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Abstract: The likelihood ratio statistic, with its asymptotic χ2 distribu-
tion at regular model points, is often used for hypothesis testing. However,
the asymptotic distribution can differ at model singularities and bound-
aries, suggesting the use of a χ2 might be problematic nearby. Indeed, its
poor behavior for testing near singularities and boundaries is apparent in
simulations, and can lead to conservative or anti-conservative tests. Here
we develop a new distribution designed for use in hypothesis testing near
singularities and boundaries, which asymptotically agrees with that of the
likelihood ratio statistic. For two example trinomial models, arising in the
context of inference of evolutionary trees, we show the new distributions
outperform a χ2.
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1. Introduction

The likelihood ratio statistic is commonly used to compare a null model to an
alternative model. In many circumstances this statistic is asymptotically χ2-
distributed, which greatly facilitates testing of large data sets. As is well known,
for smaller data sets, or when expectations are small for some outcomes, a χ2

approximation may not be close enough to the true distribution for reliable
testing. For example, minimum expected counts have been suggested to justify
use of the approximation for contingency tables. But even for large data sets,
a long thread of work has highlighted that problems can arise in using a χ2

approximation at some points of the null model. Self and Liang [27] focused
on non-standard asymptotics at boundary points of the null model, while more
recently Drton [13] emphasized singularities. The asymptotic distribution at
either of these points can be quite different from those at nearby regular points.
Moreover, as shown by Andrews [2], the bootstrap may not consistently estimate
the true distribution at such points.
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Although [27] and [13] show how to understand and calculate asymptotic
distributions at boundaries and singularities, they are not focused on how to
use the distributions at such points in practice. Indeed, this is a difficult ques-
tion, as the nature of these asymptotic distributions makes clear. For instance,
one may find that an asymptotic distribution is χ2

d with a fixed d degrees of
freedom at almost all model points, but that at a boundary or singularity it
discontinuously jumps to a different distribution — for instance, a mixture of
several χ2 distributions, or something more complicated. However, for the true
non-asymptotic distribution, for any fixed sample size no matter how large, we
do not expect such a jump to occur.

One might surmise that the asymptotics at the singularity or boundary could
be relevant to testing even when the true parameter value is near that point,
for fixed sample sizes. As the sample size is increased, the region on which
the asymptotics give poor approximations shrinks, but no matter how large
a sample is, the discontinuous behavior of the asymptotic distribution indi-
cates there is some parameter region on which it is inappropriate for empirical
use.

In this work we suggest a different approximation than the one obtained
by standard asymptotics. While the usual arguments to derive the asymptotic
distribution involve two approximations — the model is approximated by its
tangent cone and the distribution of the random variables by a normal — we
derive a different one by avoiding use of the tangent cone. This new approxi-
mate distribution is dependent on both sample size and parameter value, but
has no discontinuous jump near boundaries or singularities. We explore it in de-
tail using two particular models. These have both boundaries and singularities,
yet are simple enough for a full exploration, using both theory and simula-
tions.

For hypothesis testing with either the standard asymptotic distributions, or
the new ones developed here, complications arise when the distributions depend
on nuisance parameters. Methods of handling this include simply choosing the
testing distribution giving the strictest test among those for all nuisance values,
or among those in some confidence interval (Berger and Boos [8], Silvapulle and
Sen [29]). More recent works of Andrews and Guggenberger [3] and McCloskey
[20] adopt and extend these approaches, while bringing in non-standard asymp-
totic approximations along “drifting parameter sequences”. Through simula-
tions we investigate how these methods apply to our new distributions for our
example models.

Both of these last works [3, 20] (see also Andrews and Guggenberger [4, 5])
were motivated by issues with hypothesis testing near boundaries. They make
use of limiting distributions obtained not in the standard way with sample size
n → ∞ while parameters are fixed, but with parameter values changing with
n in a controlled way. One thus might consider the limits of distributions of
finite sample likelihood ratio statistics along such drifting parameter sequences,
and view them as approximations to the exact finite sample ones. In contrast,
while the distributions of this paper are also approximations to the finite sam-
ple ones, they are found by using the asymptotics of the likelihood ratio process



2152 J. D. Mitchell et al.

only, which is then scaled to approximate the process for finite sample size.
Thus the relationship of these two approaches is not immediately clear. As we
know of no general results on the form of limiting distributions along drifting
parameter sequences, even in the case of likelihood ratio statistics, our approach
is attractive both for computational tractability and for what might be consid-
ered a more intuitive basis rooted in the geometry of the model. Nonetheless,
adoption of the approaches for dealing with nuisance parameters described by
McCloskey [20] to the distributions of this paper are valuable for improved test-
ing.

As amply demonstrated in the textbook of Silvapulle and Sen [29], mod-
els with boundaries arise commonly in empirical work, and continue to be of
research interest [6, 7]. Although models with singularities have received con-
siderably less attention, Drton [13] gives a number of natural examples. In this
work, we focus on two simple models, one with a boundary, and one with a
singularity, both of which arise in phylogenomics, but which we have not seen
treated in depth elsewhere.

Phylogenomics is concerned with inferring evolutionary trees relating sev-
eral different species from genomic-scale data. It builds on phylogenetics (the
inference of trees based on sequences of a single gene), but brings in population-
genetic effects that lead to many inferred gene trees differing from the species
(or population) tree. Basics of the underlying multispecies coalescent model are
explained below, though little familiarity with it is necessary for this work. It
simply provides two motivating examples of nicely structured and accessible
submodels of a trinomial (3-category multinomial) distribution, for which we
can investigate behavior of tests near singularities and boundaries. While ap-
plications of the material developed here are highly relevant to phylogenomic
practice, we defer discussion for empiricists to a later paper.

This paper is organized as follows. In Section 2 we lay out basic definitions,
and illustrate with a simple example the problems that might arise when χ2 dis-
tributions are used to approximate the distributions of likelihood ratio statistics
near boundaries and singularities of null models. The specifics of the genomic
models motivating our primary examples are then introduced.

The main theorem is given in Section 3, where an approximating distribution
is defined for use in hypothesis testing. In Sections 4 and 5, we specialize to our
examples, giving explicit forms of the finite sample approximating distributions.
By simulation we show that using the standard χ2

1 for hypothesis testing gives
poor performance near a boundary or singularity; in contrast, the finite sample
distributions we define perform very well for true parameters anywhere in the
null model.

In Section 6 we use variation distances between the competing distributions
(χ2

1 and ours) to investigate the region of the null model where the standard
χ2
1 is good for testing, since this depends both on sample size and proximity to

a singularity or boundary point. Section 7 investigates how various approaches
to hypothesis testing with nuisance parameters behave in simulation. The final
section is a discussion of our work and its potential for application beyond the
examples developed here.
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2. Definitions and examples

Let Θ, an open subset of Rk, denote the parameter space for a family of prob-
ability distributions, and θ ∈ Θ an unknown parameter vector. Submodels are
specified by Θ0 ⊂ Θ̃ ⊆ Θ, and we formulate the null hypothesis H0 : θ ∈ Θ0,
with alternative H1 : θ ∈ Θ1 = Θ̃�Θ0. Given some data set, the likelihood ratio
statistic is

Λ = 2

(
sup
θ∈Θ̃

� (θ)− sup
θ∈Θ0

� (θ)

)
,

where � (θ) = � (θ | data) is the log-likelihood function. By determining the
distribution of Λ under H0, the decision as to how large Λ must be for rejection
can be quantified.

While it is commonly assumed that the distribution of the likelihood ratio
statistic under H0 is well approximated by a χ2 distribution, establishing this
depends on a number of assumptions. Wilks [32] provided an early justification
for sufficiently regular models defined by hyperplanes. Chernoff [9] extended
the result to more general models, elucidating the role of the tangent space
to the model, and making clear that asymptotic distributions other than χ2

can arise. Other works emphasize that the statistic may not be asymptotically
χ2-distributed at boundaries of Θ0 (e.g., [21], [27] and [28]).

Recent research of Drton [13] has emphasized that singularities pose prob-
lems as well. An asymptotic distribution of the statistic can be obtained at these
problematic model points, as the distribution of the squared Euclidean distance
between a standard normal sample and the appropriately linearly-transformed
tangent cone of Θ0 at the true parameter point θ0 (Theorem 2.6 of [13]). Infor-
mally, the tangent cone is the set of all possible tangent vectors when approach-
ing θ0 along all possible paths in Θ0. The tangent cone generalizes the tangent
space which lead to the more familiar χ2 distributions, but may lack the closure
properties of a vector space that holds at smooth points of Θ0.

To precisely define singularities and boundaries, we follow [13]. Assume Θ0 is
a semialgebraic subset of Θ. That is, Θ0 is defined by a finite Boolean combina-
tion of polynomial equalities and inequalities, which ensures Chernoff regularity.
The Zariski closure, Θ0, of Θ0 is the smallest algebraic variety (the zero set of
a finite set of polynomials) containing Θ0. This closure is the union of at most
finitely many irreducible varieties, called components, which themselves cannot
be expressed as a finite union of proper varieties.

A singularity of Θ0 is then either a) a point in Θ0 which lies on more than one
irreducible component of Θ0, or b) a point that lies on only one component, but
at which the n×m Jacobian matrix of the defining equations of that component
has lower rank than at generic points on the component. When a point lies
on a single irreducible component Θi

0, the rank of the Jacobian is generically
m− dim

(
Θi

0

)
. Lower rank indicates a problem with the notion of dimension at

the point.
A subset of Θ0 is said to be open if it is the intersection of Θ0 with an

open subset of Rk. The interior of Θ0 is the union of its open subsets, and the
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Fig 1. The parameter space for a possibly biased coin. The solid segment is Θ0 = [1/2, 1),
while the dashed segment is Θ1 = (0, 1/2).

boundary of Θ0 is the complement in Θ0 of its interior. (In most applications,
including all our example models, Θ0 is closed in Θ under the standard topology,
and this coincides with the usual definition of topological boundary in Θ.)

Note that the boundary and the set of singularities of a model need not be
disjoint.

Example 2.1 (Simple model with boundary). To test whether a coin,
modeled by a Bernoulli random variable with probability of heads θ ∈ (0, 1), is
biased towards tails, formulate hypotheses

H0 : θ ≥ 1

2
, H1 : θ <

1

2
.

Here Θ = (0, 1) = Δ1, the open simplex, and Θ0 = [1/2, 1), as depicted in
Figure 1. The Zariski closure of Θ0 is the real line, and Θ0 has no singularities
but a single boundary point 1/2. At any θ0 in the interior of Θ0 the tangent
cone is the full real line, (−∞,∞). However, for θ0 = 1/2 the tangent cone is
the half-line [1/2,∞).

From Theorem 2.6 of Drton [13], the asymptotic distribution of the likelihood
ratio statistic is the distribution of the squared Euclidean distance between a
normal random variable centered at θ0 with variance 1 and the tangent cone at
θ0. For θ0 > 1/2, the squared Euclidean distance is 0 with probability 1 asymp-
totically, so the asymptotic distribution is a Dirac delta function δ0. However,
for θ0 = 1/2 the asymptotic distribution is a mixture 1/2δ0 +1/2χ2

1. Intuitively
this is because samples from N (1/2, 1) lie on or off the tangent cone [1/2,∞)
with probability 1/2, and the distributions of the squared distances are δ0 and
χ2
1 respectively.

For this model, the maximum likelihood estimator (MLE) θ̂0 of the parameter
θ0 is the maximum of 1/2 and the relative frequency of heads in a sample. If θ0
lies in the interior of Θ0, then for a sufficiently large sample θ̂0 lies in the interior
with probability arbitrarily close to 1. However, for a fixed sample size, no matter
how large, there are points θ0 close to 1/2 but still in the interior of Θ0 for which
this probability is much smaller (in fact, as close to 1/2 as desired). A better
approximation to the distribution of the likelihood ratio statistic at such a point
might be, for instance, a mixture of δ0 and the square of a truncated normal
centered at θ0 with variance dependent on sample size. The mixing parameters
depend on both θ0 and the variance, while the truncation point of 1/2 is not
generally the mean of the normal. When θ0 = 1/2, the normal distribution
is truncated at the mean giving the asymptotic mixture distribution already
described.
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Of course for this model one can simply perform an exact binomial test, with-
out any approximation. Nonetheless, this example highlights 1) that a likelihood
ratio statistic’s distribution can fail to converge uniformly to a χ2 distribution
even on the interior of Θ0, 2) the role of the tangent cone in determining correct
asymptotics, and 3) the inappropriateness of these asymptotic approximations
for hypothesis testing for certain parameter values.

The next examples are the primary focus of our investigations. We briefly
describe their motivation from phylogenomics, with more details supplied in
Appendix A. The knowledge that these are submodels of a trinomial model is
sufficient for the remainder of this work.

Fig 2. An example of incomplete lineage sorting, where the dotted gene tree topology, A|BC,
does not match the solid species tree topology, c|ab. This can occur because gene lineage
coalescence events can predate species divergence events, when viewing time backward from
the present (upwards).

Example 2.2 (Model T1: Three species related by a specific species

tree). Suppose three species: a, b and c, are related by a rooted evolutionary
species tree as shown in Figure 2, where the internal branch has length t ≥ 0.
Gene trees depicting evolutionary relationships for particular gene lineages (A,
B, C) sampled from the three species may show differing topological relation-
ships due to the population genetic effect of incomplete lineage sorting, illus-
trated in Figure 2. Under the multispecies coalescent model (see Appendix A),
the three possible rooted gene tree topologies have probabilities

(
pC|AB , pB|CA, pA|BC

)
=

(
1− 2

3
e−t,

1

3
e−t,

1

3
e−t

)
,

with C|AB denoting the rooted topological gene tree matching the species tree
topology with gene lineages A and B most closely related, and B|AC and A|BC,
interpreted analogously, gene tree topologies that do not match that of the
species tree.

For a null hypothesis H0 that the rooted topology of the species tree is c|ab,
then

Θ0 =

{
(p1, p2, p3)

∣∣ p1 ≥ p2 = p3 > 0,
∑
i

pi = 1

}
⊂ Δ2

is shown in Figure 3a. Here Δ2 denotes the open 2-dimensional probability
simplex. The alternative hypothesis, Θ1 = Δ2

�Θ0, can be interpreted as either
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that the species tree has a different tree structure b|ca or a|cb, or that the
model of a simple species tree under the multispecies coalescent is inadequate,
perhaps due to introgression or hybridization of species populations, population
structure within species, or other more complex biological issues.

Samples of n rooted gene trees drawn independently from the multispecies
coalescent model on the species tree of Figure 2 are thus described by a submodel
of the trinomial model with parameter space Θ0.

Example 2.3 (Model T3: Three species related by any of the three

possible species trees). If the model T1 of Example 2.2 is modified, so that
the specific species tree structure is not fixed, but any one of a|bc, b|ac, or c|ab
might be the species tree, then H0 is that there is some species tree giving rise
to the gene tree data. The alternative H1 is that a simple species tree model
does not fit the data. The null parameter space Θ0 ⊂ Δ2, shown in Figure 3b,
is the union of three submodels of trinomial models.

As seen in Figure 3a, the model T1 has a boundary point at (1/3, 1/3, 1/3) ∈
Θ0, and no singularities. For model T3, the point (1/3, 1/3, 1/3) is a singularity
of Θ0, since the Zariski closure of Θ0 is three lines (irreducible components)
crossing at that point. This point is also a boundary, though we will refer to it
simply as the singularity.

Fig 3. Geometric view of the models: (a) T1 and (b) T3. The solid line segment(s) repre-
sent(s) Θ0, while the region inside the dotted lines represents Θ, the open probability simplex
Δ2. The central point (1/3, 1/3, 1/3) corresponding to t = 0 on any species tree is either a
boundary (T1) or a singularity (T3).

When a rooted species tree on three species has a short internal branch so that
much incomplete lineage sorting occurs, the expected gene tree probabilities lie
close to the boundary or singularity (1/3, 1/3, 1/3) of the models. This is exactly
the situation in which it is hardest to resolve species tree relationships, and
therefore often one of pressing biological interest. Indeed, motivation for this
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paper is the recognition that the use of the standard asymptotic approximation
is not reliable near boundaries and singularities, and a careful investigation of
this problem is of practical as well as theoretical interest.

The models T1 and T3, and the more general multispecies coalescent model for
larger trees, are increasingly used in inference of species trees from genomic-scale
data, though typically little is done to test whether the model is appropriate for
data. For relating three species, Degnan and Rosenberg [12] describe a hypothe-
sis test using a χ2 distribution, though our work here underscores that this test
can be problematic near singularities and boundaries. Results of Allman, Deg-
nan and Rhodes [1] show that this test extends to the unrooted 4-species trees
this paper focuses on, though the same boundary and singularity issues arise
in using the χ2. Gaither and Kubatko [16] introduce a different hypothesis test
for 4-species trees, but in a different framework, working from DNA sequence
data under a combined model of coalescence with sequence evolution, and not
on gene tree frequencies. Most empirical studies simply assume the coalescent
model on a species tree is appropriate, even though several biological processes
are known which could violate it.

3. Approximate distributions of likelihood ratio statistics

We now illustrate that, in principle, one can obtain an alternative, potentially
more useful, approximation to the distribution of the likelihood ratio statistic
than the standard asymptotic one.

For a statistical model with parameter spaces Θ0 ⊂ Θ̃ ⊆ Θ, Θ1 = Θ̃�Θ0, and
parameter θ0 ∈ Θ0, let X

(1), . . . , X(n) denote n independent and identically dis-
tributed random observations. The likelihood function for a sample realization
X(1), . . . , X(n) is

�n (θ) =

n∑
i=1

log p
(
x(i) | θ

)
.

Maximizers of the likelihood over Θ0 and Θ̃ are the maximum likelihood esti-
mators (MLEs) over the corresponding parameter spaces.

The likelihood ratio statistic for a sample then is

Λn = 2

(
sup
θ∈Θ̃

�n (θ)− sup
θ∈Θ0

�n (θ)

)
.

Under appropriate regularity conditions (see Theorem 16.7 of Van der Vaart
[30]) the asymptotic distribution of this statistic, as n → ∞, is that of

∥∥∥X − I (θ0)
1
2 T0

∥∥∥ 2

−
∥∥∥X − I (θ0)

1
2 T

∥∥∥ 2

,

for X ∼ N (0, I), I (θ0) the Fisher information matrix at θ0, T0 and T the
tangent cones to Θ0 and Θ̃ at θ0, and where ‖x−B‖ denotes the minimal
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Euclidean distance between a point x and set B. In essence, establishing this
theorem using local asymptotic normality depends on two approximations: the
likelihood ratio process from sample realizations is approximately normal, and
the model parameter space is approximated locally by its tangent cone.

Of these two approximations, it is that of the tangent cone which can lead
to the discontinuous behavior of the asymptotic distribution, since the tangent
cone’s features can behave discontinuously as a function of the parameter. For
example, if a model is parameterized by a closed ball in R

k, at interior points the
tangent space will be a k-dimensional Euclidean space, while at the boundary
it becomes a half-space. For a model with parameter space a curve in the plane
that crosses over itself, the tangent space will be a line at most points, but at
the singularity it is two crossed lines.

Examining a derivation of the asymptotics of the likelihood ratio statistic
more closely, local asymptotic normality allows for the approximation by a nor-
mal for large samples. For large samples the distribution’s covariance approaches
0, and rescaling to a standard normal means the parameter space must be di-
lated around the true parameter. It is this dilation that allows the parameter
space of the model to be approximated by a tangent cone. Thus these two ap-
proximations are interrelated, and are not made independently.

Nonetheless, we informally reason that while the normal approximation may
be a good one even for a relatively small sample size, a much larger sample may
be needed for the approximating normal to be sufficiently concentrated that the
tangent approximation of the model is accurate. This motivates Theorem 3.1
below.

For parameter spaces Θ0 ⊂ Θ̃ ⊆ R
k and parameter value θ0 ∈ Θ0, de-

fine sequences of scaled translated parameter spaces Tn =
√
n
(
Θ̃− θ0

)
and

Tn,0 =
√
n (Θ0 − θ0). Suppose Tn → T and Tn,0 → T0 in the sense defined in

[30]. As pointed out by [13], a condition such as Chernoff regularity ensures
this convergence of spaces, with T and T0 the tangent cones at θ0 of Θ̃ and
Θ0.

Theorem 3.1. Consider n i.i.d. random observations from a model with pa-
rameter space Θ open in R

k and submodels determined by Θ0 ⊂ Θ̃ ⊆ Θ, with
Θ1 = Θ̃�Θ0. Let θ0 ∈ Θ0 be a true parameter point, with non-singular Fisher

information matrix I (θ0) for a sample of size 1. Let I (θ0)
1
2 be a matrix such

that I (θ0) =
(
I (θ0)

1
2

)T

I (θ0)
1
2 and Y ∼ N

(√
nI (θ0)

1
2 θ0, I

)
.

Then under the regularity assumptions of Proposition 16.7 of [30], for a sam-
ple of size n the likelihood ratio statistic Λn for H0 vs. H1 is approximately
distributed as the random variable

W = inf
τ∈√

nI(θ0)
1
2 Θ0

‖Y − τ‖ 2 − inf
τ∈√

nI(θ0)
1
2 Θ̃

‖Y − τ‖ 2
,

in the sense that both the likelihood ratio statistic and this random variable
converge in distribution to the same limit as n → ∞.
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Proof. By Theorem 16.7 of [30], the likelihood ratio statistic converges in dis-
tribution to ∥∥∥X − I (θ0)

1
2 T0

∥∥∥ 2

−
∥∥∥X − I (θ0)

1
2 T

∥∥∥ 2

,

for X ∼ N (0, I).

However, with Y = X +
√
nI (θ0)

1
2 θ0,

W = inf
τ∈√

nI(θ0)
1
2 Θ0

∥∥∥X +
√
nI (θ0)

1
2 θ0 − τ

∥∥∥ 2

− inf
τ∈√

nI(θ0)
1
2 Θ̃

∥∥∥X +
√
nI (θ0)

1
2 θ0 − τ

∥∥∥ 2

= inf
τ∈Tn,0

∥∥∥X − I (θ0)
1
2 τ

∥∥∥ 2

− inf
τ∈Tn

∥∥∥X − I (θ0)
1
2 τ

∥∥∥ 2

=
∥∥∥X − I (θ0)

1
2 Tn,0

∥∥∥ 2

−
∥∥∥X − I (θ0)

1
2 Tn

∥∥∥ 2

.

Since Tn → T and Tn,0 → T0, applying Lemma 7.13 of [30] yields the result.

Note that the condition that the sample is i.i.d. is not necessary in the theo-

rem; a more general result is possible if
√
nI (θ0)

1
2 is replaced with the square

root of the Fisher information matrix for a sample of size n.
Moreover, this theorem offers no measure of accuracy of the approximation

for any finite sample size, and thus does not indicate whether it gives a better
approximation than the standard asymptotic one in practice. This is typical of
results on approximate distributions of test statistics. To highlight the theorem’s
potential for improved testing, in subsequent sections we present simulation
results indicating that this distribution outperforms the standard asymptotic
one in our example models T1 and T3.

Though the above theorem is stated for the likelihood ratio statistic, this
is but one member of the power-divergence family of goodness-of-fit statistics
of Cressie and Read [10]. For multinomially distributed data, with appropriate
assumptions on the null model, all members of the family converge in distri-
bution to the same asymptotic distribution. Thus the theorems and results in
this paper are potentially useful for all members of the family. Although the
Neyman-Pearson lemma (Neyman and Pearson [22]) states that the likelihood
ratio test is the uniformly most powerful test for simple hypotheses, Cressie
and Read [11] highlighted that in other scenarios other family members, such
as Pearson’s chi-squared statistic, may be better approximated by a χ2 distri-
bution than the likelihood ratio statistic is. It is of interest to investigate the
use of the distribution of Theorem 3.1 for these other statistics.

For using the above distribution for practical testing, it is essential to note
that while θ0 and I (θ0) may be consistently estimated using the MLE θ̂0 (Flo-
rescu [15]), the factors of

√
n that appear with them in the specification of W in

Theorem 3.1 produce quantities that are not consistently estimable. In Section 7
we return to this issue for our example models, discussing several approaches to
handling it.
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We emphasize that Theorem 3.1 can be expected to give a useful approximate
distribution only when the normal approximation it depends upon is good. For
instance for the models T1 and T3, with Θ = Δ2, this is only when no counts
of topologies are likely to be small, which occurs when the true parameter is
away from the simplex’s bounding triangle in a sense dependent upon sample
size. If the true parameter is near a vertex of the triangle, then even for a large
sample one may obtain very low frequencies of two of the three tree topologies,
and must use other approaches.

4. Application to Model T3

We now apply Theorem 3.1 to determine an approximate distribution for the
likelihood ratio statistic when testing the model T3 vs. an alternative of “no
species tree”. More formally, for t(i) the branch length in species tree i ∈ {1, 2, 3}
and taking φ

(i)
0 = e−t(i) ∈ (0, 1], the hypotheses are:

H0: Θ0 =

{(
1− 2

3
φ
(1)
0 ,

1

3
φ
(1)
0 ,

1

3
φ
(1)
0

)}
∪

{(
1

3
φ
(2)
0 , 1− 2

3
φ
(2)
0 ,

1

3
φ
(2)
0

)}

∪
{(

1
3φ

(3)
0 , 1

3φ
(3)
0 , 1− 2

3φ
(3)
0

)}
,

H1: Θ1 = Δ2
�Θ0.

We view the model Θ̃ = Θ0 ∪Θ1 = Δ2 as a subset of R2 through an appro-
priate affine transformation (see Appendix B for full details) which maps the
singularity of Θ0 to the origin and the true parameter point θ0 = (1 − 2/3φ0,
1/3φ0, 1/3φ0), without loss of generality, to a point (0, μ0) as in Figure 4. This
affine transformation scales the simplex so that the normally distributed vari-
able Y of Theorem 3.1 now has mean (0, μ0) and identity covariance, where μ0

is measured in standard deviations from the singularity and can be interpreted
analogously for model T1. Unless θ0 = (1/3, 1/3, 1/3) the affine transformation
does not preserves angles. For other parameter values θ0, the angle α0 shown in
Figure 4 is less than π/6.

We make one additional simplification, valid under the assumption that θ0
is far from the triangle bounding the simplex Θ̃, in a sense dependent on the
sample size: the mass of the normal distribution of Y outside the image of Θ̃
is negligible. This leads to the following proposition which is proved in Ap-
pendix B.

Proposition 4.1. For model T3, the likelihood ratio statistic for testing H0

vs. H1 at a true parameter point θ0 = (1− 2/3φ0, 1/3φ0, 1/3φ0) with sample
size n is approximately distributed as the random variable

Λ̃n = min

(
Z2 +

1

2

(
1− sgn

(
Z̄
))

Z̄2,
(
sinα0Z + cosα0 sgn (Z) Z̄

)2)
, (1)
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where Z ∼ N (0, 1), Z̄ ∼ N (μ0, 1), μ0 =
√
2n 1−φ0√

φ0(3−2φ0)
and

α0 = arctan

(
1√

3(3−2φ0)

)
.

Fig 4. View of the image of model T3 after the affine transformation into R2. The singularity
is mapped to the origin (0, 0) and the true parameter point θ0 to (0, μ0). The mapping is not
conformal unless θ0 is the singularity.

Note that all the trigonometric functions in Equation (1) can be expressed
as algebraic functions of φ0.

To understand Equation (1), note that Z and Z̄ are random variables cor-
responding to the x and y components of the sample point in the transformed
space. The first argument then is simply the squared distance of

(
Z, Z̄

)
to

the vertical half-line in the null parameter space. The second argument is the
squared distance to the other two half-lines, provided the closest point is not
the origin.

(
Z, Z̄

)
will be closest to the vertical half-line when the closest point

on the other two half-lines is the origin. As shown in the proof, the distance
predicted by the first argument of Equation (1) is then minimal. Thus, Equa-
tion (1) is the minimum squared Euclidean distance between the sample point
and the transformed null parameter space.

By replacing sgn (Z) and sgn
(
Z̄
)
with ±1, the arguments are easily rec-

ognizable as χ2 distributions. Moreover, suppose μ0 > 0 corresponds to any
non-singular point in Θ0, then as the sample size n goes to infinity, μ0 also
goes to infinity, causing the distribution of sgn

(
Z̄
)
to concentrate on 1, and the

minimum in the formula tends toward selecting the first argument. It follows
that Λ̃n is asymptotically χ2

1-distributed as is the likelihood ratio statistic Λn,
though for Λn the asymptotic behavior is typically determined more directly
using the tangent cone approximation.

Now suppose μ0 = 0, so φ0 = 1; that is, the true parameter is the singularity.
Then for any sample size n the approximate distribution in Equation (1) sim-
plifies, with both Z and Z̄ standard normal. Although this distribution is not a
χ2, it is exactly the standard asymptotic distribution, found using the tangent
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cone as in [13]. This is not surprising, as the tangent cone at this point locally
agrees with the model itself.

Additional computations in Appendix B give the following.

Proposition 4.2. The probability density function for the random variable Λ̃n

given for model T3 in Proposition 4.1 is, for λ > 0,

fΛ̃n
(λ) =

1

2
√
2πλ

[
exp

(
−λ

2

)(
1− erf

(
1√
2

(√
λ tanβ0 − μ0

)))

+ exp

(
−1

2

(√
λ− μ0 cosα0

)2
)(

1− erf

(
1√
2

(√
λ tanβ0 + μ0 sinα0

)))

+ exp

(
−1

2

(√
λ+ μ0 cosα0

)2
)(

1− erf

(
1√
2

(√
λ tanα0 + μ0 sinα0

)))]
,

(2)

where μ0 =
√
2n 1−φ0√

φ0(3−2φ0)
, α0 = arctan 1√

3(3−2φ0)
and β0 = 1

2

(
π
2 − α0

)
.

One can show that for φ0 ∈ (0, 1) as n → ∞ Equation (2) gives the probability
density function of χ2

1.
Although Proposition 4.2 expresses the probability density function in terms

of the error function, this density can quickly be integrated numerically to obtain
a highly accurate approximation.

Figure 5 compares the density functions of Equation (2) at the singularity
μ0 = 0 (φ0 = 1) and a regular point near the singularity μ0 = 1 (φ0 ≈ 0.9993
when n = 106) to that of χ2

1. At the singularity, the standard asymptotic density
is given exactly by Equation (2), since there is no dependence on n. At all other
points μ0 > 0, the standard asymptotic density is given by χ2

1. The density plot
for the parameter near the singularity, at μ0 = 1, lies between the other two
plots, and can be considered a sort of interpolant that depends both on the
sample size n and value of the parameter φ0. Unlike the asymptotic densities,
which have a jump discontinuity at the singularity, the density of Equation (2)
is a continuous function of φ0 ∈ [0, 1) for any fixed n.

Simulations

We performed simulations to compare the use of the probability density function
of Equation (2) to the χ2

1 density for determining p-values of the likelihood ratio
statistic when testing H0 vs. H1. We focused on true parameter values both at
(μ0 = 0) and near the singularity (μ0 = 1, n varying). Near the singularity both
distributions agree asymptotically, but at the singularity the χ2

1 distribution is
not the standard asymptotic distribution, while that of Equation (2) is. As the
χ2
1 distribution might naively be applied by an empiricist at the singularity, this

last comparison is relevant. The value μ0 = 1 was chosen to be near enough,
but not too near, to the singularity so that the χ2

1 distribution and the asymp-
totic distribution at the singularity were both poor approximations. A range of
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Fig 5. Log-log plot of three approximating density functions over part of their support λ ∈
(0,∞). The asymptotic density of Equation (2) at the singularity μ0 = 0 (φ0 = 1) is in black;
the approximating density at the nearby parameter value μ0 = 1 (φ0 ≈ 0.9993 and n = 106) is
in blue; and the asymptotic density at non-singular points, the χ2

1 distribution, is in red. The
blue approximating density can be viewed as an interpolant of the two asymptotic densities
at and near the singularity.

sample sizes was chosen, in part to demonstrate that near the singularity the χ2
1

distribution can perform relatively poorly even for a large sample size, despite
it being the asymptotic distribution.

Specifically, for the simulations presented in Figures 6, 7, (and later in Fig-
ures 9 and 10), θ0 ∈ Θ0 was chosen making μ0 = 0 or 1 for sample sizes
n = 30, 103, 106. For each setting, μ0, n, data was simulated from the multi-
nomial distribution 106 times, and likelihood ratio statistics were calculated for
each replicate. The probability density functions of Proposition 4.2 were used
to determine p-values by numerical integration from the observed value of the
statistic to infinity; p-values were also calculated using the χ2

1 approximation by
standard software. For each setting an empirical cumulative distribution func-
tion for 106 p-values was graphed.

In Figures 6 and 7, the discrete nature of the multinomial distribution is
strongly apparent, particularly for n = 30. Since the possible likelihood ratio
statistics form a discrete set and are unevenly spaced, jumps in the cumulative
plots of p-values are unavoidable regardless of the simulation size.
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Fig 6. Empirical cumulative distribution functions of p-values for the density function of
Equation (2) (left column) and the χ2

1 approximation (right column) for samples sizes n =
30, 103, 106 computed at the singularity, μ0 = 0, for model T3. The diagonal line, representing
ideal behavior, is shown for comparison.
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Ideally, when Θ0 has lower dimension than Θ̃ (unlike Example 2.1) as for
model T3, an approximate density function for the likelihood ratio statistic
produces a simulated empirical cumulative distribution function of p-values close
to FX (x) = x for x ∈ (0, 1). The left column of Figure 6 shows that this holds
for the density function of Equation (2) for the singularity, even for a relatively
small sample size of n = 30. In contrast, this fails for the χ2

1 distribution (which
is not the asymptotic distribution), as seen in the right column.

In Figure 7, the results of these simulations are shown for the parameter near
the singularity. Again, plots in the left column show that the density function of
Equation (2) performs extremely well, even for a sample size of n = 30. The right
column illustrates that the χ2

1 distribution is a poor approximation for each of
the three sample sizes, even though it is the standard asymptotic distribution.
As an approximate density, the χ2

1 performs better here than at the singularity
where it is not the asymptotic distribution, but not as well as the approximating
density of Λ̃n. In summary, naively assuming the χ2

1 distribution is an accurate
approximation for the likelihood ratio statistic near (or at) a singularity can
lead to inaccurate estimates of p-values.

Significantly, the right columns of Figures 6 and 7 suggest that the use of
the χ2

1 distribution gives a conservative test, as it produces larger p-values than
desired, leading to rejecting H0 less often than desired. Moreover, such a test is
increasingly conservative closer to the singularity. This behavior has an intuitive
geometric interpretation: When θ0 is on the vertical line segment of Θ0 and near,
but not at, the singularity, then the observation can be substantially closer to
an incorrect segment of Θ0 than to the correct segment. The observation is then
interpreted to be less extreme than it should be. Use of the χ2

1 distribution then
gives a larger p-value than desired.

5. Application to Model T1

We now examine our second example, model T1, in which the null hypothesis
is that the species tree has a specific topology.

Our two hypotheses for this test are:

H0: Θ0 =

{(
1− 2

3
φ0,

1

3
φ0,

1

3
φ0

)}
, with φ0 = e−t ∈ (0, 1],

H1: Θ1 = Δ2
�Θ0.

The model Θ̃ = Θ0 ∪ Θ1 is again the open probability simplex Δ2, which is
viewed as a subset of R2 through the same affine transformation used for model
T3. This is as depicted in Figure 4, but with the two non-vertical line segments
erased.

Applying Theorem 3.1, an approximate distribution of the likelihood ratio
statistic can be found. The proof of the following is given in Appendix C.

Proposition 5.1. For model T1, the likelihood ratio statistic for testing H0 vs.
H1 at a true parameter point θ0 = (1− 2/3φ0, 1/3φ0, 1/3φ0) with sample size
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Fig 7. Empirical cumulative distribution functions of p-values for the density function
of Equation (2) (left column) and the χ2

1 approximation (right column) for sample sizes
n = 30, 103, 106 computed near the singularity, μ0 = 1, for model T3. The diagonal line,
representing ideal behavior, is shown for comparison.
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n is approximately distributed as the random variable

Λ̃n = Z2 +
1

2

(
1− sgn

(
Z̄
))

Z̄2,

where Z ∼ N (0, 1), Z̄ ∼ N (μ0, 1) and μ0 =
√
2n 1−φ0√

φ0(3−2φ0)
.

Note that the distribution is the same as the first argument of the minimum
in the distribution in Proposition 4.1 for model T3. This is expected as the first
argument referred to the single line segment which is Θ0 in this example.

Again, if sgn
(
Z̄
)
was always positive then the distribution would be a χ2

1

distribution, while if sgn
(
Z̄
)
was always negative then it would be a χ2

2 distri-
bution. Further calculations in Appendix C yield the following.

Proposition 5.2. The probability density function of the random variable Λ̃n

given for model T1 in Proposition 5.1 is, for λ > 0,

fΛ̃n
(λ) =

1

4
exp

(
−λ

2

)[√
2

πλ

(
1 + erf

(
μ0√
2

))
− exp

(
−μ2

0

2

)
M0

(
μ0

√
λ
)]

,

(3)

where M0 (x) = − 2
π

∫ π
2

0
exp (−x cos θ) dθ is the modified Struve function 11.5.5

from Olver [23], and μ0 =
√
2n 1−φ0√

φ0(3−2φ0)
.

At the singularity, where μ0 = 0, Equation (3) gives the probability density
function of 1/2χ2

1 + 1/2χ2
2. This is as one expects from Example 1.2 of Drton

[13]. One can also show that for φ0 ∈ (0, 1) as n → ∞ Equation (3) gives the
probability density function of χ2

1, since M0 (x) → 0 as x → ∞.

Again the approximate probability density function can be integrated nu-
merically quickly to obtain a highly accurate numerical approximation to the
distribution.

Figure 8 gives a graphical comparison of the probability density functions of
Equation (3) at μ0 = 1 (φ0 ≈ 0.9993 and n = 106) and at μ0 = 0 (the probability
density function 1/2χ2

1 + 1/2χ2
2 at the boundary) to that of χ2

1. The black and
red densities are the standard asymptotic densities at and near the boundary,
respectively. The graph for a parameter near the boundary (μ0 = 1) lies between
those for the asymptotic distributions, interpolating them in a way dependent
on both sample size n and parameter φ0. Unlike the asymptotic distributions,
which jump discontinuously at the singularity, the density of Equation (3) is a
continuous function of φ0.

Note that the χ2
1 density (red curve) is closer to the approximate density (blue

curve) in Figure 8 than in Figure 5, indicating it is closer to our distribution for
T1 than for T3. This is not surprising, since the derivation of the asymptotic χ2

1

is based on replacing the model with a single vertical line, which more closely
matches the geometry of the model T1 than T3.
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Fig 8. Log-log plot of three probability density functions over part of their support, λ ∈ (0,∞).
The density of Equation (3) at μ0 = 1 (φ0 ≈ 0.9993 and n = 106) is in blue; the density of
1/2χ2

1+1/2χ2
2 of the boundary is in black; and the density of the χ2

1 distribution is in red. The
black and red plots are the asymptotic distributions at and near the boundary, respectively.

Simulations

The performance of the approximate density function of Proposition 5.2 was
compared to the density function of the χ2

1 distribution through simulations for
model T1, similar to those previously described for T3.

In Figure 9, it can be seen that at the boundary our approximate density
function outperforms the χ2

1 approximation, which is biased towards smaller p-
values. This is expected, since the distribution in Proposition 5.1 is the asymp-
totic distribution and χ2

1 is not. We note that the χ2
1 approximation rejects H0

more often than it should and thus gives an anti-conservative test.
Near the boundary, as shown in Figure 10, our probability density function

again fits the distribution of the likelihood ratio statistic better than the χ2
1

does, though the improvement is small compared to that in Figure 9 for the
boundary. This is expected as the χ2

1 is now the asymptotic distribution. Moving
away from the boundary (simulations not shown), the χ2

1 distribution becomes
a progressively better approximation, but remains biased towards smaller p-
values. Thus the use of the χ2

1 approximation leads to rejection of H0 more
often than it should, and is anti-conservative. Again, the χ2

1 performs better for
model T1 than for model T3 for some μ0.
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Fig 9. Empirical cumulative distribution functions of p-values for the density function of
Equation (3) (left column) and the χ2

1 approximation (right column) for sample sizes n =
30, 103, 106 computed at the boundary, μ0 = 0, for model T1. The diagonal line, representing
ideal behavior, is shown for comparison.
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Fig 10. Empirical cumulative distribution functions of p-values for the density function of
Equation (3) and the χ2

1 approximation (right column) for samples sizes n = 30, 103, 106

computed near the boundary, μ0 = 1, for model T1. The diagonal line, representing ideal
behavior, is shown for comparison.
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The anti-conservative behavior of the χ2
1 distribution is geometrically intu-

itive. For a true parameter θ0 near the boundary point of Θ0, some sample
points will lie lower than the boundary, giving an MLE that is the boundary
point. Such sample points are thus further from the MLE than they are from
the vertical line extending Θ0. However, the χ2

1 distribution is appropriate for
judging their squared distance from that line. This causes them to be viewed
as more extreme than they should be, and their p-values to be calculated as
smaller than desired.

6. Approximating likelihood ratio statistic distributions with χ2

The distributions of Propositions 4.1 and 5.1 interpolate between the asymp-
totic distribution at the singularity or boundary, respectively, and the asymp-
totic χ2

1 distribution far from the singularity or boundary. The further the true
parameter point is from the singularity or boundary, the more accurate the χ2

1

approximation is.
Indeed, while we have shown these approximate distributions for likelihood

ratio statistics perform better than the asymptotic ones for finite sample sizes
near the singularities and boundaries of our example models, it may still be
desirable to use the asymptotic χ2

1 distribution for testing sufficiently far from
those points. The simpler form of these distributions and ready availability
in standard software remains attractive. A natural problem, then, is how to
decide when the simpler distribution is likely to lead to adequate performance
in testing.

To approach this question quantitatively, we employ the total variation dis-
tance between our approximate distributions and the χ2

1. The total variation
distance between two continuous probability distributions F , G, with densities
f , g, of support R, is

δ (F,G) =
1

2

∫
R

| f (λ)− g (λ) | dλ,

which can be interpreted as the maximum absolute difference of probabilities of
events.

Using the distribution of Proposition 4.1 or Proposition 5.1, one can choose
an acceptable upper bound ε on the total variation distance between this dis-
tribution and the χ2

1. Then, using a numerical optimization routine, one can
determine the values of φ0, n for which this bound is not exceeded. The χ2

1

approximation might be considered acceptable for such φ0 and n.

Application to Model T1

For model T1, the dependence of the distribution from Proposition 5.1 on φ0

and n is only through μ0 = μ0 (φ0, n), so let Fμ0 denote this distribution viewed
as a function of μ0. From the derivation of the density in Appendix C, it is clear
that δ

(
Fμ0 , χ

2
1

)
is a decreasing function of μ0. It is thus sufficient to determine
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numerically the value μ̃0 for which δ
(
Fμ̃0 , χ

2
1

)
= ε. Then μ0 > μ̃0 character-

izes the parameters and sample sizes for which the χ2
1 approximation might be

considered acceptable.

Table 1 summarizes, for several choices of ε, the threshold value μ̃0. It also
shows for several choices of sample size n, the corresponding thresholds φ0 < φ̃0

and t > t̃ = − log
(
φ̃0

)
, since μ0 is a function of n and φ0. For a given bound

ε, larger sample sizes allow for shorter internal branches of the tree in Figure 2,
while maintaining the χ2

1 distribution as a reasonable approximation for the
distribution of the likelihood ratio statistic.

Table 1

For model T1, the threshold values μ̃0 are given for which μ0 > μ̃0 ensures the total
variation distance between the distribution of Proposition 5.1 and χ2

1 is less than ε, for

various ε. For a fixed sample size n, the thresholds are also given in terms of φ̃0 or t̃.

ε = 5× 10−3, ε = 5× 10−4, ε = 5× 10−5,

μ̃0 = 1.84 μ̃0 = 2.64 μ̃0 = 3.28

n φ̃0 t̃ φ̃0 t̃ φ̃0 t̃

30 0.748 0.291 0.642 0.443 0.565 0.572

102 0.863 0.147 0.802 0.220 0.754 0.283

103 0.958 0.0429 0.939 0.0626 0.924 0.0787

104 0.987 0.01320 0.981 0.0190 0.977 0.0237

105 0.996 0.00414 0.994 0.00594 0.993 0.00739

106 0.999 0.00130 0.998 0.00187 0.998 0.00233

Table 2 shows similar threshold values that ensure the null rejection proba-
bility for a test based on the χ2

1 distribution exceeds a nominal level of α = 0.05
by small amounts. As these calculations concern only the tail of the distribution,
the thresholds are smaller than in Table 1.

Table 2

For model T1, the threshold values μ̃0 are given for which μ0 > μ̃0 ensures the exceedance
in null rejection probability using the χ2

1 is less than ε above α = 0.05. For a fixed sample

size n, the thresholds are also given in terms of φ̃0 or t̃.

α = 0.05, α = 0.05, α = 0.05,

ε = 5× 10−3, ε = 5× 10−4, ε = 5× 10−5,

μ̃0 = 1.02 μ̃0 = 1.83 μ̃0 = 2.52

n φ̃0 t̃ φ̃0 t̃ φ̃0 t̃

30 0.862 0.148 0.749 0.288 0.657 0.419

102 0.926 0.0770 0.864 0.146 0.812 0.209

103 0.977 0.0232 0.958 0.0426 0.942 0.0595

104 0.993 0.00724 0.987 0.0131 0.982 0.0181

105 0.998 0.00228 0.996 0.00411 0.994 0.00567

106 0.999 0.000719 0.999 0.00130 0.998 0.00179
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Application to Model T3

For model T3, the dependence of the density of Proposition 4.2 on parameter
φ0 and sample size n is through both μ0 and α0. However, it is clear from the
derivation in Appendix B that an upper bound on the variation distance is
obtained by setting α0 to its minimum value, α0 = arctan (1/3), for any value
of μ0. This simplifies the computations and leads to a conservative estimate of
the threshold μ̃0. Table 3 summarizes thresholds found in this way.

Table 3

For model T3, conservative threshold values μ̃0 are given for which μ0 > μ̃0 ensures the
total variation distance between the distribution of Proposition 4.1 and χ2

1 is less than ε, for

various ε. For a fixed sample size n, the thresholds are also given in terms of φ̃0 or t̃.

ε = 5× 10−3, ε = 5× 10−4, ε = 5× 10−5,

μ̃0 = 2.74 μ̃0 = 3.64 μ̃0 = 4.40

n φ̃0 t̃ φ̃0 t̃ φ̃0 t̃

30 0.629 0.463 0.525 0.645 0.449 0.802

102 0.795 0.230 0.727 0.319 0.672 0.398

103 0.937 0.0650 0.916 0.0879 0.898 0.108

104 0.980 0.0198 0.974 0.0264 0.968 0.0321

105 0.994 0.00617 0.992 0.00820 0.990 0.00993

106 0.998 0.00194 0.997 0.00258 0.997 0.00312

For model T3, a test based on the χ2
1 distribution is conservative, as suggested

by Figures 6 and 7 and as will be more formally established in the next section.
Thus we give no analog of Table 2 for this model.

7. Hypothesis testing in practice

In using the distributions of Propositions 4.1 and 5.1 in a practical hypothesis
test, one additional issue arises. Since the true parameter φ0 is unknown, it is
natural to use an estimate of it to determine the testing distribution. However,
while the maximum likelihood estimator of φ0 is consistent, it does not lead to a
consistent estimator of the distribution parameter μ0. Even though the variance
in the estimate of φ0 goes to zero as sample size n → ∞, the factor of

√
n in

the formula for μ0 results in the variance of its estimator not approaching zero.
In this section we explore methods of addressing this. These include using

either the “least favorable” estimate over the full parameter space, or over a
confidence interval for μ0 [8, 29], or analogs of these approaches using drifting
parameter sequences [3, 20].

7.1. Model T1

For model T1 we begin by examining drifting parameter sequences. As described
by [20], near a boundary point of a parameter space one often finds that stan-
dard asymptotic distributions, obtained by holding parameters fixed and letting
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n → ∞, behave poorly for hypothesis testing, while “asymptotic distributions
derived under appropriate drifting sequences of parameters often provide very
good approximations to finite sample null distributions.” A drifting sequence
of parameters is, roughly, a sequence of parameter values γn that approaches
a boundary point 0, in such a way that a limiting distribution exists when
parameter γn is paired with sample size of n.

To be precise for the model T1, in the notation of Proposition 5.1 introduce
a transformed parameter

γ =

√
2(1− φ0)√
φ0(3− 2φ0)

∈ [0,∞),

so that γ = 0 at the boundary point. For any fixed value of μ0 ∈ [0,∞), define
a sequence γn → 0 by

μ0 =
√
nγn.

Then {γn} is a drifting parameter sequence, with localization parameter μ0.
By Proposition 5.1, the distribution along the drifting sequence is constant, so
taking the limit is trivial. Thus for these distributions the concept of drifting se-
quences adds nothing new; the limit distributions along these drifting sequences
with localization parameter μ0 are exactly those of Proposition 5.1. This is not
surprising, as the distributions were derived already accounting for the geometry
of the model near the boundary, which is exactly what the limits along drifting
sequences are intended to address.

As previously commented, though, we cannot consistently estimate μ0 from
data. A simple solution to this, the least favorable (LF) approach, is to adopt as
a critical value for a test at level α the largest critical value at level α across all
values of the localization parameter. This has also been called the size-corrected
fixed critical value [3], and the resulting hypothesis test the psup test [29], but
the idea goes back at least to [27]. The following corollary of Lemma C.1 of
Appendix C is useful for determining the critical value.

Proposition 7.1. For localization parameter μ, let Lμ be the cdf of the dis-
tribution of Proposition 5.1 for model T1. For a given level 0 < α < 1 and
localization parameter μ, let CVμ(α) = L−1

μ (1 − α) be the critical value with
level α. Then CVμ(α) is a decreasing function of μ.

Thus if we consider, for some fixed α, the critical values CVμ(α) for all μ in
some interval [a, b], the largest will be from μ = a, and thus using CVa(α) as
a cutoff for a test will have the smallest null rejection probability regardless of
the value of μ in the interval.

In particular, the LF approach to testing for the model T1 is to always use
the distribution for μ0 = 0. That is, one would use the distribution 1/2χ2

1 +
1/2χ2

2, even though this gives a much more conservative test than the χ2
1 which

standard asymptotics suggests for all points except the boundary, and which in
fact performs well when the true (unknown) parameter is far from the boundary
point. This indicates the potential value of a confidence interval approach.
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The Simple Bonferroni critical value of [20] is one such approach, and for T1
its use coincides with what is called the p∗ test in [29]. It is based on first finding
a confidence interval for μ0 at an adjusted level, and then using the supremum
of the critical values for μ0 in this interval (or equivalently defining a p-value as
the supremum over those values given by the μ0 in the interval.)

Consider a sample of size n drawn from the model T1 with parameter p1 ∈
[1/3, 1] in the notation of Example 2.2. Let (n1, n2, n3) be the counts of the three
rooted topologies in the sample, with n1 that matching the true tree. Then the
maximum likelihood estimator of p1 is

p̂1 = max

(
n1

n
,
1

3

)
, (4)

which is consistent, but biased upward. Transforming parameters, this gives
consistent MLEs of φ0 and γ as

φ̂0 =
3

2
(1− p̂1) , γ̂ =

√
2(1− φ̂0)√
φ̂0(3− 2φ̂0)

,

which are biased downward and upward respectively. Since we will need to work
with parameterizations in terms of both p1 and γ, define the increasing function

γ(p) =
3p− 1

3
√

(1− p)p
(5)

so that γ = γ(p1) and γ̂ = γ(p̂1). Then an estimator of μ0 is μ̂0 =
√
nγ̂, though

this is not consistent.
Nonetheless we can construct a confidence interval for μ0 from μ̂0. To ulti-

mately obtain the least conservative test, we prefer a confidence interval that,
when possible, excludes those values of μ0 which produce the largest critical val-
ues. In light of Proposition 7.1 this means we seek a 1-sided confidence interval
of the form [a,∞).

As the count n1 is binomially distributed with parameters p1 and n, if the
estimator were simply n1/n, and not as in Equation (4), a confidence interval
[b,∞) for p1 at level 1− α can be obtained by well-known methods, with lower
bound b = b(p̂1, n;α). If we require that the MLE p̂1 be in the confidence
interval, then for all levels below 0.5, the lower bound is b = p̂1, effectively
raising the level to 0.5. Since p1 ≥ 1/3, the interval is then modified to [a,∞)
where a = max(b, 1/3). Since γ(p) is increasing, a confidence interval for μ0 is

Iα(γ̂, n) = [
√
nγ(a),∞).

For our simulations, we took a similar approach, using a truncated normal ap-
proximation to the distribution of μ̂0 directly.

The Simple Bonferroni critical value for level α and choice of δ ∈ [0, α] is
then defined as

CV (γ̂, n, α, δ) = sup
μ∈Iα−δ(γ̂,n)

CVμ(1− δ).
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By Proposition 7.1, for the model T1 this becomes

CV (γ̂, n, α, δ) = CV√
nγ(a)(1− δ), (6)

where a depends on γ̂, n, α − δ. Note that for a fixed choice of δ/α, one can
search for an α for which the critical value equals the observed statistic, and
view this α as a p-value.

Rejecting the null hypothesis based on the Simple Bonferroni critical value
ensures good behavior of the test in the following sense: Define the asymptotic
size of a test with test statistic T under the null hypothesis and any critical
value CVn (possibly dependent on the sample and sample size n) as

AsySz(CVn) = lim sup
n→∞

sup
γ∈[0,∞)

Pγ(T > CVn).

Then as proved in [20], the Simple Bonferroni critical value satisfies

δ ≤ AsySz(CV (μ̂0, n, α, δ)) ≤ α.

More informally, asymptotically the test will result in rejection of the null hy-
pothesis with probability at most α. Note that the LF critical value ensures an
asymptotic size of α, so this result alone does not indicate the Simple Bonferroni
critical value results in an improved test. Moreover, the asymptotic size focuses
on avoiding type I error, and says nothing about power. The Bonferroni critical
value is chosen in hopes of producing a more powerful test than the LF one, by
using the data to guide one to a potentially smaller critical value.

Using Equation (6), if δ = α, the Simple Bonferroni critical value becomes
CV0(1 − α) which is the LF choice. At the other extreme of δ = 0, the crit-
ical value becomes infinite. Although [20] provides no theoretical guidance as
to a good choice of δ when one has no information about the localization pa-
rameter, a value of δ = 0.9α, or the consideration of multiple values of δ, is
suggested. Optimally, we would choose the critical value to be the infimum over
all values of δ with an appropriate size-correction factor, or an approximation
obtained by considering a fine grid of values (that is, the Minimum Bonferroni
method of [20] without considering choices of β from the Adjusted Bonferroni
method). To reduce computational time, however, through simulations we can
determine optimal choices of δ for various μ0 in advance, and then use the value
of δ determined by μ̂0. We call this compromise approach the Minimum Simple
Bonferroni method.

The idea of using a confidence interval for μ0 is pushed further in the defi-
nition of the Adjusted Bonferroni critical value, the precise definition of which
can be found in [20] and depends upon a choice of β ∈ [0, 1]. Through simula-
tion of the joint behavior of the statistic and the parameter estimate over the
confidence interval, it chooses a new level so that, under certain assumptions,
the test has correct asymptotic size. Similar to the Minimum Simple Bonferroni
method, we can determine optimal choices of β for various μ0 in advance, and
then find β determined by μ̂0. We call this the Minimum Adjusted Bonferroni
method. (This is similar to the Minimum Bonferroni Method of [20] but without
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its additional size correction. Simulations in Table 4 and Table 5 suggest this
correction is not needed for the models considered here.)

We also consider a naive hypothesis test, which simply uses the estimate μ̂0

from data as the value of μ0 for determining the distribution of Proposition 5.1,
despite the fact that this is not consistently estimated. Doing so may not give an
asymptotic size below the chosen level α (and in fact does not for true μ0 ≈ 0),
so this test can be anti-conservative. However, when the true parameter μ0 is
far from the boundary, so with high probability μ̂0 is also, this should behave
like the χ2

1. We refer to the test obtained in this way as the ML-estimate test. In
simulations (not shown), a parametric bootstrap test, in which the MLE deter-
mines the parameter value, closely follows the behavior of this test for all values
of μ0 we investigated. This is as expected since the normal approximation used
in deriving the results of Proposition 5.1 approximates the bootstrap process.

A final test, useful for comparison, uses the χ2
1 distribution that a standard

asymptotic argument suggests is appropriate at all non-boundary points.
Table 4 and Figure 11 show the results of simulations with these seven meth-

ods, giving the empirical null rejection rates for a range of values of the true
parameter μ0 when the nominal level is α = 0.05, and plots of these rejection
rates for several values of α. This table and figure indicate that use of the χ2

1

gives a strongly anti-conservative test for a large interval of true parameters
near the boundary point. The LF approach, except for values of μ0 quite near
the boundary, is strongly conservative. The Simple Bonferroni and Minimum
Simple Bonferroni methods are also strongly conservative over a wide range,
though for μ0 very far from the boundary they approach the desired rejection
rate. The Adjusted Bonferroni method with β = 0.5 attains a null rejection rate
much closer to the nominal one near the boundary, but far from it is matched
by the Simple and Minimum Simple Bonferroni methods. The Minimum Ad-
justed Bonferroni method comes closest to the nominal level of all methods with
asymptotic size guarantees. Finally, the ML-estimate method is conservative for
all values of μ0 except those in a small interval near the boundary, and except
on that interval comes closest to the desired rejection rate of all the methods.

7.2. Model T3

For the model T3 we also consider drifting parameter sequences γn → 0 defined
for a choice of μ0 ∈ [0,∞) by

μ0 =
√
nγn.

Here γ = 0 corresponds to the singularity of the model. For such a drifting
parameter sequence {γn}, the distributions of Proposition 4.1 for samples of size
n are not identical, but a limit distribution exists. Since for any fixed μ0 > 0
the γn approach 0, reparameterizing in terms of φ0 one obtains a parameter
sequence approaching 1. Using the formula in Proposition 4.1 for α0, this gives
a sequence of angles approaching π/6. The limit distribution, then, is given by
Equation 1 of Proposition 4.1, where Z, Z̄ depend on μ0 as stated there, but
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Fig 11. Empirical null rejection rates for various hypothesis test methods for the model T1
(left) and T3 (right), at nominal levels α = 0.01 (top), 0.05 (middle), and 0.1 (bottom). Note
differences in vertical scales between columns. Plotted values for α = 0.05 are as given in
Tables 4 and 5. These were obtained from 105 repetitions of simulations with n = 106.
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Table 4

Empirical null rejection rates for various hypothesis test methods for the model T1, at
nominal level α = 0.05. Data was generated under T1 with n = 106 for the shown values of
μ0, with 105 repetitions to calculate rejection rates. For the Simple Bonferroni method,

δ = 0.9α, and for the Adjusted Bonferroni method β = 0.5. Note that the ML estimate and
χ2
1 methods have no asymptotic guarantees of rejection at less than α. The Bonferroni
methods are: Simple Bonferroni (SB), Minimum Simple Bonferroni (MSB), Adjusted

Bonferroni (AB) and Minimum Adjusted Bonferroni (MAB).

μ0

Method 0 0.25 0.50 0.75 1.0 1.5 2.0 5.0

MLest 0.0575 0.0485 0.0460 0.0435 0.0428 0.0457 0.0463 0.0501

LF 0.0492 0.0385 0.0331 0.0285 0.0257 0.0245 0.0224 0.0232

χ2
1 0.0973 0.0780 0.0688 0.0601 0.0549 0.0520 0.0494 0.0501

SB 0.0448 0.0347 0.0297 0.0256 0.0234 0.0234 0.0235 0.0438

MSB 0.0489 0.0381 0.0327 0.0281 0.0256 0.0251 0.0247 0.0459

AB 0.0497 0.0419 0.0394 0.0375 0.0365 0.0391 0.0396 0.0431

MAB 0.0499 0.0422 0.0398 0.0382 0.0375 0.0408 0.0420 0.0489

where α0 = π/6. The density function is as in Equation 2 of Proposition 4.2,
but with α0 = β0 = π/6. Note that this limit distribution is not in the family of
distributions given by these propositions, except in the case when μ0 = 0. Since
the distributions of Proposition 4.1 have already accounted for the geometry of
the model, the notion of a limit on a drifting sequence changes little.

As a corollary of Lemma B.1 of Appendix B we have the following.

Proposition 7.2. For localization parameter μ, let Lμ be the cdf of the limiting
distribution along the drifting parameter sequence above, of the distributions
of Proposition 4.1 for model T3. For a given level 0 < α < 1, let CVμ(α) =
L−1
μ (1 − α) be the critical value with level α. Then CVμ(α) is an increasing

function of μ.

For the distributions of Proposition 4.1, numerical computations show a simi-
lar relationship of critical values. That is, for fixed n as the parameter μ increases
(or as φ decreases), the critical values at a fixed level increase. Because the an-
gle α0 = α0(φ) in the formula for the distribution changes, this is considerably
more difficult to formally prove than is Proposition 7.2.

In particular for the model T3 the LF approach to testing in either the
framework of limit distributions of drifting sequences, or using the distributions
of Proposition 4.1, is to always use the distribution obtained by letting μ0 → ∞.
In both cases, this is the χ2

1 distribution appropriate for parameter values far
from the singularity by standard arguments. However, this is quite conservative
when the true parameter lies near the singularity.

To obtain a less conservative test through a confidence interval for the param-
eter, we seek to exclude values that would produce the largest critical values,
so Proposition 7.2 and its following paragraph indicate we should find a 1-sided
confidence interval for μ0 of the form [0, a]. Because of the non-standard form
of our model we sketch how this is done.
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Consider a sample of size n drawn from the model T3 with parameters
(p1, p2, p3) in the notation of Example 2.3, on any of the three line segments of
the model. Let (n1, n2, n3) be the counts of the three rooted topologies in the
sample. Then the maximum likelihood estimator of (p1, p2, p3) might lie on any
of the three line segments, so letting pmax = max(p1, p2, p3), one can show

p̂max = max
(n1

n
,
n2

n
,
n3

n

)
,

which is consistent. Transforming parameters, this gives consistent ML estima-
tors

φ̂0 =
3

2
(1− p̂max) , γ̂ =

√
2(1− φ̂0)√
φ̂0(3− 2φ̂0)

.

Using Equation (5), γ = γ(p1) and γ̂ = γ(p̂max). We also consider the estimator
of μ0 =

√
nγ given by μ̂0 =

√
nγ̂.

The counts (n1, n2, n3) are trinomially distributed with parameters (p1, p2, p3)
and n, and hence the (n1/n, n2/n, n3/n) are approximately normally distributed.
To obtain a 1-sided confidence interval at level 1−α of the form [1/3, a] for pmax,
we seek the infimum of those a such that for all pmax > a,

P(Xmax < p̂max) < α, (7)

where Xmax is the maximum entry of a random draw (X1, X2, X3) from the
normal. The probability here can be calculated by integrating the appropriate
normal density over a triangle bounded by the line segments orthogonal to
the three model line segments at the points where pmax = p̂max on them. A
confidence interval for μ0 is then

Iα(γ̂, n) = [0,
√
nγ(a)].

To ensure μ̂0 lies in the interval, we increase its upper bound if necessary.
By Proposition 7.2, the Simple Bonferroni critical value in the drifting se-

quence setting is then

CV (γ̂, n, α, δ) = CV√
nγ(a)(1− δ), (8)

where a depends on γ̂, n, α− δ as above.
One can also consider the Adjusted Bonferroni and Minimum Adjusted Bon-

ferroni tests while using the distributions of Proposition 4.1, and the naive
approach of simply using the distribution whose parameter is the (inconsistent)
ML estimate.

Table 5 and Figure 11 show the results of simulations with four methods, giv-
ing the empirical null rejection rates for a range of values of the true parameter
μ0. These were performed using the distributions of Proposition 4.1, and not
their limits along drifting sequences, as there was little difference between the
two. In our simulations we found no instances in which the Simple Bonferroni
or Minimum Simple Bonferroni methods attained a null rejection probability
higher than the χ2

1, so those methods are omitted from the results.
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Table 5

Empirical null rejection rates for various hypothesis test methods for the model T3, at
nominal level α = 0.05. Data was generated under T3 with n = 106 for the shown values of
μ0, with 105 repetitions to calculate rejection rates. For the Adjusted Bonferroni method
β = 1. Note that the ML estimate and χ2

1 methods have no asymptotic guarantees of
rejection at less than α. The Bonferroni methods are: Adjusted Bonferroni (AB) and

Minimum Adjusted Bonferroni (MAB).

μ0

Method 0 0.25 0.50 0.75 1.0 1.5 2.0 5.0

MLest 0.0215 0.0237 0.0266 0.0314 0.0365 0.0466 0.0510 0.0505

χ2
1 0.0142 0.0151 0.0178 0.0217 0.0259 0.0360 0.0423 0.0504

AB 0.0192 0.0210 0.0237 0.0279 0.0327 0.0424 0.0468 0.0460

MAB 0.0194 0.0214 0.0240 0.0283 0.0333 0.0430 0.0476 0.0489

As the plots show, all methods were quite conservative for μ0 near the sin-
gularity, with the χ2

1 (which is also the LF) being the most so. The Adjusted
Bonferroni and Minimum Adjusted Bonferroni methods have better and very
similar performance near the singularity, though far away from it the Minimum
Adjusted Bonferroni method attains a null rejection rate closer to the desired
one. The ML-estimate method, despite a lack of a theoretical guarantee, comes
closest to the desired null rejection rate on a fairly large interval including the
singularity, but appears to be slightly anti-conservative for μ0 near 2, at least
for larger α.

8. Discussion

The distributions commonly used in hypothesis testing are obtained through
standard asymptotics with sample size n → ∞, and may discontinuously jump
between regular points of a model and its boundaries and singularities. As the
examples of models T1 and T3 illustrate, even at regular points near boundaries
and singularities such standard approximations as the χ2

1 may behave poorly
in testing. Although increasing sample size may lead to better performance at
any specific point, the discontinuous behavior of such an asymptotic distribution
means a region of poor performance can remain, though it shrinks in size. While
Drton [13] commented that convergence to the asymptotics can be slow near
a boundary or singularity, we further emphasize that the nonuniformity of the
rate of convergence poses even more of a problem. Unless we have an a priori
quantitative bound separating the true parameter from the singularities and
boundaries, no finite sample size can be found which will lead to uniformly
good performance of a standard asymptotic approximation.

Moreover, depending on the model, use of the χ2 approximation may lead
to either conservative or anti-conservative tests (or both, in different regions),
depending on the geometry of the model beyond the singularity or boundary.
Thus no simple rule can be adopted for adjusting one’s test. Theorem 3.1 sug-
gests an alternative approach of avoiding the approximation of the model by its
tangent cone inherent in the derivation of the standard asymptotic distribution,
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and using a different approximate distribution dependent on both the true pa-
rameter and the sample size. For our example models this performed well, as
illustrated by our simulations.

Even for our models, there are a number of hypothesis tests not presented here
for which Theorem 3.1 will be useful. For instance, one may wish to test whether
data fits a null hypothesis of a particular tree, model T1, vs. an alternative of
the other trees, model T3�T1. Failure to reject the null hypothesis for each
of the three choices of T1 would, in biological terminology, be interpreted as a
soft polytomy, where an unresolved (star) tree represents ignorance of the true
resolution. Similarly, one may wish to test whether data fits a simple hypothesis
of an unresolved tree, θ0 = (1/3, 1/3, /1/3), vs. an alternative of a resolved tree,
model T3 � {θ0}. For this test failure to reject the null hypothesis would, in
biological terminology, be interpreted as a hard polytomy, where an unresolved
tree represents what are believed to be true relationships.

Within phylogenetics, another possible use of Theorem 3.1 is for conducting
hypothesis tests for distance data to fit a tree. An evolutionary distance d (a, b)
is typically a numerical measure of the amount of mutation between two species
a and b, and under certain modeling assumptions should in expectation match
the sum of lengths of branches between them on a tree. The 3-point condition
states that for an ultrametric tree to exist relating species a, b, c, the expecta-
tions of d (a, b), d (a, c), and d (b, c) must have the two largest equal, with the
smallest pair indicating the correct tree topology. This is similar to models T1
and T3, with the inequality reversed, except that the distances may have any
non-negative values. Again the model has a singularity or boundary.

Several works [18, 19] have proposed statistical tests involving distances. For
instance, Gu and Li [18] tested the 3-point condition by focusing on the differ-
ence of the two distances that are assumed to be equal under H0. Arguing that
this difference is asymptotically normally distributed, a Z-test is performed.
However, when all three distances are near equal, as they would be near the
singularity or boundary point corresponding to a star tree, this test becomes
inaccurate, as the smallest value may well not correspond to the true topology.
Just as with models T1 and T3, the test could either be anti-conservative or con-
servative, depending on whether the null hypothesis was of a specific 3-species
ultrametric tree or of any of the three possible trees, respectively.

Testing for genetic admixture between species and populations using the
D statistic (also known as the ABBA-BABA test), as was done originally to
understand Human-Neanderthal interactions [17, 14], is a means to reject a 4-
species tree model of evolution. However this statistic depends only on counts
of data not in accord with evolution on the presumed tree, which is similar to
using only the counts n2 and n3 of tree topologies not in accord with the true
tree for our model T1. In situations where the count n1 of data concordant with
the presumed true tree is of similar magnitude, the framework for testing we
give here is likely more appropriate.

Our example models have rather special structure making them amenable
to our approach. Since Θ0 was locally linear, except at the singularities and
boundaries, we were able to compute explicit density functions for the relevant
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distributions, so that using them was no more difficult than using a χ2. For a
model given by a k-dimensional half-space embedded in a (k + 1)-dimensional
space, the arguments for model T1 can be modified slightly to obtain an explicit
density. More generally, it is likely the calculations generalize to give explicit
densities for a larger class of models defined by linear equality and inequality
constraints on parameters. As hypotheses of this form are common, this po-
tentially gives a wide range of applications. Although models similar to T3, in
which several linear half-spaces or spaces are joined at a singularity, are likely
to be rarer, they should also be tractable in our framework. Although we do
not believe explicit calculations such as those done here can be done for all
models, within a restricted domain where they can be performed they may give
improved tools.

With a broader perspective, Theorem 3.1 suggests that whenever the asymp-
totic distribution performs badly for hypothesis testing, one might do better by
using a distribution taking the local geometry of the model into account in a
more subtle way than just through the tangent cone. For instance, if a model
were described by a curve in the plane, one should expect that even at regular
points the asymptotic distribution may be less useful in regions of high cur-
vature, where the tangent cone approximation of the model is poor. However,
unlike in the case of singularities or boundaries one should be able to work
out a sample size ensuring a reasonable fit by a χ2, as long as the curvature is
bounded. If obtaining a data set of that size is not possible, then even if the dis-
tribution of Theorem 3.1 cannot be computed, first approximating the model by
a simpler curve with similar curvature, such as an appropriate polynomial, and
then using the theorem might lead to a better distribution for use in hypothesis
testing.
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Appendix A: The multispecies coalescent model

We briefly introduce the multispecies coalescent model, which underlies models
T1 and T3 of Examples 2.2 and 2.3. This model, introduced by Pamilo and
Nei [24] (see also [25]), extends the Kingman coalescent model of population
genetics, from applying to a single population, to a tree of populations, called a
species tree. It is the fundamental model of the biological process of incomplete
lineage sorting, by which gene trees of sampled lineages can fail to match the
structure of the tree relating species overall. Incomplete lineage sorting is one of
several processes that can make inference of species relationships from genetic
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data difficult. An example of a single such gene tree sampled for a particular
species tree is shown in Figure 2.

The Kingman coalescent models a finite number of lineages, traced back-
ward in time within a single population, as they merge, or coalesce, at com-
mon ancestors. The most convenient time scale is in coalescent units t, where
Δt = Δτ/N (τ), with time τ measured in number of generations and N (τ) the
population size. In these units, if k lineages are sampled, the time to the first
coalescence of the first pair of lineages is exponentially distributed with rate

(
k
2

)
.

The pair that coalesces is then chosen uniformly at random. Then the coalescent
process begins again with one less lineage, and hence rate

(
k−1
2

)
. Wakeley [31]

provides a comprehensive introduction to this model.
While in population genetics, one often views the Kingman model as running

until all lineages coalesce to a single one, in the multispecies coalescent that
may not happen within a single population, which has a finite duration.

The parameters of the multispecies coalescent model are a rooted metric
species tree, with branch lengths given in coalescent units. The branches of
the species tree should be thought of as representing unstructured populations,
which stretch back in time until they merge with another population. We also
consider a population ancestral to the root of the species tree, which is con-
sidered to have infinite length, so that lineages in it coalesce into one with
probability 1.

Specific finite numbers of lineages are to be sampled from each species’ pop-
ulation at the leaves of the tree. Then the Kingman coalescent model applies for
the duration of that population to its parental node in the tree. At that point,
there are fewer lineages if any coalescent event occurred, but we gain more lin-
eages from the other branch of the species tree which descends from that node.
The combined collection of lineages then starts a new coalescent process on the
branch leading towards the root. Continuing in this way, eventually a finite num-
ber of lineages reach the root, where a final Kingman coalescent process leads
to a rooted metric gene tree. Finally, ignoring branch lengths yields a sampled
rooted topological gene tree.

While for species trees with many species it is difficult to compute the proba-
bility of any gene tree (e.g., Rosenberg [26]), in the applications based on models
T1 and T3, the species tree has only three species, and only one lineage is sam-
pled from each. With only one lineage per species, coalescence can occur only
in the internal branch of the tree or “above-the-root”, and not in any terminal
branch. Thus the only relevant branch length is the internal one.

Suppose that the true species tree is a rooted three species tree ((a, b) :t, c),
as shown in Figure 2. There are three possible gene tree topologies,

AB|C, AC|B, BC|A.

In this case, the probability of gene trees discordant from the species tree are
easiest to compute. For instance the gene trees AC|B and BC|A can only form if
no coalescence occurs except above the root. From the exponential distribution
of coalescent times, the probability of no coalescence of two lineages in a branch
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of length t is e−t. Then, with three lineages present at the root, due to the
exchangeability of lineages, the formation of each of the three rooted trees must
have equal probability of 1/3. Thus pAC|B = 1/3e−t. The same argument gives
pBC|A = 1/3e−t, which thus implies pAB|C = 1− 2/3e−t.

Appendix B: Model T3

Here we prove Proposition 4.1 and Proposition 4.2 concerning the model T3.
For a fixed sample size, multinomial distributions form a regular exponential

family if Θ̃ = Δ is the open simplex. The regularity conditions of Drton [13] are
then satisfied, and thus Theorem 3.1 applies.

Since Θ̃ = Δ2 lies on a plane in R
3, we first apply an affine transformation

M : R3 → R
2,

M =

(
0 − 1√

2
1√
2√

2
3 − 1√

6
− 1√

6

)
,

to map Θ̃ isometrically to the plane, sending the singularity to the origin. This

maps a true parameter point, say θ0 = θ
(1)
0 = (1− 2/3φ0, 1/3φ0, 1/3φ0) with-

out loss of generality, to
(
0,

√
2
3 (1− φ0)

)
. Computing the Fisher information

matrix I (θ0) for a sample of size n = 1 for θ0 in planar coordinates, we obtain
the transformation matrix

√
nI (θ0)

1
2 =

⎛
⎝
√

3n
φ0

0

0
√

3n
φ0(3−2φ0)

⎞
⎠ ,

which we apply to the planar image of Δ2. The point θ0 is mapped to (0, μ0)
with

μ0 =
√
2n

1− φ0√
φ0 (3− 2φ0)

.

Under these transformations the null parameter space Θ0 is mapped non-
conformally, provided φ0 ∈ (0, 1), to three line segments emanating from the

origin, one to
(
0,
√

2n
φ0(3−2φ0)

)
passing through the true parameter point (0, μ0),

and others to

(
±
√

3n
2φ0

,−
√

n
2φ0(3−2φ0)

)
. (The parameter value φ0 = 1 corre-

sponds to the singularity in Θ0 and the transformation is conformal in this
instance.) The full parameter space Δ2 is mapped to the interior of the convex
hull of the three points given above. See Figure 4.

The angle α0 > 0 formed between the positive x-axis and the line segment

joining the origin to

(√
3n
2φ0

,−
√

n
2φ0(3−2φ0)

)
, as shown is Figure 4, is α0 =

arctan

(
1√

3(3−2φ0)

)
, and varies from π/6 for φ0 = 1 down to arctan (1/3) as
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φ0 → 0. Letting γ0 = tan (α0), in the transformed space the image of Θ0 is
contained in the union of the half-lines {(0, y) | y ≥ 0} and y = −γ0 sgn (x)x.

By Theorem 3.1, the approximate distribution of the likelihood ratio statistic
is the distribution of the minimum squared Euclidean distance between a nor-
mal sample, N ((0, μ0) , I), and three line segments in the transformed space.
Assuming that θ0 is not too close to the boundary of Θ̃ in a sense dependent on
sample size, little of the mass of N ((0, μ0) , I) is outside the image of the sim-
plex. Thus, for the remainder of the argument, we replace these line segments
with half-lines emanating from the singularity (0, 0).

Denote the marginal probability distributions of the bivariate normal sample
by Z ∼ N (0, 1) and Z̄ ∼ N (μ0, 1). We next determine the minimum squared
distance of a sample point

(
Z, Z̄

)
to the three half-lines.

Consider first the half-line {(0, y) | y ≥ 0}. If Z̄ is non-negative, then the
squared Euclidean distance is Z2, while if Z̄ is negative, then the squared dis-
tance is Z2 + Z̄2. Thus the squared Euclidean distance is

Z2 +
1

2

(
1− sgn

(
Z̄
))

Z̄2. (9)

Now consider the half-lines y = −γ0 sgn (x)x and denote the closest point to(
Z, Z̄

)
by (X,−γ0 sgn (X)X). Assuming X �= 0, then sgn (X) = sgn (Z), and

minimizing

(Z −X)
2
+
(
Z̄ + γ0 sgn (Z)X

)2
yields

X =
1

1 + γ2
0

(
Z − γ0 sgn (Z) Z̄

)
.

Substituting into the previous expression gives the squared distance

γ2
0

1 + γ2
0

(
Z +

1

γ0
sgn (Z) Z̄

)2

=
(
sinα0Z + cosα0 sgn (Z) Z̄

)2
. (10)

In the caseX = 0, the closest point to the two half lines is the origin. This can
occur only when Z̄ ≥ 0, so the squared distance to the two half-lines is at least
Z2, which is the squared distance to the vertical half-line given in Equation (9).
Moreover, it can be shown that Z2 is at most the value given in Equation (10)
in this case.

It follows that the approximate distribution of the likelihood ratio statistic
is that of the random variable

Λ̃n = min

(
Z2 +

1

2

(
1− sgn

(
Z̄
))

Z̄2,
(
sinα0Z + cosα0 sgn (Z) Z̄

)2)
,

as given in Proposition 4.1.
To determine the probability density function for the approximate distri-

bution of Proposition 4.1, we let GX (x) denote the cumulative distribution
function of the (non-squared) Euclidean distance. This can be found by inte-
grating the bivariate normal distribution N ((0, μ0) , I) over the tube of points
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within distance x from the transformed Θ0, as shown in Figure 12. Calculations
are simplified by the fact that the tubular region in Figure 12 has bilateral
symmetry, as does the normal distribution.

Due to symmetry, we need only integrate over the shaded regions in the
figure. Let Li = Li (x) denote the half-lines forming the outer boundaries of
these regions. Denote by β0 the angle formed by the line segment joining the
origin to the point of intersection of L1 and L2. This angle has measure β0 =
1/2 (π/2− α0).

With this setup, GX (x) = 2 (G1 (x) +G2 (x) +G3 (x)), where Gi is the in-
tegral over the shaded strip Ri, and the density of the Euclidean distance is

gX (x) = 2

(
d

dx
G1 (x) +

d

dx
G2 (x) +

d

dx
G3 (x)

)
.

Fig 12. The region of integration for GX (x) is between the dashed lines. The integral is
evaluated as three integrals, over each of the shaded regions Ri.

Considering d
dxG1 (x) first, one sees that this derivative is the integral of the

normal density over boundary L1. We show this formally using polar coordi-
nates:

d

dx
G1 (x) =

∫ π
2

β0

d

dx

∫ x
cos β

0

1

2π
exp

(
−1

2

(
r2 − 2μ0r sinβ + μ2

0

))
r dr dβ

=

∫ π
2

β0

1

2π
exp

(
−1

2

(
x2

cos2 β
− 2μ0

x

cosβ
sinβ + μ2

0

))
x

cos2 β
dβ

=
1

2π
exp

(
−1

2
x2

)
∫ π

2

β0

exp

(
−1

2

(
x2 tan2 β − 2μ0x tanβ + μ2

0

)) x

cos2 β
dβ.
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Substituting y = x tanβ gives

d

dx
G1 (x) =

1

2π
exp

(
−1

2
x2

)∫ ∞

x tan β0

exp

(
−1

2
(y − μ0)

2

)
dy

=
1

2
√
2π

exp

(
−1

2
x2

)(
1− erf

(
1√
2
(x tanβ0 − μ0)

))
.

More briefly, over R2 we have

d

dx
G2 (x) =

∫
L2

f (z, z̄) dx,

where f is the density of the bivariate normal. To evaluate this, we reflect
about the line y = tanβ0 x, mapping the mean of the Gaussian to (μ0 cosα0,
−μ0 sinα0), and sending L2 to a vertical half-line (x, y), with y ≥ x tanβ0, so

d

dx
G2 (x) =

∫ ∞

x tanβ0

1

2π
exp

(
−1

2

(
(x− μ0 cosα0)

2
+ (y + μ0 sinα0)

2
))

dy

=
1

2
√
2π

exp

(
−1

2
(x− μ0 cosα0)

2

)
(
1− erf

(
1√
2
(x tanβ0 + μ0 sinα0)

))
.

Finally, since the same reflection maps L3 to the vertical half-line (−x, y) with
y ≥ x tanα0,

d

dx
G3 (x) =

∫ ∞

x tanα0

1

2π
exp

(
−1

2

(
(−x− μ0 cosα0)

2
+ (y + μ0 sinα0)

2
))

dy

=
1

2
√
2π

exp

(
−1

2
(x+ μ0 cosα0)

2

)
(
1− erf

(
1√
2
(x tanα0 + μ0 sinα0)

))
.

Summing these three expressions and multiplying by 2, we obtain the density
gX (x) for the distance. After a change of variable to convert to the squared
Euclidean distance, the random variable Λ̃n has density function

fΛ̃n
(λ) =

1

2
√
2πλ

[
exp

(
−1

2
λ

)(
1− erf

(
1√
2

(√
λ tanβ0 − μ0

)))

+ exp

(
−1

2

(√
λ− μ0 cosα0

)2
)(

1− erf

(
1√
2

(√
λ tanβ0 + μ0 sinα0

)))

+ exp

(
−1

2

(√
λ+ μ0 cosα0

)2
)(

1− erf

(
1√
2

(√
λ tanα0 + μ0 sinα0

)))]
,

as given in Proposition 4.2.
For use in Section 7, we further investigate relationships between the distri-

butions for different values of μ0. Proposition 7.2 is a direct corollary of the
following.
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Lemma B.1. Consider the limit of the distributions of Proposition 4.1 along
a drifting parameter sequence defined by μ =

√
nγn for a fixed μ, and let Lμ(x)

denote its cdf. Then for fixed x, the function Lμ (x) is strictly decreasing in μ.

Proof. We follow a similar line of reasoning as used for proving Proposition 4.1,
to show ∂

∂μLμ (x) < 0.

With fixed α0 = π/6, let Gμ0(x) denote the cdf for the non-squared Euclidean
distance to the three lines depicted in Figure 12 for a standard normal with mean
(0, μ0). This is the integral of the normal density over the region depicted in
Figure 12. Then Gμ0+ε(x) can be calculated as the integral of the same normal,
with mean (0, μ0), over a region obtained by shifting the region of Figure 12
downward by ε. Thus, for small ε, Gμ0+ε(x) − Gμ0(x) is the integral over two
thin strips along the lower edges of the inverted V of the region minus two small
strips along the upper edges of the inverted V. Since these strips have width√

3
2 ε, with f denoting the density, we have

Gμ0+ε(x)−Gμ0(x) ≈
√
3ε

(∫
L3

f ds−
∫
L2

f ds

)
,

so
∂

∂μ0
Gμ0(x) =

√
3

(∫
L3

f ds−
∫
L2

f ds

)
.

Since α0 = β0 = π
6 , by calculations in the proof of Proposition 4.1 above,

∂

∂μ0
Gμ0(x) =

√
3

2
√
2π

(
1− erf

(
1√
2

(
1√
3
x+

1

2
μ0

)))
⎛
⎝exp

⎛
⎝−1

2

(
x+

√
3

2
μ0

)2
⎞
⎠− exp

⎛
⎝−1

2

(
x−

√
3

2
μ0

)2
⎞
⎠
⎞
⎠ .

Since |x−
√
3
2 μ0| ≤ |x+

√
3
2 μ0| for all x, μ0 ≥ 0, this shows Gμ0(x) is decreasing in

μ0 for all x. Following a change of variables to the squared Euclidean distance,
the claim is established.

Appendix C: Model T1

We now prove Propositions 5.1 and 5.2, using the transformation and notation
of Appendix B. Proposition 5.1 follows immediately by a simple modification to
the argument in Appendix B. See Equation (9).

For Proposition 5.2, let gX (x) denote the probability density function for
the (non-squared) distance x between a sample point

(
Z, Z̄

)
and the mean

(0, μ0). Then gX (x) = d
dxGX (x) is given by the integral of the Gaussian over

the dashed curves shown in Figure 13. To compute this, we integrate over the
dashed boundaries of R1 and R2 depicted in the figure. By symmetry,

gX (x) =
d

dx
GX (x) = 2

d

dx
G1 (x) +

d

dx
G2 (x) ,
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Fig 13. The region of integration for model T1.

where Gi is the contribution to the cdf over region Ri.
For R1,

d

dx
G1 (x) =

∫ ∞

0

1

2π
exp

(
−1

2

(
x2 + (y − μ0)

2
))

dy

=
1√
2π

exp

(
−1

2
x2

)(
1 + erf

(
μ0√
2

))
.

On R2, using polar coordinates and C2 for the dashed semi-circle, we find

d

dx
G2 (x) =

∫
C2

1

2π
exp

(
−1

2

(
x2 + (y − μ0)

2
))

dσ

=
1

2π
x exp

(
−1

2

(
x2 + μ2

0

))∫ 2π

π

exp (μ0x sin θ) dθ

= −1

2
x exp

(
−1

2

(
x2 + μ2

0

))
M0 (μ0x) ,

where the last line is obtained after a change of variables, and M0 (z) is the
modified Struve function 11.5.5 from Olver [23].

Summing, and making a change of variable to the squared Euclidean distance,
we find the probability density function for Λ̃n is

fΛ̃n
(λ) =

1

4
exp

(
−λ

2

)[√
2

πλ

(
1 + erf

(
μ0√
2

))
− exp

(
−μ2

0

2

)
M0

(
μ0

√
λ
)]

,

as given in Proposition 5.2.
For use in Section 7, we further investigate relationships between the distri-

butions for different values of μ0. Proposition 7.1 is a direct corollary of the
following.

Lemma C.1. Let Lμ0 denote the cdf of the distribution of Proposition 5.1. For
fixed x, the function Lμ0 (x) is strictly increasing in μ0.

Proof. For fixed x > 0, if μ0 is increased to μ0 + ε for positive ε, the region of
integration for computing Lμ0+ε (x) is as shown in Figure 13, but with the center
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of the Gaussian moved upward to (0, μ0 + ε). Equivalently, we can compute the
integral by instead considering a Gaussian centered at (0, μ0), but extending
the region R1 downward by ε, and moving the half disc R2 downward by ε.
Since this enlarged region contains the region for computing Lμ0 (x) as well as
an additional region of positive measure, the claim follows.
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