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Abstract: This paper looks at the strong consistency of the ordinary least
squares (OLS) estimator in linear regression models with adaptive learn-
ing. It is a companion to Christopeit & Massmann (2018) which considers
the estimator’s convergence in distribution and its weak consistency in the
same setting. Under constant gain learning, the model is closely related
to stationary, (alternating) unit root or explosive autoregressive processes.
Under decreasing gain learning, the regressors in the model are asymptot-
ically collinear. The paper examines, first, the issue of strong convergence
of the learning recursion: It is argued that, under constant gain learning,
the recursion does not converge in any probabilistic sense, while for de-
creasing gain learning rates are derived at which the recursion converges
almost surely to the rational expectations equilibrium. Secondly, the paper
establishes the strong consistency of the OLS estimators, under both con-
stant and decreasing gain learning, as well as rates at which the estimators
converge almost surely. In the constant gain model, separate estimators
for the intercept and slope parameters are juxtaposed to the joint estima-
tor, drawing on the recent literature on explosive autoregressive models.
Thirdly, it is emphasised that strong consistency is obtained in all models
although the near-optimal condition for the strong consistency of OLS in
linear regression models with stochastic regressors, established by Lai &
Wei (1982a), is not always met.
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1. Introduction

This paper looks at the strong consistency of the ordinary least squares (OLS)
estimator in a linear model whose regressors are generated by an adaptive learn-
ing recursion. In particular, interest lies on the estimation of what we call the
structural parameters δ and β in the model

yt = δ + βat−1 + εt (1)

where the index t = 1, 2, . . ., the explanatory variable is generated recursively
by

at = at−1 + γt (yt − at−1) (2)
and the error term εt is specified below. Of central importance in this model is
the so-called weighting, or gain, sequence γt which governs the extent to which
the previous value at−1 of the regressor is updated, or learned, in the light of
its deviation from the present realisation of yt. We examine two specifications
of the gain sequence: For a known parameter γ > 0,

γt =
{

γ
γ/t.

(3)

The former is referred to as constant gain, the latter is an instance of a decreasing
gain sequence since γt → 0.

The model in (1)-(3) can be seen as a special case of the structural model
yt = βat−1xt + δxt + εt where xt is some exogenous covariate and the learn-
ing recursion of at is given by a stochastic approximation algorithm, see Lai
(2003) for an overview. Models of this class have been particularly prominent
in the recent macroeconomic literature on bounded rationality which interprets
at−1xt = yet|t−1, say, as the expectations economic agents form about yt by es-
timating at time t − 1 the so-called rational expectations equilibrium (REE)
yt = αxt + εt, where

α = δ

1 − β
, (4)

cf. Sargent (1993, 1999) and Evans & Honkapohja (2001). In the present paper,
we effectively assume xt = x to be constant and thus focus on (1)-(3) in order
to keep the analysis tractable.

Examining the strong consistency of the OLS estimators of β and δ in model
(1)-(3) is of interest for two reasons: First, the empirical estimation of adaptive
learning models has recently gained popularity amongst researchers and policy
makers; see, for instance, Milani (2007) and Chevillon, Massmann & Mavroeidis
(2010), Malmendier & Nagel (2016) and Adam, Marcet & Nicolini (2016). Yet,
secondly, the econometrics of adaptive learning models is still in its infancy
and it is not in general clear on which econometric principles these empirical
implementations are built.

Our companion paper Christopeit & Massmann (2018), hereafter referred to
as CM18, is one of the first comprehensive attempts to examine the asymp-
totic behaviour of an econometric estimation procedure in an adaptive learning



Regression models with adaptive learning 1649

model. There, we derive the limiting distributions of the OLS estimator of δ
and β in model (1)-(3) in both the constant and decreasing gain setting. In
particular, it is shown that the OLS estimator is weakly consistent, although its
asymptotic distribution may be highly non-standard. In contrast, in the present
paper we look at strong consistency of the OLS estimator. More ambitiously,
our interest lies on rates rather than on the mere fact of convergence.

Before the OLS estimators can be analysed the asymptotic behaviour of at
needs to be examined. The latter, in turn, is contingent on the specification of
the gain sequence γt. It is well known, see e.g. Benveniste, Métivier & Priouret
(1990), that with constant gain learning, at effectively estimates α in (4) by
exponential smoothing and at � α in general. As opposed to that, with de-
creasing gain learning, at is a generalised recursive least squares estimator and
the convergence at → α does hold with probability one if

∑
t γt = ∞ but∑

t γ
2
t ln2 t < ∞, provided that β < 1, cf. Kottmann (1990) for details. Impor-

tantly, a central ingredient to our analysis of the OLS estimator will be not the
mere convergence of at but rather the rate at which it converges, if indeed it
does.

The model in (1) is a linear regression model with predetermined stochas-
tic regressors. There is an extensive literature on parameter estimation in this
model class. The results that, to our knowledge, still represent the current state
of the art for the strong convergence of the OLS estimator are those by Lai
& Wei (1982a); but see also Lai & Wei (1982b), Wei (1985) and Christopeit
(1986), the latter for the general semimartingale model. As to be expected, the
sufficient conditions for models with stochastic regressors are more restrictive
than those for deterministic regressors. A brief account of these results is given
in Christopeit & Massmann (2012). Concerning our model, it will turn out that
for some cases of both constant and decreasing gain learning the near optimal
sufficient condition established in Lai & Wei (1982a) is not satisfied. Neverthe-
less strong consistency of the OLS estimators of β and δ always obtains.

For constant gain learning, the model to be estimated is basically an autore-
gressive model of order one with a constant term. Most of the literature on the
strong consistency of the OLS estimator in general autoregressions considers
models without an intercept, cf., e.g., Lai & Wei (1983a) and Lai & Wei (1985).
As will be seen, however, the existence of an unknown intercept can make a
considerable difference to the analysis. In particular, we consider the rates of
convergence of the separate OLS estimators of β and δ. These are compared
to the speed of convergence of the norm of the joint, i.e. bivariate, OLS esti-
mator of θ = (β, δ). That part of the analysis builds on a recent treatment by
Nielsen (2005) of OLS estimation in vector autoregressive models with general
deterministic terms.

For decreasing gain learning, it is interesting to note that the asymptotic
second moment matrix is singular. This is due to the fact that the regressor
at converges a.s. to the constant α. This violation of the so-called Grenander
condition may affect the rates of weak convergence of the OLS estimator, see
Phillips (2007) and CM18. Yet it does not pose any problem for a.s. convergence.

Reconsider the model in (1)-(3). We will frequently work with an alternative
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representation of the dynamics of at: Substitute (1) into (2) to obtain

at = (1 − ct) at−1 + γt (δ + εt) , (5)

where we have defined ct = (1 − β) γt. With our choice of γt in (3), ct becomes

ct =
{

c
c/t

where
c = (1 − β)γ.

Recall also the parameter spaces: For decreasing gain, β < 1 and any γ > 0 are
admissible such that c > 0. For constant gain, as opposed to that, γ > 0 while β
and, therefore, c may take any value. Finally, we make the following maintained
assumptions:

Maintained assumptions. The εt, for t = 1, 2, . . ., are independently and
identically distributed (i.i.d.) with mean 0 and variance σ2. The initial value a0
is independent of εt, t = 1, 2 . . . and in L2.

All convergence and equality statements are of the almost sure (a.s.) type
unless otherwise indicated.

The outline of the paper is as follows: The asymptotics of at are examined
in Section 2, both for constant and decreasing gain learning. Subsequently, the
strong consistency of the OLS estimators of β and δ is derived in Section 3, again
for both learning types. Since the constant gain learning model is essentially an
autoregression with intercept, the proofs of the results in Section 3.1 are phrased
in neutral notation in a self-contained Section 4. The proofs of the results on
the decreasing gain model in Sections 2.2 and 3.2 are relegated to Section 6. A
conclusion and an outlook is presented in Section 5.

2. Asymptotic behaviour of at

2.1. Constant gain

In this section, we consider the asymptotic behaviour of at under the assumption
that agents employ a constant gain learning algorithm to produce their forecasts.
The corresponding model is (1)-(5) with γt = γ and ct = c = (1 − β) γ. As a
result, the dynamics of at, t = 1, 2, . . ., can be written as

at = (1 − c) at−1 + γ (δ + εt) . (6)

The initial value a0 satisfies the maintained assumptions.
It is well-known in the literature that constant gain recursions do not in

general converge to the REE. In particular, the precise limiting behaviour of
at as given in (6) is derived in Theorem 1 of CM18 and depends crucially on
parameter c. In detail,
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(i) if 0 < c < 2, the process at is a stable autoregression,
(ii) if c = 0, at follows a random walk with drift while, if c = 2, it follows an

alternating random walk with drift,
(iii) if c < 0 or c > 2, at in (6) is an explosive autoregressive process.

Seminal papers on autoregressive processes that CM18 appeal to and extend
are Lai & Wei (1985) for the stationary ergodic case, Chan & Wei (1988) for the
(negative) unit root case, and Phillips & Magdalinos (2008) as well as Wang &
Yu (2015) for the explosive case.

The following reproduces Theorem 1 of CM18 for the reader’s convenience.

Theorem 1 (Christopeit & Massmann (2018, Theorem 1)).
(i) If 0 < c < 2 then at converges in distribution to the law of the station-

ary solution, i.e. to the invariant distribution. This is nondegenerate with
mean α and positive variance.

(ii) If c = 0 then at is a random walk with drift δγ and

at = γδt + o(t) a.s..

If, instead, c = 2 then at is an alternating random walk with drift 2α and

1
σγ

√
t
at

d→ N (0, 1) .

(iii) If c < 0 or c > 2 then (1 − c)−t
at converges with probability one and in

L2 to a nondegenerate limit with mean Ea0 − α.

Clearly, for no value of c, and hence for no combination of β ∈ (−∞,∞) and
γ > 0, does at converge to the REE α in any probabilistic sense. Agents will
thus not be rational in the limit but learn ad infinitum.

2.2. Decreasing gain

Consider now the model under decreasing gain, i.e. γt = γ/t and ct = c/t =
(1 − β)γ/t. Consequently, the recursion of at, t = 1, 2, . . ., in (5) becomes

at =
(
1 − c

t

)
at−1 + γ

t
(δ + εt) (7)

where the initial value a0 satisfies the maintained assumptions.
As mentioned in the introduction, for β < 1 and γ > 0, the mere convergence

of at to α follows easily from well-known results on recursive algorithms. How-
ever, for our analysis of the strong consistency of the OLS estimator in Section
3, we will need the exact rates of convergence of at.

Note that the dynamics of at in (7) are highly nonstandard: First, at is
autoregressive of first order with a time-varying coefficient that is intrinsically
local-to-unity. The behaviour of models of this kind has been analysed by, for
instance, Phillips (1987) and Phillips & Magdalinos (2007). Secondly, the impact
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of the intercept δ and of the disturbance εt on at tends to zero for large t. In the
limit, at is thus constant. Finally, at is generated by what Solo & Kong (1995)
call a long memory algorithm.

It is shown in Theorem 2 below that at converges almost surely to the REE α
for all combinations of β and γ. The rates of convergence are, however, different
for the three regimes c > 1/2, c = 1/2 and 0 < c < 1/2. The proof is relegated
to Section 6.1.

Theorem 2. For decreasing gain with gain sequence γt = γ/t, strong conver-
gence of at to α holds at the following rates.

(i) For c > 1/2,

lim sup
t→∞

√
t

ln2 t
|at − α| = σγ

√
2

2c− 1 .

(ii) For c = 1/2,

lim sup
t→∞

√
t

ln t ln3 t
|at − α| = σγ

√
2.

(iii) For c < 1/2,
lim
t→∞

tc (at − α) = u

where u has a continuous distribution function.

It is plain that, as c decreases, the convergence of at to α gets progressively
slower. The value c = 1/2 can be interpreted as a boundary separating ‘good’
from ‘poor’ asymptotic behaviour of at, in the sense of speed of convergence. For
an intuition of this boundary, the reader is referred to the exposition in CM18.
The value of 1/2 indeed figures prominently in the context of weak convergence
of stochastic approximation algorithms, see the results in (Benveniste, Métivier
& Priouret, 1990, Theorem 3 on p. 11 and Theorem 13 on p. 332) which, in
turn, is used by Marcet & Sargent (1995) and Evans & Honkapohja (2001). The
threshold of 1/2 is also reminiscent of a similar boundary discussed in Evans
et al. (2013).

It is of interest to compare the convergence rates in Theorem 2 with those
valid for weak convergence of at − α, cf. Theorem 3 in CM18. For c > 1/2, the
additional ‘path taming’ sequence (ln2 t)−1/2 corresponds to the passage from a
central limit theorem (CLT) to a law of the iterated logarithm (LIL). As to be
expected, this ‘path taming’ sequence is slower, namely (ln3 t)−1/2, for c = 1/2.
For c < 1/2, all rates are identical.

3. Strong consistency of the OLS estimator

3.1. Constant gain

In this section we are concerned with the OLS estimation of β and δ in

yt = δ + βat−1 + εt, (8)
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t = 1, 2, . . ., under constant gain learning. As argued in Section 2.1,

at = (1 − c) at−1 + γ (δ + εt) (9)

does not converge to the REE α for any value of c = (1 − β)γ. There is hence
no issue of asymptotic collinearity in (8)-(9).

It is shown in Section 2.2 of CM18 that the OLS estimator θ̂T = (δ̂T , β̂T )′
of θ = (δ, β)′ in (8) is, up to a constant of proportionality, equal to that of
θ∗ = (δ∗, β∗)′ in the autoregressive model

a∗t = δ∗ + β∗a∗t−1 + γεt, (10)

provided that δ∗ = γδ as well as β∗ = 1 − c and the initial values of the two
sequences at and a∗t are the same. Put differently,

θ̂T − θ = γ−1
(
θ̂∗T − θ∗

)
. (11)

By transforming the model in this fashion, we arrive at a first order autore-
gressive model with intercept. Such models may be considered as special cases
of input-output systems, for which there exists a vast literature, cf. e.g. Ljung
(1977) for a seminal paper. In general, however, this literature only provides
rates for the bivariate (henceforth called joint) estimator θ̂T , i.e. a rate for its
norm. On the other hand, some reflection shows that the speed of convergence
of the estimator of the slope may be quite different from that of the intercept. In
view of this observation, the joint approach will only produce rates valid for the
slower of these estimators, which – not surprisingly – is that of the intercept. To
take account of this difference and to obtain individual ‘optimal’ rates, we also
pursue the separate estimation approach, treating the one-dimensional formula
for each estimator on its own. This allows us to make use of the powerful mar-
tingale convergence theorems found in the literature, cf. Lai & Wei (1982a) and
Wei (1985). Needless to say that this approach works only for autoregressive
models with lag one.

In the sequel, we will start with the separate approach in Section 3.1.1. The
joint approach will be sketched in Section 3.1.2, followed by a comparison of the
two approaches.

3.1.1. Separate estimation of the parameters

Consider the separate OLS estimators of β∗ and δ∗ in (10), namely

β̂∗
T =

∑T
t=1(at−1 − a−T ) (at − aT )

AT
,

δ̂∗T = aT − β̂∗
Ta

−
T ,

where

aT = 1
T

∑T

t=1
at, a−T = 1

T

∑T

t=1
at−1, (12a)
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A0
T =

∑T

t=1
a2
t−1, AT =

∑T

t=1

(
at−1 − a−T

)2 = A0
T − T

(
a−T
)2

. (12b)

Theorem 3 and Corollary 1 below will summarise the properties of the OLS
estimators of the original slope β and intercept δ, see (8). The proofs, however,
are conducted in terms of the starred model, see Section 4. The main argument of
the proofs consists in determining the rate of convergence of the slope estimator.

The case distinctions in Theorem 3 and Corollary 1 are phrased in terms of
the parameter c and correspond to the original at in (9) being a stable, unit
root or explosive process; see also the discussion in Section 2.1 above. They
are equivalent to properties of the transformed a∗t in (10), as indicated by the
parameter β∗:

|β∗| < 1 ⇔ 0 < c < 2,
β∗ = 1 ⇔ c = 0,
β∗ = −1 ⇔ c = 2,

|β∗| > 1 ⇔ c < 0 or c > 2.

A special role is played by the scenario β∗ = 1 ∧ δ∗ = 0, corresponding to
β = 1 ∧ δ = 0 or indeed c = 0 ∧ δ = 0, in which case no result is available. See
also the comments on this combination of parameter values in Section 4.2.3.

Theorem 3. Strong consistency of the OLS estimator β̂T of the slope parameter
β holds at the following rates.

(i) Stable case: 0 < c < 2. If E |εt|p < ∞ for some p > 2,√
T

ln2 T

(
β̂T − β

)
= O(1).

If only second moments exist, then√
T

(lnT )1+η

(
β̂T − β

)
= o(1)

for all η > 0.
(iia) Unit root case: c = 0 ∧ δ �= 0. If E |εt|p < ∞ for some p > 2,√

T 3

ln2 T

(
β̂T − β

)
= O(1).

If only second moments exist, then√
T 3

(lnT )1+η

(
β̂T − β

)
= o(1)

for all η > 0.
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(iib) Unit root case: c = 2. If E |εt|p < ∞ for some p > 2,

T

(ln2 T )3
(
β̂T − β

)
= O(1).

If only second moments exist, then
T

(lnT )1+η

(
β̂T − β

)
= o(1)

for all η > 0.
(iii) Explosive case: c < 0 or c > 2. Assuming only second moments,

|1 − c|T

T 1/2+η

(
β̂T − β

)
= o(1) (13)

for all η > 0. If E |εt|p < ∞ for some p > 2, (13) remains valid, with O(1)
instead of o(1), for η = 0.

The following corollary summarises the behaviour of the intercept estimator.

Corollary 1. Strong consistency of the OLS estimator δ̂T of the intercept δ
holds at the following rates.

(i) Stable case: 0 < c < 2. If E |εt|p < ∞ for some p > 2,√
T

ln2 T

(
δ̂T − δ

)
= O(1).

If only second moments exist, then√
T

(lnT )1+η

(
δ̂T − δ

)
= o(1)

for all η > 0.
(iia) Unit root case: c = 0 ∧ δ �= 0. If E |εt|p < ∞ for some p > 2,√

T

ln2 T

(
δ̂T − δ

)
= O(1).

If only second moments exist, then√
T

(lnT )1+η

(
δ̂T − δ

)
= o(1)

for all η > 0.
(iib) Unit root case: c = 2. Same as in case (iia).
(iii) Explosive case: c < 0 or c > 2. Assuming only second moments,

T 1/2−η
(
δ̂T − δ

)
= o(1) (14)

for all η > 0. If E |εt|p < ∞ for some p > 2, (14) remains valid, with O(1)
instead of o(1), for η = 0.
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As is to be expected, the rate of the slope estimator is throughout at least
as good as that of the intercept estimator, with equality holding in the stable
case.

For the proof of Theorem 3 and Corollary 1 we will make essential use of
the observation made at the beginning of this section, namely that the OLS
estimator θ̂T = (δ̂T , β̂T )′ of the parameters θ = (δ, β)′ in (8) may equally well be
obtained as the OLS estimator of the parameters in a first order autoregressive
model with intercept, namely (10). The study of the latter seems, however, to
be of some interest of its own – independent of its appearance in our learning
model. Section 4 therefore investigates the properties of the paths and of the OLS
estimator in a general AR(1)-model with intercept. Theorem 3 and Corollary 1
above are then just Theorem 3* and Corollary 1* in Section 4.4, respectively.

3.1.2. Joint estimation of the parameters

The second approach for estimating θ = (δ, β)′ in (8) employs recent results
derived in Nielsen (2005) on the rates of convergence of the studentised version

τT = M
1/2
T

(
θ̂∗T − θ∗

)
(15)

of the OLS estimator of θ∗ in (10), where MT is the sample second moment
matrix of the regressor (1, a∗t−1):

MT =
(

T
∑T

t=1 a
∗
t−1∑T

t=1 a
∗
t−1

∑T
t=1 a

∗2
t−1

)
.

Given rates for ‖τT ‖, the idea is to find sequences of numbers χT s.t.

χT

∥∥∥M−1/2
T

∥∥∥ ‖τT ‖ = O (1) (16)

where ‖A‖ = λ
1/2
max (A′A) denotes the spectral norm of A. In view of (11) and

(15) the sequence of numbers χT will then satisfies

χT (θ̂T − θ) = O(1). (17)

Note that (16) involves calculating norms of the inverse M
−1/2
T . This amounts

to estimating the minimal eigenvalue of MT since∥∥∥M−1/2
T

∥∥∥2 = λmax
(
M−1

T

)
= 1

λmin (MT )

so that (16) turns into

χT√
λmin (MT )

‖τT ‖ = O (1) .
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Hence this approach is tantamount to investigating the asymptotic behaviour of
the minimal eigenvalues λT = λmin (MT ) and to finding sequences of numbers
χT s.t.

χT
‖τT ‖√
λT

= O (1) .

As a further complication, the rates of the two components of θ̂T can (and will
in the majority of cases) be different, so that (17) will only exhibit the behaviour
of the worse of the two parameters.

Applying this approach to the starred model and then transforming back to
the original one we obtain the following result. The proof is again conducted in
terms of the AR(1)-model with intercept in Section 4.

Theorem 4. Assume that E |εt|p < ∞ for some p > 2. Then strong consistency
of the joint OLS estimator θ̂T holds at the following rates.

(i) Stable case: 0 < c < 2. √
T

ln2 T

(
θ̂T − θ

)
= O(1).

(ii) Unit root case: For both c = 0 and c = 2,√
T

lnT

(
θ̂T − θ

)
= O(1).

(iii) Explosive case: c < 0 or c > 2.

T 1/2−ρ
(
θ̂T − θ

)
= o(1)

for every ρ > 1/p.

Note that, in contrast to the separate approach in Section 3.1.1, the case
of c = 0 ∧ δ = 0 is covered in this theorem. It does not seem to be included,
however, in (Nielsen, 2005, Theorem 2.5).

3.1.3. Comparison with Lai & Wei

Let us return to the point raised in the introduction that strong consistency may
obtain despite the near optimal sufficient condition established by Lai & Wei
(1982a) being violated. Denote by λmax (T ) and λmin (T ) the maximal and the
minimal eigenvalue, respectively, of the second moment matrix of the regressors
(1, at−1). Applied to our simple regression model (1) under the assumption that
E|εt|p < ∞ for some p > 2, the Lai-Wei condition then amounts to

lnλmax (T ) = o (λmin (T )) , (18)

cf. Theorem 1 loc. cit.. Then the joint OLS estimator θ̂T will converge a.s. to θ
at rate (lnλmax (T ) /λmin (T ))1/2.
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The following expressions for lnλmax/λmin for the stable, unit root and ex-
plosive cases of the constant gain model follow immediately from the results in
Section 4.3.

(i) In the stable case,
lnλmax

λmin
= lnT

T
(1 + o (1)) .

(18) is thus satisfies. The convergence rate of the OLS estimator is given
by (T/ ln T )1/2. It is slower than that in Corollary 1 and Theorem 4(i).

(ii) In the unit root case, in view of the Remarks 11 to 13 in Section 4.3.3,

lnλmax

λmin
= O

(
lnT

T

)
.

Therefore (18) is again satisfied and the corresponding convergence rate
is, as in the stable case, (T/ ln T )1/2. This the rate appearing in Theorem
4(ii). Given that the error terms have a moment somewhat higher than the
second, it is somewhat weaker than the corresponding rate in Corollary 1.

(iii) In the explosive case,
lnλmax

λmin
→ 2 ln |β| .

Hence (18) is violated. Nevertheless, it is shown in Theorems 3 and 4 that
the OLS estimator is strongly consistent. This shows that condition (18)
is indeed not necessary. The explosive case of our model may hence be
seen as a counterpart to Example 1 in Lai & Wei (1982a).

Remark 1. Note, however, that the condition

AT

lnT
→ ∞

in Lai & Wei (1982b), valid for simple regression models, is satisfied in the
explosive case, in view of the result in Section 4.2.2.

3.2. Decreasing gain

3.2.1. Main result

Consider now OLS estimation of δ and β in

yt = δ + βat−1 + εt (19)

under decreasing gain learning, i.e. with at is given by

at =
(
1 − c

t

)
at−1 + γ

t
(δ + εt)

see (7). Recall that the strong consistency of at is given by Theorem 2. That
of the OLS estimator of β in (19) is presented in the following theorem, whose
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proof can be found in Section 6.2. As in the context of weak consistency of β̂T

in CM18, only the cases c < 1/2 and c > 1/2 are considered. The boundary
case of c = 1/2 does not seem amenable to our methods and is left to future
research.

Theorem 5. For decreasing gain with gain sequence γt = γ/t, strong consis-
tency of the OLS estimator β̂T of the slope parameter β holds at the following
rates.

(i) For c > 1/2,

lim
T→∞

√
lnT

(ln2 T )1+η

(
β̂T − β

)
= 0

for every η > 0. If, in addition, E |εt|p < ∞ for some p > 2, this may be
sharpened to √

lnT

ln3 T

(
β̂T − β

)
= O(1).

(ii) For c < 1/2, √
T 1−2c

(lnT )1+η

(
β̂T − β

)
= O(1).

for every η > 0. If, in addition, E |εt|p < ∞ for some p > 2, this may be
sharpened to √

T 1−2c

ln2 T

(
β̂T − β

)
= O(1).

Let us compare the convergence rates in Theorem 5 to those established in
the context of the weak consistency of β̂T in CM18. There it was found, cf.
Theorem 4 loc. cit., that

(i) for c > 1/2, AT = Op(lnT ) and
(ii) for c < 1/2, AT = Op(T 1−2c).

It is hence plain from Theorem 5 above that the ‘path taming’ sequences are
given by (ln2 T )−(1+η) and (lnT )−(1+η), respectively.

A comparison of Theorems 2 and 5 reveals that there is a trade-off between
the convergence rates of at and the β̂T . For a further discussion of this issue,
see CM18.

As a byproduct, rates of consistency for the OLS estimator of the intercept
δ are easily obtained from the formula

δ̂T − δ = (β̂T − β)a−T + εT .

In view of the LIL, any normalising sequence ψT should satisfy

ψT

√
ln2 T

T
= O(1). (20)

It is apparent that all rates exhibited for the slope in Theorem 5 satisfy (20).
Therefore, we have the following result.
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Corollary 2. Strong consistency of the OLS estimator δ̂T of the intercept δ
holds at the same rates as for the slope.

3.2.2. Comparison with Lai & Wei

As in the constant gain setting, cf. Section 3.1.3, it may be of some interest to
check the Lai-Wei condition (18) in the decreasing gain model, too. Since the
behaviour of the basic statistics is different from that in the constant gain case,
the eigenvalues of the second moment matrix of the regressor (1, at−1) have to
calculated anew. We start with the basic formula

λ± = T + A0
T

2

[
1 ±
√

1 − 4DT

]
with DT =

TA0
T −

(
Ta−T

)2
(T + A0

T )2
.

The square root expansion
√

1 + x = 1 + x
2 + O

(
x2) of the smaller eigenvalue

is given by

λmin = T + A0
T

2
[
1 −
(
1 − 2DT + O

(
D2

T

))]
= DT

(
T + A0

T

)
(1 + O (DT )) .

(21)
See also Section 4.3.

Case (i): c > 1/2. By (82) and (90),

A0
T = (1 + o(1)) r lnT,

(
Ta−T

)2 = O (T ln2 T ) ,

with r = γ2σ2/ (2c− 1). Straightforward calculations show that

TA0
T −

(
Ta−T

)2 = (1 + o(1)) rT lnT, T + A0
T = T (1 + o(1))

so that
DT = r

lnT

T
(1 + o(1)) .

Hence, since DT → 0,

λmax = T (1 + o(1)) , lnλmax = (1 + o(1)) lnT.

For λmin, the expansion (21) yields

λmin = DT

(
T + A0

T

)
(1 + O (DT )) = (1 + o(1)) r lnT.

As a consequence,
lnλmax

λmin
→ r−1.

Thus the Lai-Wei condition (18) is marginally violated in the same way as in
(Lai & Wei, 1982a, Example 1). Yet, the OLS estimator is strongly consistent,
as shown in Theorem 5.
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Remark 2. Note that by virtue of (90) and (95)
AT

lnT
→ r.

Therefore the consistency condition of Lai & Wei (1982b) mentioned above in
Remark 1 is not satisfied.

Case (ii): c < 1/2. In this case, making use of (83) and (98a), it turns out that
lnλmax

λmin
∼ lnT

T 1−2cκ

for some finite positive random variable κ, so that the Lai-Wei condition is
satisfied.

4. OLS estimation in AR(1) models with intercept

As pointed out at the end of Section 3.1.1, Theorem 3 is essentially a statement
about the asymptotic properties of the OLS estimator in general AR(1)-models
with intercept. Continuing the discussion at the beginning of Section 3.1, our
main focus will be on what we call separate estimation of the parameters. The
joint approach, though inferior for most parameter constellations, is treated
because it provides a result for the special case of a unit root model without drift,
in which case our separate estimation approach is not conclusive. Needless to say
that a distinction between separate and joint estimation is sensible, and a gain in
estimation accuracy feasible, only for autoregressive models of order one, since
in this case tractable separate expressions for the two parameter estimators are
available. Starting with these formulae, Section 4.1 exhibits the basic structure
of the proofs. It turns out that the main prerequisites are the asymptotic path
properties in conjunction with two basic martingale convergence laws. They are
presented in Section 4.2. Eigenvalues of the regressor second moment matrix are
computed in Section 4.3 before all ingredients are used in Section 4.4 to prove
Theorem 3 and Corollary 1.

In order to make clear that the contents of this section are of interest on their
own and may be seen as independent of the constant gain model, we use neutral
notation. Re-consider to start with the starred model in (10) with its definition
of β∗ = 1 − c as well as δ∗ = γδ, and recall that γ > 0. We then set

λ = β∗ and μ = δ∗

Moreover, the index is now i = 1, . . . , n, instead of t = 1, . . . , T . Theorem 3* and
Corollary 1* in Section 4.4.1 are then proved in this neutral notation. They can
be translated back to the underlying (non-starred) notation of the gain model in
(8) by noting the identities β = 1− (1− λ)/γ and δ = μ/γ and by recalling the
classification of cases at the beginning of Section 3.1.1. In particular, Theorem
3 and Corollary 1 distinguish between the three cases according to values of c to
facilitate comparison with the corresponding results in CM18. Since the material
in this section is self-contained, we incorporate the proofs of all auxiliary as well
as main results.
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4.1. Prerequisites

The basic model for this section is the AR(1) model with intercept

yn = μ + λyn−1 + εn, (22)

where the εn, n = 1, 2, . . . , are i.i.d. disturbances. Some comments on this
assumption will be made later on.

4.1.1. Separate approach

The standard textbook formulae for the OLS estimators of the two parameters
λ and μ are

λ̂n =
∑n

k=1
(
yk−1 − y−n

)
(yk − yn)∑n

k=1
(
yk−1 − y−n

)2 ,

μ̂n = yn − λ̂ny
−
n ,

where
yn = 1

n

∑n

k=1
yk, y−n = 1

n

∑n

k=1
yk−1..

Or, in the form to be used below,

λ̂n − λ = un

An
− y−n

An

∑n

k=1
εk, (23a)

μ̂n − μ =
(
λ− λ̂n

)
y−n + εn, (23b)

where we have put

un =
n∑

k=1
yk−1εk and An =

∑n

k=1

(
yk−1 − y−n

)2
.

For later use, introduce
A0

n =
∑n

k=1
y2
k−1

and note the trivial but useful formula

An = A0
n − n

(
y−n
)2

.

4.1.1.1. Estimation of the slope Our procedure to establish strong convergence
rates for the slope will be as follows. Introduce functions

ϕ1 (x) =
√

x

(ln x)1+η and ϕ2 (x) =
√

x

ln2 x
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(for η ≥ 0 and for x large enough). Then we may write (23a) in the form

λ̂n − λ = un

A0
n

A0
n

An
− y−n

An

∑n

k=1
εk = ϕ−1

i

(
A0

n

)
U i
n

A0
n

An
− Vn, (24)

where we have introduced

U i
n = un

ϕi

(
A0

n

)
A0

n

, Vn = y−n
An

∑n

k=1
εk.

Remark 3. For all cases considered, it will turn out that A0
∞ = limn→∞ = ∞,

so that for n large enough the expressions ϕi

(
A0

n

)
are well defined.

Remark 4. The distinction between the two cases i = 1 or 2 is introduced
to take account of the strength of assumptions imposed on the εn, cf. the three
scenarios below.

The U i
n are of the form

U1
n = un√

A0
n (lnA0

n)1+η
and U2

n = un√
A0

n ln2 A0
n

, (25)

respectively. The decisive point is that A0
n is the predictable quadratic variation

of un. This calls for some sharpened martingale convergence theorem (MCT),
ideally of the LIL type. The following well-known MCTs are fundamental to our
approach. They hold for A0

∞ = ∞, cf. Remark 3 above. For the result in (26),
see also Chow (1965).

MCT 1 (Lai & Wei (1982a)).
n∑

k=1
yk−1εk = o

(√
A0

n (lnA0
n)1+η

)
(26)

for all η > 0. If E |εn|p < ∞ for some p > 2, this may be sharpened to η = 0,
but with o (·) replaced by O (·) .
MCT 2 (Wei (1985)). If, in addition to E |εn|p < ∞ for some p > 2, it holds
that

y2
n = o

[(
A0

n

)γ]
for some 0 < γ < 1, then

n∑
k=1

yk−1εk = O
(√

A0
n ln2 A0

n

)
. (27)

Remark 5. Actually, the MCTs are valid for martingale difference sequences
(MDS) εn with respect to some filtration Fn and some predetermined sequence
yn−1. The integrability conditions to be introduce below then have to be re-
placed by corresponding conditions on the conditional moments of the form
E {|εn|p | Fn−1} < ∞. We come back to this point in Section 5.
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We will henceforth distinguish between three scenarios. They determine which
MCT and hence, in view of (24), which statistic ϕi(A0

n) may be used (at best).

(S1) The εn are i.i.d. with finite second moments. MCT 1 is valid, use statistic
ϕ1 with η > 0.

(S1+) The εn are i.i.d. and E |εn|p < ∞ for some p > 2. MCT 1 is valid for
η = 0, use statistic ϕ1 with η = 0.

(S2) In addition to (S1+), (2) holds for some for some 0 < γ < 1. MCT 2 is
valid, use statistic ϕ2.

It will turn out that A0
∞ = ∞, holds in every scenario.

The basic building block of our analysis will be that

U i
n = O (1) (28)

in each scenario. Independently of the scenario, what we are actually looking
for are deterministic convergence rates for λ̂n − λ, i.e. a sequence of numbers
ϕn s.t.

ϕn(λ̂n − λ) = O(1). (29)
In view of (24) and (28), letting ϕ denote any of the functions ϕi,

ϕn(λ̂n − λ) = ϕn

ϕ (A0
n)Un

A0
n

An
− ϕnVn. (30)

In view of (28), a set of sufficient conditions for (29) to hold is

ϕn

ϕ (A0
n)

A0
n

An
= O(1), (31a)

ϕnVn = O(1). (31b)

To verify (31a), it is often easier to establish the sufficient conditions
ϕn

ϕ (A0
n) = O(1), (32a)

A0
n

An
= O(1). (32b)

As to (31b), write

ϕnVn = ϕn
y−n
An

∑n

k=1
εk = ϕn

√
n ln2 n

y−n
An

√
1

n ln2 n

∑n

k=1
εk. (33)

By the LIL, a sufficient condition for (31b) to hold is then

ϕn

√
n ln2 n

y−n
An

= O (1) . (34)

Collecting the conditions established so far, what remains to be done is to
consider the asymptotic behaviour of the basic statistics yn, y

−
n , A

0
n, An as well

that of the derived statistics

ϕi(A0
n), A

0
n

An
and y−n

An
.
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This will be done in the next Section 4.2. The behaviour will be different de-
pending on whether the stable case, the explosive case or the unit root case is
considered.

4.1.1.2. Estimation of the intercept In view of (23b), a set of sufficient condi-
tions for any rate ψn satisfying ψn(μ̂n − μ) = O(1) is

ψnεn = O(1), (35a)

ψn(λ̂n − λ)y−n = O(1). (35b)

Writing

ψnεn = ψn

√
ln2 n

n

1√
n ln2 n

∑n

k=1
εk = ψn

ϕ2 (n)
1√

n ln2 n

∑n

k=1
εk

shows, cf. the LIL, that
ψn

ϕ2 (n) = O(1) (36a)

is necessary and sufficient for (35a). (36a) rules out all rates tending faster to
infinity than ψn = ϕ2 (n) . Also, if ϕn is the rate for λ̂n according to (29), then
(35b) becomes

ψn(λ̂n − λ)y−n = ϕn(λ̂n − λ)ψn

ϕn
y−n = O(1).

Therefore a sufficient condition for (35b) is

ψn

ϕn
y−n = O(1). (36b)

Our procedure will therefore be to find sequences of numbers ψn that satisfy
(36a) and (36b).

4.1.2. Joint approach

The joint approach works with the usual multivariate (here: bivariate) formu-
lation of (22). Then the textbook formula for the OLS estimator of the two-
dimensional parameter vector θ = (μ, λ)′ is given by

θ̂n − θ = M−1
n wn,

where

Mn =
(

n
∑n

k=1 yk−1∑n
k=1 yk−1

∑T
t=1 y

2
k−1

)
and wn =

( ∑n
k=1 εk∑n

k=1 yk−1εk

)
.

The usual approach would be to estimate the (Euclidean) norm ‖θ̂n − θ‖ by∥∥∥θ̂n − θ
∥∥∥ ≤ ∥∥M−1

n

∥∥ ‖wn‖ (37)
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and then try to obtain rates of convergence for both quantities on the right hand
side of (37). Note that this involves the computation of the norm of the inverse
M−1

n , which is tantamount to calculating the minimal eigenvalue λmin(Mn)
since ∥∥M−1

n

∥∥ =
∥∥∥M−1/2

n

∥∥∥2 = λmax
(
M−1

n

)
= 1

λmin (Mn) . (38)

For the convergence rate of θ̂n, one is therefore left with the task of finding a
sequence of numbers χn s.t.

χn
‖wn‖

λmin (Mn) = O (1) . (39)

This would make use of martingale convergence theorems.
An alternative approach was recently proposed by Nielsen (2005), who derives

rates of convergence for the studentised version

τn = M1/2
n

(
θ̂n − θ

)
(40)

of the OLS estimator for stable, explosive and unit root vector autoregressive
models. Convergence rates for the OLS estimator itself may then be obtained
as follows: Given the rates for ‖τn‖ , find sequences of numbers χn s.t.

χn

∥∥∥M−1/2
n

∥∥∥ ‖τn‖ = O (1) (41)

or, equivalently,
χn

‖τn‖√
λmin (Mn)

= O (1) , (42)

see (38). The computation of the convergence rate χn hence hinges on the cal-
culation of λmin(Mn). Since θ̂n− θ = M

−1/2
n τn, it then follow from (41) that χn

satisfies
χn

∥∥∥θ̂n − θ
∥∥∥ = O(1).

As pointed out in Section 3, the rates for the OLS estimator obtained by the
joint approach cannot be better than those for the intercept obtained by the
separate approach. Actually, they turn out basically the same, except for the
unit root case λ = 1, μ = 0. In this case, the separate approach does not lead
to a result, whereas the joint approach does. Therefore our focus in Section 4.3
will be on this case. Also, as we can build on Nielsen (2005), we will use the
second approach based on (42).

4.2. Path behaviour

4.2.1. Stable case

The following path properties follow readily from the well-known ergodic be-
haviour of the stationary solution to (22) and carry over to any other (causal)
solution.
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1. Basic statistics:

lim
n→∞

y−n = lim
n→∞

yn = μ

1 − λ
, (43a)

lim
n→∞

1
n
A0

n = τ2, with τ2 = σ2

1 − λ2 + μ2

(1 − λ)2
, (43b)

lim
n→∞

1
n
An = σ2

1 − λ2 . (43c)

2. Derived statistics:

lim
n→∞

A0
n

An
= τ2

σ2/ (1 − λ2) = 1 + μ2

σ2
1 + λ

1 − λ
= r, (44a)

lim
n→∞

ϕ1 (n)
ϕ1 (A0

n) = τ−1 for all η ≥ 0, (44b)

lim
n→∞

ϕ2 (n)
ϕ2 (A0

n) = τ−1, (44c)

lim
n→∞

n
y−n
An

= μ

σ2 (1 + λ). (44d)

Remark 6. For the stable case, condition (2) is satisfied provided that E |εn|p <
∞ for some p > 2. This can be seen as follows. By (Lai & Wei, 1985, Theorem
1), any solution y0

n of the model in (22) with μ = 0, i.e. of the homogeneous
model, satisfies (

y0
n

)2 = o(n2q) for every q > 1/p. (45)
Since the inhomogeneous solution yn differs from y0

n at most by a constant,
the statement (45) remains true for yn. On the other hand, by (43b), A0

n =
nτ2 (1 + o(1)) . Hence, for every γ,

y2
n

(A0
n)γ

= n2q−γo(1).

Letting q ↘ 1/p, we find that for all 2/p < γ < 1 finally 2/p < 2q < γ < 1, so
that 2q − γ < 0.

4.2.2. Explosive case

The causal solution is

yn = λny0 + μ
λn − 1
λ− 1 + λnmn,

with
mn =

∑n

i=1
λ−iεi.

By the theorem of Kolmogorov and Khinchine, see (Shiryaev, 1996, Part IV, §2,
Theorem 1), the martingale mn converges a.s. and in L2 to some finite limit m:

m = lim
n→∞

mn =
∑∞

i=1
λ−iεi,
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and
Var (m) = σ2

λ2 − 1 .

Remark 7. m has a continuous distribution, cf. Remark A.1 in CM18. See
also (Lai & Wei, 1983b, Corollary 3 and 4) and (Lai & Wei, 1985, Lemma 2).

The following path properties are then immediate consequences.

1. With probability one and in L2

lim
n→∞

λ−nyn = y0 + m + μ

λ− 1 = b. (46)

If y0 is independent of (εn)n≥1 , then the distribution of the limit is con-
tinuous.

2. Basic statistics:

n |λ|−n
yn = O (1) , n |λ|−n

y−n = O (1) . (47)

lim
n→∞

nλ−2ny2
n = λ2

λ2 − 1

[
y0 + m + μ

λ− 1

]2
= v2. (48)

Note that v2 is a random variable > 0 a.s..

Proof. (46) is obvious. As to (47), for λ > 1, the Toeplitz Lemma applied to
ξn = λ−nyn yields limn→∞ nλ−nyn = λb/ (λ− 1) . For λ < 1, the Toeplitz
Lemma cannot be applied since the λn alternate in sign. Writing

|λ|−n
yn =

(
λ

|λ|

)n

λ−nyn = (−1)n λ−nyn

shows that |λ|−n
yn does not converge (except for b = 0) but is, in any event,

O(1). Therefore, with ξk = |λ|−k
yk,

|λ|
|λ| − 1

1
|λ|n − 1

∑n

k=1
yk =

[∑n

k=1
|λ|k
]−1∑n

k=1
|λ|k ξk = O (1) .

This shows (47). (Since yn and y−n differ only by n−1(y0−yn), the means behave
the same way.) For (48), apply again the Toeplitz Lemma to ξ2

n = λ−2ny2
n.

together with.An = A0
n − n

(
y−n
)2 and n

(
y−n
)2 = O

(
λ2n/n

)
.

3. Derived statistics:

lim
n→∞

λ−2nA0
n = v2, (49a)

lim
n→∞

A0
n

An
= 1, (49b)

lim
n→∞

ϕ1
(
λ2n)

ϕ1 (A0
n) = 1

v
for all η ≥ 0, (49c)

n |λ|n y−n
An

= O(1). (49d)
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Sketch of proof. (49a) is just (48). (49b) follows from An = A0
n − n

(
y−n
)2 and

n
(
y−n
)2 = O

(
λ2n/n

)
. (49c) is a consequence of

A0
n = v2λ2n (1 + o(1)) , lnA0

n = (1 + o(1)) lnλ2n,

1
ϕ1 (A0

n)2
=
(
lnA0

n

)1+η

A0
n

=
(
lnλ2n)1+η

λ2n
1
v2 (1 + o(1)) .

(49d) follows from (47) together with (49a) and (49b).

Remark 8. Unlike in the stable case, (2) does not hold. This is clear since
y2
n ∼ λ2n, A0

n ∼ λ2n, so that

y2
n

(A0
n)γ

∼ λ2n(1−γ),

with the exponent on the right hand side being positive for all 0 < γ < 1.
Therefore there is no need to consider the statistic ϕ2

(
A0

n

)
.

4.2.3. Unit root case

Case λ = 1, μ �= 0. The solution to (22) in this case is the random walk with
drift

yn = y0 + nμ +
∑n

k=1
εk. (50)

1. Basic statistics:

lim
n→∞

yn
n

= μ, (51a)

lim
n→∞

1
n
yn = lim

n→∞
1
n
y−n = μ

2 , (51b)

lim
n→∞

1
n2 y

2
n = μ2

3 , (51c)

lim
n→∞

1
n3A

0
n = μ2

3 , lim
n→∞

1
n3An = μ2

12 (51d)

Sketch of proof. The proof is again a direct consequence of (50) and the Toeplitz
Lemma. For the last line, note that n

(
y−n
)2 ∼ n3μ2/4.

2. Derived statistics:

lim
n→∞

A0
n

An
= 4, (52a)

lim
n→∞

√
n3

(lnn)1+η

1
ϕ1 (A0

n) = 31+η/2

μ2 for all η ≥ 0, (52b)

lim
n→∞

√
n3

ln2 n

1
ϕ2 (A0

n) =
√

3
μ2 , (52c)
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lim
n→∞

n2 y
−
n

An
= 3

2μ. (52d)

Sketch of proof.

A0
n = n3μ

2

3 (1 + o (1)) ,

lnA0
n = 3 lnn + O(1) = (1 + o(1)) 3 lnn,

ln2 A
0
n = (1 + o(1)) ln2 n,

n2 y
−
n

An
= y−n /n

An/n3 → μ/2
μ2/3 .

Remark 9. For λ = 1, μ �= 0, condition (2) is fulfilled since

y2
n

(A0
n)γ

∼ n2

n3γ = n2−3γ

tends to 0 for every 2/3 < γ < 1. Therefore MCT 2 is valid.

Case λ = 1, μ = 0. In this case, yn is the random walk Sn =
∑n

k=1 εk. For the
first two moments, we have the following estimates:

lim sup
n→∞

1√
2n ln2 n

|yn| ≤
2
3σ (53)

and

lim sup
n→∞

1
2n2 ln2 n

A0
n ≤ σ2, (54a)

lim inf
n→∞

ln2 n

2n2 A0
n = σ2

8 . (54b)

Proof. (53) follows from the LIL by applying a straightforward extension of the
Toeplitz Lemma (replacing ‘lim’ by ‘lim sup’) together with the ICT, partial
integration and a calculus version of the Toeplitz Lemma. As to (54), both
properties are cited in (Lai & Wei, 1982a, Example 2). The first is a consequence
of the LIL, whereas the second is based on a theorem by (Donsker & Varadhan,
1977, page 751). The problem is that 1/A0

n = O
(
n−2 ln2 n

)
and n

∣∣y−n ∣∣2 =
O
(
n2 ln2 n

)
, so that Qn = n

∣∣y−n ∣∣2 /A0
n = O((ln2 n)2). This makes it impossible

to determine the behaviour of An = A0
n (1 −Qn) .

Case λ = −1. y0
n is the alternating random walk without drift, i.e. the solution

to (22) with μ = 0 and λ = −1. For arbitrary μ, the corresponding solution yn
(with the same initial value y0) differs from y0

n only by a constant:

yn =
{

y0
n + μ for n odd,
y0
n for n even. (55)

Apparently, the a.s. asymptotic behaviour of the paths is governed by the LIL.
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1. Mean:
lim
n→∞

1
n

∑n

k=1
yk−1 =

{
μ
2 for n odd,
0 for n even. (56)

Proof. The proof takes up an idea in the proof of Theorem 2 in Appendix A.3
of CM18. Since the initial value does not play any role, we assume that y0 = 0.
Then

y0
n = (−1)n S̃n,

where we have introduced the random walk

S̃n =
∑n

k=1
ε̃k with ε̃k = (−1)k εk.

Then ∑n

k=1
y0
k−1 =

∑n

k=1
(−1)k−1

S̃k−1 = σnS̃n −
∑n

k=1
σkε̃k.

The last equality follows by partial summation, with

σk =
∑k

j=1
(−1)j−1 =

{
1 if k odd,
0 if k even.

Then, by the law of large numbers (LLN),

lim
n→∞

1
n

∑n

k=1
y0
k−1 = 0.

The assertion then follows from (55).

2. 2nd moments:

lim sup
n→∞

1
2n2 ln2 n

A0
n ≤ σ2, (57a)

lim inf
n→∞

ln2 n

2n2 A0
n ≥ σ2

16 . (57b)

The same holds true for An.

Proof. By (55) and (56),

A0
n =

∑n

k=1

(
y0
k−1
)2 + O (n) =

∑n

k=1

(
S̃k−1

)2
+ O (n) .

The right hand side of (57) is the same as in (54), where, however, yn was a
random walk: yn = Sn. If Sn is replaced by S̃n, (57a) remains valid by the
LIL for sums of weighted i.i.d. sequences by Chow & Teicher (1973). As to
(57b), the above mentioned theorem of (Donsker & Varadhan, 1977, page 751)
assumes i.i.d. shocks, in which case (54b) is true. At any rate, for symmetric
εn, S̃n is again a random walk of i.i.d. shocks so that (54b) holds for such error
terms. It can, however, be shown that it remains valid at least in the weaker
form (57b) also for non-symmetric εn. To see this, introduce random variables
ε∗k = ε2k − ε2k−1.Then the ε∗n are i.i.d. with variance 2σ2 and

S̃2n =
∑n

k=1
ε∗k = S∗

n,
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a random walk of the ε∗k. Let [n/2] denote the largest integer ≤ n/2. Then
A0

n ≥
∑[n/2]−1

k=1 S̃2
2k + O (n) =

∑[n/2]−1
k=1 (S∗

k)2 + O (n) = A∗
[n/2] + O (n) . But

lim inf
n→∞

ln2 [n/2]
2 [n/2]2

A∗
[n/2] = 2σ2

8 ,

so that
lim inf
n→∞

ln2 n

2n2 A∗
[n/2] ≥

σ2

16 .

(57) carries over to An. For the first inequality, this follows trivially from
An ≤ A0

n. For (57b), it is a consequence of (56), which implies that
∣∣y−n ∣∣ = O(1)

and therefore

ln2 n

2n2 An = ln2 n

2n2 A0
n − ln2 n

2n
∣∣y−n ∣∣2 = ln2 n

2n2 A0
n + o(1). (58)

3. Derived statistics:

A0
n

An
= O

[
(ln2 n)2

]
, (59a)

ϕ1n

ϕ1 (A0
n) = O (1) with ϕ1n = n√

(lnn)1+η ln2 n
, for all η ≥ 0, (59b)

ϕ2n

ϕ2 (A0
n) = O (1) with ϕ2n = n

ln2 n
, (59c)∣∣y−n ∣∣

An
= O

(
ln2 n

n2

)
. (59d)

Proof. Ad (59a).

1
(ln2 n)2

A0
n

An
=

1
2n2 ln2 nA

0
n

ln2 n
2n2 An

= Pn

Qn
,

lim sup
n→∞

1
(ln2 n)2

A0
n

An
≤ lim supn→∞ Pn

lim infn→∞ Qn
≤ 2.

Ad (59b). Denote αn = 2n2 ln2 n. Then

lnA0
n = lnαn + ln

(
α−1
n A0

n

)
= (1 + o(1)) 2 lnn + ln

(
α−1
n A0

n

)
or

lnA0
n

2 lnn
= (1 + o(1)) +

ln
(
α−1
n A0

n

)
2 lnn

(60)

By (57a), lim supn→∞ ln
(
α−1
n A0

n

)
≤ ln σ2, so that

lim
n→∞

lnA0
n

2 lnn
= 1. (61)
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On the other hand, making use of (61) and (57b), we may write

1
ϕ1 (A0

n)2
=
(
lnA0

n

)1+η

A0
n

= 2n2

ln2 n

1
A0

n

(
lnA0

n

2 lnn

)1+η (2 lnn)1+η ln2 n

2n2 .

Since
(
ln2 n/n

2) (1/A0
n

)
= O (1) by (57b) this shows (59b) with

ϕ1n = n√
(lnn)1+η ln2 n

.

Ad (59c). By (61), denoting the O (1)-term by Cn and noting that Cn > 0
for n large enough,

ln lnA0
n

2 lnn
= ln2 A

0
n − ln2 n− ln 2 = lnCn

or
ln2 A

0
n

2 lnn
= 1 + ln 2 + lnCn.

Since the left hand side is positive for n large enough, lim infn→∞ lnCn ≥
− (1 + ln 2) . As a consequence,

ln2 A
0
n

2 ln2 n
= O (1) .

Making use of (61) and (57b),

1
ϕ2 (A0

n)2
= ln2 A

0
n

A0
n

= 2n2

ln2 n

1
A0

n

(
ln2 A

0
n

2 ln2 n

)
(ln2 n)2

n2

= (ln2 n)2

n2 O (1) .

This shows (59c) with
ϕ2n = n

ln2 n
.

Ad (59d). This is a straightforward consequence of (56) and (57b) together
with (58).

Remark 10. If E |εn|p < ∞ for some p > 2, it follows from (57b) that

1
A0

n

= O

[
ln2 n

n2

]
.

On the other hand, by the LIL (cf. e.g. MCT 2), y2
n = O (n ln2 n) . Therefore

y2
n

(A0
n)γ

= (ln2 n)1+γ

n2γ−1 O(1),

so that for every 1/2 < γ < 1 (2) will be satisfied.
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4.3. Eigenvalues of the moment matrix

For the joint approach to the OLS estimator, consider the second moment matrix
of the regressor (1, yn−1) in (22):

Mn =
(

n ny−n
ny−n A0

n

)
Its eigenvalues are given by

λmax = n + A0
n

2

[
1 +
√

1 − 4Dn

]
, (62a)

λmin = n + A0
n

2

[
1 −
√

1 − 4Dn

]
, (62b)

with

Dn =
nA0

n −
(
ny−n

)2
(n + A0

n)2
.

Note that both eigenvalues are real, so that 0 ≤ Dn ≤ 1/4. These formulae will
be evaluated for the single cases by making use of the path properties established
above. For the minimal eigenvalue, which actually is of interest to us in the joint
approach (cf. (39) and (42)), it turns out that in the explosive and the unit root
case Dn = o (1) , so that (62b) is not conclusive. We therefore use the square
root expansion √

1 + x = 1 + x

2 + O
(
x2)

to obtain

λmin = n + A0
n

2
[
1 −
(
1 − 2Dn + O

(
D2

n

))]
= Dn

(
n + A0

n

)
(1 + O (Dn)) . (63)

In the following, we will report the eigenvalues for the different cases. Except
for the unit root case λ = 1, μ = 0 the proofs are on the basis of (62) or
(63), using the path properties. They are rather straightforward and/or the
results can be found elsewhere, see e.g. Nielsen (2005). We therefore desist from
reproducing them here.

4.3.1. Stable case

lim
n→∞

1
n
λmax = λ+ = 1 + τ2

2

[
1 +

√
1 − 4D

]
,

lim
n→∞

1
n
λmin = λ− = 1 + τ2

2

[
1 −

√
1 − 4D

]
with D = limn→∞Dn = σ2/

(
1 − λ2) (1 + τ2)2 and τ2 as in (43b).
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4.3.2. Explosive case

lim
n→∞

λ−2nλmax = v2,

lim
n→∞

1
n
λmin = 1,

with v2 as in (48).

4.3.3. Unit root case

Case λ = 1, μ �= 0.

lim
n→∞

1
n3λmax = μ2

3 ,

lim
n→∞

1
n
λmin = 1

2 .

Remark 11. For future reference note that

lnλmax

λmin
= 6lnn

n
(1 + o(1)) = o(1).

Case λ = −1.

lim sup
n→∞

1
2n2 ln2 n

λmax ≤ σ2,

lim inf
n→∞

ln2 n

2n2 λmax ≥ σ2

2 ,

lim
n→∞

1
n
λmin = 1.

Remark 12. For future reference, note that

λmax =
(
n + A0

n

)
(1 + o (1)) = A0

n

(
1 + n

A0
n

)
(1 + o (1)) .

Hence, since A0
n/n → ∞, making use of (61), lnλmax = lnA0

n + o (1) =
(1 + o (1)) 2 lnn, so that

lnλmax

λmin
= 2 lnn

n
(1 + o(1)) = o (1) .

We have singled out the case λ = 1, μ = 0, because of its importance due to
two reasons. First, our separate estimation approach does not lead to a result
in this case. Secondly, even in the joint approach it appears to be a white spot
in the literature, to the best of our knowledge. For instance, it is not covered by
(Nielsen, 2005, Theorem 2.5).
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Case λ = 1, μ = 0. In this case, the formulae (62) turn out not to be particu-
larly useful since the behaviour of Dn cannot be derived from the path properties
in Section 4.2.3. We therefore pass to the equivalent formulae

λ± = 1
2

[
A0

n + n±
√

(A0
n − n)2 + 4p2

n

]
,

where we have put pn = ny−n . Since n/A0
n = O(ln2 n/n) and pn/A

0
n =

O(((ln2 n)3/n)1/2) by virtue of (54b) and (53), we may write

λ± = 1
2

⎡⎣A0
n + n±A0

n

√(
1 − n

A0
n

)2

+ 4
(
pn
A0

n

)2
⎤⎦ (64)

= 1
2
[
A0

n + n±A0
n (1 + o(1))

]
.

For λmax = λ+, this means that

λmax = A0
n

2

[
1 + n

A0
n

+ (1 + o(1))
]

= A0
n (1 + o(1)) .

By virtue of (54a), it follows that

λmax = O
(
n2 ln2 n

)
. (65)

For λmin = λ−, we write

λmin = 1
2
[
A0

n + n−A0
n (1 + o(1))

]
= n

2

[
1 − A0

n

n
o(1)
]
.

This shows that a more detailed analysis of the o(1)-term is necessary in order
to capture the asymptotic behaviour of

(
A0

n/n
)
o(1). For the purpose of estab-

lishing our result it suffices, however, to appeal to standard results from the
general theory of autoregressive processes without intercept. (Lai & Wei, 1985,
Theorem 3 for p = 1), for instance, show that

lim inf
n→∞

1
n
λmin > 0, (66)

cf. also Lai & Wei (1983a).
Actually, a close look at (64) reveals that A0

nn
−1o(1) = O(1) so that

lim infn→∞
1
nλmin < ∞. Consequently, the rate in (66) cannot in fact be im-

proved upon.

Remark 13. (65) and (66) together show that

lnλmax

λmin
= (2 lnn + ln3 n)

ncn
O(1) = lnn

n
O(1) = o(1)

since λmin = ncn with lim infn→∞ cn > 0 and hence c−1
n = O(1).
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4.4. Consistency of the OLS estimator

We are now ready to go back the OLS estimator discussed in Section 4.1. As
before, we will distinguish the separate and the joint approach.

4.4.1. Separate approach

All we need to do is to verify the conditions established in Section 4.1.1 for the
individual cases making use of the results in Section 4.2. For each case, the kind
of scenario assumed (i.e. the conditions imposed on the εn) will determine which
statistic ϕ may be used at best, and the corresponding rates ϕn are obtained
form the path properties. Our main concern is the slope.

Theorem 3*. Strong consistency of the OLS estimator λ̂n of the slope param-
eter λ holds at the following rates:

(i) Stable case: |λ| < 1. If E |εn|p < ∞ for some p > 2,√
n

ln2 n
(λ̂n − λ) = O(1).

If only second moments exist, then√
n

(lnn)1+η (λ̂n − λ) = o(1).

for all η > 0.
(iia) Unit root case: λ = 1 and μ �= 0. If E |εn|p < ∞ for some p > 2,√

n3

ln2 n
(λ̂n − λ) = O(1).

If only second moments exist, then√
n3

(lnn)1+η (λ̂n − λ) = o(1).

for all η > 0.
(iib) Unit root case: λ = −1. If E |εn|p < ∞ for some p > 2,

n

(ln2 n)3
(λ̂n − λ) = O(1).

If only second moments exist, then
n√

(lnn)1+η ln2 n
(λ̂n − λ) = o(1).

for all η > 0.
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(iii) Explosive case: |λ| > 1. Assuming only 2nd moments,

|λ|n

n1/2+η
(λ̂n − λ) = o(1) (67)

for all η > 0. If E |εn|p < ∞ for some p > 2, (67) remains valid, with
O(1) instead of o(1) for η = 0.

Proof. Ad (i). If E |εn|p < ∞ for some p > 2, (2) is satisfied, cf. Remark 6,
so that we have automatically scenario (S2) Making use of (44) we see that
ϕn = ϕ2 (n) will satisfy both (32) and (34).

If one assumes only finite 2nd moments, one has to make use of MCT 1 and
ϕn = ϕ1 (n) with η > 0 will do.
Ad (iia). By Remark 10, (2) is satisfied if higher moments exist. By (52),

ϕn =

√
n3

ln2 n

will satisfy (32) and (34).
If only second moments are assumed, then we have to use MCT 1 and

ϕn =
√

n3

(lnn)1+η , η > 0.

Ad (iib). By Remark 10, (2) is satisfied if higher moments exist.

ϕn = n

(ln2 n)3

will satisfy (31). If only second moments are assumed,

ϕn = n√
(lnn)1+η ln2 n

will do.
Ad (iii). According to Remark 8, we are at best in scenario (S1+). Then in
view of (49) and noting that ϕ1

(
λ2n) = (2 ln |λ|)−(1+η)/2 [|λ|n n−(1+η)/2], (32)

is satisfied for
ϕ′
n = |λ|n

n(1+η)/2 .

Making use of (49d), a simple calculation shows that it also satisfies condition
(34). Hence ϕ′

n is a valid rate for the OLS estimator. But since ϕ′
n Since

ϕ′
n(λ̂n − λ) = o(1) is then true for all η > 0, we may as well take ϕn =

|λ|n n1+η/2.

Coming to the intercept, we have the following

Corollary 1*. Strong consistency of the OLS estimator μ̂T of the intercept μ
holds at the following rates.
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(i) Stable case: If E |εn|p < ∞ for some p > 2,√
n

ln2 n
(μ̂n − μ) = O(1).

If only second moments exist, then√
n

(lnn)1+η (μ̂n − μ) = o(1).

for all η > 0.
(iia) Unit root case: λ = 1 and μ �= 0. If E |εn|p < ∞ for some p > 2,√

n

ln2 n
(μ̂n − μ) = O(1).

If only second moments exist, then√
n

(lnn)1+η (μ̂n − μ) = o(1).

for all η > 0.
(iib) Unit root case: λ = −1. Same as in case (iia).
(iii) Explosive case: Assuming only 2nd moments,

n1/2−η (μ̂n − μ) = o(1) (68)

for all η > 0. If E |εn|p < ∞ for some p > 2, (68) remains valid for η = 0
and with o(1) replaced by O(1).

Proof. Ad (i). Since y−n = O(1), both ψn = ϕ1 (n) and ψn = ϕ2 (n) from
Theorem 3(i) will do according to the dichotomy established there.
Ad (iii). By Theorem 3(iii), ϕn = |λ|n /n1/2+η. Since n |λ|−n

y−n = O (1) (cf.
(47)),

ψn = n1/2−η

will do for every η ≥ 0:

ψn

ϕn
y−n = n1/2−η n

1/2+η

|λ|n y−n = n

|λ|n y
−
n = O(1),

which shows (36b). (36a) is trivially satisfied.
Ad (iia). Since y−n /n → μ/2, cf. (51b), ψn = ϕ2(n) will do if higher moments
exist:

ψn

ϕn
y−n =

√
n

ln2 n

√
ln2 n

n3
n

2μ (1 + o(1)) = O(1).

If only 2nd moments exist,

ψn =
√

n

(lnn)1+η .

Ad (iib). Same as for (iia).
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4.4.2. Joint approach

As pointed out in Section 4.1.2 we follow the Nielsen approach based on (42).
Our starting point will be (Nielsen, 2005, Theorem 2.4), which we cite here
because it is of interest in its own right.

Result 1 (Nielsen (2005)). Assume that E |εt|p < ∞ for some p > 2 and recall
the definition of τn in (40). Then the following holds with probability one:

τn =

⎧⎪⎪⎨⎪⎪⎩
O
[
(ln2 n)1/2

]
for |λ| < 1,

O
[
(lnn)1/2

]
for |λ| = 1,

o [nρ] for |λ| > 1,

(69)

with the last line being valid for all ρ > 1/p.

As elaborated in Section 4.1.2, this approach comes down to investigating
the asymptotic behaviour of the minimal eigenvalues λn = λmin (Mn) of the
moment matrix Mn and to find sequences of numbers χn s.t.

χn
‖τn‖√
λn

= O (1) . (70)

Then it will hold that
χn

∥∥∥θ̂n − θ
∥∥∥ = O(1).

The minimal eigenvalues λn of Mn are calculated in Section 4.3. The proofs are
rather straightforward combinations of those results with (69). It will be given
only for the critical unit root case λ = 1, μ = 0 since the other cases are not
surprising in view of Corollary 1* and the discussion in Section 3.1. Note that
due to the assumption in (69) we are automatically in scenario (S1+), in the
notation introduced in Section 4.1.1.

The following theorem summarises the rates for the individual cases.

Theorem 4*. Assume that E |εn|p < ∞ for some p > 2 Then strong consis-
tency of the joint OLS estimator θ̂n holds at the following rates.

(i) Stable case: |λ| < 1. √
n

ln2 n

(
θ̂n − θ

)
= O(1).

(ii) Unit root case: λ = 1 or λ = −1, with μ arbitrary.√
n

lnn

(
θ̂n − θ

)
= O(1).

(iii) Explosive case: |λ| > 1.

n1/2−ρ
(
θ̂n − θ

)
= o(1)

for every ρ > 1/p.
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Remark 14. In the stable case, both eigenvalues diverge at the same rate, so
that both components of θ̂n will have the same rate of convergence.

Unfortunately in the critical case λ = 1, μ = 0, Theorem 4*(ii) does not say
much about the actual rate of convergence of the slope OLS estimator. Actually,
looking at the corresponding rates for the unit root case obtained by separate
estimation (cf. Theorem 3*) one should expect a much better rate.

Proof. Ad (ii). For both λ = 1 and λ = −1,

lim inf
n→∞

1
n
λmin > 0,

so that
λ
−1/2
min = n−1/2O(1).

Using (69),
‖τn‖√
λn

=
√

lnn

n
O(1)

it follows that
χn =

√
n

lnn

will satisfy (70).

5. Conclusion and outlook

5.1. Summary

This paper considers the question of strongly consistent OLS estimation in re-
gression models with adaptive learning. In particular, it makes three contribu-
tions to the literature: First, we derive rates at which at converges almost surely
to the REE α in the decreasing gain learning model. Secondly, we establish rates
for the strong consistency of the OLS estimators of δ and β in the constant and
decreasing gain learning models. Interestingly, we find that the near optimal
sufficient condition by Lai & Wei (1982a) is not satisfied in some of our models.
Thirdly, we present a complete treatment of OLS estimation in an autoregres-
sive model of order one with intercept. In particular, we cover the unit root case
with slope one and zero intercept, which to our knowledge has not yet been
treated in the literature.

5.2. Refinements

If more powerful convergence result than MCT 1 or MCT 2 are available, the
results may be refined in several directions. We consider here one exemplary
case, namely the stable constant gain case, in the general notation of Section 4.
Other scenarios are beyond the scope of the present paper and are left to future
research.



1682 N. Christopeit and M. Massmann

In the stable constant gain case, it can be shown that the rate ϕn = ϕ2(n)
remains valid even when the εn possess only 2nd moments. In addition, the
vague O(1) result in Theorem 3* may actually be sharpened to yield bounds for
the scaled OLS estimator. The basis of the argument is the following LIL for
stationary ergodic processes due to Stout (1970).

Result 2 (Stout (1970)). Let (Yi)i≥1 be a stationary ergodic stochastic sequence
with E{Yi | Y1, Y2, . . . , Yi−1} = 0 a.s. for all i ≥ 2 and EY 2

1 = ζ2. Then, with
probability one,

lim sup
n→∞

∑n
i=1 Yi√
n ln2 n

= ζ
√

2. (71)

We apply Result 2 to Yi = yi−1εi. Actually, this sequence is not stationary
ergodic unless yi is the stationary solution y0

i to (22). Since, however, the dif-
ference between any two solutions is yn − y0

n = λn
(
y0 − y0

0
)
, the corresponding

numerators in (71) differ by O(1), so that (71) remains valid for any solution. As
yn−1 and εn are independent, only εn ∈ L2 needs to be required, cf. (Shiryaev,
1996, Chapter II, §6, Theorem 6), and ζ2 = σ4/

(
1 − λ2) . Passing to (−Yi) , we

get a similar result for the lim inf, i.e. with −ζ
√

2 on the right hand side of (71).
Return to the basic formula (30) in Section 4.1.1.1:

ϕn(λ̂n − λ) = ϕn

ϕ (A0
n)

A0
n

An
Un − ϕnVn, (72)

where Un in (25) can be expressed as

Un =
∑n

k=1 yk−1εk√
A0

n ln2 A0
n

=
∑n

i=1 Yi√
n ln2 n

√
n ln2 n√

A0
n ln2 A0

n

.

Using Result 2 and (43b) as well as (44c), we now have

lim sup
n→∞

Un = ζ
√

2
τ

, lim inf
n→∞

Un = −ζ
√

2
τ

.

This gives a more precise meaning to (28). Writing (33) in the form

ϕnVn = ϕn

√
n ln2 n

y−n
An

Ln,

with Ln obeying the LIL for i.i.d. εn, and employing (43a) and (43c), we can
now compute upper and lower bounds for ϕn(λ̂n − λ) in (72):

lim sup
n→∞

ϕn(λ̂n − λ) ≤
√

2κ, lim inf
n→∞

ϕn(λ̂n − λ) ≥ −
√

2κ

with a constant κ =
√

1 − λ2 + μ(1 + λ)/σ.
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5.3. Extensions

As already pointed out in Remark 5, the MCTs are apt to deal with more general
error sequence than just i.i.d. εn. In dealing with more general error sequences,
the chief problem is to determine the asymptotics of the first and second order
empirical moments (i.e. what we call the basic statistics) and to mimic their
behaviour by some deterministic sequence ϕn. The moment condition on the εn
has to be replaced by the corresponding condition supn E {|εn|p | Fn−1} < ∞
(with p ≥ 2) on the conditional moments. A major issue is that in the MCTs the
denominator is g (〈u〉n)1/2, where 〈u〉n is the predictable quadratic variation

〈u〉n =
∑n

i=1
y2
i−1E

{
ε2
i | Fi−1

}
of un =

∑n
i=1 yi−1εi and where g(x) is either of the functions g(x) = x (ln x)1+η

or g(x) = x ln2 x. For i.i.d. errors, we have 〈u〉n = σ2A0
n, with A0

n =
∑n

i=1 y
2
i−1,

in accordance with the OLS formula where A0
n appears as denominator. For gen-

eral MDSs, 〈u〉n and σ2A0
n will generally not coincide, and the crucial task would

be to determine the asymptotics of the ratios 〈u〉n/A0
n and g (〈u〉n) /g

(
A0

n

)
. The

following two paragraphs offer some idea of the problems that may arise in the
process.

For constant gain learning, the approach in Section 4 seems to go through
in the stable case for stationary ergodic sequences εn since both properties are
inherited by yn−1εn (at least for stationary initial value y0 independent of the
future errors) and ergodicity provides the LLNs for the first two moments. For
independent but not identically distributed εn, anything may happen, including
inconsistency of the OLS estimator. In the explosive case, the results seem to
carry over to MDS error sequences since the basic building block is the fun-
damental martingale convergence theorem for martingales with finite variation.
As to the unit root case, the tools needed for the proofs above are very special
results for the random walk of i.i.d. sequences, and extensions to other error
sequences will be only available for very specific cases.

For decreasing gain learning, the results of Theorem 2 remain basically valid
for MDS εn with uniformly bounded second moments. In the case c ≥ 1/2,
the lim sup remains finite, but indefinite. The reason is that, instead of to the
powerful LIL by Chow & Teicher (1973), appeal has to be made to MCT 2. For
c < 1/2, (iii) remains true without the additional assertion about the distribu-
tion of the limit u. For the proof of Theorem 5, when c > 1/2, property 3 of
Section 6.2.2, which is actually the one determining the asymptotic behaviour
of A0

T , has to be revisited. The point is that it has to be ensured that∑T

t=1
ε2
t/t = const × lnT + O(1). (73)

So whatever error sequence is considered it should satisfy (73). Otherwise the
asymptotic behaviour of A0

T might be quite different. The case c < 1/2 in
Theorem 5 does not seem to be affected.
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6. Proofs

6.1. Proof of Theorem 2

The proofs proceed along lines similar to those followed in CM18, and may
be considered almost sure (a.s.) convergence counterparts of the weak conver-
gence results obtained there. In particular, they rely on the decomposition of at
exposed in Appendix B.1 loc. cit.. In the present paper, we will use a decom-
position applied in CM18 in the case c < 1, but which actually remains valid
for all c > 0. As to the probabilistic tools needed, roughly speaking, whenever
a CLT comes into the play in CM18, we will now make use of an appropriate
strong LLN and a LIL.

Reconsider the recursion (7) for at. Passing from at to a#
t = at − α and

remembering that α = δ/ (1 − β) = γδ/c, it follows that a#
t obeys the dynamics

a#
t =

(
1 − c

t

)
a#
t−1 + γ

t
εt (74)

and the DGP in (1) takes the form

yt = α + βa#
t−1 + εt. (75)

Since, henceforth, we will be working exclusively with a#
t , let us rename a#

t as
at for notational simplicity.

The basis of all calculations will be the representation

at = O
(
t−c
)

+ γ (ξt + ηt) (76)

of at. In (76),

ξt = 1
tc
vt, ηt = 1

t1+c
wt,

vt =
t∑

i=1
θi

εi
i1−c

, wt =
t∑

i=1

Oti(1)
i1−c

εi.

Here i0 is the largest1 integer less than or equal to c. The θi are nonnega-
tive deterministic coefficients satisfying limt→∞ θi = 1. The Oti(1)-terms are
deterministic and uniformly bounded in i, t. This representation is proved in
Appendix B.1 of CM18 for the special case c < 1 (corresponding to i0 = 0), but
an inspection of the proof in CM18 shows that it remains valid for all c > 0.

For c < 1 (i.e. i0 = 0), the O (t−c)-term is of the form O (t−c) = a0B0t
−c +

O
(
t−1), where B0 is some positive constant, cf. Appendix B.1 in CM18. There-

fore (76) may be put into the stronger form

at = a0B0t
−c + γ (ξt + ηt) + O

(
t−1) . (77)

This is the representation proved in CM18 for c < 1/2 and which will be needed
below for this case.

1In CM18, i0 was erroneously introduced as the smallest integer greater than or equal to
c, but in the proof the correct definition given here is used.
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Case (i): c > 1/2. By Lemma 1 below, the predictable quadratic variation 〈v〉t
of vt is the same as that of

v′t =
t∑

i=1

εi
i1−c

.

Hence
〈v〉t = 〈v′〉t = σ2

∑t

i=1
i2(c−1) = σ2

2c− 1 t
2c−1 + O(1)

and 〈v〉∞ = limt→∞ 〈v〉t = ∞ a.s.. Therefore, by the LIL for sums of weighted
i.i.d. random variables proved in Chow & Teicher (1973),

lim sup
t→∞

|vt|√
2 〈v〉t ln2 〈v〉t

= 1.

As a consequence,

lim sup
t→∞

|vt|√
t2c−1 ln2 t

= σ

√
2

2c− 1
so that

lim sup
t→∞

√
t

ln2 t
|ξt| = σ

√
2

2c− 1 (78)

and hence ξt → 0.
Turning to wt, it follows from the integral comparison test (ICT), see (Apos-

tol, 1974, Proposition 8.23), that

Ew2
t = O

(
t2c−1) and Etη2

t = 1
t2
.

Hence, by monotone convergence, E
∑∞

t=1 tη
2
t < ∞, so that tη2

t → 0. In partic-
ular, this means that √

t |ηt| = o(1). (79)

(78) and (79) show that

lim sup
t→∞

√
t

ln2 t
|ξt + ηt| = σ

√
2

2c− 1 .

In connection with (76) this shows (i) of Theorem 2 (remember our transfor-
mation).

Lemma 1. Consider the sums

Rt =
t∑

i=1
σ2
i and St =

t∑
i=1

θ2
i σ

2
i .

Suppose that θi → 1 and R∞ = ∞. Then St/Rt → 1.

The proof runs along familiar lines like, e.g., that of Kronecker’s lemma.
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Case (ii): c = 1/2. We go back to the decomposition (77). Again by Lemma
1, the predictable quadratic variation of vt is given by

〈v〉t = 〈v′〉t = σ2
∑t

i=1
i−1 = σ2 ln t + O(1).

Hence, by the LIL, cited above,

lim sup
t→∞

|vt|√
ln t ln3 t

= σ
√

2

and therefore
lim sup
t→∞

√
t

ln t ln3 t
|ξt| = σ

√
2. (80)

As for wt, Ew2
t = O (ln t). Therefore, E

∑∞
t=1 tη

2
t = O(1)

∑∞
t=1

ln t
t2 < ∞, so that

√
tηt = o(1). (81)

Theorem 2(ii) then follows from (76) together with (80) and (81).

Case (iii): c < 1/2. Our starting point is again (77). By Kolmogorov’s LLN,

lim
t→∞

tcξt = lim
t→∞

vt =
∞∑
i=1

θi
εi
i1−c

= v

is finite with probability one. As to wt,

Ew2
t = O (1)

t∑
i=1

i2(c−1) = O (1) ,

so that Eη2
t = O

(
t−2(1+c)) and

E
∞∑
t=1

(tcηt)2 < ∞.

Therefore, with probability one, limt→∞ tcηt = 0. Hence, by (77),

lim
t→∞

tcat = u = a0B0 + γv.

The limit also takes place in L2, so that u is an L2-variable with mean a0B0.
Moreover, v and hence u has a continuous distribution function, cf. CM18 on
this issue.

Remark 15. In the proof of Theorem 5 below we will need the asymptotic
behaviour of the means

aT = 1
T

T∑
t=1

at and a−T = 1
T

T∑
t=1

at−1
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in Case (i) and Case (iii) since both appear in the formula for the OLS estima-
tor. For Case (i), it follows from Theorem 2 that

|aT | ≤
1
T

T∑
t=1

|at| = O(1) 1
T

T∑
t=1

√
ln2 t

t
= O

(√
ln2 T

T

)
(82)

since ∫ T

t0

√
ln2 t

t
= 2
√
T ln2 T + O

(√
T
)
.

In Case (iii), we have

aT = 1
T

T∑
t=1

at = 1
T

T∑
t=1

t−ctcat = 1
T

T∑
t=1

t−c (u + o(1))

= u

1 − c

1
T c

+ o
(
T−c
)
. (83)

Since aT and a−T differ only by (1/T ) (aT − a0) and aT = o(1), the asymptotic
behaviour of a−T is the same as that of aT .

6.2. Proof of Theorem 5

6.2.1. Generalities

As in the proof of Theorem 2, we will make the calculations in terms of the
centred process a#

t = at − α, for which the corresponding dynamics and the
DGP are given by (74) and (75). As is readily seen, the OLS estimator β̂T is
the same whether calculated with the original at or the transformed a#

t . Using
again the convention of renaming a#

t as at, we are thus from now on working
with the DGP

yt = α + βat−1 + εt, (84)

and the dynamics
at =

(
1 − c

t

)
at−1 + γ

t
εt. (85)

Note that, with this notational convention, limt→∞ at = 0.
Formally, (84) resembles (22) in Section 4, apart from the different notation

for the time parameter (t instead of n), structural parameters α instead of μ and
β instead of λ, and the regressors at−1 instead of yn−1. With these replacement,
the OLS estimators may therefore be written

β̂T − β = uT

AT
− a−T

AT

T∑
t=1

εt, (86a)

α̂T − α =
(
β̂T − β

)
a−T + εT , (86b)
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cf. (23). The statistics appearing in (86) together with those appearing in the
formulae below are defined as in (12) in Section 3.1.1, cf. also Section 4.1.1. The
goal is again to find deterministic sequences ϕT and ψT such that ϕT (β̂T −β) =
O(1) and ψT (α̂T − α) = O(1). Only the separate approach will be considered.

The crucial point is that the analysis in Section 4 does not depend on the fact
that the regressors are predetermined values of yn, but only on the behaviour
of the basic statistics yn, y

−
n , An and A0

n and the derived ones. In the present
model, this corresponds to aT , a

−
T , AT and A0

T . As a consequence, ‘all’ we have
to do is to verify for the model in (84) with regressors (85) the crucial conditions
(32) and (34) from Section 4.1.1.1. Phrased in the notation of the present model
for easy reference, we need to check whether

ϕT

ϕ (A0
T ) = O (1) , (87a)

A0
T

AT
= O (1) (87b)

as well as
ϕT

√
T ln2 T

ā−T
AT

= O (1) (88)

are satisfied. The functions ϕ = ϕi are defined as in Section 4.1.1.1.

6.2.2. Asymptotics of the basic statistics

Apart from evaluating the asymptotic behaviour of the basic statistics we will
check to validity of condition (2) in Section 4.1.1.1. For reference, we repeat it
here in the actual notation:

a2
T

(A0
T )γ

= o(1) for some γ > 0. (89)

Case (i): c > 1/2. We will show that

A0
T

lnT
→ γ2σ2

2c− 1 . (90)

Starting with (85) (remembering our renaming convention) the same algebraic
manipulations as in CM18 yield

(2c− 1)A0
T = −Ta2

T +c2
T∑

t=1

1
t
a2
t−1+γ2

T∑
t=1

1
t
ε2
t +2γuT−2γc

T∑
t=1

1
t
at−1εt. (91)

(no probabilistic arguments are involved). Now bring in the asymptotic be-
haviour of at established in Theorem 2(i):

at = O

(√
ln2 t

t

)
, (92)
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to analyse the individual terms on the right hand side of (91). The following
four properties all hold with probability one:

1. Ta2
T = O (ln2 T ) .

2.
∑T

t=1 a
2
t−1/t = O (1). This is because, by (92), M = supt ta

2
t−1/ ln2 t < ∞

such that
∑T

t=1 a
2
t−1/t =

∑T
t=1(ln2 t/t

2)·(ta2
t−1/ ln2 t) ≤ M

∑T
t=1 ln2 t/t

2 =
O(1).

3.
∑T

t=1 ε
2
t/t = σ2 lnT + O (1). This follows from the decomposition νt =

ε2
t − σ2, applying the strong LLN for i.i.d. sequences to νt:

∑T
t=1 ε

2
t/t =∑T

t=1 σ
2/t +

∑T
t=1 νt/t = σ2 lnT + O (1) .

4.
∑T

t=1
1
t at−1εt = O (1). This is due to Chow’s local martingale convergence

theorem, see (Lai & Wei, 1982a, equation (2.7)).

Hence
(2c− 1)A0

T = γ2σ2 lnT + O (ln2 T ) + 2γuT . (93)

Noting that 〈u〉T = σ2A0
T , we then argue as follows. Suppose that A0

∞ < ∞ on
some set Γ of positive probability. Then, by the martingale convergence theorem,
uT converges a.s. on Γ to some finite limit. Dividing (93) by A0

T , we obtain

(2c− 1) = γ2σ2 lnT

A0
T

+ O (ln2 T )
A0

T

+ O (1)

= γ2σ2 lnT

A0
T

[
1 + O

(
ln2 T

lnT

)]
+ O (1) .

On Γ, the right hand side converges to ∞, which is impossible since the left
hand side is finite. As a consequence, A0

∞ = ∞ with probability one. Again
from the martingale convergence theorem (now the version for martingales with
unbounded bracket process) it then follows that

uT

A0
T

→ 0.

Dividing (93) by A0
T we now obtain

(2c− 1) = γ2σ2 lnT

A0
T

[1 + o (1)] + o (1) . (94)

This shows (90).
Making use of (82), we find that

AT

A0
T

= 1 + O

(
ln2 T

lnT

)
(95)

and
a−T
AT

= O

(
1

lnT

√
ln2 T

T

)
. (96)
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Finally, taking account of (90) and (92),

a2
T

(A0
T )γ

= O

(
ln2 T

T (lnT )γ
)

= o (1) (97)

for all γ. Therefore condition (89) is satisfied.

Remark 16. For c = 1/2, (94) only shows that A0
T / lnT → ∞, so that it does

not allow the determination of the exact speed of divergence.

Case (ii): c < 1/2. Recall that c > 0. Define xt = tcat−1 and βt = t−2c. Then
by Theorem 2(iii), x2

t → u2 and bT =
∑T

1 βt → ∞ such that bT /T
1−2c →

1/(1 − 2c). Now use the Toeplitz Lemma:

A0
T

T 1−2c =
∑T

1 βtx
2
t

bT

bT
T 1−2c → u2

1 − 2c . (98a)

Similarly,
AT

T 1−2c → v2 (98b)

where v2 = c2u2/((1 − c)2(1 − 2c)). Consequently,

lim
T→∞

A0
T

AT
=
(

1 − 1
c

)2

. (99)

Also, making use of (83) together with (98b), it turns out that

a−T
AT

= 1
T 1−c

w (1 + o(1)) (100)

with w �= 0 a.s.. Finally, let us consider condition (89). In view of Theorem 2(iii)
and (98a),

a2
T

(A0
T )γ

= O

(
T−2c

T (1−2c)γ

)
= O

[
T−2c−(1−2c)γ

]
. (101)

Hence (89) is fulfilled for all γ > 0.

6.2.3. Consistency

Case (i): c > 1/2. As indicated in Section 6.2.1, what we have to do is to
find deterministic sequences ϕT such that conditions (87) and (88) are satisfied.
Straightforward calculation shows that

ϕ1
(
A0

T

)
=
√

A0
T

(lnA0
T )1+η =

√
r lnT

(ln2 T )1+η (1 + o(1)) ,

ϕ2
(
A0

T

)
=

√
A0

T

ln2 A0
T

=
√

r lnT

ln3 T
(1 + o(1)) ,
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with r = γ2σ2/ (2c− 1) > 0. In view of (87a) this yields as candidates for
the normalising sequences ϕ1

T = ϕ1 (lnT ) or ϕ2
T = ϕ2 (lnT ) , according to the

prevalent scenario, cf. Section 4.1.1.1. As to (88), it follows from (96) that

ϕ1
T

√
T ln2 T

a−T
AT

=
√

lnT

(ln2 T )1+η

√
T ln2 T

1
lnT

√
ln2 T

T
O (1)=O

⎛⎝√ (ln2 T )1−η

lnT

⎞⎠
and

ϕ2
T

√
T ln2 T

a−T
AT

=
√

lnT

ln3 T

√
T ln2 T

1
lnT

√
ln2 T

T
O (1) = O

⎛⎝√ (ln2 T )2

lnT ln3 T

⎞⎠ .

Hence condition (88) is satisfied for both choices of the normalising sequence
ϕT . Condition (87b) is satisfied by virtue of (99). Summarising, we arrive at the
following conclusions:

1. If εt has moments up to second order, then the rate of a.s. convergence of
the OLS estimator is ϕT = (lnT/ (ln2 T )1+η)1/2 for every η > 0.

2. If E |εt|p < ∞ for some p > 2, then also η = 0 will do. However, in
view of (97), we may apply MCT 2 to obtain ϕT = (lnT/ ln3 T )1/2 as a
normalising sequence.

Case (ii): c < 1/2. From the results in Section 6.2.2 it readily follows that

ϕ1
(
A0

T

)
=
√

A0
T

(lnA0
T )1+η = w

√
T 1−2c

(lnT )1+η (1 + o(1)) ,

ϕ2
(
A0

T

)
=

√
A0

T

ln2 A0
T

= w′

√
T 1−2c

ln2 T
(1 + o(1))

for some positive random variables w and w′. Hence the deterministic sequences

ϕ1
T =

√
T 1−2c

(lnT )1+η and ϕ2
T =

√
T 1−2c

ln2 T

both qualify as candidates for the normalisation of the OLS estimator, in the
sense that they satisfy (87a). Condition (87b) is fulfilled in view of (99). It
remains to verify (88). By (100),

ϕ2
T

√
T ln2 T

ā−T
AT

=

√
T 1−2c

ln2 T

√
T ln2 T

1
T 1−c

O(1) = O(1).

Similarly for ϕT . Summarising, we arrive at the following conclusions:
1. If εt has moments up to second order, then the rate of a.s. convergence of

the OLS estimator is ϕT = (T 1−2c/ (lnT )1+η)1/2 for every η > 0.
2. If E |εt|p < ∞ for some p > 2, then also η = 0 will do. Again, due to (101),

we may apply MCT 2 to obtain ψT = (T 1−2c/ ln2 T )1/2 as a normalising
sequence.
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