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1. Introduction

For a density function f on Rd, d ≥ 1, we define the superlevel set of f at level
c and the corresponding isosurface or contour as

L = {x ∈ Rd : f(x) ≥ c} and M = {x ∈ Rd : f(x) = c},

respectively. The dependence on the level c is suppressed in our notation, for
c is fixed throughout the manuscript. We will study methods for constructing
confidence regions for M and L based on an iid sample X1, X2, · · · , Xn from f .
While new methods for constructing confidence regions are proposed below, and
a comparison of these and other existing methods is provided, the overarching
goal of this work is to provide a critical discussion of the advantages and dis-
advantages of the various existing methods. This will, among others, also lead
to insight about the influence of geometry on the statistical performance of the
confidence regions.

The estimation of level sets (or isosurfaces) has received quite some interest
in the literature. For some earlier work in the context of density level set esti-
mation see Hartigan (1987), Polonik (1995), Cavalier (1997), Tsybakov (1997),
Walther (1997). There are relations to density support estimation, (e.g. Cuevas
et al. 2004, Cuevas 2009), clustering (e.g. Cuevas et al. 2000, Rinaldo et al.
2010), classification (e.g., Mammen and Tsybakov 1999, Hall and Kang 2005,
Steinwart et al. 2005, Audibert and Tsybakov 2007), anomaly detection (e.g.
Breuning et al. 2000, Hodge and Austin 2004), and more. Bandwidth selection
for level set estimation is considered by Samworth and Wand (2010), and Qiao
(2018a). Applications of level set estimation exist in many fields, such as as-
tronomy (Jang 2006), medical imaging (Willett and Nowak 2005), geoscience
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(Sommerfeld et al. 2015), and others. See Mason and Polonik (2009) and Mam-
men and Polonik (2013) for further literature. Level sets of functions also play a
central role in topological data analysis, in particular in ‘persistent homology’,
where the topological properties of level sets as a function of the parameter c
are used for statistical analysis; e.g. see Fasy et al. (2014).

All the methods discussed in this paper are based on a kernel estimator

f̂(x) =
1

nhd

n∑
i=1

K
(Xi − x

h

)
, x ∈ Rd,

and its derivatives. Here K is a d-dimensional kernel, and h > 0 is the band-
width. As estimators for the superlevel sets or the corresponding contours, we
are considering plug-in estimators given by

L̂ = {x ∈ Rd : f̂(x) ≥ c} and M̂ = {x ∈ Rd : f̂(x) = c}.

It is well-known that f̂(x) is a biased estimator. For a twice continuously dif-
ferentiable kernel K, we will also consider a de-biased version of the kernel
estimator, given by f̂ bc = f̂ − β̂ with

β̂(x) =
1

2
h2

∫
u2
1K(u)du

d∑
j=1

∂2

∂xj∂xj
f̂l(x),

where f̂l denotes a kernel density estimator using bandwidth l, which can be
different from h. See Chen (2017) for a recent study of the de-biased estimator.

In some of the recent related literature (see, e.g., Chen et al. 2017), the bias
is ignored entirely, and the target is redefined as a ‘smoothed’ version of the
superlevel set, or its contour, given by

LE = {x ∈ Rd : Ef̂(x) ≥ c} and ME = {x ∈ Rd : Ef̂(x) = c},

respectively, where here and in what follows, we use the superscript E to indicate
that the definition is based on an ‘expected quantity’. We will also consider this
target for some of our methods.

For an interval [a, b] ⊂ R, and a real valued function g, we denote by g−1[a, b]
the pre-image of [a, b] under g. For a = b, we also use the standard notation
g−1(a) for the pre-image. Two different types of confidence regions are consid-
ered. One of them is based on vertical variation. Such confidence regions for M
or ME are of the form

Ĉ = f̂−1
[
c− ân, c+ ân

]
. (1.1)

Corresponding lower and upper confidence regions for L (and LE) will be of the

form f̂−1
[
c+ ân,∞

)
and f̂−1

[
c− ân,∞

)
, respectively. The crucial question then

is, how to choose the quantity ân in order to achieve a good performance. The
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other type of confidence region considered here is based on horizontal variation.
Such confidence regions for M (or ME) are of the form

Ĉ = {y ∈ Rd : ‖y − x‖ ≤ b̂n(x), x ∈ f̂−1(c)}, (1.2)

where the random variable b̂n(x) either does not depend on x, i.e. b̂n(x) = b̂n,

or b̂n(x) = ân/‖∇f̂(x)‖, for some random variable ân not depending on x. Once

horizontal variation based confidence regions Ĉ for M are constructed, we can
obtain corresponding confidence regions for L: Upper bounds (sets) are obtained
by adding Ĉ to L̂, and lower bounds are constructed by subtraction. Confidence
regions for ME and LE are constructed similarly.

For a simple heuristic underlying the choice of b̂n(x) = ân/‖∇f̂(x)‖, consider
the one-dimensional case. For small ân, we have |ân| ≈ |f̂(x+ b̂n(x))− f̂(x)| =
|f̂(x + b̂n(x)) − c| for x ∈ f̂−1(c), so that ân reflects vertical variation, while

b̂n(x) represents horizontal variation. For more details see Section 3.
Geometrically, confidence regions based on horizontal variation as in (1.2),

but with a constant b̂n, consist of tubes of constant width put around the esti-
mated contour M̂. In other words, the maximum (horizontal) distance to M,
or ME , is being controlled. Confidence regions based on vertical variation as
in (1.1), as well as the regions based on horizontal variation with non-constant

b̂n(x), have varying width, which contain information about the slope of the

density. Different constructions of ân and b̂n will be discussed. One of them is
based on extreme value theory for Gaussian fields indexed by manifolds, and
the others on various bootstrap approximations. Some of the constructions of
the horizontal methods also involve the estimation of integral curves.

The same type of confidence regions as discussed above, can also be con-
structed with f̂(x) replaced by the de-biased density estimator f̂ bc(x). We note
that in the literature, different approaches to the removal of bias effect in con-
fidence bands or regions using kernel-type estimators. One is based on under-
smoothing of the original kernel density estimator. This approach is not consid-
ered in some detail here (but see Remark 2.2 below). Alternatively, one can use
explicit bias corrections, or the smoothed bootstrap. Both of these approaches
are being discussed in our work. For further relevant recent literature see Chen
(2017) and Calonico et al. (2018a).

Bootstrap confidence regions for a density superlevel set and/or isosurface
based on vertical variation can be found in Mammen and Polonik (2013) and
Chen et al. (2017). The latter also constructed a confidence set based on hori-
zontal variation, and such constructions can also be found in Chen (2017). The
confidence sets proposed here are compared to these methods. In a different
setting Jankowski and Stanberry (2014) consider confidence regions for the ex-
pected value of a random sets (or its boundary) based on repeated observations
of the random set.

In summary, the contributions of the manuscript are to

(i) derive asymptotically valid confidence regions based on vertical variation
using extreme value distributions of kernel estimators indexed by certain
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manifolds;
(ii) use bootstrap methods to construct confidence regions based on vertical

variation in order to improve finite sample performance of the confidence
regions in (i);

(iii) derive asymptotically valid bootstrap confidence regions based on hori-
zontal variation;

(iv) discuss geometric connections between the different constructions of con-
fidence regions;

(v) provide numerical studies to compare the finite sample performance of the
various confidence regions developed here and in the literature;

(vi) critically discuss advantages and disadvantages of the two different types
of constructing confidence regions (horizontal and vertical variation).

The theoretical result underlying (i), see Theorem 2.1, provides a closed form
of asymptotically valid confidence regions for superlevel sets and isosurfaces. To
the best of our knowledge, this is the first result of this type, and it provides im-
portant qualitative insight into the underlying problem. Due to the well-known
slow convergence properties of extreme value distributions, the construction of
bootstrap confidence regions appear of higher practical relevance.

In a recent paper, Qiao and Polonik (2018) derived the asymptotic distri-
bution of extrema of certain rescaled non-homogeneous Gaussian fields. This
result provides an important tool for the construction of our confidence regions
based on large sample distribution theory. The paper Qiao and Polonik (2016)
on ridge (or filament) estimation is also a source of inspiration for the work
presented here.

The paper is organized as follows. Section 2 is considering vertical variation
based methods. We first present a result on the behavior of the coverage proba-
bility of asymptotic confidence regions for isosurfaces and levels sets, and then
we construct a bootstrap-based confidence region. Section 3 is dedicated to hor-
izontal methods. Section 3.1 presents the construction of two confidence regions
of the form (1.2) using integral curves. Section 3.2 discusses a horizontal boot-
strap based confidence region related to the Hausdorff-distance based method
of Chen et al. (2017). In Section 4 we discuss how the finite sample behavior of
our methods is influenced by some geometric or topological properties of esti-
mated superlevel sets etc. Simulation results presented in Section 5 compare the
various methods. Section 6 presents some concluding discussions. The proofs of
the technical results are presented in Section 7.

2. Confidence regions based on vertical variation

The following notation is used throughout the manuscript. For a sequence γ > 0,
we let

β(k)
n,γ = γ2 +

√
logn

nγd+2k
, and β(k),E

n,γ =

√
logn

nγd+2k
, k = 0, 1, 2, 3. (2.1)
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For a kernel density estimator based on a bandwidth h, the quantity β
(0)
n,h equals

the rate of the uniform deviation from the density under standard assumptions
(satisfied in our setting). In other words, we have uniform consistency of the

kernel estimator if β
(0)
n,h → 0 as n → ∞. The quantities β

(k)
n,h, k = 1, 2, 3 have the

same interpretation when considering the kernel estimator of the k-th derivatives

of the density. Similarly, β
(k),E
n,h is the standard uniform rate of convergence of the

kernel density estimator of the k-th derivative when centered at its expectation,
k = 0, . . . , 3.

2.1. Confidence regions based on asymptotic distribution

Our first result provides asymptotically valid confidence regions for the isosur-
face M and the superlevel set L. Before formulating the theorem we introduce
the underlying assumptions and some more notation.

Assumptions:

(F1) The probability density f has bounded, continuous derivatives up to fourth
order. There exists m > 0 such that

∫
‖x‖mf(x)dx < ∞.

(F2) There exist δ0 > 0 and ε0 > 0 such that ‖∇f(x)‖ > ε0 for x ∈ {x : c−δ0 ≤
f(x) ≤ c+ δ0}.

(K) The kernel function K : Rd → R is symmetric about zero, with support
contained in [−1, 1]d, and is continuously differentiable up to fourth order.

(A) Both f and K are continuously differentiable up to d-th order.

(H1)k. h → 0, and β
(k),E
n,h → 0 as n → ∞, where k = 0 or 2.

(H2)k The bandwidth l used for bias correction, satisfies l → 0 and β
(2k),E
n,l → 0,

where k = 0 or 2. In addition, (h/l)
d+4
2 log n → 0 and

√
nhd+4 log n l2 → 0.

Remark 2.1.
a) Assumption (F1) can be weakened when only considering confidence regions
for the smoothed isosurface ME . Only continuous second order derivatives of
f are needed in this case. For simplicity, we just use the stronger assumption
(F1) throughout the manuscript.
b) Assumptions (F1) (even the weakened version discussed in 1.) and (F2)
together imply that the (d−1)-dimensional isosurface M has positive reach (e.g.
see Lemma 1 of Chen et al. (2017), which is a necessary condition for applying
the result in Qiao and Polonik (2018). Assumptions on the reach (introduced
by Federer 1959) are used in a number of studies of geometric properties of
manifolds, etc. Also note that assumption (F2) implies that the level c > 0.
c) It seems likely that the assumption of a non-negative kernel can be replaced
by a higher-order kernel. This is because our focus is on the superlevel sets
(or isosurfaces) with c > 0 and regions there the density estimator is negative
is irrelevant to our estimation. Even for the bootstrap method, technically we
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can bootstrap from a truncated and normalized density estimator. However, the
truncation might incur further technical considerations.
d) The smoothness requirements for f and K in assumption (A) are needed to
enable to use of the Rosenblatt transform (see Rosenblatt 1976) in the proof of
Theorem 2.1. It will not be needed for bootstrap based methods. This is why
we did not combine assumptions (A), (F1) and (K).
e) Assumptions (H1)0 and (H2)0, both very mild, are used in large sample
confidence regions based on the vertical method. They guarantee the uniform
consistency of the de-biased estimator f̂ bc = f̂ − β̂. Specifically, (H1)0 is used

for f̂ centered at its expectation, while (H2)0 is used for the bias correction

part β̂. We use stronger assumptions (H1)2 and (H2)2 for confidence regions
based on the horizontal method. In particular, these assumptions guarantee the
uniform consistency of the second derivatives of f̂ bc.
f) Under our assumptions, in the case of d = 1, M is a union of finitely many
points, say N . Denote M = {xi, i = 1, · · · , N}.

We need to introduce further notation. Let β(x) = Ef̂(x)− f(x) be the bias.
Set ‖K‖22 =

∫
K2(u)du, and let Vd−1 denote (d − 1)-dimensional Hausdorff

measure. Let ̂Vd−1(M) be an estimator of Vd−1(M). Some specific estimators

will be given in Remark 2.2c). For d ≥ 2 and s2K =

∫ [
∂

∂u1
K(u)

]2
du

2
∫
K2(u)du

, we set

b̂(α) =
√
2(d− 1) log h−1 +

1√
2(d− 1) log h−1

[
z(α) +

(
d

2
− 1

)
log log h−1

+ log

{
(2d− 2)d/2−1sd−1

K√
2πd/2

̂Vd−1(M)

}]
. (2.2)

where 0 < α < 1, and z(α) = − log[−1
2 log(1 − α)]. The quantity b̂(α) is based

on the extreme value behavior of a Gaussian field indexed by M (see (7.4) given
in Theorem 7.1). We further need the following, which, for d ≥ 2, simply is a

scaled version of b̂(α) :

â
(d)
1−α =

⎧⎨⎩
b̂(α)

√
‖K‖2

2c√
nhd

for d ≥ 2

Φ−1
(
(1−α)1/N̂

)√
‖K‖2

2c√
nhd

for d = 1,
(2.3)

where Φ is the standard normal cdf, and, for d = 1, N̂ is the cardinality of

M̂ (cf. Remark 2.1f) ). Note that when d ≥ 2, â
(d)
1−α has a typical structure

appearing in confidence bands for probability density or regression functions.
See, for example, the main result of Bickel and Rosenblatt (1973). When d = 1,

â
(d)
1−α corresponds to a quantile value of the maximum of a Gaussian mixture

model because M is a collection of separated points under our assumptions.
With this notation, our first confidence interval based on vertical variation, and
using the de-biased estimator of the underlying density, is defined as

Ĉn,1(1− α) = (f̂ bc)−1
[
c− â

(d)
1−α, c+ â

(d)
1−α

]
.
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Theorem 2.1. Suppose that (F1), (F2), (K), (A), (H1)0 and (H2)0 hold. Let

0 < α < 1. If ̂Vd−1(M) is a consistent estimator for Vd−1(M), then we have,

lim
n→∞

P

(
M ⊂ Ĉn,1(1− α)

)
= 1− α. (2.4)

An asymptotic confidence region for the superlevel set L is given by the
following upper and lower bounds:

Ĉ−
n,1(1− α) = (f̂ bc)−1

[
c− â

(d)
1−α,+∞

)
and

Ĉ+
n,1(1− α) = (f̂ bc)−1

[
c+ â

(d)
1−α,+∞

)
.

Corollary 2.1. Suppose that (F1), (F2), (K), (A), (H1)0 and (H2)0 hold.

Also suppose β
(1),E
n,h → 0 and β

(3),E
n,l → 0 as n → ∞. Let 0 < α < 1. If ̂Vd−1(M)

converges to Vd−1(M) in probability, then we have

lim
n→∞

P

(
Ĉ+

n,1(1− α) ⊂ L ⊂ Ĉ−
n,1(1− α)

)
= 1− α.

Remark 2.2.
a) Notice that the construction of Ĉn,1 involves the choice of two bandwidths,
h and l. This is the case for all the confidence regions considered in this paper
that are based on f̂ bc.
b) Constructing Ĉn,1(1 − α) with f̂ rather than f̂ bc also results in an asymp-
totically valid confidence set for M, provided undersmoothing is being used to
handle the bias. In this case, a sufficient condition for consistency of the coverage

probability is that the bandwidth satisfies β
(2),E
n,h → 0. When this assumption

holds, the stochastic term supx∈M |f̂(x)−Ef̂(x)| asymptotically dominates the

bias term supx∈M |Ef̂(x)− f(x)|, so that the latter can be ignored in the proof
(see Hall 1993).

c) We discuss two choices for the estimator ̂Vd−1(M). Let λ be the d-dimensional
Lebesgue meaure, and let Pn = n−1

∑n
i=1 δXi denote the empirical probability

measure, where δx denotes Dirac measure in x. Let A be the class of compact
sets with a positive reach bounded away from zero such that L ∈ A. One option
for the consistent estimator of Vd−1(M) is given by Vd−1(∂L̂), where

L̂ = argmin
A∈A

[Pn(A)− cλ(A)].

The consistency of this estimator is shown in Proposition 3 in Cuevas et al.
(2012). There, consistency is derived in terms of outer Minkowski content, which,
under our assumptions, is equivalent to the consistency using Hausdorff measure
(see Corollary 1 in Ambrosio et al. 2008). Efficiently computing L̂ is challenging.

Another estimator for Vd−1(M) is given by Vd−1(M̂) with M̂ = f̂−1(c).
The convergence rate and asymptotic normality of this estimator in the context



Confidence regions for level sets 993

of surface integral estimation are shown in Theorem 1 in Qiao (2018b), where
additional assumptions are imposed, in particular on the speed of convergence
of h.
d) The (d − 1)-dimensional Hausdorff measure of M and its estimators come
into play because (i) the distribution of the statistic related to the above con-
fidence regions can be approximated by that of the extreme value of certain
Gaussian random fields indexed by the level set; and (ii) the latter, in turn, is
related to an integral over M with respect to the (d− 1)-dimensional Hausdorff
measure. In our case, the integrand of this integral turns out to be a constant
- see Theorem 6.1, and thus we obtain the volume of the isosurface. In fact, it
is well known that the probability of the extreme value of a locally stationary
Gaussian random fields exceeding a large level is asymptotically proportional
to the volume of the index set (locally speaking). See, for example, Chapter 2
of Piterbarg (1996). Surface integrals have appeared in the context of level-set
estimation before in Cadre (2006). There, however, a first order asymptotics
(consistency) is considered, using the set-theoretic measure of symmetric differ-

ence d(L, L̂). On a very heuristic level, the fact that a surface integral comes
in here can be understood by the fact that the variance of the fluctuations of
d(L, L̂) is of the order an = 1/nhd, which is inherited from the fluctuations of

the density estimator, and by then approximating d(L, L̂) by a constant times
vol
(
f−1[c+an, c−an]

)
, the Lebesgue measure of f−1[c+an, c−an]. Lebesgue’s

theorem gives that a−1
n vol

(
f−1[c+an, c−an]

)
converges to a surface integral over

the boundary M. In other words, the technical reason for this surface integral
to appear in Cadre (2006) is different from why it appears in our context.

2.2. Bootstrap confidence regions

Bootstrap confidence regions based on vertical variation of the kernel density
estimate have been constructed in Mammen and Polonik (2013) and in Chen et
al. (2017). They are based on a bootstrap approximation of quantiles of statistics
of the form

T (Dn) = sup
x∈Dn

∣∣√nhd (f̂(x)−f(x))
∣∣, or TE(Dn) = sup

x∈Dn

∣∣√nhd (f̂(x)−Ef̂(x))
∣∣,

where Dn is such that (asymptotically) M = f−1(c) ⊂ Dn. The confidence
regions considered in the literature differ in the choice of the set Dn. While
Mammen and Polonik (2013) propose to use Dn = {c− εn ≤ f(x) ≤ c+ εn} for
some appropriate choice of εn tending to zero, as n → ∞, Chen et al. simply use
Dn = Rd. Here we are using the smallest such setDn = M. Clearly, the statistics
are stochastically ordered in terms of the size of the set Dn. Thus, the choice
Dn = M leads to the confidence set that is the smallest among the three. Of
course the coverage still needs to be investigated. However, if the corresponding
bootstrap approximations of the distributions of T (Dn) (and TE(Dn)) work
similarly well, then using the statistic T (M) or TE(M), respectively, can be
expected to be a good choice for the construction the bootstrap based confidence
sets based on the vertical variation.
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Our construction is as follows. Let X∗
1 , . . . , X

∗
n be a sample drawn from a

kernel density estimator f̂g using X1, . . . , Xn, and bandwidth g > 0. Let f̂∗(x)

be the kernel density estimate usingX∗
1 , . . . , X

∗
n and bandwidth h. Let f̂∗,E(x) =

E∗f̂∗(x), where we use E∗ to indicate the expectation with respect to f̂g. For

0 < α < 1, let ĉ∗,E1−α be the (1−α)-quantile of the distribution of sup
x∈M̂ |f̂∗(x)−

f̂∗,E(x)|, and let ĉ∗1−α be the corresponding quantile of sup
x∈M̂ |f̂∗(x)− f̂g(x)|.

We now define our bootstrap confidence regions for M and ME , respectively,
as

Ĉ∗
n,2(1− α) = f̂−1[c− ĉ∗1−α, c+ ĉ∗1−α]

and Ĉ∗,E
n,2 (1− α) = f̂−1[c− ĉ∗,E1−α, c+ ĉ∗,E1−α]. (2.5)

We also define the following sets to construct bootstrap confidence regions for
L and LE , respectively.

Ĉ∗,−
n,2 (1− α) = f̂−1[c− ĉ∗1−α,+∞), Ĉ∗,+

n,2 (1− α) = f̂−1[c+ ĉ∗1−α,+∞),

Ĉ∗,E,−
n,2 (1− α) = f̂−1[c− ĉ∗,E1−α,∞), and C∗,E,+

n,2 (1− α) = f̂−1[c+ ĉ∗,E1−α,+∞).

Below we show that this (and other) confidence region is asymptotically exact,
and we derive rates of convergence for the coverage probability. These rates of
convergence have a somewhat complex appearance, which we first explain from
a high level perspective.

Structure of the rates of convergence for the coverage probabilities
of bootstrap based confidence sets: The derivation of the following some-
what complex looking rates of convergence of the coverage probabilities are all
based on Lemma 8.1, which is a slight reformulation of a result of Mammen and
Polonik (2013). Based on this result, the rates are of the form O

(√
δn+τn), where

δn and τn are derived as follows: Let Zn = supx∈A

∣∣ĝ(x)− g(x)
∣∣, and let Z∗

n be
a bootstrap version, where ĝ(x) is one of the density estimators considered, and
g(x) is some centering; the set A in the supremum is either M or ME . Then,
we derive δn and τn by showing that for some sequence of positive real numbers
γn, we have P

(∣∣Zn −Z∗
n

∣∣ > γn
)
≤ δn and supt∈R

P
(
Zn ∈ [t, t+ γn)

)
≤ τn. Both

of δn and τn are themselves comprised of a sum of various terms. In fact, in our
applications of this result, γn is chosen such that

√
δn is negligible, and we have

τn = Ψn(γn), with

Ψn(γ) = γ
√
nhd logn+ h logn+ logn

(√
β
(0),E
n,h +

√
hd logn

)
, γ > 0.

(2.6)

That, in our case, τn has this particular form follows from a result by Neu-
mann (1998). The rates γn that make

√
δn negligible will follow, respectively,

from strong approximation results in Neumann (1998) and some modification
of Neumann’s result given in Mammen and Polonik (2013).
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Note further that in each of the construction approaches considered below,
we obtain the same rates of convergence of the coverage probabilities for both
confidence regions for M and confidence regions for L (and similarly for ME

and LE). The reason for this is as follows. Let pn,M and pn,L denote these
coverage probabilities based on one approach (e.g. the left-hand sides of (2.11)
and (2.12), respectively. By construction, we have pn,L ≤ pn,M. More precisely,
it is shown in the proof of Corollary 2.1 that pn,L = pn,M · qn, where 0 ≤
1− qn = O(δn) with δn = o(1). Now, if pn,M = 1− α + O(τn), then we obtain
pn,L = (1− α+O(τn))(1−O(δn)) = (1− α) +O

(
max(τn, δn)

)
, and under our

respective assumptions, O
(
max(τn, δn)

)
= O(τn), showing that both pn,M and

pn,L converge to (1− α) at the same speed.

Theorem 2.2. Suppose that (F1), (F2) and (K) hold. Let 0 < α < 1, and

γE
n =

(√
β
(0)
n,g + β

(1),E
n,h

)
β
(0),E
n,h , (2.7)

γn = γE
n +

(
β(2)
n,g + β

(1)
n,h

)
h2. (2.8)

(a) If Ψn(γ
E
n ) = o(1), then we have

P

(
ME ⊂ Ĉ∗,E

n,2 (1− α)
)
= (1− α) +O

(
Ψn(γ

E
n )
)
, and (2.9)

P

(
Ĉ∗,E,+

n,2 (1− α) ⊂ LE ⊂ Ĉ∗,E,−
n,2 (1− α)

)
= (1− α) +O

(
Ψn(γ

E
n )
)
. (2.10)

(b) If Ψn(γn) = o(1) as n → ∞, then we have

P

(
M ⊂ Ĉ∗

n,2(1− α)
)
= (1− α) +O

(
Ψn(γn)

)
, and (2.11)

P

(
Ĉ∗,+

n,2 (1− α) ⊂ L ⊂ Ĉ∗,−
n,2 (1− α)

)
= (1− α) +O

(
Ψn(γn)

)
. (2.12)

Remark 2.3.
a) The set Ĉ∗,E

n,2 can be also used as a confidence region for M (not just for

ME) if the bandwidth is chosen to be of smaller order than the optimal band-
width, to make the bias negligible (undersmoothing). In practice, the choice of
undersmoothing bandwidth might be difficult to determine. We do not pursue
the theoretical justification for Ĉ∗,E

n,2 as a confidence region for M, the numerical
performance of which, however, is shown in the simulation section.

b) The quantity β
(2)
n,g appears in γn, because the second partial derivatives appear

in the bias of density estimation and need to be estimated in our proof. Note
that we are not using the de-biased density estimator in this theorem.
c) For d ≥ 2, if we choose both g and h to be of the standard optimal rates, i.e.
g = h = const. n−1/(d+4), then

ρEn = O(h(log n)3/2) = O(n−1/(d+4)(logn)3/2).

The rate in Chen et al. (2017) is given by (nhd)−1/8(log n)7/8. When h is
chosen as the standard optimal bandwidth for density estimation, i.e. h is
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of the exact order n−1/(d+4), the rate given in Chen et al. (2017) becomes
n−1/(2d+8)(logn)7/8, which is slower than ρEn . Note that even if the rate in Chen
et al. (2017) is (nhd)−1/6(logn)7/6 as claimed in this paper, it is still slower than
ρEn when using the optimal bandwidth.

For d ≥ 2, if we again choose h = O(n−1/(d+4)), then

ρn = O

(
n−1/(d+4)(log n)5/4 + β(2)

n,g

√
log n+

√
β
(1)
n,g logn

)
.

With g = O(n−1/(d+6)), ρn is of the order of n−1/(d+6) logn.

2.2.1. A bootstrap confidence region based on explicit bias correction

Introducing a new bandwidth g and bootstrapping from f̂g, as we did above,
can be viewed a method of bias correction (see page 208, Hall 1992). This allows
us to construct a confidence region for M (rather than just for ME). We can
also construct a confidence region for M using an explicit bias correction by

Ĉ∗
n,3(1− α) = (f̂ bc)−1[c− ĉ∗,E1−α, c+ ĉ∗,E1−α].

For confidence regions for L, we define

Ĉ∗,−
n,3 (1− α) = (f̂ bc)−1[c− ĉ∗,E1−α,+∞), and

Ĉ∗,+
n,3 (1− α) = (f̂ bc)−1[c+ ĉ∗,E1−α,+∞).

We have the following result:

Theorem 2.3. Suppose that (F1), (F2), and (K) hold. Let 0 < α < 1. Let

γbc
n =

(√
β
(0)
n,g + β

(1)
n,h

)
β
(0)
n,h + h2β

(2)
n,l . (2.13)

If β
(2)
n,l = o(1) and Ψn

(
γbc
n

)
= o(1) as n → ∞, then we have

P

(
M ⊂ Ĉ∗

n,3(1− α)
)
= (1− α) +O

(
Ψn(γ

bc
n )
)
. (2.14)

If we further assume β
(3)
n,l = o(1) as n → ∞, then

P

(
Ĉ∗,+

n,3 (1− α) ⊂ L ⊂ Ĉ∗,−
n,3 (1− α)

)
= (1− α) +O

(
Ψn(γ

bc
n )
)
. (2.15)

Remark 2.4. The constructions of both Ĉ∗,E
n,2 and Ĉ∗

n,3 are using a quantile,

ĉ∗,E1−α, that is ignoring the bias. Nevertheless, Ĉ∗,E
n,2 gives a confidence region for

the smoothed isosurface ME , while Ĉ∗
n,3 is a confidence region for M. This

is so, because one of them, Ĉ∗
n,3, is based on the de-biased estimator, while

Ĉ∗,E
n,2 is not. Heuristically, this can be understood by writing f̂ bc(x) − f(x) =
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f̂(x)−Ef̂(x) + β(x)− β̂(x). One can see that the bias correction in the density

will adjust for the bias that is present in the quantile ĉ∗,E1−α.

For d ≥ 2, if we choose the optimal bandwidth g = h = O(n−1/(d+4)), and
l = O(n−1/(d+8)) (which is the order of the optimal bandwidth for estimating
the second derivatives), then

ρbcn = O(h(log n)3/2) = O(n−1/(d+4)(log n)3/2).

Compared to the rate ρn given in Remark 2.3 this rate is faster. However, the
fact that the construction of Ĉ∗

n,3 involves the choice of three bandwidths might
be a challenge in practice.

3. Confidence regions based on horizontal variation

Various confidence regions for M,ME ,L and LE based on horizontal variation
will be derived in this section. The geometric link between horizontal and vertical
variation based confidence regions is, for obvious reasons, given by the gradient.
Let x ∈ M and x̂ ∈ M̂, such that x̂ is close to x, then we obviously have

f̂(x)− f(x) = f̂(x)− f̂(x̂) ≈ ∇f̂(x̂)T
(
x− x̂

)
, (3.1)

and when x̂ is chosen such that x− x̂ is approximately perpendicular to M̂,

‖x− x̂‖ ≈ |f̂(x)− f(x)|
‖∇f̂(x̂)‖

. (3.2)

Different ways of choosing x̂ will give rise to different types of horizontal vari-
ation based confidence regions. For example, x̂ can be a projection point of x
onto M̂ or it can be chosen such that there exists a gradient integral curve
connecting x and x̂.

While the above confidence regions based on vertical variation are using ap-
proximations to quantiles of the distribution of supx∈M |f̂(x) − f(x)|, the hor-
izontal variation based confidence regions will use estimated quantiles of the
quantity supx∈M

∣∣∇f̂(x̂)T
(
x− x̂

)∣∣. The latter methods are not purely horizon-
tal variation based, as they involve the adjustment of x̂ − x by the gradient of
f . Nevertheless, since they are explicitly using the differences x− x̂, we still call
them methods based on horizontal variation.

Confidence regions based on horizontal variation (without estimating the
gradient), have been constructed in Chen et al. (2017) based on the Hausdorff
distance. The approaches considered in our work are asymptotically equivalent
to the method proposed in Chen et al. (2017), but in practice the confidence
sets are different. The different constructions also provide additional insight into
the underlying geometry.

In the following we introduce novel horizontal variation based methods, based
on estimating quantiles via both the asymptotic distribution and the bootstrap.
Instead of using standard bootstrap as in Chen et al. (2017), we adopt smoothed
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bootstrap. We would like to note that rather than simply providing alternative
methods for confidence regions, the constructions and the discussion of the per-
formance of the resulting confidence regions are meant to provide insight into
the effects of geometric aspects of the underlying probability density on the
performance of confidence regions.

3.1. Methods based on integral curves

The approach discussed here is based on the construction of x̂ (cf. (3.1)) using
integral curves driven by the (scaled) gradient field and their relation to level
set. This relation will be discussed first.
Integral curves and level sets: For any x0 ∈ Rd, let {Xx0(t), t ∈ R} be
the integral curve driven by the scaled gradient of f, starting from x0, defined
by the equation,

dXx0(t)

dt
=

∇f(Xx0(t))

‖∇f(Xx0(t))‖2
, Xx0(0) = x0,

where we assume that ‖∇f(Xx0(t))‖ �= 0 (cf. Assumption (F2)). For d = 1, ∇f
is understood to mean f ′. The reason for choosing the scaled gradient ∇f

‖∇f‖2 as

a driving vector field, rather than ∇f itself, is based on the following convenient
property. Suppose that t > 0, and set I0(t) = [0, t]. Then, by the fundamental
theorem of calculus for line integrals, we have for any x0 ∈ M and t ∈ R such
that ‖∇f(x)‖ �= 0 for all x ∈ {s : c ≤ f(s) ≤ c+ t},

f(Xx0(t))− f(x0) =

∫
{Xx0 (s):s∈I0(t)}

∇f(r) · dr (3.3)

=

∫
I0(t)

∇f(Xx0(s)) ·
∇f(Xx0(s))

‖∇f(Xx0(s))‖2
ds

=

∫
I0(t)

ds = t, (3.4)

where the right hand side of (3.3) is a line integral over the trajectory {Xx0(s) :
s ∈ I0(t)}, and “·” represents dot product between vectors. By adopting the
current scaled vector field, we can make sure the height increase (or decrease)
in the density is exactly the amount of “time” needed to travel. In other words,
if two particles start from any two points x1, x2 ∈ M, then, after following the
integral curves Xx1(·) and Xx2(·) respectively for time t (which can be negative),
both of these two particles will arrive at Mc+t. The same holds for t ≤ 0, by
using the convention to start integration at 0.

Let the plug-in estimators of ∇f(x) and Xx0(t) based on the kernel density

estimate be denoted by ∇f̂(x) and X̂x0(t), respectively, where the latter is the
solution of the differential equation

dX̂x0(t)

dt
=

∇f̂(X̂x0(t))

‖∇f̂(X̂x0(t))‖2
, X̂x0(0) = x0. (3.5)
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We use the notation X̂bc
x0
(t) to denote the integral curve as in (3.5), but with f̂

replaced by the bias-corrected version f̂ bc.

3.1.1. Confidence regions for M and L using local adjustment by the gradient

Using the de-biased estimator f̂ bc along with the integral curve X̂bc
x (t), we now

present the construction of two confidence regions, one based on asymptotic
distribution theory, and the other based on the bootstrap. The latter has a
faster rate of approximation of the coverage probability.

For x ∈ Rd, define θ̂ bc
x ∈ R through the property

f̂ bc(X̂bc
x (θ̂ bc

x )) = c. (3.6)

For large sample size the existence and uniqueness of θ̂ bc
x for x ∈ M are proved

in Lemma 7.1. For finite sample, in case the solution to (3.6) is not unique, we

take θ̂ bc
x as the infimum of the set of solutions; and whenever there is no solution

to (3.6), we set θ̂ bc
x to be the smallest value of argminθ |f̂ bc(X̂bc

x (θ))−c|. Noticing
that X̂bc

x (θ̂ bc
x ) ∈ M̂ bc = (f̂ bc)−1(c), we now set x̂ in (3.1) as x̂ = X̂bc

x (θ̂ bc
x ).

Letting 0 < α < 1, and recalling the definition of â
(d)
1−α given in (2.3), we

define

Ĉn,4(1− α) =
{
x ∈ Rd : ‖∇f̂ bc(X̂bc

x (θ̂ bc
x ))‖ ‖X̂bc

x (θ̂ bc
x )− x‖ ≤ â

(d)
1−α

}
.

It can be shown (see Lemma 7.1) that x → X̂bc
x (θ̂ bc

x ) defines a bijective map

between M and M̂bc when the sample size is large enough. Thus, for large
sample size, we can equivalently write

Ĉn,4(1− α) = {X̂bc
z (t) : ‖∇f̂ bc(z)‖ ‖z − X̂bc

z (t)‖ ≤ â
(d)
1−α, z ∈ M̂ bc, t ∈ R}.

This also indicates an algorithm: For a dense enough subset of values z ∈ M̂ bc,
run the integral curve X̂ bc

z (t), and check whether the condition in the definition
of the confidence region holds. A bootstrap version of this confidence region is
given by

Ĉ∗
n,4(1− α) =

{
x ∈ Rd : ‖∇f̂ bc(X̂bc

x (θ̂ bc
x ))‖ ‖X̂bc

x (θ̂ bc
x )− x‖ ≤ ĉ∗,E1−α

}
,

where ĉ∗,E1−α is as in (2.5).

Let L̂bc = {x ∈ Rd : f̂ bc(x) ≥ c} and define

Ĉ−
n,4(1− α) = L̂bc ∪ Ĉn,4(1− α), Ĉ+

n,4(1− α) = L̂bc\Ĉn,4(1− α),

Ĉ∗,−
n,4 (1− α) = L̂bc ∪ Ĉ∗

n,4(1− α) Ĉ∗,+
n,4 (1− α) = L̂bc\Ĉ∗

n,4(1− α).

Theorem 3.1. Part 1. Let 0 < α < 1. Suppose that (F1), (F2), (K), (A),
(H1)2 and (H2)2 hold. Then we have, as n → ∞,

P

(
M ⊂ Ĉn,4(1− α)

)
= 1− α+ o(1), and (3.7)
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P

(
Ĉ+

n,4(1− α) ⊂ L ⊂ Ĉ−
n,4(1− α)

)
= 1− α+ o(1). (3.8)

Part 2. Let 0 < α < 1, and suppose that (F1), (F2), (K), (H1)2 and (H2)2

hold. Let γbc
n as in (2.13). If Ψn(γ

bc
n ) = o(1) as n → ∞, then we have

P

(
M ⊂ Ĉ∗

n,4(1− α)
)
= 1− α+O

(
Ψ(γbc

n )
)
, and (3.9)

P

(
Ĉ∗,+

n,4 (1− α) ⊂ L ⊂ Ĉ∗,−
n,4 (1− α)

)
= 1− α+O

(
Ψ(γbc

n )
)
. (3.10)

Notice that we do not have rate of convergence for the coverage probability
of the confidence regions based on the large sample theory. At this point it is an
open question whether, and if yes, how, to derive such rates of approximations.
Since we use the approximation of the extreme value distribution of Gaussian
fields, it is expected to be a slow rate (logn)−1, following a similar argument
given in Hall (1979).

3.1.2. Confidence regions for ME and LE adjusted by gradient

Similar to the above, confidence regions for ME and LE can be constructed and
analysed. For instance, a bootstrap confidence region for ME is given by

Ĉ∗,E
n,4 (1− α) =

{
x ∈ Rd : ‖∇f̂(X̂x(θ̂x))‖ ‖X̂x(θ̂x)− x‖ ≤ ĉ∗,E1−α

}
.

The lower and upper “bounds” of the confidence region for LE can be con-
structed by taking set difference and union between L̂ and Ĉ∗,E

n,4 (1 − α), re-

spectively. Note that the construction uses estimators based on f̂ , instead of
f̂ bc, similar to Ĉ∗,E

n,2 (1− α) in (2.5). It can be shown that their rates of conver-

gence for the coverage probability are O
(
Ψ(γE

n )
)
if we assume that (F1), (F2),

(K), (H1)2 and (H2)2 hold and Ψ(γE
n )) = o(1). The proof follows the same

arguments given in the proof of Theorem 3.1. Details are omitted.

3.1.3. Confidence regions not locally adjusted by the gradient

The confidence regions constructed here are related to the confidence regions
constructed in the previous subsection, but in contrast to them, here the depen-
dence on the estimated gradient is more indirect through the construction of the
integral curve. As a result, the width of the confidence regions only depends on
the length of the integral curve, and it is not locally adjusted by the gradient.
The construction is as follows. Recall that f̂∗,E(x) = E∗f̂∗(x), and let

M̂∗,E = {x : f̂∗,E(x) = c}.

Let X̂∗
x be the integral curve driven by∇f̂∗, and let θ̂∗x be the first time t at which

X̂∗
x(t) hits M∗. In the case of large sample size the existence and uniqueness of
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θ̂∗x follow the same argument as for θ̂x. For 0 < α < 1, let d̂∗,E1−α be the quantile

of order (1− α) for sup
x∈M̂∗,E |X̂∗

x(θ̂
∗
x)− x|, and define the set

Ĉ∗
n,5(1− α) = {X̂bc

x (t) : ‖X̂bc
x (t)− x‖ ≤ d̂∗,E1−α, x ∈ M̂ bc, t ∈ R}.

Also define

Ĉ∗,−
n,5 (1− α) = L̂bc ∪ Ĉ∗

n,5(1− α) and Ĉ∗,+
n,5 (1− α) = L̂bc\Ĉ∗

n,5(1− α).

Let ζn = β
(1)
n,g logn + β

(0)
n,g

[
h−1 logn+

√
nhd+4 logn

]
. Now we have the fol-

lowing result:

Theorem 3.2. Suppose that (F1), (F2), (K), (H1)2 and (H2)2 hold. Then,
if Ψn(γ

bc
n )+ ζn = o(1) as n → ∞, where γbc

n is as in (2.13), we have as n → ∞,

P

(
M ⊂ Ĉ∗

n,5(1− α)
)
= (1− α) +O

(
Ψn(γ

bc
n ) + ζn

)
, and (3.11)

P

(
Ĉ∗,+

n,5 (1− α) ⊂ L ⊂ Ĉ∗,−
n,5 (1− α)

)
= 1− α+O

(
Ψn(γ

bc
n ) + ζn

)
. (3.12)

Remark 3.1. Note that if we further assume that g and h are of the same rate,
i.e., there exist 0 < C1, C2 < ∞ such that C1 < h/g < C2 as n → ∞, then ζn
can be absorbed into Ψn(γ

bc
n ) in the above results.

Similar to subsection 3.1.2, a confidence region for ME can be constructed
by

Ĉ∗,E
n,5 (1− α) = {X̂x(t) : ‖X̂x(t)− x‖ ≤ d̂∗,E1−α, x ∈ M̂, t ∈ R},

and the confidence region for LE has ‘upper and lower boundaries’ given by

Ĉ∗,E,−
n,5 (1− α) = L̂ ∪ Ĉ∗,E

n,5 (1− α) and Ĉ∗,E,+
n,5 (1− α) = L̂\Ĉ∗,E

n,5 (1− α).

3.2. Horizontal variation based methods not based on integral curves

It follows from the Tubular Neighborhood Theorem (e.g. see Theorem 11.4 of
Bredon 1993) that for all x ∈ M and n large enough, there exist unique Xx ∈
M̂bc and sx ∈ R such that x = Xx + sx∇f̂ bc(Xx). Similarly, for all x ∈ M̂∗,E

and large sample size, we can find X∗
x ∈ M̂∗ and s∗x be such that x = X∗

x +

s∗x∇f̂∗(X∗
x).

Now let b̂∗,E1−α be the quantile of (1 − α) for sup
x∈M̂∗,E ‖X∗

x − x‖, and for
0 < α < 1 define

Ĉ∗
n,6(1− α) =

{
x+ t∇f̂ bc(x) : ‖t∇f̂ bc(x)‖ ≤ b̂∗,E1−α, x ∈ M̂bc

}
.

Also define

Ĉ∗,−
n,6 (1− α) = L̂bc ∪ Ĉ∗

n,6(1− α) and Ĉ∗,+
n,6 (1− α) = L̂bc\Ĉ∗

n,6(1− α).
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Under suitable regularity conditions Ĉ∗
n,6(1 − α) is a confidence region for M

of asymptotic coverage level 1 − α, and Ĉ∗,−
n,6 (1 − α) and Ĉ∗,+

n,6 (1 − α) give the
upper and lower “bounds” of an asymptotic (1 − α) confidence region for L.
The convergence rate of the coverage probability of Ĉ∗

n,6(1 − α) for M as well

as {Ĉ∗,+
n,6 (1 − α), Ĉ∗,−

n,6 (1 − α)} for L can be derived in the way similar to the
proof of Theorem 3.2. However, we do not further pursue it here. While the
geometric construction of the confidence region Ĉ∗

n,6(1 − α) is essentially the
same as the one constructed in Chen et al. (2017), our derivation via the tubular
neighborhood theorem provides a slightly different angle to the construction. A
similar confidence region for ME is given by

Ĉ∗,E
n,6 (1− α) =

{
x+ t∇f̂(x) : ‖t∇f̂(x)‖ ≤ b̂∗,E1−α, x ∈ M̂

}
.

For LE , we can use the following upper and lower “bounds”:

Ĉ∗,E,−
n,6 (1− α) = L̂ ∪ Ĉ∗,E

n,6 (1− α) and Ĉ∗,E,+
n,6 (1− α) = L̂\Ĉ∗,E

n,6 (1− α).

Rates of convergence of the coverage probabilities for these confidence regions
can be derived by using similar ideas as above. No further details are given.

4. Performance of confidence regions and geometry

The above discusses the large sample behavior of various confidence regions for
level sets. Bootstrap based methods show a faster rate of convergence of their
coverage probability to the nominal level than the methods based on asymptotic
distribution theory, which is not a surprise. A more detailed comparison based
on the theoretical developments is not entirely straightforward, because differ-
ent confidence sets depend on a different number of bandwidths to be chosen,
requiring different assumptions, etc. However, for finite samples, certain rela-
tions between the geometry of the underlying density and the performance of
the different types of confidence regions give some interesting insight. This will
be discussed now.
1. By construction, most of the confidence regions for M or ME based on hori-
zontal variation constitute a band (or a tube) of constant width about the esti-
mated target isosurface. The width of the tube depends on the global behavior
of the density in a neighborhood about the targeted isosurface. Since horizontal
variation based methods are essentially based on the worst case behavior (sim-
ilar to the supremum distance), it can be expected that for densities for which
the norm of the gradient varies a lot along the isofurface, this confidence band
tends to be unnecessarily wide. This is also illustrated in our simulation study
in Section 5.

In contrast to that behavior of the horizontal confidence regions, the width of
the vertical variation based confidence regions has local adaptivity. Essentially,
their width at a given point of the isosurface is inversely proportional to the norm
of the gradient, and thus they are containing additional information about the
geometry of the density.
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Fig 1. An example of Case 4 (given below); n = 200. The target is ME (black curve). Notice,
ME only has one connected component, while M has two (not shown here). The estimate

M̂ (cyan dotted curve) has two connected components. Red curves give the boundaries of the
90% confidence region using the vertical method corresponding to V.e below. Green curve are
the boundary of the 90% confidence region using the Hausdorff method.

2. Our theoretical assumptions restrict the level c to be strictly larger than zero,
which means that in local neighborhoods about the corresponding isosurface
the density is bounded away from zero. However, a relatively small level c can
still provide problems in finite samples. For instance, vertical variation based
methods of the form f̂ [c−ân, c+ân] (or the ones using the bias-corrected density
estimator) might be very large in volume, as the lower bound c−ân might be less
than zero, meaning that the outer confidence region only ends at the support of
the density estimator used. Nevertheless, the probability content carried by the
confidence regions might still be small. (Asymptotically, this problem of course
disappears simply because ân converges to zero.) In such situations, the volume
of horizontal variation based methods tend to be of smaller volume than the ones
of the vertical based methods, but the probability mass carried by them might
nevertheless be larger. This can be seen in the simulation results presented in
Table 1 when inspecting the column corresponding to Case 3.

3. Another interesting scenario corresponds to levels c that are close to critical
values of the density. Similar to the previous item, this problem does not appear
in a large sample scenario, because our assumptions require the gradient along
the iso-surface to be bounded away from zero. For finite samples, however, we
observe the following interesting geometric challenge.

Suppose that c is only slightly smaller than a level at which the true den-
sity has a local maximum that is not a global maximum, and let x0 denote the
point at which this local maximum is attained. Then, under our regularity as-
sumptions, there will be a neighborhood of x0 that is part of the superlevel set
L. However, the value of the density estimates f̂(x0) or f̂ bc(x0) might, due to
random fluctuation, not exceed the value c, so that the estimated superlevel set
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Fig 2. Challenges of constructing confidence regions based on integral curves are illustrated.

does not contain a neighborhood about x0. Since the confidence regions based
on horizontal variation are built around the contours of these estimated super-
level sets, they might miss such areas - and note that these areas then could in
fact lie far from the confidence region. In such cases the missed target regions
tend to be small in size. Nevertheless, the topology (homology) of the confidence
regions will in general be different from the one of the target contour, and the
normal compatibility assumption (e.g. see Chazal et al. 2007) used in Chen et
al. (2017) for the construction of horizontal variation based confidence regions
will be violated in such cases.

Horizontal variation based confidence regions will not perform well in this
scenario. Observe that the quantiles used in their construction are essentially
based on the maximum distance of the estimated and the true contours. This
distance tending to be large means that these quantiles will tend to become
large, leading to wide confidence tubes. By contrast, the vertical distance is
less impacted by the different topology of the estimated and true contours, and
hence the vertical variation based confidence regions suffer less from having very
large volume in this scenario.

A scenario as the one just discussed is included in the simulation study pre-
sented below. See Table 1, Case 4, where one can see that the Hausdorff based
methods tend to be quite large. A similar remark applies to the integral curve
based methods, such as Ĉn,4(1−α), where the indicated problem is expressed by

the non-existence of θ̂ bc
x for a non-negligible set of starting values x. A similar

discussion applies when the level c is narrowly above a critical level, illustrated
in Figure 1.

4. Confidence regions based on estimated integral curves might, for finite sam-
ple size, suffer from the local geometry of the kernel density estimator, as is
illustrated in Figure 2. The two panels in this figure show a scenario (for finite
sample size) that violates the bijective condition for horizontal methods, which
is shown to hold for large samples (see Lemma 7.1). The violation is due to small
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local minimum of the kernel density estimator, and this local geometric property
then ‘diverts’ the integral curves from their expected path. This also gives rise
to numerical challenges. In the situation shown in the figure, a sample of size
200 was drawn from a density function in (5.1) below with a = 2, and then a
bootstrap sample was drawn. The focus was on the level set corresponding to
p = 0.95. In the left panel, the pink curves are contour lines of f̂ ; the red curve
is M̂; the black curve is M; the blue curves are trajectories of integral curves
driven by the gradients of f̂ . In the right panel, the pink curves are contour
lines of f̂∗; the red curve is still M̂; the green curve is M∗; the blue curves
are trajectories of integral curves driven by the gradients of f̂∗. Notice that the
trajectories fail to define a bijective mapping between M̂ and M̂∗ around (-1.5,

-1.5) due to the existence of a local minimum of f̂∗.

5. Simulations

This simulation study compares six (one large sample based, and five bootstrap
based) confidence regions for M and ME in terms of coverage probability and
volume, thereby

• considering different levels c (low, high, close to critical levels), and
• comparing vertical variation based and horizontal variation based meth-

ods.

All the horizontal variation based methods are more computationally involved
than the vertical methods. A preliminary simulation study showed our horizontal
variation based methods to behave similarly to the Hausdorff-distance based
approach of Chen et al. (2017). Therefore we here only use the latter to represent

the horizontal variation based methods. With d(x,M̂) = inf
s∈M̂ ‖x− s‖, these

confidence regions have the form
{
x ∈ Rd : d(x,M̂) ≤ ê∗1−α

}
, where ê∗1−α is

a bootstrap based estimate of the (1 − α)-quantile of d(x,M̂). Recall that the

Hausdorff distance between M and M̂ is given by

dH(M,M̂) = max
(
sup
x∈M

d(x,M̂), sup
s∈M̂

d(s,M)
)
,

and thus, supx∈M d(x,M̂) is ‘one part’ of the Hausdorff distance. However, if

M and M̂ are normal compatible, then supx∈M d(x,M̂) = sup
s∈M̂ d(s,M),

and
dH(M,M̂) = sup

x∈M
d(x,M̂).

Chen et al. (2017) are using this approach with M replaced by ME , and they
show that, under certain regularity assumptions, normal compatibility of ME

and M̂ holds asymptotically with probability tending to one.
One of the models used in our simulations is the bivariate normal with

f(x, y; a) =
1

2π
e

−a2x2−y2/a2

2 , (5.1)
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where the contours of the density function are ellipses with a defining their
eccentricity. Then, for c = f(x0, y0; a) with a2x2

0+y20/a
2 = r20 for some 0 < r0 <

∞, the probability over the superlevel set {(x, y) : f(x, y; a) ≥ c} is

p =

∫
a2x2+y2/a2≤r20

f(x, y)dxdy =

∫ 2π

0

∫ r0

0

1

2π
e−r2/2rdrdθ = 1− 2πc.

We choose p = 50% and p = 95%. Our second model is a mixture of normal
distributions of the form

0.5N
(
(−2, 2)T , 1.5I2

)
+ 0.5N

(
(1,−1)T , 0.5I2

)
(5.2)

This density has two modes with corresponding heights 0.065 and 0.11, respec-
tively. In our study we chose the level c = 0.048, which lies slightly below the
lower local maximum of the mixture of normals (cf. 3. in Section 4). We consider
the following 4 cases:

Case 1: density in (5.1) with a = 1 and p = 0.5,
Case 2: density in (5.1) with a = 2 and p = 0.5,
Case 3: density in (5.1) with a = 1 and p = 0.95,
Case 4: density in (5.2) with c = 0.048.
As a kernel we choose the form

K(x, y) =

(
693

512

)2

(1− x2)5(1− y2)51{|x| ≤ 1 and |y| ≤ 1}.

We ran the simulation for 400 times. In each iteration, a sample of size n was
randomly drawn from the given distribution and then a bootstrap procedure
based on 250 bootstrap re-samplings was performed to create the confidence
regions using the following methods:

(H) Hausdorff-distance based approach of Chen et al. (2017) for the smoothed
level set;

(V.e) vertical variation based confidence region Ĉ∗,E
n,2 (1 − α) for the smoothed

level set;

(V) vertical variation based confidence region Ĉ∗
n,2(1−α) for the true level set;

(V.bc) vertical variation based confidence region with bias correction Ĉ∗
n,3(1−α)

for the true level set;

(V.us) vertical variation based confidence region with undersmoothing Ĉ∗,E
n,2 (1−

α) for the true level set (see Remark 2.3);

(V.ls) vertical variation based large sample confidence region Ĉn,1(1 − α) for
the true level set.

The bandwidths involved in the construction of these confidence regions are
selected using the direct plug-in method. In particular, we use the plug-in opti-
mal bandwidth for kernel density estimation as h and g, while using the plug-in
optimal bandwidth for the second derivative estimation as l. In fact, we choose
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Table 1

Simulation results

Case 1 Case 2 Case 3 Case 4
C.P. λ̄ P̄ C.P. λ̄ P̄ C.P. λ̄ P̄ C.P. λ̄ P̄

n=200

H 0.98 8.40 0.63 1.00 13.18 0.82 1.00 41.21 0.49 1.00 59.46 0.88
V.e 0.87 6.91 0.53 0.91 6.87 0.53 0.95 35.16 0.15 0.90 12.17 0.47
V 0.91 7.33 0.56 0.94 7.28 0.56 0.95 36.17 0.17 0.85 13.14 0.49
V.bc 0.50 6.28 0.46 0.56 6.26 0.46 0.66 20.63 0.15 0.53 11.75 0.43
V.us 0.94 13.55 0.77 0.96 13.45 0.77 0.96 28.58 0.26 0.88 29.82 0.71

n=1000

H 0.95 4.26 0.34 0.98 7.75 0.6 1.00 21.22 0.18 0.98 33.35 0.76
V.e 0.90 3.77 0.30 0.89 3.79 0.30 0.92 36.31 0.09 0.9 7.41 0.31
V 0.94 4.09 0.33 0.94 4.11 0.33 0.92 37.37 0.11 0.89 8.00 0.33
V.bc 0.61 3.54 0.27 0.61 3.55 0.28 0.64 25.60 0.1 0.63 7.41 0.31
V.us 0.94 6.27 0.47 0.93 6.30 0.47 0.96 30.81 0.15 0.94 13.78 0.49

n=5000

H 0.93 2.32 0.19 0.97 4.47 0.36 0.98 9.67 0.07 0.99 15.29 0.58
V.e 0.90 2.17 0.17 0.88 2.16 0.17 0.94 9.38 0.06 0.90 4.77 0.22
V 0.94 2.38 0.19 0.96 2.37 0.19 0.96 13.51 0.07 0.92 5.17 0.23
V.bc 0.74 2.08 0.16 0.73 2.07 0.16 0.74 8.82 0.06 0.71 4.84 0.22
V.us 0.97 3.52 0.28 0.96 3.49 0.27 0.97 33.49 0.10 0.95 7.89 0.33
V.ls 1.00 5.96 0.44 1.00 6.39 0.47 1.00 34.45 0.13 1.00 13.85 0.50

n=50000

H 0.93 1.04 0.08 0.92 2.06 0.17 0.94 3.86 0.03 1.00 7.89 0.36
V.e 0.92 1.01 0.08 0.92 0.98 0.08 0.90 3.68 0.03 0.93 2.73 0.13
V 0.96 1.11 0.09 0.95 1.09 0.09 0.94 4.65 0.03 0.97 2.95 0.14
V.bc 0.81 0.98 0.08 0.84 0.96 0.08 0.77 3.57 0.03 0.83 2.75 0.13
V.us 0.97 1.63 0.13 0.96 1.60 0.13 0.96 6.62 0.05 0.98 4.09 0.19
V.ls 1.00 1.64 0.13 1.00 1.72 0.14 1.00 6.44 0.05 1.00 4.09 0.19

different bandwidths for each of the two dimensions. For (V.us), we used 70%
of the optimal plug-in bandwidths.

The confidence level was set to be 90%. With the 400 runs, we calculated the
coverage probabilities (C.P.) of these confidence regions as well as their average
Lebesgue measures (λ̄) and average probability measures (P̄ ). Note that in the

general form f̂ [c − â, c + â] or f̂ bc[c − â, c + â] of the confidence regions based
on vertical variation, sometimes c− â < 0 for Case 3. Since the kernel function
K we used has bounded support, so do f̂ and f̂ bc. The outer boundary of the
confidence regions based on vertical variation for the level sets is in fact the
support of the density estimator (cf. 2. of Section 4). For numerical reasons, we

used f̂ [max(c− â, ω), c+ â] or f̂ bc[max(c− â, ω), c+ â] as the confidence regions,
where we took ω = 10−6.

In Table 1, (H) has to be compared with (V.e) since these methods are both
targeting the smoothed level setsME . Overall it is clear that the vertical method
(V.e) outperforms the horizontal method (H). Detailed discussions have been
given in Section 4.

We only include results for the large sample confidence regions (V.ls) with
n = 5000 and n = 50000. This is because the formula in Theorem 2.1 requires
h < 1, which cannot be satisfied when n is small in our examples. Overall the
large sample confidence regions have conservative coverage probabilities in our
examples. This is not surprising because it is well-known that the convergence
rate of the coverage probability is slow for such large sample confidence regions.
However, their volumes are comparable to those of the bootstrap confidence
regions when the sample size is large, which makes (V.ls) a competitive option
considering its computation does not require bootstrap.
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Comparing (V), (V.bc) and (V.us), which are all confidence regions for the
true level sets M, it is apparent that (V) performs best. Convergence of the
coverage probability of bias correction method (V.bc) is the slowest. This seems
to be caused by slow convergence in the estimation of the second order deriva-
tives in the bias correction. The confidence regions based on the undersmoothing
method (V.us) have the largest volume. This is because the variance becomes
large when the selected bandwidth is small.

6. Conclusion

We have constructed and analyzed various confidence regions for density su-
perlevel sets and density isosurfaces based on plug-in estimates using kernel
density estimation. The analysis is done in terms of large sample theory and
also in the finite sample setting using simulations. The geometry underlying the
construction of the different types of confidence regions is discussed. Geometric
considerations also play a role in the interpretation of the finite sample behavior
of the confidence regions. Overall, vertical variation based confidence intervals
appear to have an edge over the horizontal methods.

The kernel estimator used in our investigations can of course be replaced
by other (non-parametric) density estimators. For such modifications, the large
sample behavior of the corresponding coverage probabilities might be analyzed
using a similar Ansatz as in this work (see discussion of “Structure of the rates
of convergence for the coverage probabilities of bootstrap based confidence sets”
given in Section 2.2). This requires the investigation of all the relevant properties
needed for our approach to go through.

There are various open questions related to the construction of confidence
regions for density level sets. For instance, what can be said about optimality of
the rates of convergence of the coverage probabilities? (Thanks to the referee for
asking this question). Besides some classical work by Hall and Jing (1995), the
only other work related to this question we are aware of is Calonico et al. (2018b).
The role of bias correction in this context might be explored as well. For some
recent work on bias correction see Chen (2017), and Calonico et al. (2018a).
While we have been concentrating on density level sets, a similar approach
might work for level sets of other functions, such as regression level sets, for
instance. Level sets also play an integral role in the context of topological data
analysis (persistent homology). Similar to our vertical variation based upper
and lower confidence sets, Bobrowski et al. (2017) are using such upper and
lower approximations of the level set to construct estimates for the topology of
a single density level set. It might be worthwhile to explore this connection in
more detail.

7. Proofs

7.1. Proof of Theorem 2.1

A key ingredient to the proof of Theorem 2.1, is the following special case of
the main theorem in Qiao and Polonik (2018):
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Theorem 7.1. Let H ⊂ Rd (d ≥ 2) be a compact set. Let Zh(x), x ∈ H,
0 < h ≤ 1 be a sequence of centered Gaussian fields with covariance

rh(x+Δx, x) = 1− h−2‖DΔx‖2 + o(h−2‖Δx‖2), (7.1)

uniformly in h ∈ (0, 1] and x ∈ H as Δx/h → 0, where D is d × d positive
definite matrix. Let r < d and M ⊂ H be a r-dimensional compact Riemannian
manifold with reach Δ(M) > 0. For any δ > 0, define

Q(δ) := sup
0<h≤1

{|rh(x+Δx, x)| : x+Δx ∈ M, x ∈ M, ‖Δx‖ > hδ}.

Suppose for any δ > 0, there exists a positive number η such that

Q(δ) < η < 1, (7.2)

In addition, assume that there exists η > 0 and δ0, such that, for any δ > δ0,
we have

Q(δ)|(log δ)r| ≤ (log δ)−η. (7.3)

For any fixed z, define

φ(z) =
√

2r log h−1 +
1√

2r log h−1

[
z +

(r
2
− 1

2

)
log log h−1

+ log

{
(2r)r/2−1/2

√
2π(r+1)/2

∫
M

‖DMs‖rds
}]

, (7.4)

where Ms is a d× r matrix with orthonormal columns spanning TsM. Then

lim
h→0

P

{
sup
t∈M

|Zh(t)| ≤ φ(z)
}
= exp{−2 exp{−z}}.

This result will play a key role in the proof of Theorem 2.1, which is presented
now. First we are going to prove (2.4) for d ≥ 2. Recall ‖K‖22 =

∫
K2(u)du. Let

Yn(x) =

√
nhd(f̂(x)− f(x)− β̂(x))√

‖K‖22 f(x)
=

√
nhd(f̂(x)− Ef̂(x) + β(x)− β̂(x))√

‖K‖22 f(x)
.

Let

b(z) =
√

2(d− 1) log h−1 +
1√

2(d− 1) log h−1

[
z +

(
d

2
− 1

)
log log h−1

+ log

{
(2d− 2)d/2−1sd−1

K√
2πd/2

Vd−1(M)

}]
.

To prove (2.4), using Slutsky’s Theorem, it suffices to show

lim
n→∞

P

{
sup
x∈M

|Yn(x)| ≤ b(z)

}
= exp{−2 exp{−z}}, (7.5)
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because we have

lim
n→∞

P

{
sup
x∈M

√
nhd|f̂(x)− β̂(x)− c|√

‖K‖22c
≤ b(z)

}
= lim

n→∞
P

{
|f̂(x)− β̂(x)− c| ≤ b(z)

√
‖K‖22c√
nhd

, ∀ x ∈ M
}

= lim
n→∞

P

{
M ⊂ (f̂ bc)−1

[
c− b(z)

√
‖K‖22c√
nhd

, c+
b(z)

√
‖K‖22c√
nhd

]}
. (7.6)

To prove (7.5) we show the following two properties:

lim
n→∞

P

{
sup
x∈M

∣∣∣∣∣
√
nhd(f̂(x)− Ef̂(x)√

‖K‖22 c

∣∣∣∣∣ ≤ b(z)

}
= exp{−2 exp{−z}} (7.7)

and

√
log h−1 sup

x∈M

∣∣∣∣∣
√
nhd(β(x)− β̂(x))√

‖K‖22 c

∣∣∣∣∣ = op(1). (7.8)

Using the uniform convergence rates for kernel density derivatives (see Lemma
3 in Arias-Castro et al. 2016) we obtain

sup
x∈M

∣∣∣∣√nhd(β̂(x)−Eβ̂(x))√
‖K‖2

2 c

∣∣∣∣ = Op

(√
nhd+4β

(2),E
n,l

)
,

and sup
x∈M

∣∣∣∣√nhd(Eβ̂(x)−β(x))√
‖K‖2

2 c

∣∣∣∣ = O(
√
nhd+4(l2 + h2)).

Property (7.8) now follows by using assumptions (H1)0 and (H2)0. Next we
will show (7.7). With F =

{
gx(y) = 1√

hd‖K‖2
2c
K
(
x−y
h

)
: x ∈ M

}
, and

Gn(g) =
1√
n

∑n
i=1 (g(Xi)− Eg(X1)) , ∀g ∈ F . we can write

√
nhd(f̂(x)−Ef̂(x))√

‖K‖2
2c

=

Gn(gx), x ∈ M and thus

sup
x∈M

∣∣∣∣∣
√
nhd(f̂(x)− Ef̂(x))√

‖K‖22c

∣∣∣∣∣ = sup
gx∈F

|Gn(gx)| .

Let B be a centered Gaussian process on F such that for all gx, gy ∈ F ,
E(B(gx)B(gy)) = Cov(gx(X1), gy(X1)). Applying Corollary 2.2 in Chernozhukov
et al. (2014) we have that for all γ ∈ (0, 1) and n sufficiently large

P

(∣∣∣ sup
x∈M

∣∣∣√nhd(f̂(x)−Ef̂(x))√
‖K‖2

2c

∣∣∣− sup
g∈F

|B(g)|
∣∣∣

> A1
log2/3(n)

γ1/3(nhd)1/6
+A2

log3/4(n)
γ1/2(nhd)1/4

+A3
log(n)

γ1/2(nhd)1/2

)
≤ A4

(
γ + log(n)

n

)
. (7.9)
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where A1, A2, A3 and A4 are some constants. See Proposition 3.1 in Cher-
nozhukov et al. (2014) for a similar derivation. Since E

[
supg∈F |B(g)|

]
=

O(
√
logn) (by Dudley’s inequality for Gaussian processes, cf. van der Vaart

and Wellner 1996, Corollary 2.2.8), with the choice of γ = 1/ logn, we apply
Lemma 2.4 in Chernozhukov et al. (2014) and have

sup
t

∣∣∣∣P(supx∈M

∣∣∣∣√nhd(f̂(x)−Ef̂(x))√
‖K‖2

2c

∣∣∣∣ < t

)
− P

(
sup
g∈F

|B(g)| < t

)∣∣∣∣ = o(1).

It remains to show that limh→0 P
(
supg∈F |B(g)| < b(z)

)
= exp{−2 exp{−z}}.

Let W and B be d-dimensional Wiener process and Brownian bridge, respec-
tively. Put

U(x) =
1

hd/2‖K‖
√
f(x)

∫
Rd

K

(
x− s

h

)
dB(M(s)),

where M is the Rosenblatt transformation (cf. Rosenblatt 1976). Then

sup
g∈F

|B(g)| d
= sup

x∈M
|U(x)|.

Let further Ũ(x) = 1
hd/2‖K‖

∫
K
(
x−s
h

)
dW (s). Following the arguments on

page 1013 of Rosenblatt (1976) (also see Proposition 2.2 in Bickel and Rosenblatt

1973), we have supx∈M |U(x)− Ũ(x)| = Op(h
1/2). We then only need to show

lim
h→0

P

(
sup
x∈M

|Ũ(x)| < b(z)

)
= exp{−2 exp{−z}}. (7.10)

Next we are going to apply the probability results in Theorem 7.1. Under
our assumptions the isosurface M is a d− 1 dimensional C1 submanifold in Rd

(see Theorem 2 in Walther 1997). As discussed in Remark 2.1b), the reach of
the isosurface is positive under our assumptions. It is easy to verify that the
conditions for Q(δ) in (7.3) since K is assumed to have bounded support. We
will verify (7.1) and (7.2) in what follows.

First observe that, as Δx/h → 0,

Cov(Ũ(x), Ũ(x+Δx)) = 1− h−2ΔxTΣΔx+ o(h−2‖Δx‖2), (7.11)

where Σ is a d× d symmetric matrix with the (i, j)-th element

Σi,j =

∫ ∂K(u)
∂ui

∂K(u)
∂uj

du

2‖K‖22
. (7.12)

Note that the little o term in (7.11) is uniform in x ∈ f−1[c − δ0, c + δ0] and

h ∈ (0, 1], where δ0 appears in assumption (F2). Let ‖∂K‖22 =
∫ (∂K(u)

∂u1

)2
du.

Then due to the symmetry of K, Σi,j = s2Kδi,j where s2K =
‖∂K‖2

2

2‖K‖2
2
and δi,j is
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the Kronecker delta. That is Σ = s2KI. Then (7.1) and (7.2) are satisfied and we
can apply Theorem 7.1 to get (7.10) by showing that b(z) is equivalent to√

2(d− 1) log 1
h + 1√

2(d−1) log{ 1
h}

[
z +

(
d
2 − 1

)
log log 1

h

+ log
{

(2d−2)d/2−1

√
2π(d/2)

∫
M ‖Σ1/2Ms‖d−1ds

}]
, (7.13)

where Ms is a d × (d − 1) matrix with orthonormal columns spanning TsM,
and ‖ · ‖d−1 is the sum of squares of all minors of order d− 1 for a d× (d− 1)

matrix. Note that since Σ = s2KI we have ‖Σ1/2Ms‖d−1 = s
(d−1)
K ‖Ms‖d−1.

By the Cauchy-Binet formula (cf. Broida and Williamson 1989, pp 208-214),
‖Ms‖d−1 =

√
det(MT

s Ms) = 1. Recall that Vd−1 is the (d − 1)-dimensional
Hausdorff measure. The integral in (7.13) can be simplified as∫

M
‖Σ1/2Ms‖d−1ds = s

(d−1)
K Vd−1(M).

Now we have verified the expression in (7.13) is equivalent to b(z) and there-
fore (2.4) follows.

Next we prove the case d = 1. Following the discussion after the assumptions,
denote M = {xi, i = 1, · · · , N}. Following similar argument at the beginning
of the proof for d ≥ 2 and using results from Bickel and Rosenblatt (1973),

we have that the asymptotic distribution of sup
x∈M

√
nh|f̂bc(x)−c|√

‖K‖2
2c

is the same as

that of supx∈M |Ũ(x)|, as n → ∞. When h is small enough, this supremum
becomes maxi=1,··· ,N Zi, where Zi’s are i.i.d. standard normal random variables.
Therefore, as n → ∞,

sup
x∈M

√
nh|f̂bc(x)−c|√

‖K‖2
2c

d−→ maxi=1,··· ,N Zi. (7.14)

Recall that Φ is the standard normal c.d.f. Then the c.d.f of maxi=1,··· ,N Zi is

ΦN . By Theorem 3.1 in Biau et al. (2007), N̂ = N for n large enough with
probability 1. Following the same argument as for (7.6), we obtain (2.4) for
d = 1.

7.2. Proof of Corollary 2.1

The proof for d = 1 is trivial. Now we show the proof for d ≥ 2. Since

P

{
Ĉ+

n,1(1− α) ⊂ L ⊂ Ĉ−
n,1(1− α)

}
= P

{
M ⊂ Ĉn,1(1− α)

}
P

{
Ĉ+

n,1(1− α) ⊂ L ⊂ Ĉ−
n,1(1− α) |M ⊂ Ĉn,1(1− α)

}
,

using Theorem 2.1, we only need to show that

lim
n→∞

P

{
Ĉ+

n,1(1− α) ⊂ L ⊂ Ĉ−
n,1(1− α) | M ⊂ Ĉn,1(1− α)

}
= 1. (7.15)
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In fact, we can obtain the following result: for all L > 0 as n → ∞,

P

{
Ĉ+

n,1(1− α) ⊂ L ⊂ Ĉ−
n,1(1− α) | M ⊂ Ĉn,1(1− α)

}
= 1−O(n−L). (7.16)

Note that the event {Ĉ+
n,1(1− α) ⊂ L ⊂ Ĉ−

n,1(1− α)} is equivalent to E1 ∩ E2,

where E1 = {f(y) ≥ c, ∀y s.t. f̂ bc(y) ≥ c + â
(d)
1−α }, and E2 = { f̂ bc(y) ≥

c − â
(d)
1−α ∀y s.t. f(y) ≥ c }. We also denote E0 = {M ⊂ Ĉn,1(1 − α)} = {

c− â
(d)
1−α ≤ f̂ bc(x) ≤ c+ â

(d)
1−α, ∀x s.t. f(x) = c }. Then (7.16) can be written in

the form of P(E1 ∩ E2|E0) = 1−O(n−L) or equivalently,

P(E�
1 ∪ E�

2 |E0) = O(n−L), (7.17)

where E�
1 = { ∃y s.t. f(y) < c & f̂ bc(y) ≥ c + â

(d)
1−α }, and E�

2 = { ∃y s.t.

f(y) ≥ c & f̂ bc(y) < c− â
(d)
1−α }. Property (7.17) obviously follows from

P(E�
1 |E0) = O(n−L) (7.18)

and

P(E�
2 |E0) = O(n−L).

We only show (7.18). To this end, we first introduce two more events. For some
C > 0 large enough, define

B0 =
{
supz∈Rd |f̂ bc(z)− f(z)| ≤ Cβ

(0)
n,h

}
,

B1 =
{
supz∈Rd ‖∇f̂ bc(z)−∇f(z)‖ ≤ Cβ

(1)
n,h

}
,

where we use the notation introduced in (2.1). It follows from the proof on page
207 of Mammen and Polonik (2013) that P(B0) = 1−O(n−L). Also note that

sup
z∈Rd

‖∇f̂ bc(z)−∇f(z)‖ ≤ sup
z∈Rd

‖∇f̂(z)− E∇f̂(z)‖+ sup
z∈Rd

‖∇β̂(z)−∇β(z)‖.

It is known (e.g. see Theorem 1 in Einmahl and Mason 2005, and Lemma 3 in
Arias-Castro et al. 2016) that

sup
z∈Rd

‖∇f̂(z)− E∇f̂(z)‖ = Oa.s.

(
β
(1),E
n,h

)
, (7.19)

sup
z∈Rd

‖∇β̂(z)−∇β(z)‖ = Oa.s.

(
h2β

(3)
n,l + h2

)
. (7.20)

Following an argument similar to that in Mammen and Polonik (2013), we thus
obtain P(B1) = 1 − O(n−L). These rates of convergences of P (B0) and P (B1)
will be used in the following.

With δ0 given in Assumption (F2), let Mδ0 = {x : c− δ0 ≤ f(x) ≤ c+ δ0}.
We now split up E�

1 into

E�
11 = {∃y ∈ Mδ0s.t. f(y) < c &f̂ bc(y) ≥ c+ â

(d)
1−α}
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E�
12 = {∃y /∈ Mδ0s.t. f(y) < c &f̂ bc(y) ≥ c+ â

(d)
1−α}.

Note that these two sets are disjoint and E�
1 = E�

11 ∪ E�
12. To show (7.18), we

now show that both P (E�
11|E0) = O(n−L) and P (E�

12|E0) = O(n−L).
First we show that E�

12 ∩ E0 ∩ B0 = ∅ for large enough n. To this end, let

x ∈ M, i.e. f(x) = c. Then, on E0, we have c− â
(d)
1−α ≤ f̂ bc(x) ≤ c+ â

(d)
1−α. Let

y be a point that makes E�
12 occur, i.e., y /∈ Mδ0 and f(y) < c and f̂ bc(y) ≥

c+ â
(d)
1−α. Since y /∈ Mδ0 , we in fact have f(y) < c− δ0. Note that

[f̂ bc(y)− f̂ bc(x)]− [f(y)− f(x)] ≤ |f̂ bc(y)− f(y)|+ |f̂ bc(x)− f(x)|,

which implies that, on B0,

f̂ bc(y)− f̂ bc(x) ≤ |f̂ bc(y)− f(y)|+ |f̂ bc(x)− c|+ f(y)− c < −δ0 + 2Cβ
(0)
n,h.

Also notice that, on B0, we have f̂ bc(x) ≤ c + Cβ
(0)
n,h, and therefore f̂ bc(y) <

c−δ0+3Cβ
(0)
n,h, which, for large enough n cannot occur when f̂ bc(y) ≥ c+ â

(d)
1−α.

Therefore we get E�
12 ∩ E0 ∩B0 = ∅ for n large enough.

Next we show that E�
11 ∩E0 ∩B1 = ∅ for large enough n. So we now assume

that y ∈ Mδ0 . Consider the integral curve Xy(t), which is driven by ∇f/‖∇f‖2,
starting from y. Recall that ‖∇f(z)‖ > ε0 > 0 for z ∈ Mδ0 by assumption (F2).
Let θ = c−f(y) > 0 (on E�

12). Using the property of the integral curve described

in (3.4), we have Xy(θ) ∈ M. On B1, we have 〈∇f̂ bc(z),∇f(z)/‖∇f(z)‖2〉 >

0, ∀z ∈ {Xy(t) : t ∈ [0, θ]} for n large enough. This means f̂ bc keeps increasing

on the trajectory of {Xy(t) : t ∈ [0, θ]}. Therefore, f̂ bc(Xy(θ)) > f̂ bc(y) ≥
c+ â

(d)
1−α, which contradicts E0. Therefore, E

�
11∩E0∩B1 = ∅ for n large enough.

This now results in the following. For n large enough

P(E�
1 |E0) = [P(E�

11 ∩ E0) + P(E�
12 ∩ E0)]/P(E0)

=
[
P(E�

11 ∩ E0 ∩B�
1) + P(E�

12 ∩ E0 ∩B�
0)
]
/P(E0)

≤ [P(B�
1) + P(B�

0)]/P(E0).

Since both P(B�
1) = O(n−L) and P(B�

0) = O(n−L), and P (E0) → 1 − α, the
assertion follows. The fact that P(E�

2 |E0) = O(n−L) can be shown in a similar
way. This completes the proof.

7.3. Proof of Theorem 2.2

Assuming (2.9) (or (2.11)) is true, then (2.10) (or (2.12)) can be proved in a
very similar way as for Corollary 2.1. In particular, notice that the key result
(7.16) in the proof of Corollary 2.1 can be replaced by (say, for the proof of
(2.12))

P

{
Ĉ∗,+

n,2 (1− α) ⊂ L ⊂ Ĉ∗,−
n,2 (1− α) | M ⊂ Ĉn,2(1− α)

}
= O(n−L).
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Next we prove (2.9) and (2.11). We will use C to denote a generic constant
that may be different at different occurrences. For any ĉ > 0, the following three
events are equivalent:

ME ⊂ f̂−1[c− ĉ, c+ ĉ] ⇔ f̂(x) ∈ [c− ĉ, c+ ĉ], ∀x ∈ ME

⇔ sup
x∈ME

|f̂(x)− Ef̂(x)| ≤ ĉ.

Similarly

M ⊂ f̂−1[c− ĉ, c+ ĉ] ⇔ f̂(x) ∈ [c− ĉ, c+ ĉ], ∀x ∈ M

⇔ sup
x∈M

|f̂(x)− f(x)| ≤ ĉ.

Therefore it suffices to show that

P

(
sup

x∈ME

|f̂(x)− Ef̂(x)| ≤ ĉ∗,E1−α

)
= (1− α) +O

(
Ψn(γ

E
n )
)
, (7.21)

and

P

(
sup
x∈M

|f̂(x)− f(x)| ≤ ĉ∗1−α

)
= (1− α) +

(
Ψn(γn)

)
. (7.22)

The proofs for these two results are similar. We first show (7.21) and then
briefly sketch the proof for (7.22). It is known from page 209 in Mammen and
Polonik (2013) (also see Theorem 3.1 in Neumann 1998) that for some C < ∞

P

(
sup
x∈Rd

|f̂(x)− Ef̂(x)− (f̂∗(x)− E∗f̂∗(x))| > C
(
β
(0),E
n,h +

√
β
(0)
n,g

)
β
(0),E
n,h

)
= O(n−L), (7.23)

for an arbitrarily large L > 0, which implies

P

(∣∣∣ sup
x∈M̂

|f̂(x)− Ef̂(x)| − sup
x∈M̂

|f̂∗(x)− E∗f̂∗(x)|
∣∣∣ > C

(
β
(0),E
n,h +

√
β
(0)
n,g

))
= O(n−L). (7.24)

When n is large enough there exists C1 > 0 such that M̂ ⊂
⋃

x∈ME B(x,

C1β
E
n ), where B(x, r) is the ball in Rd with center x and radius r. Therefore∣∣∣ sup

x∈M̂
|f̂(x)− Ef̂(x)| − sup

x∈ME

|f̂(x)− Ef̂(x)|
∣∣∣

≤ sup
‖x−y‖≤C1β

(0),E
n,h

∣∣∣(f̂(x)− Ef̂(x))− (f̂(y)− Ef̂(y))
∣∣∣ .
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It follows from an argument similar to the one given in Mammen and Polonik
(2013), page 209, that, for some C > 0,

P

(
sup

‖x−y‖≤C1β
(0),E
n,h

∣∣∣(f̂(x)− Ef̂(x))− (f̂(y)− Ef̂(y))
∣∣∣ ≥ Cβ

(1),E
n,h β

(0),E
n,h

)
= O(n−L).

This then leads to

P

(∣∣∣ sup
x∈M̂

|f̂(x)− Ef̂(x)| − sup
x∈ME

|f̂(x)− Ef̂(x)|
∣∣∣ ≥ Cβ

(1),E
n,h β

(0),E
n,h

)
= O(n−L),

(7.25)

which combining with (7.24) further implies

P

(∣∣∣ sup
x∈M̂

|f̂∗(x)− E∗f̂∗(x)| − sup
x∈ME

|f̂(x)− Ef̂(x)|
∣∣∣ ≥ CγE

n

)
= O(n−L),

(7.26)

where γE
n is given in (2.7). As a result of Proposition 3.1 in Neumann (1998) we

obtain with Ψn as in (2.6),

P

(
sup

x∈ME

|f̂(x)− Ef̂(x)| ∈ [c, d]
)
= O

(
Ψn(d− c)

)
, (7.27)

where this rate holds uniformly in 0 ≤ c < d < ∞ Thus, for some C > 0, we
have

sup
t∈R

P

(
sup

x∈ME

|f̂(x)− Ef̂(x)| ∈ [t, t+ γE
n ]
)
≤ CΨn

(
γE
n

)
. (7.28)

With (7.26) and (7.28), then (7.21) follows from Lemma 2.4 in Mammen and
Polonik (2013).

Next, we briefly outline the proof of (7.22). Following the proof on page 207
and Mammen and Polonik (2013) (also see Lemma 3 in Arias-Castro et al. 2016),
we have that under our assumption, for some C > 0,

P

(
sup
x∈Rd

∣∣∣ ∂2

∂xi∂xj
f̂g(x)−

∂2

∂xi∂xj
f(x)

∣∣∣ ≥ Cβ(2)
n,g

)
= O(n−L),

for all i, j = 1, · · · , d. (7.29)

Mammen and Polonik (2013, page 210) show that, for all δ > 0, there exists
C > 0 such that

sup
‖x‖≤δ

|[E∗f̂∗(x)− Ef̂(x)]− [f̂g(x)− f(x)]|

≤ Ch2
d∑

i,j=1

sup
‖x‖≤δ+

√
dh

∣∣∣ ∂2

∂xi∂xj
f̂g(x)− ∂2

∂xi∂xj
f(x)

∣∣∣ a.s.
(7.30)
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Since M̂ ⊂ B(0, δ) for large δ when n is large enough with probability one,
by (7.23), (7.29) and (7.30) we have

P

(∣∣∣ sup
x∈M̂

|f̂(x)− f(x)| − sup
x∈M̂

|f̂∗(x)− f̂g(x)|
∣∣∣

> C
((
β
(0),E
n,h + β(0)

n,g

)
β
(0),E
n,h + h2β(2)

n,g

))
= O(n−L). (7.31)

Since there exists C2 > 0 such that M̂ ⊂
⋃

x∈ME B(x,C2β
(0)
n,h) when n is large

enough, the following result similar to (7.25) can be derived

P

(∣∣∣ sup
x∈M̂

|f̂(x)− f(x)| − sup
x∈M

|f̂(x)− f(x)|
∣∣∣ ≥ Cβ

(1)
n,hβ

(0)
n,h

)
= O(n−L). (7.32)

Then combining (7.31) and (7.32) we get

P

(∣∣∣ sup
x∈M̂

|f̂∗(x)− f̂g(x)| − sup
x∈M

|f̂(x)− f(x)|
∣∣∣ ≥ Cγn

)
= O(n−L), (7.33)

where γn is given in (2.8). Mammen and Polonik (2013) modify (7.27) to

P

(
sup
x∈M

|f̂(x)− f(x)| ∈ [c, d]
)
= O

(
Ψn(d− c)

)
, (7.34)

which immediately gives, for some C > 0,

P

(
sup
x∈M

|f̂(x)− f(x)| ∈ [t, t+ γn]
)
≤ CΨn

(
γn
)
, (7.35)

where (7.34) and (7.35) hold uniformly over 0 ≤ c < d < ∞ and t ∈ R,

respectively. Applying Lemma 8.1 with Zn = supx∈M |f̂(x) − f(x)| and Z∗
n =

sup
x∈M̂ |f̂∗(x)− f̂g(x)|, by using (7.33) and (7.35), we obtain (7.22).

7.4. Proof of Theorem 2.3

Following the same argument as in the proof of Theorem 2.2, (2.15) follows
easily (using the proof of Corollary 2.1) once (2.14) is proved. We will only
show the latter. Since

β(x) =
1

2
h2

∫
u2
1K(u)du

d∑
j=1

∂2

∂xj∂xj
f(x) +O(h4),

we have

sup
x∈M

|β̂(x)− β(x)| = Oa.s.(h
2 β

(2)
n,l + h4). (7.36)

Similar to (7.29), there exists C > 0 such that, for an arbitrary L > 0,

P

(
sup
x∈M

|β̂(x)− β(x)| ≥ Ch2
(
β
(2)
n,l + h2

))
= O(n−L), (7.37)
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and, similar to (7.25), we obtain

P

(∣∣∣ sup
x∈M̂

|f̂(x)− Ef̂(x)| − sup
x∈M

|f̂(x)− Ef̂(x)|
∣∣∣ ≥ Cβ

(1),E
n,h β

(0)
n,h

)
= O(n−L).

(7.38)

Since
∣∣∣ supx∈M̂ |f̂(x)−Ef̂(x)|− supx∈M |f̂(x)−Ef̂(x)|

∣∣∣+supx∈M |β̂(x)−β(x)|

≥
∣∣∣ supx∈M̂ |f̂(x) − Ef̂(x)| − supx∈M |f̂ bc(x) − f(x)|

∣∣∣, combining (7.37) and

(7.38), we have

P

(∣∣∣ sup
x∈M̂

|f̂(x)− Ef̂(x)| − sup
x∈M

|f̂ bc(x)− f(x)|
∣∣∣

≥ C
(
β
(1),E
n,h βn + h2(β

(2)
n,l + h2)

))
= O(n−L). (7.39)

By (7.24), we get

P

(∣∣∣ sup
x∈M̂

|f̂∗(x)− E∗f̂∗(x)| − sup
x∈M

|f̂ bc(x)− f(x)|
∣∣∣ ≥ Cγbc

n

)
= O(n−L). (7.40)

Similar to (7.34), we have

P

(
sup
x∈M

|f̂(x)− Ef̂(x)| ∈ [c, d]
)
= O

(
Ψn(d− c)

)
(7.41)

where this convergence is uniform in 0 ≤ c < d < ∞. Combining (7.37) and

(7.41), we have with κn = Ch2(β
(2)
n,l + h2),

P

(
sup
x∈M

|f̂ bc(x)− f(x)| ∈ [c, d]
)

≤P

(
sup
x∈M

|f̂(x)− Ef̂(x)| ∈ [c− κn, d+ κn]
)
+O(n−L)

=O
(
Ψn(d− c) + κn

√
nhd logn

)
. (7.42)

This then implies that, for some C > 0,

sup
t∈R

P

(
sup
x∈M

|f̂ bc(x)− f(x)| ∈ [t, t+ γbc
n ]
)
≤ CΨn(γ

bc
n ). (7.43)

Therefore, using Lemma 8.1 with (7.40) and (7.43), we have

P

(
sup
x∈M

|f̂ bc(x)− f(x)| ≤ ĉ∗,E1−α

)
= (1− α) +O

(
Ψn(γ

bc
n )
)
,

and the conclusion of the theorem follows.
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7.5. Proofs for Section 3

We begin with two lemmas that will be needed in the proofs. Recall that
f̂ bc(x) = f̂(x)− β̂(x) be the de-biased density estimator, and X̂bc

x be the integral

curve driven by ∇f̂ bc

‖∇f̂ bc‖2
and θ̂ bc

x be the corresponding time when X̂bc
x hits M̂bc.

Lemma 7.1. Under assumptions (F1), (F2), (K), β
(1)
n,h = o(1) and β

(3)
n,l = o(1)

as n → ∞, with probability one we have that for x ∈ M the solution θ̂bcx in (3.6)

exists and is unique for n large enough. In such a case the mapping x → X̂ bc
x (θ̂ bc

x )

is bijective between M and M̂bc.

Proof of Lemma 7.1. Throughout this proof we assume that the sample size is
large enough. We first show that the solution θ̂bcx in (3.6) exists and is unique.

Due to the strong consistency of f̂ bc, we have that M̂bc ⊂ Mδ0 := f−1[c−δ0, c+

δ0]. Also due to the strong consistency of gradient estimator ∇f̂ bc implied by

(7.19) and (7.20), we have ‖∇f̂ bc‖ > ε0/2 for all x ∈ Mδ0 by assumption (F2).

Since the trajectory of X̂bc
x is driven by ∇f̂ bc, for x ∈ M we have the existence

and uniqueness of θ̂bcx and −∞ < θ̂bcx < ∞. Also using ‖∇f̂ bc‖ > 0 again,

as a property of integral curves we have X̂ bc
x (θ̂bcx1

) �= X̂ bc
x (θ̂bcx2

) if x1 �= x2 for
x1, x2 ∈ M.

The above argument also implies that the mapping x → X̂ bc
x (θ̂ bc

x ) is bijective

between M and M̂bc. The injectivity is an immediate consequence. Next we
show the surjectivity. For any y ∈ M̂bc, without loss of generality we assume
f(y) < c. Since 〈∇f̂ bc,∇f/‖∇f‖2〉 > 0 on Mδ0 , the value of f keeps increasing

on the trajectory of X̂ bc
y . Therefore there exists a finite time θ̃y when X̂ bc

y hits

M. Let x = X̂ bc
y (θ̃y) and θ̂ bc

x = −θ̃y. Then y = X̂ bc
x (θ̂ bc

x ).

Lemma 7.2. Under assumptions (F1), (F2), (K), (H1)2 and (H2)2 we have
with

τn = β
(0),E
n,h + h2

(
β
(2)
n,l + h2

)
, (7.44)

that

sup
x∈M

|θ̂ bc
x | = sup

x∈M
|f̂ bc(x)− f(x)| = Oa.s. (τn) , (7.45)

and

sup
x∈M

∣∣∣‖∇f̂ bc(X̂bc
x (θ̂ bc

x ))‖‖X̂ bc
x (θ̂ bc

x )− x‖ − |f̂ bc(x)− f(x)|
∣∣∣ = Oa.s.

(
τ2n
)
. (7.46)

Proof of Lemma 7.2. By Lemma 7.1, for x ∈ M, θ̂bcx exists and is unique for

large sample. For x ∈ M, f(x) = c = f̂ bc(X̂ bc
x (θ̂ bc

x )) and therefore

θ̂ bc
x = f̂ bc(X̂ bc

x (θ̂ bc
x ))− f̂ bc(x) = f(x)− f̂ bc(x). (7.47)
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Consequently,

sup
x∈M

|θ̂ bc
x | = sup

x∈M
|f̂ bc(x)− f(x)| = sup

x∈M
|f̂(x)− Ef̂(x) + β(x)− β̂(x)|

= Oa.s. (τn) ,

where we have used (7.36). This is (7.45). Next we prove (7.46). Without loss

of generality we assume θ̂ bc
x > 0 in what follows. We can write

X̂ bc
x (θ̂ bc

x )− x =

∫ θ̂ bc
x

0

∇f̂ bc(X̂ bc
x (t))

‖∇f̂ bc(X̂ bc
x (t))‖2

dt

=
∇f̂ bc(X̂ bc

x (θ̂ bc
x ))

‖∇f̂ bc(X̂ bc
x (θ̂ bc

x ))‖2
θ̂ bc
x +

∫ θ̂ bc
x

0

η̂ bc(t)dt. (7.48)

where we denote η̂ bc(t) =
∇f̂ bc(X̂ bc

x (t))

‖∇f̂ bc(X̂ bc
x (t))‖2

− ∇f̂ bc(X̂ bc
x (θ̂ bc

x ))

‖∇f̂ bc(X̂ bc
x (θ̂ bc

x ))‖2
. From (7.48) we

obtain ∣∣∣‖X̂ bc
x (θ̂ bc

x )− x‖ − |θ̂ bc
x |

‖∇f̂ bc(X̂ bc
x (θ̂ bc

x ))‖

∣∣∣ ≤ sup
t∈[0,θ̂ bc

x ]

‖η̂ bc(t)‖|θ̂ bc
x |.

By (7.47) we have

sup
x∈M

∣∣‖∇f̂ bc(X̂ bc
x (θ̂ bc

x ))‖‖X̂ bc
x (θ̂ bc

x )− x‖ − |f(x)− f̂ bc(x)|
∣∣

≤ sup
x∈M

sup
t∈[0,θ̂ bc

x ]

‖η̂ bc(t)‖ supx∈M |θ̂ bc
x | supx∈M ‖∇f̂ bc(X̂ bc

x (θ̂ bc
x ))‖. (7.49)

Using assumptions (H1)2 and (H2)2, we obtain for some small ε > 0

sup
y∈M⊕ε

max{‖∇2f̂ bc(y)−∇2f(y)‖F , ‖∇f̂ bc(y)−∇f(y)‖} = oa.s.(1),

where ‖ · ‖F is the Frobenius norm and M⊕ ε = {x ∈ Rd : d(x,M) ≤ ε}. By
using Taylor expansion, we then have for some small ε > 0,

sup
t∈[0,θ̂ bc

x ]

‖η̂ bc(t)‖ ≤ sup
y∈M⊕ε

[
‖∇2f̂ bc(y)‖F ‖∇f̂ bc(y)‖−1

]
θ̂ bc
x .

Therefore using (7.49) for some C > 0, with probability one for n large
enough,

sup
x∈M

∣∣∣‖∇f̂ bc(X̂ bc
x (θ̂ bc

x ))‖‖X̂ bc
x (θ̂ bc

x )− x‖ − |f(x)− f̂ bc(x)|
∣∣∣ ≤ C sup

x∈M
|θ̂ bc

x |2.

We conclude the proof of (7.46) by using (7.45).
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Proof of Theorem 3.1. First notice that (3.8) (or (3.10)) follows from (3.7 (or
(3.9)) using the same approach as in the proof of Corollary 2.1. We point out
that the events E1 and E2 defined in the proof of Corollary 2.1 need to be
replaced by (say, for the proof of (3.8))

E1 = {f(y) ≥ c, ∀y s.t. y ∈ Ĉ+
n,4(1− α)},

and E2 = {y ∈ Ĉ−
n,4(1− α), ∀y s.t. f(y) ≥ c}.

Then we can show that

P

{
Ĉ+

n,4(1− α) ⊂ L ⊂ Ĉ+
n,4(1− α) | M ⊂ Ĉn,4(1− α)

}
=P

{
E1 ∩ E2 | M ⊂ Ĉn,4(1− α)

}
= O(n−L).

Details are omitted. We focus on the proofs of (3.10) and (3.9) in what follows.

Part 1. The result immediately follows from Lemma 7.2 and Theorem 2.1.

Part 2. By (7.39) and Lemma 7.2 we obtain that for some C > 0

P

(∣∣∣ sup
x∈M̂

|f̂(x)− Ef̂(x)| − sup
x∈M

‖∇f̂ bc(X̂ bc
x (θ̂ bc

x ))‖‖X̂ bc
x (θ̂ bc

x )− x‖
∣∣∣

≥ C
(
τ2n + β

(1),E
n,h β

(0)
n,h + h2(β

(2)
n,l + h2)

))
= O(n−L). (7.50)

Noting that τ2n = o
(
β
(1),E
n,h β

(0)
n,h + h2

(
β
(2)
n,l + h2

))
, the assertion follows from an

argument similar to that in the proof of Theorem 2.3.

The proof of Theorem 3.2. Following the same argument as in the proof of The-
orem 3.1, we will only show (3.11) and (3.12) can be derived consequently. Using
Lemma 7.2 we have

P

(
sup
x∈M

∣∣∣‖X̂ bc
x (θ̂ bc

x )− x‖ − |f̂ bc(x)−f(x)|
‖∇f̂ bc(X̂ bc

x (θ̂ bc
x ))‖

∣∣∣ ≥ Cτ2n

)
≤ n−L. (7.51)

Similarly, if we consider the trajectories X̂x traveling between ME and M̂,
then we have

P

(
sup

x∈ME

∣∣∣‖X̂x(θ̂x)− x‖ − |f̂(x)−Ef̂(x)|
‖∇f̂(X̂x(θ̂x))‖

∣∣∣ ≥ C
(
β
(0),E
n,h

)2) ≤ n−L.

Let P∗ be the conditional probability measure given X1, · · · , Xn. Then the
bootstrap version of the above result is as follows.

EP∗
(

sup
x∈M̂∗,E

∣∣∣‖X̂∗
x(θ

∗
x)− x‖ − |f̂∗(x)−f̂∗,E(x)|

‖∇f̂∗(X̂∗
x(θ̂

∗
x))‖

∣∣∣ ≥ C
(
β
(0),E
n,h

)2) ≤ n−L. (7.52)

Notice that EP∗ = P. Let αn = C1

(
β
(0)
n,g + h2

)
for some C1 fixed and large

enough. Let M ⊕ αn = {x ∈ Rd : d(x,M) ≤ αn}. With νn,i, i = 1, · · · , 5 to
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be given in (7.59), (7.60), (7.61), (7.64) and (7.65), we will show the following
inequalities:

P

(
sup
x∈M

∣∣∣ |f̂ bc(x)−f(x)|
‖∇f̂ bc(X̂ bc

x (θ̂ bc
x ))‖ − |f̂ bc(x)−f(x)|

‖∇f(x)‖

∣∣∣ ≥ Cνn,1

)
≤ n−L, (7.53)

P

(∣∣∣ sup
x∈M⊕αn

|f̂ bc(x)−f(x)|
‖∇f(x)‖ − supx∈M

|f̂ bc(x)−f(x)|
‖∇f(x)‖

∣∣∣ ≥ Cνn,2

)
≤ n−L, (7.54)

P

(∣∣∣ sup
x∈M⊕αn

|f̂ bc(x)−f(x)|
‖∇f(x)‖ − sup

x∈M⊕αn

|f̂∗(x)−f̂ ∗,E(x)|
‖∇f(x)‖

∣∣∣ ≥ Cνn,3

)
≤ n−L, (7.55)

P

(∣∣∣ sup
x∈M⊕αn

|f̂∗(x)−f̂ ∗,E(x)|
‖∇f(x)‖ − sup

x∈M̂∗,E

|f̂∗(x)−f̂ ∗,E(x)|
‖∇f(x)‖

∣∣∣ ≥ Cνn,4

)
≤ n−L, (7.56)

P

(∣∣∣ sup
x∈M̂∗,E

|f̂∗(x)−f̂ ∗,E(x)|
‖∇f(x)‖ − sup

x∈M̂∗,E

|f̂∗(x)−f̂ ∗,E(x)|
‖∇f̂∗(X̂∗

x(θ̂
∗
x))‖

∣∣∣ ≥ Cνn,5

)
≤ n−L. (7.57)

Verification of (7.53). It follows from Lemma 7.2 that

sup
x∈M

‖X̂ bc
x (θ̂ bc

x )− x‖ = Oa.s.(τn). (7.58)

In other words, there exists C0 > 0 such that supx∈M ‖X̂ bc
x (θ̂ bc

x ) − x‖ ≤ C0τn
for n large enough with probability one. Then we have

sup
x∈M

∣∣∣‖∇f̂ bc(X̂ bc
x (θ̂ bc

x ))‖ − ‖∇f(x)‖
∣∣∣

≤ sup
x∈M

‖∇f̂ bc(X̂ bc
x (θ̂ bc

x ))−∇f(x)‖

≤ sup
x∈M,‖y−x‖≤C0τn

‖∇f̂ bc(y)−∇f(x)‖

≤ sup
y∈M⊕(C0τn)

‖∇f̂ bc(y)−∇f(y)‖+ sup
‖y−x‖≤C0τn

‖∇f(x)−∇f(y)‖

= Oa.s.

(
β
(1),E
n,h + h2

(
β
(3),E
n,l + 1

)
+ τn

)
,

where we have used (7.19) and (7.20). Thus,

νn,1 = τn

(
β
(1),E
n,h + h2

(
β
(3),E
n,l + 1

)
+ τn

)
. (7.59)

Verification of (7.54). We have that∣∣∣ sup
x∈M⊕αn

|f̂ bc(x)−f(x)|
‖∇f(x)‖ − sup

x∈M

|f̂ bc(x)−f(x)|
‖∇f(x)‖

∣∣∣
≤ sup

x∈M,‖x−y‖≤αn

∣∣∣ |f̂ bc(x)−f(x)|
‖∇f(x)‖ − |f̂ bc(y)−f(y)|

‖∇f(y)‖

∣∣∣
≤ 1

ε20
sup

x∈M,‖x−y‖≤αn

‖∇f(x)−∇f(y)‖|f̂ bc(x)− f(x)|

+
1

ε0
sup

x∈M,‖x−y‖≤αn

|[f̂ bc(x)− f(x)]− [f̂ bc(y)− f(y)]|.
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Note that

P

(
sup
x∈M

‖x−y‖≤αn

‖∇f(x)−∇f(y)‖|f̂ bc(x)− f(x)| ≤ Cαnτn

)
≤ n−L,

and

P

(
sup
x∈M

‖x−y‖≤αn

|[f̂ bc(x)− f(x)]− [f̂ bc(y)− f(y)]| ≥ Cαn

(
β
(1),E
n,h + h2

(
β
(3),E
n,l + 1

)))
≤ n−L,

where the last equality is obtained following a similar argument on pages 208-209
of Mammen and Polonik (2013). Then we have

νn,2 = αn

(
β
(1),E
n,h + h2

(
β
(3),E
n,l + 1

))
. (7.60)

Verification of (7.55). Note that∣∣∣ sup
x∈M⊕αn

|f̂ bc(x)−f(x)|
‖∇f(x)‖ − sup

x∈M⊕αn

|f̂∗(x)−f̂ ∗,E(x)|
‖∇f(x)‖

∣∣∣
≤ sup

x∈M⊕αn

∣∣∣ |f̂ bc(x)−f(x)|−|f̂∗(x)−f̂ ∗,E(x)|
‖∇f(x)‖

∣∣∣
≤ 1

ε0
sup

x∈M⊕αn

∣∣∣[f̂(x)− Ef̂(x)]− [f̂∗(x)− f̂ ∗,E(x)]
∣∣∣+ 1

ε0
sup

x∈M⊕αn

|β̂(x)− β(x)|.

With (7.23) and (7.37), we have

νn,3 =
(
β
(0),E
n,h +

√
β
(0)
n,g

)
β
(0),E
n,h + h2

(
β
(2)
n,l + h2

)
. (7.61)

Verification of (7.56). First observe that

f̂ ∗,E(x) =
1

nhdgd

n∑
i=1

∫
Rd

K

(
x− y

h

)
K

(
y −Xi

g

)
dy

=
1

ngd

n∑
i=1

∫
Rd

K (z)K

(
x− hz −Xi

g

)
dz.

We want to show

P

{
sup
x∈Rd

|f̂ ∗,E(x)− f(x)| < Cαn

}
= O(n−L). (7.62)

On the one hand,
√
n[f̂ ∗,E(x)−Ef̂ ∗,E(x)] can be viewed as an empirical process

indexed by { 1

gd

∫
Rd

K(z)K
(x− hz − ·

g

)
dz, x ∈ Rd

}
.
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Under our assumptions on the bandwidth and kernel function, following a similar
argument on page 207 of Mammen and Polonik (2013), we have

P

{
sup
x∈Rd

|f̂ ∗,E(x)− Ef̂ ∗,E(x)| > Cβ(0),E
n,g

}
= O(n−L). (7.63)

On the other hand, notice that

Ef̂ ∗,E(x) =

∫
Rd

∫
Rd

K(z)K(u)f(x− hz − gu)dzdu.

A standard argument leads to

sup
x∈Rd

|Ef̂ ∗,E(x)− f(x)| = O(h2 + g2).

Then (7.62) is a consequence of the above results. Therefore following the same

argument as in Cuevas et al. (2006), we have dH(M̂ ∗,E ,M) = Oa.s. (αn) , which
implies that for C1 large enough and when the sample size is large enough,
M̂ ∗,E ⊂ M⊕ αn with probability one. Therefore∣∣∣ sup

x∈M⊕αn

|f̂∗(x)− f̂ ∗,E(x)|
‖∇f(x)‖ − sup

x∈M̂∗,E

|f̂∗(x)− f̂ ∗,E(x)|
‖∇f(x)‖

∣∣∣
≤ sup

x∈M̂∗,E ,‖x−y‖≤2αn

∣∣∣ |f̂∗(x)− f̂ ∗,E(x)|
‖∇f(x)‖ − |f̂∗(y)− f̂ ∗,E(y)|

‖∇f(y)‖

∣∣∣.
Following the same argument as for (7.54), we have

EP∗
(∣∣∣ sup

x∈M⊕αn

|f̂∗(x)− f̂ ∗,E(x)|
‖∇f(x)‖ − sup

x∈M̂∗,E

|f̂∗(x)− f̂ ∗,E(x)|
‖∇f(x)‖

∣∣∣ ≥ Cνn,4

)
≤ n−L

with

νn,4 = αnβ
(1),E
n,h . (7.64)

Verification of (7.57). Following an argument similar to (7.58), there exists

C0 > 0 such that sup
x∈M̂∗,E ‖X̂∗

x(θ̂
∗
x) − x‖ ≤ C0β

(0),E
n,h when the sample size is

large enough with probability one. Then we have

sup
x∈M̂∗,E

∣∣∣‖∇f̂∗(X̂∗
x(θ̂

∗
x))‖ − ‖∇f(x)‖

∣∣∣
≤ sup

x∈M̂∗,E
‖∇f̂∗(X̂∗

x(θ̂
∗
x))−∇f(x)‖

≤ sup
x∈M̂∗,E ,‖y−x‖≤C0β

(0),E
n,h

‖∇f̂∗(y)−∇f(x)‖

≤ sup
y∈M̂∗,E⊕

(
C0β

(0),E
n,h

) ‖∇f̂∗(y)−∇f(y)‖+ sup
‖y−x‖≤C0βE

n

‖∇f(x)−∇f(y)‖
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≤ sup
y∈M̂∗,E⊕

(
C0β

(0),E
n,h

) ‖∇f̂∗(y)−∇f̂∗,E(y)‖

+ sup
y∈M̂∗,E⊕

(
C0β

(0),E
n,h

) ‖∇f̂∗,E(y)−∇f(y)‖+ sup
‖y−x‖≤C0βE

n

‖∇f(x)−∇f(y)‖.

Here

∇f̂∗,E(x) =
1

nhd+1gd

n∑
i=1

∫
∇K

(
x− y

h

)
K

(
y −Xi

g

)
dy

=
1

nhgd

n∑
i=1

∫
∇K (z)K

(
x− hz −Xi

g

)
dz

=
1

ngd+1

n∑
i=1

∫
K (z)∇K

(
x− hz −Xi

g

)
dz.

Similar to (7.62), we have

P

{
sup

y∈M̂∗,E⊕
(
C0β

(0),E
n,h

) ‖∇f̂∗,E(y)−∇f(y)‖ > C
(
β
(1)
n,g + h2

)}
= O(n−L).

Also, following standard arguments, we obtain

EP∗
{

sup
y∈M̂∗,E⊕

(
C0β

(0),E
n,h

) ‖∇f̂∗(y)−∇f̂∗,E(y)‖ > Cβ
(1),E
n,h

}
= O(n−L),

and

sup
‖y−x‖≤C0β

(0),E
n,h

‖∇f(x)−∇f(y)‖ = O
(
β
(0),E
n,h

)
.

Therefore

νn,5 = β
(0),E
n,h

(
β(1)
n,g + β

(1)
n,h

)
. (7.65)

After collecting the results (7.51), (7.52), (7.53), (7.54), (7.55), (7.56) and (7.57),
we have

P

(∣∣∣ sup
x∈M

‖X̂ bc
x (θ̂ bc

x )− x‖ − sup
x∈M̂∗,E

‖X̂∗
x(θ

∗
x)− x‖

∣∣∣ ≥ C(γbc
n + ζn/

√
nhd logn)

)
≤ n−L, (7.66)

because γbc
n + ζn/

√
nhd logn is the leading term of τ2n+

(
β
(0),E
n,h

)2
+νn,1+νn,2+

νn,3 + νn,4 + νn,5.
Similar to (7.42), we obtain

P

(
sup
x∈M

|f̂ bc(x)−f(x)|
‖∇f(x)‖ ∈ [c, d]

)
= O

(
Ψn(d− c) + h2

(
β
(2)
n,l + h2

)√
nhd logn

)
.

(7.67)
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Note that the proof of the above result need to adapt the proof of Proposition
3.1 in Neumann (1998). Specifically, using Neumann’s notation, corresponding
to page 2045 in Neumann (1998), we have that

sup
k∈Kl

{
sup
x∈Ik

( Tk1

‖∇f(x)‖ +
Tk2(x)

‖∇f(x)‖
)}

∈ [c, d]

implies

sup
k∈Kl

{ Tk1

‖∇f(xk)‖
+ sup

x∈Ik

Tk2(x)

‖∇f(x)‖
}
∈ [c− κn, d+ κn],

where xk is a fixed point on Ik, say (2(k1 − 1)h, · · · , 2(kd − 1)h), and κn =

Chβ
(0),E
n,h . This is because Ik is a cube with size length of h, ‖∇f‖ is differentiable

and bounded away from zero in a neighborhood of the level set. Then the rest
of the proof follows the proof of Proposition 3.1 in Neumann (1998).

With (7.51), (7.53) and (7.67), we have with λn = C(τ2n + νn,1),

P

(
sup
x∈M

‖X̂ bc
x (θ̂ bc

x )− x‖ ∈ [c, d]
)

≤ P

(
sup
x∈M

|f̂ bc(x)− f(x)|
‖∇f(x)‖ ∈ [c− λn, d+ λn]

)
+O(n−L)

= O
(
Ψn(d− c) + h2

(
β
(2)
n,l + h2

)√
nhd log n+ λn

√
nhd logn

)
. (7.68)

An application of Lemma 8.1 with Zn = supx∈M ‖X̂ bc
x (θ̂ bc

x ) − x‖ and Z∗
n =

sup
x∈M̂∗,E ‖X̂∗

x(θ
∗
x)− x‖, by using (7.66) and (7.68), concludes the proof.

8. Appendix

The following result is essentially taken from Mammen and Polonik (2013). We
state it here for easy reference.

Using the notation introduced above, let Zn be a statistic, and let Z∗
n be a

bootstrap version of this statistic. For 0 < α < 1, define

ĉ∗n(1− α) = sup
{
t : P ∗(Z∗

n ≤ t) ≤ 1− α
}

and let cn(1−α) be defined similarly with Z∗
n replaced by Zn (and P ∗ replaced

by P ).

Lemma 8.1. Suppose that there exist sequences {γn}, {δn} and {τn} such that

P
(
|Zn − Z∗

n| > γn
)
≤ δn and (8.1)

sup
t∈R

P
(
Zn ∈ [t, t+ γn)

)
≤ τn. (8.2)

Then we have, for 0 < α < 1,

∣∣P(Zn ≤ ĉ∗n(1− α)
)
− (1− α)

∣∣ ≤ 7τn + 5
√

δn. (8.3)
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Proof. Lemma 2.4 of Mammen and Polonik (2013) says that under the stated
conditions, we have∣∣P(Zn ≤ ĉ∗n(1− α)

)
− P

(
Zn ≤ cn(1− α)

)∣∣ ≤ 6τn + 5
√
δn .

It remains to observe that, by using assumption (8.2),∣∣P(Zn ≤ cn(1− α)
)
− (1− α)

∣∣ ≤ sup
t∈R

P
(
Zn ∈ [t− γn, t+ γn)

)
≤ τn.

Note that in Mammen and Polonik (2013), the quantities Zn and Z∗
n denote

particular statistics, their Lemmas 2.2 and 2.4 in fact hold for any statistics
satisfying (8.1) and (8.2). Indeed, an inspection of their proofs shows that they
do not use any other properties of the statistics.
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Cuevas, A., Fraiman, R., and Pateiro-López, B. (2012): On statistical properties
of sets fulfilling rolling-type conditions. Advances in Applied Probability 44
311-329. MR2977397
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