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Abstract: We propose an optimal experimental design for a curvilinear re-
gression model that minimizes the band-width of simultaneous confidence
bands. Simultaneous confidence bands for curvilinear regression are con-
structed by evaluating the volume of a tube about a curve that is defined
as a trajectory of a regression basis vector (Naiman, 1986). The proposed
criterion is constructed based on the volume of a tube, and the correspond-
ing optimal design that minimizes the volume of tube is referred to as the
tube-volume optimal (TV-optimal) design. For Fourier and weighted poly-
nomial regressions, the problem is formalized as one of minimization over
the cone of Hankel positive definite matrices, and the criterion to mini-
mize is expressed as an elliptic integral. We show that the Möbius group
keeps our problem invariant, and hence, minimization can be conducted
over cross-sections of orbits. We demonstrate that for the weighted polyno-
mial regression and the Fourier regression with three bases, the tube-volume
optimal design forms an orbit of the Möbius group containing D-optimal
designs as representative elements.
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1. Introduction

Suppose that we observe pairs of explanatory variables xi ∈ X and response
variables yi ∈ R, i = 1, . . . , N . Here, X ⊂ R is a domain of explanatory variables,
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and typically, a segment of R. For such data, we consider the regression model

yi = b�f(xi) + εi, εi ∼ N
(
0, σ2(x)

)
i.i.d.,

where b = (b1, . . . , bn)
� is an unknown coefficient vector, and f(x) = (f1(x), . . . ,

fn(x))
�, x ∈ X , is a piecewise smooth regression basis vector. For the problem

of this paper, we assume that the variance function σ2(x) > 0 is known. When
σ2(x) is not a constant, the regression model is called weighted .

For experimental design, it is assumed that the explanatory variables xi can
be chosen arbitrarily within its domain X ⊂ R. The allocation of {x1, . . . , xN} ⊂
X to optimize some target function is called optimal experimental design. For
example, for D-optimality, we take a function det(Σ) with Σ = Var(̂b), where b̂
is the ordinary least square (OLS) estimator of b. Here,

Σ = M−1 with M =
N∑
i=1

f(xi)f(xi)
� 1

σ2(xi)
,

the information matrix.
Following [20], in an optimal design, allocation {x1, . . . , xN} is regarded as

the probability measure over X with mass pi = 1/N at each point xi. We write
this discrete probability measure as{

xi

pi

}
1≤i≤N

=

{
x1 · · · xN
1
N · · · 1

N

}
.

Viewed from this point, the problem is formalized as that of optimization with
respect to the probability measure over X . Most criteria in the literature in-
cluding the criterion mentioned above are convex or concave functionals of the
probability measure, and can be considered in the framework of convex analysis
[31, 37].

In this paper, we propose a new non-convex criterion based on simultaneous
confidence bands. The pointwise confidence band is based on the confidence
region for regressor b�f(x) at a fixed point x. On the other hand, the simul-
taneous confidence band is the confidence region for the full regression curve
{(x, b�f(x)) | x ∈ X} ⊂ R

2. The standard form of the simultaneous confidence
band of hyperbolic-type is of the form

b�f(x) ∈ b̂�f(x)± cα

√
f(x)�Σf(x), (1)

where u±v stands for the region (u−v, u+v). The threshold cα is determined so
that the event (1) holds for all x ∈ X with given probability 1−α [24, 32, 36, 38].
The simultaneous confidence bands are useful when x cannot be determined in
advance. (See [7] for an application in experimental particle physics.) As shown
in the next section, cα is also a functional of the allocation {x1, . . . , xN}, and
hence, we can consider an optimal design that in some way minimizes both the
threshold cα and f(x)�Σf(x). In fact, from the general equivalence theorem
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of [20], the design measure that minimizes maxx∈X f(x)�Σf(x) coincides with
the D-optimal design. Therefore, we propose the use of cα as a criterion of
optimal design, and consider the corresponding optimal design as the tube-
volume optimal (TV-optimal) design. If a design is optimal under both the
tube-volume criterion and the D-criterion, it becomes the universal optimal
design to minimize the width of confidence bands (1).

From its definition, cα is a complicated function of Σ. However, when α is
small, cα tends to a simpler function. This approximation is due to the volume-
of-tube method used to construct simultaneous confidence bands in curvilinear
regression curves [14, 25, 29, 34]. The volume-of-tube method is a methodology
to approximate the probability of the maximum of a Gaussian random field
[1, 21, 22, 33, 35]. As shown later, cα corresponds to the upper tail probability
of the maximum of a Gaussian field, and hence, the volume-of-tube method
works well.

As concrete regression models, weighted polynomial and Fourier regressions
are mainly covered here. In these models, we will see that there is a group
referred to as the Möbius transform that keeps the tube-volume optimal design
problem invariant. In general, a group action simplifies problems. (See Section
13 of [31] for invariant optimal experimental design.) The use of such group
invariance is another subject of this paper.

The optimal design problem focusing on the width of the simultaneous con-
fidence bands can be formalized in a different way. When comparing two esti-
mated regression curves, Dette, et al. [4, 5] proposed to minimize the Lp- or
L∞-norm of the variance function of the estimator of the difference between
the two curves. They demonstrated that their proposal reduces the width sub-
stantially compared with the pair of optimized designs for individual regression
models. Different from them, our objective function is the width cα of the si-
multaneous confidence band standardized by standard deviation.

The outline of this paper is as follows. Section 2 summarizes the volume-of-
tube formula to construct approximate simultaneous confidence bands, and for-
malizes the tube-volume criterion and the corresponding optimal design. Section
3 analyzes the tube-volume optimal designs for Fourier and weighted polyno-
mial regressions. The Möbius group is proved to keep the optimization problem
invariant, and hence can be used to reduce the dimension of the problem. Using
this consideration, Section 4 identifies the tube-volume optimal design in the
weighted polynomial regression and the Fourier regression when n = 3. Some
proofs are given in Appendix.

2. Tube-volume optimal design

2.1. Volume-of-tube formula for simultaneous confidence bands

In this subsection, we briefly summarize the volume-of-tube method. This is a
general methodology used to approximate the probability of the maximum of a
smooth Gaussian random process or random field. Here, we describe how this
method is used to determine threshold cα.
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As mentioned in Section 1, threshold cα should be determined as a solution
c = cα of

Pr

(
| b̂�f(x)− b�f(x)|√

f(x)�Σf(x)
< c, ∀x ∈ X

)
= 1− Pr

(
max
x∈X

| (̂b− b)�f(x)|
‖Σ 1

2 f(x)‖
> c

)
= 1− α, (2)

where Σ
1
2 is a symmetric square-root matrix such that (Σ

1
2 )2 = Σ.

We define the normalized basis vector and its trajectory as

ψΣ(x) =
Σ

1
2 f(x)

‖Σ 1
2 f(x)‖

, γΣ =
{
±ψΣ(x) | x ∈ X

}
, (3)

respectively. From this definition, the trajectory is a subset of the (n − 1)-
dimensional unit sphere:

γΣ ⊂ S
n−1 = {u ∈ R

n | ‖u‖ = 1}.

In particular, when X is a segment, γΣ is a curve on the unit sphere. Let Vol1(·)
denote the one-dimensional volume, that is, the length. Then, when c is large, the
volume-of-tube method provides an approximation to the upper tail probability
of the maximum in (2). Further, let χ2

ν denote the chi-square random variable
with ν degrees of freedom.

Proposition 2.1. (i) As c → ∞,

Pr

(
max
x∈X

| (̂b− b)�f(x)|
‖Σ 1

2 f(x)‖
> c

)
∼ Vol1(γΣ)

2π
Pr
(
χ2
2 > c2

)
. (4)

(ii) For all c > 0, the left-hand side of (4) is bounded above by

Vol1(γΣ)

2π
Pr
(
χ2
2 > c2

)
+ χ(γΣ) Pr

(
χ2
1 > c2

)
, (5)

where χ(γΣ) is the number of the connected components of the set γΣ (⊂ S
n−1)

provided that any connected component of γΣ is not a closed curve.

If we admit approximation (4), an approximate threshold cα can be deter-
mined from the equation

Vol1(γΣ)

2π
Pr
(
χ2
2 > c2α

)
= α.

This means that the smaller the value of Vol1(γΣ), the smaller is cα.
The statement (ii) above is due to [29]. Alternative proofs of the inequality

can be found in [15] and [35]. See [25] for a generalization of Naiman’s inequality.
By equating (5) to be α, we have a conservative threshold for the simultaneous
confidence band.
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The volume-of-tube method in Proposition 2.1 is based on the property that
the normalized vector η = ξ/‖ξ‖, ξ = Σ− 1

2 (̂b − b), is distributed uniformly
on the unit sphere Sn−1, independently of its length ‖ξ‖. This occurs when
the observation error (ε1, . . . , εn)

� is distributed as the elliptically contoured

distribution, and hence the generalized least square estimator b̂ follows the el-
liptically contoured distribution as well (see, e.g., Theorem 2.6.3 of [8]). Part
(ii) of Proposition 2.1 still holds as follows.

Proposition 2.2. Suppose that ξ = (ξ1, . . . , ξn)
� = Σ− 1

2 (̂b − b) is distributed
according to an elliptically contoured distribution with mean zero and an identity
covariance matrix. Then, for all c > 0,

Pr

(
max
x∈X

| (̂b− b)�f(x)|
‖Σ 1

2 f(x)‖
> c

)
≤ Vol1(γΣ)

2π
Pr
(
R2

2 > c2
)
+ χ(γΣ) Pr

(
R2

1 > c2
)
,

(6)

where R2
k =
∑k

i=1 ξ
2
i , provided that any connected component of γΣ is not a

closed curve.

The proof is given in Appendix A.1. Part (i) of Proposition 2.1 does not
hold in general. It depends on the tail behavior of the elliptically contoured
distribution.

2.2. Tube-volume criterion

From (5), we find that the smaller the value of Vol1(γΣ), the narrower is the
width of the confidence band. In this subsection, we formalize the experimen-
tal design optimization problem of the allocation of explanatory variables to
minimize Vol1(γΣ).

Here, we give our assumptions on f(x).

Assumption 2.3. f : X → Rn is a continuous and piecewise C1-function.
Image f(X ) spans R

n.

From elementary geometry, the volume of γΣ in (3) is given by

Vol1(γΣ) = 2

∫
X

∥∥∥∥dψΣ(x)

dx

∥∥∥∥ dx
= 2

∫
X

∥∥∥∥ d

dx

(
Σ

1
2 f(x)

‖Σ 1
2 f(x)‖

)∥∥∥∥dx
= 2

∫
X

√
(f(x)�Σf(x))(g(x)�Σg(x))− (f(x)�Σg(x))2

f(x)�Σf(x)
dx

= 2

∫
X

det

((
f(x)�

g(x)�

)
Σ
(
f(x), g(x)

)) 1
2

2×2

f(x)�Σf(x)
dx, (7)

where g(x) = df(x)/dx. We call (7) the tube-volume (TV) criterion.



1104 S. Kuriki and H. P. Wynn

Note that (7) is invariant with respect to scale Σ 
→ kΣ (k > 0). Because
of this, we introduce the set of all nonnegative finite measures (not necessarily
probability measures) on X denoted by P . Each element of ρ ∈ P corresponds
to an experimental design. This is an extension of the design measure of [20].
We also extend the set of moment matrices. Thus, the set of all non-singular
information matrices is denoted by

M =

{∫
X
f(x)f(x)�

1

σ2(x)
dρ(x) � 0 | ρ ∈ P

}
=

{∫
X
f(x)f(x)�dρ(x) � 0 | ρ ∈ P

}
,

where “� 0” denotes positive definiteness. From its definition,M forms a convex
cone. Our optimal design problem is formulated as minimizing Vol1(γΣ) in (7)
subject to Σ−1 ∈ M. The lemma below is a direct consequence of this invariance.

Lemma 2.4. The design

{
xi

pi

}
1≤i≤N

with variance function σ2
1(x), and the

design

{
xi

qi

}
1≤i≤N

with variance function σ2
2(x), qi = kpiσ

2
2(xi)/σ

2
1(xi), give

the same volume, where k > 0 is a constant so that
∑

i qi = 1.

Proof. The information matrices M1 and M2 of the two designs satisfy M1 =
kM2.

A difficulty with this optimization problem is that this is not a convex prob-
lem. Figure 1 depicts the volume Vol1(γM(c)−1) for a mixing design connecting
two Fourier designs with three element bases ((8) with n = 3) with weights 1−c
and c : {

ti
pi

}
i=1,2,3

=

{
−1

3 0 1
3

1
3

1
3

1
3

}
and

{
− 1

12 0 1
12

1
3

1
3

1
3

}
.

The information matrix is

M(c) = (1− c)

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠+ c

⎛⎜⎝ 1 0
√
2+

√
6

3
0 1

3 0√
2+

√
6

3 0 5
3

⎞⎟⎠ .

We see that Vol1(γM−1(c)) is not convex in c.

3. Tube-volume optimal design for polynomial and Fourier
regressions

3.1. Equivalence between weighted polynomial regression and
Fourier regression

From this section, we focus on Fourier regression and weighted polynomial re-
gression. In linear optimal design theory, the Fourier regression model has been
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Fig 1. Vol1(γM(c)−1) for a mixing design.

used as one of the standard models to see the performance of the proposed
criteria. The weighted polynomial introduced here has the same mathematical
structure as the Fourier regression and will be used to analyze it.

The Fourier (trigonometric) regression has basis vector

f(x) =fF (x)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1,
√
2 sin(2πx),

√
2 cos(2πx),

√
2 sin(4πx), . . . ,

√
2 cos(2πmx)

)�
(n = 2m+ 1),(√

2 cos(πx),
√
2 sin(πx),

√
2 cos(3πx), . . . ,

√
2 cos(π(n− 1)x)

)�
(n = 2m)

(8)

defined on the domain X = (−1/2, 1/2]. For the Fourier regression, we only deal
with the constant variance σ2(x) = σ2

F (x) ≡ 1. Although the Fourier regression
is not used for even values of n in practice, we define it for the sake of consistency.

The polynomial regression is a regression model with basis vector

f(x) = fP (x) = (1, x, x2, . . . , xn−1)� ∈ R[x]n. (9)

Here, we set the domain X to be the whole real line R. The case where X is
an infinite interval will be briefly discussed in Section 5. For the polynomial
regression, we assume the variance function of form σ2(x) = Q(x)n−1, where
Q(x) is an arbitrary positive quadratic function. As a canonical form of this
class of variance functions, we use

σ2
P (x) = (1 + x2)n−1. (10)

Later, we introduce a parameterization for Q(x) (see (27)).
In this subsection, we see that under the tube-volume criterion, the optimiza-

tion problem for the Fourier regression is equivalent to that for the weighted
polynomial regression. That is, the optimization problem in the Fourier regres-
sion can be translated to one in the weighted polynomial regression, and vice
versa.
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The model we discuss is a special case of the model proposed by [2], Section
2.2, who study the D-optimality. Further, Dette and Melas [3] make use of the
connection between the weighted polynomial and Fourier regressions. We will
return briefly to question on the D-optimality in Section 3.5 below.

From the lemma below, the transformation x = tan(πt) connects the two
regression models.

Lemma 3.1. There exists an n × n non-singular matrix B such that for all
x ∈ R and t ∈ (−1/2, 1/2] satisfying x = tan(πt), we have

fF (t) = BfP (x)λ0(x), λ0(x) = 1/(1 + x2)(n−1)/2. (11)

Proof. Note that

sin(2πt) =
2x

1 + x2
, cos(2πt) =

1− x2

1 + x2
, dt =

dx

π(1 + x2)
. (12)

It is known that

sin(2πkt) =

[(k−1)/2]∑
r=0

(−1)r
(

k

2r + 1

)
sin2r+1(2πt) cosk−2r−1(2πt),

cos(2πkt) =

[k/2]∑
r=0

(−1)r
(
k

2r

)
sin2r(2πt) cosk−2r(2πt)

[28, pages 186–187]. Substituting the formulas for sin(2πt) and cos(2πt) in (12)
and expressing fF (t) as a rational function in x, we have formula (11).

To prove that B is non-singular, consider the integral∫ 1/2

−1/2

fF (t)fF (t)
�dt = B

(∫ ∞

−∞
fP (x)λ0(x)

2fP (x)
� dx

π(1 + x2)

)
B�. (13)

Here, we used (12). The left-hand side is the identity matrix In by standard
orthogonality. Hence, it is enough to check that the integrals in the parentheses
of the right-hand side exist. The matrix in the parentheses of the right-hand
side of (13) is (B�B)−1 with (i, j) element

(
B�B
)−1

i,j
=

∫ ∞

−∞

xi+j−2

π(1 + x2)n
dx =

⎧⎪⎨⎪⎩
Γ
(
i+j−1

2

)
Γ
(
n− i+j−1

2

)
πΓ(n)

(i+ j is even),

0 (i+ j is odd),

(14)
which exists for i, j ≤ n. Hence, B is non-singular.

Lemma 3.1 means that the Fourier regression model yi = b�fF (ti) + εi,

εi ∼ N(0, 1), is rewritten as the weighted polynomial model ỹi = b̃�fP (xi)+ ε̃i,

by letting xi = tan(πti), ỹi = λ0(xi)
−1yi, b̃ = B�b, and ε̃i ∼ N(0, λ0(xi)

−2).
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When n = 3, 4,

B =

⎛⎝ 1 0 1

0 2
√
2 0√

2 0 −
√
2

⎞⎠ ,

⎛⎜⎜⎝
1 0 1 0
0 1 0 1
1 0 −3 0
0 3 0 −1

⎞⎟⎟⎠ ,

respectively.
The set of information matrices for the polynomial regression

MP =

{∫ ∞

−∞
fP (x)fP (x)

�dρ(x) � 0 | ρ ∈ P
}

(15)

is referred to as the moment cone [16]. The set of information matrices for the
Fourier regression is given by

MF =

{∫ 1/2

−1/2

fF (t)fF (t)
�dρ(t) � 0 | ρ ∈ P

}
=
{
BMB� | M ∈ MP

}
= BMPB

�. (16)

The following lemma gives the equivalence of the Fourier regression and the
polynomial regression as the optimization problem for the tube-volume criterion.

Theorem 3.2. Let VolF (γM−1) and VolP (γM−1) be the length of γM−1 given in
(7) with f(x) being fF (x) in (8), and fP (x) in (9), respectively. Then, it holds
that VolP (γM−1) = VolF (γ(BMB�)−1).

Proof. The derivatives of fF (t) and fP (x) are denoted by gF (t) = dfF (t)/dt
and gP (x) = dfP (x)/dx, respectively. Then,(

fF (t), gF (t)
)
= B
(
fP (x), gP (x)

)(λ0(x) λ̇0(x)
0 λ0(x)

)(
1 0
0 dx

dt

)
.

Therefore,

fF (t)
�(BMB�)−1fF (t) = fP (x)

�M−1fP (x)× λ0(x)
2,

det

((
fF (t)

�

gF (t)
�

)
(BMB�)−1

(
fF (t), gF (t)

))
= det

((
fP (x)

�

gP (x)
�

)
M−1
(
fP (x), gP (x)

))
× λ0(x)

4
(dx
dt

)2
,

and

∫ 1/2

−1/2

det

((
fF (t)

�

gF (t)
�

)
(BMB�)−1

(
fF (t), gF (t)

)) 1
2

fF (t)�(BMB�)−1fF (t)
dt

=

∫ ∞

−∞

det

((
fP (x)

�

gP (x)
�

)
M−1
(
fP (x), gP (x)

)) 1
2

fP (x)�M−1fP (x)
dx.
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Theorem 3.2 and (16) imply that

M ∈ MP is the minimizer of VolP (M)

⇔ M ′ = BMB� ∈ MF is the minimizer of VolP (M
′).

That is, the optimization problems for the polynomial regression and the Fourier
regression are mathematically equivalent. For example, the information matrix
M =
∑

i fF (ti)fF (ti)
�pi ∈ MF for the Fourier regression, and the information

matrix for the polynomial regression

MP � B−1M(B�)−1 =
∑
i

B−1fF (ti)(B
−1fF (ti))

�pi

=
∑
i

fP (xi)fP (xi)
�λ0(xi)

2pi, xi = tan(πti),

=
∑
i

fP (xi)fP (xi)
� 1

σ2
P (xi)

pi

give the same volume.
This equivalence is stated in terms of design measure as follows.

Theorem 3.3. The design

{
ti
pi

}
1≤i≤N

for the Fourier regression, and the de-

sign

{
xi

pi

}
1≤i≤N

, xi = tan(πti), for the weighted polynomial regression with

variance function σ2
P (x) give the same volume. If the former is tube-volume op-

timal in the Fourier regression, then so is the latter in the polynomial regression
with variance σ2

P (x), and vice versa.

In this paper, the (discrete) uniform designs in the Fourier regression and
their counterparts in the polynomial regression play important roles. It is known
that, in the Fourier regression, the uniform design in which xi are allocated as
equally spaced with equal weights is D-optimal [11]. Because of the symmetry,
it is conjectured that the uniform design is the tube-volume optimal design as
well. In Section 4, we prove that this is true for n = 3, and conjecture that it is
true for all n.

The n-point discrete uniform design for the Fourier regression symmetric
about the origin is {

t0i
1
n

}
1≤i≤n

, t0i =
i

n
− n+ 1

2n
. (17)

For later use, we provide the concrete forms of the information matrix M for
the weighted polynomial designs with σ2(x) = σ2

P (x) in (10),{
x0
i
1
n

}
1≤i≤n

, x0
i = tan(πt0i ) with t0i given in (17). (18)
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Lemma 3.4. The information matrix M = (Mi,j) of the weighted polynomial
design (18) scaled such that M1,1 = 1 is given by

M = (Mi,j) = (mi+j−2)1≤i,j≤n, mk =

⎧⎪⎨⎪⎩
Γ
(
k+1
2

)
Γ
(
n− k+1

2

)
√
πΓ
(
n− 1

2

) (k is even),

0 (k is odd).

For the proof, see Appendix A.2. When n = 3 and 4,

M =

⎛⎝1 0 1
3

0 1
3 0

1
3 0 1

⎞⎠ ,

⎛⎜⎜⎝
1 0 1

5 0
0 1

5 0 1
5

1
5 0 1

5 0
0 1

5 0 1

⎞⎟⎟⎠ , (19)

respectively.
The key transform connecting Fourier and polynomial regressions was the

tangent transform x = tan(πt). For the same purpose, generalized transforms
x = q tan(π(t − θ)) + r, q �= 0, can be used. This is a composite map of the
tangent transform and the Möbius transform to be discussed below.

3.2. The Möbius group action on the moment cone

In this subsection, we introduce the Möbius group (transformation) acting on
the set of design measures and the set of information matrices in polynomial
regression. We will show that the Möbius group action reduces the dimension
of the minimization problem for the tube-volume criterion. For a recent paper
in which the Möbius transformation acts on polynomials, see [26].

The real Möbius transformation is defined on the extended real numbers
R = R ∪ {±∞} as follows:

x 
→ ϕ(x; a, b, c, d) =
ax+ b

cx+ d
(ad− bc �= 0).

Here, we assume that

±∞ 
→ a

c
, −d

c

→ ±∞.

This forms a group with product

ϕ(·; a′a+b′c, a′b+b′d, c′a+d′c, c′b+d′d) = ϕ(·; a′, b′, c′, d′)◦ϕ(·; a, b, c, d). (20)

The inverse is ϕ−1(·; a, b, c, d) = ϕ(·; d,−b,−c, a). The identity element is e =
ϕ(·; a, 0, 0, a), a �= 0. This is a subgroup of the complex Möbius group referred
to as projective general linear group PGL(2,C).

Now, let fP (x) = (1, x, . . . , xn−1)� be the polynomial basis. We define an
n× n matrix A = A(a, b, c, d) as

fP
(
ϕ(x; a, b, c, d)

)
=λ(x; a, b, c, d)AfP (x), λ(x; a, b, c, d)=

1

(cx+ d)n−1
. (21)
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We write the factor λ as λ(x; a, b, c, d) instead of λ(x; c, d) to clarify that this is
an invariant function under the group action (20) in the sense that

λ
(
ϕ(x; a, b, c, d); a′, b′, c′, d′

)
λ(x; a, b, c, d)

= λ(x; a′a+ b′c, a′b+ b′d, c′a+ d′c, c′b+ d′d). (22)

Proposition 3.5. The (i, j) element of A = A(a, b, c, d) is

(A)i,j =

min(i−1,j−1)∑
l=max(0,i+j−n−1)

(
i− 1

l

)(
n− i

j − 1− l

)
albi−1−lc j−1−ldn+1−i−j+l.

The proof is straightforward and omitted. When n = 3 and n = 4,

A(a, b, c, d) =

⎛⎝d2 2cd c2

bd bc+ ad ac
b2 2ab a2

⎞⎠ ,

⎛⎜⎜⎝
d3 3cd2 3c2d c3

bd2 2bcd+ ad2 bc2 + 2acd ac2

b2d b2c+ 2abd 2abc+ a2d a2c
b3 3ab2 3a2b a3

⎞⎟⎟⎠ ,

(23)
respectively.

The set
A = {A(a, b, c, d) | ad− bc �= 0}

is a representation of general linear group GL(2,R) and hence forms a group
[10]. The proof of the proposition below is straightforward and omitted.

Proposition 3.6. Set A forms a matrix algebraic group. The identity matrix is
A(1, 0, 0, 1) = (−1)n−1A(−1, 0, 0,−1) = In, and the inverse of A = A(a, b, c, d)
is given by (ad− bc)−(n−1)A(d,−b,−c, a).

Proposition 3.7. For A = A(a, b, c, d) ∈ A, det(A) = (ad− bc)n(n−1)/2.

Proof. For different x1, . . . , xn, we have

A(fP (x1), . . . , fP (xn)) = (fP (y1), . . . , fP (yn))diag((cxi+d)n−1), yi =
axi + b

cxi + d
.

By taking determinants,

det(A)× (−1)n
∏

1≤i<j≤n

(xi − xj) = (−1)n
∏

1≤i<j≤n

(yi − yj)
∏

1≤i≤n

(cxi + d)n−1.

(24)
Substituting∏
1≤i<j≤n

(yi − yj) =
∏

1≤i<j≤n

(axi + b

cxi + d
− axj + b

cxj + d

)
=
∏

1≤i<j≤n

(ad− bc)(xi − xj)

(cxi + d)(cxj + d)

= (ad− bc)n(n−1)/2

∏
1≤i<j≤n(xi − xj)∏
1≤i≤n(cxi + d)n−1

into (24) yields det(A) = (ad− bc)n(n−1)/2.
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Proposition 3.8. The Möbius group is reparameterized as

{ϕ(·; a, b, c, d) | ad−bc �=0}=
{
ϕ(·; q, r, 0, 1) ◦ ϕ(·; s,−t, t, s) | q �=0, s2+t2=1

}
�
{
ϕ(·; q, r, 0, 1) ◦ ϕ(·;−s, t, t, s) | q �=0, s2+t2=1

}
,

where � is the disjoint union. Group A is reparameterized as

A =
{
kA(q, r, 0, 1)A(s,−t, t, s) | k > 0, q �= 0, s2 + t2 = 1

}
�
{
kA(q, r, 0, 1)A(−s, t, t, s) | k > 0, q �= 0, s2 + t2 = 1

}
.

detA(q, r, 0, 1) = qn(n−1)/2 and detA(±s,∓t, t, s) = ±1 for s2 + t2 = 1.

Proof. We have the following relations:

ϕ(x; a, b, c, d) = ϕ
(
ϕ(x;±d,∓c, c, d);±ad− bc

c2 + d2
,
ac+ bd

c2 + d2
, 0, 1
)

and

A(a, b, c, d) = (c2 + d2)(n−1)/2A
(
±ad− bc

c2 + d2
,
ac+ bd

c2 + d2
, 0, 1
) A(±d,∓c, c, d)

(c2 + d2)(n−1)/2
.

The results in the proposition follow by letting k = (c2 + d2)(n−1)/2,

q =
ad− bc

c2 + d2
, r =

ac+ bd

c2 + d2
, s =

d√
c2 + d2

, t =
c√

c2 + d2
.

The sets of transformations {ϕ(·;±s,∓t, t, s) | s2+t2 = 1} and {ϕ(·; q, r, 0, 1) |
q �= 0} form subgroups of the Möbius group, which are isomorphic to the or-
thogonal group O(2,R) and the affine group acting on R, respectively.

Theorem 3.9. Let A ∈ A and M ∈ MP be n × n matrices. Then, AMA� ∈
MP . Moreover,

AMPA
� =
{
AMA� | M ∈ MP

}
= MP .

That is, group A acts on the moment cone MP .

Proof. Suppose that M =
∑

i fP (xi)fP (xi)
�wi. Let yi = ϕ(xi; a, b, c, d). Note

that λ(y; d,−b,−c, a)λ(x; a, b, c, d) = (ad− bc)−(n−1). Then,

AMA� =
∑
i

AfP (xi)(AfP (xi))
�wi

=
∑
i

fP (yi)fP (yi)
�λ(xi; a, b, c, d)

−2wi

=
∑
i

fP (yi)fP (yi)
�(ad− bc)2(n−1)λ(yi; d,−b,−c, a)2wi

=
∑
i

fP (yi)fP (yi)
�vi ∈ MP ,
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where

vi = λ(xi; a, b, c, d)
−2wi = (ad− bc)2(n−1)λ(yi; d− b,−c, a)2wi. (25)

Therefore, AMPA
� ⊂ MP . Because A is a group, AMPA

� = MP .

The Möbius group action on the polynomial basis f(x) has been introduced
by (21). Similarly, we define the Möbius group action on the variance function
σ2(x) = Q(x)n−1. This provides a parameterization for the variance function.

Using σ2
P (x) = (1 + x2)n−1 in (10), for ad− bc �= 0, we define

σ2
P (ϕ(x; a, b, c, d)) = σ2

P (x; a, b, c, d)λ(x; a, b, c, d)
2, (26)

or
σ2
P (x; a, b, c, d) =

{
(b2 + d2) + 2(ab+ cd)x+ (a2 + c2)x2

}n−1
. (27)

Note that σ2
P (x) = σ2

P (x; 1, 0, 0, 1). This is always positive because of ad−bc �= 0.
For

ϕ(·; a′, b′, c′, d′) = ϕ(·; a0, b0, c0, d0) ◦ ϕ(·; a, b, c, d),

as well as (22), we have

σ2
P (ϕ(x; a, b, c, d); a0, b0, c0, d0) = σ2

P (x; a
′, b′, c′, d′)λ(x; a, b, c, d)2. (28)

The parameterization (27) with (a, b, c, d) is redundant, since Q(x) has only
three parameters. The lemma below shows that the stabilizer keeping the vari-
ance σ2

P (·; a, b, c, d) invariant is the orthogonal subgroup with dimension one.

Lemma 3.10. σ2
P (·; a, b, c, d) = σ2

P (·; a′, b′, c′, d′) if and only if there exist s, t,
s2 + t2 = 1 such that

ϕ(·; a′, b′, c′, d′) = ϕ(·;±s,∓t, t, s) ◦ ϕ(·; a, b, c, d).

Proof. By direct calculations,

σ2
P (·; a0, b0, c0, d0) = σ2

P (·; 1, 0, 0, 1) ⇔ (a0, b0, c0, d0) = (±s,∓t, t, s).

On the other hand, “σ2
P (·; a0, b0, c0, d0) = σ2

P (·; 1, 0, 0, 1)” ⇔ “σ2
P (ϕ(·; a, b, c, d);

a0, b0, c0, d0)=σ2
P (ϕ(·; a, b, c, d); 1, 0, 0, 1)”⇔ “σ2

P (x; a
′, b′, c′, d′)=σ2

P (x; a, b, c, d)
with ϕ(·; a′, b′, c′, d′) = ϕ(·; a0, b0, c0, d0) ◦ ϕ(·; a, b, c, d)” by (28).

Remark 3.11. When n = 2, |ad−bc|/{πσ2
P (x; a, b, c, d)} is a probability density

of Cauchy distribution family on x ∈ R. Noting that ϕ̇(x; a, b, c, d) = (ad −
bc)λ(x; a, b, c, d)2, and that a′d′ − b′c′ = (ad− bc)(a0d0 − b0c0), (28) reads

|a0d0 − b0c0|
πσ2

P (ϕ(x; a, b, c, d); a0, b0, c0, d0)
|ϕ̇(x; a, b, c, d)| dx =

|a′d′ − b′c′|
πσ2

P (x; a
′, b′, c′, d′)

dx.

This means that the Cauchy distribution family is closed under the Möbius trans-
form [27]. See also [18] for Cauchy families in directional statistics.
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3.3. Canonical parameterizations for information matrices

As we have shown in Section 2.1, the optimal design problem is optimization
with respect to matrix M over the set of information matrices M. Here, M =∫
X f(x)f(x)� 1

σ2(x)dρ(x) ∈ M and the design measure ρ ∈ P is one-to-many.

For the sake of optimization, we need to parameterize the set M.
We first considerMP in (15) for the polynomial regression, and then interpret

the results in terms of MF in (16) for the Fourier regression.
The structure of the moment cone MP is well-studied in the context of the

classical moment problem. One canonical parameterization for MP is given in
Chapter II, Section 3 of [16]. The statement is summarized in Proposition 3.1
of [17].

Proposition 3.12. M ∈ MP is uniquely represented with 2n − 1 parameters
(w0, . . . , wn−1, x1, . . . , xn−1) as

M =

n−1∑
i=1

wifP (xi)fP (xi)
� + w0fP (±∞)fP (±∞)�, wi > 0, (29)

−∞ < x1 < · · · < xn−1 < ∞,

where we let fP (±∞) = (0, . . . , 0, 1)�.

Note that fP (±∞) = limx→±∞ fP (x)/x
n−1 = limx→±∞ fP (x)/(1+x2)(n−1)/2.

Let x0 = ±∞. From the same argument of the proof of Theorem 3.9, by
considering the Möbius transform xi 
→ (axi + b)/(cxi + d), i = 0, 1, . . . , n− 1,
we find that the fixed point x0 = ±∞ in (29) can be moved to an arbitrary
point in R.

Theorem 3.13. Let x0 ∈ R ∪ {±∞} be fixed arbitrarily. M ∈ MP is uniquely
represented with 2n− 1 parameters (w0, . . . , wn−1, x1, . . . , xn−1) as

M =

n−1∑
i=1

wifP (xi)fP (xi)
� + w0fP (x0)fP (x0)

�, wi > 0,

xi �= x0, −∞ < x1 < · · · < xn−1 ≤ ∞,

where we assume that fP (±∞) = (0, . . . , 0, 1)�.

The counterpart for the moment cone (16) for trigonometric functions is
obtained using Lemma 3.1.

Theorem 3.14. Let t0 ∈ (−1
2 ,

1
2 ] be fixed arbitrarily. M ∈ MF is uniquely

represented with 2n− 1 parameters (w0, . . . , wn−1, t1, . . . , tn−1) as

M =
n−1∑
i=1

wifF (ti)fF (ti)
� + w0fF (t0)fF (t0), wi > 0,

ti �= t0, −1

2
< t1 < · · · < tn−1 ≤ 1

2
.
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A square matrix M = (mi,j) is said to be Hankel if mi,j = mk,l when
i+ j = k + l. For example, matrices M in (19) and (31) are Hankel. Obviously,
each M ∈ MP should be an n× n positive definite Hankel matrix. It is known
that the converse is also true.

Proposition 3.15. The moment cone MP in (15) is characterized as

MP =
{
M � 0 | M is Hankel

}
.

For the proof, see (9.1) of [16], p. 199. This also gives a unique representation
of MP with 2n− 1 parameters (m0,m1, . . . ,m2n−2).

Theorem 3.9 combined with Proposition 3.15 implies that group A acts on
the cone of (positive definite) Hankel matrices. For the Möbius group action on
Hankel matrices, see also [12, 13].

3.4. Invariance under the Möbius group

In this subsection, we consider the polynomial regression. We formalized our op-
timal experimental design problem to find the minimizerM ∈ MP of Vol1(γM−1)
in (7).

Theorem 3.16. For M ∈ MP and A ∈ A,

Vol1(γM−1) = Vol1
(
γ(AMA�)−1

)
.

Theorem 3.16 and Theorem 3.9 imply that the minimizer of Vol1(γM−1) with
respect to M ∈ MP forms an orbit (or a union of orbits) on MP .

Proof. Let y = ϕ(x) = ϕ(x; a, b, c, d) = (ax + b)/(cx + d). Then, fP (y) =
fP (ϕ(x)) = AfP (x)λ(x), where A = A(a, b, c, d), λ(x) = λ(x; a, b, c, d). Taking
derivatives with respect to x,

gP (y)ϕ̇(x) = AfP (x)λ̇(x) +AgP (x)λ(x), ϕ̇(x) =
ad− bc

(cx+ d)2
.

Therefore,

(
fP (y), gP (y)

)
= A
(
fP (x), gP (x)

)⎛⎜⎜⎝λ(x)
λ̇(x)

ϕ̇(x)

0
λ(x)

ϕ̇(x)

⎞⎟⎟⎠
and

det

((
fP (y)

�

gP (y)
�

)
M−1
(
fP (y), gP (y)

)) 1
2

= det

((
fP (x)

�

gP (x)
�

)
(A−1M(A−1)�)−1

(
fP (x), gP (x)

)) 1
2 λ(x)2

ϕ̇(x)
.
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By combining this with

fP (y)
�M−1fP (y) = fP (x)

�(A−1M(A−1)�)−1fP (x)λ(x)
2

and dy = ϕ̇(x)dx, we have

Vol1(γM−1)=2

∫ ∞

−∞

det

((
fP (y)

�

gP (y)
�

)
M−1
(
fP (y), gP (y)

)) 1
2

fP (y)�M−1fP (y)
dy

=2

∫ ∞

−∞

det

((
fP (x)

�

gP (x)
�

)
(A−1M(A−1)�)−1

(
fP (x), gP (x)

)) 1
2

fP (x)�(A−1M(A−1)�)−1fP (x)
dx

=Vol1(γA−1M(A−1)�).

Theorem 3.17. The volumes of the weighted polynomial design

{
xi

pi

}
1≤i≤N

with variance σ2
P (x; a0, b0, c0, d0), and the design

{
yi
pi

}
1≤i≤N

, yi = ϕ(xi; a, b, c, d)

with variance σ2
P (y; a

′, b′, c′, d′) are the same, where (a′, b′, c′, d′) is determined
by

ϕ(·; a′, b′, c′, d′) = ϕ(·; a0, b0, c0, d0) ◦ ϕ−1(·; a, b, c, d).

Proof. In (25) of the proof of Theorem 3.9, let wi = pi/σ
2
P (xi; a0, b0, c0, d0).

Then, by (28),

vi =
1

λ(xi; a, b, c, d)2
pi

σ2
P (xi; a0, b0, c0, d0)

=
pi

σ2
P (yi; a

′, b′, c′, d′)
.

This means that information matrices M1 and M2 of the two designs satisfy
M1 = AM2A

� and hence have the same volume by Theorem 3.16.

3.5. D-optimal design for weighted polynomial regression

We characterize the D-optimal design for the weighted polynomial regression as
an orbit of the Möbius group action. We start from the fact that in the Fourier
regression, the uniform design is D-optimal.

Proposition 3.18 ([11]). In the Fourier regression with the basis (8), among
the n-point discrete design, only the uniform design{

t0i − θ
1
n

}
1≤i≤n

, t0i =
i

n
− n+ 1

2n
, (30)

is D-optimal, where θ ∈
(
− 1

2n ,
1
2n

)
is an arbitrary constant. The information

matrix at the optimal point is the identity In.
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Let MF be an information matrix of a Fourier design

{
ti
pi

}
1≤i≤n

. By making

a change of variables yi = tan(πti) and yi = ϕ(xi; a, b, c, d), we have from (11),
(21), and (26) that

MF =
∑
i

fF (ti)fF (ti)
�pi

=B

(∑
i

fP (yi)fP (yi)
� 1

σ2
P (yi)

pi

)
B�

=BA

(∑
i

fP (xi)fP (xi)
� λ(xi; a, b, c, d)

2

σ2
P (xi; a, b, c, d)λ(xi; a, b, c, d)2

pi

)
A�B�

=BAMPA
�B�,

where

MP =
∑
i

fP (xi)fP (xi)
� 1

σ2
P (xi; a, b, c, d)

pi

is the information matrix of the design

{
xi

pi

}
1≤i≤n

for the weighted polynomial

regression with variance function σ2
P (x; a, b, c, d). Because det(MF ) = det(AB)2

×det(MP ), the D-optimal problem for searching optimal ti and pi in the Fourier
regression are equivalent to searching for optimal xi and pi in the weighted
polynomial regression. Hence, Proposition 3.18 is translated into the weighted
polynomial regression as follows.

Theorem 3.19. In the weighted polynomial regression of degree n − 1 with
variance σ2

P (x; a0, b0, c0, d0), among the n-point discrete design, only the design{
xi
1
n

}
1≤i≤n

with xi = ϕ−1(ϕ(tan(πt0i ); s,−t, t, s); a0, b0, c0, d0)) is D-optimal,

where t0i is given in (30), and s, t are arbitrary numbers such that s2 + t2 = 1.
The information matrix at the D-optimal point is A−1

0 (B�B)−1(A�
0 )

−1, where
A0 = A(a0, b0, c0, d0), and (B�B)−1 is given in (14).

Proof. Note that

yi = tan(π(t0i − θ)) =
cos(πθ) tan(πt0i )− sin(πθ)

sin(πθ) tan(πt0i ) + cos(πθ)
= ϕ(tan(πt0i ); s,−t, t, s),

where s = cos(πθ), t = sin(πθ). xi = ϕ−1(yi; a0, b0, c0, d0).

When (a0, b0, c0, d0) = (1, 0, 0, 1), Theorem 3.19 reduces to Theorem 3.3 of
[2].

4. Tube-volume optimal design for n = 3

In the previous section, we discussed the Fourier regression and the polynomial
regression having the basis of (8) and (9), respectively, of a general dimension
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n. In this section, we treat the case n = 3. This is the simplest non-trivial case,
because when n = 2, Vol1(γM−1) = 2π irrespective of M .

When n = 3, the problem is reduced to the minimization of

Vol1(γM−1) = 2

∫ ∞

−∞

det

⎛⎝(1 x x2

0 1 2x

)
M−1

⎛⎝ 1 0
x 1
x2 2x

⎞⎠⎞⎠
1
2

(
1 x x2

)
M−1

⎛⎝ 1
x
x2

⎞⎠ dx

= 2

∫ ∞

−∞

√
h1(x)

h0(x)
dx,

where

h1(x) =m4(−m0m
2
3 +m0m2m4 + 2m1m2m3 −m2

1m4 −m3
2)

+ 4m3(−m0m2m4 +m0m
2
3 − 2m1m2m3 +m2

1m4 +m3
2)x

+ 6m2(m0m2m4 −m0m
2
3 + 2m1m2m3 −m2

1m4 −m3
2)x

2

+ 4m1(m0m
2
3 −m0m4m2 − 2m1m2m3 +m2

1m4 +m3
2)x

3

+m0(m0m2m4 −m0m
2
3 + 2m1m2m3 −m2

1m4 −m3
2)x

4,

h0(x) =m2m4 −m2
3 + 2(−m1m4 +m2m3)x+ (m0m4 + 2m1m3 − 3m2

2)x
2

+ 2(−m0m3 +m1m2)x
3 + (m0m2 −m2

1)x
4,

with respect to

M =

⎛⎝m0 m1 m2

m1 m2 m3

m2 m3 m4

⎞⎠ � 0. (31)

The volume becomes an elliptic integral, which does not have an explicit ex-
pression in general. Moreover, the number of parameters to be optimized is
four. (Note that the integrand

√
h1(x)/h0(x) is a homogeneous function in

m0, . . . ,m4). We will solve this minimization problem using the Möbius invari-
ance.

4.1. Orbital decomposition

The Möbius group action defines an equivalence relation on the moment cone
MP . We define M0 ∼ M1 for M0,M1 ∈ MP if M1 = AM0A

� for some A ∈ A.
The orbit passing through M is denoted by

A(M) =
{
AMA� | A ∈ A

}
= {M1 | M1 ∼ M}.

The goal of this subsection is to provide the orbital decomposition of the poly-
nomial moment cone MP . Let

Mv =

⎛⎝1 0 v
0 v 0
v 0 1

⎞⎠ . (32)
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Theorem 4.1.

MP =
⊔

v∈(0, 13 ]

A(Mv) =
⊔

v∈[ 13 ,1)

A(Mv),

where � is the disjoint union.

Proof. This is a consequence of Lemmas 4.2 and 4.3 below.

Lemma 4.2. For any M ∈ MP , there exist 0 < v < 1 and A ∈ A such that
AMA� = Mv.

Lemma 4.3. Mv′ ∼ Mv if and only if v′ = v or v′ = (1− v)/(1 + 3v).

The proofs of Lemmas 4.2 and 4.3 are given in Appendix A.3 and A.4, re-
spectively. Note that the map

v 
→ 1− v

1 + 3v

defines a one-to-one correspondence between (1, 1/3) and (1/3, 1), and v = 1/3
is the fixed point of this map.

The stabilizer of A at M ∈ MP is defined as

AM =
{
A ∈ A | AMA� = M

}
.

This is a subgroup of A.

Theorem 4.4. When v �= 1/3,

AMv = {A(±1, 0, 0,±1), A(0,±1,±1, 0)} =

⎧⎨⎩
⎛⎝1 0 0
0 ±1 0
0 0 1

⎞⎠ ,

⎛⎝0 0 1
0 ±1 0
1 0 0

⎞⎠⎫⎬⎭ ,

and when v = 1/3,

AMv = {A(s,−t, t, s) | s2 + t2 = 1} � {A(−s, t, t, s) | s2 + t2 = 1}.

In particular,

dimAMv =

{
0 (v ∈ (0, 1

3 ) ∪ ( 13 , 1)),

1 (v = 1
3 ).

Proof. The proof follows from the proof of Lemma 4.3. The details are omitted.

Theorem 4.5. The dimension of orbit A(Mv) passing through Mv is

dimA(Mv) =

{
4 (v ∈ (0, 1

3 ) ∪ ( 13 , 1)),

3 (v = 1
3 ).
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Proof. Let M = (mi+j−2)i,j=1,2,3 and M̃ = (m̃i+j−2)i,j=1,2,3 be 3 × 3 Han-
kel matrices, and let A = A(a, b, c, d) (3 × 3 matrix in (23)). Assume that

M̃ = AMA�. Picking up the (1, 1), (1, 2), (1, 3), (2, 3), and (3, 3) elements
and rearranging them, we have m̃ = Fm, where m = (m0,m1,m2,m3,m4)

�,
m̃ = (m̃0, m̃1, m̃2, m̃3, m̃4)

�, and

F = F (a, b, c, d)

=

⎛⎜⎜⎜⎜⎝
d4 4cd3 6c2d2 4c3d c4

bd3 ad3 + 3bcd2 3bdc2 + 3ad2c bc3 + 3adc2 ac3

b2d2 2cdb2 + 2ad2b b2c2 + 4abdc+ a2d2 2cda2 + 2bc2a a2c2

b3d cb3 + 3adb2 3bda2 + 3b2ca da3 + 3bca2 a3c
b4 4ab3 6a2b2 4a3b a4

⎞⎟⎟⎟⎟⎠ .

Let mv = (1, 0, v, 0, 1)�. The tangent space of the orbit at Mv is spanned by
the four column vectors of

( ∂

∂a
,
∂

∂b
,
∂

∂c
,
∂

∂d

)
F (1, 0, 0, 1)mv =

⎛⎜⎜⎜⎜⎝
0 0 0 4
0 1 3v 0
2v 0 0 2v
0 3v 1 0
4 0 0 0

⎞⎟⎟⎟⎟⎠ .

The rank of this matrix is 4 when v �= 1/3 and 3 when v = 1/3.

From Theorems 4.4 and 4.5, we see that dimAMv +dimA(Mv) = 4 = dimA
as expected (e.g., [19]).

4.2. Minimization over cross-section

From the orbital decomposition (Theorem 4.1) and the invariance of the vol-
ume on an orbit (Theorem 3.16), the optimization problem is reduced to the
minimization of Vol1(γM−1

v
) with respect to v, where Mv is defined in (32). The

range of v is taken to be (0, 1
3 ] or [

1
3 , 1). We write Vol1(γM−1

v
) = len(v) shortly.

From the definition (7),

len(v) = Vol1
(
γM−1

v

)
= 2

∫ ∞

−∞
s(x; v)dx,

where

s(x; v) =

√
1−v2

v

√
1 + 6vx2 + x4

1 + ( 1v − 3v)x2 + x4
.

Note that len(v) is an elliptic integral. The following is the main theorem of this
section.



1120 S. Kuriki and H. P. Wynn

Theorem 4.6. The minimizer of Vol1(γM−1) in (7) over M ∈ MP is given if
and only if M is in the orbit

M ∼ M1/3 =

⎛⎝1 0 1
3

0 1
3 0

1
3 0 1

⎞⎠ .

The minimum volume is 4π
√

2/3.

Proof. Because of Theorem 4.1, it is enough to take the range v ∈ (0, 1
3 ]. We

use the inequality
1√
1 + z

≥ 1− z

2
, |z| < 1. (33)

The equality holds iff z = 0. Noting that

1√
1 + 6vx2 + x4

=
1

(1 + x2)
√

1− 2(1−3v)x2

(1+x2)2

≥ 1

1 + x2

(
1 +

(1− 3v)x2

(1 + x2)2

)
,

s(x; v) is bounded below by

s(x; v) =

√
1−v2

v (1 + 6vx2 + x4)

(1 + ( 1v − 3v)x2 + x4)(1 + x2)

(
1 +

(1− 3v)x2

(1 + x2)2

)
.

Therefore, len(v) is bounded below by

len(v) = 2

∫ ∞

−∞
s(x; v)dx.

This integral can be evaluated by counting the residues. When v < 1/3, the
poles are

±ix1 = ± i

2

(√
(1− v)(1 + 3v)

v
−
√

(1 + v)(1− 3v)

v

)
,

±ix2 = ± i

2

(√
(1− v)(1 + 3v)

v
+

√
(1 + v)(1− 3v)

v

)
,

and ±ix0 = ±i.
Denote the residues for +ix1, +ix2, and +ix0 by Res(+ix1), Res(+ix2), and

Res(+ix0), respectively. Then, the integral is evaluated as

len(v) = 2× 2πi(Res(+ix1) + Res(+ix2) + Res(+ix0))

=
2π
√

1−v2

v

(
3v3 + 6v2 − 5v + 8

√
v(1+3v)

1−v

)
4(1 + v)2

.
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The derivative is

d

dv
len(v) = −2π

5− 38v + 14v2 + 18v3 + 9v4 + 48v
√

v(1−v)
1+3v

8(1 + v)2
√
v(1− v2)

. (34)

By applying inequality (33),√
v(1− v)

1 + 3v
=

3
2v(1− v)√

9
4v(1− v)(1 + 3v)

≥ 3

2
v(1− v)

{
1− 1

2

(9
4
v(1− v)(1+3v)− 1

)}
(the equality holds iff v = 1/3), the numerator of (34) is bounded below by

5− 38v + 14v2 + 18v3 + 9v4 + 48v
3

2
v(1− v)

{
1− 1

2

(9
4
v(1− v)(1 + 3v)− 1

)}
= (1− 3v)(5− 23v + 53v2 − 12v3 − 108v4 + 81v5),

which is positive for 0 < v < 1/3. Therefore, d
dv len(v) < 0 for 0 < v < 1/3, and

len(v) has the unique minimum at v = 1/3.
Since s(x; v) ≥ s(x; v),

min
v∈(0,1/3]

len(v) ≥ min
v∈(0,1/3]

len(v) = len(1/3).

Moreover, since s(x; v) = s(x; v) at v = 1/3,

min
v∈(0,1/3]

len(v) ≤ len(1/3) = len(1/3).

Therefore,
min

v∈(0,1/3]
len(v) = len(1/3) = 4π

√
2/3.

Point v = 1/3 is the unique minimizer, because this is the unique minimizer of
len(v).

Figure 2 depicts the objective function len(v) and its lower bound len(v) for
v ≤ 1/3.

As shown in (19), the information matrix M1/3 is the counterpart of the
information matrix for the uniform design in the Fourier regression.

Recall the decomposition of A(a, b, c, d) in Proposition 3.8. We already know
from Theorem 4.4 that, for s2 + t2 = 1,

A(s,−t, t, s)M1/3A(s,−t, t, s)� = A(−s, t, t, s)M1/3A(−s, t, t, s)� = M1/3.

Moreover,

A(q, r, 0, 1)M1/3A(q, r, 0, 1)
� =

⎛⎜⎝ 1 r q2

3 + r2

r q2

3 + r2 r(q2 + r2)
q2

3 + r2 r(q2 + r2) (q2 + r2)2

⎞⎟⎠ .

Theorem 4.6 can be written in the following form.
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Fig 2. len(v) (solid line) and its lower bound len(v) for v ≤ 1/3 (dashed line).

Theorem 4.7. The minimizer of Vol1(γM−1) in (7) over M ∈ MP is given
when and only when M is of the form:

M = k

⎛⎜⎝ 1 r q2

3 + r2

r q2

3 + r2 r(q2 + r2)
q2

3 + r2 r(q2 + r2) (q2 + r2)2

⎞⎟⎠ , q �= 0, k > 0.

Remark 4.8. The minimum tube-volume M ∈ MP is attained when and only
when the curve

(γM−1)+ =
{
ψM−1(x) = M− 1

2 f(x)/‖M− 1
2 f(x)‖ | x ∈ X = (−∞,∞)

}
forms a circle. Moreover, in that case, the circle length is 2π

√
2/3.

Finally, we characterize the tube-volume optimal design as a three-point de-
sign. The polynomial design corresponding to the Fourier uniform design is
given in (19). The tube-volume optimal design is obtained as an orbit of the
transformation passing through the design in (19). In the following, let{

t0i
1
3

}
i=1,2,3

=

{
−1

3 0 1
3

1
3

1
3

1
3

}
, (35)

a three-point uniform design in the Fourier regression.

Theorem 4.9. In the weighted polynomial regression with variance function

σ2
P (x; a0, b0, c0, d0), the three-point tube-volume optimal design is

{
xi

pi

}
i=1,2,3

,

where

xi = ϕ−1(tan(πt0i ); a, b, c, d), pi = k
σ2
P (xi; a0, b0, c0, d0)

σ2
P (xi; a, b, c, d)

. (36)

Here, t0i is defined in (35), a, b, c, d are arbitrarily given so that ad− bc �= 0, and
k > 0 is a constant so that

∑
pi = 1. The tube-volume optimal design includes

the D-optimal designs as special cases where

ϕ(·; a, b, c, d) = ϕ(·; s,−t, t, s) ◦ ϕ(·; a0, b0, c0, d0)
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holds for some s2 + t2 = 1.

Proof. The optimal design is the orbit of the Möbius group passing through

the design

{
yi
1
3

}
i=1,2,3

, yi = tan(πt0i ), with variance function σ2
P (y; 1, 0, 0, 1).

By Theorem 3.17 with (a′, b′, c′, d′) = (1, 0, 0, 1), we see that

{
xi
1
3

}
i=1,2,3

is

an optimal design under variance function σ2
P (x; a, b, c, d). By Lemma 2.4 with

σ2
1(x) = σP (x; a, b, c, d), σ

2
2(x) = σP (x; a0, b0, c0, d0), we have pi in (36). The

results for D-optimality is proved in Theorem 3.19.

Theorem 4.10. In the Fourier regression, the three-point tube-volume optimal
design is given as{

ti
pi

}
i=1,2,3

=

{ 1
π tan−1(q tan(π(t0i − θ)) + r)

k
(

1+(q tan(π(t0i−θ))+r)2

1+tan2(π(t0i−θ))

)2 }
i=1,2,3

, (37)

where k is a normalizing constant so that
∑

i pi = 1, q �= 0, and r, θ are arbitrar-

ily given. In particular, the uniform design (D-optimal design)

{
t0i − θ

1
3

}
i=1,2,3

is a tube-volume optimal design.

Proof. Let xi and pi be given in (36) when (a0, b0, c0, d0) = (1, 0, 0, 1). Then,
σ2
P (x; a0, b0, c0, d0) = σ2

P (x), and from Theorem 3.3, the optimal design is given

by

{
ti
pi

}
, ti =

1
π tan−1(xi). Let (a, b, c, d) be chosen such that ϕ−1(·; a, b, c, d) =

ϕ(·; q, r, 0, 1) ◦ ϕ(·; s,−t, t, s) with s = cos(πθ), t = sin(πθ). Then, ϕ(tan(πt0i );
s,−t, t, s) = tan(π(t0i − θ)) and xi = q tan(π(t0i − θ)) + r, and we have ti =
1
π tan−1(xi) in (37).

On the other hand, since ϕ(·; a, b, c, d) = ϕ(·; s,−t, t, s) ◦ ϕ
(
·; 1

q ,−
r
q , 0, 1
)
,

σ2
P (xi; a, b, c, d) = σ2

P

(
xi;

1
q ,−

q
r , 0, 1
)
=
(
1 + 1

q2 (xi − r)2
)2
. Therefore,

pi = k
σ2
P (xi; 1, 0, 0, 1)

σ2
P (xi; a, b, c, d)

= k
(1 + x2

i )
2(

1 + 1
q2 (xi − r)2

)2 ,
which is equivalent to pi in (37). The uniform design corresponds to the case
(q, r) = (1, 0).

4.3. Numerical comparisons

Here we conduct a small numerical experiment to see the difference of the width
of the simultaneous confidence band under optimal and non-optimal designs.
The model we use involves polynomial regression f(x) = (1, x, x2)�, x ∈ X =
(−∞,∞), with the variance function of σ2(x) = (1 + x2)2. The three point
designs,

D(ν) =

{
−x 0 x
p
2 1− p p

2

}
with x =

1√
v
, p =

1 + v

2
,
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and v = 1/12, 1/9, 1/6, 1/4, 1/3, 1/2, are compared. The information matrix of
D(ν) is

M(v) =
1

2(1 + v)

⎛⎝1 0 v
0 v 0
v 0 1

⎞⎠ ,

and the length Vol1(γM(v)−1) takes its minimum at v = 1/3, as proved in Theo-
rem 4.6. Table 4.3 shows the empirical upper α quantiles wα of the standardized
simultaneous confidence bands for the designs D(v) and their corresponding the-
oretical values. We generated the random variable

max
x∈X

|(̂b− b)�f(x)|√
f(x)�M(v)−1f(x)

, b̂− b ∼ N3

(
0,M(v)−1

)
,

through simulation with 300,000 replications to obtain the empirical α-quantiles
wα. The corresponding theoretical values by part (i) of Proposition 2.1 are given
in parentheses. As the theorems state, the case v = 1/3 has the narrowest
simultaneous confidence band, although the improvement in the width is not
substantial.

Table 1

Upper α quantiles wα for the designs D(v).

v Vol1(γΣ) w0.1 w0.05

1/12 10.872 2.3473 (2.3879) 2.6328 (2.6624)
1/9 10.697 2.3463 (2.3810) 2.6319 (2.6562)
1/6 10.469 2.3438 (2.3720) 2.6283 (2.6481)
1/4 10.304 2.3412 (2.3653) 2.6248 (2.6421)
1/3 10.260 2.3398 (2.3635) 2.6234 (2.6405)
1/2 10.383 2.3411 (2.3685) 2.6251 (2.6450)

(Tube-volume optimal at v = 1/3. Theoretical values are in parentheses.)

5. Summary and remaining problems

In this paper, we have proposed the tube-volume (TV) criterion Vol1(γΣ) in (7)
in experimental design. If a design is tube-volume optimal and simultaneously,
D-optimal minimizing maxx∈X f(x)�Σ−1f(x), the design is optimal that attains
the minimum band-width of simultaneous confidence bands.

Then, the proposed criterion was applied to Fourier regression model that
is a standard model in linear optimal design theory, and weighted polynomial
regression model that is mathematically equivalent to the Fourier regression
model. The Möbius group keeps the tube-volume criterion invariant, whereas
the subgroup O(2,R) of the Möbius group keeps the D-criterion invariant.

Using the Möbius invariance, when n = 3, we found that the tube-volume
optimal designs in the Fourier regression and the weighted polynomial regression
form an orbit of the Möbius group. The tube-volume optimal designs contain
D-optimal designs as special cases. This means that in the Fourier regression,
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the uniform design is a universal optimal design minimizing both tube-volume
criterion and D-criterion.

A conjecture

We conjecture that for all n, the tube-volume optimal design is characterized
as an orbit of the Möbius group containing D-optimal designs. One supporting
observation is that for small n (n ≤ 6), tube-volume local optimality at the D-
optimal designs can be proved by direct calculations. That is, the Hessian matrix
of the tube-volume criterion evaluated at the D-optimal design is positive semi-
definite, and the null space of the Hessian matrix corresponds to the tangent
space of the orbit of Möbius group action. However, the proof for general n
remains outstanding. As stated in Remark 4.8, when n = 3, the trajectory of
the normalized regression basis of the minimum length is a circle. Although the
trajectory cannot be a circle for n ≥ 4, some idea of the isoperimetric inequality
may be useful.

Multivariate extension

Throughout the paper, we just dealt with the case where the explanatory vari-
able is one-dimensional. However, the volume-of-tube method works for the con-
struction of the simultaneous confidence bands for regression with multidimen-
sional explanatory variables except for the conservativeness (ii) of Proposition
2.1, and the volume-optimality is well-defined. For example, we can discuss the
volume-optimality of the p-variate polynomial regression model with the basis
vector

f(x) =
(
1, (xi)1≤i≤p, (xixj)1≤i≤j≤p, . . . , (xi1 · · ·xid)1≤i1≤···≤id≤p

)�
∈ R[x1, . . . , xp]

(p+d
d ).

By the same argument as the univariate case, we can prove that the multivariate
Möbius transform ϕ : R

p → R
p
defined by

x = (x1, . . . , xp)
� 
→ ϕ(x;A, b, c, d) =

Ax+ b

c�x+ d
, det

(
A b
c� d

)
�= 0

where A ∈ R
p×p, b, c ∈ R

p×1, d ∈ R (e.g., [18]) remains the invariance (volume
preserving property) Volp(γM−1) = Volp(γ(AMA�)−1) of Theorem 3.16. However,
the treatment of the multidimensional case (see, e.g., [23] for the moment cone)
remains a future topic of research.

Application to other regression models

The application of the TV-criterion to other regression models remains an
important research topic. As a simple example, consider the Fourier and the
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weighted polynomial regressions (8) and (9) whose explanatory domain is a fi-
nite interval X = [u, v]. Then, using arguments similar to those used in Section
4, we can show that the TV-optimal design is an improper two-point design
with masses at u and v. This does not coincide with the D-optimal design.

From this observation, we pose two problems: (i) To characterize the models
in which the proper TV-optimal design exists, and the TV-optimal and D-
optimal designs are compatible. (ii) How to combine the TV-optimal and D-
optimal designs when they are different, for example, a mixture of the D- and
TV-optimal designs with appropriate weights.

Appendix A: Proofs

A.1. Proof of Proposition 2.2

Proof. Let η = ξ/‖ξ‖, where ξ = Σ− 1
2 (̂b − b). η is uniformly distributed on

the unit sphere S
n−1. Let ψ(x) = Σ

1
2 f(x)/‖Σ 1

2 f(x)‖. Then, under the assump-
tion that any connected component of γΣ is not a closed curve, the upper tail
probability of maxx∈X |η�ψ(x)| is bounded above by the expectation of the
Euler-characteristic χ(Ac) of the excursion set:

Ac =
{
ψ(x) | x ∈ X , η�ψ(x) ≥ c

}
∪
{
−ψ(x) | x ∈ X , −η�ψ(x) ≥ c

}
⊂ S

n−1.

That is, by Proposition 3.2 and (3.10) of [35],

Pr

(
max
x∈X

|η�ψ(x)|>c

)
≤ Vol1(γΣ)

2π
Pr
(
B 2

2 ,
n−2
2

>c2
)
+χ(γΣ) Pr

(
B 1

2 ,
n−1
2

>c2
)
,

where B k
2 ,

n−k
2

is a random variable distributed as the beta distribution with

parameter
(
k
2 ,

n−k
2

)
.

Let ξ̃ be a copy of ξ distributed independently of ξ and B k
2 ,

n−k
2

. Then, we

see the equivalence in distribution:

‖ξ̃‖ × η
d
= ξ and ‖ξ̃‖2 ×B k

2 ,
n−k

2

d
=R2

k. (38)

(38) can be proved by checking the Mellin transforms. By letting c := c/‖ξ̃‖,
and taking the expectations with respect to ξ̃, we have (6).

A.2. Proof of Lemma 3.4

Proof. Let tk = k/n− (n+1)/(2n) and xk = tan(πtk). The (i, j) element of M
is

mi,j =
1

n

n∑
k=1

x
(i−1)+(j−1)
k

1

(1 + x2
k)

2(n−1)
=

1

n

n∑
k=1

sini+j−2(πtk) cos
n−i−j(πtk).

Then, apply Lemma A.1 below.
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Lemma A.1. Let ti = i/n− d, i = 1, . . . , n, where d is a constant. Then,

1

n

n∑
i=1

sin2k(πti) cos
2n−2k−2(πti) =

Γ(k + 1
2 )Γ(n− k − 1

2 )

πΓ(n)
.

Proof. From the duplication formula for the gamma function, it suffices to show
that

1

n

n∑
j=1

sin2k(πtj) cos
2n−2k−2(πtj) =

(2k)!(2n− 2k − 2)!

k!(n− k − 1)!(n− 1)!
2−2n+2.

Let ω = eiπ/n, c = e−iπd. The left-hand side times (2i)2k22n−2k−2 = 22n−2(−1)k

is

1

n

n∑
j=1

(cωj − c−1w−j)2k(cωj + c−1w−j)2n−2k−2

=
1

n

n∑
j=1

∑
0≤s≤2k

(
2k

s

)
(−1)scsωsjc−(2k−s)ω−(2k−s)j

×
∑

0≤t≤2n−2k−2

(
2n− 2k − 2

t

)
ctωtjc−(2n−2k−2−t)ω−(2n−2k−2−t)j . (39)

Here, the contribution of the summation with respect to j is

1

n

n∑
j=1

ω(−2n+2+2s+2t)j =

{
1 (s+ t = n− 1),

0 (otherwise).

Hence, (39) is equal to ∑
max(0,2k−n+1)≤s≤min(2k,n−1)

(−1)s
(
2k

s

)(
2n− 2k − 2

n− 1− s

)

= (−1)k
(2k)!(2n− 2k − 2)!

k!(n− k − 1)!(n− 1)!
.

The last equality follows from (1.41) of [9].

A.3. Proof of Lemma 4.2

The proof of Lemma 4.2 is divided into three parts (lemmas).

Lemma A.2. For M ∈ MP , there exist u,w > 1 such that

M ∼

⎛⎝u 1 1
1 1 1
1 1 w

⎞⎠ .
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Lemma A.3. For u,w > 1, there exist ũ, ṽ, w̃ > 0, ṽ <
√
ũw̃ such that⎛⎝u 1 1

1 1 1
1 1 w

⎞⎠ ∼

⎛⎝ũ 0 ṽ
0 ṽ 0
ṽ 0 w̃

⎞⎠ .

Lemma A.4. For ũ, ṽ, w̃ > 0, ṽ <
√
ũw̃, there exist v ∈ (0, 1) such that⎛⎝ũ 0 ṽ

0 ṽ 0
ṽ 0 w̃

⎞⎠ ∼ Mv.

Proof of Lemma A.2. We start from a canonical form in (29):

M = w1fP (x1)fP (x1)
� + w2fP (x2)fP (x2)

� + w0fP (±∞)fP (±∞)�,

where fP (x) = (1, x, x2)�, fP (±∞) = (0, 0, 1)�. For A = A(a, b, c, d) with

a = w
1/4
2 (x1 − x2), b = −w

1/4
2 x1, c = 0, d = −w

1/4
2 , we have

A

⎛⎝u 1 1
1 1 1
1 1 w

⎞⎠A� = M, u = w1d
−4 + 1, w = w0a

−4 + 1.

Proof of Lemma A.3. Let

M =

⎛⎝u 1 1
1 1 1
1 1 v

⎞⎠ , M̃ =

⎛⎝ũ 0 ṽ
0 ṽ 0
ṽ 0 w̃

⎞⎠ , A =

⎛⎝d2 2cd c2

bd bc+ ad ac
b2 2ab a2

⎞⎠ .

We confirm that equation AMA� = M̃ has a solution (a, b, c, d) such that
ad− bc �= 0. It is enough to show that under the assumption a, d �= 0, a solution
(a, b, c, d) satisfies

(AMA�)1,2 = 0, (AMA�)2,3 = 0, ad− bc �= 0. (40)

Solving (AMA�)1,2 = 0 with respect to b yields

b = −a
c3v + 3c2d+ 3cd2 + d3

d3f1(c/d;u)
, (41)

where
f1(c;u) = (c+ 1)3 + (u− 1)

if f1(c/d;u) �= 0. Substituting (41) into (AMA�)2,3, we have

0 = (AMA�)2,3 =
a{(v − 1)c4 + (u− 1)d4 + (c+ d)4}d6f(c/d;u, v)

{d3f1(c/d;u)}3
, (42)

where

f(c;u, v) =c6(−2 + 3v − v2) + c5(−6 + 7v − uv2) + c4(−10 + 15v − 5uv)
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+ c3(−10u+ 10v) + c2(10− 15u+ 5uv) + c(6− 7u+ u2v)

+ (2− 3u+ u2).

Substituting (41) into ad− bc, we have

0 �= ad− bc = a
d4f2(c/d;u, v)

d3f1(c/d;u)
, f2(c;u, v) = 4c+ 6c2 + 4c3 + u+ c4v.

In the numerator of (42), if (v− 1)c4 +(u− 1)d4 +(c+ d)4 = 0, then c = d = 0,
and hence, ad− bc = 0.

Now, we examine whether for all u, v > 1, there is a real x such that

f(x;u, v) = 0, f1(x;u) �= 0, f2(x;u) �= 0. (43)

Once a solution x = x∗ is obtained, we have a solution that a, d �= 0 are given
arbitrarily, c = dx∗, and b is determined from (a, c, d) in (41).

Write f(·) = f(·;u, v) shortly. It is easily shown that when u, v > 1, neither

f(0) =(u− 2)(u− 1) > 0,

f(−1) =− (u− v)(u− 1)(v − 1) > 0,

f(±∞) =− (v − 2)(v − 1) > 0

nor
f(0) < 0, f(−1) < 0, f(±∞) < 0

is true, where f(±∞) = limc→±∞ c−6f(c). This means that f(x;u, v) = 0 has
a real solution x = x∗.

In order to check f1(x
∗;u) �= 0 and f2(x

∗;u, v) �= 0, we need to check whether
f and f1 (or f2) have a common factor. For this purpose, we calculate the
resultants R(f, f1) and R(f, f2):

R(f, f1) = (u− 2)(u− 1)h(u, v)2, R(f, f2) = h(u, v),

where

h(u, v) = −28+54u−27u2+54v−105uv+54u2v−27v2+54uv2−30u2v2+u3v3.
(44)

(For resultant, see, e.g., [30]. Applications in statistics can be found in [6].)
As shown in Lemma A.5 later, in the region u, v > 1, h(u, n) = 0 iff u = 2.
Therefore, when u �= 2, we have established that x = x∗ satisfying (43) exists,
and hence, a solution (a, b, c, d) satisfying (40) exists.

When u = 2, (42) is reduced to

0 =
f(c; 2, v)

f1(c; 2)3
=

(2− v)c(−2− 4c− 3c2 − c3 − c4 + c4v)

(2 + c)2(1 + c+ c2)3

and c = 0 is a solution. From (41), b = −a/2, and a �= 0, d �= 0 are arbitrarily
given. In fact, for A = A(a,−a/2, 0, d),

A

⎛⎝2 1 1
1 1 1
1 1 v

⎞⎠A� =

⎛⎝ 2d4 0 a2d2/2
0 a2d2/2 0

a2d2/2 0 a4(v − 7/8)

⎞⎠ .
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Lemma A.5. Let h(u, v) be defined in (44). When u, v > 1, h(u, v) ≥ 0, and
the equality holds iff u = v = 2.

Proof. Fix u and consider h(u, v) as a function of v. Note that h(u, 1) = (u −
1)3 > 0.

hv(u, v) =
∂

∂v
h(u, v)

= 54− 105u+ 54u2 + (−54 + 108u− 60u2)v + 3u3v2.

hv(u, 1) = 3u(u− 1)2 > 0. It is easy to see that hv(u, v) = 0 has a real solution
iff 3/2 ≤ u ≤ 3. Therefore, when u ≤ 3/2 or u ≥ 3, hv(u, v) is always positive.
Combined with h(u, 1) > 0, this means that h(u, v) > 0.

Consider the case 3/2 < u < 3. The largest zero of hv(u, v) is

v∗(u) =
9− 18u+ 10u2 + 3

√
(u− 1)3(3− u)(2u− 3)

u3
> 1.

At this point, the function h(u, v) takes a local minimum

h(u, v∗(u)) =
27

u6
(u− 1)4

{
(−54 + 108u− 72u2 + 18u3 − u4)

− 2(3− u)(2u− 3)
√
(u− 1)(3− u)(2u− 3)

}
=27(u− 1)4(u− 2)2

{
(−54 + 108u− 72u2 + 18u3 − u4)

+ 2(3− u)(2u− 3)
√
(u− 1)(3− u)(2u− 3)

}−1
.

It is easy to check that −54 + 108u − 72u2 + 18u3 − u4 > 0 for 3/2 < u < 3.
Hence, h(u, v∗(u)) ≥ 0 for 3/2 < u < 3 and the equality holds when u = 2.
When u = 2, v∗(2) = 2.

Proof of Lemma A.4. For A = A(a, b, c, d) with b = c = 0,

A

⎛⎝ũ 0 ṽ
0 ṽ 0
ṽ 0 w̃

⎞⎠A� =

⎛⎝ d4ũ 0 a2d2ṽ
0 a2d2ṽ 0

a2d2ṽ 0 a4w̃

⎞⎠ .

By letting a = w̃−1/4, d = ũ−1/4, v = a2d2ṽ = ṽ/
√
ũw̃, we obtain the result.

Remark A.6. In the proof of Lemma A.4, by letting d = ũ−1/4, a = ṽ−1/2/√
3d = ũ1/4/

√
3ṽ1/2, w = a4w̃ = ũw̃/9ṽ2, we have another representative group

element ⎛⎝1 0 1
3

0 1
3 0

1
3 0 w

⎞⎠ , w >
1

9
.
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A.4. Proof of Lemma 4.3

Proof. The (1, 1), (2, 1), (3, 2), (3, 3) components of the equationMv′ = AMvA
�

are

(AMvA
�)1,1 = c4 + d4 + 6vc2d2,

(AMvA
�)2,1 = ac3 + bd3 + 3vcd(bc+ ad),

(AMvA
�)3,2 = a3c+ b3d+ 3vab(bc+ ad),

(AMvA
�)3,3 = a4 + b4 + 6va2b2,

respectively. By solving (AMvA
�)2,1 = 0, we have

b = −ac(c2 + 3d2v)

d(d2 + 3c2v)

when d �= 0. (c and d cannot be 0 simultaneously because ad− bc �= 0.) Suppose
first that d �= 0. Substituting this into (AMvA

�)3,2, we have

(AMvA
�)3,2 =

a3c(c4 − d4)(c4 + d4 + 6c2d2v)(−1 + 9v2)

d2(d2 + 3c2v)3
.

This becomes 0 when (i) c = 0, (ii) c = ±d, or (iii) v = 1/3. We try to solve the
equation (AMvA

�)1,1 = (AMvA
�)3,3 = 1 in each case. Note that a = 0 cannot

be a solution, because b becomes 0 and ad− bc = 0.

(i) If c = 0, then b becomes 0 and (AMvA
�)1,1 = d4, (AMvA

�)3,3 = a4.
Hence, (a, b, c, d) = (±1, 0, 0,±1) (four ways) are the solutions. In each case,

v′ = (AMvA
�)3,1 = v.

(ii) If c = ±d, then b = ∓a, (AMvA
�)1,1 = 2c4(1+3v) = 1 = (AMvA

�)3,3 =
2a4(1 + 3v), and hence, c = ±a. Therefore,

(a, b, c, d) = 1/(2 + 6v)1/4 ×

⎧⎪⎪⎨⎪⎪⎩
(1,−1, 1, 1),
(1,−1,−1,−1),
(−1, 1, 1, 1),
(−1, 1,−1,−1)

are solutions. In each case,

v′ = (AMvA
�)3,1 =

1− v

1 + 3v
.

(iii) When v = 1/3 and d �= 0, we have b = −ac/d and

(AMvA
�)1,1 =(c2+d2)2 =1, (AMvA

�)3,3 =(a2+b2)2 =
a4(c2 + d2)

d4
=

a4

d4
=1.
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Hence, b = ±
√
1− a2. When d = a, c = −b = ∓

√
1− a2. When d = −a,

c = b = ±
√
1− a2. In summary,

(a, b, c, d) =
(
a,
√
1− a2,−

√
1− a2, a

)
,
(
a,−
√
1− a2,

√
1− a2, a

)
,(

a,
√
1− a2,

√
1− a2,−a

)
,
(
a,−
√
1− a2,−

√
1− a2,−a

)
.

In each case,

v′ = (AMvA
�)3,1 =

1

3
= v.

(iii’) When v = 1/3 and d = 0, (AMvA
�)2,1 = ac3 = 0. Because ad− bc �= 0,

c �= 0, and a = 0. In this case, (AMvA
�)3,2 = 0, (AMvA

�)1,1 = c4 = 1,
(AMvA

�)3,3 = b4 = 1. Hence, (a, b, c, d) = (0,±1,±1, 0) (four ways) are the
solutions. In each case,

v′ = (AMvA
�)3,1 =

1

3
= v.
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