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Abstract: Motivated by the growing interest in sound forecast evalua-
tion techniques with an emphasis on distribution tails rather than average
behaviour, we investigate a fundamental question arising in this context:
Can statistical features of distribution tails be elicitable, i.e. be the unique
minimizer of an expected score? We demonstrate that expected scores are
not suitable to distinguish genuine tail properties in a very strong sense.
Specifically, we introduce the class of max-functionals, which contains key
characteristics from extreme value theory, for instance the extreme value in-
dex. We show that its members fail to be elicitable and that their elicitation
complexity is in fact infinite under mild regularity assumptions. Further we
prove that, even if the information of a max-functional is reported via the
entire distribution function, a proper scoring rule cannot separate max-
functional values. These findings highlight the caution needed in forecast
evaluation and statistical inference if relevant information is encoded by
such functionals.
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1. Introduction

Many of our day-to-day decisions rely on our ability to produce reasonable fore-
casts for quantities of interest. For example, production planning involves fore-
casts on consumer demand, decisions in farming depend on information about
the likely weather conditions and financial risk management uses statistical fea-
tures of portfolio losses. Usually, such quantities are modelled via a random vari-
able Y having an unknown probability distribution and the reasonable actions
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of a decision maker depend on the properties of this distribution. Forecasts can
encode such properties via real numbers, e.g. means or quantiles of the distribu-
tion, via sets, e.g. a confidence interval, or by a report of the whole distribution
function.

When several competing forecasts are available, a crucial problem is to de-
termine which one is most valuable. A principled approach to this task is to
compare the forecasts to a set of realizations of Y via a scoring rule or a scoring
function, see e.g. Gneiting and Raftery (2007) and Gneiting (2011). A scoring
function assigns a real-valued score based on a forecast and a realizing obser-
vation. If a functional, i.e. a statistical property, of a distribution is the unique
minimizer of the expected score with respect to this distribution, it is called
elicitable. Elicitability is a desirable property for comparative forecast evalua-
tion, where it can be used to incentivize risk-neutral forecasters to report their
beliefs (Gneiting, 2011). Moreover, elicitable functionals enable regression and
M-estimation (Fissler and Ziegel, 2016; Gneiting, 2011) and are central to var-
ious machine learning algorithms (Steinwart et al., 2014; Frongillo and Kash,
2018). Recent theoretical advances on scoring functions and elicitability in the
real-valued case can be found in Lambert, Pennock and Shoham (2008), Gneit-
ing (2011) and Steinwart et al. (2014). More general vector-valued functionals
are treated in Frongillo and Kash (2015, 2018) and Fissler and Ziegel (2016,
2019).

Many statistical functionals such as expectations, quantiles, and expectiles
are elicitable and there exist convenient characterizations of the corresponding
classes of consistent scoring functions, cf. Gneiting (2011) and the references
therein. On the other hand, several widely considered functionals fail to be elic-
itable, for instance the variance, the mode (Heinrich, 2014) and the prominent
financial risk measure Expected Shortfall (ES) (Weber, 2006; Gneiting, 2011).
The non-elicitability of the latter functional can be addressed via more general
notions of elicitability: Fissler and Ziegel (2016) show that ES is jointly elicitable
with the risk measure Value at Risk (VaR), where the latter is simply an ex-
treme quantile. In other words, ES has elicitation complexity equal to two in the
sense of Frongillo and Kash (2018). In this particular instance the elicitability
problems associated with ES can be resolved, at the cost of considering a higher
dimensional problem.

More generally, there is a recent growing interest in sound forecast evalu-
ation techniques with an emphasis on distribution tails rather than average
behaviour. For instance, Friederichs and Thorarinsdottir (2012) investigate the
use of scoring rules for distribution classes central to extreme value theory, and
Diks, Panchenko and van Dijk (2011), Lerch et al. (2017) as well as Holzmann
and Klar (2017) consider weighted scoring rules for forecasts of distribution
tails. An event-based approach to evaluate whether exceedances of high thresh-
olds are predicted correctly is pursued by Stephenson et al. (2008) and Ferro
and Stephenson (2011). Closely connected is the verification tool of Taillardat
et al. (2019) which is based on the asymptotic behavior of the continuously
ranked probability score (CRPS), conditional on high realizations. A funda-
mental question arising in this context is to what extent, and in which sense,
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statistical features of distribution tails are elicitable. The latter problem is the
central theme of this manuscript.

In our approach to this question we introduce the concept of max-functionals
which naturally arises from a key feature shared by the statistical functionals
that are typically considered in extreme value theory. We demonstrate that max-
functionals fail to be elicitable in a very strong sense. Consequently, it is natural
to ask whether part of the problem can be mitigated by abandoning point fore-
casts in favor of reports of the entire distribution function. In this regard we
generalize a result by Taillardat et al. (2019) and show that it is an inherent
property of all proper scoring rules that they cannot perfectly distinguish among
different max-functional values.

The manuscript is organized as follows. In Section 2 we review the three
notions of elicitability that are used in the recent literature. Section 3 introduces
the class of max-functionals and shows that they cannot be elicitable and that
their elicitation complexity is infinite under mild assumptions. Section 4 provides
examples of widely used max-functionals. In Section 5 we turn to reports of
entire distributions. We show that arbitrary large differences in tail behaviour,
either quantified by tail equivalence or max-functionals, can remain undetected
by proper scoring rules. Section 6 concludes with a discussion of the results.

2. Prerequisites: elicitability and elicitation complexity

For the reader’s convenience this section recalls the central definitions of elic-
itability and reviews basic findings. A more detailed overview of the existing
literature is given in Fissler and Ziegel (2016) and Gneiting (2011), whose no-
tation we follow here. Let O ⊆ R

d be a fixed set, called observation domain,
equipped with Borel σ-algebra O. We use F to denote a collection of proba-
bility distributions on (O,O), whilst also identifying probability distributions
with their cumulative distribution functions. A functional will be a mapping
T : F → A where A ⊆ R

n is called action domain. A measurable function
g : O → R is called F-integrable if it is integrable with respect to all F ∈ F .
Analogously, a function g : A×O → R is called F-integrable if for all x ∈ A the
function y �→ g(x, y) is integrable with respect to all F ∈ F . We use the short
notation

h̄(F ) :=

∫
O

h(y) dF (y) and ḡ(x, F ) :=

∫
O

g(x, y) dF (y)

for F-integrable functions h, g and x ∈ A, F ∈ F .

Scoring functions and elicitability In the following, S : A×O → R denotes
a scoring function, i.e. an F-integrable function. The central concepts connecting
scoring functions and statistical functionals are consistency and elicitability.

Definition 2.1 (Consistency). A scoring function S : A×O → R is F-consistent
for a functional T : F → A if for all x ∈ A and F ∈ F we have S̄(x, F ) ≥
S̄(T (F ), F ). It is called strictly F-consistent for T if it is F-consistent for T and
for all x ∈ A and F ∈ F the equality S̄(x, F ) = S̄(T (F ), F ) implies x = T (F ).
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Definition 2.2 ((Joint) elicitability). A functional T : F → A ⊆ R
n is called

elicitable if there exists a strictly F-consistent scoring function for T . It is called
jointly elicitable with the functional T ′ : F → A′ ⊆ R

k if (T, T ′) is an elicitable
functional.

An important necessary condition that a statistical functional needs to satisfy
in order to be elicitable is convexity of level sets, which goes back to Osband
(1985), cf. for instance Gneiting (2011, Theorem 6) and Lambert, Pennock and
Shoham (2008, Lemma 1) for a proof.

Theorem 2.3 (Convexity of level sets). Let T : F → A be an elicitable func-
tional. If F0, F1 ∈ F and λ ∈ (0, 1) are such that Fλ = λF1 + (1 − λ)F0 ∈ F ,
then T (F0) = T (F1) = t implies T (Fλ) = t.

Example 2.4. The simplest example of an elicitable functional is the mean
of a distribution. More precisely, let g : O → R be such that g and g2 are
F-integrable and define T : F → R via T (F ) = ḡ(F ). Then T is elicitable
with a strictly F-consistent scoring function given by S(x, y) = (x − g(y))2,
the ubiquitous squared error loss. Likewise, the moment functionals defined via
Tk(F ) :=

∫
yk dF (y) for k ∈ N are elicitable.

A simple example of a non-elicitable functional is the variance functional
Tvar(F ) := T2(F ) − T1(F )2, whose non-elicitability follows directly from Theo-
rem 2.3. Nevertheless, Tvar is jointly elicitable since the vector (T1, Tvar) can be
obtained from the elicitable vector (T1, T2) via a bijection and hence it is elic-
itable, see e.g. Gneiting (2011, Theorem 4). Another notable property is that
on every subset of F where T1 is constant, Tvar reduces to a shifted version
of the second moment T2 and is thus elicitable on this subset. That is, Tvar is
conditionally elicitable given T1 in the following sense.

Definition 2.5 (Conditional elicitability). Let T : F → A ⊆ R
n and T ′ : F →

A′ ⊆ R
k be functionals and let T ′ be elicitable. For any x ∈ A′ define the set

Fx := {F ∈ F | T ′(F ) = x}.
Then the functional T is called conditionally elicitable given T ′ if for any x ∈ A′

its restriction to the class Fx is elicitable.

The concept of conditional elicitability was first introduced by Emmer, Kratz
and Tasche (2015) and motivated by a conditional backtesting approach for
Expected Shortfall (ES) forecasts. A slight generalization was given by Fissler
and Ziegel (2016). Our definition coincides with the one from Fissler and Ziegel
(2016) except that we drop the condition that T ′ has elicitable components and
only require it to be elicitable. This allows for a more convenient presentation
of our results below.

Neither joint elicitability nor conditional elicitability imply elicitability, which
follows from Example 2.4 with the variance functional serving as a counterex-
ample. If a functional T is jointly elicitable with the functional T ′, and T ′ is
elicitable, then it is conditionally elicitable given T ′. Conversely, as discussed in
Fissler and Ziegel (2016), it is unclear under which conditions a conditionally
elicitable functional is jointly elicitable.
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Elicitation complexity The definitions of joint elicitability and conditional
elicitability both require a second elicitable functional T ′ accompanying the
functional of interest. The distinction between both functionals is made more
explicit in the concept of elicitation complexity. To illustrate this, recall Exam-
ple 2.4 and note that the variance functional satisfies Tvar = f(T1, T2), where
f(x1, x2) = x2 − x2

1. Since T1 and T2 are elicitable, we say that the variance
functional has complexity 2. In general, T has elicitation complexity at most
k if there is an elicitable functional T ′ : F → A′ ⊆ R

k such that T = f(T ′)
holds. Any f and T ′ satisfying this condition are then called link function and
intermediate functional, respectively. The smallest dimension k for which such
a representation is feasible is the elicitation complexity.

Definition 2.6 (Elicitation complexity). For any set of distribution functions
F the set of Rk-valued elicitable functionals defined on F is denoted via Ek(F).
For a functional T : F → A ⊆ R and sets Ck ⊆ Ek(F) the elicitation complexity
of T with respect to (Ck)k∈N is defined via

elic(T ) := min{k ∈ N | ∃T ′ ∈ Ck : T = f ◦ T ′ for some f : T ′(F) → A}.

If the minimum is not attained for any k ∈ N, the elicitation complexity of T
with respect to (Ck)k∈N is infinite and we write elic(T ) = ∞.

Elicitation complexity was introduced by Lambert, Pennock and Shoham
(2008) and further analyzed in Frongillo and Kash (2018), the latter motivated
by its role in empirical risk minimization (ERM) algorithms in machine learning.
Intuitively speaking, it replaces the question whether a functional is elicitable
by the question how complex it is to elicit the functional.

If no regularity conditions are imposed on f or T ′, this can lead to small com-
plexities without clear benefits in applications. More precisely, if f is arbitrary
and Ck = Ek(F) is chosen, pathological choices of f , like bijections from R

k

to R, cause all functionals to have complexity 1, as demonstrated by Frongillo
and Kash (2018, Remark 2). To avoid such problems, it is standard to choose
suitable subclasses Ck of intermediate functionals. One possible choice, which is
used by Frongillo and Kash (2018) as well as Dearborn and Frongillo (2019), is
Ck := Ik(F) ∩ Ek(F), where Ik(F) is the set of Rk-valued identifiable function-
als on F . Another possibility, implicitly used by Lambert, Pennock and Shoham
(2008) is to define Ck to be a subclass of all functionals which have elicitable
components.

Lastly, it is also possible to impose regularity on the link function f , e.g.
by requiring differentiability or continuity. Notably, joint elicitability can be
understood as a version of elicitation complexity where the link function is the
projection on the last component (Frongillo and Kash, 2018).

We need to be cautious when interpreting elicitation complexity, since impos-
ing different regularity conditions via (Ck)k∈N can lead to different elicitation
complexities for the same functional, see Frongillo and Kash (2018, Subsec-
tion 2.2) for an example. In particular, some R

k-valued functional might be
elicitable and simultaneously have elicitation complexity strictly greater than
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k. Conversely, a functional can have elicitation complexity 1, although it is not
itself elicitable, as illustrated in Frongillo and Kash (2018, Remark 1).

We conclude this section with a lemma which considers the properties of a
functional T if it is restricted to some subclass F2 ⊆ F . The first statement cor-
responds to the first part of Lemma 2.11 of Fissler and Ziegel (2015), the second
and third statement are simple extensions. Their proofs are straightforward and
therefore omitted.

Lemma 2.7. Let T : F → A be a functional and let F2 ⊆ F be non-empty.

(a) If T is elicitable, then the restricted functional T|F2
is elicitable.

(b) If elic(T ) = k with respect to (Ck)k∈N and we define C2
k := {T ′

|F2
| T ′ ∈ Ck},

then elic(T|F2
) ≤ k with respect to (C2

k)k∈N.
(c) If elic(T ) = k with respect to (Ck)k∈N and sets (C′

k)k∈N satisfy Ck ⊆ C′
k for

all k ∈ N, then elic(T ) ≤ k with respect to (C′
k)k∈N.

3. The elicitation complexity of max-functionals

This section introduces max-functionals, the central objects of our study, and
investigates their elicitability as well as their elicitation complexity. Henceforth,
let F always denote a convex class of distributions.

Definition 3.1. A functional T : F → R is called max-functional if

T (λF1 + (1− λ)F0) = max(T (F0), T (F1))

holds for all F0, F1 ∈ F and λ ∈ (0, 1).

The essential feature of a max-functional is that its value on convex combina-
tions of distributions is determined by the values attained on the extreme points.
Equivalently, we can also define min-functionals and all results carry over with
minor modifications. The constant functional is the simplest max-functional,
but we will usually not be interested in this trivial case. Instead, Section 4
collects some non-trivial examples of max-functionals that are routinely con-
sidered in extreme value theory. Also note that, by definition, restrictions of
max-functionals to a certain set of values are again max-functionals.

Lemma 3.2. Let T : F → R be a max-functional and A ⊂ R a set. Set
FA := {F ∈ F | T (F ) ∈ A}, then FA is convex and the restricted functional
T : FA → A ⊂ R is also a max-functional.

Non-elicitability of max-functionals We start by proving that max-func-
tionals cannot be elicitable. As remarked in Section 2 the usual way to show that
a functional is not elicitable consists of applying Theorem 2.3, i.e. showing that
it fails to have convex level sets. However, any max-functional has convex level
sets by definition. So this approach is not feasible, as in the case of the mode
functional (Heinrich, 2014). Instead, we employ the following new criterion.



Why scoring functions cannot assess tail properties 4021

Theorem 3.3. Let T : F → A be a functional. If there are F0, F1 ∈ F such
that T (F0) = T (F1) and

T (λF1 + (1− λ)F0) ∈ {T (F0), T (F1)} for all λ ∈ (0, 1),

then T is not elicitable.

Proof. Set x0 := T (F0), x1 := T (F1) and Fλ := λF1+(1−λ)F0 and let x0 = x1.
Assume that S is a strictly consistent scoring function for T . Then we have

S̄(x0, Fλ)− S̄(x1, Fλ) = λ(S̄(x0, F1)− S̄(x1, F1))

+ (1− λ)(S̄(x0, F0)− S̄(x1, F0))

and the first difference S̄(x0, F1)− S̄(x1, F1) is positive, while the second differ-
ence S̄(x0, F0)− S̄(x1, F0) is negative. Consequently, S̄(x0, Fλ) = S̄(x1, Fλ) for
some λ ∈ (0, 1). Since either T (Fλ) = x0 or T (Fλ) = x1 holds by assumption,
we arrive at a contradiction.

Corollary 3.4. If T : F → R is a non-constant max-functional, then it is not
elicitable.

Loosely speaking, Theorem 3.3 states that elicitable functionals cannot be
piecewise constant on convex combinations of distributions. It is closely con-
nected to Theorem 2.3, but of independent interest beyond its use to establish
non-elicitability for max-functionals. Fissler, Hlavinová and Rudloff (2019) use
similar arguments as in the proof of Theorem 3.3 to study necessary conditions
for the level sets of T in the context of set-valued functionals T : F → 2A, where
2A denotes the power set of A. Apart from that Frongillo and Kash (2018) state
that ‘no nonconstant finite-valued property is identifiable’. Theorem 3.3 implies
the following analogon.

Corollary 3.5. If T : F → R is a non-constant finite-valued functional, then
it is not elicitable.

Elicitation complexity of max-functionals Turning from the elicitability
question to the elicitation complexity of max-functionals, the question of elicita-
tion complexity is only meaningful in relation to a family of sets (Ck)k∈N, where
each set Ck ⊂ Ek(F) is a collection of reasonably regular R

k-valued elicitable
functionals, cf. Section 2. Our major regularity requirement ismixture-continuity
as in Bellini and Bignozzi (2015) and Fissler and Ziegel (2019).

Definition 3.6. A functional T : F → A is called mixture-continuous if for all
F0, F1 ∈ F such that λF1 + (1− λ)F0 ∈ F for all λ ∈ [0, 1], the mapping

[0, 1] → A, λ �→ T (λF1 + (1− λ)F0)

is a continuous function.

Many statistical properties are mixture-continuous, e.g. ratios of expecta-
tions, quantiles and expectiles, see Fissler and Ziegel (2019) for details. Lam-
bert, Pennock and Shoham (2008) consider only continuous functionals and
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Fissler and Ziegel (2019) and Bellini and Bignozzi (2015) show that under weak
assumptions, an elicitable functional T ′ is mixture-continuous if its expected
score function x �→ S̄(x, F ) is continuous for all F ∈ F . Therefore, a functional
which is not mixture-continuous can have discontinuous expected scores, leading
to difficulties in forecast evaluation, estimation and regression.

To avoid further degenerate behaviour, we impose a richness assumption on
potential intermediate functionals T ′ in the sense that we require the image
T ′(F) ⊆ R

k to have at least non-empty interior. This assumption is natural for
large enough classes F and was, for instance, used by Fissler and Ziegel (2016,
2019) when establishing results on consistent scoring functions for T ′.

In addition to mixture continuity, we follow Lambert, Pennock and Shoham
(2008) and consider only functionals with elicitable components. Summarising,
the first family of functionals which we consider in our complexity result is

Uk :=

{
T ′ ∈ Ek(F)

∣∣∣∣ T ′ mixture-continuous with elicitable
components, int(T ′(F)) = ∅

}
,

where int(B) denotes the interior of a set B ⊆ R
k. Alternatively, we require

that the image T ′(F) of a potential intermediate functional T ′ has not only
non-empty interior, but is itself an open set, i.e. we consider the family

Vk :=

{
T ′ ∈ Ek(F)

∣∣∣∣ T ′ mixture-continuous with elicitable
components, T ′(F) open

}
.

We are now in position to consider the elicitation complexity of max-functionals
with respect to these families.

Theorem 3.7. Let T : F → R be a max-functional. Then the following hold
true.

(a) T has elicitation complexity ∞ with respect to (Uk)k∈N unless T (F) con-
tains its supremum.

(b) T has elicitation complexity ∞ with respect to (Vk)k∈N unless T is con-
stant.

Proof. Assume there is a k ∈ N, a surjective functional T ′ : F → A′ in Uk or Vk

and a function f : A′ → R such that T = f ◦ T ′. Without loss of generality, T ′

is surjective, hence its mixture-continuity together with the assumed convexity
of F imply that A′ is path-connected. Since it has non-empty interior, we can
choose a hyperrectangle Q :=

∏k
i=1[ci, di] ⊆ int(A′) and consider each compo-

nent of T ′ isolated on Q. To do so, choose a component j ∈ {1, . . . , k} and a
zi ∈ [ci, di] for all i ∈ {1, . . . , k}\{j}. We can then obtain Fcj ,z, Fdj ,z ∈ F such
that

T ′(Fcj ,z) = (z1, . . . , zj−1, cj , zj+1, . . . , zk) and

T ′(Fdj ,z) = (z1, . . . , zj−1, dj , zj+1, . . . , zk).

All components of T ′ are elicitable and thus have convex level sets by Theo-
rem 2.3. Consequently, the i-th component, where i ∈ {1, . . . , k}\{j}, equals zi
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for all convex combinations of Fcj ,z and Fdj ,z. If we define

A′
j,z := {(z1, . . . , zj−1, x, zj+1, . . . , zk) | x ∈ (cj , dj)} ⊆ Q,

the fact that the j-th component has convex level sets and is mixture-continuous
implies that for all a ∈ A′

j,z there exists a λ ∈ (0, 1) with T ′(λFcj ,z + (1 −
λ)Fdj ,z) = a. The connection T = f ◦ T ′ now gives

f((z1, . . . , zj−1, x, zj+1, . . . , zk)) = f(T ′(λFcj ,z + (1− λ)Fdj ,z)

= T (λFcj ,z + (1− λ)Fdj ,z)

= max(T (Fcj ,z), T (Fdj ,z)),

for all x ∈ (cj , dj), implying that f has to be constant on the set A′
j,z. Re-

peating this argument for any choice of j ∈ {1, . . . , k} and zi ∈ [ci, di] with
i ∈ {1, . . . , k}\{j} shows that there is a C ∈ R such that f(q) = C for all
q ∈ int(Q).

Now fix x0 ∈ int(Q). For any x1 ∈ A′ we can choose distributions F0, F1 ∈ F
with T ′(F0) = x0 and T ′(F1) = x1. Since x0 ∈ int(Q) and T ′ is mixture-
continuous, there is a small μ ∈ (0, 1) such that T ′(μF1 + (1 − μ)F0) ∈ int(Q)
holds. We thus obtain

C = f(T ′(μF1 + (1− μ)F0)) = T (μF1 + (1− μ)F0)

= max(T (F0), T (F1))

= max(f(x0), f(x1)) = max(C, f(x1)),

implying f(x1) ≤ C. Since x1 was arbitrary, we have f(x) ≤ C for all x ∈ A′,
showing C = supT (F) and proving statement (a).

Assume now that A′ is open. Then for every x1 ∈ A′ there is a hyperrectangle
Q1 ⊆ A′ such that x1 ∈ int(Q1). Arguing as in the beginning of the proof gives
f(q) = f(x1) for all q ∈ int(Q1). So letting T ′(F1) = x1 as above we obtain a
ν ∈ (0, 1) such that T ′(νF1 + (1− ν)F0) ∈ int(Q1). This implies

C = f(T ′(μF1 + (1− μ)F0)) = max(T (F0), T (F1))

= f(T ′(νF1 + (1− ν)F0)) = f(x1).

Since x1 was arbitrary, T must be constant, proving part (b).

Theorem 3.7 implies infinite elicitation complexity of max-functionals in a
wide range of natural settings. Ultimately, our main interest lies in under-
standing the elicitation complexity with respect to the more general family Uk,
which imposes only very weak assumptions on a potential intermediate func-
tionals.

Corollary 3.8. Let T : F → R be a max-functional and let one of the following
conditions be satisfied.
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(i) T is unbounded.
(ii) T is surjective onto an open interval (a, b).
(iii) T is surjective onto a half-open interval [a, b).

Then T has elicitation complexity ∞ with respect to (Uk)k∈N.

Alternatively, considering elicitation complexity with respect to the family
(Vk)k∈N amounts to requiring more regularity for a potential intermediate func-
tional T ′ and, in this case, all non-constant max-functionals have infinite elicita-
tion complexity. Lemma 2.7 further implies that the infinite elicitation complex-
ity of max-functionals also extends to larger classes than the considered convex
family of distribution functions F and is valid with respect to smaller families
contained in (Uk)k∈N or (Vk)k∈N.

Finally, by definition, any functional of finite elicitation complexity is condi-
tionally elicitable, but it is unclear whether the reverse implication holds. We
thus conclude with showing that max-functionals with infinite elicitation com-
plexity can neither be conditionally elicitable nor jointly elicitable.

Theorem 3.9. Let T : F → R be a max-functional such that elic(T ) = ∞ with
respect to a family (Ck)k∈N. Let T

′ : F → A′ be a functional with T ′ ∈ Cm for
some m ∈ N. Then the following hold true.

(a) T is not conditionally elicitable given T ′.
(b) T is not jointly elicitable with T ′.

Proof. For the first part assume conversely, that there is an m ∈ N and a
functional T ′ ∈ Cm such that T is conditionally elicitable given T ′. That is,
T is elicitable on the subclass Fx = {F ∈ F | T ′(F ) = x} for any x ∈ A′. By
assumption, there is no link function f such that T = f ◦T ′ holds. Consequently,
there is at least one z ∈ A′ ⊆ R

m such that T is not constant on Fz. If z defines
such a class, then it is convex due to the elicitability of T ′ and moreover we can
find F0, F1 ∈ Fz such that T (F0) = T (F1) holds. Theorem 3.3 now implies that
the restriction of T to Fz cannot be elicitable, a contradiction to the conditional
elicitability of T .

For the second part note that, as remarked in Section 2 and in the discussion
of Fissler and Ziegel (2016), the joint elicitability of T with an elicitable func-
tional T ′ implies that T is conditionally elicitable given T ′. Consequently, the
first part of the proof implies the result.

We conclude this section with a technical remark. In the spirit of Frongillo
and Kash (2018), our complexity result (Theorem 3.7) employs regularity as-
sumptions on the possible intermediate functionals. The main assumption is
that they possess elicitable components. Why this is essential is illustrated by
the use of the hyperrectangle Q in the proof. Intuitively, this assumption can
be relaxed at the cost of more technical arguments. The main challenge hereby
is to control the values of T ′ in a small hyperrectangle (or ball) around some
x0 ∈ int(A′). However, we did not pursue this approach further, since we believe
that our setting covers many functionals of practical interest and at the same



Why scoring functions cannot assess tail properties 4025

time illustrates the irregular behaviour that will be inherent to any link function
for a max-functional.

4. Examples of max-functionals

Prominent examples of max-functionals, to which the results of Section 3 apply,
are routinely considered in extreme value theory and are key characteristics for
the purpose of inference on the tail of a distribution.

Upper endpoint For a real-valued random variable with distribution func-
tion F , its upper endpoint is the supremum of its support

xF := sup{x ∈ R | F (x) < 1}.

By definition, the upper endpoint can be interpreted as a real-valued max-
functional on the convex class {F ∈ F | xF < ∞}. Bellini and Bignozzi (2015,
Example 3.9) discuss the upper endpoint under the name worst-case risk mea-
sure and show that it is not elicitable, once further regularity conditions on
the admissible scoring functions are imposed. In light of Corollary 3.4 the non-
elicitability of the upper endpoint follows without any further assumptions. In
addition it has infinite elicitation complexity in the sense of Theorem 3.7 and
Corollary 3.8.

Index of regular variation/Tail index When the upper endpoint is infi-
nite, another key characteristic to describe the tail behaviour of heavy-tailed
distributions is the index of regular variation. A strictly positive measurable
function f satisfying

lim
x→∞

f(xt)

f(x)
= tρ

for t > 0 is called regularly varying (at infinity) with index ρ(f) ∈ R. For a dis-
tribution F its index of regular variation is the respective index for its survival
function F := 1 − F , that is, T (F ) := ρ(F ). Its inverse T (F )−1 is also called
tail index in the risk management literature, cf. McNeil, Frey and Embrechts
(2015, Section 5.1). If the tail F is regularly varying with (a negative) index ρ,
this means that F decays essentially like a power function with decay rate 1/ρ.
Since ρ(f + g) = max(ρ(f), ρ(g)) (cf. e.g. de Haan and Ferreira (2006, Propo-
sition B.1.9)), the index of regular variation T is naturally a max-functional,
while the tail index T−1 is a min-functional.

Tail-separating functionals More generally, we can deduce that the prop-
erty of ‘being a max-functional’ (or min-functional) is in fact inherent to all
‘tail-ordering indices’. To make this precise, let us consider the following nat-
ural order on distribution tails. For two distribution functions F and G with
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upper endpoints xF , xG ∈ R ∪ {∞} we say that G has heavier tail than F and
write F <t G if

either xF < xG or xF = xG = x∗ and lim
x→x∗

F (x)

G(x)
= 0.

We say that F and G are tail equivalent and write F ∼t G if they share the
same upper endpoint xF = xG = x∗ ∈ R ∪ {∞} and

lim
x→x∗

F (x)

G(x)
∈ (0,∞).

Note that “<t” defines a strict partial order on any set of distribution functions
F and that for tail equivalent F and G neither F <t G nor G <t F can hold.
The following proposition shows that a functional which respects the tail order
“<t” is a max-functional.

Proposition 4.1. Let T : F → R be a functional that satisfies for all F,G ∈ F

T (F )− T (G)

⎧⎨
⎩

≤ 0 if F <t G,
≥ 0 if G <t F,
= 0 else.

Then T is a max-functional.

Proof. Let F0, F1 ∈ F and set Fλ := λF1+(1−λ)F0 for λ ∈ (0, 1). We distinguish
three cases. If F0 <t F1, we have xFλ = xF1 ≥ xF0 and the identity

Fλ(x)

F 1(x)
= λ+ (1− λ)

F 0(x)

F 1(x)

for x < xF1 implies Fλ ∼t F1. Hence, neither Fλ <t F1 nor F1 <t Fλ can
be true. Together with T (F0) ≤ T (F1) we may conclude T (Fλ) = T (F1) =
max(T (F0), T (F1)). By symmetry, the case F1 <t F0 can be treated analogously.
In the remaining case we have neither F0 <t F1 nor F1 <t F0, so xF1 = xF0 =
xFλ =: x∗ must hold. Consequently,

lim inf
x→x∗

Fλ(x)

F 1(x)
≥ λ > 0 and lim sup

x→x∗

Fλ(x)

F 1(x)
< ∞,

where the latter follows as the tail of F0 is not heavier than the tail of F1.
This implies that neither F1 <t Fλ nor Fλ <t F1 can hold true, which gives
T (Fλ) = T (F1) = max(T (F0), T (F1)) and concludes the proof.

Another instance of a tail-ordering functional in the sense of Proposition 4.1
is the M-index as introduced in Cadena and Kratz (2016). If it exists, it is the
unique ρ ∈ R such that

lim
x→∞

F (x)

xρ+ε
= 0 and lim

x→∞
F (x)

xρ−ε
= ∞ for all ε > 0.
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It is easily seen that the M-index coincides with the index of regular variation
for distribution functions F with regularly varying tail function F . As it sorts
survival functions according to their power law decay, Proposition 4.1 implies
that the M-index is a max-functional.

Extreme value index A central characteristics of extreme value theory is the
extreme value index, which classifies the limiting behaviour of rescaled maxima
of growing samples from a distribution. More precisely, if there exist suitable
location-scale normings an > 0, bn ∈ R such that the distribution functions
Fn(x) := Fn(anx+ bn) converge weakly to a non-degenerate distribution func-
tion G, the limiting distribution function G is necessarily a Generalized Extreme
Value Distribution (GEV). This means that up to a location-scale normalization
we have

G(x) = Gγ(x) = exp{−(1 + γx)
−1/γ
+ }

for some γ = γ(F ) ∈ R, where G0(x) = exp{−e−x} for γ = 0. The distribution
F is said to be in the max-domain of attraction of G = Gγ and the shape
parameter γ(F ) is the extreme value index (EVI) of F , cf. e.g. the monographs
Resnick (1987) and de Haan and Ferreira (2006) for further background.

Let F be the class of distribution functions which are in a max-domain of at-
traction for some GEV and consider first the EVI on the subclass of heavy-tailed
distributions F+ = {F ∈ F | γ(F ) > 0}. It is well-known that a distribution
F ∈ F has EVI γ > 0 if and only if ρ(F ) = −γ−1, where ρ is the index of
regular variation (cf. e.g. Resnick (1987, Proposition 1.11)). Consequently, the
EVI γ is also a max-functional on F+.

When considering the class of light-tailed distributions, i.e. the case γ(F ) < 0,
we need to specify an upper endpoint first in order to make ‘being a max/min-
functional’ meaningful for the EVI γ. To this end, let Fx∗ = {F ∈ F | γ(F ) <
0, xF = x∗}. Again the EVI behaviour is governed by regular variation, since
γ(F ) = −γ(F∗) with F∗(x) = F (x∗ − x−1) (cf. e.g. Resnick (1987, Proposi-
tion 1.13)). This shows that the EVI γ is a min-functional on the class Fx∗ .
Note that it is crucial to assume equal upper endpoints, because otherwise it is
not the EVI that dominates the tail behaviour, but the upper endpoint itself.

So far, we have looked at statistical indices that classify univariate tail be-
haviour. However, similar issues arise when we want to quantify joint tail be-
haviour in higher dimensions. Exemplary, let us consider the coefficient of tail
dependence.

Coefficient of tail dependence In order to quantify the tail behaviour of
a bivariate distribution function Ledford and Tawn (1996, 1997) introduced
the coefficient of tail dependence. For a bivariate distribution function F of a
random vector (X1, X2) let us write F i(x) := P(Xi > x), i = 1, 2 and F (x) :=
P(X1 > x,X2 > x) for the associated survival functions. Suppose there is an
α > 0 such that both F 1 and F 2 are regularly varying with index −α. If in
addition the joint survival function F is regularly varying with index −α/η for



4028 J. R. Brehmer and K. Strokorb

some η ∈ (0, 1], the coefficient η = η(F ) is called coefficient of tail dependence
(CTD) of the bivariate distribution F . Let us consider the CTD η on the class
of bivariate distributions

Fα = {F | ρ(F 1) = ρ(F 2) = −α, ρ(F ) = −α/η for some η ∈ (0, 1]}.

Then it follows for F,G ∈ Fα that ρ(λF + (1 − λ)G) = −α/max(η(F ), η(G))
by the properties of the index of regular variation. Hence η is a max-functional
on Fα.

5. Proper scoring rules and max-functionals

In probabilistic forecasting, the whole distribution function instead of a single
value is reported to the decision maker. Analogously to a scoring function, a
scoring rule then assigns a score based on the forecasted distribution and a
realizing observation. The scoring rule is called proper if its expected score with
respect to a distribution is minimized whenever the forecast coincides with this
distribution, see e.g. Gneiting and Raftery (2007) or Dawid (2007) for recent
reviews.

In light of the results of Section 3, the following approach may seem rea-
sonable to someone seeking information about a max-functional: Instead of sin-
gle values, distribution functions are reported and evaluated via proper scoring
rules. Then the max-functionals are computed from the forecasted distributions.

If the max-functional of interest is a property of the tail, e.g. the extreme
value index, one could expect this method to work well as long as the scoring
rule shows a good performance in the tails. In order to emphasize specific re-
gions of interests, in particular the tails, Gneiting and Ranjan (2011) and Diks,
Panchenko and van Dijk (2011) combined scoring rules with weight functions.
Drawbacks and benefits of these weighted proper scoring rules were further
studied in Lerch et al. (2017) and Holzmann and Klar (2017), where the latter
propose general construction principles. A theoretical problem is pointed out by
Taillardat et al. (2019), who show that weighted versions of the continuously
ranked probability score (CRPS) cannot detect that two distributions are not
tail equivalent.

This section shows that the problems detected by Taillardat et al. (2019)
occur also for max-functionals and do not depend on the specific choice of proper
scoring rule. Simply put, the expected score difference of two distributions can
be arbitrarily small while their values for a max-functional can be large. As
previously, F is a convex set of distribution functions on O ⊆ R

d. In our notation
we follow Gneiting and Raftery (2007) as well as Section 4.

Definition 5.1 (Scoring rule). A real-valued function S : F ×O → R is called
scoring rule if for all F ∈ F the mapping y �→ S(F, y) is F-integrable. The
scoring rule S is called proper if S̄(F, F ) ≤ S̄(G,F ) holds for all F,G ∈ F . It
is strictly proper if it is proper and for any F,G ∈ F the equality S̄(G,G) =
S̄(F,G) implies G = F .
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For clarity of presentation we require all scoring rules to be F-integrable,
while Gneiting and Raftery (2007) only require quasi-integrability. The latter
means that the expected score S̄(G,F ) is well-defined (and not necessarily finite)
for all G,F ∈ F . Our assumption of F-integrability is however only a minor
restriction, which can be relaxed as discussed below.

A popular choice of scoring rule is the (weighted) continuous ranked probabil-
ity score, abbreviated by CRPS (wCRPS). For some weight function w : R →
[0,∞) the wCRPS is defined via

wCRPS(F, y) =

∫ ∞

−∞
w(x)(F (x)− 1(y ≤ x))2 dx

and the CRPS is obtained in the special case, where w is equal to one (Matheson
and Winkler, 1976; Gneiting and Ranjan, 2011). In order to emphasize the
right tail, the choice w(x) = 1(q ≤ x) for some threshold q ∈ R can be used.
Both wCRPS and CRPS are proper scoring rules as long as F contains only
distributions with finite first moments. In this case the CRPS is even strictly
proper, while the wCRPS is only under additional assumptions, see Gneiting
and Raftery (2007), Gneiting and Ranjan (2011) and Holzmann and Klar (2017).

As demonstrated by Taillardat et al. (2019, Section 2), the wCRPS is not
able to clearly distinguish between different tail behavior. More precisely, given
a distribution G and ε > 0, it is always possible to construct a distribution F
that is not tail equivalent to G and such that

|EwCRPS(G, Y )− EwCRPS(F, Y )| ≤ ε,

where Y has distribution G. This results shows that for any distribution G the
tail can be modified while keeping the expected wCRPS ε-close to its minimum.
As put by Taillardat et al. (2019) this means that the wCRPS is not a tail
equivalent score.

In the following we show that all proper scoring rules fail to be tail equivalent
in this sense. Moreover, we extend these findings to max-functionals, i.e. we
show that no proper scoring rule is max-functional equivalent. Both findings are
immediate consequences of the subsequent continuity considerations for scoring
rules.

Definition 5.2. A scoring rule S : F ×O → R is called diagonal-continuous at
G if for all F ∈ F

S̄(λF + (1− λ)G,G) → S̄(G,G) for λ ↓ 0.

Lemma 5.3. If S : F×O → R is a proper scoring rule, it is diagonal-continuous
at each G ∈ F .

Proof. We proceed similar to the proof of Nau (1985, Proposition 3). Let F,G ∈
F and denote Fλ := λF + (1− λ)G for λ ∈ [0, 1). We obtain the inequality

(1− λ)S̄(Fλ, G) = S̄(Fλ, Fλ)− λS̄(Fλ, F )
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≤ S̄(G,Fλ)− λS̄(F, F )

= (1− λ)S̄(G,G) + λ
(
S̄(G,F )− S̄(F, F )

)
,

since S is a proper scoring rule. Rearranging leads to

|S̄(λF + (1− λ)G,G)− S̄(G,G)| ≤ λ

1− λ

(
S̄(G,F )− S̄(F, F )

)
,

for λ ∈ [0, 1) and the right hand side of this equation vanishes as λ ↓ 0.

The argument of the proof of Lemma 5.3 can be extended to quasi-integrable
scoring rules as considered in Gneiting and Raftery (2007). The additional re-
quirement is that the expected score S̄(G,F ) is finite and that S is regular, i.e.
S̄(F, F ) ∈ R for all F ∈ F .

We can now turn our attention to the main result of this section. It is mo-
tivated by the observation that tail equivalence and max-functionals lead to a
similar kind of discontinuity on the convex combinations λF + (1− λ)G, which
intuitively conflicts with the diagonal-continuity of proper scoring rules. This
allows for an extension of the results of Taillardat et al. (2019). Recall the tail-
ordering from Section 4 and that we assume F to be convex.

Theorem 5.4. Let S : F × R → R be a proper scoring rule and G ∈ F . Then
the following are true.

(a) If there is an F ∈ F with heavier tail than G, then for all ε > 0 there is
an Fε ∈ F that is not tail equivalent to G and such that

|S̄(Fε, G)− S̄(G,G)| ≤ ε.

(b) Let T : F → R be a max-functional. If there is an F ∈ F with T (F ) >
T (G), then for all ε > 0 there is an Fε ∈ F such that T (Fε) = T (F ) >
T (G), while

|S̄(Fε, G)− S̄(G,G)| ≤ ε.

Proof. Fix G ∈ F and let S be a proper scoring rule. For F ∈ F set Fλ :=
λF + (1− λ)G. Since F is convex, we have Fλ ∈ F for all λ ∈ [0, 1]. Moreover,
S is diagonal-continuous at G by Lemma 5.3, implying that for all ε > 0 and
F ∈ F we can find a δ ∈ (0, 1] such that |S̄(Fλ, G)− S̄(G,G)| ≤ ε holds for all
λ ∈ [0, δ]. Now assume there is an F ∈ F with heavier tail than G. If xF > xG,
we have xFλ > xG for all λ ∈ (0, 1]. If on the other hand xF = xG = x∗ we have

Fλ(x)

G(x)
= (1− λ) + λ

F (x)

G(x)
,

for x < x∗ and the right-hand side goes to infinity as x → x∗. Hence, in both
cases the distributions Fλ cannot be tail equivalent to G for λ ∈ (0, 1], showing
part (a). For the second part, let F ∈ F satisfy T (F ) > T (G). Since T is a max-
functional, T (Fλ) = T (F ) > T (G) holds for λ ∈ (0, 1], proving part (b).
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The first part of Theorem 5.4 shows that the lack of tail equivalence is not a
flaw of the wCRPS, but inherent to all proper scoring rules (up to integrability
assumptions). The second part extends this non-equivalence of proper scoring
rules to max-functionals. Loosely speaking, this means that there can not only
be pairs of not tail equivalent distributions, but also pairs of distributions with
arbitrarily different max-functional values, and both having almost identical
expected scores.

6. Discussion

Recent research investigates the elicitation properties of widely used statisti-
cal functionals. When the emphasis lies on an understanding of tail properties,
typical functionals to characterize this behaviour fall into the class of max-
functionals. In particular, all functionals that order distribution tails belong to
this class (cf. Proposition 4.1). We show here that max-functionals do not only
fail to be elicitable (Theorem 3.3), but have in fact infinite elicitation com-
plexity in a wide range of settings (Theorem 3.7). This contrasts situations in
which the non-elicitability can be alleviated by a finite elicitation complexity
as, for instance, is the case for the variance or the Expected Shortfall (Frongillo
and Kash, 2018; Fissler and Ziegel, 2016). Rather it bears resemblance to the
mode, which is non-elicitable and has infinite elicitation complexity as well,
see Heinrich (2014) and Dearborn and Frongillo (2019). As an alternative to
point forecasts, we may allow the max-functional to be reported via the entire
distribution function. In principle such probabilistic forecasts can be compared
using proper scoring rules. However, Theorem 5.4 demonstrates that the dif-
ference of expected scores can be arbitrarily small, although the difference of
max-functional values may be large. The latter complements recent findings of
Taillardat et al. (2019) and extends them from the wCRPS to all integrable
proper scoring rules.

Collectively, our results cast doubt on the ability of expected scores to dis-
tinguish different tail regimes in the sense of max-functional values as they are
routinely considered in extreme value theory. From an applied viewpoint this
means that expected scores are not suitable to access such tail information for re-
gression, M-estimation or comparative forecast evaluation. Thereby, our results
provide a new perspective on the limitations of weighted scoring rules, adding
to practical intricacies described in Lerch et al. (2017), Holzmann and Klar
(2017) and Friederichs and Thorarinsdottir (2012). What might come to rescue
though, is that the max-functionals themselves are often not the main concern
in applications, but rather a tool to guide the extrapolation from intermediate
order statistics to the functionals of interest. In practice, these functionals may
include a high quantile or a tail expectation such as Expected Shortfall, which
can be interpreted as tail properties ‘less extreme’ than max-functionals and
with better elicitablity properties.

Lastly, however, we would like to point out that non-elicitability is not the
only problem in sound forecast evaluation and many open questions remain.
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Even when elicitability is granted, i.e. the considered statistical functional is
the unique minimizer of an expected score, there is no guarantee that the corre-
sponding minimization problem will be well-posed. For instance, poorly behaved
scoring functions may give rise to high variances of realized average scores, in
which case practical sample sizes may be per se too low for an adequate assess-
ment of competing forecasts. Due to the many challenges in forecast evaluation
with an emphasis on distribution tails, we anticipate that it will remain an active
area of research.
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