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Abstract: The purpose of this paper is twofold. First, introduce a new
adaptive procedure to select the optimal – up to a logarithmic factor –
cutoff parameter for Fourier density estimators. Two inverse problems are
considered: deconvolution and decompounding. Deconvolution is a typical
inverse problem, for which our procedure is numerically simple and stable,
a comparison is performed with penalized techniques. Moreover, the proce-
dure and the proof of oracle bounds do not rely on any knowledge on the
noise term. Second, for decompounding, i.e. non-parametric estimation of
the jump density of a compound Poisson process from the observation of
n increments at timestep Δ, build an unified adaptive estimator which is
optimal – up to a logarithmic factor – regardless the behavior of Δ.
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1. Introduction and motivations

1.1. Adaptive procedure

In the literature on non-parametric statistics a lot of space is dedicated to adap-
tive procedures. Adaptivity may be understood as minimax-adaptivity, i.e. op-
timal rates of convergence are attained simultaneously over a collection of class
of densities, such as Sobolev-balls. Adaptivity may also refer to proving non-
asymptotic oracle bounds, i.e. having a procedure that mimics, up to a constant,
the estimator that minimizes a given loss function. It is this last notion of adap-
tivity we adopt here.
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Hereafter, we propose an approach that is relevant for inverse problems when
the estimator relies on Fourier techniques. This method is inspired from the one
introduced in Duval and Kappus [20] and is generalized to deconvolution and
decompounding inverse problems. We present this procedure below in a general
context, even though in this article we study oracle bounds for two specific
inverse problems; deconvolution and decompounding.

Heuristic of the adaptive procedure
Notations. We first introduce some notations which are used throughout the

rest of the text. Given a random variable Z, ϕZ(u) = E[eiuZ ] denotes the char-
acteristic function of Z. For f ∈ L1(R), Ff(u) =

∫
eiuxf(x)dx is understood to

be the Fourier transform of f . Moreover, we denote by ‖ ·‖ the L2-norm of func-
tions, ‖f‖2 :=

∫
|f(x)|2dx. Given some function f ∈ L1(R)∩L2(R), we denote by

fm the uniquely defined function with Fourier transform Ffm = (Ff)1[−m,m].
General statistical setting. Consider n i.i.d. realizations Yj , 1 ≤ j ≤ n, of a

random variable Y with Lebesgue-density fY . Suppose Y is related to a variable
X, with Lebesgue-density f through a known transformation T relating their
characteristic functions: ϕY = T(ϕX), where T admits a continuous inverse. To
estimate the density f of X from the (Yj), we build an estimator ϕ̂X,n of ϕX

as follows

ϕ̂X,n(u) = T−1
(
ϕ̂Y,n

)
(u) where ϕ̂Y,n(u) :=

1

n

n∑
j=1

eiuYj , u ∈ R.

Cutting off in the spectral domain and applying Fourier inversion gives an esti-
mator of f

f̂m(x) =
1

2π

∫ m

−m

e−iuxϕ̂X,n(u)du, ∀m > 0, x ∈ R.

Its performance is measured with a L2-loss, the choice of the cutoff parameter
m is crucial. The optimal cutoff m� which minimizes the L2-risk is such that

E
[
‖f̂m� − f‖2

]
= inf

m≥0

{ 1

2π

∫
[−m,m]c

|ϕX(u)|2du+
1

2π

m∫
−m

E
[
|ϕ̂X,n(u)− ϕX(u)|2

]
du

}
.

(1.1)

This optimal value m∗ usually depends on the unknown regularity of f and
is hence not feasible. An adaptive optimal procedure consistst in selecting a
random cutoff m̂n, calculated from the observations, for which the L2-risk is

close to the one of f̂m∗ , meaning that one can establish an oracle bound

E
[
‖f̂m̂n−f‖2

]
≤ C inf

m≥0

{ 1

2π

∫
[−m,m]c

|ϕX(u)|2du+ 1

2π

m∫
−m

E
[
|ϕ̂X,n(u)−ϕX(u)|2

]
du

}
+rn,

for a positive constant C and rn a negligible remainder. Then, f̂m̂n
is called

adaptive rate optimal estimator of f .
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Heuristic of the adaptive procedure. Suppose there exists a function FϕY
,

possibly depending on T and ϕY , such that for some positive constant C, it
holds

E
[
|ϕ̂X,n(u)− ϕX(u)|2

]
≤ C|FϕY

(u)|2E
[
|ϕ̂Y,n(u)− ϕY (u)|2

]
,

which is the case e.g. if T−1 is Fréchet differentiable: the quantity FϕY
=

(T−1)′(ϕY ) is explicit in the deconvolution case. Then, it follows

E
[
‖f̂m − f‖2

]
≤ 1

2π

∫
[−m,m]c

|ϕX(u)|2du+
C

n

m∫
−m

∣∣FϕY
(u)

∣∣2du, m ≥ 0. (1.2)

The second term in (1.2) is a majorant of the integrated variance of the estima-
tor. If the upper bound (1.2) is optimal, meaning that it has the same order as
(1.1), asymptotically we get m� � mn, where mn is such that the bias-variance
compromise in the right hand side of (1.2) is realized. To compute mn, we
differentiate in m the right hand side of (1.2) giving that mn satisfies

|ϕX(mn)|2 =
C

n

∣∣FϕY
(mn)

∣∣2 ⇐⇒ |T−1(ϕY )(mn)|2 =
C

n

∣∣FϕY
(mn)

∣∣2. (1.3)

Clearly, (1.3) has an empirical version, we select m̂n accordingly, let

m̂n ∈
{
m ∈ [0, n],

∣∣∣T−1(ϕ̂Y,n)(m)

Fϕ̂Y,n
(m)

∣∣∣ = κ√
n

}
, (1.4)

for some κ > 0, possibly depending on n. As, the solution of (1.4) may not be
unique we consider one element in this ensemble, such as its maximum.

Relation to other works There exist numerous techniques for adaptivity, we
mention some of them together with a non exhaustive list of references. Loosely
speaking there exist three main approaches; thresholding techniques for wavelet
density estimators (see e.g. [16, 17, 36]), penalized estimators (see e.g. [3, 1,
31, 29]) and pair wise comparison of estimators such as the Goldenshluger and
Lepskii’s procedure (see e.g. [23, 24, 27]). These techniques have been developed
for different inverse problems and in anisotropic multidimensional settings.

All the afore mentioned methods rely on the choice of a parameter to be
calibrated by the practitioner, such as κ in (1.4). Numerical performances of
the selected estimator are sensitive to this choice and many studies have been
devoted to the calibration of this parameter (see e.g. Baudry et al. [2] and Lacour
et al. [27]). An advantage of the procedure presented here is that, in the cases
considered, for all the values of κ such that the oracle bound bound is valid, the
corresponding estimator is reasonable.

Many adaptive procedures such as penalization methods minimizes an em-
pirical version of the upper bound (1.2), while the spirit of (1.4) consists in
finding the zeroes of an empirical version of the derivative in m of the upper
bound (1.2). Roughly speaking, the difference between our procedure and a
penalization procedure is the same as the difference between Z-estimators and
M-estimators.
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Adaptation to the deconvolution problem We consider the deconvolution
problem as it is an archetype inverse problem that has been extensively studied
in the literature (see the references in Section 2). Moreover, it is a building brick
of many inverse problems. One observes n i.i.d. realizations of Yi = Xi+εi, where
Xi and εi are independent, the density of ε1 is known and the density f of X1 is
the quantity of interest. Optimal rates of convergence depend on the asymptotic
decay of the characteristic function ϕε of the noise ε, usually ordinary smooth
cases – when ϕε decays polynomially to 0 – and super smooth cases – when ϕε

decays exponentially to 0.
In that first case our procedure presents many advantages. On a theoretical

point of view our procedure and the proof to establish oracle inequalities are the
same in both ordinary smooth and super smooth cases, whereas usual adaptive
procedures study these two cases separately. Moreover, the proof to get the ora-
cle bound is rather elegant and relies on a fine cutting of the quadratic risk: the
most powerful result involved is an Hoeffding concentration inequality. Usually,
tools used to establish oracle inequalities rely on more demanding concentration
results. On a numerical point of view, our procedure is simple and for all the
possible choices of the hyper parameter κ in (1.4) predicted by the theory, the
associated estimators are relevant. We conduct an extensive simulation study
which illustrates the stability of the procedure. We compare our results with a
penalization procedure described in Comte and Lacour [12], which are known
to be rapid and efficient in deconvolution contexts.

1.2. A unified estimator for decompounding

Consider a compound Poisson process Z,

Zt =

Nt∑
j=1

Xj , t ≥ 0,

where N is a Poisson process with intensity λ independent of the i.i.d. ran-
dom variables (Xj)j∈N with common density f . In the decompounding prob-
lem, one discretely observes one trajectory of a Z at sampling rate Δ > 0 over
[0, T ]: (ZiΔ, i = 1, . . . , n), where n = �T/Δ
. The aim is to estimate f from
these observations. This model is central in many applied fields e.g. statistical
physics, biology, financial series or mathematical insurance as it is well adapted
to study phenomena where random independent events occur at random times.
For instance, in insurance failure theory these events can model the claims that
insurance companies have to pay to the subscribers, it is the Cramér-Lundberg
model (see Embrechts et al. [21]).

In the literature, cases Δ → 0 (high frequency observations) or Δ fixed
(low frequency observations, often Δ = 1) have received a lot of attention
(see the references given in Section 3) and are usually considered separately.
Here we propose a unified strategy which is valid regardless the behavior of
Δ := Δn → Δ0 ∈ [0,∞). The dependency in Δ0 of the upper bound is made
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explicit and shows a deterioration as Δ0 increases. Those results complement
the knowledge on decompounding. Moreover, the estimator remains consistant
in cases where Δ grows to infinity slowly. This latter result is not straight-
forward, if the jump density is centered and has unit variance, it holds that
ZΔ =

√
λΔζΔ, where ζΔ → N (0, 1) as Δ → ∞. Therefore, one would expect

that in these regimes non-parametric estimation of f is impossible as each in-
crement is close, in law, to a parametric Gaussian variable. When Δ goes too
rapidly to infinity, namely as a power of nΔn, Duval [19] shows that consistent
non-parametric estimation of f is impossible, regardless of the choice of the
loss function. Having a consistant estimator for f when Δ gets large is inter-
esting, usually a Gaussian approximation is made to simplify computations, at
the expense of loosing the specificities of the jump density (see e.g. Cont and
de Larrard [15]).

Finally, we show that our adaptive procedure can be extended to this case
and leads to an adaptive and rate optimal estimator of the jump density f , up
to a logarithmic loss, for all sampling rates such that Δn < 1/4 log(nΔn) as
n → ∞, this condition is fulfilled for fixed or vanishing Δ.

Organisation of the article In Section 2 we establish and prouve an oracle
inequality based on our procedure for the deconvolution problem. We illustrate
numerically its performances and compare it with a penalized adaptive optimal
estimator given in [12]. Section 3 is dedicated to the decompounding problem.
Finally, Section 4 gathers the proofs of the results of Section 3.

2. Deconvolution

2.1. Statistical setting

Suppose that X1, . . . , Xn are i.i.d. with density f and are accessible through the
noisy observations

Yj = Xj + εj , j = 1, . . . , n.

Assume that the (εj) are i.i.d., independent of the (Xj) and such that ∀u ∈
R, ϕε(u) �= 0. Suppose that the distribution of ε1 is known. This last assumption
can be softened, the procedure allows a straightforward generalization to the
case where the distribution of ε1 can be estimated from an additional sample,
see Neumann [32]. Then, the mapping T defined in Section 1.1 is given by
T : ϕ �→ ϕϕε, which is a continuous mapping of inverse T−1 : ϕ �→ ϕ/ϕε and
(T−1)′ is equal to 1/ϕε.

A deconvolution estimator of the characteristic function ϕX of X is given by

ϕ̂Y,n(u)

ϕε(u)
, with ϕ̂Y,n(u) :=

1

n

n∑
j=1

eiuYj , u ∈ R,

denoting the empirical characteristic function. Since ϕX is a characteristic func-
tion, its absolute value is bounded by 1 and the estimator can hence be improved
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by using the definition

ϕ̂X,n(u) :=
ϕ̂Y,n(u)

ϕε(u)

1

max{1,
∣∣ ϕ̂Y,n(u)

ϕε(u)

∣∣} , u ∈ R. (2.1)

Cutting off in the spectral domain and applying Fourier inversion gives the
estimator

f̂m(x) =
1

2π

∫ m

−m

e−iuxϕ̂X,n(u)du, x ∈ R. (2.2)

This estimator and adaptation techniques have been extensively studied in the
literature, including in more general settings than above. Optimal rates of con-
vergence and adaptive procedures are well known in dimension d = 1 (see e.g.
[8, 37, 22, 5, 6, 7, 34, 14] for L2-loss functions or [30] for the L∞-loss). Results
have also been established for multivariate anisotropic densities (see e.g. [13] for
L2-loss functions or [35, 28] for Lp-loss functions, p ∈ [1,∞]).

2.2. Risk bounds and adaptive bandwidth selection

The following risk bound is well known in the literature on deconvolution.

E
[
‖f̂m − f‖2

]
≤ 1

2π

( ∫
[−m,m]c

|ϕX(u)|2du+
1

n

m∫
−m

du

|ϕε(u)|2
)
. (2.3)

This upper bound is the sum of a bias term that decreases withm and a variance
term, increasing with m. We select mn, the optimal cutoff parameter, such that
the upper bound (2.3) is minimal

mn ∈ arginf
m≥0

{ ∫
[−m,m]c

|ϕX(u)|2du+
1

n

m∫
−m

du

|ϕε(u)|2
}
.

Differentiating the right hand side with respect to m, we find that the following
holds for the optimal cutoff parameter:

|ϕX(mn)|2 =
1

n|ϕε(mn)|2
⇐⇒ |ϕX(mn)ϕε(mn)| = |ϕY (mn)| =

1√
n
. (2.4)

This equality has an empirical version and we select m̂n accordingly. In order
to ensure adaptivity the following heuristic consideration is helpful. When the
characteristic function is replaced by its empirical version, the standard devia-
tion is of the order n−1/2. Consequently, estimating ϕY by ϕ̂Y,n makes sense for
|ϕY | ≥ n−1/2. If |ϕY | < n−1/2, the noise is dominant so the estimator can be
set to zero. This inspires to re-define the estimator of ϕY as follows:

ϕ̃Y,n(u) = ϕ̂Y,n(u)1{|ϕ̂Y,n(u)|≥κnn−1/2}, u ∈ R, (2.5)
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with the threshold value κn := (1 + κ
√
log n). The constant κ > 0 is specified

below and the additional log term is added to ensure good concentration proper-
ties on the event considered. Then, the estimator of f given in (2.2) is modified
using (2.5) instead of (2.1). We obtain

ϕ̃X,n(u) :=
ϕ̃Y,n(u)

ϕε(u)

1

max{1,
∣∣ ϕ̃Y,n(u)

ϕε(u)

∣∣} , u ∈ R

and

f̃m(x) =
1

2π

∫ m

−m

e−iuxϕ̃X,n(u)du, x ∈ R.

We define the empirical cutoff parameter m̂n as follows. Since ϕ̂Y,n may show
an oscillatory behavior and the solution of (2.4) may not be unique, we consider

m̂n = max
{
m > 0 : |ϕ̂Y,n(m)| = κnn

−1/2
}
∧ nα, (2.6)

for some α ∈ (0, 1]. It is worth emphasizing that the calculation of m̂n does only
rely on the empirical characteristic function ϕ̂Y,n which can be estimated from
the direct observations, and does not require the evaluation of penalty terms
depending on the (perhaps unknown) ϕε. Moreover, this procedure is the same
in the super smooth case as well as in the ordinary smooth case. In (2.6) if we
set α = 1, m̂n is thresholded to the value n, which is natural as if m ≥ n, the
variance term in (2.3) no longer vanishes. It is possible to set 0 < α < 1, if one
has additional knowledge on the regularity of f (see the discussion below).

Theorem 2.1. Let m̂n defined as in (2.6), with κ >
√
2 and α ∈ (0, 1]. Then,

there exist a positive constant C1 depending only on the choice of κ and a uni-
versal positive constants C2 such that

E[‖f−f̃m̂n
‖2]≤C1 inf

m∈[0,nα]

{ ∫
[−m,m]c

|ϕX(u)|2du+ log n

n

∫ m

−m

du

|ϕε(u)|2
}
+C2n

α−κ2

2 .

Proof of Theorem 2.1. Step 1: An upper bound for f̃m. Let m > 0, we first

establish an upper bound for the estimator
≈
fm of f defined as f̃m but whose

characteristic function is given by (2.5). Parseval equality and the definition
(2.5) of ϕ̃Y,n give

E[‖
≈
fm − f‖2] ≤ ‖fm − f‖2 + 1

2π

∫ m

−m

E
[
|ϕ̃Y,n(u)− ϕY (u)|2

]
|ϕε(u)|2

du,

where E
[
|ϕ̃Y,n(u)− ϕY (u)|2

]
equals

E
[
|ϕ̂Y,n(u)− ϕY (u)|21|ϕ̂Y,n(u)|≥ κn√

n

]
+ |ϕY (u)|2P

(
|ϕ̂Y,n(u)| <

κn√
n

)
.
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The first term in the right hand side is bounded by 1
n . Recall that κn =

1 + κ
√
log n, we decompose the second term on the set A = {u, |ϕY (u)| <

1+2κ
√
logn√

n
} this leads to

|ϕY (u)|2P
(
|ϕ̂Y,n(u)| <

κn√
n

)
≤ (1 + 2κ

√
logn)2

n
+ P

(
|ϕ̂Y,n(u)− ϕY (u)| ≥ κ

√
log n√
n

)

≤ (1 + 2κ
√
logn)2

n
+ n−κ2

2 ≤ 1 + (1 + 2κ
√
log n)2

n
,

where we used the Hoeffding inequality and κ >
√
2. Finally, gathering all the

above inequalities, together with the fact that E[‖f̃m−f‖2] ≤ E[‖
≈
fm−f‖2], we

get the following upper bound for f̃m, 0 < m ≤ n,

E[‖f̃m − f‖2] ≤ ‖fm − f‖2 + 2 + (1 + 2κ
√
logn)2

2πn

∫ m

−m

du

|ϕε(u)|2
. (2.7)

Step 2: Adaptation. It holds using the Parseval equality, that

E[‖f̃m̂n
− f‖2] = E

[ ∫
u∈[−m̂n,m̂n]c

|ϕX(u)|2du
]
+E

[ ∫
u∈[−m̂n,m̂n]

|ϕ̃X,n(u)− ϕX(u)|2du
]

:= T1 + T2.

Let 0 < m ≤ n be fixed. First, consider the event E = {m̂n < m}, on
this event we have the straightforward upper bound T2 ≤

∫
[−m,m]

|ϕ̃X,n(u) −
ϕX(u)|2du, we recover a usual variance term. Now we control the surplus in the

bias of the estimator f̃m̂n
decomposing T1 as

T1 =

∫
[−m,m]c

|ϕX(u)|2du+ E

[ ∫
|u|∈[m̂n,m]

|ϕX(u)|2du
]
.

It is the sum of a usual bias term and an additional term controled using the
inequality

|ϕX |2 ≤ 2
|ϕ̂Y,n|2
|ϕε|2

+ 2
|ϕY − ϕ̂Y,n|2

|ϕε|2
.

Along with the definition of m̂n, it gives

E

[
1E

∫
|u|∈[m̂n,m]

|ϕX(u)|2du
]
≤ 2E

[
1E

∫
|u|∈[m̂n,m]

κ2
nn

−1

|ϕε(u)|2
du

]
+

m∫
−m

E[|ϕ̂Y,n(u)− ϕY (u)|2]
|ϕε(u)|2

du

≤
∫ m

−m

2(κ2
n + 1)n−1

|ϕε(u)|2
du.

Then, the definition of κn and (2.7) imply that, on the event E , for a positive
constant C depending only on the choice of κ,

E[‖f̃m̂n
− f‖21E ] ≤ ‖fm − f‖2 + C

logn

n

∫ m

−m

du.

|ϕε(u)|2
.
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Second, on the complement set Ec, we immediately have T1≤
∫
[−m,m]c

|ϕX(u)|2du.
It remains to control the surplus in the variance of f̃m̂n

using the decomposition

T2 =

∫
u∈[−m,m]

|ϕ̃X,n(u)− ϕX(u)|2du+ E

[ ∫
|u|∈[m,m̂n]

|ϕ̃X,n(u)− ϕX(u)|2du
]
.

By the definition of m̂n, it holds

E

[ ∫
|u|∈[m,m̂n]

|ϕ̃X,n(u)− ϕX(u)|21{|ϕY (u)|>n−1/2}du1Ec

]

≤
∫

|u|∈[m,nα]

E[|ϕ̃Y,n(u)− ϕY (u)|2]
|ϕε(u)|2

1{|ϕY (u)|>n−1/2}du.

On the event {|ϕY (u)| > n−1/2}, we derive that

E[|ϕ̃Y,n(u)− ϕY (u)|2] ≤ |ϕY (u)|2 + E[|ϕ̂Y,n(u)− ϕY (u)|2]

≤ |ϕY (u)|2 +
1

n
≤ 2|ϕY (u)|2.

Consequently, we get

E

[ ∫
|u|∈[m,m̂n]

|ϕ̃X,n(u)− ϕX(u)|2 1{|ϕY (u)|>n−1/2}du1Ec

]
≤ 2

∫
[−m,m]c

|ϕX(u)|2du.

Next, using that |ϕ̃X,n(u)| ≤ 1, we derive that

E

[ ∫
|u|∈[m,m̂n]

|ϕ̃X,n(u)− ϕX(u)|21{|ϕY (u)|≤n−1/2}du1Ec

]

≤
∫

|u|∈[m,nα]

|ϕX(u)|2du+ 4

∫
|u|∈[m,nα]

P(|ϕ̂Y,n(u)| ≥ κnn
−1/2)1{|ϕY (u)|≤n−1/2}du

≤
∫

|u|∈[m,nα]

|ϕX(u)|2du+ 4

∫
|u|∈[m,nα]

P(|ϕ̂Y,n(u)− ϕY (u)| > κ(log n/n)1/2)du

≤
∫

u∈[m,m]c

|ϕX(u)|2du+ 8nα−κ2/2.

The last inequality is a direct consequence of the Hoeffding inequality. Putting
the above together, we have shown that for universal positive constants C1 and
C3 and a constant C2 depending only on κ, for all m ≥ 0,

E[‖f̃m̂n
− f‖2] ≤ C1‖f − fm‖2 + C2

log n

n

∫ m

−m

du

|ϕε(u)|2
+ C3n

α−κ2/2.

Taking the infimum over m completes the proof.
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Discussion Theorem 2.1 is non asymptotic and ensures that the estimator
f̃m̂n

automatically reaches the bias-variance compromise, up to a logarithmic
factor and the multiplicative constant C1.

Comments on the adaptive procedure. Similarly to the grouped data setting
(see [20]), the computation of the adaptive cutoff (2.6) involves only the set{
|ϕ̂Y,n(u)| = (1 + κ

√
logn)/

√
n
}
. Therefore, m̂n depends only on the empirical

characteristic function of the direct observations Y , and not the one of the errors
ϕε nor ϕX and the adaptive estimator and the proof of the oracle bound are
the same in the super smooth case and the ordinary smooth case. Generalizing
the result to the case where the distribution of the error is unknown but where
we have e.g. independent i.i.d. relalizations (ε1, . . . , εN ) of ε should therefore be
straightforward.

Comments on the proof. Proof of Theorem 2.1 is self contained and relies on
fine cuttings of the quadratic risk. The more involved tool used is an Hoeffding
inequality, whereas usual techniques involve stronger results such as Thalagrand
inequalities. The interest is that it should be robust to small changes of in the
modelisation.

Note that compared to [20], the proof relies on more direct arguments. More-
over, it permits to derive a stronger result, namely an oracle type inequality,
whereas in [20] we ensured that given some regularity class the optimal rate is
achieved on this class.

Choice of the hyper parameters in (2.6). Regarding the choice of α and κ
in (2.6), it is always possible to take α = 1. Note that the case α > 1 is not
interesting as, even in the direct problem ε = 0 a.s., if m > n the variance term
in (2.3) no longer tends to 0. Taking α < 1 is possible only if one has additional
information on the target density f . For instance, if one knowns that f is in a
Sobolev class of regularity β, for some β ≥ β0 > 0,

f ∈ S (β, L) :=
{
f ∈ F,

∫
R

(1 + |u|)2β |Ff(u)|2du ≤ L
}

(2.8)

where F is the set of densities with respect to the Lebesgue measure. Then,
it holds that ‖f − fm‖2 � m−2β and straightforward computations lead to

m� �
(
n/logn

) 1
2β+1 (regardless the the asymptotic decay of ϕε). Then, one

may restrict the interval for m̂n to [0, nα] where 1 > α > 1
2β0+1 . Second, the

choice of κ must be such that nα−κ2/2 is negligible, the choice κ > 2 always
works. The following numerical study illustrates that the procedure is stable in
the choice of κ.

2.3. Numerical results

Stability of the procedure To illustrate the performances of the method
and the influence of the parameter κ we proceed as follows. Fix α = 1, therefore
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Fig 1. Direct problem: Computations by M = 1000 Monte Carlo iterations of the L2-risks

(y axis) for different values of κ ≤ (
√
n− 1)

√
log(n)

−1
= 11.6 (x axis). Estimation of f

from n = 1000 i.i.d. direct realizations for different distributions: Uniform U [1, 3] (plain
line), Gaussian N (2, 1) (dots), Cauchy (stars), Gamma Γ(2, 1) (dotted line) and the mixture
0.7N (4, 1) + 0.3Γ(2, 1

2
) (triangles).

we do not assume any regularity on the considered examples. For different den-
sities f , namely, Uniform U [1, 3], Gaussian N (2, 1), Cauchy, Gamma Γ(2, 1) and
the mixture 0.7N (4, 1) + 0.3Γ(2, 12 ), and for different values of κ we compute

the adaptive L2 risks from M = 1000 Monte Carlo iterations. The results are
displayed on Figures 1, 2 and 3. We consider three different settings:

• The direct density estimation problem (Figure 1): we observe i.i.d. real-
izations of f . It is a particular deconvolution problem where ε = 0 a.s.

• Deconvolution problem with ordinary smooth noise (Figure 2): the error
ε is Gamma Γ(2, 1) i.e. |ϕε| decays as |u|−2 asymptotically.

• Deconvolution problem with super smooth noise (Figure 3): the error ε is
Cauchy i.e. |ϕε| decays as e−|u| asymptotically.

On Figures 1, 2 and 3 we observe that the adaptive rates are small and that
the procedure is stable in the choice of kappa. We observe, on these three cases,
that the value of κ should not be chosen too large but that for a wide range
of values the performances are similar. In practice, the value of n is fixed and
there is a natural boundary for κ, indeed observe that it is useless to increase κ
if (1+ κ logn)n−1/2 ≥ 1 as the selection rule (2.6) will be constant equal to nα.
Moreover, we expect that if (1+κ log n)n−1/2 gets too large, e.g. larger than 1/2
the performances of the adaptive estimator should deteriorate. This practical

consideration encourages to choose κ smaller than (
√
n− 1)

√
log(n)

−1
. In Fig-

ures 1, 2 and 3 it appears that for all the meaningful values of κ, e.g. smaller than
1
2 (
√
n− 1)

√
log(n)

−1
for instance, the performances of the adaptive estimator

are similar.

Comparison with a penalization procedure We compare the performanc-
es of our procedure for κ = 8, with a penalization procedure and with an oracle.
For the penalization procedure, we follow Comte and Lacour [12] and consider
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Fig 2. Deconvolution problem (ordinary smooth case): Computations by M = 1000 Monte

Carlo iterations of the L2-risks (y axis) for different values of κ ≤ (
√
n− 1)

√
log(n)

−1
= 32.6

(x axis). Estimation of f from n = 10000 i.i.d. direct of X + ε where ε has distribution
Γ(2, 1) (i.e. ϕε(u) = (1− iu)−2) and for different distributions for X: Uniform U [1, 3] (plain
line), Gaussian N (2, 1) (dots), Cauchy (stars), Gamma Γ(2, 1) (dotted line) and the mixture
0.7N (4, 1) + 0.3Γ(2, 1

2
) (triangles).

the adaptive estimator f̂m̃n
which is the estimator defined in (2.2) where

m̃n = argmin
m∈[0,Mn]

{−‖f̂m‖2 + pen(m)}, pen(m) = K
( Δ(m)

log(m+ 1)

)2Δ(m)

n
,

where Mn > 0, K > 0 and Δ(m) = 1
2π

∫
[−m,m]

|ϕε(u)|−2du, which is known

in our setting. The parameter Mn is chosen as the maximal integer such that

1 ≤ Δ(m)
n ≤ 2. For the parameter K it is calibrated by preliminary simulation

experiments. For calibration strategies (dimension jump and slope heuristics),
the reader is referred to Baudry et al. [2]. Here, we test a grid of values of the
K’s from the empirical error point of view, to make a relevant choice; the tests
are conducted on a set of densities which are different from the one considered
hereafter, to avoid overfitting. After these preliminary experiments, K is chosen
equal to 2 which is the same value as the one considered in Comte and Lacour
[12]. The standard errors are given in parenthesis. The running times for each
risks of the penalization procedure and our procedure are similar. However, one
should take into account that a preliminary calibration step seems obsolete in
our case. In deconvolution problems, the theoretical optimal K can be in some
cases far away from the practically optimal K and may vary with the sample
size explaining the nessecity of this calibration step (see e.g. Kappus and Mabon
[26] where the practical optimal value of K was much smaller than the value
predicted by the theory).

Second, an oracle “estimator” is computed f̂m� , which is the estimator defined
in (2.2) where m� corresponds to the following oracle bandwidth

m� = argmin
m>0

E[‖f − f̂m‖2].

This oracle can be explicitly evaluated when f is known. We denote these dif-
ferent risks by R, for the risk of our procedure, Rpen for the penalized estimator
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Fig 3. Deconvolution problem (super smooth case): Computations by M = 1000 Monte

Carlo iterations of the L2-risks (y axis) for different values of κ ≤ (
√
n− 1)

√
log(n)

−1
= 32.6

(x axis). Estimation of f from n = 10000 i.i.d. realizations of X + ε where ε has Cauchy
distribution (i.e. ϕε(u) = e−|u|) and for different distributions for X: Uniform U [1, 3] (plain
line), Gaussian N (2, 1) (dots), Cauchy (stars), Gamma Γ(2, 1) (dotted line) and the mixture
0.7N (4, 1)+0.3Γ(2, 1

2
) (triangles). For the uniform distribution, the rates where stable around

the value 0.5, they do not appear on the Figure not to spoil the readability of the other curves.

Table 1

Comparaison of the different adaptive estimators for the Gamma distribution.

fε

f Γ(2, 1)
n R m̂ Rpen m̃ Ror m�

Γ(2, 1)

500
4.31 × 10−2 1.05 1.97 × 10−2 0.80 0.74 × 10−2 0.66

(0.20) (0.07) (0.01) (0.05) (0.36 × 10−2) (0.14)

1000
1.74 × 10−2 0.98 1.70 × 10−2 0.94 0.59 × 10−2 0.72

(0.13) (0.04) (0.03) (0.03) (0.28 × 10−2) (0.14)

5000
0.40 × 10−2 0.85 1.30 × 10−2 1.32 0.31 × 10−2 0.91

(0.06) (0.01) (0.01) (0.05) (0.13 × 10−2) (0.15)

C

500
5.27 × 10−2 0.90 1.21 × 10−2 0.56 0.92 × 10−2 0.61

(0.23) (0.07) (0.69 × 10−2) (0.04) (0.48 × 10−2) (0.12)

1000
1.84 × 10−2 0.84 0.98 × 10−2 0.70 0.70 × 10−2 0.67

(0.13) (0.04) (0.61 × 10−2) (0.03) (0.34 × 10−2) (0.13)

5000
0.51 × 10−2 0.70 0.71 × 10−2 1.10 0.39 × 10−2 0.82

(0.07) (0.01) (0.01 × 10−2) (0.02) (0.17 × 10−2) (0.13)

and Ror for the oracle procedure. All these risks are computed on 1000 Monte
Carlo iterations. The results are gathered in Tables 1 for the Gamma density,
2 for the mixture and 3 for the Cauchy density where C stands for the Cauchy
distribution. In each case both an ordinary smooth and a super smooth errors
are considered.

Comparison of the different methods. Tables 1, 2 and 3 show that all
the procedures behave as expected; the L2-risks decreases with n and are smaller
in the case of an ordinary smooth deconvolution problem than in the case of a
super smooth deconvolution problem. The estimator with the smallest risk is the
oracle, and the penalized risks are most of the time smaller than our procedure
which is consistent with the fact that our procedure has a logarithmic loss and is
asymptotic. More precisely for small values of n our procedure does not perform
as well as the penalized method. But for larger values of n it is competitive. We
can exhibit particular cases where our procedure is more stable in the choice of
the hyper parameter than the penalized procedure, even on large sample sizes
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Table 2

Comparaison of the different adaptive estimators on a mixture.

fε

f 0.7N (4, 1) + 0.3Γ(4, 1
2 )

n R m̂ Rpen m̃ Ror m�

Γ(2, 1)

500
1.77 × 10−2 0.92 0.78 × 10−2 0.78 0.33 × 10−2 0.59

(0.13) (0.05) (0.65 × 10−2) (0.03) (0.17 × 10−2) (0.16)

1000
0.74 × 10−2 0.89 0.73 × 10−2 0.87 0.26 × 10−2 0.67

(0.08) (0.03) (0.64 × 10−2) (0.03) (0.15 × 10−2) (0.14)

5000
0.13 × 10−2 0.79 0.38 × 10−2 1.10 0.01 × 10−2 0.82

(0.03) (0.01) (0.30 × 10−2) (0.01) (0.06 × 10−3) (0.11)

C

500
2.78 × 10−2 0.82 0.73 × 10−2 0.55 0.43 × 10−2 0.50

(0.15) (0.05) (0.50 × 10−2) (0.05) (0.20 × 10−2) (0.14)

1000
1.02 × 10−2 0.77 0.65 × 10−2 0.67 0.34 × 10−2 0.58

(0.10) (0.03) (0.52 × 10−2) (0.03) (0.16 × 10−2) (0.15)

5000
0.21 × 10−2 0.66 0.59 × 10−2 0.94 0.16 × 10−2 0.74

(0.04) (0.01) (0.48 × 10−2) (0.02) (0.10 × 10−2) (0.11)

Table 3

Comparaison of the different adaptive estimators for the Cauchy distribution.

fε

f C
n R m̂ Rpen m̃ Ror m�

Γ(2, 1)

500
2.69 × 10−2 0.59 1.00 × 10−2 0.68 0.67 × 10−2 0.62

(0.16) (0.07) (0.67 × 10−2) (0.03) (0.29 × 10−2) (0.10)

1000
1.00 × 10−2 0.84 0.97 × 10−2 0.82 0.49 × 10−2 0.67

(0.09) (0.04) (0.70 × 10−2) (0.05) (0.21 × 10−2) (0.10)

5000
0.27 × 10−2 0.69 0.81 × 10−2 1.18 0.21 × 10−2 0.82

(0.05) (0.01) (0.57 × 10−2) (0.04) (0.10 × 10−2) (0.10)

C

500
2.50 × 10−2 0.74 1.12 × 10−2 0.45 0.86 × 10−2 0.56

(0.16) (0.07) (0.27 × 10−2) (0.01) (0.34 × 10−2) (0.09)

1000
1.00 × 10−2 0.68 0.74 × 10−2 0.59 0.62 × 10−2 0.62

(0.10) (0.04) (0.32 × 10−2) (0.03) (0.24 × 10−2) (0.09)

5000
0.52 × 10−2 0.54 0.73 × 10−2 0.93 0.29 × 10−2 0.74

(0.07) (0.01) (0.52 × 10−2) (0.03) (0.11 × 10−2) (0.09)

(see Figure 4 for example). This is due to the fact that the penalized constant
K that is suitable for small values of n is different than for larger values of n.
In practice a logarithmic term in n is added in the penalty term, that is theo-
retically unnecessary and entails a logarithmic loss but improves the numerical
results. If we add this logarithmic term (we replace K = 2 with K̃ log(n)2.5

with K̃ = 0.3 and the multiplying log(n)2.5 factor as suggested in Comte et al.
[14]). This second penalty procedure performs well for all values of n and when
n gets large it has similar performances as our procedure (see Table 4). For our
procedure, changing κ for smaller values of n does not improve the results.

3. Decompounding

3.1. Statistical setting

Let Z be a compound Poisson process with intensity λ > 0 and jump density
f , i.e.

Zt :=

Nt∑
j=1

Xj , t ≥ 0
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Fig 4. Comparison for different values of K and κ the penalized estimator (green) and our
adaptive estimator (blue). Estimation of f ∼

(
0.3G(3, 1

2
) + 0.7G(4, 1)

)
(bold black) from n =

10000 observations.

where N is an homogeneous Poisson process with intensity λ and independent of
the i.i.d. variables (Xj) with common density f . One trajectory of Z is observed
at sampling rate Δ over [0, T ], T = nΔ, n ∈ N. Non-parametric estimation of
f , or its Lévy density λf has been the subject of many papers, among others,
[4, 9, 11, 18, 38] and [25] for the multidimensional setting.

We observe Z at the time points jΔ, j = 1, . . . , n, for Δ > 0, denote the
j-th increment by YjΔ = ZjΔ − Z(j−1)Δ. We aim at estimating f from the
increments (YjΔ, j = 1, . . . , n). Consider ϕ the characteristic function of X1 and
ϕΔ the characteristic function of ZΔ = YΔ. The Lévy-Kintchine formula relates
them as follows

ϕΔ(u) = exp
(
Δλ(ϕ(u)− 1)

)
, u ∈ R.
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Table 4

Risks and selected cutoff of the penalized procedure with an additional logarithmic term in
the penalty. Notation M stands for the mixture 0.7N (4, 1) + 0.3Γ(4, 1

2
).

fε

f G M C
n Rp̃en m̃p̃en Rp̃en m̃p̃en Rp̃en m̃p̃en

Γ(2, 1)

500
1.17 × 10−2 0.72 0.63 × 10−2 0.69 0.83 × 10−2 0.62
(0.81 × 10−2) (0.03) (0.51 × 10−2) (0.02) (0.46 × 10−2) (0.005)

1000
0.94 × 10−2 0.82 0.40 × 10−2 0.75 0.59 × 10−2 0.69
(0.63 × 10−2) (0.04) (0.30 × 10−2) (0.02) (0.32 × 10−2) (0.03)

5000
0.62 × 10−2 1.08 0.20 × 10−2 0.94 0.31 × 10−2 0.91
(0.62 × 10−2) (0.01) (0.16 × 10−2) (0.02) (0.19 × 10−2) (0.02)

C

500
1.34 × 10−2 0.45 0.60 × 10−2 0.45 1.31 × 10−2 0.41
(0.43 × 10−2) (0.01) (0.25 × 10−2) (0.01) (0.24 × 10−2) (0.02)

1000
0.91 × 10−2 0.59 0.74 × 10−2 0.51 0.94 × 10−2 0.45
(0.43 × 10−2) (0.02) (0.51 × 10−2) (0.003) (0.14 × 10−2) (0.002)

5000
0.56 × 10−2 0.81 0.21 × 10−2 0.75 0.35 × 10−2 0.65
(0.33 × 10−2) (0.05) (0.15 × 10−2) (0.001) (0.11 × 10−2) (0.02)

Then, the mapping T defined in Section 1.1 is given by T : ϕ �→ ϕΔ. As Z
is a compound Poisson process, |ϕΔ| is bounded from below by e−2λΔ, which
remains bounded away from 0 as long as Δ < ∞. Moreover, if E[|X1|] < ∞ it
holds that ϕ is differentiable and we can then define the distinguished logarithm
of ϕΔ (see Lemma 1 in [20])

ϕ(u) = 1 +
Log

(
ϕΔ(u)

)
λΔ

, where Log(ϕΔ(u)) =

∫ u

0

ϕ′
Δ(z)

ϕΔ(z)
dz, u ∈ R. (3.1)

For simplicity, we assume that the intensity λ is known: λ = 1. Following (3.1),
an estimator of ϕ is hence given by

ϕ̂n(u) = 1 +
1

Δ
Log(ϕ̂Δ,n(u)), u ∈ R (3.2)

with

Log(ϕ̂Δ,n(u)) :=

∫ u

0

ϕ̂′
Δ,n(z)

ϕ̂Δ,n(z)
dz, where ϕ̂

(k)
Δ,n(z) =

1

n

n∑
j=1

(iYjΔ)
keizYjΔ , (3.3)

k ∈ {0, 1}. The quantity Log(ϕ̂Δ,n): if ϕΔ never cancels, it may not be the case
of its estimator ϕ̂Δ,n. Usually, to prevent this issue a local threshold is used and
(ϕ̂Δ,n(z))

−1 is replaced with (ϕ̂Δ,n(z))
−11|ϕ̂Δ,n(z)|>rn , for some vanishing se-

quence rn (see e.g. Neumann and Reiß [33]). Here we do not use a local threshold
inside the integral in (3.3), replacing (ϕ̂Δ,n(z))

−1 by (ϕ̂Δ,n(z))
−11|ϕ̂Δ,n(z)|>rn ,

instead, we will threshold the integral so that our estimator ̂Log(ϕΔ,n) of

Log(ϕΔ,n) satisfies ̂Log(ϕΔ,n) = Log(ϕ̂Δ,n). For that, consider

ϕ̃n(u) := ϕ̂n(u)1|ϕ̂n(u)|≤4, u ∈ R, (3.4)

where ϕ̂n is given by (3.2). The choice of a threshold equal to 4 is technical (see
the proof of Theorem 3.1). Cutting off in the spectral domain an applying a
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Fourier inversion provides the estimator if f

f̂m,Δ(x) =
1

2π

∫ m

−m

e−iuxϕ̃n(u)du, x ∈ R. (3.5)

3.2. Adaptive upper bound

3.2.1. Upper bound and discussion on the rate

Theorem 3.1. Assume that E[X2
1 ] < ∞, Δ < 1

4 log(nΔ) and nΔ → ∞ as
n → ∞. Then, for any m ≥ 0 it holds

E
[
‖f̂m,Δ−f‖2

]
≤‖fm − f‖2 + 2

nΔ

m∫
−m

du

|ϕΔ(u)|2
+ 2 52E[X2

1 ]
m

nΔ
+ 2352

m2

(nΔ)2
.

The contraint Δ < 1
4 log(nΔ) is fulfilled for any bounded Δ as nΔ → ∞.

Moreover it allows Δ to be such that Δ := Δn → 0 and Δn → ∞, not too fast.
This last point is interesting. An estimator that is optimal simultaneously when
Δ is fixed or vanishing and consistant, optimal up to a logarithmic loss, when
Δ tends to infinity, has scarcely been investigated, nor the estimation problem
when the sampling rate goes to infinity. To the knowledge of the authors, the
only similar result was released shortly after our result in Coca [10]. In [10], a
Lp, p ≥ 1 adaptive optimal nonparametric estimation of the Lévy density (which
is related to the jump density) is studied. Both results are complementary, our
estimator is adapted to L2 and has the advantage that its definition (both
adaptive and non adaptive) is simpler, leading to more succinct proofs and we
provide a numerical study. In the remaining of this paragraph, we discuss the
different rates of convergence implied by Theorem 3.1 according to the behavior
of Δ.

Discussion on the rates The upper bound derived in Theorem 3.1 is the

sum of four terms: a bias, two variance terms V � e4Δm
nΔ (using that |ϕΔ(u)| ≥

e−2Δ) and V ′ � m
nΔ , which is always smaller or of the same order as V , and

a remainder. Assume that f lies is the Sobolev ball S (β, L) (see (2.8)). Then,
the bias ‖f − fm‖2 has asymptotic order m−2β and we may derive the following
rates of convergence.

• Microscopic and mesoscopic regimes. Let Δ = Δn be such that
Δn → Δ0 ∈ [0,∞) such that nΔn → ∞. Then, the bias variance com-

promise leads to the choice m� = (e−4Δ0nΔ0)
1

2β+1 and to the rate of

convergence
(
e−4Δ0nΔ0)

− 2β
2β+1 that matches the optimal rates of conver-

gence as Δ0 is fixed or tending to 0. Indeed, the rate is in T− 2β
2β+1 , with

T = nΔn denoting the time horizon, it is clearly rate optimal as it corre-
sponds to the optimal rate of convergence to estimate the jump density of
a compound Poisson process from continuous observations (Δ = 0). The
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constant e−4Δ0 appearing in the rate depends exponentially on Δ0, which
asymptotically as little effect but in practice deteriorates the numerical
performances.

• Macroscopic regime. Let Δ = Δn → ∞ such that Δn < 1
4 log(nΔn)

The variance term V tends to 0, so that the estimator is consistent. Heuris-
tically, if Δ goes to infinity the central limit theorem states that YΔ is
close in law to a parametric Gaussian variable, e.g. if f is centered and

with unit variance it holds that:
√
Δ

−1
YΔ

d−−−−→
Δ→∞

N (0, 1). Consequently,

the fact that f can be constantly estimated is non trivial. Duval [19] es-
tablishes that if Δ = O((nΔ)δ), for some δ ∈ (0, 1), i.e. when Δn goes
rapidly to infinity, there exists no consistent non-parametric estimator of
f . The fact that estimation is impossible when Δ goes too rapidly to infin-
ity was established through an asymptotic equivalence result. In this case
it is always possible to build two different compound Poisson processes
for which the statistical experiments generated by their increments are
asymptotically equivalent. Therefore, the result of Theorem 3.1 is new in
that context. We may distinguish two additional regimes:

1. Slow macroscopic regime. If Δn = o
(
log(nΔn)

)
, the choice m� =(

e−4ΔnnΔn)
1

2β+1 leads to the rate of convergence
(
e−4ΔnnΔn

)− 2β
2β+1 .

There is no lower bound in the literature to ensure if this rate is
optimal. However if Δ goes slowly to infinity, for example if Δn =

log(log(nΔn)), then the rate is
(
(log(nΔn))

−4nΔn

)− 2β
2β+1 , which is

rate optimal, up to the logarithmic loss that may not be optimal.

2. Intermediate macroscopic regime. Let Δn = δ log(nΔn), 0 < δ < 1/4,

then m� = (nΔn)
1−4δ
2β+1 , leading to the rate (nΔn)

− 2β(1−4δ)
2β+1 . This rate

deteriorates as δ increases. The limit δ = 1/4 imposed by Theorem
3.1 may not be optimal, no lower bound adapted to this case exists
in the literature.

The interest of the macroscopic regime is mainly theoretical as in practice
if Δ is a large constant to get e−4ΔnΔ large one should consider a huge
amount n of observations. However, this regime enlightens the role of the
sampling rate Δ in the non-parametric estimation of the jump density.
Using [19], consistent non-parametric estimation of the jump density is
impossible if ∃δ > 0, Δn = O(nΔn)

δ, the remaining questions are what
happens in between and if the log loss in the upper bound that appears
when Δn → ∞ is avoidable or not. The constant 1/4 in the bound Δn <
1/4 log(nΔn) of Theorem 3.1 can probably be improved.

3.2.2. Adaptive choice of the cutoff parameter

We consider the optimal cutoff mn given by

mn ∈ arginf
m≥0

{
‖fm − f‖2 + 2

nΔ

∫ m

−m

du

|ϕΔ(u)|2
+ 2 52E[X2

1 ]
m

nΔ
+ 2352

m2

(nΔ)2

}
.
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Following the previous strategy, the upper bound given by Theorem 3.1 is op-

timal, at least for Δ → [0,∞). The leading variance terms is in me4Δ

nΔ , we
differentiate in m the upper bound to find that the optimal cutoff m� � mn is
such that:

|ϕ(mn)|2 =
e4Δ

nΔ
,

which has an empirical version, we select m̂n accordingly. As in the deconvo-
lution setting, we modify the estimator ϕ̃n in (3.4) which is set to 0 when the
estimator of |ϕ| is smaller that 1/

√
nΔ, meaning that the noise is dominant.

Define

ϕn(u) := ϕ̃n(u)1|ϕ̃n(u)|≥κn,Δ/
√
nΔ, u ∈ R (3.6)

where κn,Δ := (e2Δ + κ
√
log(nΔ)), κ > 0, and the new the estimator of f

fm,Δ(x) =
1

2π

∫ m

−m

e−iuxϕn(u)du, x ∈ R.

Finally, we introduce the empirical threshold, for some α ∈ (0, 1] and κ > 0

m̂n = max
{
m ≥ 0 : |ϕn(m)| = κn,Δ√

nΔ

}
∧ (nΔ)α.

Theorem 3.2. Assume that E[X4
1 ] < ∞, κ > e2Δ

Δ , Δ < 1
4 log(nΔ) and nΔ →

∞ as n → ∞. Then, for a positive constant C1, depending on κ, E[X2
1 ] and

E[X4
1 ], and C2 a constant depending on E[X2

1 ] and E[X4
1 ], it holds

E[‖f m̂n,Δ − f‖2]

≤ C1 inf
m∈[0,(nΔ)α]

{
‖fm − f‖2 + log(nΔ)m

nΔ
+

1

nΔ

m∫
−m

du

|ϕΔ(u)|2
+

m2

(nΔ)2

}

+ C2

( 1

nΔ
+ (nΔ)α−κ2Δ2e−4Δ

)
.

If κ >
√
2e2Δ

Δ the last additional term is negligible, regardless the value α ≤ 1

and Theorem 3.2 ensures that the adaptive estimator f m̂n,Δ satisfies the same
upper bound as in Theorem 3.1. Therefore, it is adaptive and rate optimal, up
to a logarithmic term and the multiplicative constant C1, in the microscopic and
mesoscopic regimes defined above. In the macroscopic regimes such that Δ :=
Δn → ∞ such that Δn < 1

4 log(nΔn) as n → ∞ the estimator is consistent. Note
that to establish the adaptive upper bound we imposed a stronger assumption
that E[X4

1 ] < ∞. In the following numerical study, we recover that the procedure
is stable in the choice of κ.

3.3. Numerical results

As for the deconvolution problem, we illustrate the performance of this adaptive
estimator for different densities f . We consider the same densities as for the
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Fig 5. Decompounding: Computations by M = 1000 Monte Carlo iterations of the L2-risks

(y axis) for different values of κ ≤ 1
2
(
√
n − 1)

√
log(n)

−1
= 11.9 (x axis). Estimation of

f from n = 5000 (T = 5000 and Δ = 1) increments of a compound Poisson process with
intensity λ = 1 and jump density f : Uniform U [1, 3] (plain line), Gaussian N (2, 1) (dots),
Gamma Γ(2, 1) (dotted line) and the mixture 0.7N (4, 1) + 0.3Γ(2, 1

2
) (triangles).

deconvolution problem, the Cauchy density excepted as it is not covered by our
procedure: it has infinite moments. We compute the adaptive L2-risks of our
procedure over 1000 Monte Carlo iterations for various values of κ. We consider
n = 5000 and the sampling interval Δ = 1. The results are represented on
Figure 5, we observe that the rates are small and stable regardless the value of
κ and the density considered.

4. Proofs of Section 3

4.1. Proof of Theorem 3.1

4.1.1. Preliminaries

We establish two technical Lemmas used in the proof of Theorem 3.1.

Lemma 4.1. Let m > 0 and ζ > 0 and define the event

Ωζ,Δ(m) :=
{
∀u ∈ [−m,m],

∣∣ϕ̂Δ,n(u)− ϕΔ(u)
∣∣ ≤ ζ

√
log(nΔ)

nΔ

}
.

1. If E[X2
1 ] is finite, then, the following holds for η > 0 and any ζ >√

Δ(1 + 2η),

P
(
Ωζ,Δ(m)c

)
≤ E[X2

1 ]

nΔ
+ 4

m

(nΔ)η
.

2. If E[X4
1 ] is finite, then, the following holds for η > 0 and any ζ >√

Δ(1 + 2η),

P
(
Ωζ,Δ(m)c

)
≤ C

(nΔ)2
+ 4

m

(nΔ)η
,

where C depends on E[X4
1 ] and E[X2

1 ].
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Proof of Lemma 4.1. Consider the events

A(c) :=
{∣∣∣ 1

n

n∑
j=1

|YjΔ| − E[|YΔ|]
∣∣∣ ≤ c

}

Bh,τ (m) :=
{
∀|k| ≤

⌈m
h

⌉
,

∣∣ϕ̂Δ,n(kh)− ϕΔ(kh)
∣∣ ≤ τ

√
log(nΔ)

nΔ

}
for some positive constants c, h and τ to be determined. First, using that x →
eiux is 1-Lipschitz and that E[|YΔ|] ≤ ΔE[|X1|] we get on the event A(c)∣∣ϕ̂Δ,n(u)− ϕ̂Δ,n(u+ h)

∣∣1A(c) ≤ h
(
ΔE[|X1|] + c

)
, ∀u ∈ R, h > 0. (4.1)

If E[X2
1 ] is finite the Markov inequality and the bound V[|YΔ|] ≤ V[YΔ] =

ΔE[X2
1 ] lead to

P
(
A(c)c

)
≤ ΔE[X2

1 ]

c2n
. (4.2)

If E[X4
1 ] is finite (4.2) can be improved using that

E

[( n∑
j=1

(|YjΔ| − E[|YΔ|])
)4]

≤ nΔ2E[X4
1 ] + 3n(n− 1)Δ2E[X2

1 ],

leading to

P
(
A(c)c

)
≤ C

Δ2

c4n2
, (4.3)

where C is a constant depending on E[X4
1 ] and E[X2

1 ]. Second, we have that

P
(
Bh,τ (m)c

)
≤ P

(
∃ |k| ≤

⌈m
h

⌉
,

∣∣ϕ̂Δ,n(kh)− ϕΔ(kh)
∣∣ > τ

√
log(nΔ)

nΔ

)

≤
�m/h�∑

k=−�m/h�
P

(∣∣ϕ̂Δ,n(kh)− ϕΔ(kh)
∣∣ > τ

√
log(nΔ)

nΔ

)

≤
�m/h�∑

k=−�m/h�
2 exp

(
− τ2 log(nΔ)

2Δ

)
= 4

⌈m
h

⌉
(nΔ)−τ2/(2Δ)

where the last inequality is obtained applying the Hoeffding inequality. Let
|u| ≤ m, there exists k such that u ∈ [kh− h

2 , kh+ h
2 ] and we can write that

1A(c)∩Bh,τ (m)

∣∣ϕ̂Δ,n(u)− ϕΔ(u)
∣∣

≤1A(c)∩Bh,τ (m)

(∣∣ϕ̂Δ,n(u)− ϕ̂Δ,n(kh)
∣∣+∣∣ϕ̂Δ,n(kh)− ϕΔ(kh)

∣∣ + ∣∣ϕΔ(kh)− ϕΔ(u)
∣∣).

Using (4.1), the definition of Bh,τ (m) and that x → eiux is 1-Lipschitz, lead to

1A(c)∩Bh,τ (m) sup
u∈[−m,m]

∣∣ϕ̂Δ,n(u)− ϕΔ(u)
∣∣ ≤ 2hΔE[|X1|] + hc+ τ

√
log(nΔ)

nΔ
.

(4.4)
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Taking c = Δ, h = o
(√ log(nΔ)

nΔ

)
such that h > 1/

√
nΔ and ζ > τ , (4.4) shows

that A(c) ∩ Bh,τ (m) ⊂ Ωζ,Δ(m). Moreover, it follows from h > 1/
√
nΔ, (4.1)

and (4.2) that, for all η > 0

P
(
Ωc

ζ,Δ(m)
)
≤ P

(
Ac(Δ)

)
+ P

(
Bc

h,τ (m)
)
≤ E[X2

1 ]

nΔ
+ 4

⌈m
h

⌉
(nΔ)−

τ2

2Δ

≤ E[X2
1 ]

nΔ
+ 4m(nΔ)

Δ−τ2

2Δ .

Finally, choosing τ2 = Δ(1 + 2η) leads to the result. The second inequality is
obtained follows from similar arguments using (4.2) instead of (4.3).

Lemma 4.2. Let γ > 0, define

M
(γ)
n,Δ := min

{
m ≥ 0 : |ϕΔ(m)| = γ

√
log(nΔ)/(nΔ)

}
,

with the convention inf{∅} = +∞. Take γ > ζ > 0, then, we have

1|u|≤M
γ
n,Δ∧m,Ωζ,Δ(m)

∣∣∣Log(ϕ̂Δ,n(u))−Log(ϕΔ(u))
∣∣∣≤ γ

ζ
log

( γ

γ − ζ

) |ϕ̂Δ,n(u)− ϕΔ(u)|
|ϕΔ(u)| .

Proof of Lemma 4.2. First note that for |u| ≤ Mγ
n,Δ, the ratio

ϕ′
Δ

ϕΔ
is well defined.

Moreover, on the event Ωζ,Δ(m) then we have that

|ϕ̂Δ,n(u)| ≥ |ϕΔ(u)| − |ϕ̂Δ,n(u)− ϕΔ(u)| ≥ (γ − ζ)

√
log(nΔ)

nΔ
> 0, ∀|u| ≤ m.

Then, the quantity
ϕ̂′

Δ,n

ϕ̂Δ,n
is also well defined if γ > ζ. For v ∈ R, notice that

ϕ̂′
Δ,n(v)

ϕ̂Δ,n(v)
− ϕ′

Δ(v)

ϕΔ(v)
=

(
− (ϕ̂Δ,n(v)−ϕΔ(v))

ϕΔ(v)

)′

(
1− (ϕ̂Δ,n(v)−ϕΔ(v))

ϕΔ(v)

) . (4.5)

On the event Ωζ,Δ(m), it holds ∀u ∈ [−m ∧Mγ
n,Δ,m ∧Mγ

n,Δ]

|ϕ̂Δ,n(u)− ϕΔ(u)| ≤ ζ
√
log(nΔ)(nΔ)−

1
2 ≤ ζ

γ
|ϕΔ(u)|, (4.6)

where γ > ζ. Then, a Neumann series expansion, with (4.5) and (4.6) gives for
|v| ≤ m ∧Mγ

n,Δ,

ϕ̂′
Δ,n(v)

ϕ̂Δ,n(v)
− ϕ′

Δ(v)

ϕΔ(v)
= −

∞∑
�=0

( ϕ̂Δ,n(v)− ϕΔ(v)

ϕΔ(v)

)′( ϕ̂Δ,n(v)− ϕΔ(v)

ϕΔ(v)

)�

,

where( ϕ̂(v)− ϕΔ(v)

ϕΔ(v)

)′( ϕ̂Δ,n(v)− ϕΔ(v)

ϕΔ(v)

)�

=
1

�+ 1

[( ϕ̂Δ,n(v)− ϕΔ(v)

ϕΔ(v)

)�+1]′
.
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Using ϕ̂Δ(0)− ϕΔ(0) = 0 and (4.6), we get

1|u|≤m∧Mγ
n,Δ,Ωζ,Δ(m)

∣∣∣ ∫ u

0

( ϕ̂′
Δ,n(v)

ϕ̂Δ,n(v)
− ϕ′

Δ(v)

ϕΔ(v)

)
dv

∣∣∣
≤

∞∑
�=0

1

�+ 1

|ϕ̂Δ,n(u)− ϕΔ(u)|�+1

|ϕΔ(u)|�+1
≤ |ϕ̂Δ,n(u)− ϕΔ(u)|

|ϕΔ(u)|

∞∑
�=0

(
ζ/γ

)�
�+ 1

=
γ

ζ
log

( γ

γ − ζ

) |ϕ̂Δ,n(u)− ϕΔ(u)|
|ϕΔ(u)|

, (4.7)

which completes the proof.

4.1.2. Proof of Theorem 3.1

We have the decomposition

‖f̂m,Δ−f‖2 = ‖fm−f‖2+‖f̂m,Δ−fm‖2 = ‖fm−f‖2+ 1

2π

∫ m

−m

|ϕ̃n(u)−ϕ(u)|2du.

Let γ > ζ, we decompose the second term on the events {m ≤ Mγ
n,Δ} and

Ωζ,Δ(m) of Lemma 4.2,

∫ m

−m

|ϕ̃n(u)− ϕ(u)|2du =

∫ m∧Mγ
n,Δ

−m∧Mγ
n,Δ

1Ωζ,Δ(m)|ϕ̃n(u)− ϕ(u)|2du

+ 1m>Mγ
n,Δ,Ωζ,Δ(m)

∫
|u|∈[Mγ

n,Δ,m]

|ϕ̃n(u)− ϕ(u)|2du

+ 1Ωζ,Δ(m)c

∫ m

−m

|ϕ̃n(u)− ϕ(u)|2du

:= T1,n + T2,n + T3,n.

Fix γΔ = 2ζ
1∧Δ > ζ. On the event {|u| ≤ m ∧MγΔ

n,Δ,Ωζ,Δ(m)}, Lemma 4.2 and

equations (3.1), (3.2) and (4.7), along with (4.6), imply

∣∣ϕ̂n(u)
∣∣ ≤ 1+

|Log(ϕ̂Δ,n(u))− Log(ϕΔ(u))|+ |Log(ϕΔ(u))|
Δ

≤ 3+
1

Δ
log

( γ

γ − ζ

)
≤ 4,

consequently ϕ̃n(u) = ϕ̂n(u). Then, we get from Lemma 4.2 and the definition
of γΔ, that

E[T1,n] =
1

Δ2

∫ m∧M
γΔ
n,Δ

−m∧M
γΔ
n,Δ

E

[
1Ωζ,Δ(m)

∣∣Log(ϕ̂Δ,n(u))− Log(ϕΔ(u))
∣∣2]du

≤ 1

Δ2

∫ m

−m

E
[
|ϕ̂Δ,n(u)− ϕΔ(u)|2

]
|ϕΔ(u)|2

du.
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Direct computations together with the Lévy-Kintchine formula lead to

E
[
|ϕ̂Δ,n(u)− ϕΔ(u)|2

]
=

1− |ϕΔ(u)|2
n

≤
(
2Δ|Re(ϕ(u))− 1|

)
∧ 1

n
≤ 2Δ ∧ 1

n
.

We derive that

E[T1,n] ≤
2Δ ∧ 1

nΔ2

∫ m

−m

du

|ϕΔ(u)|2
≤ 2

nΔ

∫ m

−m

du

|ϕΔ(u)|2
.

Next, fix ζ >
√
5Δ, Lemma 4.1 with η = 2 gives

E[T3,n] ≤ 2 52m
(E[X2

1 ]

nΔ
+ 4

m

(nΔ)2

)
.

Moreover, using |ϕΔ(u)| ≥ e−2Δ, ∀u ∈ R together with the constraint Δ ≤
δ log(nΔ), δ < 1

4 , we get

|ϕΔ(u)| ≥ (nΔ)−2δ > γΔ
√
log(nΔ)/(nΔ), ∀u ∈ R.

Finally, MγΔ

n,Δ = +∞, ∀ζ > 0 and T2,n = 0 almost surely. Gathering all terms
completes the proof.

4.2. Proof of Theorem 3.2

Preliminary

Lemma 4.3. Assume that E[X4
1 ] < ∞. Let η > 0, α ∈ (0, 1] and c(Δ) =

κΔe−2Δ. Then, for some positive constant C depending only on E[X2
1 ] and

E[X4
1 ], it holds for ϕ̂n defined in (3.2) that, for all u ∈ [−(nΔ)α, (nΔ)α],

P

(
|ϕ̂n(u)− ϕ(u)| ≥ κ

√
lognΔ√
nΔ

)
≤ 2(nΔ)

−c(Δ)2
+

C

(nΔ)2
+ 4(nΔ)α−η.

Proof. We use Lemmas 4.1 and 4.2 with γΔ = 2ζ
1∨Δ and ζ >

√
Δ(1 + 2η), η > 0.

First it holds that

P

(
|ϕ̂n(u)− ϕ(u)| ≥ κ

√
log(nΔ)

nΔ

)

= P

(
|Log(ϕ̂Δ,n(u))− Log(ϕΔ(u))| ≥ κΔ

√
log(nΔ)

nΔ

)

≤ P

(
|ϕ̂Δ,n(u)− ϕΔ(u)| ≥ |ϕΔ(u)|κΔ

√
log(nΔ)

nΔ

)
+ P

(
Ωc

ζ,Δ((nΔ)α)
)
.

Then, we derive from the Hoeffding inequality and Lemma 4.1 that

P

(
|ϕ̂n(u)− ϕ(u)| ≥ κ

√
log(nΔ)

nΔ

)
≤ 2(nΔ)

−c(Δ)2
+

C

(nΔ)2
+ 4(nΔ)α−η,

where C depends on E[X2
1 ] and E[X4

1 ].
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Proof of Theorem 3.2

Step 1: An upper bound for fm,Δ. Let 0 < m < (nΔ)α, Parseval equality and
(3.6) leads to

E[‖fm,Δ − f‖2] ≤ ‖fm − f‖2 + 1

2π

∫ m

−m

E
[
|ϕn(u)− ϕ(u)|2

]
du,

where

E
[
|ϕn(u)− ϕ(u)|2

]
= E

[
|ϕ̃n(u)− ϕ(u)|21|ϕ̃n(u)|≥

κn,Δ√
nΔ

]
+ |ϕ(u)|2P

(
|ϕ̃n(u)| <

κn,Δ√
nΔ

)
.

The first term in the right hand side is bounded using Theorem 3.1. For the
second term, recall that κn,Δ = e2Δ + κ

√
log(nΔ) and decompose it on the set

A = {u, |ϕ(u)| < e2Δ+2κ
√

log(nΔ)√
nΔ

} this leads to

|ϕ(u)|2P
(
|ϕ̃n(u)| <

κn,Δ√
nΔ

)

≤ (e2Δ + 2κ
√
log(nΔ))2

nΔ
+ P

(
|ϕ̃n(u)− ϕ(u)| ≥ κ

√
lognΔ√
nΔ

)

≤
1 +

(
1 + 2κ

√
log(nΔ)

)2
nΔ

+ P

(
|ϕ̂n(u)− ϕ(u)| ≥ κ

√
lognΔ√
nΔ

)
≤ Ce4Δ

log(nΔ)

nΔ

from Lemma 4.3 with η > 2, κ > e2Δ/Δ and where C depends on κ, E[X2
1 ] and

E[X4
1 ]. Finally, gathering all the above inequalities, we get the following upper

bound for fm,Δ, 0 < m ≤ (nΔ)α,

E[‖fm,Δ − f‖2] ≤ ‖fm − f‖2 + Ce4Δ
log(nΔ)

nΔ
m+

2

nΔ

m∫
−m

du

|ϕΔ(u)|2
+

2352m2

(nΔ)2
,

(4.8)

where C depends on κ, E[X2
1 ] and E[X4

1 ].
In the sequel C denotes a constant depending on κ, E[X2

1 ] and E[X4
1 ] whose

value may change from line to line.
Step 2: Adaptation. Let 0 < m ≤ (nΔ)α be fixed. Consider the event E =

{m̂n < m}, on this event we control the surplus in the bias of the estimator

f̃m̂n
. Using the inequality |ϕ|2 ≤ 2|ϕ̃n|2 + 2|ϕ− ϕ̃n|2, along with the definition

of m̂n and (4.8), give

E

[
1E

∫
|u|∈[m̂n,m]

|ϕ(u)|2du
]
≤ 2E

[
1E

∫
|u|∈[m̂n,m]

κ2
n,Δ

nΔ
du

]
+ 2

∫ m

−m

E[|ϕ̃n(u)− ϕ(u)|2]du
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≤ 4
κ2
n,Δm

nΔ
+

4

nΔ

∫ m

−m

du

|ϕΔ(u)|2

+ 2252E[X2
1 ]

m

nΔ
+ 2452

m2

(nΔ)2
+ Ce4Δ

log(nΔ)

nΔ
m.

Recall that κn,Δ = e2Δ + κ
√

log(nΔ) together with (4.8), this implies immedi-
ately that, on the event E ,

E[‖f m̂n,Δ−f‖21E ] ≤ ‖fm−f‖2+Ce4Δ
log(nΔ)m

nΔ
+

5

nΔ

∫ m

−m

du

|ϕΔ(u)|2
+
2552m2

(nΔ)2
.

Second, consider the complement set Ec, where we control the surplus in the
variance of f̃m̂n

. By the definition of m̂n, it holds

E

[ ∫
|u|∈[m,m̂n]

|ϕn(u)− ϕ(u)|2du1Ec

]
≤

∫
|u|∈[m,(nΔ)α]

E[|ϕn(u)− ϕ(u)|2]du.

Let η > 2, such that α − η < −1, and ζ >
√
Δ(1 + 2η) and γΔ as in the proof

of Theorem 3.1 (leading to MγΔ

n,Δ = +∞). Then, Lemmas 4.1 (decomposing on
Ωζ,Δ((nΔ)α)) and 4.2 lead to

E[|ϕn(u)− ϕ(u)|2] ≤ |ϕ(u)|2 + E[|ϕ̂n(u)− ϕ(u)|2]

≤ |ϕ(u)|2 + 2

nΔ|ϕΔ(u)|2
+

E[X2
1 ]

nΔ
+

4

nΔ
.

First, on the event {|ϕ(u)| > e2Δ/
√
nΔ}, we obtain

E[|ϕn(u)− ϕ(u)|2] ≤ |ϕ(u)|2
(
6 + E[X2

1 ]
)
.

Consequently, define C0 := 6 + E[X2
1 ], then,

E

[ ∫
|u|∈[m,m̂n]

|ϕn(u)− ϕ(u)|2 1{|ϕ(u)|>e2Δ/
√
nΔ}du1Ec

]
≤ C0

∫
[−m,m]c

|ϕ(u)|2du.

Next, using that |ϕn(u)| ≤ 4 and the definition of m̂n, we derive that

E

[ ∫
|u|∈[m,m̂n]

|ϕn(u)− ϕ(u)|2 1{|ϕ(u)|≤e2Δ/
√
nΔ}du1Ec

]

≤
∫

|u|∈[m,(nΔ)α]

|ϕ(u)|2du+ 52
∫

|u|∈[m,(nΔ)α]

P
(
|ϕ̂n(u)| ≥ κn,Δ/

√
nΔ

)
1{|ϕ(u)|≤e2Δ/

√
nΔ}du

≤
∫

|u|∈[m,(nΔ)α]

|ϕ(u)|2du+ 52
∫

|u|∈[m,(nΔ)α]

P
(
|ϕ̂n(u)− ϕ(u)| > κ

√
log(nΔ)/(nΔ)

)
du.
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Finally, we bound the last term using Lemma 4.3 with η > 3, such that 2α−η <
−1 and ζ >

√
Δ(1 + 2η), it follows that

∫
|u|∈[m,(nΔ)α]

P

(
|ϕ̂n(u)− ϕ(u)| > κ

√
log(nΔ)

nΔ

)
du ≤ 4(nΔ)

α−c(Δ)2
+

C ′

nΔ
,

where C ′ depends on E[X2
1 ] and E[X4

1 ]. Putting the above together, we have
shown that for a positive constant C1, depending on κ, E[X2

1 ] and E[X4
1 ], and

C2 a constant depending on E[X2
1 ] and E[X4

1 ]

E
[
‖f m̂n,Δ − f‖2

]
≤ C1

(
‖fm − f‖2+ log(nΔ)m

nΔ
+

1

nΔ

∫ m

−m

du

|ϕΔ(u)|2
+

m2

(nΔ)2

)
+ C2

( 1

nΔ
+ (nΔ)α−c(Δ)2

)
.

Taking the infimum in m completes the proof.
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