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Abstract: This paper studies density estimation under pointwise loss in
the setting of contamination model. The goal is to estimate f(x0) at some
x0 ∈ R with i.i.d. contaminated observations:

X1, . . . , Xn ∼ (1− ε)f + εg

where g stands for a contamination distribution. We closely track the effect
of contamination by the following model index: contamination proportion
ε, smoothness of the target density β0, smoothness of the contamination
density β1, and the local level of contamination m such that g(x0) ≤ m.
The local effect of contamination is shown to depend intricately on the
interplay of these parameters. In particular, under a minimax framework,
the cost

[ε2(1 ∧m)2] ∨ [n
− 2β1

2β1+1 ε
2

2β1+1 ]

is shown to be the optimal cost for contamination compared with the usual
minimax rate without contamination. The lower bound relies on a novel
construction that involves perturbations of a density function at two differ-
ent resolutions. Such a construction may be of independent interest for the
study of local effect of contamination in other nonparametric estimation
problems. We also study the setting without any assumption on the con-
tamination distribution, and the minimax cost for contamination is shown
to be

ε
2β0

β0+1 .

Finally, the minimax cost for adaptation is established both for smooth
contamination and arbitrary contamination. Under arbitrary contamina-
tion, we show that while adaptation to either contamination proportion or
smoothness only costs a logarithmic factor, adaptation to both numbers is
impossible.

Keywords and phrases: Minimax rate, nonparametric functional estima-
tion, adaptive estimation, contamination model, robust statistics, Lepski’s
method.
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1. Introduction

Nonparametric density estimation is a well-studied classical topic [24, 8, 26].
In this paper, we consider this classical statistical task with a modern twist.
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Instead of assuming i.i.d. observations from a true density f , we assume

X1, ..., Xn ∼ (1− ε)f + εg, (1)

where g is a density not related to f , and the goal is to estimate f(x0) at some
x0 ∈ R. In other words, for each observation, there is an ε probability that the
observation is sampled from a distribution not related to the density of interest.

This problem naturally appears in both robust statistics and multiple testing
literature. In robust statistics literature, g has the name “contamination”, and
the task is interpreted as robustly estimating a density f with contaminated
data points [6]. In multiple testing literature, f and g are respectively called
null density and alternative density, and the task is interpreted as estimating
null density at a point [11]. In this paper, we use the name “contamination” to
refer to both g and the observations generated from it.

The nature of the problem heavily depends on the assumptions put on f
and g. When there is no constraint on the contamination distribution g, the
data generating process (1) is also recognized as Huber’s ε-contamination model
[14, 15]. Recent work on nonparametric estimation in such a setting includes
[6, 12], and the influence of contamination on minimax rates is investigated by
[7, 6]. On the other hand, in the literature of multiple testing, it is more common
to put parametric structural assumptions on the alternative g, and optimal rates
of estimating the null density f are investigated by [16, 3]. We would also like
to point out a different line of work that studies estimating f with observations
generated from either (1 − ε)f + εg [23] or (1 − ε)f + ε(f ∗ g) [13, 28, 19], but
the density g is known. In comparison, the robust estimation setting involves
some unknown contamination distribution g, so that the minimax rates have
very different forms.

In this paper, we explore this problem with connections to nonparametric
density estimation literature in mind. Specifically, the density function f is as-
sumed to have a Hölder smoothness β0. Both cases of structured and arbitrary
contamination are considered and fundamental limit of this problem is studied
by establishing minimax rate. In the structured contamination case, the con-
tamination distribution g is endowed with a β1 Hölder smoothness, and the
contamination level at the point x0 is assumed to satisfy g(x0) ≤ m. The mini-
max rate of estimating f(x0) with respect to the squared error loss is shown to
be of order

[n− 2β0
2β0+1 ] ∨ [ε2(1 ∧m)2] ∨ [n− 2β1

2β1+1 ε
2

2β1+1 ]. (2)

The minimax rate involves three terms, and the influence of contamination on

estimation is precisely characterized. The first term n− 2β0
2β0+1 corresponds to the

classical minimax rate of nonparametric estimation when there is no contami-
nation. The second term ε2(1 ∧ m)2 is determined by contamination on x0. It
depends on both the contamination proportion ε and the contamination level m.

The last term n− 2β1
2β1+1 ε

2
2β1+1 is caused by contamination on the neighborhood

of x0, which is present even if the contamination level m is zero. In the arbitrary
contamination case, or equivalently under Huber’s ε-contamination model, the
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minimax rate is of order

[n− 2β0
2β0+1 ] ∨ [ε

2β0
β0+1 ]. (3)

Compared with (2), the rate (3) is easier to understand in terms of the influ-
ence of the contamination. It is interesting to note that even though β0 is the
smoothness index of f , it still appears on the second term in (3). Thus, when
the contamination is arbitrary, its influence on estimation is also determined by
the smoothness of the target density.

We also thoroughly investigate the theory of adaptation in both settings
of contamination models. Depending on specific settings, various adaptation
costs are necessary. For the contamination model with structured contamination,
when the contamination proportion is unknown, an optimal adaptive procedure
can achieve the rate (2) with ε2(1 ∧ m)2 replaced by ε2. When the smooth-
ness is unknown, an optimal adaptive procedure can achieve the rate (2) with
n replaced by n/ logn. Similarly, for the contamination model with arbitrary
contamination, the rate (3) can be achieved up to a logarithmic factor when
either ε or β0 is unknown. On the other hand, however, when both the contam-
ination proportion and the smoothness are unknown, the adaptation theories
are completely different for the two contamination models. For structured con-
tamination, the adaptation cost is just the combination of the cost of unknown
contamination proportion and that of unknown smoothness. In contrast, for ar-
bitrary contamination, we show that adaptation is simply impossible when both
ε and β0 are unknown. In other words, it is impossible to adaptively achieve a
rate of the form n−r1(β0) ∨ εr2(β0) with any two functions r1(·) and r2(·).

The theory of adaptation in nonparametric functional estimation without
contamination is well studied in the literature. It is shown by [1, 18, 5] that a
logarithmic factor must be paid for estimating a point of a density function when
smoothness is not known. Adaptation costs of estimating other nonparametric
functionals have been investigated in [20, 25, 17, 2, 4]. Compared with the results
in the literature, the presence of contamination brings extra complication to
the problem of adaptation. It is remarkable that the adaptation cost depends
very sensitively on each specific setting and contamination model. The new
phenomena revealed in our paper for adaptation with contamination have not
been discovered before.

The rest of the paper is organized as follows. The contamination model with
structured contamination is studied in Section 2 and Section 3. Results of min-
imax rates and costs of adaptation are given in Section 2 and Section 3, re-
spectively. The corresponding theory of contamination model with arbitrary
contamination is investigated in Section 4. In Section 5, we discuss extensions
of our results to multivariate density estimation and a consistent procedure in
the hardest scenario where adaptation is impossible. All proofs are given in
Section 6.

We close this section by introducing notations that will be used later. For
a, b ∈ R, let a∨b = max(a, b) and a∧b = min(a, b). For an integer m, [m] denotes
the set {1, 2, ...,m}. For a positive real number x, �x	 is the smallest integer no
smaller than x and 
x� is the largest integer no larger than x. For two positive
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sequences {an} and {bn}, we write an � bn or an = O(bn) if an ≤ Cbn for all
n with some consntant C > 0 independent of n. The notation an � bn means
we have both an � bn and bn � an. Given a set S, |S| denotes its cardinality,
and 1S is the associated indicator function. We use P and E to denote generic
probability and expectation whose distribution is determined from the context.
The notation E(X : S) stands for E(X1S). The class of infinitely differentiable
functions on R is denoted by C∞(R). For two probability measures P and Q, the

chi-squared divergence is defined as χ2(P,Q) =
∫

dP2

dQ −1, and the total variation

distance is defined as TV(P,Q) = supB |P(B) − Q(B)|. Throughout the paper,
C, c and their variants denote generic constants that do not depend on n. Their
values may change from place to place.

2. Minimax rates with structured contamination

2.1. Results and implications

Consider i.i.d. observations X1, ..., Xn ∼ (1 − ε)f + εg. The goal is to estimate
f at a given point. Without loss of generality, we aim to estimate f(0). In other
words, for every i ∈ [n], we have Xi ∼ f with probability 1 − ε and Xi ∼ g
with probability ε. Thus, there are approximately nε observations that are not
related to the density function f , which are referred to as contamination.

To study the fundamental limit of estimating f with contaminated data, we
need to specify appropriate regularity conditions on both f and g. We first define
the Hölder class by

Σ(β, L) =

{
f : R → R

∣∣∣∣∣ ∣∣∣f (�β�)(x1)− f (�β�)(x2)
∣∣∣ ≤ L|x1 − x2|β−�β�

for any x1, x2 ∈ R

}
.

Here, β stands for the smoothness parameter, and L stands for the radius of the
function space. The Hölder class of density functions is defined as

P(β, L) =

{
f : R → [0,∞)

∣∣∣∣∣f ∈ Σ(β, L),

∫
f = 1

}
.

Finally, we define the class of mixtures in the form of (1− ε)f + εg by

M(ε, β0, β1, L0, L1,m)

=
{
(1− ε)f + εg

∣∣∣f ∈ P(β0, L0), g ∈ P(β1, L1), g(0) ≤ m
}
.

This class is indexed by several numbers. Throughout the paper, we refer to ε as
contamination proportion and m as contamination level at 0. The pair (β0, L0)
controls the smoothness of the density function f that we want to estimate,
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and the pair (β1, L1) controls the smoothness of the contamination density g.
Among the six numbers, ε and m are allowed to depend on the sample size
n, but the numbers β0, β1, L0, L1 are all assumed to be constants that do not
depend on n throughout the paper. It is also assumed that ε ≤ 1/2.

The minimax risk of estimation is defined as (notice that we suppress the
dependence on n for R)

R(ε, β0, β1, L0, L1,m)

= inf
f̂(0)

sup
p(ε,f,g)∈M(ε,β0,β1,L0,L1,m)

EX1,...,Xn∼p

(
f̂(0)− f(0)

)2

,

where the notation p(ε, f, g) is used to denote the density (1− ε)f + εg. Later in
the paper, we will shorthand EX1,...,Xn∼p by Epn . Obviously, the minimax risk
becomes smaller if ε gets smaller or n gets larger. Besides the role of ε and n,
the other model indices are also expected to affect the difficulty of the problem,
as listed in the following.

• The smoothness of f : From classical density estimation theory, we know
the smoother f is, the easier it is to estimate f(0).

• The level of g(0): Intuitively, the smaller g(0) is, the smaller its influence
is on f(0), and thus the easier the problem is.

• The smoothness of g: Intuitively, the smoother g is, the less the contami-
nation effect can spread, and thus the easier it is to account for the effect
of g in the contamination model.

Now we present the following theorem of minimax rate, that justifies our intu-
ition above.

Theorem 2.1. Under the setting above, we have

R(ε, β0, β1, L0, L1,m) � [n− 2β0
2β0+1 ] ∨ [ε2(1 ∧m)2] ∨ [n− 2β1

2β1+1 ε
2

2β1+1 ]. (4)

In other words, R(ε, β0, β1, L0, L1,m) can be upper and lower bounded by the
right hand side of (4) up to a constant that only depends on β0, β1, L0, L1.

Theorem 2.1 completely characterizes the difficulty of estimating f(0) with
contaminated data. The three terms in the rate (4) have different but very clear

meanings. The first term n− 2β0
2β0+1 is the classical minimax rate of estimating

a smooth function at a given point without contamination. The second term
ε2(1 ∧m)2 is proportional to the squared of the product of contamination level

and contamination proportion. The last term n− 2β1
2β1+1 ε

2
2β1+1 is perhaps the most

interesting. Here the effect of ε is powered by an exponent depending on β1, and
it stands for the interaction between the contamination proportion and the
contamination smoothness. The fact that it does not depend on m implies that
we have to pay this price with contaminated data even if g(0) = 0.

To further understand the implications of Theorem 2.1, we present the fol-
lowing illustrative special cases of the minimax rate (4). First, when ε = 0, we
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get

R(0, β0, β1, L0, L1,m) � n− 2β0
2β0+1 .

This is simply the classical minimax rate of estimating f(0) without contami-
nation.

Next, to understand the role of m, we consider two extreme cases of m = 0
and m = ∞. From (4), we have

R(ε, β0, β1, L0, L1, 0) � [n− 2β0
2β0+1 ] ∨ [n− 2β1

2β1+1 ε
2

2β1+1 ],

and

R(ε, β0, β1, L0, L1,∞) � [n− 2β0
2β0+1 ] ∨ ε2.

The case of m = 0 is particularly interesting. It implies g(0) = 0, and one may
expect that the contamination would have no influence on the minimax rate.

This intuition is not true because of the term n− 2β1
2β1+1 ε

2
2β1+1 . Since nonpara-

metric estimation of f(0) also depends on the values of the density function at
a neighborhood of 0, the contamination from g can still have an effect on the
neighborhood of 0 despite that g(0) = 0. A smaller value of β1 allows a greater
perturbation by g on the neighborhood of 0. When m = ∞, the minimax rate

has a simple form of [n− 2β0
2β0+1 ] ∨ ε2. The influence on the minimax rate from

contamination is always ε2, regardless of the smoothness β1.
Finally, we consider the cases of β1 = 0 and β1 = ∞. In fact, the Hölder class

Σ(β, L) with β1 = ∞ is not well defined, but the discussion below still holds for
a sufficiently large constant β1. From (4), we have

R(ε, β0, 0, L0, L1,m) � [n− 2β0
2β0+1 ] ∨ ε2,

and

R(ε, β0,∞, L0, L1,m) � [n− 2β0
2β0+1 ] ∨ [ε2(1 ∧m)2].

The influence of the contamination takes the forms of ε2 and ε2(1∧m)2 for the
two extreme cases. This immediately implies that for any values of ε, β0, β1, L0,
L1,m, we have

[n− 2β0
2β0+1 ] ∨ [ε2(1 ∧m)2] � R(ε, β0, β1, L0, L1,m) � [n− 2β0

2β0+1 ] ∨ ε2.

In other words, the influence of contamination on the minimax rate is sand-
wiched between m2ε2 and ε2.

2.2. Upper bounds

The minimax rate (4) can be achieved by a simple kernel density estimator that
takes the form

f̂h(0) =
1

n(1− ε)

n∑
i=1

1

h
K

(
Xi

h

)
. (5)
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This estimator is slightly different from the classical kernel density estimator
because it is normalized by 1

n(1−ε) instead of 1
n . The knowledge of the contam-

ination proportion ε is very critical to achieve the minimax rate (4). Later, we
will show in Section 3.2 that the minimax rate (4) cannot be achieved if ε is not
known.

We introduce the following class of kernel functions.

Kl(L) =

{
K : R → R

∣∣∣ ∫ K = 1,

∫
xjK(x)dx = 0 for all j ∈ [l],

‖K‖∞ ∨
∫

K2 ∨
∫

|x|l|K(x)|dx ≤ L

}
.

The class Kl(L) collects all bounded and squared integrable kernel functions of
order l. The number L > 0 is assumed to be a constant throughout the paper.
We refer to [8] for examples of kernel functions in the class Kl(L).

Theorem 2.2. For the estimator f̂(0) = f̂h(0) with some K ∈ K�β0∨β1�(L) and

h = n− 1
2β0+1 ∧ n− 1

2β1+1 ε−
2

2β1+1 , we have

sup
p(ε,f,g)∈M(ε,β0,β1,L0,L1,m)

Epn

(
f̂(0)− f(0)

)2

� [n− 2β0
2β0+1 ] ∨ [ε2(1 ∧m)2] ∨ [n− 2β1

2β1+1 ε
2

2β1+1 ].

Theorem 2.2 reveals an interesting choice of the bandwidth h = n− 1
2β0+1 ∧

n− 1
2β1+1 ε−

2
2β1+1 . Compared with the optimal bandwidth of order n− 1

2β0+1 in
classical nonparametric function estimation, the h in the structured contamina-
tion setting is always smaller. The choice of bandwidth is a consequences of the
specific bias-variance tradeoff under the structured contamination model. As an
interesting contrast, in the case of arbitrary contamination, the optimal choice
of bandwidth is always larger than the usual one, see Section 4.

The error bound in Theorem 2.2 can be found through a classical bias-
variance tradeoff argument. We can decompose the difference f̂(0)− f(0) as

(f̂(0)− Ef̂(0)) +

(
Ef̂(0)− f(0)− ε

1− ε
g(0)

)
+

ε

1− ε
g(0). (6)

Here, the first term is the stochastic error. The second term gives the approxima-
tion error of the kernel convolution. The last term is caused by the contamination
at 0. Direct analysis of the three terms gives the bound

E

(
f̂(0)− f(0)

)2

� 1

nh
+ (h2β0 + ε2h2β1) + ε2(m ∧ 1)2. (7)

Now with the choice h = n− 1
2β0+1 ∧ n− 1

2β1+1 ε−
2

2β1+1 , we obtain the error bound
in Theorem 2.2. For detailed derivation, see the proof of Theorem 2.2 in Section
6.1.
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2.3. Lower bounds

In this section, we study the lower bound part of the minimax rate (4). We first
state a theorem.

Theorem 2.3. We have

R(ε, β0, β1, L0, L1,m) � [n− 2β0
2β0+1 ] ∨ [ε2(1 ∧m)2] ∨ [n− 2β1

2β1+1 ε
2

2β1+1 ].

The first term n− 2β0
2β0+1 is the classical minimax lower bound for nonpara-

metric estimation. Thus, we will only give here a overview of how to derive the
second and the third terms. Two specific functions are used as building blocks
for our construction, and their definitions and properties are summarized in the
following two lemmas.

Lemma 2.1. Let l(x) = e
− 1

1−x2 1{|x|≤1}. Define

a(x) =

{
c0l(x+ 1), −2 ≤ x ≤ 0,

c0l(x− 1), 0 ≤ x ≤ 2.

The constant c0 is chosen so that
∫
a = 1. It satisfies the following properties:

1. a is an even density function compactly supported on [−2, 2].
2. a(0) = 0.
3. For any constants β, L > 0, there exists a constant c > 0, such that

ca(cx) ∈ P(β, L) ∩ C∞(R).
4. For any small constant c > 0, a is uniformly lower bounded by a positive

constant on [−1,−c]∪[c, 1], and it is uniformly upper bounded by a positive
constant on R.

Lemma 2.2. Let l(x) = e
− 1

1−x2 1{|x|≤1}. Define

b(x) =

⎧⎪⎨⎪⎩
−l (4x+ 3) , −1 ≤ x ≤ −1

2 ,

l(2x), |x| ≤ 1
2 ,

−l (4x− 3) , 1
2 ≤ x ≤ 1.

It satisfies the following properties:

1. b is an even function compactly supported on [−1, 1].
2. For any β, L > 0, there exists a constant c > 0 such that cb ∈ Σ(β, L) ∩

C∞(R).
3. b is uniformly lower bounded by a positive constant on [−1

4 ,
1
4 ], and |b| is

uniformly upper bounded by a positive constant on R.
4.

∫
b = 0.

Both the proofs of the second and the third terms in the lower bound involve
careful constructions of two pairs of densities (f, g) and (f̃ , g̃). In order to show
R(ε, β0, β1, L0, L1,m) � ε2(1 ∧m)2, we consider the following constructions,
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f(x) = f0(x),

f̃(x) = f0(x) + c1
ε

1− ε
(m ∧ 1)b(x),

g(x) = c2a(c2x) + c1(m ∧ 1)b(x),

g̃(x) = c2a(c2x).

Here, the constants c1, c2 are chosen so that the constructed functions f, f̃ , g, g̃
are well-defined densities in the desired parameter spaces. It is easy to check
that with the above construction,

(1− ε)f + εg = (1− ε)f̃ + εg̃.

This implies that with the presence of contamination, an estimator f̂(0) cannot
distinguish between the two data generating processes (1 − ε)f + εg and (1 −
ε)f̃ + εg̃. As a consequence, an error of order |f(0)− f̃(0)|2 � ε2(1∧m)2 cannot
be avoided.

The derivation of the lower bound R(ε, β0, β1, L0, L1,m) � n− 2β1
2β1+1 ε

2
2β1+1 is

more intricate. Consider the following four functions,

f(x) = f0(x),

f̃(x) = f0(x) +
ε

1− ε
c2

[
hβ0 l

(x
h

)
− hβ0 l

(
2(x− c4)

h

)
− hβ0 l

(
2(x+ c4)

h

)]
,

g(x) = c1a(c1x) + c2

[
hβ0 l

(x
h

)
− hβ0 l

(
2(x− c4)

h

)
− hβ0 l

(
2(x+ c4)

h

)]
− c3h̃

β1b

(
x

h̃

)
,

g̃(x) = c1a(c1x),

where the definitions of the functions l, a, b are given in Lemma 2.1 and Lemma
2.2. Again, the constants c1, c2, c3, c4 are chosen properly so that the constructed
functions are well-defined densities in the desired function classes.

A dominant feature of this constructions is that g is a perturbation of g̃ with
two levels of perturbation, respectively with bandwidth h and h̃, while usual
lower bound proof in nonparametric estimation involves perturbing a function at
a single bandwidth level. The first level of perturbation hβ0 l

(
x
h

)
serves to cancel

the effect of the corresponding perturbation on f , while the second perturbation

−h̃β1b
(

x

h̃

)
serves to ensure the constraint of contamination level. Indeed, if we

relate h and h̃ through the equation hβ0 � h̃β1 , then it is direct that g̃(0) =
g(0) = 0. In other words, the constructed contamination density functions g and
g̃ both have contamination level 0. An illustration of this construction with a
two-level perturbation is given by Figure 1. The colors of the plot correspond
to those in the formulas.

With the above construction, it is not hard to check that

p(ε, f, g)− p(ε, f̃ , g̃) = −c3εh̃
β1b

(
x

h̃

)
.
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Fig 1. An illustration of the construction of g.

In order that an estimator cannot distinguish between the two densities
p(ε, f, g) = (1− ε)f + εg and p(ε, f̃ , g̃) = (1− ε)f̃ + εg̃, a sufficient condition is

χ2
(
p(ε, f̃ , g̃), p(ε, f, g)

)
� n−1 (see Lemma 6.1), which leads to the choice of h̃

at the order h̃ �
(
nε2

)− 1
2β1+1 . As a consequence, an error of order

|f(0)− f̃(0)|2 � ε2h2β0 � ε2h̃2β1 � ε
2

2β1+1n− 2β1
2β1+1

cannot be avoided. A rigorous proof of Theorem 2.3 will be given in Section 6.2.

3. Adaptation theory with structured contamination

3.1. Summary of results

To achieve the minimax rate in Theorem 2.1, the kernel density estimator (5)
requires the knowledge of contamination proportion ε and smoothness (β0, β1).
In this section, we discuss adaptive procedures to estimate f(0) without the
knowledge of these parameters. However, adaptation to ε or to (β0, β1) is not
free, and one can only achieve slower rates than the minimax rate (4). The
adaptation cost varies for each different scenario. A summary of our results is
listed below.

• When the contamination proportion is unknown, the best possible rate is

n− 2β0
2β0+1 ∨ ε2.

• When the smoothness parameters are unknown, the best possible rate is⎡⎣( n

logn

)− 2β0
2β0+1

⎤⎦ ∨
[
ε2(1 ∧m)2

]
∨

⎡⎣( n

logn

)− 2β1
2β1+1

ε
2

2β1+1

⎤⎦ .
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• When both the contamination proportion and the smoothness are un-
known, the best possible rate becomes(

n

logn

)− 2β0
2β0+1

∨ ε2.

Compared with the minimax rate (4), the ignorance of the contamination pro-
portion implies that m is replaced by 1 in the rate, while the ignorance of the
smoothness implies that n is replaced by n/ logn in the rate.

3.2. Unknown contamination proportion

The kernel density estimator (5) depends on ε in two ways: the normalization
through 1

n(1−ε) and the optimal choice of bandwidth h. Without the knowledge

of ε, we consider the following estimator

f̂h(0) =
1

n

n∑
i=1

1

h
K

(
Xi

h

)
. (8)

The first difference between (8) and (5) is the normalization. When ε is not
given, we can only use 1

n in (8). Moreover, the choice of h in (8) cannot depend
on ε.

Theorem 3.1. For the estimator f̂(0) = f̂h(0) with some K ∈ K�β0∨β1�(L) and

h = n− 1
2β0+1 , we have

sup
p(ε,f,g)∈M(ε,β0,β1,L0,L1,m)

Epn

(
f̂(0)− f(0)

)2

� n− 2β0
2β0+1 ∨ ε2.

With the choice h = n− 1
2β0+1 , f̂h becomes the classical nonparametric density

estimator. The contamination results in an extra ε2 in the rate compared with
the classical nonparametric minimax rate, regardless of the values of m and
β1. Note that in the current setting, the error f̂h(0) − f(0) has the following
decomposition,

(f̂h(0)− Ef̂h(0)) + (Ef̂h(0)− (1− ε)f(0)− εg(0)) + ε(g(0)− f(0)). (9)

The difference between (6) and (9) is resulted from different normalizations in
(5) and (8). Some standard calculation gives the bound

E(f̂h(0)− f(0))2 � 1

nh
∨ h2β0 ∨ ε2,

which implies the optimal choice of bandwidth h = n− 1
2β0+1 , and thus the rate

in Theorem 3.1. A detailed proof is given in Section 6.1.
In view of the form of the minimax rate (4), the rate given by Theorem 3.1

can be obtained by replacing the ε2(1 ∧ m)2 in (4) with ε2. A matching lower
bound for adaptivity to ε is given by the following theorem.
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Theorem 3.2. Consider two models M(ε, β0, β1, L0, L1,m) and M(ε̃, β0, β1,

L0, L1,m) with different contamination proportions. For any estimator f̂(0) that
satisfies

sup
p(ε̃,f,g)∈M(ε̃,β0,β1,L0,L1,m)

Epn

(
f̂(0)− f(0)

)2

≤ Cε̃2,

for some constant C > 0, there exists another constant C ′ > 0, such that if
C ′ε̃ ≤ ε ≤ 1/2, then we have

sup
p(ε,f,g)∈M(ε,β0,β1,L0,L1,m)

Epn

(
f̂(0)− f(0)

)2

� ε2.

As a consequence, we have

inf
f̂(0)

sup
ε∈(0,1/2)

sup
p(ε,f,g)∈M(ε,β0,β1,L0,L1,m)

Epn

(
f̂(0)− f(0)

)2

/ε2 � 1.

Theorem 3.2 shows that it is impossible to achieve a rate that is faster than ε2

even over only two different contamination proportions. The proof of Theorem
3.2 relies on the following construction,

f = f0,

g = c1a(c1x),

f̃ =
1− ε

1− ε̃
f0 +

ε− ε̃

1− ε̃
c1a(c1x),

g̃ = c1a(c1x).

With an appropriate choice of the constant c1 > 0, we have (1 − ε)f + εg ∈
M(ε, β0, β1, L0, L1,m) and (1− ε̃)f̃ + ε̃g̃ ∈ M(ε̃, β0, β1, L0, L1,m). Moreover, it
is easy to check that

(1− ε)f + εg = (1− ε̃)f̃ + ε̃g̃.

In other words, a model with contamination proportion ε can also be written
as a mixture that uses a different ε̃. Unless the contamination proportion is
specified, one cannot tell the difference between (1− ε)f + εg and (1− ε̃)f̃ + ε̃g̃.

This leads to a lower bound of the error, which is of order |f(0) − f̃(0)|2 � ε2.
A rigorous proof of Theorem 3.2 that uses a constrained risk inequality in [1] is
given in Section 6.3.

3.3. Unknown smoothness

In this section, we consider the case that the smoothness numbers are unknown,
but the contamination proportion is given. In view of the kernel density esti-
mator (5) that achieves the minimax rate, we can still use the normalization by
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1
n(1−ε) because of the knowledge of ε, but the bandwidth h needs to be picked

in a data-driven way. For a given h, define

f̂h(0) =
1

n(1− ε)

n∑
i=1

1

h
K

(
Xi

h

)
.

With a discrete set H and some constant c1 > 0, Lepski’s method [20, 21, 22]
selects a data-driven bandwidth through the following procedure,

ĥ = max

{
h ∈ H : |f̂h(0)− f̂l(0)| ≤ c1

√
log n

nl
, ∀l ≤ h, l ∈ H

}
. (10)

In words, we choose the largest bandwidth below which the variance dominates.
If the set that is maximized over is empty, we will use the convention ĥ = 1

n .

The estimator f̂ĥ(0) that uses a data-driven bandwidth enjoys the following
guarantee.

Theorem 3.3. Consider the adaptive kernel density estimator f̂(0) = f̂ĥ(0)
with the bandwidth defined by (10). In (10), we set H =

{
1, 1

2 , · · · ,
1
2m

}
such

that 1
2m ≤ 1

n < 1
2m−1 and c1 to be a sufficiently large constant. The kernel K is

selected from Kl(L) with a large constant l ≥ 
β0 ∨ β1�. Then, we have

sup
p(ε,f,g)∈M(ε,β0,β1,L0,L1,m)

Epn

(
f̂(0)− f(0)

)2

�

⎡⎣( n

logn

)− 2β0
2β0+1

⎤⎦ ∨
[
ε2(1 ∧m)2

]
∨

⎡⎣( n

logn

)− 2β1
2β1+1

ε
2

2β1+1

⎤⎦ .

Lepski’s method is known to be adaptive over various nonparametric classes,
and it can achieve minimax rates up to a logarithmic factor without knowing the
smoothness parameter [18]. Theorem 3.3 shows that this is also the case with
contaminated observations. With an adaptive kernel density estimator normal-
ized by 1

n(1−ε) , the minimax rate (4) is achieved up to a logarithmic factor in

Theorem 3.3.

A comparison between the adaptive rate given by Theorem 3.3 and the min-
imax rate (4) reveals two differences. The first adaptation cost is given by(

n
logn

)− 2β0
2β0+1

, compared with n− 2β0
2β0+1 in (4). Previous work in adaptive non-

parametric estimation [1, 18, 2] implies that this cost is unavoidable for adapta-

tion to smoothness. The second adaptation cost is given by
(

n
logn

)− 2β1
2β1+1

ε
2

2β1+1 ,

compared with n− 2β1
2β1+1 ε

2
2β1+1 in (4). In the next theorem, we show that this

adaptations cost is also unavoidable without the knowledge of the smoothness
parameters.
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Theorem 3.4. Consider two models M(ε, β0, β1, L0, L1,m) and M(ε, β̃0, β̃1,

L̃0, L̃1,m) with different smoothness parameters. Assume that β0 ≤ β̃0, β1 < β̃1,

β0 ≥ β1 and nε2 ≥ (logn)2. For any estimator f̂(0) that satisfies

sup
p(ε,f,g)∈M(ε,β̃0,β̃1,L̃0,L̃1,m)

Epn

(
f̂(0)− f(0)

)2

≤ C

(
n

logn

)− 2β̃1
2β̃1+1

ε
2

2β̃1+1 ,

for some constant C > 0, we must have

sup
p(ε,f,g)∈M(ε,β0,β1,L0,L1,m)

Epn

(
f̂(0)− f(0)

)2

�
(

n

logn

)− 2β1
2β1+1

ε
2

2β1+1 .

Similar to the statement of Theorem 3.2, Theorem 3.4 shows that it is im-

possible to achieve a rate that is faster than
(

n
logn

)− 2β1
2β1+1

ε
2

2β1+1 across two

function classes with different smoothness parameters. We remark that the as-
sumptions β0 ≥ β1 and nε2 ≥ (log n)2 in Theorem 3.4 are necessary conditions

for
(

n
logn

)− 2β1
2β1+1

ε
2

2β1+1 to dominate
(

n
logn

)− 2β0
2β0+1

. Without these two condi-

tions,
(

n
logn

)− 2β0
2β0+1

is the larger term between the two, and the lower bound is

already in the literature.
In conclusion, the rate in Theorem 3.3 achieved by Lepski’s method cannot

be improved unless smoothness parameters are given.

3.4. Unknown contamination proportion and unknown smoothness

When both the contamination proportion and the smoothness are unknown,
we consider Lepski’s method with a kernel density estimator normalized by 1

n .
Define

f̂h(0) =
1

n

n∑
i=1

1

h
K

(
Xi

h

)
.

Then, a data-driven bandwidth ĥ is selected according to (10). Again, if the

set that is maximized over is empty in (10), we will use the convention ĥ = 1
n .

Note that this is a fully data-driven estimator that is adaptive to both the
contamination proportion and the smoothness. It enjoys the following guarantee.

Theorem 3.5. Consider the adaptive kernel density estimator f̂(0) = f̂ĥ(0)
with the bandwidth defined by (10). In (10), we set H =

{
1, 1

2 , · · · ,
1
2m

}
such

that 1
2m ≤ 1

n < 1
2m−1 and c1 to be a sufficiently large constant. The kernel K is

selected from Kl(L) with a large constant l ≥ 
β0 ∨ β1�. Then, we have

sup
p(ε,f,g)∈M(ε,β0,β1,L0,L1,m)

Epn

(
f̂(0)− f(0)

)2

�
(

n

logn

)− 2β0
2β0+1

∨ ε2.
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Compared with the minimax rate in Theorem 2.1, the rate in Theorem 3.5
can be understood as replacing n and ε2(1 ∧ m)2 respectively by n/ log n and
ε2 in (4). In view of the results in both Section 3.2 and Section 3.3, this rate(

n
logn

)− 2β0
2β0+1 ∨ ε2 in Theorem 3.5 cannot be improved by any procedure that

is adaptive to both contamination proportion and smoothness.

4. Results for arbitrary contamination

4.1. Minimax rates

In this section, we study the contamination model without any structural as-
sumption on the contamination distribution:

X1, . . . , Xn ∼ (1− ε)Pf + εG

where Pf is a distribution on R that has a density function f , and G is an
arbitrary contamination distribution. This leads to the following model space

M(ε, β0, L0)

=
{
(1− ε)Pf + εG

∣∣∣f ∈ P(β0, L0) and G is an arbitrary distribution
}
.

This is often referred to as Huber’s ε-contamination model [14, 15]. Nonpara-
metric function estimation under Huber’s ε-contamination model has recently
been studied by [6, 12] for global loss functions. In this paper, our focus is on
the local estimation of f(0). The corresponding minimax risk is defined by

R(ε, β0, L0) = inf
f̂(0)

sup
p(ε,f,g)∈M(ε,β0,L0)

Epn

(
f̂(0)− f(0)

)2

.

In contrast to the minimax rate studied in Section 2.1, we only have one pa-
rameter ε that indexes the influence of the contamination for R(ε, β0, L0).

Theorem 4.1. Under the setting above, we have

R(ε, β0, L0) � [n− 2β0
2β0+1 ] ∨ [ε

2β0
β0+1 ]. (11)

The minimax rate given by Theorem 4.1 only involves two terms. The first

term n− 2β0
2β0+1 is the classical minimax rate for nonparametric estimation. The

second term ε
2β0

β0+1 characterizes the influence of contamination. It is worth notic-

ing that the smoothness index of f appears both in n− 2β0
2β0+1 and ε

2β0
β0+1 . A larger

value of β0 implies a less influence of the contamination. This is in contrast to
the rate of R(ε, β0, β1, L0, L1,m) in Theorem 2.1.

The phase transition boundary of R(ε, β0, L0) occurs at ε = n− β0+1
2β0+1 . Below

this level, we have R(ε, β0, L0) � n− 2β0
2β0+1 , and the contamination has no influ-

ence on the classical minimax rate. When ε is above n− β0+1
2β0+1 , the rate becomes
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ε
2β0

β0+1 , dominated by the contamination of data. Since we have about nε con-
taminated observations in expectation, an optimal procedure can achieve the

classical minimax rate n− 2β0
2β0+1 with at most nε ≤ n

β0
2β0+1 contaminated data

points. Note that the number n
β0

2β0+1 is an increasing function of β0.
For the upper bound of the minimax rate, we again consider the kernel density

estimator f̂h(0) =
1
n

∑n
i=1

1
hK

(
Xi

h

)
. The error f̂h(0)− f(0) can be decomposed

as (f̂h(0) − Ef̂h(0)) + (Ehf̂(0) − f(0)). Then, a direct analysis shows that the
risk can be bounded by three terms,

E

(
f̂h(0)− f(0)

)2

� 1

nh
∨ h2β0 ∨ ε2

h2
, (12)

which leads to the optimal choice of bandwidth h = n− 1
2β0+1 ∨ ε

1
β0+1 . It is

interesting to note that this choice of bandwidth is always larger than or equal to

n− 1
2β0+1 . Recall that when the contamination is smooth, the optimal bandwidth

in Theorem 2.2 is smaller than n− 1
2β0+1 . Thus, when there is contamination in

the data, one may need to use a larger or smaller bandwidth compared with

n− 1
2β0+1 depending on the assumption of contamination.
The lower bound part of Theorem 4.1 can be viewed as an application of

Theorem 5.1 in [7]. A general lower bound for Huber’s ε-contamination model
in [7] reveals a critical quantity called modulus of continuity, defined as

ω(ε) = sup
{
|f(0)− f̃(0)|2 : TV(Pf , Pf̃ ) ≤ ε/(1− ε), f, f̃ ∈ P(β0, L0)

}
.

The definition of modulus of continuity goes back to [9, 10], and its relation to
Huber’s ε-contamination model is characterized in [7]. In the current setting,

it can be shown that ω(ε) � ε
2β0

β0+1 , which leads to the lower bound part of
Theorem 4.1. In Section 6.5, we will give an alternative self-contained proof of
the lower bound.

4.2. Adaptation to either contamination proportion or smoothness

The key to adaptation to either contamination proportion or smoothness is
the risk decomposition (12) of the kernel density estimator f̂h(0) =
1
n

∑n
i=1

1
hK

(
Xi

h

)
. We write (12) as the sum of two terms. That is,

1

nh
∨ h2β0 ∨ ε2

h2
�
(
ε2

h2
+

1

nh

)
+ h2β0 . (13)

The first term ε2

h2 + 1
nh is a decreasing function of h with a possibly unknown

ε, while the second term h2β0 is an increasing function of h with a possibly
unknown β0. If we know ε but do not know β0, then we can use Lespki’s method

with ε2

h2 + 1
nh as a reference curve. On the other hand, if we know β0 but do
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not know ε, we can then use a reverse version of Lepski’s method with h2β0 as
a reference curve. Specifically, when ε is known but β0 is unknown, we use

ĥ = max

{
h ∈ H : |f̂h(0)− f̂l(0)| ≤ c1

(√
log n

nl
+

ε

l

)
, ∀l ≤ h, l ∈ H

}
. (14)

If the set that is maximized over is empty, we take ĥ = 1
n . When β0 is known

but ε is unknown, we use

ĥ = min

{
h ∈ H : |f̂h(0)− f̂l(0)| ≤ c1l

β0 , ∀l ≥ h, l ∈ H
}
. (15)

If the set that is minimized over is empty, we take ĥ = 1.
Before stating the guarantee for f̂ĥ(0), we want to emphasize that whether

the contamination proportion ε is known or not is more than a matter of nor-
malization. As a comparison, recall the risk decomposition for a kernel density
estimator with structured contamination in (7). There, both h2β0 and ε2h2β1 are
increasing functions of h. This implies that simultaneous adaptation to both ε
and h is possible through Lepski’s method, and whether ε is given or not only
affects the normalization of the kernel density estimator, which is not the case
for arbitrary contamination because of (13).

Theorem 4.2. Consider the adaptive kernel density estimator f̂(0) = f̂ĥ(0)

with the bandwidth ĥ given by (14) or (15). In either case, we set H ={
1, 1

2 , · · · ,
1
2m

}
such that 1

2m ≤ 1
n < 1

2m−1 and c1 to be a sufficiently large
constant. The kernel K is selected from Kl(L) with a large constant l ≥ 
β0�.
Then, we have

sup
p(ε,f,g)∈M(ε,β0,L0)

Epn

(
f̂(0)− f(0)

)2

�
(
logn

n

) 2β0
2β0+1

∨ ε
2β0

β0+1 .

With one of ε and β0 given, Theorem 4.2 guarantees adaptive estimation with

the rate
(

logn
n

) 2β0
2β0+1 ∨ ε

2β0
β0+1 . Compared with the minimax rate in Theorem 4.1,

we have an extra logarithmic factor due to the ignorance of either ε or β0. This
logarithmic factor cannot be removed by any adaptive procedure in view of the
results of [1, 18, 2].

4.3. Adaptation to both contamination proportion and smoothness?

When both contamination proportion and smoothness are unknown, the adap-
tation theory with arbitrary contamination is completely different from the case
with structured contamination. Since there is no constraint on the contamina-
tion distribution, a model with (ε, β0) can also be written as a different model

with (ε̃, β̃0). As a consequence, we can prove the following lower bound.
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Lemma 4.1. For any constants c1, c2 > 0, there exists a constant c0, such that
for any β0, β̃0 ≤ c1, and any L0, L̃0 ≥ c2, and any estimator f̂(0), one of the
following lower bounds must be true,

sup
p(ε,f,g)∈M(ε,β0,L0)

Epn

(
f̂(0)− f(0)

)2

≥ c0ε
2β̃0

β̃0+1 ,

sup
p(0,f,g)∈M(0,β̃0,L̃0)

Epn

(
f̂(0)− f(0)

)2

≥ c0ε
2β̃0

β̃0+1 .

Lemma 4.1 says that in order for any estimator to adapt to two classes with
different contamination proportions and smoothness indices, say M(ε, β0, L0)

and M(0, β̃0, L̃0), it is impossible to achieve a rate that is better than ε
2β̃0

β̃0+1

across both classes. The lower bound ε
2β̃0

β̃0+1 is a function of both ε, the contam-
ination proportion of the first class M(ε, β0, L0), and β̃0, the smoothness index

of the second class M(0, β̃0, L̃0). As we will show in the following, this specific
form has a profound implication, in that an adaptive estimation rate that is a
function of an individual class is impossible!

As a first step, the following definition formulates what adaptivity means in
our specific setting.

Definition 4.1. An estimator f̂(0) is called (c1, c2, c3, r1(·), r2(·)) rate adaptive
if the following holds: for any n ≥ 1, any ε ≤ 1/2, any β0 ≤ c1 and any L0 ≤ c2,
we have

sup
p(ε,f,g)∈M(ε,β0,L0)

Epn

(
f̂(0)− f(0)

)2

≤ c3n
−r1(β0) ∨ εr2(β0). (16)

As concrete examples, when the contamination distribution is restricted to
those with density functions that are Hölder smooth, it is shown in Theorem
3.5 that adaptive estimation is possible with some r1(β0) <

2β0

2β0+1 and r2(β0) =
2. When the contamination distribution is arbitrary, Theorem 4.2 shows that
adaptive estimation is possible over (ε, β0) if either ε or β0 is fixed (known) with
some r1(β0) < 2β0

2β0+1 and r2(β0) = 2β0

β0+1 . In contrast, the following theorem

shows that such a goal is impossible for any r1(·) and r2(·) when both ε and β0

are unknown.

Theorem 4.3. For any constants c1, c2, c3 > 0 and any positive functions r1(·)
and r2(·), there is no estimator f̂(0) that is (c1, c2, c3, r1(·), r2(·)) rate adaptive.

The impossibility result of Theorem 4.3 is a consequence of Lemma 4.1. The

lower bound ε
2β̃0

β̃0+1 in Lemma 4.1 involves an ε and a β̃ from two different classes.
This leads to a contradiction given the definition of adaptivity in (16). A rigorous
proof of this argument will given in Section 6.7.

In conclusion, when the contamination is arbitrary, the theory of adapta-
tion to both contamination proportion and smoothness is qualitatively different
from adaptation to only one of them. In comparison, when the contamination
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is structured, that difference is just quantitative according to the results in Sec-
tion 3. Therefore, in order to achieve sensible error rates adaptively in a robust
density estimation context, we need to either assume a given contamination
proportion, a given smoothness index, or a structured contamination distribu-
tion.

5. Discussion

5.1. Extensions to multivariate settings

The results in the paper can all be extended to robust multivariate density
estimation. We define a d-dimensional isotropic Hölder class as follows,

Σd(β, L) =

{
f : Rd → R

∣∣∣∣∣ max
l∈I(β)

|∇lf(x1)−∇lf(x2)| ≤ L‖x1 − x2‖β−�β�

for any x1, x2 ∈ Rd

}
,

where we use I(β) to denote the set of multi-indices {l = (l1, ..., ld)
∣∣l1+· · ·+ld =


β�}. The class of density functions is defined as

Pd(β, L) =

{
f : Rd → [0,∞)

∣∣∣∣∣f ∈ Σd(β, L),

∫
f = 1

}
.

Note that the dimension d is assumed to be a constant. Then, the two contam-
ination models considered in the paper are extended as

Md(ε, β0, β1, L0, L1,m)

=
{
(1− ε)f + εg

∣∣∣f ∈ Pd(β0, L0), g ∈ Pd(β1, L1), g(0) ≤ m
}
,

and

Md(ε, β0, L0)

=
{
(1− ε)Pf + εG

∣∣∣f ∈ Pd(β0, L0) and G is an arbitrary distribution
}
.

Similarly, we can define the corresponding minimax ratesRd(ε, β0, β1, L0, L1,m)
and Rd(ε, β0, L0).

Theorem 5.1. For the two contamination models on Rd, we have

Rd(ε, β0, β1, L0, L1,m) � [n− 2β0
2β0+d ] ∨ [ε2(1 ∧m)2] ∨ [n− 2β1

2β1+d ε
2d

2β1+d ],

and

Rd(ε, β0, L0) � [n− 2β0
2β0+d ] ∨ [ε

2β0
β0+d ].
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The extra factor of dimension d makes the interpretation of results even
more interesting. For example, the phase transition boundary of Rd(ε, β0, L0)

now occurs at ε = n− β0+d
2β0+d . This implies that the influence of contamination

becomes more severe as the dimension grows. In contrast, the minimax rate of
Rd(ε, β0, β1, L0, L1,m) leads to a completely different interpretation. For exam-
ple, when m ≥ 1, we have

Rd(ε, β0, β1, L0, L1,m) � n− 2β0
2β0+d ∨ ε2.

The second term ε2 does not change with the dimension d, and the phase transi-

tion boundary between n− 2β0
2β0+d and ε2 is at ε = n− β0

2β0+d , which increases with
respect to d. This suggests that the influence of contamination becomes less
severe as d grows. In short, the contamination influence on density estimation
can be drastically different in a multivariate setting, depending on whether the
contamination distribution is structured or arbitrary.

5.2. Consistency in the hardest scenario

When there is no constraint on the contamination distribution, adaptation is
impossible over both contamination proportion and smoothness in the sense of
(16). One may wonder whether there is still anything to do in such a scenario
with almost nothing is assumed. In this section, we show that consistency is still
possible under this hardest scenario.

Before introducing the procedure, we remark that achieving consistency with-
out knowing ε and β0 is a non-trivial problem due to the risk decomposition
(12) for a kernel density estimator. According to (12), a choice of bandwidth
that leads to consistency must satisfy nh → ∞, h → 0 and h/ε → ∞. Note that
the first and the second requirements can be satisfied easily with a choice of h
that does not depend on any model parameter. For example, one can choose
h = n−1/2. However, the third requirement h/ε → ∞ is problematic without
the knowledge of ε. For any choice of h → 0, there is an adversarial ε to make
h/ε → ∞ fail.

Despite the above difficulty, we show that a data-driven bandwidth leads
to consistency if we know that the smoothness β0 has a lower bound β̃0. We
consider a kernel density estimator f̂h(0) =

1
n

∑n
i=1

1
hK

(
Xi

h

)
. Then, we choose

h by the reverse version of Lepskis’ method that is similar to (15). We define ĥ
by

ĥ = min

{
h ∈ H : |f̂h(0)− f̂l(0)| ≤ c1l

β̃0 , ∀l ≥ h, l ∈ H
}
. (17)

Again, we use the convention that if the set that is minimized over is empty, we
take ĥ = 1.

Theorem 5.2. Consider the kernel density estimator f̂(0) = f̂ĥ(0) with the

bandwidth ĥ given by (17). We set H =
{
1, 1

2 , · · · ,
1
2m

}
such that 1

2m ≤ 1
n <
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1
2m−1 and c1 to be a sufficiently large constant. The kernel K is selected from
Kl(L) with a large constant l ≥ 
β0�. Then, as n → ∞ and ε → 0. we have

sup
p(ε,f,g)∈M(ε,β0,L0)

Epn

(
f̂(0)− f(0)

)2

→ 0,

if β0 ≥ β̃0.

Note that the requirements n → ∞ and ε → 0 are necessary conditions
of consistency given the minimax rate (11). The procedure does not require
knowledge of ε or β0, and thus consistency can be achieved without knowing ε
and β0 even if adaptation is impossible. The procedure (17) uses a conservative

β̃0 in the reverse version of Lepski’s method, and can be viewed as an extension
of (15) that uses the true smoothness index β0.

6. Proofs

6.1. Proofs of Theorem 2.2 and Theorem 3.1

Proof of Theorem 2.2. Decompose the error as

f̂(0)− f(0) = (f̂(0)− Ef̂(0)) +

(
Ef̂(0)− f(0)− ε

1− ε
g(0)

)
+

ε

1− ε
g(0),

where the first term is the stochastic error, the second term stands for bias, and
the third term is the misspecification error caused by contamination.

For the variance term, we have

E(f̂(0)− Ef̂(0))2 = Var

(∑n
i=1

1
hK

(
Xi

h

)
n(1− ε)

)
=

Var( 1hK(Xh ))

n(1− ε)2
,

where

Var

(
1

h
K

(
X

h

))
≤
∫

1

h2
K2

(x
h

)
((1− ε)f(x) + εg(x))dx

� 1

h

∫
1

h
K2

(x
h

)
dx � 1

h
.

This gives the variance bound

E(f̂(0)− Ef̂(0))2 � 1

nh
. (18)

For the bias term we have

Ef̂(0) =

∫
1

h
K
(x
h

)
f(x)dx+

ε

1− ε

∫
1

h
K
(x
h

)
g(x)dx.
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Since f ∈ P(β0, L0) and g ∈ P(β1, L1), we have |
∫

1
hK

(
x
h

)
(f(x) − f(0))dx| �

hβ0 and |
∫

1
hK

(
x
h

)
(g(x)− g(0))dx| � hβ1 . See [26, Chapter 1.2] for an explicit

bias calculation. Adding up the two bias bounds, we get∣∣∣∣Ef̂(0)− f(0)− ε

1− ε
g(0)

∣∣∣∣ � hβ0 + εhβ1 . (19)

For the last term, it is easy to see that(
ε

1− ε
g(0)

)2

� ε2(m ∧ 1)2, (20)

since g(0) ≤ m by the assumption and g(0) � 1 by the fact that g ∈ P(β1, L1).
With the relation E(A1 + A2 + A3)

2 � EA2
1 + EA2

2 + EA2
3 and the three

bounds in (18), (19) and (20), we conclude the proof by the specific choice of

h = n− 1
2β0+1 ∧ n− 1

2β1+1 ε−
2

2β1+1 .

Proof of Theorem 3.1. The error decomposes as

f̂(0)− f(0) = (f̂(0)− Ef̂(0)) + (Ef̂(0)− (1− ε)f(0)− εg(0)) + ε(g(0)− f(0)).

Using the same argument that leads to (18), we have E(f̂(0)−Ef̂(0))2 � 1
nh for

the variance term. The bias term (Ef̂(0) − (1 − ε)f(0) − εg(0)) can be further
decomposed as

(1− ε)

∫
1

h
K
(x
h

)
(f(x)− f(0))dx+ ε

∫
1

h
K
(x
h

)
(g(x)− g(0))dx.

Therefore, the same argument that leads to (19) also gives the bound

|Ef̂(0)− (1− ε)f(0)− εg(0)| � hβ0 + εhβ1 .

For the last term, we have ε|g(0)−f(0)| � ε. Combining the three bounds above,
we have

E

(
f̂(0)− f(0)

)2

� 1

nh
+ h2β0 + ε2.

Choose h = n− 1
2β0+1 , and the proof is complete.

6.2. Proof of Theorem 2.3

The proof of Theorem 2.3 mainly relies on Le Cam’s two-point argument. The
method is summarized by the following lemma.

Lemma 6.1. Consider two distributions Pθ0 and Pθ1 whose parameters of in-
terest are separated by Δ = |Tθ0 − Tθ1 |. Assume χ2 (Pθ0 , Pθ1) ≤ α. Then, we
have

inf
T̂

sup
θ∈{θ0,θ1}

Eθ

(
T̂ − Tθ

)2

≥ 1

8
e−αΔ2.
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We refer the readers to [27] and [26, Chapter 2.3] for rigorous proofs. In the
setting of Theorem 2.3, we need to find two pairs of density functions (f, g) and

(f̃ , g̃) that satisfy f, f̃ ∈ P(β0, L0), g, g̃ ∈ P(β1, L1) and g(0) ∨ g̃(0) ≤ m. Since
we are working with i.i.d. observations, it is sufficient to show that

χ2
(
p(ε, f̃ , g̃), p(ε, f, g)

)
� n−1.

Then, Lemma 6.1 implies R(ε, β0, β1, L0, L1,m) � |f(0)− f̃(0)|2.
The lower bound of Theorem 2.3 contains three terms. We thus split the

proof into three parts, and then combine the three arguments in the end.

Lemma 6.2. We have

R(ε, β0, β1, L0, L1,m) � n− 2β0
2β0+1 .

Proof. The proof uses a similar argument in [26, Chapter 2.5]. Since we are deal-
ing with a setting with contamination, we still give a proof to be self contained.
We define the following four functions,

g(x) = g̃(x) = c1a(c1x),

f(x) = f0(x),

f̃(x) = f0(x) + c2h
β0b

(x
h

)
.

Here, we take f0 as the density function of some normal distribution with mean
zero so that f0 ∈ P(β0, L0/2). The functions a(x) and b(x) are given by Lemma
2.1 and Lemma 2.2. We first verify that for appropriate choices of c1, c2 and h ≤
1, the constructed functions are well-defined densities in the desired parameter
spaces.

• We have f ∈ P(β0, L0) by construction. Since h ≤ 1, b(x/h) is compactly
supported on an area where f0 is lower bounded by some positive constant.
Thus, with a c2 > 0 that is sufficiently small, f̃ is nonnegative. The fact∫
f̃ = 1 can be derived from the property of b in Lemma 2.2. Hence,

f̃ ∈ P(β0, L0) when c2 is small enough.
• With a sufficiently small c1 > 0, we have g, g̃ ∈ P(β1, L1).
• By a(0) = 0 according to Lemma 2.1, we get |g(0)| ∨ |g̃(0)| ≤ m.

We use the notation p = (1 − ε)f + εg and q = (1 − ε)f̃ + εg̃. Note that p can
be lower bounded by a positive constant on the interval [−1, 1] according to its
definition. Moreover, we have

p(x)− q(x) = −(1− ε)c2h
β0b

(x
h

)
,

and the support of b
(
x
h

)
is [−h, h] ⊂ [−1, 1]. This leads to the bound

χ2(q, p) =

∫ 1

−1

(p− q)2

p
�
∫
(p− q)2 � h2β0

∫
b2
(x
h

)
� h2β0+1.
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In order that nχ2(q, p) � 1, we can choose h = n− 1
2β0+1 . This leads to

|f(0)− f̃(0)| � n− β0
2β0+1 .

Use Lemma 6.1, and the proof is complete.

Lemma 6.3. We have

R(ε, β0, β1, L0, L1,m) � ε2(1 ∧m)2.

Proof. By [26], for any p ∈ P(β, L), there exists a constant pmax such that
supx |p(x)| ≤ pmax. Therefore, it is sufficient to consider m that is bounded by
some constant, say m ≤ 1. Consider the following four functions,

f(x) = f0(x),

f̃(x) = f0(x) + c1
ε

1− ε
mb(x),

g(x) = c2a(c2x) + c1mb(x),

g̃(x) = c2a(c2x).

Here, we take f0 as the density function of some normal distribution with mean
zero so that f0 ∈ P(β0, L0/2). The functions a(x) and b(x) are given by Lemma
2.1 and Lemma 2.2. With appropriate choices of the constants c1, c2 > 0,
f, f̃ , g, g̃ are well-defined density functions that belong to the desired function
classes.

• By Lemma 2.1, We have f0 ∈ P(β0, L0/2) ⊂ P(β0, L0) by construction.
Since f0 is strictly positive on [−1, 1] and b is compactly supported on

[−1, 1], we have f̃ ∈ P(β0, L0) for some sufficiently small constant c1 > 0
according to the properties of b listed in Lemma 2.2.

• By definition of a, we have g̃ ∈ P(β1, L1/2) for some sufficiently small
c2 > 0 according to Lemma 2.1. Since b(x) only takes negative values
when c2a(c2x) is lower bounded by a positive constant, g is nonnegative
and g ∈ P(β1, L1) when c1 is small enough.

• We also have |g(0)|∨|g̃(0)| ≤ m for a sufficiently small c1 because a(0) = 0
and |b(0)| is bounded by a constant according to Lemma 2.1 and Lemma
2.2.

In summary, we have

(1− ε)f + εg, (1− ε)f̃ + εg̃ ∈ M(ε, β0, β1, L0, L1,m).

Moreover, according to our construction, we have

(1− ε)f + εg = (1− ε)f̃ + εg̃,

and
|f(0)− f̃(0)| = c1

ε

1− ε
m|b(0)| � mε,

where we have used |b(0)| � 1 by Lemma 2.2. Finally, using Lemma 6.1, we
obtain the desired lower bound result.
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Lemma 6.4. Assume β1 ≤ β0 and nε2 ≥ 1. Then, we have

R(ε, β0, β1, L0, L1,m) � n− 2β1
2β1+1 ε

2
2β1+1 .

Proof. Consider the following four functions,

f(x) = f0(x),

f̃(x) = f0(x) + c2
ε

1− ε

[
hβ0 l

(x
h

)
− hβ0 l

(
2(x− c4)

h

)
− hβ0 l

(
2(x+ c4)

h

)]
,

g(x) = c1a(c1x) + c2

[
hβ0 l

(x
h

)
− hβ0 l

(
2(x− c4)

h

)
− hβ0 l

(
2(x+ c4)

h

)]
− c3h̃

β1b

(
x

h̃

)
,

g̃(x) = c1a(c1x).

Since the proof relies on perturbing a density at a point where it is 0, the
verification of nonnegativity is more delicate, which motivates another tuning
constant controlling the center of the negative part of the perturbation. Here,
we take f0 as the density function of some normal distribution with mean zero
so that f0 ∈ P(β0, L0/2). The functions a(x) and b(x) are given by Lemma 2.1

and Lemma 2.2. The numbers h and h̃ are chosen so that the following equation
is satisfied:

c2h
β0 l(0) = c3h̃

β1b(0). (21)

Now, we verify that with appropriate choices of constants c1, c2, c3, c4, the con-
structed functions belong to the parameter spaces.

• The functions f and g̃ are automatically density functions by definition.
Note that we can choose a small constant c4 so that the negative pertur-

bation −hβ0 l
(

2(x−c4)
h

)
− hβ0 l

(
2(x+c4)

h

)
has a support in a region where

both f0 and c1a(c1x) are bounded below by a positive constant. This im-

mediately implies that f̃(x) ≥ 0 for all x with a sufficiently small constant

c2. Similarly, the support of −c3h̃
β1b

(
x

h̃

)
is [−h̃, h̃], which is contained

in a region where c1a(c1x) is bounded below by a positive constant for a

sufficiently small h̃. Therefore, g(x) ≥ 0 for all x with a sufficiently small

constant c3. We also note that
∫
f̃ =

∫
g = 1 according to the definitions.

• When c1, c2, c3 are chosen small enough, we have f, f̃ ∈ Σ(β0, L0) and
g, g̃ ∈ Σ(β1, L1). Here g ∈ Σ(β1, L1) is a consequence of the assumption
that β1 ≤ β0.

• Finally, we have l(2c4/h) = l(−2c4/h) = 0 for a sufficiently small h. This
implies g(0) = g̃(0) = 0 because of (21). Therefore, |g(0) ∨ g̃(0)| ≤ m.

In summary, we have

(1− ε)f + εg, (1− ε)f̃ + εg̃ ∈ M(ε, β0, β1, L0, L1,m).
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Besides the properties listed above, we also note that both f and g can be
bounded from below by some positive constant on the interval [−1, 1], if the
constants c2, c3 are sufficiently small. This implies that the density (1− ε)f + εg
is lower bounded by some positive constant on the interval [−1, 1].

Now, according to the above construction, for p = (1 − ε)f + εg and q =

(1− ε)f̃ + εg̃, we have

p(x)− q(x) = −εc3h̃
β1b

(
x

h̃

)
.

Given that the support of b
(

x

h̃

)
is within [−h̃, h̃] ⊂ [−1, 1] with a sufficiently

small h̃, we have

χ2(q, p) =

∫ 1

−1

(p− q)2

p
�
∫
(p− q)2 � ε2h̃2β1

∫
b2
(
x

h̃

)
� ε2h̃2β1+1.

In order that nχ2(q, p) � 1, it is sufficient to choose h̃ �
(
nε2

)− 1
2β1+1 . The

condition nε2 ≥ 1 implies that h̃ can be picked sufficiently small. Moreover,
with the relation (21), we have

|f(0)− f̃(0)| = c2
ε

1− ε
hβ0 l(0) � εhβ0 � εh̃β1 � ε

1
2β1+1n− β1

2β1+1 .

Finally, using Lemma 6.1, we obtain the desired lower bound result.

We combine the results of Lemma 6.2, Lemma 6.3 and Lemma 6.4.

Proof of Theorem 2.3. In order that the third term n− 2β1
2β1+1 ε

2
2β1+1 dominates

the other two, it is necessary that ε2 ≥ n
2β1−2β0
2β0+1 . This implies both β1 ≤ β0 and

nε2 ≥ 1. By Lemma 6.4, we have

R(ε, β0, β1, L0, L1,m) � n− 2β1
2β1+1 ε

2
2β1+1 .

When the first or the second term dominate, we use Lemma 6.2 and Lemma
6.3, and obtain

R(ε, β0, β1, L0, L1,m) � [n− 2β0
2β0+1 ] ∨ [ε2(1 ∧m)2].

Hence, the proof is complete.

6.3. Proofs of Theorem 3.2 and Theorem 3.4

The proofs of both theorems rely on the following constrained risk inequality
by [1].
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Lemma 6.5. Consider two distributions Pθ0 and Pθ1 whose parameters of in-

terest are separated by Δ = |Tθ0 − Tθ1 |. For any estimator T̂ , assume

Eθ0(T̂ − Tθ0)
2 ≤ δ2.

Then, whenver δI ≤ Δ, we have

Eθ1(T̂ − Tθ1)
2 ≥ (Δ− δI)2,

where I =

√∫ dP 2
θ1

dPθ0
.

Proof of Theorem 3.2. We consider the following four functions,

f = f0,

g = c1a(c1x),

f̃ =
1− ε

1− ε̃
f0 +

ε− ε̃

1− ε̃
c1a(c1x),

g̃ = c1a(c1x).

Here, we take f0 as the density function of some normal distribution with mean
zero so that f0 ∈ P(β0, L0/2). The function a(·) is given by Lemma 2.1. The
constant c1 is sufficiently small so that c1a(c1x) belongs to both P(β0, L0/2)

and P(β1, L1/2). Now it is easy to check that f, f̃ ∈ P(β0, L0), g, g̃ ∈ P(β1, L1)
and g(0) ∨ g̃(0) = 0 ≤ m, so that the constructed functions are well-defined
densities in the parameter spaces.

It is easy to check that

(1− ε)f + εg = (1− ε̃)f̃ + ε̃g̃.

This implies
∫
q2/p = 1 for p = (1 − ε)f + εg and q = (1 − ε̃)f̃ + ε̃g̃. We also

have ∣∣∣f(0)− f̃(0)
∣∣∣ = ε− ε̃

1− ε̃
f(0).

According to Lemma 6.5, suppose there is an estimator f̂(0) that satisfies

Epn

(
f̂(0)− f(0)

)2

≤ Cε̃2, we must have

Eqn(f̂(0)− f̃(0))2 ≥
(
ε− ε̃

1− ε̃
f(0)− C1/2ε̃

)2

.

Therefore, there exists a constant C ′ > 0, such that for ε ≥ C ′ε̃, Eqn(f̂(0) −
f̃(0))2 � ε2.

Fix a constant C1 > 0 that is small enough. Then according to the above
reasoning, there exist two constants C2 > 0, C3 > 0 depending on C1 such
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that if two contamination proportions ε and ε̃ satisfy C2ε̃ ≤ ε < 1/2, then the
following two statements cannot be true at the same time:

sup
p(ε̃,f,g)∈M(ε̃,β0,β1,L0,L1,m)

Epn

(
f̂(0)− f(0)

)2

≤ C1ε̃
2,

sup
p(ε,f,g)∈M(ε,β0,β1,L0,L1,m)

Epn

(
f̂(0)− f(0)

)2

≤ C3ε
2.

This implies that

sup
0<ε<1/2

ε−2 sup
p(ε,f,g)∈M(ε,β0,β1,L0,L1,m)

Epn

(
f̂(0)− f(0)

)2

� 1,

for any estimator f̂ , which concludes the proof.

Proof of Theorem 3.4. We construct the following four functions

f̃(x) = f0(x),

f(x) = f0(x)− c2
ε

1− ε

[
hβ0 l

(x
h

)
− hβ0 l

(
2(x− c4)

h

)
− hβ0 l

(
2(x+ c4)

h

)]
,

g̃(x) = c1a(c1x),

g(x) = c1a(c1x) + c2

[
hβ0 l

(x
h

)
− hβ0 l

(
2(x− c4)

h

)
− hβ0 l

(
2(x+ c4)

h

)]
− c3h̃

β1b

(
x

h̃

)
.

The construction is similar to that in the proof of Lemma 6.4. The difference is
that the perturbation is now put on both f and g. Here, we take f0 as the density
function of some normal distribution with mean zero so that f0 ∈ P(β0, L0/2).
The functions a(x) and b(x) are given by Lemma 2.1 and Lemma 2.2. The

numbers h and h̃ are chosen so that the following equation is satisfied:

c2h
β0 l(0) = c3h̃

β1b(0). (22)

Similar to the argument used in Lemma 6.4, it is not hard to check that
with appropriate choices of the constants c1, c2, c3, we have f̃ ∈ P(β̃0, L̃0),

g̃ ∈ P(β̃1, L̃1), f ∈ P(β0, L0) and g ∈ P(β1, L1), given that β̃0 ≥ β0 ≥ β1 and

β̃1 > β1. The numbers h and h̃ are both required to be sufficiently small. We also
have g(0) = g̃(0) = 0 according to the definition with an appropriate choice of
c4. Then, the constructed functions are well-defined densities in the parameter
spaces.

With the notation p = (1 − ε)f + εg and q = (1 − ε)f̃ + εg̃, we check the
quantities in Lemma 6.5. Note that

|p(x)− q(x)| = c3εh̃
β1b

(
x

h̃

)
.
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With a similar argument in the proof of Lemma 6.4, the function b
(

x

h̃

)
is

supported within [−h̃, h̃] ⊂ [−1, 1], and p(x) is lower bounded by some constant
uniformly over x ∈ [−1, 1]. This implies,

I =

(∫
q2

p

)n
2

=

(
1 +

∫
(q − p)2

p

)n
2

≤ exp

(
C1n

2

∫
(p− q)2

)
≤ exp

(
C ′

1nε
2h̃2β1+1

)
.

Moreover, we also have

Δ = |f(0)− f̃(0)| = c2
ε

1− ε
hβ0 l(0),

and

δ = C1/2

(
n

logn

)− β̃1
2β̃1+1

ε
1

2β̃1+1 .

In order that I ≤
(

nε2

logn

)c

for some sufficiently small constant c > 0, we can

choose h̃ �
(

nε2

logn

)− 1
2β1+1

, which is always possible with the condition nε2 ≥

(log n)2. According to the relation (22), we have Δ � ε
1

2β1+1

(
n

log n

)− β1
2β1+1

.

Plugging these quantities into the constrained risk inequality in Lemma 6.5 and
using β1 < β̃1, we get the desired lower bound.

6.4. Proofs of Theorem 3.3 and Theorem 3.5

The proofs of the two theorems are similar. Thus, we give a detailed proof of
Theorem 3.5 first, and then sketch the proof of Theorem 3.3.

Proof of Theorem 3.5. For every bandwidth h, the error decomposes as

f̂h(0)−f(0) = (f̂h(0)−Ef̂h(0))+(Ef̂h(0)− (1− ε)f(0)− εg(0))+ ε(g(0)−f(0)),
(23)

where the three terms correspond to a stochastic part that depends on h, a
deterministic part that depends on h, and a deterministic part that does not
depend on h. With the same argument in the proof of Theorem 3.1, we have

E(f̂(0)− Ef̂(0))2 � 1

nh
,

|Ef̂(0)− (1− ε)f(0)− εg(0)| � hβ0 + εhβ1 ,

and
ε|g(0)− f(0)| � ε.

Define the oracle bandwidth h∗ to be the largest h ∈ H such that

hβ0 + εhβ1 ≤ c

√
log n

nh
,
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where the constant c > 0 will be determined later. Then it is easy to see that
h∗ satisfies

c′
√

log n

nh∗
≤ hβ0

∗ + εhβ1
∗ ≤ c

√
log n

nh∗
, (24)

for some constant c′ that only depends on c.

We proceed to prove that ĥ ≥ h∗ with high probability. By the definition of
ĥ, we have

P(ĥ < h∗) ≤ P

(
∃l ≤ h∗ and l ∈ H s.t. |f̂h∗(0)− f̂l(0)| > c1

√
log n

nl

)

≤
∑

l≤h∗,l∈H
P

(
|f̂h∗(0)− f̂l(0)| > c1

√
logn

nl

)
.

We derive a bound for P

(
|f̂h∗(0)− f̂l(0)| > c1

√
log n
nl

)
for each l ≤ h∗ and

l ∈ H. Due to the error decomposition (23), we have:

|f̂h∗(0)− f̂l(0)| ≤ C(hβ0
∗ + εhβ1

∗ ) + |f̂h∗(0)− Ef̂h∗(0)|+ |f̂l(0)− Ef̂l(0)|,

for some constant C > 0. By (24), the bias term can be controlled as

C(hβ0
∗ + εhβ1

∗ ) ≤ C × c

√
logn

nh∗
≤ c1

2

√
log n

nl
,

for a sufficiently small c > 0. Thus, we have

P(ĥ < h∗) ≤
∑

l≤h∗,l∈H
P

(
|f̂h∗(0)− Ef̂h∗(0)|+ |f̂l(0)− Ef̂l(0)| ≥

c1
2

√
logn

nl

)

≤
∑

l≤h∗,l∈H
P

(
|f̂h∗(0)− Ef̂h∗(0)| ≥

c1
4

√
log n

nh∗

)

+
∑

l≤h∗,l∈H
P

(
|f̂l(0)− Ef̂l(0)| ≥

c1
4

√
log n

nl

)
.

For any l ≤ h∗ and l ∈ H, we use Bernstein’s inequality, and get

P

(
|f̂l(0)− Ef̂l(0)| ≥ t

)
≤ P

(∣∣∣∣∣ 1n
n∑

i=1

l−1K(Xi/l)− El−1K(X/l)

∣∣∣∣∣ ≥ t

)

≤ 2 exp

(
− nt2/2

σ2 +Mt/3

)
,
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where we choose t = c1
4

√
log n
nl , and σ2 and M have bounds

σ2 ≤ El−2K2(X/l) � l−1 and M � l−1.

This implies the bound

P

(
|f̂l(0)− Ef̂l(0)| ≥

c1
4

√
logn

nl

)
≤ 2 exp (−C ′ logn) , (25)

where the constant C ′ > 0 can be arbitrarily large given a sufficiently large
c1 > 0. For example, we set a large enough c1 > 0 so that C ′ = 3. This gives

P(ĥ < h∗) ≤ 4|H|n−3 � n−3 logn.

Now, on the event {ĥ ≥ h∗}, the risk decomposes as

|f̂ĥ(0)− f(0)| ≤ |f̂ĥ(0)− f̂h∗(0)|+ |f̂h∗(0)− f(0)|.

Due to the definition of ĥ, the first term satisfies

|f̂ĥ(0)− f̂h∗(0)| ≤ c1

√
log n

nh∗
. (26)

For the second term, the error decomposition and the relation (24) implies

E|f̂h∗(0)− f(0)|2 � logn

nh∗
+ ε2.

Therefore, we have

E(f̂ĥ(0)− f(0))2

≤ E((f̂ĥ(0)− f(0))2 : ĥ ≥ h∗) + E((f̂ĥ(0)− f(0))2 : ĥ < h∗)

≤ 2E((f̂ĥ(0)− f̂h∗(0))
2 : ĥ ≥ h∗) + 2E((f̂h∗(0)− f(0))2 : ĥ ≥ h∗)

+O
(
n2P(ĥ < h∗)

)
� logn

nh∗
+ ε2 +

logn

n

�
(
log n

n

) 2β0
2β0+1

+ ε2.

The last inequality above is by realizing that h∗ �
(

n
logn

)− 1
2β0+1

from the

relation (24). The proof is complete.

Proof of Theorem 3.3. The proof for Theorem 3.3 follows the same argument as
that of Theorem 3.5. The only difference lies in the normalization, which leads
to the error decomposition

f̂h(0)− f(0) = (f̂h(0)− Ef̂h(0)) +

(
Ef̂h(0)− f(0)− ε

1− ε
g(0)

)
+

ε

1− ε
g(0).

The rest of the details are the same and is omitted.
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6.5. Proof of Theorem 4.1

We split the proof into upper and lower bounds. We first prove the following
upper bound.

Theorem 6.1. For the estimator f̂(0) = f̂h(0) with some K ∈ K�β0�(L) and

h = n− 1
2β0+1 ∨ ε

1
β0+1 , we have

sup
p(ε,f,g)∈M(ε,β0,L0)

Epn

(
f̂(0)− f(0)

)2

� [n− 2β0
2β0+1 ] ∨ [ε

2β0
β0+1 ].

Proof. Decompose the error as

f̂h(0)− f(0) = (f̂h(0)− Ef̂h(0)) + (Ehf̂(0)− f(0)),

where the first term is the stochastic error and the second term is the bias. For
the first term, we have

E(f̂h(0)− Ef̂h(0))
2 =

1

n
Var

(
1

h
K

(
X

h

))
,

and

Var

(
1

h
K

(
X

h

))
≤ (1− ε)

∫
1

h2
K2

(x
h

)
f(x)dx+ ε

∫
1

h2
K2

(x
h

)
dG(x)

� 1

h

∫
1

h
K2

(x
h

)
dx+

ε

h2

∫
dG(x)

� 1

h
+

ε

h2
.

Therefore, we have

E(f̂h(0)− Ef̂h(0))
2 � 1

nh
+

ε

nh2
. (27)

For the bias term, we have

Ef̂h(0)− f(0)

= (1− ε)

∫
1

h
K
(x
h

)
(f(x)− f(0))dx+ ε

∫
1

h
K
(x
h

)
dG(x)− εf(0),

where the first term has bound∣∣∣∣∫ 1

h
K
(x
h

)
(f(x)− f(0))dx

∣∣∣∣ � hβ0 ,

by [26, Chapter 1.2], and the next two terms can be bounded as∣∣∣∣ε ∫ 1

h
K
(x
h

)
dG(x)− εf(0)

∣∣∣∣ � ε

h

∫
dG(x) + εf(0) � ε

h
.
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Therefore, we have

|Ef̂h(0)− f(0)| � hβ0 +
ε

h
. (28)

Combine the two bounds (27) and (28), choose h = n− 1
2β0+1 ∨ ε

1
β0+1 , and then

we complete the proof.

Now we state the lower bound.

Theorem 6.2. We have

R(ε, β0, L0) � [n− 2β0
2β0+1 ] ∨ [ε

2β0
β0+1 ].

Before proving this theorem, we need the following lemma.

Lemma 6.6. A function d(x) can be written as the difference of two density
functions if and only if ∫

d = 0 and

∫
|d| ≤ 2.

Proof. The “only if” part is obvious. Now assume the two conditions hold, and
then for any density function f , we have the following decomposition for d,

d =

[
d+ +

(
1− 1

2

∫
|d|
)
f

]
−
[
d− +

(
1− 1

2

∫
|d|
)
f

]
,

where d+ and d− are the positive and negative parts of the function. The first
condition implies

∫
d+ =

∫
d− = 1

2

∫
|d|. Thus,∫ [

d+ +

(
1− 1

2

∫
|d|
)
f

]
=

∫ [
d− +

(
1− 1

2

∫
|d|
)
f

]
= 1.

The second condition guarantees that both d+ +
(
1− 1

2

∫
|d|
)
f and

d− +
(
1− 1

2

∫
|d|
)
f are nonnegative. Thus, the proof is complete.

Proof of Theorem 6.2. For the lower bound of the first term n− 2β0
2β0+1 , see the

proof of Lemma 6.2. We give a proof for the second term. Consider the following
two functions

f = f0,

f̃ = f0 + chβ0b
(x
h

)
.

Here, we take f0 as the density function of some normal distribution with mean
zero so that f0 ∈ P(β0, L0/2). The function b is defined in Lemma 2.2. The
constant c is chosen small enough so that f ∈ P(β0, L0). In order that there
exist g and g̃ so that

(1− ε)f + εg = (1− ε)f̃ + εg̃,
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it suffices to verify the existence of densities g and g̃ such that

g(x)− g̃(x) =
1− ε

ε

(
f̃(x)− f(x)

)
= c

1− ε

ε
hβ0b

(x
h

)
.

By Lemma 6.6, it further suffices to verify the condition

c
1− ε

ε

∫
hβ0

∣∣∣b(x
h

)∣∣∣ dx ≤ 2,

and this is guaranteed by taking some h � ε
1

β0+1 . Now we have g and g̃ such
that (1− ε)f + εg = (1− ε)f̃ + εg̃ holds. Moreover,

|f(0)− f̃(0)| = chβ0b(0) � ε
β0

β0+1 .

Apply Lemma 6.1, and the proof is complete.

6.6. Proofs of Theorem 4.2 and Theorem 5.2

We first prove Theorem 5.2. Then, the proof of Theorem 4.2 will be sketched
using arguments in the proofs of Theorem 3.5 and Theorem 5.2.

Proof of Theorem 5.2. We consider observations X1, ..., Xn. We assume that
X1, ..., Xa are generated from the density f with some integer a, and the remain-
ing observations Xa+1, ..., Xn are generated from contamination. The number a
follows Binomial(n, 1− ε). This is without loss of generality, because the defini-

tion of f̂ does not depend on the order of the data X1, ..., Xn. Apply Bernstein’s
inequality, and we get

P

(
n− a

n
≥ 2ε

)
≤ exp

(
−3

8
nε

)
.

From now on, we assume that ε ≥ 8 logn
n , so that n−a

n ≤ 2ε with probability at

least 1 − n−3. The case ε < 8 logn
n will be considered in the end of the proof.

Moreover, the following analysis conditions on the event
{

n−a
n ≤ 2ε

}
, and we

use P̄ and Ē to denote probability and expectation conditioning on the random
variable a.

We start by the following error decomposition,

f̂h(0)− f(0) =
1

n

a∑
i=1

(
h−1K(Xi/h)− EX∼fh

−1K(X/h)
)

+
a

n

(
EX∼fh

−1K(X/h)− f(0)
)

+
1

n

n∑
i=a+1

h−1K(Xi/h)−
n− a

n
f(0).
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With similar arguments used in the proof of Theorem 2.2, we have

Ē

(
1

n

a∑
i=1

(
h−1K(Xi/h)− EX∼fh

−1K(X/h)
))2

� 1

nh
,

and ∣∣EX∼fh
−1K(X/h)− f(0)

∣∣ � hβ0 .

Moreover, n−a
n ≤ 2ε implies that

1

n

n∑
i=a+1

h−1K(Xi/h) � ε

h
,

and n−a
n f(0) � ε. These bounds motivate us to define an oracle bandwidth h∗

that is the smallest h ∈ H such that

ε

h
+

√
logn

nh
≤ hβ̃0 .

Then it is obvious that h∗ satisfies

chβ̃0
∗ ≤ ε

h∗
+

√
logn

nh∗
≤ hβ̃0

∗ , (29)

with some constant c > 0. Now we prove that ĥ ≤ h∗ holds with high probability.
According to the definition of ĥ, we have

P̄(ĥ > h∗) ≤ P̄

(
∃l ≥ h∗ and l ∈ H s.t. |f̂h∗(0)− f̂l(0)| ≥ c1l

β̃0

)
≤

∑
l≥h∗,l∈H

P̄

(
|f̂h∗(0)− f̂l(0)| ≥ c1l

β̃0

)
.

By the risk decomposition, for l ≥ h∗ and l ∈ H, the difference |f̂h∗(0)− f̂l(0)|
is bounded as

|f̂h∗(0)− f̂l(0)| ≤
∣∣∣∣∣ 1n

a∑
i=1

(
h−1
∗ K(Xi/h∗)− EX∼fh

−1
∗ K(X/h∗)

)∣∣∣∣∣
+

∣∣∣∣∣ 1n
a∑

i=1

(
l−1K(Xi/l)− EX∼f l

−1K(X/l)
)∣∣∣∣∣

+C

(
ε

h∗
+ lβ0

)
,

for some constant C > 0. According to (29) and the condition β̃0 ≤ β0, we have

C

(
ε

h∗
+ lβ0

)
≤ C

(
hβ̃0
∗ + lβ̃0

)
≤ c1

4
hβ̃0
∗ +

c1
4
lβ̃0 ,
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where the last inequality holds for a sufficiently large c1. Thus, we have the
bound

P̄(ĥ > h∗)

≤
∑

l≥h∗,l∈H
P̄

(
|f̂h∗(0)− f̂l(0)| ≥

c1
2
lβ̃0 +

c1
2
hβ̃0
∗

)

≤
∑

l≥h∗,l∈H
P̄

(∣∣∣∣∣ 1n
a∑

i=1

(
h−1
∗ K(Xi/h∗)− EX∼fh

−1
∗ K(X/h∗)

)∣∣∣∣∣ ≥ c1
4
hβ̃0
∗

)

+
∑

l≥h∗,l∈H
P̄

(∣∣∣∣∣ 1n
a∑

i=1

(
l−1K(Xi/l)− EX∼f l

−1K(X/l)
)∣∣∣∣∣ ≥ c1

4
lβ̃0

)

≤
∑

l≥h∗,l∈H
P̄

(∣∣∣∣∣ 1n
a∑

i=1

(
h−1
∗ K(Xi/h∗)− EX∼fh

−1
∗ K(X/h∗)

)∣∣∣∣∣ ≥ c1
4

√
log n

nh∗

)

+
∑

l≥h∗,l∈H
P̄

(∣∣∣∣∣ 1n
a∑

i=1

(
l−1K(Xi/l)− EX∼f l

−1K(X/l)
)∣∣∣∣∣ ≥ c1

4

√
logn

nl

)
,

where the last inequality is by (29) and the observation that

lβ̃0 ≥ hβ̃0
∗ ≥

√
logn

nh∗
≥
√

log n

nl
.

Use Bernstein’s inequality in a similar way that derives (25), we obtain the
bound

P̄

(∣∣∣∣∣ 1n
a∑

i=1

(
l−1K(Xi/l)− EX∼f l

−1K(X/l)
)∣∣∣∣∣ ≥ c1

4

√
log n

nl

)
≤ 2n−3,

when the constant c1 is chosen to be sufficiently large. Then, we have

P̄(ĥ > h∗) � n−3 logn.

On the event ĥ ≤ h∗, the error decomposes as

|f̂ĥ(0)− f(0)| ≤ |f̂ĥ(0)− f̂h∗(0)|+ |f̂h∗(0)− f(0)|.

Due to definition of ĥ, the first term is bounded as

|f̂ĥ(0)− f̂h∗(0)| ≤ c1h
β̃0
∗ .

The second term uses the oracle bandwidth h∗. Then, we have

Ē(f̂ĥ(0)− f(0))2

≤ Ē((f̂ĥ(0)− f(0))2 : ĥ ≤ h∗) + Ē((f̂ĥ(0)− f(0))2 : ĥ > h∗)

� Ē((f̂ĥ(0)−f̂h∗(0))
2 : ĥ ≤ h∗)+Ē((f̂h∗(0)− f(0))2 : ĥ ≤ h∗) + n2P̄(ĥ > h∗)
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� h2β̃0
∗ +

1

nh∗
+ h2β0

∗ +
ε2

h2
∗
+ n−1 logn

�
(
logn

n

) 2β̃0
2β̃0+1

∨ ε
2β̃0

β̃0+1 ,

where we have used (29) in the last inequality. Integrating over the random
variable a, we have

E(f̂ĥ(0)− f(0))2

≤ E

(
(f̂ĥ(0)− f(0))2 :

n− a

n
< 2ε

)
+ E

(
(f̂ĥ(0)− f(0))2 :

n− a

n
≥ 2ε

)

�
(
logn

n

) 2β̃0
2β̃0+1

∨ ε
2β̃0

β̃0+1 + n2P

(
n− a

n
≥ 2ε

)

�
(
logn

n

) 2β̃0
2β̃0+1

∨ ε
2β̃0

β̃0+1 . (30)

Finally, we consider the situation when ε < 8 log n
n . In this case, for any

contamination distribution g, there is another g̃ such that

(1− ε)f + εg =

(
1− 8 logn

n

)
f +

8 logn

n
g̃.

See [7] for a rigorous argument of the above equality. Then, we can equivalently
analyze the risk with contamination proportion 8 logn

n . This leads to the error
bound(

logn

n

) 2β̃0
2β̃0+1

∨
(
logn

n

) 2β̃0
β̃0+1

�
(
logn

n

) 2β̃0
2β̃0+1

�
(
logn

n

) 2β̃0
2β̃0+1

∨ ε
2β̃0

β̃0+1 . (31)

Hence, we let n → ∞ and ε → 0, and the proof is complete.

Proof of Theorem 4.2. For the estimator that uses (15), the result is a special

case of Theorem 5.2 by letting β̃0 = β0 in view of the bounds (30) and (31). For
the estimator that uses (14), the result follows the same argument as the proof
of Theorem 3.5.

6.7. Proofs of Lemma 4.1 and Theorem 4.3

Proof of Lemma 4.1. We use φ(·) to denote the density of N(0, 1). Then, define

f(x) = c3φ(c3x),

g(x) =
c4

ε
1

β̃0+1

φ

(
c4x

ε
1

β̃0+1

)
,
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f̃(x) = (1− ε)f(x) + εg(x),

g̃(x) = φ(x).

First, there exists a constant c3 depending on c1, c2 such that for any β0, β̃0 ≤ c1
and L0, L̃0 ≥ c2, we have f ∈ P(β0, L0) ∩ P(β̃0, L̃0/2). This is due to the fact
that φ(α)(x) is uniformly bounded for all α ≤ c when c is some constant. By
definition,

εg(x) = c4ε
β̃0

β̃0+1φ

(
c4x

ε
1

β̃0+1

)
,

For the same reason as above, there exists a constant c4 depending on c1, c2
such that for any β̃0 ≤ c1 and L̃0 ≥ c2, we have εg ∈ Σ(β̃0, L̃0/2), which then

implies f̃ ∈ P(β̃0, L̃0). Now we note that

(1− ε)f + εg = (1− 0)f̃ + 0g̃,

and ∣∣∣f̃(0)− f(0)
∣∣∣ = ε|f(0)− g(0)| ≥ c0ε

β̃0
β̃0+1 ,

when ε smaller than a constant and where c0 is a constant depending on c3, c4.
Thus for any estimator f̂(0),[

sup
p(ε,f,g)∈M(ε,β0,L0)

Epn

(
f̂(0)− f(0)

)2
]

∨
[

sup
p(0,f,g)∈M(0,β̃0,L̃0)

Epn

(
f̂(0)− f(0)

)2
]
≥ c0ε

2β̃0
β̃0+1 ,

by applying Lemma 6.1.

Proof of Theorem 4.3. For any constants c1, c2, let c0 be the constant as guar-
anteed to exist in Theorem 4.1, and assume there exists an estimator f̂(0) which
is (c1, c2, c3, r1(β0), r2(β0)) rate adaptive. With L0 = c2, we consider two mod-

els respectively with parameters (n, ε, β0, L0) and (n, 0, β̃0, L0), with the specific

values of n, ε, β0, β̃0 to be chosen later. By the definition of rate adaptivity (16),
we have:

sup
p(ε,f,g)∈M(ε,β0,L0)

Epn

(
f̂(0)− f(0)

)2

≤ c3[ε
r2(β0) ∨ n−r1(β0)],

sup
p(0,f,g)∈M(0,β̃0,L0)

Epn

(
f̂(0)− f(0)

)2

≤ c3n
−r1(β̃0).

On the other hand, Theorem 4.1 claims that for any small enough ε, any large
enough n, any β0, β̃0 ≤ c1, we have

sup
p(ε,f,g)∈M(ε,β0,L0)

Epn

(
f̂(0)− f(0)

)2

∨ sup
p(0,f,g)∈M(0,β̃0,L0)

Epn

(
f̂(0)− f(0)

)2
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≥ c0ε
2β̃0

β̃0+1 .

Together this yields

c3[ε
r2(β0) ∨ n−r1(β0) ∨ n−r1(β̃0)] ≥ c0ε

2β̃0
β̃0+1 . (32)

Now we choose n, β0, β̃0, ε in a legitimate range so that this inequality becomes
a contradiction. First we fix some β0 ≤ c1. Then we choose ε to be small enough
such that c3ε

r2(β0) ≤ c0ε
a for some a > 0. Indeed this holds as long as εr2(β0) <

c0
c3
. Now since a > 0, we can choose β̃0 to be small enough such that 2β̃0

β̃0+1
<

a. Finally since r1(β0), r1(β̃0) > 0, we can choose n large enough such that

c3[n
−r1(β0)∨n−r1(β̃0)] < c0ε

2β̃0
β̃0+1 . With these choices, it is obvious that equation

(32) becomes a contradiction, as desired.

6.8. Proof of Theorem 5.1

The proofs are exactly the same as in the one-dimensional case. For the lower
bounds, we only need to replace the mollifier function l(x) by its multivari-

ate extension ld(x) = l(‖x‖). The upper bounds are achieved by f̂h(0) =
1

n(1−ε)

∑n
i=1

1
hdKd

(
Xi

h

)
, where the bandwidth is h = n− 1

2β0+d ∧n− 1
2β0+d ε−

2
2β0+d

for structured contamination and is h = n− 1
2β0+d ∨ ε

1
β0+d for arbitrary contam-

ination. We can use a product kernel for Kd. See [8, Chapter 12] for details.
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