} = κ a1 B̃x(u, v), where B̃x(u, v) = C̈Z→Y
x (u, v) and

Bx(u, v) = ḦZ→Y
x

{
F−1
1x (u), F−1

2x (v)
}

− F̈Z→Y
1x

{
F−1
1x (u)

}
C [1]

x (u, v)

− F̈Z→Y
2x

{
F−1
2x (v)

}
C [2]

x (u, v).

Hence, unlike for CZ→Y
xh , the asymptotic bias of C̃Z→Y

xh does not include the
partial derivatives of F1x and F2x with respect to x.

3. Measuring local causality

3.1. Theoretical measures of local causality

Measuring the strength of the causal relationship from Z to Y in a stationary
process {(Yt, Zt)}t∈Z can be done from the information provided by the local
causality copula. Specifically, consider a general functional Λ : �∞([0, 1]2) → R

satisfying Λ(Π) = 0, Λ(M) = 1 and Λ(W ) = −1, where Π(u, v) = uv, M(u, v) =
min(u, v) and W (u, v) = max(u + v − 1, 0) are respectively the independence,
perfect positive dependence and perfect negative dependence copulas. A measure
of local causality from Z to Y at x based on Λ is then

θZ→Y
Λ,x = Λ

(
CZ→Y

x

)
. (8)

This measure has the desirable property of being marginal-free.

3.2. Nonparametric estimators

The estimation of the local causality index θZ→Y
Λ,x defined in Equation (8) can

be based on the empirical local causality copulas CZ→Y
xh and C̃Z→Y

xh . Specifically,
two estimators of θZ→Y

Λ,x are given by

θZ→Y
Λ,xh = Λ

(
CZ→Y

xh

)
and θ̃Z→Y

Λ,xh = Λ
(
C̃Z→Y

xh

)
.

The next result establishes the asymptotic normality of

ΘZ→Y
Λ,xh =

√
nh
(
θZ→Y
Λ,xh − θZ→Y

Λ,x

)
and Θ̃Z→Y

Λ,xh =
√
nh
(
θ̃Z→Y
Λ,xh − θZ→Y

Λ,x

)
.
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Before stating it, note that in the sequel, the composition Λ ◦ Λ of a functional
Λ : �∞([0, 1]2) → R is taken such that for γ ∈ �∞([0, 1]4),

Λ ◦ Λ(γ) = Λ [Λ {γ(·, ·, u′, v′)}] ,

i.e. the operator inside the brackets is computed with respect to the first two
arguments of γ, and then Λ is computed again on Λ {γ(·, ·, u′, v′)} ∈ �∞([0, 1]2.

Proposition 3.1. Suppose that the functional Λ : �∞([0, 1]2) → R is Hadamard
differentiable with derivative at g given by Λ′

g.

(i) Under Assumptions (S), (C), (L), (H) and (N ), ΘZ→Y
Λ,xh converges in law

to the Normal random variable ΘZ→Y
Λ,x = Λ′

CZ→Y
x

(CZ→Y
x ) having mean μΛ,x =

κ a1 Λ
′
CZ→Y

x
(Bx) and variance σ2

Λ,x = Λ′
CZ→Y

x
◦ Λ′

CZ→Y
x

(γx).

(ii) Under Assumptions (S), (C), (L), (H�) and (N �), Θ̃Z→Y
Λ,xh converges in law

to the Normal random variable Θ̃Z→Y
Λ,x = Λ′

CZ→Y
x

(C̃Z→Y
x ) having mean μ̃Λ,x =

κ a1 Λ
′
CZ→Y

x
(B̃x) and variance σ2

Λ,x = Λ′
CZ→Y

x
◦ Λ′

CZ→Y
x

(γx).

3.3. The Kendall and Spearman measures of causality

It is well known, see [22] and [17] for details, that the popular Spearman’s rho
and Kendall’s tau associated to a continuous random pair with unique copula
C can be expressed as

ρS = 12

∫
[0,1]2

C(u, v) dudv − 3 and τ = 4

∫
[0,1]2

C(u, v) dC(u, v)− 1.

Thus, these measures are marginal-free and can be expressed as functionals of
C via ρS = Λρ(C) and τ = Λτ (C), where for δ ∈ �∞([0, 1]2),

Λρ(δ) = 12

∫
[0,1]2

δ(u, v) dudv − 3 and Λτ (δ) = 4

∫
[0,1]2

δ(u, v) dδ(u, v)− 1.

Local causality indices based on the Spearman and Kendall measures are then
ρZ→Y
x = Λρ(C

Z→Y
x ) and τZ→Y

x = Λτ (C
Z→Y
x ), respectively. Two possible es-

timators of ρZ→Y
x are then ρZ→Y

xh = Λρ(C
Z→Y
xh ) and ρ̃Z→Y

xh = Λρ(C̃
Z→Y
xh ). By

straightforward computations, one can derive the explicit expressions

ρZ→Y
xh = 12

n∑
i=1

ωi(x, h) {1− F1xh(Yi+1)} {1− F2xh(Zi)} − 3,

ρ̃Z→Y
xh = 12

n∑
i=1

ωi(x, h)
{
1−G1xh1(Ûih1)

}{
1−G2xh2(V̂ih2)

}
− 3.



4128 T. Bouezmarni et al.

Two estimators of τZ→Y
x are given by τZ→Y

xh = Λτ (C
Z→Y
xh ) and τ̃Z→Y

xh =

Λτ (C̃
Z→Y
xh ), where it can be shown that

τZ→Y
xh = 4

n∑
i,j=1

ωi(x, h)ωj(x, h) I (Yj+1 ≤ Yi+1, Zj ≤ Zi)− 1,

τ̃Z→Y
xh = 4

n∑
i,j=1

ωi(x, h)ωj(x, h) I
(
Ûjh1 ≤ Ûih1 , V̂jh2 ≤ V̂ih2

)
− 1.

The conclusions of Proposition 3.1 apply to the Spearman and Kendall function-
als Λρ and Λτ since both are Hadamard differentiable with respective derivatives

(Λρ)
′
g (δ) = 12

∫
[0,1]2

δ(u, v) du dv (9)

and, from [26],

(Λτ )
′
g (δ) = 4

∫
[0,1]2

{δ(u, v) dg(u, v) + g(u, v) dδ(u, v)} . (10)

4. Estimation of asymptotic biases/variances and bandwidth
selection

In order to develop valid inference methods for a given local causality measure
θZ→Y
Λ,x , the results stated in Proposition 3.1 cannot be used directly because the

asymptotic variance σ2
Λ,x as well as the asymptotic biases μΛ,x and μ̃Λ,x must

be estimated. Another aspect of importance is the choice of an appropriate
bandwidth parameter with respect to some optimality criterion. These topics
are treated in this section.

4.1. Estimation of the asymptotic variances

First observe that the process CZ→Y
x can be seen as the weak limit of

√
nh

n∑
i=1

ωi(x, h)Lxi,

where ωi(x, h) is defined in (2) and for each i ∈ {1, . . . , n},
Lxi(u, v) = I

{
Yi+1 ≤ F−1

1x (u), Zi ≤ F−1
2x (v)

}
− CZ→Y

x (u, v)

−C [1]
x (u, v)

[
I
{
Yi+1 ≤ F−1

1x (u)
}
− u
]

−C [2]
x (u, v)

[
I
{
Zi ≤ F−1

2x (v)− v
}]

.

As a consequence, the random variable ΘZ→Y
Λ,x = Λ′

CZ→Y
x

(CZ→Y
x ) in Proposi-

tion 3.1 (i) arises as the limit in law of

λxh = Λ′
CZ→Y

x

{
√
nh

n∑
i=1

ωi(x, h)Lxi

}
=

√
nh

n∑
i=1

ωi(x, h)λxi,
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where λxi = Λ′
CZ→Y

x
(Lxi); the last equality is a consequence of the linearity

of Hadamard derivatives (see [25]). However, since the marginal conditional

distributions F1x, F2x and the partial derivatives C
[1]
x , C

[2]
x are unknown, one

considers instead the version of Lxi given by

L�
xi(u, v) = I

{
Yi+1 ≤ F−1

1xh(u), Zi ≤ F−1
2xh(v)

}
− Ĉ [1]

x (u, v) I
{
Yi+1 ≤ F−1

1xh(u)
}

− Ĉ [2]
x (u, v) I

{
Zi ≤ F−1

2xh(v)
}
.

In the above expression, Ĉ
[1]
x and Ĉ

[2]
x are uniformly consistent estimators of the

partial derivatives of CZ→Y
x in the sense that for any ε > 0,

sup
u∈[ε,1−ε]
v∈[0,1]

∣∣∣Ĉ [1]
x (u, v)− C [1]

x (u, v)
∣∣∣ and sup

v∈[ε,1−ε]
u∈[0,1]

∣∣∣Ĉ [2]
x (u, v)− C [2]

x (u, v)
∣∣∣ (11)

converge in probability to zero. A version of λxh is therefore given by

λ�
xh =

√
nh

n∑
i=1

ωi(x, h)λ
�
xi,

with λ�
xi = Λ′

CZ→Y
x

(L�
xi). Based on the idea of [8] for the estimation of a condi-

tional variance, the proposed estimator of σ2
Λ,x is given by

σ̂2
Λ,x =

a2
Sn,0(x)

n∑
i=1

ωi(x, h)

(
λ�
xi −

λ�
xh√
nh

)2

.

The consistency of σ̂2
Λ,x for the estimation of σ2

Λ,x is stated next.

Proposition 4.1. Assume that Λ is Hadamard differentiable with derivative at
g given by Λ′

g and that Assumptions (S), (C), (L), (H) and (N ) hold. Moreover,

suppose that Ĉ
[1]
x and Ĉ

[2]
x satisfy (11) and that there exists a constant D > 0

such that as n → ∞,

P

(
max
j=1,2

sup
u,v∈[0,1]

∣∣∣Ĉ [j]
x (u, v)

∣∣∣ > D

)
→ 0. (12)

Then σ̂2
Λ,x converges in probability to σ2

Λ,x.

An alternative estimator of σ2
Λ,x can be based on the approximate version of

the process C̃Z→Y
x based on the pseudo-observations. Specifically, let

L̃�
xi(u, v) = I

{
Ûih1 ≤ G̃−1

1xh(u), V̂ih2 ≤ G̃−1
2xh(v)

}
− Ĉ [1]

x (u, v) I
{
Ûih1 ≤ G̃−1

1xh(u)
}
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− Ĉ [2]
x (u, v) I

{
V̂ih2 ≤ G̃−1

2xh(v)
}

and define λ̃�
xi = Λ′

CZ→Y
x

(L̃�
xi). Another estimator of σ2

Λ,x is therefore

̂̃σ2

Λ,x =
a2

Sn,0(x)

n∑
i=1

ωi(x, h)

(
λ̃�
xi −

λ̃�
xh√
nh

)2

,

where λ̃�
xh =

√
nh
∑n

i=1ωi(x, h) λ̃
�
xi. The consistency of ̂̃σ2

Λ,x for estimating σ2
Λ,x

could be established using the same arguments as those leading to Proposi-
tion 4.1, except that (H�) and (N �) replace Assumptions (H) and (N ).

4.2. Estimation of the asymptotic biases

The proposed estimator of the asymptotic bias μΛ,x follows an idea similar to
that of [21] by considering a local polynomial regression approach. Specifically,
for some integer p ≥ 2 and some bandwidth hB > 0, consider

(β̂Λ,0, . . . , β̂Λ,p) = argmin
(β0,...,βp)

n∑
i=1

⎧⎨⎩λ�
xi −

p∑
j=0

βj

(
Yi − x

hB

)j
⎫⎬⎭

2

K

(
Yi − x

hB

)
.

Then an estimator of Λ′
CZ→Y

x
(Bx) is given by β̂Λ,2/h

2
B, so that and estimator of

μΛ,x = κ a1 Λ
′
CZ→Y

x
(Bx) is

μ̂Λ,x =
√
nh5 a1

β̂Λ,2

h2
B

.

Roughly speaking, the rationale for the above estimator is that the theory of
local polynomial smoothing allows to deduce that β̂Λ,j consistently estimates
the j-th derivative of the mapping

z 
→ E (λ�
ix|Yi = z) ≈ Λ′

CZ→Y
x

{E(Lxi | Yi = z)} .

For any z in a neighbourhood of x, one then has

∂2

∂z2
Λ′
CZ→Y

x
{E(Lxi | Yi = z)} ≈ h2

B Λ′
CZ→Y

x
{E(Cx)} = h2

B Λ′
CZ→Y

x
(Bx).

The consistency of μ̂Λ,x as an estimator of μΛ,x is established next.

Proposition 4.2. Under the conditions of Proposition 4.1, and if in addition
Assumptions (HB) and (NB) in Appendix A.3 are satisfied, then μ̂Λ,x converges
in probability to μΛ,x.

The estimation of the asymptotic bias μ̃Λ,x of the estimator θ̃Z→Y
Λ,xh based

on C̃Z→Y
xh can be done similarly by using λ̃�

xi instead of λ�
xi; the resulting es-

timator is noted ̂̃μΛ,x in the sequel. Its consistency as an estimator of μ̃Λ,x
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could be established similarly as in the proof of Proposition 4.2, again by re-
placing Assumptions (H) and (N ) by Assumptions (H�) and (N �). Note that
Assumption (HB) is no longer required since the marginal distributions have
been uniformized.

4.3. A note on the estimation of Hadamard derivatives

When the functional Λ is linear, its Hadamard derivative is free of g, i.e. Λ′
g = Λ′

for all g; this happens in particular for the Spearman functional, see Equa-
tion (9). Otherwise, Λ′

g needs to be estimated. In that case, if one can find an

estimator Λ̂′
CZ→Y

x
such that for any δ ∈ �∞([0, 1]2),∣∣∣Λ̂′

CZ→Y
x

(δ)− Λ′
CZ→Y

x
(δ)
∣∣∣ = oP(1),

then the conclusions of Proposition 4.1 and Proposition 4.2 remain valid. This
situation occurs for the Kendall functional, for which a natural plug-in estimator
of its derivative in the light of (10) is given by

(̂Λτ )
′
CZ→Y

x
(δ) = 4

∫
[0,1]2

{δ(u, v) dCxh(u, v) + Cxh(u, v) dδ(u, v)} .

When working with the second estimator τ̃Z→Y
xh , one uses C̃xh instead of Cxh in

the above expression.

4.4. Data-driven algorithms for the selection of optimal bandwidths

The computation of the estimator θZ→Y
Λ,xh of the local causality index θZ→Y

Λ,x re-
quires the choice of the bandwidth h. From Proposition 3.1 (i), one deduces that
θZ→Y
Λ,xh − θZ→Y

Λ,x is approximately Normal with variance σ2
Λ,x/nh and mean

κ a1 Λ
′
CZ→Y

x
(Bx)

√
nh

≈ h2a1Λ
′
CZ→Y

x
(Bx).

A strategy described for instance by [10] and [18] is to select the bandwidth that
minimises the asymptotic mean-squared errors, which in the current context is

AMSEΛ,x(h) = h4a21

(
Λ′
CZ→Y

x
(Bx)
)2

+
σ2
Λ,x

nh
.

It is then easy to see that the minimum of AMSEΛ,x is achieved when

h = h�
Λ,x =

{
σ2
Λ,x

4a21(Λ
′
CZ→Y

x
(Bx))2

}1/5

n−1/5. (13)

Since σ2
Λ,x and Λ′

CZ→Y
x

(Bx) are unknown, an idea is to first estimate these quanti-

ties with the estimators introduced in subsection 4.1 and subsection 4.2, namely
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σ̂2
Λ,x and β̂Λ,2/h

2
B , by using pilot bandwidths and then plugging these values into

the expression for h�
Λ,x in (13). The procedure can then be repeated recursively

until some convergence criterion is reached; see [10], for instance. Specifically,
let cst be a constant whose value remains bounded as n increases and fix p ≥ 2.
Then, proceed as follows:

(1) Compute σ̂2
Λ,x based on the initial bandwidth h0 = cst× n−1/5;

(2) Compute β̂Λ,2 using the bandwidth hB = cst× h0 × n1/5−1/(2p+3);

(3) Compute h�
Λ,x in Equation (13) based on σ̂2

Λ,x and β̂Λ,2;
(4) Repeat Steps 1–3 with h0 = h�

Λ,x until a convergence criterion or a maxi-
mum number of iterations is reached.

It can readily be verified that the above algorithm ensures that h0 and h�
Λ,x

satisfy Assumption (N ), while hB satisfies Assumption (NB). In practice, cst is
set as the inter-quartile range of Y1, . . . , Yn, as suggested for instance by [13].

The procedure is more involved for the estimator θ̃Z→Y
Λ,xh since one needs to

first select the bandwidths h1, h2 that are necessary for the computation of
the pseudo-observations in Equation (6). To this end, one follows the approach
suggested by [13] for the estimation of the marginal conditional distributions
F1xh1 and F2xh2 in order to first select h1 and h2 in an optimal manner. Then,
conditionally on these optimal choices h�

1 and h�
2, the pseudo-observations in (6)

are computed and the previously described algorithm is run using the estimators
of the asymptotic variance and bias of θ̃Z→Y

Λ,xh .

5. Inference for local causality

5.1. Confidence intervals

A confidence interval of level 1−α for θZ→Y
Λ,x based on the asymptotic normality

of θZ→Y
Λ,xh established in Proposition 3.1 (i) is

CIα,Λ,x =

[
θZ→Y
Λ,xh −

(
zα/2 σ̂Λ,x + μ̂Λ,x√

nh

)
, θZ→Y

Λ,xh +

(
zα/2 σ̂Λ,x − μ̂Λ,x√

nh

)]
,

where for Φ−1 being the inverse cumulative distribution function of the standard
Normal, zα = Φ−1(1−α). Proposition 4.1 and Proposition 4.2 on the consistency
of σ̂Λ,x and μ̂Λ,x ensure that this interval is asymptotically of level 1 − α. The

confidence interval is similar when θZ→Y
Λ,x is estimated by θ̃Z→Y

Λ,xh , namely

C̃Iα,Λ,x =

[
θ̃Z→Y
Λ,xh −

(
zα/2 ̂̃σΛ,x + ̂̃μΛ,x√

nh

)
, θZ→Y

Λ,xh +

(
zα/2 ̂̃σΛ,x − ̂̃μΛ,x√

nh

)]
.

The coverage probabilities of CIα,Λ,x and C̃Iα,Λ,x in the case of small and mod-
erate sample sizes is investigated in Section 6.
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5.2. Testing for local non-causality

Saying that there is no local causality relationship from Z to Y at x in the
process {(Yt, Zt)}t∈Z means that Yt+1 and Zt are conditionally independent
with respect to Yt = x. In other words, CZ→Y

x (u, v) = Π(u, v) = u v, i.e. the
local causality copula corresponds to the independence copula. In that case, the
limit covariance structure of CZ→Y

xh and C̃Z→Y
xh simplifies to γΠ(u, v, u

′, v′) =
{min(u, u′) − uu′}{min(v, v′) − vv′}. The following result is a special case of
Proposition 3.1 and is stated without proof.

Proposition 5.1. Under the null hypothesis of local non-causality from Z to Y
at x, one has under Assumptions (S), (C), (L), (H) and (N ) that

√
nh θZ→Y

Λ,xh

is asymptotically Normal with mean μΛ,x and variance

σ2
Λ,Π,x =

a2
fY (x)

Λ′
Π ◦ Λ′

Π(γΠ).

Similarly, as long as (S), (C), (L), (H�) and (N �) hold,
√
nh θ̃Z→Y

Λ,xh is asymp-

totically Normal with mean μ̃Λ,x and variance σ2
Λ,Π,x.

Proposition 5.1 can be exploited to test the null hypothesis of local non-
causality at x from Z to Y . In that case, the null and alternative hypotheses
are

H0 : θZ→Y
Λ,x = 0 and H1 : θZ→Y

Λ,x �= 0.

Since a1 and Λ′
Π ◦ Λ′

Π(γΠ) are known values in the expression for σ2
Λ,Π,x, an

estimator of the asymptotic variance under local non-causality is

σ̂2
Λ,Π,x =

a2
Sn,0(x)

Λ′
Π ◦ Λ′

Π(γΠ).

Test based on the statistics θZ→Y
Λ,xh and θ̃Z→Y

Λ,xh will then reject the null hypothesis
of local non-causality whenever∣∣∣∣∣

√
nh θZ→Y

Λ,xh − μ̂Λ,x

σ̂Λ,Π,x

∣∣∣∣∣ > zα/2 or

∣∣∣∣∣
√
nh θ̃Z→Y

Λ,xh − ̂̃μΛ,x

σ̂Λ,Π,x

∣∣∣∣∣ > zα/2.

For the Spearman measure of local causality, one has from (9) that

Λ′
Π ◦ Λ′

Π(γΠ) = 144

∫
[0,1]4

γΠ(u, u
′, v, v′) du dv du′ dv′ = 1,

while for the Kendall measure, (10) entails

Λ′
Π ◦ Λ′

Π(γΠ) = 64

∫
[0,1]4

γΠ(u, u
′, v, v′) du dv du′ dv′ =

4

9
.

These values correspond to the well-known asymptotic variances of Spearman’s
rho and Kendall’s tau under independence.
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6. Simulations study

6.1. Preliminaries

The goal of this section is to investigate the performance of the methodologies
introduced in this work when local causality is measured using the Spearman
and Kendall functionals. As suggested by [13], modified versions of Kendall’s
measure has been employed, namely

τZ→Y
xh =

4

1−
∑n

i=1ω
2
i (x, h)

n∑
i,j=1

ωi(x, h)ωj(x, h) I (Yj+1 < Yi+1, Zj < Zi)− 1,

and similarly for τ̃Z→Y
xh . These versions are asymptotically equivalent to those

defined from the functional Λτ . The results that will be reported have been
obtained using the local linear weights in (2) based on the Epanechnikov kernel

K(z) =
3

4

(
1− z2

)
I (|z| ≤ 1) .

The latter satisfies Assumption (L) and one can show that a1 = 1/10 and

a2 = 3/5. The estimation of the partial derivatives C
[1]
x and C

[2]
x , which is

needed to estimate the asymptotic biases and variance, will be based on the
finite-difference estimators

Ĉ [1]
x (u, v) =

√
nh

[
CZ→Y

xh

{
min

(
u+

1√
nh

, 1

)
, v

}
− CZ→Y

xh (u, v)

]
and

Ĉ [2]
x (u, v) =

√
nh

[
CZ→Y

xh

{
u,min

(
v +

1√
nh

, 1

)}
− CZ→Y

xh (u, v)

]
.

The latter are uniformly consistent and fulfill condition (12) needed in Proposi-
tion 4.1 and Proposition 4.2. For the estimation of the biases, many experiments
suggest that taking p = 3 provides the more accurate results. Finally note that
the bandwidth selection used the convergence criterion |h0 − h�

Λ,x| < 5× 10−4.

6.2. Accuracy of the local causality estimators

The performance of the nonparametric local causality measures ρZ→Y
xh , ρ̃Z→Y

xh ,
τZ→Y
xh and τ̃Z→Y

xh is studied here in the light of their bias and mean-squared
errors. To this end, time series have been simulated from the stationary vector
autoregressive model of order one given by(

Yt

Zt

)
= Σ

(
Yt−1

Zt−1

)
+ εt,

where Σ ∈ R2×2 is such that Σ11 = Σ22 = (θ2− θ1θ3)/(1− θ23) and Σ21 = Σ12 =
(θ1−θ2θ3)/(1−θ23); the process of innovations (εt)t∈Z is i.i.d. from the mean-zero
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bivariate Normal distribution with variance σ2
ε = 1 − Σ2

11 − Σ2
21 − 2θ3Σ11Σ21

and correlation ρε = θ3(1−Σ2
11−Σ2

21)−2Σ11Σ21. With this particular choice of
parameters, (Yt, Zt, Yt−1, Zt−1) is centered Normal with some covariance matrix
depending on θ1, θ2, θ3 in such a way that the local causality copula CZ→Y

x is
the Normal copula with parameter

� =
θ1 − θ2 θ3√

1− θ22
√
1− θ23

.

This model satisfies Assumptions (S), (H), (H�) and (C). In Figure 1, the es-
timated bias and mean-squared error of ρZ→Y

xh and ρ̃Z→Y
xh when x = 1/2 are

given as a function of the chosen bandwidth parameters h = h1 = h2; Fig-
ure 2 concerns Kendall’s measure of local causality. These estimates are based
on 1 000 replicates of the vector autoregressive process when (θ1, θ2, θ3) ∈
{(.25, .5, .5), (.482, .5, .5), (.485, .25, 0.6)}. The three variants of the model cor-
respond respectively to τZ→Y

x = 0, τZ→Y
x = .2 and τZ→Y

x = .4, where the
well-known relationship τZ→Y

x = 2 sin−1(�)/π between Kendall’s tau and the
parameter of the Normal copula has been used. The mean value of the opti-
mal bandwidth computed from the algorithm in subsection 4.4, taken over the
replicates, are indicated on the curves.

A first look at Figure 1 indicates that ρ̃Z→Y
xh outperforms ρZ→Y

xh in terms of
bias for all values of h and under the three scenarios. This is especially true under
the scenarios when τZ→Y

x ∈ {.2, .4}, which might be explained by the strong
influence of the conditional marginal distributions F1x and F2x on E(ρZ→Y

xh ) for
these models. The curves of the variance of ρZ→Y

xh and ρ̃Z→Y
xh as a function h (not

presented here) are very similar, however, in accordance with the fact that they
are asymptotically equal. Looking at the curves on the right panels, one sees
that the data-driven selection rule for an optimal bandwidth is quite accurate
in the sense that it minimizes the mean-squared error. All the above comments
can also be made about τZ→Y

xh and τ̃Z→Y
xh upon looking at Figure 2.

6.3. Coverage probability of interval estimations

The aim of this subsection is to evaluate the finite-sample coverage probabilities
of interval estimations of ρZ→Y

x and τZ→Y
x as described in subsection 5.1. To this

end, a general D-Vine structure for bivariate processes suggested by [2] will be
used; this construction allows for the choice of the local causality copula CZ→Y

x ;
for the upcoming simulations, CZ→Y

x is the Normal copula parameterized in
such a way that τZ→Y

x ∈ {.0, .2, .4}. The algorithm of [2] necessitates to select
a vector (C1, C2, C3, C4) of four copulas, where C1 is the copula of (Yt, Zt), C2

that of (Yt−1, Yt), C3 that of the distribution of (Yt−1, Zt) given Yt = x, and C4

as that of (Zt, Zt−1) given Yt−1 = x, Yt = x′. Here, x = 1/2.
The results in Table 1 concern the estimated coverage probabilities of 95%

interval estimates based on ρZ→Y
xh and ρ̃Z→Y

xh , while those in Table 2 concern
τZ→Y
xh and τ̃Z→Y

xh . The copulas (C1, C2, C3, C4) are Normal with Kendall’s tau

(τ1, τ2, τ3, τ4) ∈ {(.3, .1, .1, .1), (.05, .05, .05, .05), (.5, .3, .3, .05), (.5, .3, .75, .05)} .
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Fig 1. Estimated bias (left) and mean-squared error (right) of ρZ→Y
xh (solid line) and ρ̃Z→Y

xh
(dashed line) when n = 250 as a function of the bandwidth parameter h under the vector
autoregressive model such that τZ→Y

x = .0 (upper panels), τZ→Y
x = .2 (middle panels) and

τZ→Y
x = .4 (bottom panels)
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Fig 2. Estimated bias (left) and mean-squared error (right) of τZ→Y
xh (solid line) and τ̃Z→Y

xh
(dashed line) when n = 250 as a function of the bandwidth parameter h under the vector
autoregressive model such that τZ→Y

x = .0 (upper panels), τZ→Y
x = .2 (middle panels) and

τZ→Y
x = .4 (bottom panels)
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These scenarios generate various kinds of serial structures among the data. The
results have been obtained by setting the bandwidth to h�/2 instead of the opti-
mal bandwidth h�, since many numerical experiments suggested that it generally
provides better results in terms of coverage probabilities. It is an indication that
in the context of interval estimation, what matters the most is the bias; looking
at Figures 1–2, the latter is minimized for h taken smaller than h�.

First of all, the coverage probabilities tend to be closer to their 95% confidence
level as n increases; it is a simple consequence of the fact that the intervals are
based on the asymptotic normality of the estimators. In Table 1, it can be seen
that the estimated probabilities based on ρ̃xh tend to be closer to their nominal
level than those based on ρxh when n ∈ {250, 500}, while the results are similar
when n = 1000. This is particularly true when (τ1, τ2, τ3, τ4) = (.5, .3, .75, .05)
and τZ→Y

x ∈ {.0, .2}. Similar observations can be drawn from Table 2.

6.4. Power of the tests of local non-causality

Consider testing the null hypothesis H0 of the local non-causality from Z to Y
at x, i.e. the conditional independence between Yt and Zt−1 given Yt−1 = x.
To this end, one considers again the D-Vine structure for (Yt, Zt)t∈Z described
in Subsection 6.3. Here, the local causality copula CZ→Y

x is taken to be ei-
ther the Normal or the Clayton copula; the latter is defined by CCL

θ (u, v) =
(u−θ + v−θ − 1)−1/θ, θ > 0. These two copulas have been parameterized in such
a way that τZ→Y

x = 2{Φ(x) − 1/2}2 and x is chosen in order that τZ→Y
x ∈

{0, .1, .2}. Here again, (C1, C2, C3, C4) are Normal copulas parameterized such
that

(τ1, τ2, τ3, τ4) ∈ {(.3, .1, .1, .1), (.05, .3, .75, .05)} .
The results on the estimated power of the tests based on ρZ→Y

xh , ρ̃Z→Y
xh , τZ→Y

xh

and τ̃Z→Y
xh are in Table 3.

Under the null hypothesis of non-causality, i.e. when τZ→Y
x = .0, the four

tests are slightly too liberal when n = 250; nevertheless, the estimated prob-
abilities of rejection of H0 tend to the theoretical 5% nominal level. As ex-
pected, the ability of the four tests at rejecting the null hypothesis under de-
partures from H0 increases with the sample size and is larger when τZ→Y

x =
.2 compared to τZ→Y

x = .1. Interestingly, when n ∈ {500, 1000}, the tests
based on ρ̃xh and τ̃xh are clearly more powerful than those based on ρxh and
τxh when CZ→Y

x is the Clayton copula. Under a Normal causality copula,
however, the four tests perform very similarly, except when (τ1, τ2, τ3, τ4) =
(.05, .3, .75, .05) and τY→Z

x = .1, in which case the tests based on ρ̃xh and τ̃xh
are the best.

7. Illustration on financial data

The following illustration is based on the bivariate time series of the 1 512
daily observations taken between January 2010 and January 2016 for the com-
pounded changes in prices (returns) and trading volume of the Standard and
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Table 1

Coverage probabilities, as estimated from 1 000 replicates, of 95% confidence intervals for
the Spearman local causality measures ρZ→Y

x under bivariate D-vine time series in which
CZ→Y

x is the Normal copula with Kendall’s tau τZ→Y
x ∈ {.0, .2, .4}

(τ1, τ2, τ3, τ4) τZ→Y
x Estimator n = 250 n = 500 n = 1 000

(.30, .10, .10, .10)

.0
ρxh 93.2 92.2 93.0
ρ̃xh 93.6 94.6 93.1

.2
ρxh 93.5 93.3 94.5
ρ̃xh 94.3 93.0 95.1

.4
ρxh 93.6 92.7 93.6
ρ̃xh 93.4 93.9 93.0

(.05, .05, .05, .05)

.0
ρxh 93.0 94.1 95.3
ρ̃xh 93.7 93.6 93.2

.2
ρxh 93.5 93.4 93.6
ρ̃xh 94.1 93.0 94.1

.4
ρxh 93.8 93.4 94.1
ρ̃xh 94.3 94.8 93.1

(.50, .30, .30, .05)

.0
ρxh 93.9 93.0 93.6
ρ̃xh 93.9 94.7 94.5

.2
ρxh 91.8 93.1 94.5
ρ̃xh 94.1 93.8 94.4

.4
ρxh 90.7 91.8 93.3
ρ̃xh 92.5 93.6 93.2

(.05, .30, .75, .05)

.0
ρxh 91.3 94.0 94.0
ρ̃xh 94.7 94.2 93.4

.2
ρxh 90.3 92.1 93.8
ρ̃xh 94.0 94.0 92.9

.4
ρxh 88.1 89.8 89.5
ρ̃xh 90.7 89.6 90.3

Poor’s 500 (S&P500) Index. The relationship between these two indices has been
extensively studied, both from a theoretical and from an empirical perspective.
According to the tests of stationarity reported in [6], one will work instead with
the first difference in logarithmic returns (Y ) and with the first difference in
logarithmic volume (Z). Put differently, Z and Y are respectively the log of the
ratio of two consecutive recorded values of stock return and stock volume. Yt

and Zt are therefore indicators of the growth rate of respectively stock return
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Table 2

Coverage probabilities, as estimated from 1 000 replicates, of 95% confidence intervals for
the Kendall local causality measures τZ→Y

x under bivariate D-vine time series in which
CZ→Y

x is the Normal copula with Kendall’s tau τZ→Y
x ∈ {.0, .2, .4}

(τ1, τ2, τ3, τ4) τZ→Y
x Estimator n = 250 n = 500 n = 1 000

(.30, .10, .10, .10)

.0
τxh 93.7 92.4 93.2
τ̃xh 94.9 95.8 95.3

.2
τxh 94.2 93.6 94.3
τ̃xh 95.4 96.4 95.0

.4
τxh 93.3 93.2 93.5
τ̃xh 94.8 95.6 94.8

(.05, .05, .05, .05)

.0
τxh 93.0 94.0 95.7
τ̃xh 94.0 96.4 95.5

.2
τxh 94.0 93.3 93.6
τ̃xh 94.1 95.1 96.2

.4
τxh 94.1 94.2 95.2
τ̃xh 94.7 94.4 95.0

(.50, .30, .30, .05)

.0
τxh 94.1 93.5 94.0
τ̃xh 92.9 95.4 95.1

.2
τxh 92.4 94.4 94.9
τ̃xh 94.8 95.5 94.7

.4
τxh 91.5 92.2 94.1
τ̃xh 95.3 93.8 95.1

(.50, .30, .75, .05)

.0
τxh 92.5 94.1 94.4
τ̃xh 94.7 95.3 96.9

.2
τxh 91.8 92.7 94.4
τ̃xh 93.2 95.9 94.5

.4
τxh 89.8 90.2 90.2
τ̃xh 92.0 92.4 93.5

and stock volume from period t− 1 to period t, and the upcoming conclusions
will have to be interpreted accordingly.

The causality from Z to Y is then investigated from the sample (Y2, Z1, Y1),
. . ., (Y1511, Z1510, Y1510). For these data, the value of the partial correlation co-
efficient of (Yt+1, Zt) given Yt is −0.024 × 10−4, leading to the conclusion of a
global non-causality (p = .36). However, such a conclusion can be misleading
when the relationship between Yt+1 and Zt changes according to the value taken
by Yt. This is exactly what happens here. For example, if one considers the sub-
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Table 3

Percentages of rejection of the null hypothesis of local non-causality, as estimated from
1 000 replicates, for the tests at level α = 0.05 based on ρZ→Y

xh , ρ̃Z→Y
xh , τZ→Y

xh and τ̃Z→Y
xh

under D-vine time series in which CZ→Y
x is a Normal or Clayton copula; upper panel:

(τ1, τ2, τ3, τ4) = (.30, .10, .10, .10); lower panel: (τ1, τ2, τ3, τ4) = (.50, .30, .75, .05)

Normal copula Clayton copula
τZ→Y
x Estimator n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

.0

ρZ→Y
xh 8.2 6.7 5.6 7.5 7.1 5.3

ρ̃Z→Y
xh 9.3 5.8 6.5 8.2 6.7 6.2

τZ→Y
xh 7.3 6.4 5.6 7.1 7.0 5.4
τ̃Z→Y
xh 8.8 5.9 6.4 7.3 6.5 6.0

.1

ρZ→Y
xh 48.4 65.5 84.0 46.3 61.9 83.1

ρ̃Z→Y
xh 49.5 66.0 88.1 47.6 65.1 87.7

τZ→Y
xh 45.9 63.1 82.7 44.5 60.6 81.5
τ̃Z→Y
xh 46.2 65.2 87.1 46.1 64.2 87.0

.2

ρZ→Y
xh 63.6 80.2 96.2 50.4 66.9 86.5

ρ̃Z→Y
xh 57.6 82.5 96.7 57.1 80.7 95.9

τZ→Y
xh 59.5 79.3 95.7 48.0 65.2 85.7
τ̃Z→Y
xh 52.8 81.7 96.0 54.7 79.0 95.3

.0

ρZ→Y
xh 6.9 6.6 5.9 6.7 7.9 6.2

ρ̃Z→Y
xh 8.7 7.6 6.3 10.2 7.4 5.3

τZ→Y
xh 6.5 6.6 5.9 5.8 7.6 5.9
τ̃Z→Y
xh 8.4 7.1 6.2 9.2 7.1 5.5

.1

ρZ→Y
xh 35.3 49.2 69.6 37.5 47.9 66.7

ρ̃Z→Y
xh 45.7 67.5 84.7 45.7 66.2 83.9

τZ→Y
xh 32.3 47.7 67.9 34.1 44.9 64.8
τ̃Z→Y
xh 43.5 66.8 84.2 44.0 64.8 83.3

.2

ρZ→Y
xh 60.9 82.0 94.1 46.5 66.4 85.2

ρ̃Z→Y
xh 55.3 83.1 96.2 56.4 80.6 94.4

τZ→Y
xh 57.6 80.3 93.7 42.4 64.1 84.1
τ̃Z→Y
xh 52.6 81.3 96.2 52.2 79.5 94.2

sample for which Yt > 0, then the partial correlation coefficient is 0.072, which
this time is significantly different from zero (p = .039). On the other hand, the
subsample for which Yt < 0 leads to a partial correlation of −0.095, which also
significantly departs from zero (p < .01).

In order to take into account the levels of Yt, a solution is to rely on local
causality indices as introduced in Section 3. Figure 3 reports the values of ρZ→Y

xh ,
ρ̃Z→Y
xh , τZ→Y

xh and τ̃Z→Y
xh as a function of x, together with 95% point-wise con-

fidence intervals. The values of x that have been considered range between the
10-th and 90-th percentile of the Y . It is clear from these figures that the level
of Yt has an influence on the four local causality indices.

To interpret the recorded values at Figure 3, note that a positive value taken
by an index under consideration (for e.g. at x ≈ 0.01) suggests that, in cases
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Fig 3. Curves of ρZ→Y
xh (upper left), ρ̃Z→Y

xh (upper right), τ̃Z→Y
xh (bottom left) and τ̃Y →Z

xh
(bottom right) as a function of x, together with the 95% point-wise confidence bands, for the
Standard and Poor’s 500 bivariate time series

where the first difference in logarithmic volume at period t is given by x, then
large (resp. small) values of the return’s growth rate Zt tend to be followed by
large (resp. small) values of the volume’s growth rate Yt+1. Quite the opposite,
when a local causality index is negative (for e.g. at x ≈ −0.01), this conveys the
idea that given Yt = x, large (resp. small) values of Yt+1 generally occur after
small (resp. large) values of Zt.

From Figure 3, it can be seen that causal relationship between Y and Z
appears to be stronger for negative Yt, i.e. when the ratio of the volume at period
t and the volume at period t−1 is less than 1, i.e. when there is a decrease in stock
volumes from period t − 1 to period t. This technically suggests that, in these
cases, the return’s growth rate at period t is more likely to influence the volume’s
growth rate at period t + 1 compared to when Yt is positive, i.e. compared to
when there is an increase in stock volumes from period t− 1 to period t.
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Table 4

P-values of the tests of local non-causality based on ρZ→Y
xh , ρ̃Z→Y

xh , τZ→Y
xh and τ̃Z→Y

xh at
selected values of x for the Standard and Poor’s 500 bivariate time series

x ρZ→Y
xh ρ̃Z→Y

xh τZ→Y
xh τ̃Z→Y

xh

−0.0100 < .001 < .001 < .001 < .001

−0.0075 < .001 < .001 < .001 < .001

−0.0050 < .001 < .001 < .001 < .001

−0.0025 < .001 .002 < .001 .002

0.0000 < .001 < .001 .005 .006

0.0025 .337 .376 .336 .373

0.0050 .514 .655 .526 .663

0.0075 .064 .144 .070 .150

0.0010 .001 .005 .001 .005

To complement the above analysis, the tests for the null hypothesis of lo-
cal non-causality have been performed for selected values of x; the results on
the p-values of the tests are in Table 4. First note that the four tests are in
agreement on the acceptance or rejection of H0 at the 5% level. Hence, for
x ∈ {−.0100,−.0075,−.0050,−.0025, .0000, .0100}, the null hypothesis of non-
causality is clearly rejected, while H0 is not rejected when x ∈ {.0025, .0050,
.0075}. Further, an application of Bonferroni’s correction to the tests based on
ρZ→Y
xh , ρ̃Z→Y

xh , τZ→Y
xh and τ̃Z→Y

xh for testing at multiple values of x leads to the
stronger statement that all of the reported p-values that were significant at the
prescribed point-wise 5% level are also jointly significant at a family-wise error
rate of 5%, except for the test based on τ̃Z→Y

xh at x = 0, which is no longer
regarded significant after the rectification for multiple testing. These results are
in accordance with the conclusions of the tests of non-causality based on the
partial correlation coefficient. This is also in agreement with the curves in Fig-
ure 3, where it can be observed that when x < 0.005, the 95% confidence bands
all lie below zero, indicating a negative causal relationship; on the other side,
these confidence bands are above zero for x > 0.009, suggesting a positive causal
relationship.

Appendix A: Assumptions needed for the asymptotic results in
Propositions 3.1, 4.1 and 4.2

In the sequel, let Jx be an open neighborhood of x.



4144 T. Bouezmarni et al.

A.1. Assumptions for the weak convergence of CZ→Y
xh and θZ→Y

Λ,xh

(S) {(Yt+1, Zt, Yt)}t∈Z is stationary and its α-mixing coefficients satisfy αr =
O(r−a) for some a > 6. Also, one can find M > 0 such that the joint
density h�1,...,�5 of (Y0, Y�1 , . . . , Y�5) satisfies h�1,...,�5(x0, . . . , x�5) ≤ M for
all x0, . . . , x�5 ∈ Jx..

(C) The first order partial derivatives C
[1]
x (u, v) = ∂Cx(u, v)/∂u and

C
[2]
x (u, v) = ∂Cx(u, v)/∂v are continuous respectively on (0, 1)× [0, 1] and

[0, 1]× (0, 1).
(L) The kernelK is positive, continuous, symmetric, vanishes outside of [−1, 1]

and its second order derivative is bounded. Also, the density fY associated
to {Yt}t∈Z exists, is twice differentiable and strictly positive at x.

(H) The following functions are uniformly continuous for (w, y, z) ∈ Jx × R2:

Ḣw(y, z) =
∂

∂w
Hw(y, z) and Ḧw(y, z) =

∂2

∂w2
Hw(y, z).

(N ) As n → ∞, nh5 → κ2 < ∞ and n8−δh21 → ∞ for some δ > 0.

A.2. Assumptions for the weak convergence of C̃Z→Y
xh and θ̃Z→Y

Λ,xh

(H�) For j ∈ {1, 2}, the functions Fjw{F−1
jw (u)}, Ḟjw{F−1

jw (u)} and

F̈jw{F−1
jw (u)} are uniformly continuous for (w, u) ∈ Jx×[0, 1]. In addition,

the following functions are uniformly continuous for (w, u, v) ∈ Jx×[0, 1]2:

Ċw(u, v) =
∂

∂w
Cw(u, v) and C̈w(u, v) =

∂2

∂w2
Cw(u, v).

(N �) As n → ∞, nh5 → κ2 < ∞, n8−δh21 → ∞ for some δ > 0, max(nh5
1, nh

5
2)

< ∞ and max(h/h1, h/h2) < ∞.

A.3. Assumptions for the consistency of μ̂Λ,x and ̂̃μΛ,x

(HB) Let D
(j)
1x (y) = ∂jF1x(y)/∂x

j and D
(j)
2x (y) = ∂jF2x(y)/∂x

j . Then for

each j ∈ {1, . . . , p + 1}, the mappings u 
→ D
(j)
1x {F−1

1x (u)} and u 
→
D

(j)
2x {F−1

2x (u)} are Lipchitz continuous in u ∈ [0, 1]. In addition, D
(p+1)
1x

and D
(p+1)
2x are uniformly bounded in w ∈ Jx.

(NB) As n → ∞, hB → 0, nh5
B → ∞ and nh2p+5

B → 0.

Appendix B: Proofs of the main results

B.1. Proof of Proposition 3.1

(i) Since ΘZ→Y
Λ,xh =

√
nh{Λ(CZ→Y

xh ) − Λ(CZ→Y
x )} and because Λ is Hadamard

differentiable, an application of the Functional delta method yields

ΘZ→Y
Λ,xh = Λ′

CZ→Y
x

{√
nh
(
CZ→Y

xh − CZ→Y
x

)}
+ oP(1)
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= Λ′
CZ→Y

x

(
CZ→Y

xh

)
+ oP(1).

Hence, ΘZ→Y
Λ,xh converges in distribution to Λ′

CZ→Y
x

(
CZ→Y

x

)
. Since Λ′

CZ→Y
x

is a

linear functional and CZ→Y
x is Gaussian, Lemma 3.9.8 in [25] entails that ΘZ→Y

Λ,xh

converges in distribution to a normal random variable ΘZ→Y
Λ,x with mean

μΛ,x = E
{
Λ′
CZ→Y

x

(
CZ→Y

x

)}
= Λ′

CZ→Y
x

{
E
(
CZ→Y

x

)}
= κ a1 Λ

′
CZ→Y

x
(Bx).

Next, upon noting that

μ2
Λ,x = Λ′

CZ→Y
x

{E(Cx)}Λ′
CZ→Y

x
{E(Cx)}

= Λ′
CZ→Y

x
◦ Λ′

CZ→Y
x

{E (Cx(u, v)) E (Cx(u
′, v′))} ,

the variance of ΘZ→Y
Λ,x can be written

σ2
Λ,x = Var

{
Λ′
CZ→Y

x
(CZ→Y

x )
}

= Cov
{
Λ′
CZ→Y

x
(CZ→Y

x ),Λ′
CZ→Y

x
(CZ→Y

x )
}

= E
{
Λ′
CZ→Y

x
(CZ→Y

x ) Λ′
CZ→Y

x
(CZ→Y

x )
}
− μ2

Λ,x

= Λ′
CZ→Y

x
◦ Λ′

CZ→Y
x

{
E
(
CZ→Y

x (u, v)CZ→Y
x (u′, v′)

)}
− μ2

Λ,x

= Λ′
CZ→Y

x
◦ Λ′

CZ→Y
x

{
E
(
CZ→Y

x (u, v)CZ→Y
x (u′, v′)

)}
−Λ′

CZ→Y
x

◦ Λ′
CZ→Y

x
{E (Cx(u, v)) E (Cx(u

′, v′))}
= Λ′

CZ→Y
x

◦ Λ′
CZ→Y

x

{
E
(
CZ→Y

x (u, v)CZ→Y
x (u′, v′)

)
− E (Cx(u, v)) E (Cx(u

′, v′))
}

= Λ′
CZ→Y

x
◦ Λ′

CZ→Y
x

[
Cov
{
CZ→Y

x (u, v),CZ→Y
x (u′, v′)

}]
= Λ′

CZ→Y
x

◦ Λ′
CZ→Y

x
(γx).

(ii) By the same arguments as for ΘZ→Y
Λ,xh , one can write

Θ̃Z→Y
Λ,xh = Λ′

CZ→Y
x

(
C̃Z→Y

xh

)
+ oP(1) � Θ̃Z→Y

Λ,x ,

where Θ̃Z→Y
Λ,x is a normal random variable with variance σ2

Λ,x and mean

μ̃Λ,x = E
{
Λ′
CZ→Y

x

(
C̃Z→Y

x

)}
= Λ′

CZ→Y
x

{
E
(
C̃Z→Y

x

)}
= κ a1 Λ

′
CZ→Y

x
(B̃x).

B.2. Proof of Proposition 4.1

Consider the version of Lxi given by

L∗
xi(u, v) = I

{
Yi+1 ≤ F−1

1xh(u), Zi ≤ F−1
2xh(v)

}
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−C [1]
x (u, v) I

{
Yi+1 ≤ F−1

1xh(u)
}

−C [2]
x (u, v) I

{
Zi ≤ F−1

2xh(v)
}
, (14)

and set λ∗
xh =

√
nh
∑n

i=1ωi(x, h)λ
∗
xi with λ∗

xi = Λ′
CZ→Y

x
(L∗

xi). The condition in

(12) on the estimators Ĉ
[1]
x and Ĉ

[2]
x of the partial derivatives of CZ→Y

x allows
to write

σ̂2
Λ,x

a2/Sn,0(x)
=

n∑
i=1

ωi(x, h)

(
λ∗
xi −

λ∗
xh√
nh

)2

+ oP(1).

Next, introducing the linear functional Υ : l∞([0, 1]2) → l∞([0, 1]2) defined for

any δ ∈ l∞([0, 1]2) as Υ(δ)(u, v) = δ(u, v)−C
[1]
x (u, v) δ(u, 1)−C

[2]
x (u, v) δ(1, v),

and letting
ζxi(u, v) = I

{
Yi+1 ≤ F−1

1xh(u), Zi ≤ F−1
2xh(v)

}
,

one can write L∗
xi(u, v) = Υ(ζxi). Since one has for Υ̃ = Λ′

CZ→Y
x

◦Υ that λ∗
xi =

Υ̃(ζxi), it follows that

σ̂2
Λ,x

a2/Sn,0(x)
=

n∑
i=1

ωi(x, h)

⎧⎨⎩Υ̃(ζxi)−
n∑

j=1

ωj(x, h) Υ̃(ζxj)

⎫⎬⎭
2

+ oP(1)

=

n∑
i=1

ωi(x, h)

⎧⎨⎩Υ̃

⎛⎝ζxi −
n∑

j=1

ωj(x, h) ζxj

⎞⎠⎫⎬⎭
2

+ oP(1)

=

n∑
i=1

ωi(x, h) Υ̃ ◦ Υ̃

⎧⎨⎩
⎛⎝ζxi − n∑

j=1

ωj(x, h) ζxj

⎞⎠
×

⎛⎝ζxi −
n∑

j=1

ωj(x, h) ζxj

⎞⎠⎫⎬⎭+ oP(1)

= Υ̃ ◦ Υ̃

⎧⎨⎩
n∑

i=1

ωi(x, h)

⎛⎝ζxi −
n∑

j=1

ωj(x, h) ζxj

⎞⎠
×

⎛⎝ζxi −
n∑

j=1

ωj(x, h) ζxj

⎞⎠⎫⎬⎭+ oP(1).

Now observe that for the term inside the brackets,

n∑
i=1

ωi(x, h)

⎛⎝ζxi −
n∑

j=1

ωj(x, h) ζxj

⎞⎠⎛⎝ζxi −
n∑

j=1

ωj(x, h) ζxj

⎞⎠
=

n∑
i=1

ωi(x, h) ζxi(u, v) ζxi(u
′, v′)
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−
{

n∑
i=1

ωi(x, h) ζxi(u, v)

}⎧⎨⎩
n∑

j=1

ωj(x, h) ζxj(u
′, v′)

⎫⎬⎭
= CZ→Y

xh {min(u, u′),min(v, v′)} − CZ→Y
xh (u, v)CZ→Y

xh (u′, v′).

Since CZ→Y
xh is consistent for CZ→Y

x , an application of the Continuous Mapping
Theorem entails that as n → ∞

σ̂2
Λ,x

a2/Sn,0(x)

= Υ̃ ◦ Υ̃
{
CZ→Y

x {min(u, u′),min(v, v′)}−CZ→Y
x (u, v)CZ→Y

x (u′, v′)
}
+ oP(1)

= Λ′
CZ→Y

x
◦ Λ′

CZ→Y
x

◦Υ ◦Υ
{
CZ→Y

x {min(u, u′),min(v, v′)}
−CZ→Y

x (u, v)CZ→Y
x (u′, v′)

}
+ oP(1)

= Λ′
CZ→Y

x
◦ Λ′

CZ→Y
x

[
fY (x)

a2
Cov
{
CZ→Y

x (u, v),CZ→Y
x (u′, v′)

}]
+ oP(1)

=
fY (x)

a2
σ2
Λ,x + oP(1).

Using the fact that Sn,0(x) = fY (x) + oa.s.(1), see for instance [20],

σ̂2
Λ,x =

fY (x)

Sn,0(x)
σ2
Λ,x + oP(1) → σ2

Λ,x.

B.3. Proof of Proposition 4.2

For (u, v) ∈ [0, 1]2, define the vectors L�
x(u, v) and L′

x(u, v) such that

L�
x = (L�

x1, . . . , L
�
xn)

�
and L′

x = (L∗
x1, . . . , L

∗
xn)

�
,

where L∗
xh is as in Equation (14). Also define the diagonal matrix W with i-th

element h−1
B K{(Yi−x)/hB}, as well as the matrix X ∈ Rn×(p+1) whose entries

are given by

Xij =

(
Yi − x

hB

)j−1

.

From p. 59 in [8], one has for [A]3 being the third row of matrix A that

β̂2,Λ =
[(
X�WX

)−1
]
3
X�W

{
Λ′
CY →Z

x
(L�

x)
}
,

where it is understood that a functional applied to a vector is taken component-
wise. As a primary step, consider

β̂′
2,Λ =

[(
X�WX

)−1
]
3
X�W

{
Λ′
CY →Z

x
(L′

x)
}
.

The following Lemma is helpful to derive the limiting behaviour of β̂′
2,Λ. In the

sequel, let Y(y, z) = (I(Y2 ≤ y, Z1 ≤ z), . . . , I(Yn+1 ≤ y, Zn ≤ z))
�
.
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Lemma B.1. Under Assumptions (L), (N ), (S), (HB) and (NB),

sup
y,z∈R

∣∣∣∣[(X�WX
)−1
]
3
X�WY(y, z)− 1

2
h2
B Ḧx(y, z)

∣∣∣∣ = oP(h
2
B).

Invoking Lemma B.1, one obtains that

sup
(u,v)∈[0,1]2

∣∣∣[(X�WX
)−1
]
3
X�WY

{
F−1
1xh(u), F

−1
2xh(v)

}
−h2

B

2
Ḧx

{
F−1
1x (u), F−1

2x (v)
}∣∣∣∣

≤ sup
(y,z)∈R2

∣∣∣∣[(X�WX
)−1
]
3
X�WY(y, z)− h2

B

2
Ḧx(y, z)

∣∣∣∣
+

h2
B

2
sup

(u,v)∈[0,1]2

∣∣∣Ḧx

{
F−1
1xh(u), F

−1
2xh(v)

}
− Ḧx

{
F−1
1x (u), F−1

2x (v)
}∣∣∣

= oP(h
2
B),

where the last equality follows from the uniform continuity of Ḧx and the fact
that it can be deduced from Proposition 1 of [5] that F−1

kxh − F−1
kx = oP(1).

Therefore, since Λ′
CY →Z

x
is a linear functional, the continuous mapping theorem

implies ∣∣∣∣β̂′
2,Λ − h2

B

2
Λ′
Cx

(
Υ
[
Ḧx{F−1

1x (·), F−1
2x (·)}

])∣∣∣∣ = oP(h
2
B) . (15)

The assumption on the estimators of the partial derivatives in (12) entails that

|β̂2,Λ − β̂′
2,Λ| = oP(h

2
B). Now upon noting that

μΛ,x = κ a1 Λ
′
Cx

(
Υ
[
Ḧx{F−1

1x (·), F−1
2x (·)}

])
,

it follows that as n → ∞,

μ̂Λ,x − μΛ,x =
√
nh5 a1

{
β̂2,Λ

h2
B

− Λ′
Cx

(
Υ
[
Ḧx{F−1

1x (·), F−1
2x (·)}

])}
−
(√

nh5 − κ
)
a1 Λ

′
Cx

(
Υ
[
Ḧx{F−1

1x (·), F−1
2x (·)}

])
= oP(1),

since Assumption (N ) implies
√
nh5 → κ as n → ∞.

Appendix C: Proof of two lemmas

This section is devoted to the proof of Lemma B.1; the latter is used in order
to establish Proposition 4.2. To this end, the following lemma will be invoked.
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Lemma C.1. Let Z̃
(j)
xn = Z

(j)
xn − EZ

(j)
xn , where for (y, z) ∈ R2,

Z(j)
xn (A) =

1

nhB

n∑
i=1

(
Yi − x

hB

)j

K

(
Yi − x

hB

)
I (Yi+1 ≤ y, Zi ≤ z) .

Then under Assumptions (L), (N ), (S), (HB) and (NB), the process
√
nhB Z̃

(j)
xn

is asymptotically tight.

C.1. Proof of Lemma B.1

For any y, z ∈ R, let(
β̂0(y, z), . . . , β̂p(y, z)

)�
=
(
X�WX

)−1
X�WY(y, z)

=

(
1

n
X�WX

)−1(
1

n
X�WY(y, z)

)
, (16)

so that [(
X�WX

)−1
X�
]
3
WY(y, z) = β̂2(y, z).

Observe that the (i, j)-th element of the matrix X�WX/n is Sn,i+j−2(x). Also,
from Corollary 1 of [20], one deduces that under Assumptions (S) and (L),

Sn,j(x) = fY (x)

∫
ujK(u) du + oas(1).

Therefore, an application of the continuous mapping Theorem entails(
1

n
X�WX

)−1

=
1

fY (x)
S−1 + oP(1), (17)

where S ∈ R(p+1)×(p+1) is such that Sij =
∫
uj+i−2K(u) du. Also note that

the j-th element of X�WY(y, z)/n is Z
(j)
xn (y, z) and that from Lemma C.1

Z
(j)
xn = EZ

(j)
xn + OP(1/

√
nhB). Moreover, expanding Hw in a Taylor series of

order p around w = x yields, for all |w − x| ≤ hB ,

Hw(y, z) =

p∑
k=0

{
∂k

∂xk
Hx(y, z)

}
(w − x)k

k!
+ o(hp

B).

As a consequence,

E
{
Z(j)
xn (y, z)

}
= E

{(
Y1 − x

hB

)j

K

(
Y1 − x

hB

)
HY1(y, z)

}



4150 T. Bouezmarni et al.

= o(hp
B) +

p∑
k=0

hk
B

k!

{
∂k

∂xk
Hx(y, z)

}
E

{(
Y1 − x

hB

)j+k

K

(
Y1 − x

hB

)}

= o(hp
B) +

p∑
k=0

hk
B

k!

{
∂k

∂xk
Hx(y, z)

}{
fY (x)

∫
uj+kK(u) du + o(1)

}
= o(hp

B) + {fY (x)Sj + o(1)}

×
(
h0
B

0!

∂0

∂x0
Hx(y, z),

h1
B

1!

∂1

∂x1
Hx(y, z), . . . ,

hp
B

p!

∂p

∂xp
Hx(y, z)

)�
,

where Sj is the (j + 1)-th line of S. Thus, uniformly in (y, z) ∈ R2,

1

n
X�WY(y, z)

= {fY (x)S+ o(1)}

×
(
h0
B

0!

∂0

∂x0
Hx(y, z),

h1
B

1!

∂1

∂x1
Hx(y, z), . . . ,

hp
B

p!

∂p

∂xp
Hx(y, z)

)�

+ o(hp
B) +OP

(
1√
nhB

)
. (18)

Letting Ip+1 ∈ R(p+1)×(p+1) be the identity matrix, one has combining (16),
(17) and (18) that

(
β̂0(y, z), . . . , β̂p(y, z)

)�
= {Ip+1 + o(1)}

×
(
h0
B

0!

∂0

∂x0
Hx(y, z),

h1
B

1!

∂1

∂x1
Hx(y, z), . . . ,

hp
B

p!

∂p

∂xp
Hx(y, z)

)�

+ o(hp
B) +OP

(
1√
nhB

)
.

Since 1/
√
nhB = o(h2

B) (see Condition (NB)) and p ≥ 2, the announced result
follows.

C.2. Proof of Lemma C.1

For u, v ∈ [0, 1], consider the versions of Z
(j)
kxn and Z̃

(j)
kxn given by

U (j)
xn (u, v) =

√
nhBZ

(j)
xn

{
F−1
1x (u), F−1

2x (v)
}

and Ũ (j)
xn = U (j)

xn − EU (j)
xh .

Also, for A = [u1, u2]× [v1, v2] ⊆ [0, 1]2 let

U (j)
xn (A) = U (j)

xn (u2, v2)− U (j)
xn (u1, v2)− U (j)

xn (u2, v1) + U (j)
xn (u1, v1) ,
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and define Ũ (j)
xn (A) similarly. From Theorem 1.5.7 of [25], the tightness of Ũ (j)

xn

will entail that of
√
nhB Z̃

(j)
xn . Now to prove that Ũ (j)

xn is asymptotically tight
in l∞([0, 1]2), it suffices to show (see again Theorem 1.5.7 of [25]) that for any

fixed u ∈ [0, 1]2 the random variable Ũ (j)
xn (u) is asymptotically tight in R and

that for any ε > 0,

lim
δ→0

lim
n→∞

P

⎧⎪⎨⎪⎩ sup
u,v∈[0,1]2

|u−v|<δ

∣∣∣Ũ (j)
xn (u)− Ũ (j)

xn (v)
∣∣∣ > ε

⎫⎪⎬⎪⎭ = 0, (19)

where it is understood that | · | is the Manhattan distance. First, for any fixed

u ∈ [0, 1]2, a consequence of Theorem 6 in [19] is that Ũ (j)
xn (u) is asymptotically

normal, and thus asymptotically tight in R. It then remains to show that (19)
holds. To this end, let κγ = �(nhB)

1/2+γ� for some γ ∈ (0, 1/2) and define the
product space Tκγ = Iκγ ×Iκγ , where Iκγ = {0, 1/κγ , 2/κγ , . . . , 1}. Next, for any
u ∈ [0, 1], define uκγ

= max{ζ ∈ Iκγ : ζ ≤ u} and uκγ = min{ζ ∈ Iκγ : ζ > u},
and for any u = (u1, u2) ∈ [0, 1]2, let uκγ

= (u1κγ
, u2κγ

) and uκγ = (u1κγ , u2κγ ).
As under Assumption (L) K is positive and vanishes outside of [−1, 1], one has
for any z ∈ R that |K(z)zj | ≤ K(z). One can then write∣∣∣U (j)

xn (u)− U (j)
xn (uκγ

)
∣∣∣ ≤ 1√

nhB

n∑
i=1

K

(
Yi − x

hB

)
×
[
I
{
Yi+1 ≤ F−1

1x (u1), Zi ≤ F−1
2x (u2)

}
− I

{
Yi+1 ≤ F−1

1x (u1κγ
), Zi ≤ F−1

2x (u2κγ
)
}]

= U (0)
xn (uκγ )− U (0)

xn (uκγ
).

Therefore,∣∣∣Ũ (j)
xn (u)− Ũ (j)

xn (uκγ
)
∣∣∣ ≤

∣∣∣Ũ (0)
xn (uκγ )− Ũ (0)

xn (uκγ
)
∣∣∣

+2
∣∣∣E{Ũ (0)

xn (uκγ )− Ũ (0)
xn (uκγ

)
}∣∣∣ . (20)

In order to bound the second term on the right hand side of (20), one has in
view of Assumption (HB) that a Taylor expansion of order p+1 allows to write,
uniformly in y ∈ R,

Fkw(y) = Fkx(y) +

p+1∑
j=1

{
∂j

∂xj
Fkx(y)

}
(w − x)j

j!

+

{
∂p+2

∂xp+2
Fkx(y)

∣∣∣∣w=ξw,x

}
(w − x)p+2

(p+ 2)!
,

where ξw,x lies between w and x for any w ∈ Jx. Under Assumption (HB), there
exists η > 0 such that for j ∈ {1, . . . , p+ 1},∣∣∣∣{ ∂j

∂xj
Fkx(y)

}
−
{

∂j

∂xj
Fkx(y

′)

}∣∣∣∣ ≤ η |Fkx(y)− Fkx(y
′)|
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and

sup
w∈Jx

sup
y∈R

∣∣∣∣ ∂p+2

∂wp+2
Fkw(y)

∣∣∣∣ < η.

As a consequence, for hB taken sufficiently small, one deduces that for any
y ≤ y′, w ∈ [x− hB , x+ hB ] and k ∈ {1, 2},

|Fkw(y)− Fkw(y
′)| ≤ 4η {Fkx(y)− Fkx(y

′)}+ ηhp+2
B . (21)

Also, from Assumption (L) and routine computations, one has for n → ∞ that

E

{
K

(
Y1 − x

hB

)}
= {1 + o(1)}hB fY (x) ≤ 2hB fY (x). (22)

Hence, Hoeffding’s inequality combined with (21) and (22) yields∣∣∣E{Ũ (0)
xn (uκγ )− Ũ (0)

xn (uκγ
)
}∣∣∣

=

√
n

hB

∣∣∣∣∣E
[(

Y1 − x

hB

)j

K

(
Y1 − x

hB

)
×
{
HY1

(
F−1
1x (u1κγ ), F

−1
2x (u2κγ

)
)
−HY1

(
F−1
1x (v1κγ ), F

−1
2x (v2κγ

)
)}]∣∣∣

≤ 2

√
n

hB
max

k∈{1,2}
E

[
K

(
Y1 − x

hB

){
FkY1 ◦ F−1

kx (ukκγ )− FkY1 ◦ F−1
kx (vkκγ )

}]
≤ 16 ηfY (x)×

√
nhB

(
1

κγ
+ hp+2

B

)
= o(1), (23)

where the last equality is a consequence of the definition of κγ and Assump-
tion (NB). Hence, from (20) and (23),∣∣∣Ũ (j)

xn (u)− Ũ (j)
xn (v)

∣∣∣ ≤
∣∣∣Ũ (0)

xn (uκγ )− Ũ (0)
xn (uκγ

)
∣∣∣+ ∣∣∣Ũ (0)

xn (vκγ )− Ũ (0)
xn (vκγ

)
∣∣∣

+
∣∣∣Ũ (j)

xn (uκγ
)− Ũ (j)

xn (vκγ
)
∣∣∣+ o(1) .

Since for δ > 2κγ , |u− v| < δ implies |uκγ
− vκγ

| < 2δ,

sup
u,v′∈[0,1]2;
|u−v|<δ

∣∣∣Ũ (j)
xn (u)− Ũ (j)

xn (v)
∣∣∣ ≤ 3 max

�∈{1,2}
max

u,v′∈Tκγ ;

|u−v|<2δ

∣∣∣Ũ (�)
xn (u)− Ũ (�)

xn (v)
∣∣∣+ o(1).

From there, Equation (19) will be established ift for any ε > 0 and � ∈ {1, 2},

lim
δ→0

lim
n→∞

P

⎧⎪⎨⎪⎩ max
u,v′∈Tκγ ;

|u−v|<δ

∣∣∣Ũ (�)
xn (u)− Ũ (�)

xn (v)
∣∣∣ > ε

⎫⎪⎬⎪⎭ = 0.
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To this end, Lemma 2 of [1] will be used (see also Theorem 3 and the remarks
on page 1665 in [3]). The first step is to show that there exists η� > 0 and β > 1
such that for any ε > 0 and n sufficiently large, it holds that for any rectangle
A ⊆ [0, 1]2 whose corner points are all distinct and lie in Tκγ ,

P

{∣∣∣Ũ (j)
xn (A)

∣∣∣ > ε
}
≤ η�

ε4
{χ̃hB

(A)}β , (24)

where χ̃hB
(A) = μ(A) + χhB

(A), with μ being Lebesgue’s measure and

χhB
(A) =

1

hB
E

[
I {(F1x(Y2), F2x(Z1)) ∈ A}K

(
Y1 − x

hB

)]
.

From the proof of Lemma 2 in [5] (see Equation (12) therein), one has under
Assumptions (S), (L) and (H) that there exists η > 0 such that for any A ⊆
[0, 1]2 and n sufficiently large,

E

{∣∣∣Ũ (0)
xn (A)

∣∣∣6} ≤ η

{
χhB

(A) + h
5a−30

a

n2h2
B

+
h

a−6
a

B + χhB
(A)2−

4
a

nhB
+ χhB

(A)3−
6
a

}
.

A close inspection of their arguments shows that the latter equation remains

valid when Ũ (0)
xn is replaced by Ũ (j)

xn . Since χhB
(A) ≤ χ̃hB

(A), one can conclude
that for n sufficiently large and � ∈ {0, j},

E

{∣∣∣Ũ (�)
xn (A)

∣∣∣6} ≤ η

{
χ̃hB

(A) + h
5a−30

a

B

n2h2
B

+
h

a−6
a

B + χ̃hB
(A)2−

4
a

nhB
+ χ̃hB

(A)3−
6
a

}
= η {χ̃hB

(A)}β
{
R(1)

n (β,A) +R(2)
n (β,A)

}
, (25)

where

R(1)
n (β,A) =

{χ̃hB
(A)}1−β

(nhB)2
+

{χ̃hB
(A)}2− 4

a−β

nhB
+ χhB

(A)3−
6
a−β

and

R(2)
n (β,A) = {χ̃hB

(A)}−β

(
h

5a−30
a

B

n2h2
B

+
h

a−6
a

B

nhB

)
.

From the definition of μ and computations similar as those used for the deriva-
tion of (23), one can show that for n sufficiently large and any A ⊆ [0, 1]2 whose
corner points are all distinct and lie in Tκγ ,

1

κ2
γ

≤ μ(A) ≤ χ̃hB
(A) ≤ 16 fY (x). (26)

Because κγ = (nhB)
1/2+γ , one has from (26) and the fact that Assumption (NB)

ensures that nhB > 1 when n is large, that for any β ∈ (1, 1 + a−1),

R(1)
n (β,A) ≤ (nhB)

(1−β)(1+2γ)−2 + {16fY (x)}1−
5
a + {16fY (x)}2−

7
a .
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Since a > 6, taking any γ ∈ (0, 1/2) entails that for n sufficiently large,

R(1)
n (β,A) ≤ 1 + {16fY (x)}1−

5
a + {16fY (x)}2−

7
a . (27)

Next, one obtains from the left hand side of (26) that

R(2)
n (β,A) ≤ (nhB)

(1+2γ)β−2 h
5a−30

a

B + (nhB)
(1+2γ)β−1h

a−6
a

B .

Since Assumption (NB) ensures that nh
2p+5
B → 0 as n → ∞, it follows that for

n large enough, n ≤ h−2p−5
B . Therefore,

R(2)
n (β,A) ≤ h

−(2p+4){(1+2γ)β−2}+ 5a−30
a

B + h
−(2p+4){(1+2γ)β−1}+a−6

a

B .

For the first term on the right-hand side of the previous inequality, observe that
as a > 6, taking γ ∈ (0, 1/8) and β ∈ (1, 1 + a−1) yields (1 + 2γ)β < 2; this
implies that for n sufficiently large,

h
−(2p+4){1+2γ)β−2}
B < 1.

For the second term, first choose γ, β such that

0 < γ <
a− 6

8a(2p+ 4)
and 1 < β <

a− 6

8a(2p+ 4)
.

This ensures that

(2p+ 4) {(1 + 2γ)β − 1} <
a− 6

a
,

and this finally entails

h
−(2p+4){(1+2γ)β−1}+a−6

a

B < 1.

Hence, R
(2)
n (β,A) ≤ 2. One can then invoke (25) and (27) in order to deduce

that there exists β > 1 and η′ > 0 such that for n taken sufficiently large,

E

{∣∣∣Ũ (j)
xn (A)

∣∣∣6} ≤ η′ {χ̃hB
(A)}β .

Equation (24) then follows from an application of the Markov inequality. Since
χ̃hB

is a finite measure on [0, 1]2, one uses Lemma 2 of [1] to conclude from
similar computations as those presented at the end of the proof of Proposition 1
in [5] that the first term on the right hand side of (24) is asymptotically negligible
as δ → 0. This in turn entails (19), so the proof is complete.
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