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Abstract: Much effort has been done to control the “false discovery rate”
(FDR) when m hypotheses are tested simultaneously. The FDR is the ex-
pectation of the “false discovery proportion” FDP = V/R given by the
ratio of the number of false rejections V and all rejections R. In this paper,
we have a closer look at the FDP for adaptive linear step-up multiple tests.
These tests extend the well known Benjamini and Hochberg test by esti-
mating the unknown amount m0 of the true null hypotheses. We give exact
finite sample formulas for higher moments of the FDP and, in particular,
for its variance. Using these allows us a precise discussion about the sta-
bility of the FDP, i.e., when the FDP is asymptotically close to its mean.
We present sufficient and necessary conditions for this stability. They in-
clude the presence of a stable estimator for the proportion m0/m. We apply
our results to convex combinations of generalized Storey type estimators
with various tuning parameters and (possibly) data-driven weights. The
corresponding step-up tests allow a flexible adaptation. Moreover, these
tests control the FDR at finite sample size. We compare these tests to the
classical Benjamini and Hochberg test and discuss the advantages of them.
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1. Introduction

Testing m ≥ 2 hypotheses simultaneously is a frequent issue in statistical prac-
tice, e.g., in genomic research. A widely used criterion for deciding which of these
hypotheses should be rejected is the so-called “false discovery rate” (FDR) pro-
moted by Benjamini and Hochberg [3]. The FDR is the expectation of the “false
discovery proportion” (FDP), the ratio

FDPm =
Vm

Rm

of the number of false rejections Vm and the amount of all rejections Rm. We call
a multiple test procedure (FDR-)α-controlling for a pre-specified level α ∈ (0, 1)
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when FDRm = E(FDPm) ≤ α. Under the so-called basic independence (BI)
assumption, which will be introduced in more detail below, the classical Ben-
jamini and Hochberg linear step-up test, in short BH test, is α-controlling. In
fact, there is an exact formula for its FDR, namely FDRm = (m0/m)α [3, 19],
where m0 is the unknown amount of true null hypotheses. Especially, if m0/m
is not close to 1 the BH test should be improved regarding a better exhaustion
of the FDR level to achieve higher power. For this purpose, so-called adaptive
procedure can be used. The basic idea is to estimate m0 by an appropriate esti-
mator m̂0 in a first step and to apply the BH test for the data dependent level
α′ = (m/m̂0)α in the second step. We can expect a better FDR exhaustion
for a good estimator m̂0 ≈ m0 because, heuristically, FDRm ≈ (m0/m)α′ ≈ α.
Various estimators are suggested in the literature [4, 5, 7, 8, 36, 38, 39, 40, 42].
Generalized Storey estimators with data dependent weights discussed by Heesen
and Janssen [24] will be our prime example in later discussions of our general
results. The latter lead to α-controlling procedures, whereas other approaches
are often just asymptotically α-controlling, i.e., lim supm→∞ FDRm ≤ α. Suf-
ficient conditions for estimators leading to (finite sample) α-controlling proce-
dures can be found in Sarkar [32] and Heesen and Janssen [23, 24]. Adaptive
procedures are also used to get procedures controlling the family-wise error rate
FWERm = P (Vm > 0), another criterion for multiple tests, for details we refer
to Finner and Gontscharuk [17] and Sarkar et al. [33] as well as the references
therein.

Due to the additional estimation step, the variability of the FDPm is higher
for adaptive procedures. This is contrary to the actual idea of α-controlling
methods, namely to ensure in a certain way that the proportion of false rejections
FDPm is small. In fact, methods are preferable when the inequality FDPm ≤
(α+ε) holds with a high probability and small ε > 0. That is why we address the
question for which adaptive procedures this property can be expected. Ferreira
and Zwinderman [15] presented formulas for higher moments of FDPm for the
BH test and Roquain and Villers [31] did so for step-up and step-down tests
with general (but data independent) critical values. We extend these formulas to
adaptive procedures. In particular, we derive a finitely exact variance formula for
FDPm. Combining this and Chebyshev’s inequality we obtain an upper bound
for the undesired event of a relatively large FDP for α-controlling procedures:

P
( Vm

Rm
> α+ ε

)
≤ Var(Vm/Rm)

(α− FDRm + ε)2
. (1.1)

Under mixture p-value models Chi and Tan [11] already derived bounds and
asymptotic results for P (Vm > αRm), see also Chi [10]. In the spirit of (1.1), for
good procedures we expect that the variance of FDPm is small or even vanishes
in the asymptotic set-up, i.e., if the number of hypothesis m tends to infinity. In
the latter case, we say that FDPm is stable. To be mathematically more precise,
FDPm is (asymptotically) stable if

Vm

Rm
− E

( Vm

Rm

)
→ 0 in probability, or equivalently Var

( Vm

Rm

)
→ 0. (1.2)
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Note that E(Vm/Rm) is not convergent in general but for appropriate sub-
sequences. At long these subsequences Vm/Rm converges in probability to a
constant under (1.2). Using our exact variance formula for FDPm we determine
sufficient and necessary conditions for stability in the sense of (1.2). We also
treat the more challenging case of sparsity in the sense that m0/m → 1 as
m → ∞. This situation can be compared to the one of Abramovich et al. [1],
who derived an estimator of the (sparse) mean of a multivariate normal dis-
tribution using FDR procedures. In the asymptotic set-up, stochastic process
methods were applied to study the asymptotic behavior of FDPm and FWERm,
e.g. asymptotic confidence intervals were calculated [20, 27, 28, 29]. Since FDPm

is an unknown quantity in practice, estimation of it is a further interesting topic.
For various correlated test statistics, mainly normal and χ2-statistics, estimators
of FDPm and FDRm were studied [13, 30, 35, 39, 41].

Outline of the results. In Section 2, we introduce the model as well as
the adaptive step-up tests and, in particular, the generalized Storey estimators
serving as our prime examples. Section 3 provides exact finite sample variance
formulas for the FDPm under the BI model. Extensions to higher moments can
be found in the appendix, see Section 9. These results apply to the variability
and the stability of FDPm, see Section 4. Roughly speaking, we have stability
if we have a stable estimator m̂0/m ≈ C0 and the number of rejections tends to
infinity. Section 5 is devoted to concrete adaptive step-up tests mainly based on
the convex combinations of generalized Storey estimators with data dependent
weights. We will see that stability cannot be achieved in general. Under mild
assumptions the adaptive tests based on the estimators mentioned above are
superior compared to the BH test: 1. The adaptive procedures lead to a more
exhausted FDR while remaining α-controlling. 2. The corresponding FDP is
stable whenever the FDP of the BH test is stable. In Section 6, we discuss least
favorable configurations which serve as useful technical tools. For the reader’s
convenience we add a discussion and summary of the paper in Section 7. All
proofs are collected in Section 8.

2. Preliminaries

2.1. The model and general step-up tests

Let us first describe the model and the procedures. A multiple testing problem
consists of m null hypotheses (Hi,m, pi,m) with associated p-values 0 ≤ pi,m ≤ 1
on a common probability space (Ωm,Am, Pm). For all asymptotic consideration
the limits are meant as m → ∞, if not stated otherwise. From now on, we always
suppose the basic independence (BI) assumption given by

(BI1) The set of hypotheses can be divided in the disjoint union I0,m
⋃
I1,m =

{1, ...,m} of the (unknown) true null portion I0,m and the (unknown) false
null portion I1,m. Denote by mj = #Ij,m the cardinality of Ij,m for j = 0, 1.

(BI2) The p-value vectors (pi,m)i∈I0,m
and (pi,m)i∈I1,m

are independent, where

any dependence structure is allowed for the p-values (pi,m)i∈I1
corresponding
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to false hypotheses.
(BI3) The p-values (pi,m)i∈I0,m

corresponding to true hypotheses are indepen-

dent and uniformly distributed on [0, 1], i.e., Pm(pi,m ≤ x) = x (x ∈ [0, 1]).

Throughout the paper, let m0 ≥ 1 be nonrandom. Similarly to Heesen and
Janssen [24], our results can be extended to more general models with ran-
dom m0 by conditioning under m0. By using this modification our results can
easily be transferred to familiar mixture models discussed, among others, by
Abramovich et al. [1] and Genovese and Wassermann [20]. We study adaptive
multiple step-up tests with estimated critical values extending the famous Ben-
jamini and Hochberg [3] step-up test, in short BH test. In the following we recall
the definition of these kinds of tests. Let

0 = α0:m < α1:m ≤ α2:m ≤ . . . ≤ αm:m < 1 (2.1)

denote possibly data dependent critical values. As an example for the critical
values we recall the ones for the BH test, which do not depend on the data:

αBH
i:m =

i

m
α.

If p1:m ≤ p2:m ≤ . . . ≤ pm:m denote the ordered p-values then the number of
rejections is given by

Rm := max{i = 0, . . . ,m : pi:m ≤ αi:m}, where p0:m := 0,

and the rejection rule for the multiple procedure is as follows:

reject Hi,m iff pi,m ≤ αRm:m.

Moreover, let

Vm := #{i ∈ I0,m ∪ {0} : pi:m ≤ αRm:m} (2.2)

be the number of falsely rejected null hypotheses. Then the false discovery rate
FDRm and the false discovery proportion FDPm are given by

FDPm =
Vm

Rm
and FDRm = E

( Vm

Rm

)
with

0

0
= 0. (2.3)

Good multiple tests like the BH test or the frequently applied adaptive test of
Storey et al. [39] control the FDR at a pre-specified acceptance error bound α
at least under the BI assumption, in short we say that they are α-controlling.
In addition to this property, two further aspects for multiple procedures are of
importance and discussed below:

(i) To make the test sensitive for signal detection the FDR should exhaust
the level α as best as possible.

(ii) On the other hand the variability of FDPm is of interest in order to judge
the stability of FDPm.
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For a large class of adaptive tests exact FDR formulas were established in Heesen
and Janssen [24]. These formulas are now completed by formulas for exact higher
FDP moments and, in particular, for the variance. These results can be used to
discuss conditions for (1.2). Throughout the paper, lim infm→∞ FDRm > 0 is
assumed. Then the following condition is necessary for the stability of FDPm:

lim
m→∞

Pm(Vm > 0) = 1. (2.4)

As already stated we can not expect stability in general. In the following we
discuss two negative results concerning the stability for the BH test.

Example 2.1. (a) We explain in the following that (2.4) is never fulfilled for the
BH test in the extreme case of m1 ≥ 0 being fixed. Hence, FDPm is never
stable for the BH test in this case. First, note that Pm(V BH

m = 0) is minimal
(implying that Pm(V BH

m > 0) is maximal) for the so-called Dirac uniform
configuration DU(m,m1), where all entries of (pi,m)i∈I1,m are equal to zero.
Under this configuration V BH

m (α,m1) → VSU(α,m1) in distribution with

P
(
VSU(α,m1) = 0

)
= (1− α) exp(−m1α) > 0,

see Finner and Roters [19] and Theorem 4.8 of Scheer [34]. The limit variable
belongs to the class of linear Poisson distributions [12, 18, 25].

(b) Let (pi,m)i∈I1,m be i.i.d. uniformly distributed on [0, λ] for λ ∈ (α, 1). Note
that the distribution of pi,m given the event {pi,m ≤ λ} is the same for all
i = 1, . . . ,m. In Theorem 5.1(b) below, we show that FDPm is not stable
for the BH test in this setting.

The requirement for stability will be somehow between DU(m,m1) alterna-
tives and the setting of Example 2.1(b), where the assumption m1 → ∞ will
always be needed. More information about DU(m,m1) and least favorable con-
figurations can be found in Section 6.

2.2. Our step-up tests and underlying assumptions

In the following we introduce the adaptive step-up tests. Let 0 < α < 1 be
a fixed level. A tuning parameter λ ∈ [α, 1) is chosen such that no null Hi,m

with pi,m > λ should be rejected. For instance, it is uncommon to reject a
null if the corresponding p-value is large than λ0 = 1/2, even a rejection when
pi,m > λ1 = α is rather unusual. In this spirit, we split the range [0, 1] of the
p-values into a decision region [0, λ], where we may reject the corresponding
null hypotheses, and an estimation region (λ, 1], where we use the p-values to
estimate m0, see Figure 1. To be more specific, we consider estimators

m̂0 = m̂0((F̂m(t))t≥λ) > 0 (2.5)

for m0, which are measurable functions depending only on (F̂m(t))t≥λ. As

usual we denote by F̂m the empirical distribution function of the p-values
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Fig 1. Decision region [0, λ] (dashed) and estimation region (λ, 1].

p1,m, . . . , pm,m. As motivated in the introduction, we now plug-in these esti-
mators in the BH test. Doing this we obtain the data driven critical values

α̂i:m = min
{( i

m̂0
α

)
, λ

}
, i = 1, . . . , n, (2.6)

where we promote to use the upper bound λ as Heesen and Janssen [24] already
did. The following two quantities will be frequently used:

Rm(t) = mF̂m(t) and Vm(t) =
∑
i∈I0

1{pi,m ≤ t}, t ∈ [0, 1]. (2.7)

Throughout this paper, we investigate different mild assumptions. For our main
results we fix the following two assumptions:

(A1) Suppose that

m0

m
→ κ0 ∈ (0, 1].

If only 0 < lim infm→∞ m0/m is valid then our results apply to appropriate
subsequences. The most interesting case is κ0 > α since otherwise (ifm0/m ≤ α)
the FDR can be controlled, i.e. FDRm ≤ α, by rejecting everything.

(A2) Suppose that m̂0 is always positive and

λ

α
m̂0 ≥ Rm(λ).

If (A2) is not fulfilled then consider the estimator max{m̂0, (α/λ)Rm(λ)} in-
stead of m̂0. Note that both estimators lead to the same critical values (2.6) and,
thus, it is irrelevant which of these two estimators is used. Consequently, (A2)
is not a restriction for the practical application but is improving the readability
of our formulas significantly.

Remark 2.2. Under (A2) the FDR of the adaptive multiple test was obtained
for the BI model by Heesen and Janssen [24]:

FDRm =
α

λ
E

(Vm(λ)

m̂0

)
. (2.8)

In particular, we obtain

FDRm ≤ E

( Vm(λ)

Rm(λ)

)
≤ Pm(Vm(λ) > 0),

where the upper bound is always strictly smaller than 1 for finite m.
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A prominent α-controlling adaptive test is based on the Storey estimator

m̃Stor
0 (λ) = m

1− F̂m(λ) + 1
m

1− λ
. (2.9)

To obtain an estimator fulfilling (A2), we consider

m̂Stor
0 (λ) := max{m̃0(λ),

α

λ
Rm(λ)} (2.10)

instead. A refinement was established by Heesen and Janssen [24]. They intro-
duced a couple of inspection points 0 < λ = λ0 < λ1 < . . . < λk = 1, where m0

is estimated by

m̃0(λi−1, λi) := m
F̂m(λi)− F̂m(λi−1) +

1
m

λi − λi−1
(2.11)

on each interval (λi−1, λi]. Liang and Nettleton [26] already used the estimators
(2.11) in another context. The Storey estimator can be rewritten as a linear
convex combination of these estimators:

m̃Stor
0 (λ) =

k∑
i=1

βim
F̂m(λi)− F̂m(λi−1) +

1
m

λi − λi−1
=

k∑
i=1

βim̃0(λi−1, λi)

with weights βi = (λi − λi−1)/(1 − λ) fulfilling the condition
∑k

i=1 βi = 1.
Heesen and Janssen [23] allowed the weights to be data dependent and proved
that the corresponding adaptive test is α-controlling under the BI assumption,
see Proposition 2.3 below. In Section 5, we discuss the stability of FDPm for
these procedures.

Proposition 2.3 (cf. Thm 10 in [24]). Let β̂i,m = β̂i,m((F̂m(t))t≥λi) ≥ 0 be

random weights for i ≤ k with
∑k

i=1 β̂i,m = 1. The adaptive step-up test using
the following estimator m̃0 is α-controlling:

m̃0 :=

k∑
i=1

β̂i,mm̃0(λi−1, λi). (2.12)

Finally, we want to present a sufficient condition of asymptotic α-control.

Proposition 2.4 (cf. Thm 6.1 in [23]). Suppose that (A1), (A2) holds. If

Pm

(m̂0

m0
≤ 1− δ

)
→ 0 for all δ > 0

then we have asymptotic (FDR-)α-control, i.e., lim supm→∞ FDRm ≤ α.

It should be mentioned that Proposition 2.4 is even valid for reverse martin-
gale models, a huge model class including, among others, the BI model. Finner
and Gontscharuk [17] proved asymptotic FWER-control under the same condi-
tions.
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3. Moments

This section provides exact second moment formulas of FDPm = Vm/Rm for
our adaptive step-up tests for a fixed regime Pm. Our method of proof relies on
conditioning with respect to the σ-algebra

Fλ,m := σ
(
1{pi,m ≤ s} : s ∈ [λ, 1], 1 ≤ i ≤ m

)
.

Conditionally under the (non-observable) σ-algebra Fλ,m the quantities m̂0,

Rm(λ) and Vm(λ) are fixed values. But only Rm(λ) = mF̂m(λ) and m̂0 are
observable. The FDR formula (2.8) is now completed by an exact variance for-
mula. The proof offers also a rapid approach to the known moment formulas
of Ferreira and Zwinderman [15] for the Benjamini and Hochberg test (with
m̂0 = m and λ = α). Without loss of generality we reorder the p-values such
that

I0,m = {1, . . . ,m0} and I1,m = {m0 + 1, . . . ,m}.

Now, we introduce a new p-value vector p
(1,λ)
m . If Vm(λ) > 0 then set p

(1,λ)
m

equal to the vector pm = (p1,m, . . . , pm,m) while replacing one p-value pi,m ≤ λ,
i ≤ m0, corresponding to a true null hypothesis by 0, for convenience take the

smallest integer i ≤ m0 with this property. If Vm(λ) = 0 then set p
(1,λ)
m = pm.

Let R
(1,λ)
m = R

(1,λ)
m (p

(1,λ)
m ) be the number of rejections based on the substituted

vector p
(1,λ)
m instead of the original p-value vector pm. Note that m̂0 remains the

same when considering p
(1,λ)
m instead of pm while R

(1,λ)
m > Rm is possible.

Theorem 3.1. Suppose that our assumptions (A2) are fulfilled.

(a) The second moment of FDPm is given by

E

(( Vm

Rm

)2)
= E

(α2Vm(λ)(Vm(λ)− 1)

λ2m̂2
0

+
α

λ

Vm(λ)

m̂0
E

( 1

R
(1,λ)
m

∣∣∣Fλ,m

))
.

(b) The variance of FDPm fulfills

Var
( Vm

Rm

)
=

α2

λ2

[λ
α
E

(Vm(λ)

m̂0
E

( 1

R
(1,λ)
m

∣∣∣Fλ,m

))
+Var

(Vm(λ)

m̂0

)
−E

(Vm(λ)

m̂2
0

)]
.

(c) We have

E(Vm) =
α

λ
E

(Vm(λ)

m̂0
E(R(1,λ)

m |Fλ,m)
)
.

Exact higher moment formulas are established in Section 9.
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4. The variability and stability of FDPm

In this section, we use the exact variance formula to study conditions for stability
(1.2) of the FDPm. For this purpose we need a further mild assumption:

(A3) There is some K > 0 such that m̂0 ≤ Km for all m ∈ N.

We want to point out that any K > 0, not only K = 1, is allowed and, hence,
Assumption (A3) is not a real restriction. Clearly, (A3) is fulfilled for all gen-

eralized weighted estimators of the form (2.12) with K = 2
∑k

i=1(λi − λi−1)
−1.

Note that (A1) and (A3) imply lim infm→∞ FDRm > 0 and, hence, (2.4) is a
necessary condition for stability in this case. Below, we give boundaries for the
variance of FDPm = Vm/Rm depending on the leading term in the variance
formula of Theorem 3.1:

Cm,λ :=
α

λ
E

(Vm(λ)

m̂0
E

( 1

R
(1,λ)
m

∣∣∣Fλ,m

))
+
(α
λ

)2

Var
(Vm(λ)

m̂0

)
.

Lemma 4.1. Suppose that (A2) is fulfilled.

(a) We have

E

(Vm(λ)

m̂2
0

)
≤

(λ
α

)2 2

λ(m0 + 1)
and (4.1)

Cm,λ ≥ Var
( Vm

Rm

)
≥ Cm,λ − 2

λ(m0 + 1)
. (4.2)

(b) Additionally, let (A3) be fulfilled. Then m̂0 ≤ m0Km with Km := Km/m0

and for all t > 0

Pm

(
E(Vm|Fλ,m) ≤ t

)
≤ Pm(Vm = 0) + tDm,λ, where

Dm,λ :=
4K2

m

α2

[
Var

( Vm

Rm

)
+

2

λ(m0 + 1)
− α2

λ2
Var

(Vm(λ)

m̂0

)]
+

λm0Km

α exp(m0λ/[8(1− λ)])
.

Since m0 → ∞ under (A1), we have stability iff Cm,λ → 0.

Theorem 4.2. Under (A1)-(A3) the following (a) and (b) are equivalent.

(a) (Stability) The convergence in (1.2) holds.
(b) We have

m̂0

m
− E

(m̂0

m

)
→ 0 in Pm-probability and (4.3)

R(1,λ)
m → ∞ in Pm-probability. (4.4)

The conditions (4.3) and (4.4) are competing. The choice m̂0 = m (BH-test)
always fulfills (4.3), whereas a random m̂0 may lead to more rejections, which is
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preferable regarding (4.4). In Example 4.3 below, we present a situation, in which
FDPm is stable when using the Storey estimator but is not stable for the BH test.
But first, we want to point out that (4.3) does not imply that the estimator m̂0

is consistent for m0, i.e., m̂0/m0 → 1 in probability. Consistent estimators only
exists under strong additional assumptions, see, e.g., Genovese and Wassermann
[20]. Although being not consistent, the usual (random) estimators m̂0 fulfill
the stability condition (4.3), see Section 5.1 for a detailed discussion concerning
generalized Storey estimators.

Example 4.3. Let m0 = m1 and U1, U2, . . . , Um be i.i.d. uniformly distributed
on (0, 1). Fix 1/2 < λ < 1 and define x0 := 1/6. Set pi,m := Ui,m for all i ∈ I0,m
and pi,m := min{Ui, x0} for every i ∈ I1,m. The stability of the FDPm depends
on the level α:

(a) For α = 1/4 the FDPm is stable for the Storey procedure using the estimator
(2.10) but is not stable for the BH test.

(b) For α = 1/2 we have stability for both procedures mentioned in (a).

The results concerning the BH test can be motivated by Figure 2. For the
purpose, recall that the BH procedure can also be formulated by using the
Simes line (0, 1) 	 t 
→ fα(t) = t/α. First, the empirical distribution function

F̂m of the p-values p1,m, . . . , pm,m and the Simes line fα are compared. Let t∗

be the largest intersection of them. Then all hypotheses with pi,m ≤ t∗ are

rejected. By the Glivenko-Cantelli Theorem F̂m converges uniformly to F given
by F (t) = t1{t < x0}+ 1/2(t+ 1)1{t ≥ x0} (t ∈ [0, 1]). It is easy to check that
F and f1/4 have a non-trivial intersection point, namely t∗ = 1/3, whereas F
and f1/2 just intersect at t∗ = 0. By the first observation it follows that the
number of rejections tends in probability to ∞ for the BH test with α = 1/2.
In Section 8, we give a rigorous proof that this is not the case when α = 1/4.

The previous example, in particular the part concerning the BH tests, is in
line with the results of Chi and Tan [11], see their Section 4.3. For a mixture p-
value model they showed for the BH test that the number of rejections remains
finite for all levels α smaller than some threshold α∗ ∈ (0, 1) and the number of
rejections tends to ∞ for all levels α > α∗.

In the following we want to discuss the condition (4.4) more closely. Although
Rm → ∞ implies R1,λ

m → ∞, both in probability, the reverse is not obvious and
may be false. But it is easy to see that, at least, E(Rm) → ∞ holds under
stability: First, observe that under (A1)–(A3) stability, i.e., Var(Vm/Rm) → 0,
implies

E

( 1

R
(1,λ)
m

∣∣∣Fλ,m

)
→ 0 in Pm-probability. (4.5)

Since R
(1,λ)
m is positive (4.5) implies E(R

(1,λ)
m |Fλ,m) → ∞ in Pm-probability.

Finally, we can conclude from Theorem 3.1(c) that E(Vm) → ∞ and, hence,
E(Rm) → ∞ holds under stability and (A1)–(A3). Convergence in probability
of Rm can be obtained if FDPm is stable for all levels from an interval (α1, α2).
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Fig 2. Plot of the Simes lines f1/4 (dashed) and f1/2 (dotted) as well as of the joint distri-
bution function F (solid) from Example 4.3.

Before we present the corresponding theorem, we recall that Vm and Rm depend,
of course, on the pre-specified level α. That is why we prefer (only) for this
theorem the notation Vm,α and Rm,α.

Theorem 4.4. Suppose (A1)-(A3). Moreover, we assume that we have stability
for all level α ∈ (α1, α2) and some 0 < α1 < α2 < 1. Then we have in Pm-
probability for all α ∈ (α1, α2) that

Vm,α → ∞ and, thus, Rm,α → ∞.

5. Various stability and instability results

To avoid the ugly estimator m̂0 = (α/λ)max{Rm(λ), 1}, which could lead to
rejecting all hypotheses with pi,m ≤ λ, we introduce:

(A4) There exists a constant C > 1 with

lim
m→∞

Pm

(
m̂0 ≥ Cα

λ
max{Rm(λ), 1}

)
= 1.

Note that (A4) guarantees that (A2) holds at least with probability tending
to one. The next theorem yields a necessary condition for stability.

Theorem 5.1. Suppose that lim infm→∞ FDRm > 0 and (A4) holds.

(a) If we have stability then m1 → ∞.
(b) Suppose that (A1) holds. If all (pi,m)i∈I1,m are i.i.d. uniformly distributed

on [0, λ] then we have no stability.
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By our Theorem 4.2 we already know that (4.3) and (4.4) are necessary
and sufficient for stability. Turning to convergent subsequence we can assume
without loss of generality under (A1), (A3) and (A4) that E(m̂0/m) converges
to a constant C0 ∈ [κ0α,K], say. In this case (4.3) is equivalent to

m̂0

m
→ C0 ∈ [κ0α,K] in Pm-probability. (5.1)

Throughout the section’s rest, we work with (5.1) instead of (4.3). If (5.1) is
fulfilled it remains to verify (4.4) to obtain stability. If Rm → ∞ in probability
then (4.4) would follow immediately. For the BH test, for which (5.1) is obviously
fulfilled with C0 = 1, Ferreira and Zwinderman [15] already stated, see their
Proposition 2.2, that RBH

m → ∞ in Pm-probability is sufficient for stability. For
this purpose Ferreira and Zwinderman [15] found conditions such that Rm/m →
C̃ > 0 in Pm-probability. However, the sparse signal case κ0 = 1 is more delicate
since Rm/m always tends to 0 even for adaptive tests. Below, we discuss the
convergence behavior of Rm more closely, in particular for the sparse case.

Lemma 5.2. Suppose that (A1) with κ0 = 1 and (A4) are fulfilled. Then
α̂Rm:m → 0 in Pm-probability. In particular, under (A3) we have Rm/m → 0 in
Pm-probability.

As already mentioned in Example 4.3, the rejection rule for the BH test can
be defined via the Simes line. The same can be done for adaptive procedures,
where now the Simes line t 
→ f(t) =: (m̂0/m)(t/α) is random. Let t∗m be the

largest intersection point of F̂m and f then α̂Rm:m ≤ t∗ < α̂Rm+1:m. From
Lemma 5.2 we can conclude t∗m → 0 in probability when κ0 = 1. Thus, in the

sparse case the asymptotic behaviour of F̂m close to 0 is crucial.

Theorem 5.3. Assume that (A1), (A3), (A4) and (5.1) hold. Let δ > 0 and
(tm)m∈N be some sequence in (0, λ) such that mtm → ∞ and

Pm

(m1

m

F̂1,m(tm)

tm
≥ δ − κ0 +

1

α
C0

)
→ 1, (5.2)

where F̂j,m(x) := m−1
j

∑
i∈Ij,m

1{pi,m ≤ x}, j ∈ {1, 2}, denotes the empirical
distribution function of the p-values corresponding to the true and false null
hypotheses, respectively. Then Vm → ∞ in Pm-probability. In particular, stability
follows from Theorem 4.2.

Remark 5.4. (a) Suppose that (pi,m)i∈I1,m are i.i.d. with distribution function
F1. Then the statement of Theorem 5.3 remains valid if we replace (5.2) by

m1

m

F1(tm)

tm
≥ δ − κ0 +

1

α
C0 for all sufficiently large m ∈ N. (5.3)

A detailed proof is given in Section 8.
(b) In the case κ0 = 1 we need a sequence (tm)m∈N tending to 0.
(c) For the DU(m1,m)-configuration the assumption (5.2) is fulfilled for tm =

(m1/m)(K + 2) as long as the necessary condition m1 → ∞ holds.
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As already stated, stability only holds under certain additional assumptions.
In the following we compare stability of the classical BH test and of adaptive
tests with appropriate estimators.

Lemma 5.5. Suppose that (A1), (A3) and (A4) are fulfilled. Assume that (5.1)
holds for some C0 ∈ [ακ0, 1]. If C0 = 1 then additionally suppose that

Pm

(m̂0

m
≤ 1

)
→ 1. (5.4)

Then stability of the BH test implies stability of the adaptive test for the same
level α.

Under some mild assumptions Lemma 5.5 is applicable for the weighted es-
timator (2.12), see Corollary 5.6(c) for sufficient conditions.

5.1. Combination of generalized Storey estimators

In this section, we are more concrete by discussing the combined Storey estima-
tors m̃0 introduced in (2.12). For this purpose we need the following assumption
to ensure that (A4) is fulfilled.

(A5) Suppose that κ0 > α(1− κ0)/[λ(1− α)].

Corollary 5.6. Let (A1), (A5) and all assumptions of Theorem 2.3 be fulfilled.
Consider the adaptive multiple test with m̂0 = max{m̃0, (α/λ)Rm(λ)}.

(a) Suppose that κ0 = 1. Then (5.1) holds with C0 = 1 and

lim
m→∞

FDRm = α = lim
m→∞

FDRBH
m . (5.5)

(b) Suppose that κ0 < 1 and

(λ1 − λ0)
−1β̂1,m ≤ (λ2 − λ1)

−1β̂2,m ≤ . . . ≤ (1− λk−1)
−1β̂k,m (5.6)

with probability one for every m ∈ N. Moreover, assume that

lim inf
m→∞

F̂m(λi) ≥ λi + εi a.s. for some εi ∈ [0, 1− λi] (5.7)

and all i = 1, . . . , k. If there is some j ∈ {1, . . . , k} and δ > 0 such that

lim inf
m→∞

β̂j,m

λj − λj−1
− β̂j−1,m

λj−1 − λj−2
≥ δ a.s. and εj > 0, (5.8)

where β̂0 := 0 =: λ−1, then we have an improvement of the FDRm asymp-
totically compared to the Benjamini-Hochberg procedure, i.e.,

lim inf
m→∞

FDRm > κ0α = lim
m→∞

FDRBH
m . (5.9)
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(c) (Stability) Suppose that the weights are asymptotically constant, i.e., β̂i,m →
βi a.s. for all i ∈ {1, . . . , k}, and fulfill (5.6). Assume that

lim
m→∞

F̂1,m(λi) = λi + εi a.s. for some εi ∈ [0, 1− λi] (5.10)

and for all i = 1, . . . , k. Moreover, suppose that

γj :=
βj

λj − λj−1
− βj−1

λj−1 − λj−2
> 0 and εj > 0 (5.11)

for some j ∈ {1, . . . , k}, where β0 := β̂0 := 0 =: λ−1. Additionally, assume
m1/

√
m → ∞ if κ0 = 1. Then (5.1) holds for some C0 ∈ [0, 1] and stability

of FDPm for the BH test implies stability of FDPm for the adaptive test.
Moreover, if (5.2) holds for C0 and a sequence (tm)m∈N with mtm → ∞
then we have always stability for the adaptive test.

It is easy to see that the assumptions of (c) imply the ones of (b). Typically,
the p-values pi,m, i ∈ I1,m, from the false null are stochastically smaller than
the uniform distribution, i.e., Pm(pi,m ≤ x) ≥ x for all x ∈ (0, 1) (with strict
inequality for some x = λi). This may lead to (5.7) or (5.10).

Remark 5.7. If pm0+1,m, . . . , pm,m are i.i.d. with distribution function F1 such
that F1(λi) ≥ λi for all i = 1, . . . , k. Then (5.7) and (5.10) are fulfilled. Moreover,
if κ0 < 1 and F1(λi) > λi then εi > 0 holds.

If the weights β̂i = βi are deterministic then weights fulfilling (5.6) produce
convex combinations of Storey estimators with different tuning parameters λi,
compare to (2.10)-(2.11).

5.2. Asymptotically optimal rejection curve

Our results can be transferred to general deterministic critical values (2.1),
which are not of the form (2.6) and do not use a plug-in estimator for m0.

Analogously to Section 4 and Section 9, we define R
(j)
m for j ∈ {1, . . . ,m0} by

setting j p-values from true null hypotheses to 0. By the same arguments as in
the proof of Theorem 3.1 we obtain

E
( Vm

Rm

)
= m0E

( α
R

(1)
m :m

R
(1)
m

)
and

E
(( Vm

Rm

)2)
= m0E

( α
R

(1)
m :m

(R
(1)
m )2

)
+m0(m0 − 1)E

(( α
R

(2)
m :m

(R
(2)
m )

)2)
.

The first formula can also be found in Benditkis et al. [2], see the proof of
Theorem 2 therein. The proof of the second one is left to the reader. By these
formulas we can now treat an important class of critical values given by

αi:m =
iα

m+ b− ai
, i ≤ m, 0 ≤ min(a, b). (5.12)
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A necessary condition for valid step-up tests is αm:m < 1. This condition holds
for the critical values (5.12) if

b > 0 and a ∈ [0, 1− α] or b = 0 and a ∈ [0, 1− α). (5.13)

These critical values are closely related to

αAORC
i:m =

iα

m− i(1− α)
= f−1

α

( i

m

)
, i < m, (5.14)

where fα defined by fα(t) = t/(t(1 − α) + α) is the asymptotically optimal
rejection curve, which is the optimal curve in terms of asymptotic power, i.e.,
there is no other curve being (asymptotically) α-controlling and having a higher
power, see Finner et al. [16] for more details. Note that the case i = m is excluded
on purpose because it would lead to αAORC

m:m = 1. The remaining coefficient
αAORC
m:m has to be defined separately such that αAORC

m−1:m ≤ αAORC
m:m < 1, see Finner

et al. [16] and Gontscharuk [21] for a detailed discussion. It is well-known that
neither for (5.12) with b = 0 and a > 0 nor for (5.14) we have control of the
FDR by α over all BI models simultaneously. This follows from Lemma 4.1 of
Heesen and Janssen [23] since α1:m > α/m. However, Heesen and Janssen [23]
proved that for all fixed b > 0, α ∈ (0, 1) and m ∈ N there exists a unique
parameter am ∈ (0, b) such that

sup
Pm

{FDR(b,am)} = α,

where the supremum is taken over all BI models Pm at sample size m. The
value am may be found under the least favorable configuration DU(m,m1) using
numerical methods.

By transferring our techniques to this type of critical values we get the fol-
lowing sufficient and necessary conditions for stability.

Lemma 5.8. Suppose (A1). Let (am)m∈N and (bm)m∈N be sequences in R such
that bm/m → 0 and (am, bm) fulfill (5.13). Now consider the step-up test with
critical values given by (5.12) with (a, b) = (am, bm).

(a) Then we have stability iff the following conditions (5.15)-(5.17) hold in Pm-
probability:

R(1)
m → ∞, (5.15)

am
m

(
R(2)

m −R(1)
m

)
→ 0, (5.16)

m+ bm − amR
(1)
m

m0
− E

(m+ bm − amR
(1)
m

m0

)
→ 0. (5.17)

(b) If κ0 = 1, m1 → ∞ and lim supm→∞ am < 1 − α then (5.15) is sufficient
for stability and, moreover, FDRm → α holds.
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6. Least favorable configurations

Below, least favorable configurations (LFC) are derived for the p-values
(pi,m)i∈I1,m corresponding to false null hypotheses. Subsequently, we use “in-
creasing” and “decreasing” in their weak form, i.e., equality is allowed, whereas
other authors use “nondecreasing” and “nonincreasing” instead. When deter-
ministic critical values i 
→ αi:m/i are increasing then the FDR is decreasing
in each argument pi,m, i ∈ I1,m, for fixed m1, see Benjamini and Yekutieli [6]
or Benditkis et al. [2] for a short proof. In that case the Dirac uniform config-
uration DU(m,m1), see Example 2.1, has maximum FDR, in other words it is
LFC. Such least favorable configurations are useful tools for all kinds of proofs.

Remark 6.1. In contrast to (2.6), the original Storey adaptive test is based on
α̂Stor
i:m = (i/m̃Stor

0 )α for the estimator m̃Stor
0 from (2.9). It is known that in this

situation DU(m,m1) is not LFC for the FDR, see Blanchard et al. [9]. However,
we will see that for our modification α̂Stor

i:m ∧ λ the DU(m,m1)-model is LFC.

Our exact moment formulas provide various LFC-results which are collected
below. To formulate these we introduce a new assumption

(A6) For every 1 ≤ j ≤ m let (p1,m, . . . , pm,m) 
→ m̂0(p1,m, . . . , pm,m) be
increasing in the coordinate pj,m while keeping the others fixed.

Below, we condition on (pi,m)i∈I1,m . Due to the independence assumption in
(BI2) we may write Pm = P0,m ⊗ P1,m, where Pj,m represents the distribution
of (pi,m)i∈Ij,m , and E(X|((pi,m)i∈I1,m)) =

∫
X((pi,m)i≤m) dP0,m((pi,m)i∈I0,m).

Theorem 6.2 (LFC for adaptive tests). Suppose that (A2) is fulfilled. Define
the vector p∗λ,m := (pi,m1{pi,m > λ})i∈I1,m .

(a) (Conditional LFC)

(i) The conditional FDR conditioned on (pi,m)i∈I1,m

E

( Vm

Rm

∣∣∣(pi,m)i∈I1,m

)
= E

( Vm

Rm

∣∣∣p∗λ,m)
only depends on the portion pi,m > λ, i ∈ I1,m.

(ii) Conditioned on p∗λ,m a configuration (pi,m)i∈I1,m is conditionally Dirac
uniform if pi,m = 0 for all pi,m ≤ λ, i ∈ I1,m. The conditional variance
of Vm/Rm

Var
( Vm

Rm

∣∣∣p∗λ,m)
:= E

(( Vm

Rm

)2∣∣∣p∗λ,m)
− E

( Vm

Rm

∣∣∣p∗λ,m)2

is minimal under DUcond(m,M1,m(λ)), where M1,m(λ) := Rm(λ) −
Vm(λ) is fixed conditionally on p∗λ,m.

(b) (Comparison of different regimes P1,m) Under (A6) we have:

(i) If pi,m decreases for some i ∈ I1,m then FDRm increases.

If pi,m ≤ λ, i ∈ I1,m, decreases then Var(FDPm) decreases.
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(ii) For fixed m1 the DU(m,m1) configuration is LFC with maximal FDRm.
Moreover, it has minimal Varm(FDPm) for all models with pi,m ≤ λ
a.s. for all i ∈ I1,m.

While any deterministic convex combination of Storey estimators m̃Stor
0 (λi)

fulfills (A6) it may fail for estimators of the form (2.11). But if the weights fulfill
(5.6) then (A6) holds also for a convex combination (2.12) of these estimators.
This follows from the other representation of the estimator (2.12) used in the
proof of Corollary 5.6(c).

7. Discussion and summary

In this paper, we presented finite sample variance and higher moment formulas
for the false discovery proportion (FDP) of adaptive step-up tests. These for-
mulas allow a better understanding of FDP. Among others, the formulas can
be used to discuss stability of FDPm, which is preferable for application since
the fluctuation and so the uncertainty vanishes. We determined a sufficient and
necessary two-part condition for stability:

(i) We need a stable estimator in the sense that m̂0/m − E(m̂0/m) tends to
0 in probability.

(ii) The p-values corresponding to false null hypotheses have to be stochasti-
cally small “enough” compared to the uniform distribution such that the
number of rejections tends to ∞ in probability.

Since the latter is more difficult to verify we gave a sufficient condition for it,
see (5.2). This condition also applies to the sparse signal case m0/m → κ0 = 1,
which is more delicate than the usually studied case κ0 < 1.

In addition to the general results we discussed data dependently weighted
combinations of generalized Storey estimators. Tests based on these estimators
were already discussed by Heesen and Janssen [24], who showed finite (FDR)-α-
control. Heesen [22] and Heesen and Janssen [24] presented practical guidelines
how to choose the data dependent weights. For our results, the additional con-
dition (5.6) is required. We want to summarize briefly advantages of these tests
in comparison to the classical BH test (see Corollary 5.6(c)):

• The adaptive tests attain (if κ0 = 1) or even exhaust (if κ0 < 1) the
(asymptotic) FDR level κ0α of the BH test.

• Under mild assumptions stability of FDPm for the BH test always implies
stability of FDPm for the adaptive test.

In Section 5.2 we explained that our results can also be transferred to general
deterministic critical values αi:m, which are not based on plug-in estimators
of m0. The same should be possible for general random critical values under
appropriate conditions. Due to lack of space, we leave a discussion about other
estimators for future research.
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8. Proofs

8.1. Proof of Theorem 3.1

To improve the readability of the proof, all indices m are omitted, i.e., we
write pi instead of pi,m etc. First, we determine E(FDP2|Fλ). Without loss
of generality we can assume conditioned on Fλ that the first V (λ) p-values
correspond to the true null and p1, . . . , pV (λ) ≤ λ. In particular, we may consider

p(1) = (0, p2, p3, . . . , pm) and p(2) = (0, 0, p3, . . . , pm) if V (λ) ≥ 1 and V (λ) ≥ 2,
respectively. Since α̂R:m ≤ λ we deduce from (BI3) that

E
((V

R

)2∣∣∣Fλ

)
= V (λ)E

(1{p1 ≤ α̂R:m}
R2

∣∣∣Fλ

)
+ V (λ)(V (λ)− 1)E

(1{p1 ≤ α̂R:m, p2 ≤ α̂R:m}
R2

∣∣∣Fλ

)
.

Note that p1, . . . , pV (λ) conditioned on Fλ are i.i.d. uniformly distributed on

(0, λ) if V (λ) > 0. It is easy to see that p1 ≤ α̂R:m implies R = R(1,λ) and,
thus, P (p1 ∈ (α̂R:m, α̂R(1,λ):m]) = 0. Both were already known and used, for
instance, in Heesen and Janssen [23, 24]. Since p1 and R(1,λ) are independent
conditionally on Fλ we obtain from Fubini’s Theorem that

E

(1{p1 ≤ α̂R:m}
R2

∣∣∣Fλ

)
= E

(1{p1 ≤ α̂R(1,λ):m}
(R(1,λ))2

∣∣∣Fλ

)
=

α

λm̂0
E

( 1

R(1,λ)

∣∣∣Fλ

)
.

Hence, we get the second summand of the right-hand side in (a). To obtain
the first term, it is sufficient to consider V (λ) ≥ 2. Since p1, p2 and R(2,λ) are
independent conditionally on Fλ we get similarly to the previous calculation:

E
(1{p1 ≤ α̂R:m, p2 ≤ α̂R:m}

R2

∣∣∣Fλ

)
(8.1)

= E
(1{p1 ≤ α̂R(2,λ):m, p2 ≤ α̂R(2,λ):m}

(R(2,λ))2

∣∣∣Fλ

)
=

α2

λ2

1

m̂2
0

, (8.2)

which completes the proof of (a). Combining (a), (2.8) and the variance formula
Var(Z) = E(Z2) − E(Z)2 yields (b). The proof of (c) is based on the same
techniques as the one of (a), to be more specific:

E(V |Fλ,m) = V (λ)P (p1 ≤ α̂R(1,λ):m | Fλ) = V (λ)E
(R(1,λ)α

λm̂0

∣∣∣Fλ

)
. (8.3)

8.2. Proof of Lemma 4.1

To improve the readability, all indices m are omitted except for Km.
(a): By Theorem 3.1(b) and (A2) it remains to show that

(α
λ

)2

E

(V (λ)

m̂2
0

)
≤ E

( V (λ)

R(λ)2

)
≤ E

(1{V (λ) > 0}
V (λ)

)
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is smaller than 2/(λ(m0 + 1)). It is known and can easily be verified that
E(1{X > 0}X−1) ≤ 2E((1+X)−1) ≤ 2p−1(n+1)−1 for any Binomial-distributed
X ∼ B(n, p). From this and V (λ) ∼ B(m0, λ) we obtain the desired upper
bound, see also p. 47ff of Heesen and Janssen [24] for details.

(b): We can deduce from (8.3) that

Yλ :=
1{V (λ) > 0}
E(V |Fλ)

=
λ

α

m̂0

V (λ)

1{V (λ) ≥ 1}
E(R(1,λ)|Fλ)

.

Note that

P
(
E(V |Fλ) ≤ t

)
≤ P (V = 0) + P

(
Yλ ≥ 1

t

)
.

Thus, by Markov’s inequality it remains to verify E(Yλ) ≤ Dλ. We divide the
discussion of E(Yλ) into two parts. First, we use Hoeffding’s inequality

P
(X − np√

n
≤ −t

)
≤ exp

(
− t2

2p(1− p)

)
for X ∼ B(n, p) and all t > 0 [37, p.440]. Since V (λ) ∼ B(m0, λ) we obtain

P
(
V (λ) ≤ m0λ

2

)
= P

(V (λ)−m0λ√
m0

≤ −
√
m0λ

2

)
≤ exp

(
− m0λ

8(1− λ)

)
.

Second, we can conclude from Jensen’s inequality and Theorem 3.1(b) that

E

(
Yλ1

{V (λ)

m0
≥ λ

2

})
≤ λ

α

(2Km

λ

)2

E

(V (λ)

m̂0
E

( 1

R(1,λ)
|Fλ

))
≤

(2Km

λ

)2[λ2

α2
Var

(V
R

)
+ E

(V (λ)

m̂2
0

)
−Var

(V (λ)

m̂0

)]
.

Finally, combining this with (4.1) yields the statement.

8.3. Proof of Theorem 4.2

Since Vm/Rm is bounded by 1 the stability statement in (a) is equivalent
to Var(Vm/Rm) → 0. Due to Vm(λ)/m → κ0λ a.s. and K ≥ (m̂0/m) ≥
(α/λ)(Vm(λ)/m) → ακ0 a.s. we deduce from Lemma 4.1 that Var(FDPm) → 0

is equivalent to Var(Vm(λ)/m̂0) → 0 and E((R
(1,λ)
m )−1|Fλ,m) → 0 in Pm-

probability. Moreover, we can conclude that Var(Vm(λ)/m̂0) → 0 is equivalent

to (4.3). Since R
(1,λ)
m ≥ 1 we have equivalence of E((R

(1,λ)
m )−1|Fλ,m) → 0 in

Pm-probability and (4.4).

8.4. Proof of Example 4.3

The statements concerning the Storey procedure follow immediately from Corol-
lary 5.6(c). It remains to verify that FDPm is not stable for the BH test
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when the underlying level is α := 1/4. In this case the Simes line is given by
t 
→ fα(t) = 4t. Clearly, the Simes line lies strictly above F , the uniform limit of

F̂m, on (0, 1), see also Figure 2. Hence, Pm(supε≤x≤1 F̂m(x) − fα(x) < 0) → 1
for all ε > 0. Let 0 < λ0 < x0. Then Pm(αRm:m ≤ λ0) → 1 follows. That is
why we can restrict our asymptotic considerations to the portion of p-values
with pi,m ≤ λ0 and the instability follows analogously to the proof of Theorem
5.1(b).

8.5. Proof of Theorem 4.4

At long an appropriate subsequence n(m) → ∞ we can always obtain

lim
m→∞

E

(Vn(m)(λ)

m̂0

)
→ C ∈

[ 1

K
,
λ

α

]
.

We suppose, contrary to our claim, that Vm,α does not converge to ∞ in Pm-
probability for some α ∈ (α1, α2). Since α 
→ Vm,α is increasing we can suppose
without loss of generality that λ−1αC /∈ Q (otherwise take a smaller α > α1).
By our contradiction assumption there is some k ∈ N∪{0} and a subsequence of
{n(m) : m ∈ N}, which we denote by simplicity also by n(m), with n(m) → ∞
such that Pn(m)(Vn(m),α = k) → β ∈ (0, 1]. We can deduce from (2.8) and the
stability that

(Vn(m),α/Rn(m),α)1{Vn(m),α = k} − (α/λ)C1{Vn(m),α = k} → 0

in Pn(m)-probability. In particular,

Pn(m)

(
Rn(m),α =

kλ

Cα
, Vn(m),α = k

)
→ β > 0,

which leads to a contradiction since (λk)/(Cα) /∈ N ∪ {0}.

8.6. Proof of Theorem 5.1

(a): We suppose contrary to our claim that lim infm→∞ m1 = k ∈ N∪{0}. Then
m1 = k for infinitely many m ∈ N. Turning to subsequences we can assume
without a loss that m1 = k for all m ∈ N. Note that (A1) holds for κ0 = 1 in
this case. Hence, it is easy to see that lim infm→∞ Rm(λ)/m ≥ λ a.s. Combining
this and (A4) yields

Pm

(
α̂i:m ≤

( i

m
α̃
)
for all i = 1, . . . ,m

)
→ 1 with α̃ =

1

C
< 1.

Hence, we can deduce from Example 2.1(a) that

lim inf
m→∞

P (Vm = 0) ≥ lim inf
m→∞

Pm(V BH
m (α̃, k) = 0) > 0.
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But this contradicts the necessary condition (2.4) for stability.
(b): Suppose for a moment that we condition on Fλ,m. Hence, Rm(λ) and

m̂0 can be treated as fixed numbers. Without loss of generality we assume
that p1,m, . . . , pRm(λ),m ≤ λ. Define new p-values q1,Rm(λ), . . . , qRm(λ),Rm(λ) by
qi,Rm(λ) := pi,m/λ for all i = 1, . . . , Rm(λ). The values Vm and Rm are the
same for the step-up test based on the p-values (pi,m)i≤m with critical values
α̂i:m = (i/m̂0)α as well as for the one based on (qi,Rm(λ))i≤Rm(λ) with crit-

ical values α̂
(q)
i:Rm(λ) = (i/Rm(λ))α̃m, where α̃m = (Rm(λ)/m̂0)(α/λ). Here,

q1,Rm(λ), . . . , qRm(λ),Rm(λ) are i.i.d. uniformly distributed on (0, 1) and, thus,
they correspond to a DU(Rm(λ), 0)-configuration. That is why

Pm(Vm = 0|Fλ,m) = Pm(V BH
Rm(λ)(α̃m, 0) = 0|Fλ,m). (8.4)

By the strong law of large numbers and (A4) we have Rm(λ) → ∞ a.s. and
Pm(α̃m ≤ C−1) → 1. Hence, we can conclude from (8.4) and Example 2.1(a)

lim inf
m→∞

Pm(Vm = 0) ≥ (1− C−1)

and, consequently, the necessary condition (2.4) for stability is not fulfilled.

8.7. Proof of Lemma 5.2

Analogously to the proof of Theorem 5.1(b), we condition under Fλ,m and intro-

duce the new p-value qi,Rm(λ) and the new critical value α̂
(q)
i:Rm(λ) for i ≤ Rm(λ)

as well as the new level α̃m. The respective empirical distribution functions of the

new p-values, (qi,m)i≤Rm(λ) are denoted by F̂
(q)
Rm(λ), F̂

(q)
0,Rm(λ), F̂

(q)
1,Rm(λ), compare

to the definition of F̂j,m in Theorem 5.3. Note that Rm(λ) ≥ m0F̂0,m(λ) → ∞
Pm-a.s. and, hence, by (A4) Pm(α̃m ≤ C−1) → 1. From this and the Glivenko-
Cantelli Theorem we obtain that for all ε ∈ (0, 1)

Pm

(
sup

t∈[ε,1]

F̂
(q)
0,Rm(λ)(t)− fα̃m

(t) ≤ −1

2
(C − 1)ε

∣∣∣Fλ,m

)
→ 1, (8.5)

where t 
→ fα̃m
(t) =: t/α̃m is the corresponding Simes line, see also Example

4.3. Recall that α̂
(q)
Rm:Rm(λ) is smaller than the largest intersection point of F̂

(q)
m

and fα̃m
. Combining this, (8.5) and |F̂ (q)

Rm(λ)(t)− F̂
(q)
0,Rm(λ)(t)| ≤ 2m1/m → 0 we

can deduce Pm(α̂Rm:m ≤ λε) → 1 for all ε > 0.

8.8. Proof of Theorem 5.3

Clearly, all pi,m ≤ tm are rejected and, in particular, Vm ≥ Vm(tm) if pRm(tm):m ≤
(Rm(tm)/m̂0)α. The latter is fulfilled if (tm/α)m̂0 ≤ Rm(tm), or equivalently

m̂0

mα
≤ m0

m

F̂0,m(tm)

tm
+

m1

m

F̂1,m(tm)

tm
. (8.6)
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By Chebyshev’s inequality

Pm

(m0

m

F̂0,m(tm)

tm
≥ κ0 −

1

2
δ
)
≥ 1− 1

mtm

(1
2
δ +

m0

m
− κ0

)−2

→ 1.

Combining this, (5.1), (5.2) and (8.6) yields

Pm(Vm ≥ Vm(tm)) → 1.

Finally, the statement follows from Vm(tm) ∼ B(m0, tm) and m0tm → ∞.

8.9. Proof of Remark 5.4

By Theorem 5.3 it remains to show that

Pm

(m1

m

F̂1,m1(tm)

tm
≥ 1

2
δ − κ0 +

1

α
C0

)

= Pm

(√
m1

F̂1,m1(tm)− F1(tm)√
F1(tm)(1− F1(tm))

≥ √
m1tm

m
m1

( δ2 − κ0 +
1
αC0 − m1

m
F1(tm)

tm
)√

F1(tm)(1− F1(tm))

)

converges to 1. Note that the left-hand side of the last row converges in dis-
tribution to Z ∼ N(0, 1). Moreover, by straightforward calculations it can be
concluded from (5.3) and C0 ≥ κ0α that the right-hand side tends to −∞, which
completes the proof.

8.10. Proof of Lemma 5.5

It is easy to see that (5.4) always holds if C0 < 1. From (5.4) we obtain imme-
diately that

Pm

(
max

i=1,...,m

{
α̂BH
i,m − α̂i,m

}
≤ 0

)
≤ Pm

( 1

m
− 1

m̂0
≤ 0

)
→ 1

and so Pm

(
R(1,λ)

m ≥ R(1,λ),BH
m

)
→ 1,

where R
(1,λ),BH
m is the corresponding random variable for the BH test. Now,

suppose that we have stability of FDPm for the BH test. Then combining The-

orem 4.2 with the above yields that R
(1,λ),BH
m and so R

(1,λ)
m converges to infinity

in Pm-probability. Finally, we deduce the stability for the adaptive test from
Theorem 4.2.

8.11. Proof of Corollary 5.6

(a): Clearly, m̃0(λi−1, λi)/m → 1 a.s. for all i = 1, . . . , k and Rm(λ)/m → λ a.s.
Thus, (5.1) holds for C0 = 1. Finally, (5.5) follows from (2.8).
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(b): First, we introduce new estimators m̃0,i and new weights γ̂i,m ≥ 0:

m̃0,i := m
1− F̂m(λi−1)− i

m

1− λi−1
and γ̂i :=

( β̂i,m

λi − λi−1
− β̂i−1,m

λi−1 − λi−2

)
(1− λi−1),

where β̂0,m := 0. It is easy to check m̃0 =
∑k

i=1 γ̂i,mm̃0,i and
∑k

i=1 γ̂i,m = 1.
From (5.7) and the strong law of large numbers it follows

Vm(λ)

m
→ κ0λ a.s. and lim sup

m→∞

m̃0,i

m
≤ 1− εi

1− λi
a.s. (8.7)

In particular, by (5.8)

lim sup
m→∞

m̃0

m
≤ 1− δ(1− λj−1)εj

1− λj
≤ 1

1 + δ0
a.s.

for some δ0 > 0. Consequently,

lim inf
m→∞

Vm(λ)

m̃0
≥ λκ0(1 + δ0) a.s.

It is easy to verify that (A5) implies Pm(m̃0(λi−1, λi) > Ci(α/λ)Rm(λ)) → 1
for appropriate Ci > 1 and for all i. Hence, (A4) is fulfilled and, in particular,
Pm(m̂0 = m̃0) → 1. Finally, we obtain the statement from (2.8).

(c): Define m̃0,i and γ̂i,m as in the proof of (b). Then

γ̂i →
βi

λi − λi−1
− βi−1

λi−1 − λi−2
=: γi a.s.

for all i = 1, . . . , k. Clearly, (A3) and (A4) are fulfilled, see for the latter the
end of the proof of (b). Moreover, (5.1) holds for some C0 ∈ [0, 1] since

m̂0

m
→ 1− (1− κ0)

k∑
i=1

γiεi
1− λi

a.s.

Due to (5.11) we have C0 < 1 iff κ0 < 1. Consequently, by Theorem 5.3 and
Lemma 5.5 it remains to verify (5.4) in the case of κ0 = 1.

Consider κ0 = 1. Keep in mind that m1/
√
m → ∞ in this case. For all

i = 1, . . . , k we can deduce from the central limit theorem

Zi,m :=
√
m
m0

m

(1− F̂0,m(λi)

1− λi
− 1

)
d−→ Zi ∼ N(0, σ2

i ) (8.8)

for some σi ∈ (0,∞). Let ξ := εj/(8(1− λj)) > 0. By (5.10) and (5.11)

Pm

(1− F̂1,m(λj)

1− λj
≤ 1− 4ξ

)
→ 1 (8.9)
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and Pm

(1− F̂1,m(λi)

1− λi
≤ 1 +

ξ

2
γj

)
→ 1. (8.10)

for all i ∈ {1, . . . , k} \ {j}. Moreover, from (8.8) we get

Pm

(m0

m

1− F̂1,m(λj) +
1
m

1− λj
+

m1

m

(
1− 4ξ +

1
m

1− λj

)
≤ 1− m1

m
2ξ
)

= Pm

(
Zi,m ≤ m1√

m
2ξ − 1√

m

1

1− λi

)
→ 1.

By this and (8.9) Pm(m̃0,j ≤ 1 − (m1/m)2ξ) → 1 follows. Analogously, we
obtain from (8.10) that Pm(m̃0,i ≤ 1 + (m1/m)γjξ) → 1 for all i �= j. Since∑k

i=1,i 	=j γ̂i ≤ 1 and Pm(2γ̂j ≥ γj) → 1 we can finally conclude (5.4).

8.12. Proof of Lemma 5.8

(a): First, we introduce for j = 1, 2:

ψm,j :=
m0α

m+ bm − amR
(j)
m

. (8.11)

Using the formulas presented at the beginning of Section 5.2 we obtain:

Var
( Vm

Rm

)
=E

( 1

R
(1)
m

ψm,1

)
+Var(ψm,1) + E

(
ψ2
m,2 − ψ2

m,1

)
− 1

m0
E(ψm,2)

2.

From R
(j)
m ≤ m, 0 ≤ bm ≤ m for large m and (5.12) we get:

κ0 ← m0

m+ bm
≤ ψm,j ≤

m0

αm
→ κ0

α
. (8.12)

Hence, the fourth summand −E(ψm,2)
2/m0 in the formula for Var(Vm/Rm)

tends always to 0. Since, clearly, the first three summands are non-negative it
remains to show that each of these summands tends to 0 iff our conditions (5.15)-
(5.17) are fulfilled. By (8.12) we have equivalence of (5.17) and Var(ψm,1) →
0, as well as of (5.15) and E(ψm,1/R

(1)
m ) → 0. Observe that ψm,2 − ψm,1 =

Zmψm,1ψm,2 with Zm := (am/m0)(R
(2)
m −R

(1)
m ). From (8.12) and 0 ≤ Zm ≤ 1−α

we obtain that E(ψm,2 − ψm,1) → 0 iff (5.16) holds. Finally, combining this,
(8.12), ψ2

m,2 − ψ2
m,1 = (ψm,2 − ψm,1)(ψm,2 + ψm,1) and ψm,2 ≥ ψm,1 yields that

E(ψ2
m,2 − ψ2

m,1) → 0 iff (5.16) is fulfilled.
(b): Similarly to Lemma 5.2, we obtain by considering the (least favorable)

DU(m,m1 + j)-configuration that α
R

(j)
m :m

→ ∞ and so R
(j)
m /m → ∞ for j ∈

{1, 2}, both in Pm-probability. Clearly, (5.16) follows. Moreover, we deduce from
this, am ≤ 1− α and bm/m → 0 that ψm,j defined by (8.11) converges to α in
Pm-probability for j = 1, 2. This implies (5.17) and E(Vm/Rm) = E(ψm,1) → α.
In particular, we have stability by (a).
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8.13. Proof of Theorem 6.2

(ai): Let p∗i ∈ [0, 1] be fixed for each i ∈ I1,m. Let P ∗
m be the distribution fulfilling

BI, where pi,m ≡ p∗i a.s. for all i ∈ I1,m. From (2.8) we get∫
Vm

Rm
dP ∗

m =
α

λ
E

(Vm(λ)

m̂0

)
.

Moreover, we observe that the right-hand side only depends on p∗i , i ∈ I1,m, if
p∗i > λ. Consequently, we obtain the statement.

(aii): Due to (ai) it remains to show that the conditional second moment
is minimal under DUcond(m,M1,m(λ)). Clearly, BI and (A2) are also fulfilled
conditioned on p∗λ,m. From Theorem 3.1(a) we obtain

E

(( Vm

Rm

)2∣∣∣p∗λ,m)
= E

(α2Vm(λ)(Vm(λ)− 1)

λ2m̂2
0

+
α

λ

Vm(λ)

m̂0

1

R
(1,λ)
m

∣∣∣p∗λ,m)
.

It is easy to see that Vm(λ) and m̂0 are not affected and R
(1,λ)
m increase if we

set all M1,m(λ) p-value pi,m ≤ λ, i ∈ In,1, to 0.
(bi): Since Vm(λ) is not affected by any pi,m, i ∈ I1,m, the first statement

follows from (A6) and (2.8). If pi,m ≤ λ, i ∈ I1,m, decreases than Vm(λ) and m̂0

are not affected, and Rm as well as R
(1,λ)
m increase. Hence, the second statement

follows from Theorem 3.1(b).
(bii): The statement follows immediately from (bi).

9. Appendix: Higher moments

We extend the idea of the definition of p
(1,λ)
m and R

(1,λ)
m from Section 4. For

every 1 < j ≤ m0 we introduce a new p-value vector p
(j)
m as a modification

of pm = (p1,m, . . . , pm,m) iteratively. If Vm(λ) ≥ j then we define p
(j,λ)
m by

setting pik,m equal to 0 for j different indices i1, . . . , ij ∈ I0,m with pik,m ≤ λ,
for convenience take the smallest j indices with this property. Otherwise, if

Vm(λ) < j then set p
(j,λ)
m equal to p

(j−1,λ)
m . Moreover, let R

(j,λ)
m = R

(j,λ)
m (p

(j,λ)
m )

be the number of rejections of the adaptive test for the (new) p-value vector

p
(j,λ)
m . Note that m̂0 is not affected by these replacements.

Theorem 9.1. Under (A2) we have for every k ≤ m

E

(( Vm

Rm

)k)
=

k∑
j=1

αjCj,kE

(Vm(λ) . . . (Vm(λ)− j + 1)

(m̂0)j
E

((
R(j,λ)

m

)j−k∣∣∣Fλ,m

))
,

where Cj,k =
1

j!

j−1∑
r=0

(−1)r
(
j

r

)
(j − r)k.

Remark 9.2. (a) If we set m̂0 = m0 and λ = 1 then this formula coincide
up to the factor Cj,k with the result of Ferreira and Zwinderman [15]. By
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carefully reading their proof it can be seen that the coefficients Cj,k have
to be added. It is easy to check that C1,k = Ck,k = 1 but Cj,k > 1 for all
1 < j < k. In particular, the coefficients C1,1, C1,2, C2,2, which are needed
for the variance formula, are equal to 1.

(b) For treating one-sided null hypotheses the assumption (BI3) need to be
extended to i.i.d. (pi,m)i∈I0,m p-values of the true null hypothesis, which are
stochastically larger than the uniform distribution, i.e., P (pi,m ≤ x) ≤ x for
all x ∈ [0, 1]. In this case the equality in Theorem 9.1 is not valid in general
but the statement remains true if “=” is replaced by “≤”, analogously to
the results of Ferreira and Zwinderman [15].

Proof of Theorem 9.1. For the proof we extend the ideas of the proof of Theo-
rem 3.1. In particular, we condition on Fλ,m. First, observe that

E

( V k
m

Rk
m

∣∣∣Fλ,m

)
=

Vm(λ)∑
i1,...,ik=1

E

(1{pis,m ≤ α̂Rm:m, s ≤ k}
Rk

m

∣∣∣Fλ,m

)
. (9.1)

Due to (BI3) it is easy to see that each summand only depends on the number
j = #{i1, . . . , ik} of different indices. At the end of the proof we determine these
summands in dependence of j. But first we count the number of possibilities of
choosing (i1, . . . , ik) leading to the same j. Let j ∈ {1, . . . , Vm(λ)∧k}} be fixed.

Clearly, there are
(
Vm(λ)

j

)
possibilities to draw j different numbers {M1, . . . ,Mj}

from the set {1, . . . , Vm(λ)}. Moreover, by simple combinatorial considerations
there are

j−1∑
r=0

(−1)r
(
j

r

)
(j − r)k

possibilities of choosing indices i1, . . . , ik from {M1, . . . ,Mj} such that everyMs,
1 ≤ s ≤ j, is picked at least once, see, e.g., (II.11.6) in Feller [14]. Consequently,
we obtain from (BI3) that (9.1) equals

Vm(λ)∧k∑
j=1

Cj,kVm(λ) . . . (Vm(λ)− j + 1)E
(1{ps,m ≤ α̂Rm:m, s ≤ j}

Rk
m

∣∣∣Fλ,m

)
.

Clearly, we can replace Vm(λ) ∧ k by k since each additional summand is equal
to 0. It remains to determine the summands. Let j ≤ Vm(λ) ∧ k. Without loss
of generality we can assume, conditioned on Fλ,m, that the first Vm(λ) p-values
correspond to true null hypotheses and p1,m, . . . , pVm(λ),m ≤ λ. In particular,

we may consider p
(j,λ)
m = (0, . . . , 0, pj+1,m, . . . , pm,m). We obtain analogously to

the calculation in (8.1) and the one before it that

E

(1{ps,m ≤ α̂Rm:m, s ≤ j}
Rk

m

∣∣∣Fλ,m

)

= E

(1{ps,m ≤ α̂
R

(j,λ)
m :m

, s ≤ j}

(R
(j,λ)
m )k

∣∣∣Fλ,m

)
=

( α

m̂0

)j

E

((
R(j,λ)

m

)j−k∣∣∣Fλ,m

)
.
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