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Abstract: In this paper, we consider estimation of the conditional mode of
an outcome variable given regressors. To this end, we propose and analyze
a computationally scalable estimator derived from a linear quantile regres-
sion model and develop asymptotic distributional theory for the estimator.
Specifically, we find that the pointwise limiting distribution is a scale trans-
formation of Chernoff’s distribution despite the presence of regressors. In
addition, we consider analytical and subsampling-based confidence inter-
vals for the proposed estimator. We also conduct Monte Carlo simulations
to assess the finite sample performance of the proposed estimator together
with the analytical and subsampling confidence intervals. Finally, we ap-
ply the proposed estimator to predicting the net hourly electrical energy
output using Combined Cycle Power Plant Data.
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1. Introduction

Estimation of the conditional mode of an outcome variable given regressors,
called modal regression, is an active research area in the recent statistics lit-
erature. In particular, if the conditional distribution is highly skewed or has
fat tails, then one would be more interested in the conditional mode than the
conditional mean or median since in such cases the mean or median may fail to
capture a major trend of the conditional distribution. As such, modal regression
has a wide variety of applications including the analysis of traffic and forest fire
data [14, 53], econometrics [34, 35, 25, 21], and machine learning [46, 16]. For
example, [25] argue that the mode is the most intuitive measure of central ten-
dency for positively skewed data found in many econometric applications such
as wages, prices, and expenditures ([25], p. 93). See also [7] and [5] for recent
reviews on modal regression.

Existing approaches to estimation of the conditional mode includes nonpara-
metric kernel estimation [8] and linear modal regression [34, 35, 25, 53], among
others. The nonparametric estimation is able to avoid model misspecification
but has slow rates of convergence that deteriorate as the number of regressors
increases. Namely, if the number of continuous regressors is p, then the rate of
convergence of the kernel density based estimator in [8] is at best n−2/(p+7) un-
der four times differentiability of the joint density. On the other hand, the linear
modal regression is able to avoid such “curse of dimensionality” but requires to
solve a multi-dimensional non-convex optimization problem.

In this paper, we propose a new estimator for the conditional mode that
is able to avoid the curse of dimensionality and at the same time is compu-
tationally scalable, thereby complementing the above existing methods. The
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proposed method is based on the observation that the derivative of the condi-
tional quantile function with respect to the quantile index is the reciprocal of
the conditional density evaluated at the conditional quantile function and hence
the conditional mode is obtained by minimizing the derivative of the conditional
quantile function. Specifically, we assume a linear quantile regression model to
estimate the conditional quantile function as in [29] (see also [28]), and estimate
its derivative by a numerical differentiation of the estimated conditional quantile
function. The proposed estimator is then obtained by minimizing the estimated
derivative. Notably, the proposed method is computationally attractive since
the computation of the quantile regression estimate can be formulated as a lin-
ear programming problem and so is highly scalable (cf. Chapter 6 in [28]), and
the minimization of the estimated derivative is a one-dimensional optimization
problem and so can be carried out by a grid search.

We develop asymptotic theory for the proposed estimator, which turns out to
be non-standard. Specifically, we find that the proposed estimator has conver-
gence rate (nh2)−1/3 where n is the sample size and h = hn → 0 is a sequence
of bandwidths, and the limiting distribution is a scale transformation of Cher-
noff’s distribution [9]. Chernoff’s distribution is defined as the distribution of a
maximizer of a two-sided Brownian motion with a negative quadratic drift, and
appears as e.g. limiting distributions of estimators for monotone functions; see
[20]. Our result on the limiting distribution would be of interest from theoretical
and practical perspectives. First, the proposed estimator provides a new exam-
ple of estimators having Chernoff’s distribution as limiting distributions, which
would be of theoretical interest. Second, the fact that the limiting distribution
is a scale transformation of Chernoff’s distribution makes inference for our esti-
mator relatively simple. This is in contrast to e.g. Manski’s maximum score [39]
whose limiting distribution is a maximizer of a Gaussian process with its co-
variance function depending on the distribution of regressors; see [27]. Building
upon the limiting distribution, we develop inference methods for our estimator.
The one is an analytical confidence interval based on consistently estimating the
scaling constant, and the other is based on the subsampling [41, 42]. We also
derive a multivariate limit theorem for the proposed estimator, which can be
used to construct simultaneous confidence intervals for the modal function over
finite design points.

In addition to the theoretical results, we conduct Monte Carlo simulations to
assess the finite sample performance of the proposed estimator together with the
analytical and subsampling confidence intervals. We suggest a practical method
to choose the bandwidth based upon the idea suggested in [30]. We compare
the performance of the proposed estimator with the linear modal regression
estimator of [25, 53] via the root mean square error for the two data generating
processes where the true modal function is linear or nonlinear. Finally, we apply
the proposed estimator to predicting the net hourly electrical energy output
using Combined Cycle Power Plant Data [24, 49]. These numerical results show
evidence that the proposed estimator works well in the finite sample.

The literature related to this paper is broad. Nonparametric estimation of
the unconditional mode goes back to Parzen [40] and Chernoff [9] in 1960s;
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see also [44]. Modal regression originates from [45] and the literature has flour-
ished since then [34, 35, 14, 25, 54, 53, 8, 55, 46, 21, 32, 26, 16]. However,
none of these papers do not consider a quantile regression based estimator for
the conditional mode. [34, 35, 25, 53] consider linear modal regression; [34, 35]
assume a restrictive condition that the conditional distribution is symmetric
around the origin to derive limiting distributions of the estimators. The symme-
try of the conditional distribution implies that the conditional mean, median,
and mode are all identical. Subsequently, [25, 53] relax the symmetry assump-
tion and propose estimators that enjoy asymptotic normality. In the present
paper, instead of linearity of the conditional mode, we assume a linear quan-
tile regression model. Importantly, the linear quantile regression model does not
imply linearity of the conditional mode, and so there are no strict inclusion
relations between the two assumptions; see Remark 1 ahead. The recent work
of [8] studies nonparametric kernel estimation of the conditional mode. To be
precise, [8] do not assume the existence of the unique global mode and allow
for multiple local modes. Extension of our approach to multiple local modes
would be of interest but is beyond the scope of the present paper. [54] propose
a local modal regression (LMR) estimator that can be seen as a local linear es-
timator for the conditional mode, and establish asymptotic results analogous to
those of a local linear estimator for the conditional mean. In particular, the rate
of convergence of the LMR estimator is faster than that of the kernel density
based estimator of [8]. This is, however, due to Condition (A6) in [54] that is
essentially the conditional symmetry assumption on the error term (note that
h2 in [54] is fixed) and under which the conditional mode and mean coincide.
In the present paper, we assume no symmetry assumptions on the conditional
distribution.

From a technical point of view, derivation of the limiting distribution of
the proposed estimator is by no means trivial. First of all, it is not a priori
straightforward to foresee that the convergence rate is (nh2)−1/3 and the limiting
distribution is a scale transformation of Chernoff’s distribution. Second, because
our objective function depends on the bandwidth tending to zero as the sample
size increases, our result does not follow from the general theorem, Theorem
1.1, in [27], which is a pioneering work on cube root asymptotic theory. The
recent work of [48] extends [27] to allow the objective function to depend on
the bandwidth, but some of their regularity conditions are severely restrictive or
difficult to verify in our problem. Hence, we provide a separate and self-contained
proof of the main theorem, Theorem 1 ahead, which requires a substantial work.
See also the discussion after Theorem 1.

The rest of the paper is organized as follows. In Section 2, we state the formal
setup and define the estimator. In Section 3, we derive limiting distributions of
the proposed estimator and develop inference methods for it. In Section 4, we
conduct Monte Carlo simulations to assess the finite sample performance of the
proposed estimator together with the analytical and subsampling confidence
intervals. In addition, we apply the proposed estimator to predicting the net
hourly electrical energy output using Combined Cycle Power Plant Data. Section
5 concludes. All the proofs are gathered in Appendix.
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2. Setup and estimator

In this paper, we are interested in estimating the conditional mode of an outcome
variable Y ∈ R given a vector of regressors X = (X1, . . . , Xd)

T ∈ Rd. In what
follows, we assume that there exists a conditional density f(y | x) of Y given
X that is (at least) continuous in y, and for each design point x in the support
of X, there exists a unique mode m(x), i.e., there exists a unique maximizer of
the function y �→ f(y | x):

f(m(x) | x) = max
y∈R

f(y | x).

The function m(x) is called the modal function.
We base our estimation strategy of the modal function m(x) on inverting

a quantile regression model. Let Q(τ | X) denote the conditional τ -quantile
of Y given X for τ ∈ (0, 1). For the notational convenience, we also write
Qx(τ) = Q(τ | X = x). To see the link between the conditional quantile function
and the modal function, we begin with observing that

sx(τ) := Q′
x(τ) =

∂Qx(τ)

∂τ
=

1

f(Qx(τ) | x)

assuming some regularity conditions that will be clarified below. Hence, defining

τx = argmin
τ∈(0,1)

sx(τ),

which exists and is unique (by continuity and strict positivity of the function
y �→ f(y | x) around the mode m(x)), we arrive at the key identity

m(x) = Qx(τx).

The function τ �→ sx(τ) (called the “sparsity” function) can be estimated by
a numerical differentiation of an estimator of the conditional quantile function
τ �→ Qx(τ), and so the problem boils down to estimating the conditional quantile
function. To this end, we assume a linear quantile regression model:

Q(τ | X) = XTβ(τ), τ ∈ (0, 1), (1)

where β(τ) ∈ R
d is an unknown slope vector for each τ ∈ (0, 1).

Pick any design point x in the support of X, and consider to estimate m(x).
Let (Y1, X1), . . . , (Yn, Xn) be i.i.d. observations of (Y,X). We estimate the slope
vector β(τ) by

β̂(τ) = argmin
β∈Rd

n∑
i=1

ρτ (Yi −XT
i β), (2)

where ρτ (u) = {τ − I(u � 0)}u is the check function [29]. This leads to an

estimator Q̂x(τ) = xT β̂(τ) of Qx(τ). To estimate sx(τ) = Q′
x(τ), let h = hn → 0
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be a sequence of bandwidths such that nh2 → ∞; then we estimate sx(τ) by a
numerical differentiation:

ŝx(τ) =
Q̂x(τ + h)− Q̂x(τ − h)

2h
.

Finally, we estimate m(x) by m̂(x) = Q̂x(τ̂x) = xT β̂(τ̂x), where τ̂x is an ap-
proximate minimizer of ŝx(τ) on [ε, 1 − ε] with sufficiently small parameter
ε ∈ (0, 1/2) chosen by users, in the sense that

ŝx(τ̂x) � inf
τ∈[ε,1−ε]

ŝx(τ) + o((nh2)−2/3).

The objective function ŝx(τ) may not admit strict minimizers, and so we allow
τ̂x to be an approximate minimizer in the above sense, which always exists.
In practice, our estimator requires to choose the bandwidth h, which will be
discussed in Section 4.1.

Importantly, our estimate m̂(x) is easy to compute even when the sample
size n and the dimension d of X are large. The quantile regression problem (2)
can be formulated as a linear programming problem and hence can be efficiently
solved even when n and d are large (cf. Chapter 6 in [28]). Furthermore, the

entire path τ �→ β̂(τ) can be computed by a parametric linear programming
or discretizing the interval (0, 1) into fine grids. The minimization of ŝx(τ) is a
one-dimensional optimization problem and can be solved by a grid search. On
the other hand, the linear modal regression estimator [34, 35, 25, 53] requires to
solve a multi-dimensional non-convex optimization problem. For example, [53]
assume that the modal function is linear m(x) = xT γ for some γ ∈ R

d and
propose the following estimator:

γ̂Y L = argmax
γ

n∑
i=1

φh(Yi −XT
i γ), (3)

where φ(y) = (2π)−1/2e−y2/2 is the density of the standard normal distribution
and φh(y) = h−1φ(y/h). The optimization problem (3) is non-convex. [53] pro-
pose an EM like algorithm for (3), but “there is no guarantee that the algorithm
will converge to the global optimal solution” ([53], p. 659).

Remark 1 (Generality of linear quantile regression model). The linear quantile
regression model (1) is flexible enough to cover many data generating processes.
In general, if τ �→ β(τ) is a function on (0, 1) such that the map τ �→ XTβ(τ)
is strictly increasing almost surely and Y is generated as Y = XTβ(U) for
U ∼ U(0, 1) independent of X, then the pair (Y,X) satisfies the linear quantile
regression model (1). In particular, it is worth pointing out that the linear
quantile regression model (1) does not imply linearity of the modal function
m(x). For example, consider the simple case where X = (1, X2)

T with X2 ∈
(0, 1) and Y = U3/3 − X2(U − 1)2 for U ∼ U(0, 1) independent of X. In this
case, the pair (Y,X) satisfies the model (1) with β(τ) = (τ3/3,−(τ − 1)2)T and
so Qx(τ) = τ3/3 − (τ − 1)2x2. Since Q′

x(τ) = τ2 − 2(τ − 1)x2 is minimized at
τ = x2, the modal function m(x) = Qx(x2) = −2x3

2/3 + 2x2
2 − x2 is nonlinear.
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Remark 2 (Case with no regressors). In the simple case where there are no

regressors, i.e., X = 1, our estimator of the mode reduces to m̂ = Q̂(τ̂), where

Q̂(τ) = F̂−1(τ) = inf{y : F̂ (y) � τ} is the empirical quantile function (with

F̂ (y) = n−1
∑n

i=1 I(Yi � y) being the empirical distribution function) and

τ̂ = argmin
τ

Q̂(τ + h)− Q̂(τ − h)

2h
.

Our estimator m̂ can also be described by using order statistics Y(1) � · · · �
Y(n). Since in general Q̂(τ) = Y(�nτ�) where �·� is the ceiling function, our
estimator m̂ coincides with the order statistic Y(�nτ̂�) where τ̂ minimizes the
spacing Y(�n(τ+h)�) − Y(�n(τ−h)�).

It is then clear that our estimator is (related to but) markedly different from
Chernoff’s [9] estimator of the unconditional mode of Y that is defined by

m̂C = argmax
y

F̂ (y + h)− F̂ (y − h)

2h
,

namely, m̂C is the point whose local neighborhood contains the most observa-
tions.

Remark 3 (Alternative objective function). The estimator ŝx(τ) of sx(τ) con-
tains a deterministic bias of order h2 under the conditions stated in the next
section. Alternatively, we may estimate sx(τ) by

s̃x(τ) =
2
3{Q̂x(τ + h)− Q̂x(τ − h)} − 1

12{Q̂x(τ + 2h)− Q̂x(τ − 2h)}
h

, (4)

which has a bias of order h4 under additional smoothness conditions; cf. [3]. In
the present paper, however, we shall use a simpler objective function ŝx(τ).

Remark 4 (Implementation detail). In the finite sample, [τ −h, τ +h] may not
be included in (0, 1) for some τ ∈ [ε, 1− ε]. To fix this, we suggest the following

simple modification. Suppose that we compute Q̂x(τ) on [τmin, τmax] ⊃ [ε, 1−ε];
then in practice we suggest to replace ŝx(τ) by

ŝx(τ) =
Q̂x(τ +min{h, τmax − τ})− Q̂x(τ −min{h, τ − τmin})

min{h, τmax − τ}+min{h, τ − τmin}
,

which asymptotically coincides with the original definition of ŝx(τ) uniformly
in τ ∈ [ε, 1− ε] (as long as (τmin, τmax) ⊃ [ε, 1− ε]).

Remark 5 (Alternative specifications to the conditional quantile function). In
the present paper, we assume that the conditional quantile function is linear
in X. The linear quantile regression model is the most fundamental modeling
in conditional quantile estimation, and is computationally attractive since the
computation of the Koenker-Bassett [29] estimate can be formulated as a linear
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programming problem. Indeed, the computational attractiveness is one of the
main motivations to study the proposed estimator of the conditional mode.

Having said that, we could use alternative specifications to the conditional
quantile function to estimate the conditional mode. One possible alternative is a
nonlinear quantile regression model Qx(τ) = g(x, β(τ)) where g is some known
smooth function (the dimensions of x and β(τ) need not be matched); see e.g.
Section 4.4 of [28]. In this case, we can estimate β(τ) by

β̂(τ) = argmin
β

n∑
i=1

ρτ (Yi − g(Xi, β)),

and thus can estimate sx(τ) = Q′
x(τ) by ŝx(τ) = {Q̂x(τ +h)− Q̂x(τ −h)}/(2h)

with Q̂x(τ) = g(x, β̂(τ)). Alternatively, we can use the expression

sx(τ) =
[ ∂g(x, β)

∂β
|β=β(τ)︸ ︷︷ ︸

=:gβ(x,β(τ))

]T dβ(τ)

dτ
,

and estimate sx(τ) by ŝx(τ) = gβ(x, β̂(τ))
T {β̂(τ + h) − β̂(τ − h)}/(2h). It is

known that under regularity conditions, similar asymptotic properties to those
of the linear quantile regression estimator hold for the nonlinear case (cf. Section
4.4 of [28]), and hence it is natural to expect that asymptotic results analogous to
those developed in the next section can be extended to the resulting conditional
mode estimator under the nonlinear quantile regression model.

A yet alternative specification would be a semiparametric single index model
Qx(τ) = ψ(xTβ(τ)) where ψ is some unknown function. For given estimators ψ̂

and β̂(τ) of ψ and β̂(τ), we can estimate Qx(τ) and sx(τ) by Q̂x(τ) = ψ̂(xT β̂(τ))

and ŝx(τ) = {Q̂x(τ+h)−Q̂x(τ−h)}/(2h), respectively. Alternatively, we can use
the expression sx(τ) = ψ′(xTβ(τ))d(xTβ(τ))/dτ and estimate d(xTβ(τ))/dτ by
a difference quotient. Methods to estimate the parametric and nonparametric
components in the single index quantile regression model can be found in e.g.
[6, 52], and [38]. In the single index case, the nonparametric estimation of the
link function ψ is involved, whose effect has to be taken into account when
considering asymptotic properties of the resulting conditional mode estimator,
which would be a nontrivial challenge.

3. Limiting distributions

3.1. Limiting distributions

In this section, we derive limiting distributions of τ̂x and m̂(x). To this end, we
make the following assumption. Let X denote the support of X.

Assumption 1. In addition to the baseline assumption stated in the previous
section, we assume the following conditions.
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(i) E[X4
j ] < ∞ for all j = 1, . . . , d.

(ii) The matrix E[XXT ] is positive definite.
(iii) The conditional density f(y | x) is three times continuously differentiable

with respect to y for each x ∈ X . Let f (j)(y | x) = ∂jf(y | x)/∂yj for
j = 0, 1, 2, 3, where f (0)(y | x) = f(y | x). There exists a constant C such
that |f (j)(y | x)| � C for all (y, x) ∈ R× X and j = 0, 1, 2, 3.

(iv) There exists a positive constant c (that may depend on ε) such that f(y |
x) � c for all y ∈ [Qx(ε/2), Qx(1− ε/2)] and x ∈ X .

(v) As n → ∞, nh8 → 0 and nh5 → ∞.

Conditions (i)–(iv) are more or less standard in the quantile regression lit-
erature; cf. [28]. In particular, they require no moment conditions on Y . For
instance, they allow E[|Y |] = ∞. Conditions (iii) and (iv) allow Qx(τ) to be
four times continuously differentiable on (ε/2, 1− ε/2) with

sx(τ) := Q′
x(τ) =

1

f(Qx(τ) | x)
, s′x(τ) =

−f (1)(Qx(τ) | x)
f(Qx(τ) | x)3

,

s′′x(τ) =
3f (1)(Qx(τ) | x)2 − f(Qx(τ) | x)f (2)(Qx(τ) | x)

f(Qx(τ) | x)5
.

Condition (v) is concerned with the bandwidth. The condition nh8 → 0 is an
“undersmoothing” condition. The proof of Theorem 1 shows that the estima-
tor m̂(x) contains a deterministic bias of order h2, while the stochastic error
decreases at rate (nh2)−1/3. To guarantee that h2 = o((nh2)−1/3), we need
nh8 → 0.

Let {B(t) : t ∈ R} be a two-sided standard Brownian motion, i.e., a centered
Gaussian process with continuous sample paths and covariance function

E[B(t1)B(t2)] =

⎧⎪⎨⎪⎩
t1 if 0 � t1 � t2

−t2 if t1 � t2 � 0

0 if t1 � 0 � t2

.

Such a two-sided standard Brownian motion can be constructed by generating
independent standard Brownian motions {W1(t) : t � 0} and {W2(t) : t � 0},
and then defining B(t) = W1(t) for t � 0 and B(t) = W2(−t) for t < 0. In
addition, let

Z = argmax
t∈R

{B(t)− t2},

which exists and is unique almost surely by Lemmas 2.5 and 2.6 in [27]. The
distribution of Z is called Chernoff’s distribution [9], and numerical values of
quantiles of Chernoff’s distribution can be found in [20].

Finally, define the matrix

J(τ) = E[f(XTβ(τ) | X)XXT ],

which is positive definite for every τ ∈ [ε/2, 1− ε/2] under our assumption. We
are now in position to state the main theorem of this paper.
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Theorem 1 (Limiting distributions). Pick any x ∈ X . Suppose that Assump-
tion 1 holds, and in addition that f (2)(m(x) | x) < 0 and m(x) ∈ (Qx(ε), Qx(1−
ε)) (or equivalently τx ∈ (ε, 1− ε)). Then we have

(nh2)1/3(τ̂x − τx)
d→ (σx/vx)

2/3Z (5)

as n → ∞, where σ2
x = E[(xTJ(τx)

−1X)2]/2, vx = s′′x(τx)/2 = −f (2)(m(x) |
x)/{2f(m(x) | x)4} (> 0), and σx =

√
σ2
x. In addition, we have

(nh2)1/3(m̂(x)−m(x))
d→ sx(τx)(σx/vx)

2/3Z. (6)

Remark 6 (Rates of convergence). The rate of convergence of m̂(x) toward
m(x) is (nh2)−1/3 and can be arbitrarily close to n−1/4 under Condition (v),
which is independent of the dimension d of the regressor vector. The n−1/4

rate is likely to be suboptimal from a minimax point of view since it is known
that when X = 1, the minimax rate of estimating the mode under three time
differentiability of the underlying density is n−2/7; see Theorem 3.1 in [44]. It is
worth noting that if we use the alternative objective function s̃x(τ) in (4), the
bias of the resulting estimator m̂(x) is reduced to O(h4) (this however requires
additional smoothness conditions on the conditional density), and therefore the
rate of convergence can be arbitrarily close to n−2/7.

Remark 7 (Case with no regressors). In the simple case where there are no
regressors, i.e., X = 1, the limiting distribution of our estimator m̂ is as fol-

lows. Let f denote the density of Y with mode m; then (nh2)1/3(m̂ − m)
d→

{2f(m)3/f ′′(m)2}1/3Z. In contrast, the limiting distribution of Chernoff’s mode

estimator (see Remark 2) is (nh2)1/3(m̂C −m)
d→ {2f(m)/f ′′(m)2}1/3Z, which

is slightly different from our limiting distribution. It is worth mentioning that
Chernoff’s derivation of the preceding limiting distribution in [9] is only heuris-
tic, but can be made rigorous (under regularity conditions) by mimicking the
proof of Theorem 1.

Interestingly, despite the presence of regressors, the limiting distribution of
our estimator m̂(x) is a scale transformation of Chernoff’s distribution, which
is in contrast to e.g. Manski’s maximum score [39] whose limiting distribution
is given by a maximizer of a Gaussian process whose covariance function de-
pends on the distribution of regressors; see Example 6.4 in [27]. The fact that
the limiting distribution is a scale transformation of Chernoff’s distribution
makes inference for our estimator m̂(x) relatively simple. Namely, an asymptotic
confidence interval can be constructed by consistently estimating the constant
sx(τx)(σx/vx)

2/3, which will be discussed in the next section.
The main part of the proof is the proof of the first result (5). The second result

(6) follows from the
√
n-uniform consistency of the quantile regression estimator

and the delta method. To prove the first result (5), we begin with expanding the
objective function ŝx(τ) and showing that τ̂x is an approximate minimizer of the
sample average of kernel functions with a uniform kernel; see (13) in the proof.
Since those kernel functions depend on the sample size n via the bandwidth
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h = hn, the result (5) does not follow from the general theorem, Theorem 1.1,
in [27], which is a pioneering work on cube root asymptotic theory. Theorem
1.1 in [27] covers the case where the objective function is the sample average of
functions that do not depend on n and the estimator is n1/3-consistent, but its
proof does not carry over to our case (cf. the second paragraph in page 192 of
[27]). The recent work of [48] extends the results of [27] to allow the objective
function to depend on the bandwidth (and the data to be dependent), but some
of their assumptions are severely restrictive or difficult to verify in our problem.
Specifically, Assumption M (i) in [48] requires hnfn,θ (in their notation) to be
uniformly bounded, which in our problem requires the regressor vector X to be
bounded (recall that we only assume each coordinate of X to have finite fourth
moment); and we (the authors) found that Assumption M (ii) is difficult to verify
in our problem. Hence, instead of checking the assumptions of [48], we provide a
separate and self-contained proof of the result (5), which requires a substantial
work. Specifically, we show that the “rescaled” objective function for which the
rescaled estimator t̂ = (nh2)1/3(τ̂x− τx) is an approximate maximizer converges
weakly to the process {σxB(t) − vxt

2 : t ∈ R} in the space of locally bounded
functions on R, and apply Theorem 2.7 in [27] to conclude that the approximate
maximizer t̂ = (nh2)1/3(τ̂x−τx) converges weakly to argmaxt∈R

{σxB(t)−vxt
2},

which is shown to be equal in distribution to (σx/vx)
2/3Z; see Step 5 of the proof.

Next, we consider a multivariate limit theorem for the proposed estimator.
Let x1, . . . , xL ∈ X be a finite number of design points with L independent of
n, and let

τ(1) > τ(2) > · · · > τ(M)

denote the distinct values of τx1 , . . . , τxL . Set Sk = {j ∈ {1, . . . , L} : τxj = τ(k)}
with sk = Card(Sk) for k = 1, . . . ,M . For each k = 1, . . . ,M , let {Bk((tj)j∈Sk

) :
(tj)j∈Sk

∈ R
sk} denote a centered Gaussian process with covariance function

Cov
(
Bk((ti)i∈Sk

),Bk((t
′
j)j∈Sk

)
)
]

=
1

2

∑
i,j∈Sk

(xi)TJ(τ(k))
−1

E[XXT ]J(τ(k))
−1xj

E[B(ti)B(t′j)].

We note that the construction of the Bk-process depends on the design points
x1. . . . , xL. Recall that a version of a stochastic process is another process with
the same finite dimensional distributions.

Corollary 1. Suppose that Assumption 1 holds, and in addition that f (2)(m(x) |
x) < 0 and m(x) ∈ (Qx(ε), Qx(1− ε)) for all x ∈ {x1, . . . , xL}. Then, for each
k = 1, . . . ,M , there exists a version of the Bk-process with continuous paths,
and denoting the continuous version by the same symbol Bk, we have

(nh2)1/3(τ̂x1 , . . . , τ̂xL)T
d→ (W1, . . . ,WL)

T

as n → ∞, where (Wj)j∈Sk
, k = 1, . . . ,M are independent, and for each k =



QR approach to modal regression 3131

1, . . . ,M ,

(Wj)j∈Sk

d
= argmax

(tj)j∈Sk
∈R

sk

⎧⎨⎩Bk((tj)j∈Sk
)−

∑
j∈Sk

vxj t2j

⎫⎬⎭ .

In addition, we have

(nh2)1/3
(
m̂(x1)−m(x1), . . . , m̂(xL)−m(xL)

)T
d→ (sx1(τx1)W1, . . . , sxL(τxL)WL)

T
.

In the special case when τx1 , . . . , τxL are all distinct, we have

(nh2)1/3
(
m̂(x1)−m(x1), . . . , m̂(xL)−m(xL)

)T
d→

(
sx1(τx1)(σx1/vx1)2/3Z1, . . . , sxL(τxL)(σxL/vxL)2/3ZL

)T

,

where Z1, . . . , ZL are independent Chernoff random variables.
Corollary 1 implies that

(nh2)1/3 max
1�j�L

|m̂(xj)−m(xj)| d→ max
1�j�L

|sxj (τxj )Wj |,

which can be used to construct simultaneous confidence intervals for m(x) over
the design points x1, . . . , xL; see Remark 11 ahead.

Remark 8 (Uniform rate over expanding sets of design points). It is of interest
to study the rate of convergence and limiting distribution of the L∞-distance
between the proposed estimator and the true modal function on a continuum set
of design points or expanding sets of design points, since e.g. such limiting dis-
tribution enables us to construct simultaneous confidence bands. To the best of
our knowledge, however, much less is known about the rate of convergence and
(especially) limiting distribution for the L∞-distance in nonstandard nonpara-
metric estimation problems than standard nonparametric estimation problems
with Gaussian limits, and we believe that the problem is challenging. One ex-
ception is the work of [12], which derives the uniform rate of convergence and
the limiting distribution of the L∞-distance for the Grenander [18] estimator
(precisely speaking [12] cover more general Grenander-type estimators); see also
the recent review article by [13]. Their argument depends substantially on the
specific construction of the Grenander estimator and can not be directly ex-
tended to our estimator. It is thus beyond the scope of this paper to formally
study the uniform rate and the limiting distribution of the L∞-distance to our
estimator, but we will give some heuristic discussion on this question, which we
believe is of some interest to the reader.

To simplify the question, we confine ourselves to the maximum distance on
expanding sets of design points x1, . . . , xL with L = Ln → ∞. Suppose in addi-
tion that τx1 , . . . , τxLn are all distinct. Then by Corollary 1 it is expected that
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max1�j�Ln(nh
2)1/3|m̂(xj) − m(xj)|/{sxj (τxj )(σxj/vxj )2/3} could be approxi-

mated by max1�j�Ln |Zj | =: |Z|(Ln) as long as Ln → ∞ sufficiently slowly. In
Appendix B, we will show that, for the norming constants

aLn = 3

(
2

3

)1/3

(logLn)
2/3,

b′Ln
=

(
3

2
logLn

)1/3

− 1

aLn

[
κ

(
3

2
logLn

)1/3

+
1

3
log logLn +

1

3
log

3

2

− log(2λ)

]
,

where λ and κ are positive constants (see Appendix B), we have

aLn(|Z|(Ln) − b′Ln
)

d→ Λ︸︷︷︸
Gumbel distribution

.

In particular, |Z|(Ln) = b′Ln
+ OP(1/aLn) = OP((logLn)

1/3), and as long as Ln

grows at most polynomially fast in n, |Z|(Ln) = OP((log n)
1/3). This suggests

that the uniform rate of the proposed estimator would be OP((nh
2/ logLn)

−1/3)
and the maximum distance would converge in distribution to the Gumbel dis-
tribution after normalization. The preceding argument is heuristic since Corol-
lary 1 only holds with fixed L (and extending the corollary to the case where
L = Ln → ∞ is a substantial technical challenge), and the rigorous result is left
to future research.

3.2. Inference

3.2.1. Analytical confidence intervals

Theorem 1 allows us to construct pointwise confidence intervals for m(x) by
consistently estimating the nuisance parameters σ2

x, vx, and sx(τx).
The parameter sx(τx) can be estimated by ŝx(τ̂x). Next, consider to es-

timate σ2
x. For the notational convenience, let Σ = E[XXT ] and so σ2

x =
xTJ(τx)

−1ΣJ(τx)
−1x/2. The matrices Σ and J(τ) can be estimated by

Σ̂ =
1

n

n∑
i=1

XiX
T
i and Ĵ(τ) =

1

2nh

n∑
i=1

I(|Yi −XT
i β̂(τ)| � h)XiX

T
i ,

respectively, so that we can estimate σ2
x by

σ̂2
x =

1

2
xT Ĵ(τ̂x)

−1Σ̂Ĵ(τ̂x)
−1x,

where Ĵ(τ) is Powell’s kernel estimator [43]. Finally, consider to estimate vx =
s′′x(τx)/2. To this end, we estimate s′′x(τ) = Q′′′

x (τ) by a numerical differentiation
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of Q̂x(τ). Namely, define the operator Δh by Δhg(τ) = (g(τ+h)−g(τ−h))/(2h),
and Δj

hg = Δh(Δ
j−1
h g) recursively for j = 2, 3, . . . . Then we can estimate vx by

v̂x =
1

2
Δ3

hQ̂x(τ̂x). (7)

The bandwidths used in Ĵ(τ) and v̂x can be different from that for τ̂x. See Re-
mark 9 ahead for alternative estimators for vx. The following proposition shows
that these estimators are indeed consistent under almost the same conditions
as in Theorem 1.

Proposition 1 (Consistency of estimators for nuisance parameters). Suppose
that the conditions of Theorem 1 hold and in addition that nh5/ log n → ∞.

Then we have σ̂2
x

P→ σ2
x, v̂x

P→ vx, and ŝx(τ̂x)
P→ sx(τx) as n → ∞.

Now, since Chernoff’s distribution is symmetric about the origin, an asymp-
totic (1− α)-confidence interval for m(x) is given by[

m̂(x)± ŝx(τ̂x)(σ̂x/v̂x)
2/3

(nh2)1/3
q1−α/2

]
,

where q1−α/2 is the (1− α/2)-quantile of Chernoff’s distribution. For example,
Table 2 in [20] yields that q0.975 ≈ 0.998181.

Remark 9 (Alternative estimators for vx). Alternatively to the estimator v̂x,
we may use

ṽx =
1

2h3

(
Q̂x(τ̂x + 2h)− Q̂x(τ̂x − 2h)− 2{Q̂x(τ̂x + h)− Q̂x(τ̂x − h)}

)
,

which is consistent under additional smoothness conditions on the conditional
density.

Still, higher order numerical differentials tend to be unstable in the finite
sample. Instead, we may use the expression vx = −f (2)(m(x) | x)s(τx)4/2, and
estimate f (2)(m(x) | x) by a kernel method. Suppose that X is decomposed as
X = (XC , XD) where XC ∈ R

dC is continuous and XD ∈ R
d−dC is discrete. Let

K1 : R → R and K2 : RdC → R be kernel functions (i.e., functions that integrate
to 1) where K1 is twice differentiable. For given bandwidths bX = bX,n → 0 and
bY = bY,n → 0, we may estimate f (2)(m(x) | x) with x = (xC , xD) by

f̂ (2)(m̂(x) | x)

=
(nb3Y b

dC

X )−1
∑n

i=1 K
′′
1((m̂(x)− Yi)/bY )K2((x

C −XC
i )/bX)I(XD

i = xD)

(nbdC

X )−1
∑n

i=1 K2((xC −XC
i )/bX)I(XD

i = xD)
,

which is consistent under appropriate conditions. This leads to an alternative
estimator for vx:

v̌x = −f̂ (2)(m̂(x) | x)ŝ(τ̂x)4/2. (8)

In the simulation study, we use the kernel-based estimator v̌x for vx.
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3.2.2. Subsampling

It is known that the nonparametric bootstrap in general fails to be consistent
for n1/3-consistent estimators (cf. [1, 36, 31, 47]) and so it is unlikely that the
bootstrap would be consistent for our estimator m̂(x). Instead, since the limiting
distribution is a scale transformation of Chernoff’s distribution that is absolutely
continuous, the subsampling provides a valid inference method for our estimator
m̂(x); see [41, 42]. Let m̂(x) = m̂n(x) = m̂n(x; (Y1, X1), . . . , (Yn, Xn)) and h =
hn, and let W1, . . . ,WN be the N =

(
n
�

)
subsets of {(Y1, X1), . . . , (Yn, Xn)} of

size � (< n). Consider the subsampling distribution

Un,�(x; t) =
1

N

N∑
i=1

I
{
(�h2

�)
1/3(m̂�(x;Wi)− m̂n(x)) � t

}
. (9)

Then, under the same conditions as in Theorem 1, we have

sup
t∈R

∣∣∣Un,�(x; t)− P

(
sx(τx)(σx/vx)

2/3Z � t
)∣∣∣ P→ 0,

provided that � = �n → ∞ and � = o(n). Hence, denoting by q̂n,�(x; 1− α) the
(1− α)-quantile of Un,�(x; ·), i.e.,

q̂n,�(x; 1− α) = inf{t : Un,�(x; t) � 1− α},

an asymptotic (1− α)-confidence interval for m(x) is given by[
m̂n(x)−

q̂n,�(x; 1− α/2)

(nh2
n)

1/3
, m̂n(x)−

q̂n,�(x;α/2)

(nh2
n)

1/3

]
.

Some comments on the subsampling confidence interval are in order.

Remark 10 (Comments on subsampling confidence interval). (i) In practice,
N =

(
n
�

)
is too large and so the computation of the complete average over

i = 1, . . . , N in (9) is too demanding. Instead, we can take the average of a
randomly selected subset of {1, . . . , N}; see Corollary 2.4.1 in [42].

(ii) The bandwidth h� used in each subsample may be taken as hn as long as
�nh

8
n → 0 and �nh

5
n → ∞.

Remark 11 (Simultaneous confidence intervals over finite design points). Con-
sider the setting of Corollary 1, and let ν1−α denote the (1 − α) quantile of
max1�j�L |sxj (τ j)Wj |. Then a simultaneous confidence interval for m(x) over
the design points x1, . . . , xL is given by[

m̂(xj)± ν1−α

(nh2)1/3

]
, j = 1, . . . , L.

In general the distribution of (W1, . . . ,WL)
T is complicated as it depends on

whether there are ties in τx1 , . . . , τxL , so analytical estimation of ν1−α is diffi-
cult. Instead, we can use the subsampling to estimate ν1−α. The procedure is
analogous to the pointwise case and hence omitted.
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4. Numerical results

4.1. Bandwidth selection

The proposed estimator requires to choose the bandwidth h. We suggest here a
simple method to choose the bandwidth, which is based on a modification to the
bandwidth selection rule suggested in [30]. The baseline idea of our approach
is to select the bandwidth in such a way that the sparsity function sx(τ) is
well estimated. A similar approach is used in [14] who adapt the smoothing
bandwidth to kernel estimation of multi-modal regression by optimizing the
conditional density estimation rate. The performance of the sparsity function
estimate ŝx(τ) depends on the quantile τ of interest, and so the constant involved
in the bandwidth should adapt to τ . Since we are interested in sx(τ) around
τ = τx, we aim at choosing h in such a way that ŝx(τ) around τ = τx tends
to be accurate but modify the rate of h so that it satisfies Condition (v) in
Assumption 1.

For estimation of sx(τ) based on quantile regression, [30] suggest to use the
τ -dependent bandwidth

hKM (τ) = n−1/3z2/3α

{
1.5

φ(Φ−1(τ))

2Φ−1(τ)2 + 1

}1/3

,

where φ and Φ are the density and distribution functions of N(0, 1), and zα =
Φ−1(1− α/2). We set α = 0.05. The bandwidth hKM (τ) does not satisfy Con-
dition (v) in Assumption 1 and is τ -dependent, and so we shall modify hKM (τ)
as follows: (i) pick any design point x in the support of X; (ii) use the pilot
bandwidth hpilot = n1/6hKM (0.5) ∝ n−1/6 to construct a preliminary estimator
τ̂prelimx of τx; (iii) and use hn = hn,x = n1/6hKM (τ̂prelimx ) to construct a final
estimator m̂(x). The simulation results suggest that, although it would not be
optimal, this bandwidth selection rule works reasonably well.

4.2. Simulation results

4.2.1. Comparison of RMSEs

We compare the performance of our estimator with that of the linear modal
regression estimator of [25, 53] via the root mean square error (RMSE)√

EX∗ [{m̂(X∗)−m(X∗)}2],

where X∗ d
= X is independent of the data and EX∗ is the expectation with

respect toX∗. We consider two settings: the first one is the case where the modal
function is linear while the second one is the case where the modal function is
nonlinear.
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Case (i). Consider a linear location-scale model

Y = 1 +X2 − 3X3 +X4 +X2ν,

where X = (1, X2, X3, X4)
T , X2, X3 ∼ U(0, 1), X4 ∼ N(0, 1), and ν ∼

Ga(3, 0.5) (the Gamma distribution with shape parameter 3 and scale param-
eter 0.5). In this case, both the conditional quantile and modal functions are
linear in X. In fact, Qτ (X) = 1+(1+F−1(τ))X2−3X3+X4, where F denotes
the distribution function of ν. In addition, since the mode of Ga(3, 0.5) is 1, the
modal function is m(X) = 1 + 2X2 − 3X3 +X4.

Case (ii). Consider the following data generating process

Y = U3/3−X2(U − 1)2,

where X = (1, X2)
T , X2 ∼ U(0, 1), and U ∼ U(0, 1) independent of X. In this

case, the conditional quantile function is linear, Qτ (X) = τ3/3 − X2(τ − 1)2,
but the modal function is nonlinear, m(X) = −2X3

2/3+2X2
2 −X2; see Remark

1.
In this simulation study, we choose ε = 0.1 and compute Q̂x(τ) for 100

equally spaced grids on [τmin, τmax] = [0.05, 0.95]. To implement the linear modal
regression estimator, we follow the EM algorithm and the bandwidth selection
rule suggested in [53]. The number of Monte Carlo repetitions is 1000 for each
case.

Figures 1 and 2 present the box plots of RMSEs of the linear modal regression
and proposed estimators for Cases (i) and (ii), respectively, with n = 500, 1000,
and 2000. These figures lead to the following observations. First, in both cases,
the RMSE of the proposed estimator overall decreases as the sample size in-
creases. Second, the proposed estimator tends to be more variable than the
linear modal regression estimator, so that the interquartile range of the RMSE
is wider for the proposed estimator than the linear modal regression estimator.
Third, in both cases, the proposed estimator outperforms the linear modal re-
gression estimator. The superior performance of the proposed estimator in Case
(ii) is not surprising since the true modal function is nonlinear in that case and
so the linear modal regression estimator is not consistent. Interestingly, even
when the true modal function is linear (Case (i)), the proposed estimator per-
forms substantially better than the linear modal regression estimator. This may
be partly because the EM algorithm used to compute linear modal regression
estimates failed to find global optimal solutions. Overall, the figures confirm
that the proposed estimator works well in practice.

4.2.2. Coverage probabilities of confidence intervals

Next, we assess the performance of analytical and subsampling confidence in-
tervals considered in Section 3.2. We follow the data generating process of Case
(ii) and evaluate Monte Carlo average and median lengths, and coverage prob-
abilities of confidence intervals at three design points x2 = 0.25, 0.5, and 0.75.
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Fig 1. Box plots of RMSEs of the linear modal regression and proposed estimators for Case
(i) with n = 500 (left), n = 1000 (middle), and n = 2000 (right).

We consider two nominal coverage probabilities of 99% and 95%. To implement
the analytical confidence interval, we use the kernel-based estimator v̌x given in
(8) for vx. To construct v̌x, we use the Gaussian kernel for K1 and the Epanech-
nikov kernel for K2 together with bandwidths bY = n−1/9σ̂Y and bX = n−1/5σ̂X

where σ̂Y and σ̂X are the sample standard deviations of Y and X, respectively.
To implement the subsampling confidence interval, we examine two subsample
sizes: � = 0.1n and 0.2n. In this simulation study, instead of taking the average
of whole subsamples in (9), we take the average of 250 randomly chosen sub-
samples. When applying the bandwidth selection rule to the subsample, we use
the pilot bandwidth computed using the full sample.

Tables 1–4 present the simulation results on the confidence intervals. The
tables show that both confidence intervals work reasonable well, given that the
convergence rate of the estimator is relatively slow. It is worth noting that the
estimators for the nuisance parameters sx(τx) and vx tend to be unstable, which
results in the discrepancy between the average and median lengths of the an-
alytical confidence interval. The subsample confidence interval is able to avoid
estimation of those nuisance parameters, and so the length of the subsampling
confidence interval tends to be shorter than that of the analytical confidence in-
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Fig 2. Box plots of RMSEs of the linear modal regression and proposed estimators for Case
(ii) with n = 500 (left), n = 1000 (middle), and n = 2000 (right).

terval. In terms of the coverage probability, the subsampling confidence interval
with subsample size 0.2n works the best.

4.3. Combined cycle power plant data

The electric energy output provided by a power plant fluctuates through the
year because of several environmental conditions, and prediction of the elec-
tricity output given such environmental conditions is of interest. We apply the
proposed estimator to predicting the net hourly electrical energy output using
Combined Cycle Power Plant Data [24, 49]. The data set is taken from https://

archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant and con-
sists of 9568 data points collected from a Combined Cycle Power Plant over 6
years (2006-2011). It contains hourly average ambient variables Temperature,
Ambient Pressure, Relative Humidity, Exhaust Vacuum, and the net hourly
electrical energy output, where the first four variables are regressors and the
last variable is a response. For this data, the conditional distribution tends to
be skewed, and therefore it would be natural to estimate the conditional mode.
Figure 3 shows the estimate of the conditional density given one of the regres-

https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
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Table 1

Monte Carlo average and median lengths, and coverage probabilities of the 99% analytical
confidence interval.

Design point Sample size Ave. length Med. length Cov. probability

x2 = 0.25 n = 500 0.494 0.419 0.981
n = 1000 0.359 0.315 0.986
n = 2000 0.247 0.220 0.985

x2 = 0.50 n = 500 0.715 0.599 1.000
n = 1000 0.506 0.475 0.997
n = 2000 0.392 0.380 0.992

x2 = 0.75 n = 500 1.045 0.878 0.978
n = 1000 0.724 0.653 0.977
n = 2000 0.524 0.488 0.956

Table 2

Monte Carlo average and median lengths, and coverage probabilities of the 95% analytical
confidence interval.

Design point Sample size Ave. length Med. length Cov. probability

x2 = 0.25 n = 500 0.309 0.242 0.948
n = 1000 0.207 0.175 0.941
n = 2000 0.139 0.128 0.952

x2 = 0.50 n = 500 0.459 0.343 0.987
n = 1000 0.302 0.269 0.933
n = 2000 0.226 0.221 0.894

x2 = 0.75 n = 500 0.660 0.534 0.873
n = 1000 0.429 0.371 0.869
n = 2000 0.302 0.278 0.845

sors (Exhaust Vacuum). It is seen that the conditional density estimate is highly
skewed and the pattern of the skewness depends on the value of the regressor.

To construct prediction intervals, we combine the proposed estimator with
the split conformal prediction of [37]. Specifically:

1. Randomly split the index set {1, . . . , 9568} into three parts I1, I2, and I3.
2. Use the data {(Yi, Xi) : i ∈ I1} to construct the estimator m̂(·) for the

modal function m(·).
3. Compute the α/2- and (1 − α/2)-quantiles of {Yi − m̂(Xi) : i ∈ I2} and

they are denoted by ξ̂α/2 and ξ̂1−α/2, respectively. In this experiment,
α = 0.05 is used.

4. Construct Csplit(x) = [m̂(x) + ξ̂α/2, m̂(x) + ξ̂1−α/2].
5. Compute the empirical coverage probability:

1

|I3|
∑
i∈I3

I{Yi ∈ Csplit(Xi)}.

In this experiment, we take I1, I2, and I3 in such a way that |I1 ∪ I2| : |I3| ≈
0.95 : 0.05 and |I1| : |I2| ≈ 8 : 2. We repeated this procedure 250 times and
report the average of the empirical coverage probabilities together with the av-
erage and median lengths. In addition, we compare the proposed estimator with
the linear modal regression estimator. Table 5 shows the results. For both meth-
ods, the empirical coverage probabilities are surprisingly close to the nominal
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Table 3

Monte Carlo average and median lengths, and coverage probabilities of the 99% subsampling
confidence interval.

Design point Sample size Subsample size Ave. length Med. length Cov. probability

x2 = 0.25 n = 500 0.1n 0.232 0.234 0.959
0.2n 0.250 0.262 0.991

n = 1000 0.1n 0.208 0.214 0.966
0.2n 0.191 0.184 0.997

n = 2000 0.1n 0.148 0.146 1.000
0.2n 0.146 0.143 1.000

x2 = 0.50 n = 500 0.1n 0.336 0.337 0.946
0.2n 0.405 0.407 0.999

n = 1000 0.1n 0.326 0.327 0.973
0.2n 0.391 0.395 0.998

n = 2000 0.1n 0.371 0.382 1.000
0.2n 0.371 0.382 0.999

x2 = 0.75 n = 500 0.1n 0.447 0.450 0.822
0.2n 0.529 0.538 0.917

n = 1000 0.1n 0.430 0.433 0.847
0.2n 0.488 0.508 0.961

n = 2000 0.1n 0.416 0.415 0.971
0.2n 0.423 0.416 0.971

coverage probability of 95%, which is consistent with the theory developed in
[37]. On the other hand, the average and median lengths of the conformal pre-
diction band with the proposed estimator are substantially smaller than those
with the linear modal regression estimator, which is an encouraging sign for the
proposed estimator.

5. Discussion

In the present paper we have proposed a new estimator for the conditional
mode based on quantile regression. The proposed estimate is computationally
scalable since the quantile regression problem can be formulated as a linear
programming problem. We have developed asymptotic distributional theory for
the proposed estimator, which turns out to be nonstandard. Specifically, we have
shown that the rate of convergence of the proposed estimator is (nh2)1/3 where
h = hn → 0 is a sequence of bandwidths, and that the limiting distribution is a
scale transformation of Chernoff’s distribution. For inference, we have discussed
analytical and subsampling confidence intervals. Finally we have verified the
practical usefulness of the proposed method through numerical experiments.

In the present paper, we use the naive quantile regression estimator β̂(τ)
that is not smooth in τ to estimate the conditional quantile function, while
the true slope vector β(τ) is smooth in τ under our assumption. An interest-

ing alternative approach is to impose smoothness to β̂(τ) so that the estimated
conditional quantile function is differentiable in τ . We expect that the result-
ing conditional mode estimator would have a Gaussian limit (under regularity
conditions), which is reminiscent of the smoothed maximum score estimator of
[23]. Developing this alternative approach requires a whole new theory and is
left as future research.
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Table 4

Monte Carlo average and median lengths, and coverage probabilities of the 95% subsampling
confidence interval.

Design point Sample size Subsample size Ave. length Med. length Cov. probability

x2 = 0.25 n = 500 0.1n 0.203 0.208 0.926
0.2n 0.198 0.195 0.982

n = 1000 0.1n 0.166 0.166 0.947
0.2n 0.148 0.145 0.993

n = 2000 0.1n 0.120 0.119 0.997
0.2n 0.118 0.116 0.998

x2 = 0.50 n = 500 0.1n 0.313 0.314 0.899
0.2n 0.374 0.380 0.989

n = 1000 0.1n 0.304 0.306 0.968
0.2n 0.353 0.366 0.997

n = 2000 0.1n 0.316 0.326 0.994
0.2n 0.318 0.328 0.996

x2 = 0.75 n = 500 0.1n 0.413 0.416 0.779
0.2n 0.473 0.490 0.887

n = 1000 0.1n 0.388 0.396 0.808
0.2n 0.412 0.415 0.937

n = 2000 0.1n 0.335 0.328 0.958
0.2n 0.342 0.336 0.959

Table 5

Monte Carlo average and median lengths, and empirical coverage probabilities of the 95%
conformal prediction intervals.

Method Average length Median length Coverage probability

Proposed method 19.01 19.02 0.950
Modal linear regression 23.71 23.32 0.950

Appendix A: Proofs

A.1. Preliminaries

In what follows, we will obey the following notation. For a given probability
space (S,S, Q) and a measurable function f : S → R, we use the notation
Qf =

∫
fdQ whenever the latter integral exists. For a class of measurable real-

valued functions F on S, let N(F , ‖·‖Q,2, δ) denote the δ-covering number for F
with respect to the L2(Q)-seminorm ‖ · ‖Q,2; see Section 2.1 in [51] for details.
In addition, for a (vector-valued) function g on a set T , we use the notation
‖g‖T = supx∈T ‖g(x)‖, where ‖ · ‖ denotes the Euclidean norm. We denote by
d
= the equality in distribution.

The following maximal inequality will be repeatedly used in the proof of
Theorem 1.

Lemma 1 (A useful maximal inequality). Let X1, . . . , Xn be i.i.d. random vari-
ables taking values in a measurable space (S,S) with common distribution P ,
and let F be a pointwise measurable class of (measurable) real-valued functions
on S with measurable envelope F .1 Suppose that there exist constants A ≥ e

1The class F is said to be pointwise measurable if there exists a countable subclass G ⊂ F
such that for every f ∈ F there exists a sequence gm ∈ G with gm → f pointwise; see Section
2.3 in [51].
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Fig 3. The conditional density estimate of the electronic energy output given Exhaust Vacuum.

and V ≥ 1 such that supQ N(F , ‖ · ‖Q,2, η‖F‖Q,2) ≤ (A/η)V for all 0 < η ≤ 1,
where supQ is taken over all finitely discrete distributions on S. Furthermore,
suppose that 0 < PF 2 < ∞, and let σ2 be any positive constant such that
supf∈F Pf2 � σ2 � PF 2. Finally, let B =

√
E[max1�i�n F 2(Xi)]. Then

E

[∥∥∥∥∥
n∑

i=1

{f(Xi)− Pf}
∥∥∥∥∥
F

]

� C

[√
nV σ2 log(A‖F‖P,2/σ) + V B log(A‖F‖P,2/σ)

]
,

where ‖ · ‖F = supf∈F | · | and C is a universal constant.

Proof. See Corollary 5.1 in [10].

In particular, if we take σ2 = PF 2, then using the inequality B � √
n‖F‖P,2,

we also have

E

[∥∥∥∥∥
n∑

i=1

{f(Xi)− Pf}
∥∥∥∥∥
F

]
� 2C

√
n‖F‖P,2V logA. (10)

The right hand side on (10) can be improved to ‖F‖P,2

√
V logA up to a universal

constant (cf. Theorem 2.14.1 in [51]), but this does not matter to the proof of
Theorem 1.

Lemma 2. For i.i.d. random variables ζ1, ζ2, . . . , E[max1�i�n |ζi|] = o(n) if
and only if E[|ζ1|] < ∞.

Proof. This is a well known result in probability theory, but we provide its
proof for the sake of completeness. The “only if” direction is trivial, and so
we prove the “if” direction. Suppose that E[|ζ1|] < ∞. Then the strong law
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of large numbers yields that max1�i�n |ζi|/n �
∑n

i=1 |ζi|/n → E[|ζ1|] almost
surely, which also implies that max1�i�n |ζi|/n → 0 almost surely (in general
for a sequence of real numbers {ai}∞i=1, if n

−1
∑n

i=1 ai converges as n → ∞,
then max1�i�n |ai| = o(n)). The the desired result follows from the generalized
dominated convergence theorem (cf. Problem 4.3.12 in [11]).

A.2. Proof of Theorem 1

The proof of Theorem 1 depends on the following Bahadur representation of
the quantile regression estimator β̂(τ).

Lemma 3 (Bahadur representation of β̂(τ)). Under Assumption 1, we have

β̂(τ)− β(τ) = J(τ)−1

[
1

n

n∑
i=1

{τ − I(Yi � XT
i β(τ))}Xi

]
+Rn(τ),

where J(τ) = E[f(XTβ(τ) | X)XXT ] and ‖Rn‖[ε/2,1−ε/2] = oP(n
−3/4 logn). In

addition, ∥∥∥∥∥ 1

n

n∑
i=1

{τ − I(Yi � XT
i β(·))}Xi

∥∥∥∥∥
[ε/2,1−ε/2]

= OP(n
−1/2). (11)

The conclusion of the lemma is partly known in the literature, but we include
the proof of the lemma since we could not find a right reference that exactly
establishes the conclusion of the lemma under our assumption. We defer the
proof of this lemma after the proof of Theorem 1.

Proof of Theorem 1. We divide the proof into several steps.
Step 1. We first expand the objective function ŝx(τ) using the Bahadur rep-

resentation of β̂(τ). Let F (y | X) denote the conditional distribution function
of Y given X, and let Ui = F (Yi | Xi) for i = 1, . . . , n. The variable Ui follows
the uniform distribution on (0, 1) independent of Xi for each i = 1, . . . , n. Since

Yi � XT
i β(τ) ⇔ Ui � τ

under our assumption (recall that XT
i β(τ) is the conditional τ -quantile of Yi

given Xi), we also have

β̂(τ)− β(τ) = J(τ)−1

[
1

n

n∑
i=1

{τ − I(Ui � τ)}Xi

]
+Rn(τ). (12)

Using the Bahadur representation (12) along with some calculations, we have
that

ŝx(τ) = sx,n(τ) + xTJ(τ)−1

[
1

n

n∑
i=1

{1− I(Ui ∈ (τ − h, τ + h])/(2h)}Xi

]
+OP(n

−1/2) + oP(n
−3/4h−1 logn)︸ ︷︷ ︸

=oP((nh2)−2/3)

,
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where sn,x = {Qx(τ+h)−Qx(x−h)}/(2h) and the oP and OP terms are uniform
in τ ∈ [ε, 1− ε].

Now, let K(u) = I(u ∈ (−1, 1])/2 and Kh(u) = h−1K(u/h). Define

gn,τ (U,X) = sx,n(τ) + xTJ(τ)−1X{1−Kh(U − τ)}.

Denoting by Pn the empirical probability measure for {(Ui, Xi)}ni=1, we have

ŝx(τ) = Pngn,τ + oP((nh
2)−2/3),

where the oP term is uniform in τ ∈ [ε, 1− ε], and so τ̂x satisfies that

Pngn,τ̂x � inf
τ∈[ε,1−ε]

Pngn,τ + oP((nh
2)−2/3). (13)

In what follows, we denote by P the joint distribution of (U,X).
Step 2. Next, we show consistency of τ̂x. To this end, consider the function

class Gn = {gn,τ : τ ∈ [ε, 1− ε]}. It is seen that there exists a constant C1 (inde-
pendent of n) such that supτ∈[ε,1−ε] |gn,τ (U,X)| � C1(1+‖X‖/h) =: Gn(U,X).
Then there exist constants A1 and V1 independent of n such that

sup
Q

N(Gn, ‖ · ‖Q,2, η‖Gn‖Q,2) � (A1/η)
V1 , 0 < ∀η � 1,

where the supQ is taken over all finitely discrete distributions on (0, 1) × X .
This follows from a small modification to the proof of Lemma 3.1 in [17] and
so we omit the detailed proof. In addition, it is seen that supτ∈[ε,1−ε] Pg2n,τ =

O(h−1), PG2
n = O(h−2), and E[max1�i�n G

2
n(Ui, Xi)] = o(n1/2h−2) by Lemma

2.
Now, applying the maximal inequality of Lemma 1, we have

E
[
‖Pngn,τ − Pgn,τ‖[ε,1−ε]

]
= O((nh)−1/2

√
logn) + o(n−3/4h−1 logn)︸ ︷︷ ︸

=o(1)

, (14)

which implies that ‖Pngn,τ −Pgn,τ‖[ε,1−ε] = oP(1) by Markov’s inequality. Fur-
ther, Pgn,τ = sx,n(τ) = sx(τ) + o(1) uniformly in τ ∈ [ε, 1 − ε] and sx(τ) is
uniquely minimized at τ = τx by assumption. Hence, by Theorem 5.7 in [50],

we have τ̂x
P→ τx.

Step 3. The aim of this step is to show that τ̂x = τx + OP((nh
2)−1/3). We

divide this step into three sub-steps.
Step 3-(a). We begin with observing that, for any δ = δn → 0, Pgn,τ can be

expanded as

Pgn,τ = sx,n(τ) = sx,n(τx) + s′n,x(τx)(τ − τx) + (s′′x,n(τx)/2 + o(1))(τ − τx)
2

uniformly in |τ−τx| < δ, and s′n,x(τx) = {Q′
x(τx+h)−Q′

x(τx−h)}/(2h) = O(h2),
where we have used the fact that Q′′

x(τx) = s′x(τx) = 0 (recall that τx is a
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minimizer of sx(τ)). Indeed, recalling that Qx(τ) is four times continuously
differentiable in τ , we have

Q′
x(τx + h) = Q′

x(τx) +Q′′
x(τx)︸ ︷︷ ︸
=0

h+
Q′′′

x (τx)

2
h2 +O(h3), and likewise

Q′
x(τx − h) = Q′

x(τx) +
Q′′′

x (τx)

2
h2 +O(h3),

which implies that {Q′
x(τx + h) − Q′

x(τx − h)}/(2h) = O(h2). Since h2 =
o((nh2)−1/3), using the inequality |ab| � (a2 + b2)/2, we have

|s′n,x(τx)(τ − τx)| � o(1)(τ − τx)
2 + o((nh2)−2/3).

Further, s′′x,n(τx) = s′′x(τx) + o(1), and so we have

P (gn,τ − gn,τx) = (vx + o(1))(τ − τx)
2 + o((nh2)−2/3) (15)

uniformly in |τ − τx| < δ, where vx = s′′x(τx)/2 > 0.
Step 3-(b). Next, for given δ > 0, consider the function class Gn,δ = {gn,τ −

gn,τx : τ ∈ [ε, 1 − ε], |τ − τx| < δ}. It is seen that there exists a constant C2

independent of n and δ such that, whenever |τ − τx| < δ,

|gn,τ (U,X)− gn,τx(U,X)|
� C2 [{(1 + ‖X‖/h)δ + (‖X‖/h){I(|U − τx + h| � δ) + I(|U − τx − h| � δ)}]
=: Gn,δ(U,X). (16)

Then there exist constants A2 and V2 independent of n and δ such that

sup
Q

N(Gn,δ, ‖ · ‖Q,2, η‖Gn,δ‖Q,2) � (A2/η)
V2 , 0 < ∀η � 1. (17)

Again, this follows from a small modification to the proof of Lemma 3.1 in [17].
Step 3-(c). Finally, by consistency of τ̂x, there exists δ = δn → 0 such that

P(|τ̂x − τx| < δn) → 1. In view of the expansion (15), for sufficiently large n, we
have

P (gn,τ − gn,τx) � vx(τ − τx)
2/2− o((nh2)−2/3)

uniformly in |τ − τx| < δ. Further, by the covering number estimate of Step
3-(b) together with the maximal inequality (10), we have

E

[
‖Png − Pg‖Gn,δ

]
= O(n−1/2h−1δ1/2),

where we have used the fact that PG2
n,δ = O(h−2δ). Now, a small modification

to the proof of Theorem 3.2.5 in [51] shows that |τ̂x − τx| = OP(r
−1
n ), where rn

satisfies r2nh
−1r

−1/2
n = n1/2, i.e., rn = (nh2)1/3. This completes Step 3.

Step 4. Let an = (nh2)1/3, and define

ǧn,t =

{
n1/6h4/3(gn,τx+t/an

− gn,τx) if τx + t/an ∈ [ε, 1− ε]

0 otherwise
.
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Consider the empirical process

Gnǧn,t :=
√
n(Pnǧn,t − P ǧn,t), t ∈ R.

Recall that σ2
x = E[(xTJ(τx)

−1X)2]/2. The aim of this step is to show weak
convergence of the empirical process {Gnǧn,t : t ∈ R} to {σxB(t) : t ∈ R} in
�∞loc(R), where �∞loc(R) is the space of locally bounded functions on R equipped
with the metric d(f, g) =

∑∞
N=1 2

−N (1 ∧ ‖f − g‖[−N,N ]); cf. Section 1.6 in [51].
This reduces to verifying (i) the finite dimensional convergence, i.e., for any
t1, . . . , t� ∈ R,

(Gnǧn,t1 , . . . ,Gnǧn,t�)
d→ (σxB(t1), . . . , σxB(t�)) ;

and (ii) the asymptotic equicontinuity of the empirical process on [−N,N ] for
each N = 1, 2, . . . , i.e., for any η > 0,

lim
δ→0

lim sup
n→∞

P

⎛⎜⎝ sup
|t1−t2|<δ

t1,t2∈[−N,N ]

|Gn(ǧn,t1 − ǧn,t2)| > η

⎞⎟⎠ = 0. (18)

To verify the finite dimensional convergence, we first compute the limit of
the covariance of ǧn,t1 and ǧn,t2 for t1 � t2. To this end, let

ϕn,t(U,X) = n1/6h4/3xTJ(τx)
−1X{Kh(U − τx)−Kh(U − τx − t/an)}.

Direct (but tedious) calculations show that CovP (ǧn,t1 , ǧn,t2) = P (ϕn,t1ϕn,t2)+
o(1), where CovP denotes the covariance under P . Since X and U are indepen-
dent, we focus on computing

E[{Kh(U − τx)−Kh(U − τx − t1/an)}{Kh(U − τx)−Kh(U − τx − t2/an)}]

=
1

4h2

(
2h−

∣∣[(τx + t1/an)± h] ∩ [τx ± h]
∣∣ − ∣∣[(τx + t2/an)± h] ∩ [τx ± h]

∣∣
+

∣∣[(τx + t1/an)± h] ∩ [(τx + t2/an)± h]
∣∣), (19)

where [a± b] = [a− b, a+ b] and | · | denotes the Lebesgue measure. First, since
han = (nh5)1/3 → ∞, for sufficiently large n, we have∣∣[(τx + t/an)± h] ∩ [τx ± h]

∣∣ = 2h− |t|
an

.

Next, if t1 � t2, then for sufficiently large n, we have∣∣[(τx + t1/an)± h] ∩ [(τx + t2/an)± h]
∣∣ = 2h− t2 − t1

an
.

Combining these estimates leads to

2h−
∣∣[(τx + t1/an)± h] ∩ [τx ± h]

∣∣ − ∣∣[(τx + t2/an)± h] ∩ [τx ± h]
∣∣

+
∣∣[(τx + t1/an)± h] ∩ [(τx + t2/an)± h]

∣∣
=

⎧⎪⎨⎪⎩
2t1
an

if 0 � t1 � t2
−2t2
an

if t1 � t2 � 0

0 if t1 � 0 � t2

.



QR approach to modal regression 3147

Since anh
2 = n1/3h8/3, we conclude that

lim
n→∞

CovP (ǧn,t1 , ǧn,t2) = σ2
xE[B(t1)B(t2)].

The rest is to verify the Lindeberg condition, and to this end it is enough to
verify that for any t ∈ R and η > 0,

n1/3h8/3PG2
n,|t|/an

I(n1/6h4/3Gn,|t|/an
> η

√
n) → 0,

where Gn,δ is given in (16). After a few more calculations, we see that the
problem boils down to showing that

anE
[
‖X‖2I(|U − τx ± h| � |t|/an)I(‖X‖ > ηn1/3h−1/3)

]
→ 0. (20)

However, since X and U are independent, the left hand side on (20) is

anP(|U − τx ± h| � |t|/an)︸ ︷︷ ︸
=O(1)

E

[
‖X‖2I(‖X‖ > ηn1/3h−1/3)

]
︸ ︷︷ ︸

=o(1)

→ 0.

Therefore, we have proved the finite dimensional convergence.
To verify the asymptotic equicontinuity (18), consider the function class

Ǧn,δ = {ǧn,t1 − ǧn,t2 : |t1 − t2| < δ, t1, t2 ∈ [−N,N ]} .

We will apply Lemma 1 to the function class Ǧn,δ. First, an envelope function
for Ǧn,δ is given by Ǧn = 2n1/6h4/3Gn,N/an

. Observe that, using independence

between U and X, we have PǦ2
n = O(1) and

E

[
max
1�i�n

Ǧ2
n(Ui, Xi)

]
� O(n1/3h2/3)E

[
max
1�i�n

‖Xi‖2
]
= o(n5/6h3/2) = o(n),

where we have used E
[
max1�i�n ‖Xi‖2

]
= o(n1/2), which follows from Lemma

2.
Next, from the covering number estimate (17), there exist constants A3 and

V3 independent of n and δ such that

sup
Q

N(Ǧn,δ, ‖ · ‖Q,2, η‖Ǧn‖Q,2) � (A3/η)
V3 , 0 < ∀η � 1.

Finally, it is seen that there exists a constant C3 independent of n such that

P (gn,τ1 − gn,τ2)
2 � C3|τ1 − τ2|/h2, ∀τ1, τ2 ∈ [ε, 1− ε],

which implies that

P (ǧn,t1 − ǧn,t2)
2 � C3|t1 − t2|, ∀t1, t2 ∈ [−N,N ]

for sufficiently large n.
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Therefore, applying Lemma 1 to the function class Ǧn,δ, we conclude that
there exists a constant C4 independent of n and δ such that

E

⎡⎢⎣ sup
|t1−t2|<δ

t1,t2∈[−N,N ]

|Gn(ǧn,t1 − ǧn,t2)|

⎤⎥⎦ � C4

√
δ log(1/δ) + o(1) log(1/δ)

for sufficiently small δ, where the o(1) term is independent of δ. This leads to
the asymptotic equicontinuity (18) by Markov’s inequality.

Step 5. We derive the limit distribution of τ̂x by applying Theorem 2.7 in

[27]. The optimality condition (13) implies that the rescaled estimator t̂ =
(nh2)1/3(τ̂x − τx) satisfies

√
nPn(−ǧn,t̂) � sup

t∈R

√
nPn(−ǧn,t)− oP(1).

In view of the expansion (15), we have

√
nP ǧn,t = vxt

2 + o(1)

locally uniformly in t ∈ R, i.e., uniformly in t ∈ [−N,N ] for each N = 1, 2, . . . .

From the weak convergence result of Step 4, together with the fact that B
d
= −B,

the non-centered empirical process {√nPn(−ǧn,t) : t ∈ R} converges weakly to
the process {σxB(t)−vxt

2 : t ∈ R} in �∞loc(R), and the limit process concentrates
on Cmax(R) (as defined in [27]) by Lemmas 2.5 and 2.6 in [27]. Further, t̂ = OP(1)
by Step 3. Therefore, by Theorem 2.7 in [27], we have

t̂ = (nh2)1/3(τ̂x − τx)
d→ argmax

t∈R

{
σxB(t)− vxt

2
}
.

The right hand side is equal in distribution to (σx/vx)
2/3Z by Problem 3.2.5 in

[51], where Z = argmaxt∈R
{B(t)− t2}. This leads to the first result (5) of the

theorem.
Finally, observe that

m̂(x)−m(x) = Q̂x(τ̂x)−Qx(τx) = Q̂x(τ̂x)−Qx(τ̂x) +Qx(τ̂x)−Qx(τx).

By Lemma 3,

|Q̂x(τ̂x)−Qx(τ̂x)| � ‖Q̂x −Qx‖[ε,1−ε] � ‖x‖‖β̂ − β‖[ε,1−ε] = OP(n
−1/2).

Applying the delta method, we have

(nh2)1/3(m̂(x)−m(x))

= (nh2)1/3(Qx(τ̂x)−Qx(τx)) + oP(1)
d→ sx(τx)(σx/vx)

2/3Z.

This completes the proof.
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Proof of Lemma 3. The results (11) and ‖β̂ − β‖[ε/2,1−ε/2] = OP(n
−1/2) follow

from Theorem 3 in [2]. By the first order condition for the quantile regression
problem (2), we have

∥∥∥∥∥
n∑

i=1

{τ − I(Yi � XT
i β̂(τ))}Xi

∥∥∥∥∥
� Card({i ∈ {1, . . . , n} : Yi = XT

i β̂(τ)}) max
1�i�n

‖Xi‖, and (21)

sup
τ∈[ε/2,1−ε/2]

Card({i ∈ {1, . . . , n} : Yi = XT
i β̂(τ)}) � d almost surely. (22)

The first result (21) follows from a modification to the proof of Lemma 2.1 in
[15]; see Lemma 4 ahead. The second result (22) follows from the following obser-
vation. Pick any subset I ⊂ {1, . . . , n} such that Card(I) � d+1. Conditionally
on Xn

1 = {X1, . . . , Xn}, consider the set

SI = {(XT
i β)i∈I : β ∈ R

d} ⊂ R
Card(I),

which is a linear subspace of dimension at most d. If there exists τ ∈ [ε/2, 1−ε/2]

such that Yi = XT
i β̂(τ) for all i ∈ I, then (Yi)i∈I ∈ SI , so that

P( there exists τ ∈ [ε/2, 1− ε/2] such that Yi = XT
i β̂(τ) for all i ∈ I | Xn

1 )

� P((Yi)i∈I ∈ SI | Xn
1 ). (23)

However, since the distribution of (Yi)i∈I conditionally on Xn
1 is absolutely

continuous, the conditional probability on the right hand side is 0. By Fubini’s
theorem, the unconditional probability of the event inside the conditional prob-
ability on the left hand side of (23) is 0. Now,

P

(
sup

τ∈[ε/2,1−ε/2]

Card({i ∈ {1, . . . , n} : Yi = XT
i β̂(τ)}) � d+ 1

)
�

∑
I⊂{1,...,n}

Card(I)�d+1

P( there exists τ ∈ [ε/2, 1−ε/2] such that Yi=XT
i β̂(τ) for all i ∈ I) = 0,

which leads to the result (22).

Since E[‖X‖4] < ∞, we have max1�i�n ‖Xi‖ = oP(n
1/4) (cf. Lemma 2), and

so ∥∥∥∥∥ 1

n

n∑
i=1

{τ − I(Yi � XT
i β̂(·))}Xi

∥∥∥∥∥
[ε/2,1−ε/2]

= oP(n
−3/4).
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We will expand n−1
∑n

i=1{τ − I(Yi � XT
i β̂(τ))}Xi. Observe that

1

n

n∑
i=1

{τ − I(Yi � XT
i β̂(τ))}Xi

=
1

n

n∑
i=1

{τ − I(Yi � XT
i β(τ))}Xi + E[{τ − I(Y � XTβ)}X]|β=β̂(τ)

+
1

n

n∑
i=1

{I(Yi�XT
i β(τ))−I(Yi�XT

i β̂(τ))}Xi−E[{τ−I(Y �XTβ)}X]|β=β̂(τ)

The Taylor expansion yields that

E[{τ − I(Y � XTβ)}X]|β=β̂(τ) = −J(τ)(β̂(τ)− β(τ)) +OP(n
−1)

uniformly in τ ∈ [ε/2, 1− ε/2]. It remains to show that∥∥∥∥∥ 1

n

n∑
i=1

{I(Yi � XT
i β(τ))− I(Yi � XT

i β̂(τ))}Xi

− E[{τ − I(Y � XTβ)}X]|β=β̂(τ)

∥∥∥∥∥
[ε/2,1−ε/2]

= oP(n
−3/4 logn).

(24)

Since ‖β̂−β‖[ε/2,1−ε/2] = O(n−1/2), for any Mn → ∞ sufficiently slowly, P(‖β̂−
β‖[ε/2,1−ε/2] � Mnn

−1/2) → 1. Consider the function class

Fn =
{
(y, x) �→ {I(y � xTβ)− I(y � xT (β + δ))}αTx

: β ∈ R
d, ‖δ‖ � Mnn

−1/2, α ∈ S
d−1

}
,

where S
d−1 = {x ∈ R

d : ‖x‖ = 1}. Then the left side on (24) is bounded by∥∥∥∥∥ 1

n

n∑
i=1

f(Yi, Xi)− E[f(Y,X)]

∥∥∥∥∥
Fn

(25)

with probability approaching one. Since the function class {(y, x) �→ I(y �
xTβ)αTx : β ∈ R

d, α ∈ S
d−1} (that is independent of n) is a VC subgraph class

with envelope F (y, x) = ‖x‖, there exist constants A and V independent of n
such that

sup
Q

N(Fn, ‖ · ‖Q,2, η‖F‖Q,2) � (A/η)V , 0 < ∀η � 1.

See Section 2.6 in [51]. Simple calculations show that

sup
f∈Fn

E[f2(Y,X)] = O(Mnn
−1/2) and

E

[
max
1�i�n

F 2(Yi, Xi)

]
= E

[
max
1�i�n

‖Xi‖2
]
= o(n1/2)
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by Lemma 2. Therefore, applying Lemma 1 to the function class Fn shows that
the expectation of the term (25) is bounded by

O(n−3/4
√
Mn log n) + o(n−3/4 logn).

Choosing Mn → ∞ sufficiently slowly, we obtain the desired result.

Lemma 4. Let (y1, x1), . . . , (yn, xn) ∈ R×R
d be pairs of outcome variables and

regressors. Consider to solve the quantile regression problem:

min
β∈Rd

n∑
i=1

ρτ (yi − xT
i β), (26)

where τ ∈ (0, 1) is fixed. Let β∗ be an optimal solution to (26) and let I∗ = {i ∈
{1, . . . , n} : yi = xT

i β
∗}. Then there exist ai ∈ [−1, 0] for i ∈ I∗ such that

n∑
i=1

{τ − I(yi � xT
i β

∗)}xi =
∑
i∈I∗

aixi.

Hence we have ‖
∑n

i=1{τ − I(yi � xT
i β

∗)}xi‖ � Card(I∗)max1�i�n ‖xi‖.
Proof. Let y = (y1, . . . , yn)

T and X = [x1, . . . , xn]
T . The optimization problem

(26) reduces to the following linear programming problem:

min
u,v∈Rn,β∈Rd

τ1Tnu+ (1− τ)1Tnv

s.t. u− v = y − Xβ, u � 0n, v � 0n,
(27)

where 1n = (1, . . . , 1)T ∈ Rn and 0n = (0, . . . , 0)T ∈ Rn. The inequalities u � 0n
and v � 0n are interpreted coordinatewise. Let u∗

i = max{yi − xT
i β

∗, 0} and
v∗i = max{−yi+xT

i β
∗, 0}. Then u∗−v∗ = y−Xβ∗ and (u∗, v∗, β∗) is an optimal

solution to the problem (27). Defining

f(u, v, β) = τ1Tnu+ (1− τ)1Tnv,

g(u, v, β) = (g1(u, v, β), . . . , g2n(u, v, β))
T = (−uT ,−vT )T ,

h(u, v, β) = (h1(u, v, β), . . . , hn(u, v, β))
T = u− v − y + Xβ,

the problem (27) can be written as

min
u,v∈Rn,β∈Rd

f(u, v, β)

s.t. g(u, v, β) � 02n, h(u, v, β) = 0n.

Let ei ∈ Rn denote the vector of which only the i-th element is 1 and the
other elements are all zero. Then the gradient vectors of f(u, v, β), gi(u, v, β),
gn+i(u, v, β), and hi(u, v, β) are given by

∇f(u, v, β) =

⎛⎝ τ1n
(1− τ)1n

0d

⎞⎠ , ∇gi(u, v, β) =

⎛⎝−ei
0n
0d

⎞⎠ ,
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∇gn+i(u, v, β) =

⎛⎝ 0
−ei
0d

⎞⎠ , ∇hi(u, v, β) =

⎛⎝ ei
−ei
xi

⎞⎠ , i = 1, . . . , n.

Since all the constraints are linear, by the Karush-Kuhn-Tucker theorem (cf. [4],
Proposition 3.3.7), there exist μ1, . . . , μ2n � 0 and λ1, . . . , λn ∈ R such that⎛⎝ τ1n

(1− τ)1n
0d

⎞⎠ +

n∑
i=1

μi

⎛⎝−ei
0n
0d

⎞⎠ +

n∑
i=1

μn+i

⎛⎝ 0n
−ei
0d

⎞⎠ +

n∑
i=1

λi

⎛⎝ ei
−ei
xi

⎞⎠ = 02n+d,

(28)

μiu
∗
i = 0, and μn+iv

∗
i = 0, i = 1, . . . , n. (29)

Recall that I∗ = {i ∈ {1, . . . , n} : yi = xT
i β

∗}. Let I∗+ = {i ∈ {1, . . . , n} :
yi > xT

i β
∗} and I∗− = {i ∈ {1, . . . , n} : yi < xT

i β
∗}. Observe that from the

complementary slack condition (29),

i ∈ I∗+ ⇒ u∗
i > 0 ⇒ μi = 0 ⇒ λi = −τ and

i ∈ I∗− ⇒ v∗i > 0 ⇒ μn+i = 0 ⇒ λi = 1− τ.

The last d equations in (28) imply that
∑n

i=1 λixi = 0, which can be rearranged
as τ

∑
i∈I∗

+
xi + (τ − 1)

∑
i∈I∗

−
xi =

∑
i∈I∗ λixi. The left hand side is

∑
i∈I∗

+∪I∗
−

{τ − I(yi � xT
i β

∗)}xi =

n∑
i=1

{τ − I(yi � xT
i β

∗)}xi + (1− τ)
∑
i∈I∗

xi,

so that
n∑

i=1

{τ − I(yi � xT
i β

∗)}xi =
∑
i∈I∗

(λi − 1 + τ)︸ ︷︷ ︸
=ai

xi.

For i ∈ I∗, we have by the first 2n equations of (28),

τ − μi + λi = 0 ⇒ λi � −τ and

1− τ − μn+i − λi = 0 ⇒ λi � 1− τ,

so that λi ∈ [−τ, 1− τ ] for i ∈ I∗, i.e, ai ∈ [−1, 0] for i ∈ I∗. This completes the
proof.

A.3. Proof of Corollary 1

The second result follows from the delta method (see the proof of Theorem 1),
so we focus on proving the first result. We will follow the notation used in the
proof of Theorem 1, but to make the dependence on x explicit, let us write
gn,x,τ (U,X) = sx,n(τ) + xTJ(τ)−1X{1−Kh(U − τ)},

ǧn,x,t =

{
n1/6h4/3(gn,x,τx+t/an

− gn,x,τx) if τx + t/an ∈ [ε, 1− ε]

0 otherwise
,
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and ϕn,x,t(U,X) = n1/6h4/3xTJ(τx)
−1X{Kh(U − τx) − Kh(U − τx − t/an)}.

Recall that an = (nh2)1/3.
We begin with observing that for t̂j = (nh2)1/3(τ̂xj − τxj ), j = 1, . . . , L,

√
nPn

⎛⎝−
L∑

j=1

ǧn,xj ,t̂j

⎞⎠ � sup
(t1,...,tL)T∈RL

√
nPn

⎛⎝−
L∑

j=1

ǧn,xj ,tj

⎞⎠ − oP(1), and

√
nP

⎛⎝ L∑
j=1

ǧn,xj ,tj

⎞⎠ =

L∑
j=1

vxj t2j + o(1) locally uniformly in (t1, . . . , tL)
T ∈ R

L.

In addition, from Theorem 1, we know that t̂j = OP(1) for each j = 1, . . . , L.
Hence, in view of Theorem 2.7 in [27], we only have to verify the following.
Let �∞loc(R

L) denote the space of all locally bounded functions on R
L equipped

with the metric d(f, g) =
∑∞

N=1 2
−N (1 ∧ ‖f − g‖[−N,N ]L). Recall that Gng =√

n(Png − Pg).

(i) There exists a continuous version of Bk for each k = 1, . . . ,M , and the

stochastic process {Gn(
∑L

j=1 ǧn,xj ,tj ) : (t1, . . . , tL)
T ∈ R

L} converges

weakly to the process {
∑M

k=1 Bk((tj)j∈Sk
) : (t1, . . . , tL)

T ∈R
L} in �∞loc(R

L),
where B1, . . . ,BM are independent.

(ii) For each k = 1, . . . ,M , the process

(tj)j∈Sk
�→ Bk((tj)j∈Sk

)−
∑
j∈Sk

vxj t2j

admits a unique maximizer almost surely.

The latter (ii) follows from Lemmas 2.5 and 2.6 in [27], so we focus on verifying
the weak convergence (i). By Section 1.6 in [51], this boils down to verifying the
finite dimensional convergence together with the asymptotic equicontinuity on
each [−N,N ]L, i.e., for any η > 0,

lim
δ→0

lim sup
n→∞

P

⎛⎜⎜⎝ sup
|tj−t′j |<δ

tj ,t
′
j∈[−N,N ],j=1,...,L

∣∣∣∣∣∣Gn

⎛⎝ L∑
j=1

(ǧn,xj ,tj − ǧn,xj ,t′j
)

⎞⎠∣∣∣∣∣∣ > η

⎞⎟⎟⎠ = 0.

(30)
As we will see, the finite dimensional convergence and the asymptotic equicon-
tinuity automatically imply the existence of a continuous version of Bk for each
k = 1, . . . ,M .

The asymptotic equicontinuity (30) follows from the fact that

|Gn(
∑L

j=1(ǧn,xj ,tj − ǧn,xj ,t′j
))| �

∑L
j=1 |Gn(ǧn,xj ,tj − ǧn,xj ,t′j

)| and what we have

proved in Step 4 in the proof of Theorem 1. It remains to prove the finite di-
mensional convergence. Direct calculations show that

CovP

⎛⎝ L∑
i=1

ǧn,xi,ti ,

L∑
j=1

ǧn,xj ,t′j

⎞⎠ =

L∑
i,j=1

P (ϕn,xi,tiϕn,xj ,t′j
) + o(1)
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for any (t1, . . . , tL)
T , (t′1, . . . , t

′
L)

T ∈ R
L. Consider first the case where τxi =

τxj = τ(k) for some k = 1, . . . ,M . Then, from the calculation done in Step 4 in
the proof of Theorem 1, we see that

lim
n→∞

P (ϕn,xi,tiϕn,xj ,t′j
) =

1

2
(xi)TJ(τ(k))

−1
E[XXT ]J(τ(k))

−1xj
E[B(ti)B(t′j)].

Next, consider the case where τxi �= τxj . Then, the intervals [τxi ±h] and [(τxi +
ti/an) ± h] have empty intersections with [τxj ± h] and [(τxj + tj/an) ± h] for
sufficiently large n, so that

lim
n→∞

P (ϕn,xi,tiϕn,xj ,t′j
) = 0.

Conclude that

lim
n→∞

CovP

⎛⎝ L∑
i=1

ǧn,xi,ti ,

L∑
j=1

ǧn,xj ,t′j

⎞⎠
=

1

2

M∑
k=1

∑
i,j∈Sk

(xi)TJ(τ(k))
−1

E[XXT ]J(τ(k))
−1xj

E[B(ti)B(t′j)].

(31)

The Lindeberg condition can be verified in a similar way to Step 4 in the proof
of Theorem 1, so we have proved the finite dimensional convergence.

Now, for each k = 1, . . . ,M , since Gn(
∑L

j=1 ǧn,xj ,tj )
∣∣
tj=0,j /∈Sk

=

Gn(
∑

j∈Sk
ǧn,xj ,tj ), we see that the process (tj)j∈Sk

�→ Gn(
∑

j∈Sk
ǧn,xj ,tj ) is

asymptotically equicontinuous (with respect to the Euclidean metric) on
[−N,N ]sk for each N = 1, 2, . . . and the finite dimensional distributions con-
verge weakly to those of Bk. By the final paragraph in Section 1.6 of [51], the
limit process (in �∞loc(R

sk)) is a version of Bk with continuous paths.

We have already seen that the process {Gn(
∑L

j=1 ǧn,xj ,tj ) : (t1, . . . , tL)
T ∈

R
L} is weakly convergent in �∞loc(R

L). The rest is to verify that the limit process

is {
∑M

k=1 Bk((tj)j∈Sk
) : (t1, . . . , tL)

T ∈ R
L} where B1, . . . ,BM are independent,

which however follows from the fact that the right hand side on (31) is identical

to Cov(
∑M

k=1 Bk((ti)i∈Sk
),

∑M
k=1 Bk((t

′
j)j∈Sk

)). This completes the proof.

A.4. Proof of Proposition 1

The consistency of ŝx(τ̂x) follows from the uniform consistency of ŝx(τ) on

[ε, 1− ε], i.e., ‖ŝx − sx‖[ε,1−ε]
P→ 0, which is established in Steps 1 and 2 in the

proof of Theorem 1, together with the consistency of τ̂x. Next, Σ̂ is trivially
consistent, and Ĵ(τ) is uniformly consistent on [ε, 1 − ε] by Section A.4 in [2].
Together with the consistency of τ̂x and continuity of the map τ �→ J(τ), we

obtain the consistency of σ̂2
x. Finally, observe that Δ3

hQ̂x(τ) = Δ2
hŝx(τ), and

ŝx(τ) = ΔhQx(τ)+OP((nh)
−1/2

√
logn) uniformly in τ ∈ [2ε/3, 1−2ε/3] by (14),

so that Δ3
hQ̂x(τ) = Δ3

hQx(τ)+OP((nh
5)−1/2

√
logn) uniformly in τ ∈ [ε, 1− ε].
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The consistency of v̂x then follows from the condition that nh5/ logn → ∞,
continuity of the third derivative of Qx(τ) at τ = τx, and the consistency of τ̂x.
This completes the proof.

Appendix B: Convergence of maximum of Chernoff random
variables

In this appendix, we consider weak convergence of the maximum of independent
Chernoff random variables. Let Z1, . . . , Zn be independent Chernoff random
variables, and let Z(n) = max1�i�n Zi and |Z|(n) = max1�i�n |Zi|. Chernoff’s
distribution is known to be absolutely continuous, and denote its density by fZ .
In addition, let FZ denote the distribution function of Chernoff’s distribution.
An explicit form of fZ is unknown, but by Corollary 3.4 of [19], the tail behavior
of fZ is given by

fZ(z) ∼ 2λ|z|e− 2
3 |z|

3−κ|z|, |z| → ∞, (32)

where λ and κ are positive constants whose explicit values can be found in [19].
The precise meaning of (32) is that the ratio of the left and right hand sides
approaches one as |z| → ∞. This implies that

1− FZ(z) ∼
λ

z
e−

2
3 z

3−κz, z → ∞. (33)

Cf. Lemma 2.1 in [22]. The following lemma shows that both Z(n) and |Z|(n)
converge in distribution to the Gumbel distribution as n → ∞ after normaliza-
tion. This lemma gives a supporting result for Remark 8, but is of independent
interest. Recall that the (standard) Gumbel distribution is a distribution on R

with distribution function Λ(z) = e−e−z

.

Lemma 5. Let

an = 3

(
2

3

)1/3

(log n)2/3,

bn =

(
3

2
logn

)1/3

− 1

an

[
κ

(
3

2
log n

)1/3

+
1

3
log log n+

1

3
log

3

2
− log λ

]
,

and define b′n by replacing λ by 2λ in the definition of bn. Then we have for any
z ∈ R,

lim
n→∞

P(an(Z(n)−bn) � z) = e−e−z

and lim
n→∞

P(an(|Z|(n)−b′n) � z) = e−e−z

.

We note that [22] already point out that Chernoff’s distribution is in the
domain of attraction of the Gumbel distribution (see [22] p.219), but they do
not derive explicit norming constants.

The proof follows from the tail behavior of the Chernoff survival function
(33) combined with the following lemma.



3156 H. Ota et al.

Lemma 6. Let X1, X2, · · · ∼ F i.i.d. for some distribution function F , and let
X(n) = max1�i�n Xi. For a given constant τ � 0 and a given sequence un, we
have

n(1− F (un)) → τ ⇔ P(X(n) � un) → e−τ .

Proof of Lemma 6. See [33] Theorem 1.5.1.

Proof of Lemma 5. We first consider Z(n). Fix any z ∈ R and define un by
n(1− FZ(un)) = e−z. Then by the preceding lemma we have limn→∞ P(Z(n) �
un) = e−e−z

. We will find an explicit value of un. By (33), un satisfies

nλ

un
ez−

2
3u

3
n−κzun → 1.

Taking logarithms of both sides, we have

logn+ log λ+ z − 2

3
u3
n − κun − log un = o(1). (34)

Among the last three terms on the left hand side of (34), 2
3u

3
n is the dominant

term, so that
2
3u

3
n

logn
→ 1. (35)

Taking logarithms of both sides, we also have

log un =
1

3

[
log log n+ log

3

2

]
+ o(1).

Plugging this into (34), we have

2

3
u3
n = logn+ z − κun − 1

3
log logn− 1

3
log

3

2
+ log λ+ o(1).

In addition, (35) also implies that

un =

(
3

2
logn

)1/3

+ δn with δn = o((log n)1/3).

Plugging this into the preceding equation, using the identity (a + b)3 = a3 +
3a2b + 3ab2 + b3, and comparing the orders, we see that δn = o(1). Conclude
that

u3
n =

(
3

2
log n

)[
1 +

z − κ
(
3
2 logn

)1/3 − 1
3 log logn− 1

3 log
3
2 + log λ

logn

+ o((log n)−1)

]
.
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Using (1 + x)1/3 = 1 + x/3 +O(x2) as x → 0, we have

un =

(
3

2
logn

)1/3
[
1 +

z − κ
(
3
2 logn

)1/3 − 1
3 log logn− 1

3 log
3
2 + log λ

3 logn

+ o((logn)−1)

]
= a−1

n z + bn + o(a−1
n ).

Therefore, we have P(Z(n) � un) = P(an(Z(n) − bn) � z + o(1)), which leads to
the desired result for Z(n).

The proof for |Z|(n) is completely analogous, since by the symmetry of Cher-
noff’s distribution, the distribution function GZ of |Z| is GZ(z) = 2FZ(z) − 1,
so that 1−GZ(z) = 2(1− FZ(z)).
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[22] G. Hooghiemstra and H.P. Lopuhaä. An extremal limit theorem for the
argmax process of Brownian motion minus a parabolic drift. Extreme,
1:215–240, 1998. MR1814624

[23] J.L. Horowitz. A smoothed maximum score estimator for the binary re-
sponse model. Econometrica, 60:505–531, 1992. MR1162997

[24] H. Kaya, P. Tufekci, and S.F. Gurgen. Local and global learning methods
for predicting power of a combined gas & steam turbine. Proceedings of the
International Conference on Emerging Trends in Computer and Electronics
Engineering ICETCEE 2012, pages 13–18, 2012.

[25] G.C. Kemp and J. Santos-Silva. Regression towards the mode. Journal of
Econometrics, 170(1):92–101, 2012. MR2955942

[26] S. Khardani and A.F. Yao. Non linear parametric mode regression. Com-
munications in Statistics-Theory and Methods, 46(6):3006–3024, 2017.
MR3579782

[27] J. Kim and D. Pollard. Cube root asymptotics. Annals of Statistics,
18(1):191–219, 1990. MR1041391

[28] R. Koenker. Quantile Regression. Cambridge University Press, 2005.
MR2268657

[29] R. Koenker and G. Bassett. Regression quantiles. Econometrica, 46(1):33–

http://www.ams.org/mathscinet-getitem?mr=1932358
http://www.ams.org/mathscinet-getitem?mr=3015036
http://www.ams.org/mathscinet-getitem?mr=3881208
http://www.ams.org/mathscinet-getitem?mr=2242274
http://www.ams.org/mathscinet-getitem?mr=0518685
http://www.ams.org/mathscinet-getitem?mr=1810919
http://www.ams.org/mathscinet-getitem?mr=0093415
http://www.ams.org/mathscinet-getitem?mr=0981568
http://www.ams.org/mathscinet-getitem?mr=1939706
http://www.ams.org/mathscinet-getitem?mr=3614201
http://www.ams.org/mathscinet-getitem?mr=1814624
http://www.ams.org/mathscinet-getitem?mr=1162997
http://www.ams.org/mathscinet-getitem?mr=2955942
http://www.ams.org/mathscinet-getitem?mr=3579782
http://www.ams.org/mathscinet-getitem?mr=1041391
http://www.ams.org/mathscinet-getitem?mr=2268657


QR approach to modal regression 3159

50, 1978. MR0474644
[30] R. Koenker and J.A.F. Machado. Goodness of fit and related inference

processes for quantile regression. Journal of the American Statistical Asso-
ciation, 94(448):1296–1310, 1999. MR1731491

[31] M. Kosorok. Bootstrapping the Grenander estimator. In N. Balakrishnan,
E. Pena, and M. Silvapulle, editors, Beyond Parametrics in Interdisci-
plinary Research: Festschrift in Honour of Professor Pranab K. Sen, pages
282–292. IMS, 2008. MR2462212

[32] J.M. Krief. Semi-linear mode regression. Econometrics Journal, 20(2):149–
167, 2017. MR3685645

[33] M.R. Leadbetter, G. Lindgren, and H. Rootzén. Extremes and Related
Properties of Random Sequences and Processes. Springer, 1983. MR0691492

[34] M.-J. Lee. Mode regression. Journal of Econometrics, 42(3):337–349, 1989.
MR1040748

[35] M.-J. Lee. Quadratic mode regression. Journal of Econometrics, 57(1-3):1–
19, 1993. MR1237497

[36] C. Léger and B. MacGibbon. On the bootstrap in cube root asymptotics.
Canadian Journal of Statistics, 34(1):29–44, 2006. MR2267708

[37] J. Lei, M. G’Sell, A. Rinaldo, R. Tibshirani, and L. Wasserman.
Distribution-free predictive inference for regression. Journal of the Ameri-
can Statistical Association, 113:1094–1111, 2018. MR3862342

[38] S. Ma and X. He. Inference for single-index quantile regression models with
profile optimization. Annals of Statistics, 44:1234–1268, 2016. MR3485959

[39] C.F. Manski. Maximal score estimation of the stochastic utility model of
choice. Journal of Econometrics, 27(3):205–228, 1975. MR0436905

[40] E. Parzen. On estimation of a probability density function and mode. An-
nals of Mathematical Statistics, 33(3):1065–1076, 1962. MR0143282

[41] D.N. Politis and J.P. Romano. Large sample confidence regions based on
subsamples under minimal conditions. Annals of Statistics, 22(4):2031–
2050, 1994. MR1329181

[42] D.N. Politis, J.P. Romano, and M. Wolf. Subsampling. Springer, 1999.
MR1707286

[43] J.L. Powell. Censored regression quantiles. Journal of Econometrics,
32(1):143–155, 1986. MR0853049

[44] J.P. Romano. On weak convergence and optimality of kernel density esti-
mates of the mode. Annals of Statistics, 16(2):629–647, 1988. MR0947566

[45] T.W. Sager and R.A. Thisted. Maximum likelihood estimation of isotonic
modal regression. Annals of Statistics, 10(3):690–707, 1982. MR0663426

[46] H. Sasaki, Y. Ono, and M. Sugiyama. Modal regression via direct log-
density derivative estimation. In International Conference on Neural In-
formation Processing, pages 108–116, 2016. MR3867784

[47] B. Sen, M. Banerjee, and M. Woodroofe. Inconsistency of bootstrap:
The Grenander estimator. Annals of Statistics, 38(4):1953–1977, 2010.
MR2676880

[48] M.H. Seo and T. Otsu. Local M-estimation with discontinuous criterion for
dependent and limited observations. Annals of Statistics, 46(1):344–369,

http://www.ams.org/mathscinet-getitem?mr=0474644
http://www.ams.org/mathscinet-getitem?mr=1731491
http://www.ams.org/mathscinet-getitem?mr=2462212
http://www.ams.org/mathscinet-getitem?mr=3685645
http://www.ams.org/mathscinet-getitem?mr=0691492
http://www.ams.org/mathscinet-getitem?mr=1040748
http://www.ams.org/mathscinet-getitem?mr=1237497
http://www.ams.org/mathscinet-getitem?mr=2267708
http://www.ams.org/mathscinet-getitem?mr=3862342
http://www.ams.org/mathscinet-getitem?mr=3485959
http://www.ams.org/mathscinet-getitem?mr=0436905
http://www.ams.org/mathscinet-getitem?mr=0143282
http://www.ams.org/mathscinet-getitem?mr=1329181
http://www.ams.org/mathscinet-getitem?mr=1707286
http://www.ams.org/mathscinet-getitem?mr=0853049
http://www.ams.org/mathscinet-getitem?mr=0947566
http://www.ams.org/mathscinet-getitem?mr=0663426
http://www.ams.org/mathscinet-getitem?mr=3867784
http://www.ams.org/mathscinet-getitem?mr=2676880


3160 H. Ota et al.

2018. MR3766955
[49] P. Tufekci. Prediction of full load electrical power output of a base load op-

erated combined cycle power plant using machine learning methods. Inter-
national Journal of Electrical Power & Energy Systems, 60:126–140, 2014.

[50] A.W. van der Vaart. Asymptotic Statistics. Cambridge University Press,
2000. MR1652247

[51] A.W. van der Vaart and J.A. Wellner. Weak Convergence and Empirical
Processes: With Applications to Statistics. Springer, 1996. MR1385671

[52] T.Z. Wu, K. Yu, and Y. Yu. Singe-index quantile regression. Journal of
Multivariate Analysis, 101:1607–1621, 2010. MR2610735

[53] W. Yao and L. Li. New regression model: modal linear regression. Scandi-
navian Journal of Statistics, 41(3):656–671, 2014. MR3249422

[54] W. Yao, B.G. Lindsay, and R. Li. Local modal regression. Journal of Non-
parametric Statistics, 24(3):647–663, 2012. MR2968894

[55] H. Zhou and X. Huang. Nonparametric modal regression in the presence of
measurement error. Electronic Journal of Statistics, 10(2):3579–3620, 2016.
MR3575565

http://www.ams.org/mathscinet-getitem?mr=3766955
http://www.ams.org/mathscinet-getitem?mr=1652247
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=2610735
http://www.ams.org/mathscinet-getitem?mr=3249422
http://www.ams.org/mathscinet-getitem?mr=2968894
http://www.ams.org/mathscinet-getitem?mr=3575565

	Introduction
	Setup and estimator
	Limiting distributions
	Limiting distributions
	Inference
	Analytical confidence intervals
	Subsampling


	Numerical results
	Bandwidth selection
	Simulation results
	Comparison of RMSEs
	Coverage probabilities of confidence intervals

	Combined cycle power plant data

	Discussion
	Proofs
	Preliminaries
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Proposition 1

	Convergence of maximum of Chernoff random variables
	Acknowledgments
	References

