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Abstract: The main focus of the analysts who deal with clustered data
is usually not on the clustering variables, and hence the group-specific pa-
rameters are treated as nuisance. If a fixed effects formulation is preferred
and the total number of clusters is large relative to the single-group sizes,
classical frequentist techniques relying on the profile likelihood are often
misleading. The use of alternative tools, such as modifications to the pro-
file likelihood or integrated likelihoods, for making accurate inference on
a parameter of interest can be complicated by the presence of nonstan-
dard modelling and/or sampling assumptions. We show here how to em-
ploy Monte Carlo simulation in order to approximate the modified profile
likelihood in some of these unconventional frameworks. The proposed so-
lution is widely applicable and is shown to retain the usual properties of
the modified profile likelihood. The approach is examined in two instances
particularly relevant in applications, i.e. missing-data models and survival
models with unspecified censoring distribution. The effectiveness of the
proposed solution is validated via simulation studies and two clinical trial
applications.
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1. Introduction

Clustered data, either cross-sectional or longitudinal observations which may be
arranged in groups, are nowadays encountered in all applied areas. Their main
characteristic is the unobserved heterogeneity across clusters, with the conse-
quence that units within a cluster might be correlated. How to deal with such
correlation depends strongly on the purpose of the study. When the interest is
on group-specific effects and also on estimation of the intra-cluster correlation,
a frequent practice is to assume a random effects model. In this setting, cluster-
specific covariate effects depend on unobservable latent variables, named random
effects. Such a modelling strategy leads to the so-called conditional approach.
Alternatively, if the interest centers on comparing the response variable of units
across groups, it is preferable to adopt marginal models, where the clustering
structure is ignored for estimation of the regression coefficients and is only em-
ployed to ensure correct inference on the standard errors. These specifications
are usually estimated using generalized estimating equations [22]. Generally, in-
terpretation of the regression coefficients in conditional and marginal models
is different. Therefore the corresponding estimates are not directly comparable
(see, for instance, [21] and [1, Chapter 9]). In this paper, we will focus mainly
on the conditional approach.

Random effects models require to assume some suitable underlying distribu-
tion for the random effects, and even their incorrelation with the covariates in
the model [20]. The latter unrealistic hypothesis frequently drives the decision
to opt for a more flexible fixed effects approach, a choice particularly popular
in the econometric literature. Fixed effects models capture the heterogeneity
among clusters via the inclusion of nuisance parameters, one for every group.
These are also referred to as incidental parameters [20], since each of them ap-
pears only in the distribution of the observations in one given cluster. Under
fixed effects models, as well as under marginal models, inferential results are free
from any assumption on the probabilistic distribution regarding the dependence
structure within clusters. In addition, if also relevant for the analysis, the fixed
effects strategy allows to quantify the heterogeneity across groups by comparing
the estimates of the cluster-specific parameters.

The increased robustness of the fixed effects solution over the random effects
one in the conditional approach is balanced by the drawback that when clusters
have small to moderate size, likelihood inference is prone to suffer from the
incidental parameters problem [28]. Such problem depends on the fact that
the bias of the profile score function for the parameter of interest increases
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along with the dimension of the nuisance component in the model (see, e.g.,
[25]), invalidating usual asymptotic results if the number of groups, N , is much
larger than the single group size, T . Reliable inference on the parameter of
interest needs thus to be carried out via alternative pseudo-likelihoods which
are unaffected by this issue.

Exact pseudo-likelihoods leading to extremely accurate conclusions are only
available in specific model classes [37, Chapter 8]. Correcting the profile likeli-
hood for the presence of incidental parameters represents instead a more general
strategy. Among the several adjustments found in the literature, a prominent
position is held by the modified profile likelihood (MPL) of Barndorff-Nielsen
[3, 4]. Specifically, [35] proved its inferential superiority with respect to the ordi-
nary profile likelihood within the (T ×N)-asymptotic setting that characterizes
clustered data with independent units.

Under the same frequentist paradigm, another possible approach to avoid the
incidental parameters problem is the integrated likelihood for the component of
interest [38], where elimination of the fixed effects is achieved by integration in
an appropriate parametrization. [13] have shown that this function is asymptot-
ically equivalent to the MPL and enjoys analogue properties in the two-index
asymptotics for clustered data.

The first formulation of the MPL involves statistical quantities which are eas-
ily obtainable only for exponential or group family models [29, Chapters 5, 7].
Such computational difficulties can be overcome by the approximate MPL owed
to [36] just within a limited range of statistical problems. [5] use Monte Carlo
simulation in order to compute Severini’s version of the MPL when its exact
calculation, although possible in principle, is especially tedious, given the as-
sumed dependence structure of the data. The same complication arises under
the nonstationary autoregressive model for normally distributed observations,
discussed in [13, Example 4.3] as an example of application for the integrated
likelihood. In the Supplementary material, it is possible to see how the MPL
can be conveniently computed via Monte Carlo simulation even in that setting.

The aim of this paper is to extend the Monte Carlo approach to situations
where the analytical calculation of the MPL is not only tedious, but can also be
infeasible due to peculiar modelling and/or sampling hypotheses. We illustrate
the potential usefulness of the method in two frameworks highly relevant for ap-
plications. In particular, the first considers binary regression with nonignorable
missing response, while the second deals with survival data with unspecified
censoring distribution. In both cases, although not directly covered by the the-
ory in [35], the usual good inferential properties of the MPL are empirically
confirmed, suggesting the proposed Monte Carlo solution as the default choice
in applications.

The structure of the paper is as follows. Section 2 introduces the basic no-
tation and defines the profile and modified profile log-likelihoods in models for
clustered data. The procedure for computing the MPL through Monte Carlo
approximation is detailed in Section 3, and then its use is illustrated by means
of simulations in different nonstandard contexts for grouped observations. In
particular, datasets with possibly missing binary response are considered by Sec-
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tion 4, whereas Section 5 is dedicated to survival data with unspecified censoring
mechanism. The issues related to the calculation of the MPL are ascribable to
the model complexity implied by the incompleteness of the data in the first
case, and to the lack of parametric assumptions on the distribution of the cen-
soring times in the second. In both frameworks we also consider an application
to clinical trial data that illustrates the practical effectiveness of the method.
Main results are summarised and commented in Section 6, which also mentions
potential developments of the present work.

2. Profile and modified profile likelihood

For clustered observations yit subdivided in N groups of sizes Ti, suppose the
parametric statistical model

Yit|Xit = xit ∼ p(yit|xit;ψ, λi) , i = 1, . . . , N, t = 1, . . . , Ti, (1)

which accommodates also dynamic specifications where the index t runs over
consecutive time periods and the temporal evolution of the dependent variable
is explained by including in the p-dimensional vector of covariates xit responses
previously recorded in the same cluster (see Section S2 of the Supplementary
material). The global parameter is θ = (ψ, λ), where ψ ∈ Ψ ⊆ IRk denotes the
component of interest and λ = (λ1, . . . , λN ) ∈ Λ indicates the vector containing
the incidental parameters. Note that, here and henceforth, in order to avoid
clutter we omit the transpose symbol acting on vectors unless such an omission
could result in ambiguity. In the following, the assumptions of balanced groups
and scalar nuisance components, i.e. Ti = T and dim(λi) = 1 for each i =
1, . . . , n, respectively, shall be used without loss of generality, for the sake of
notational simplicity only.

Under the hypothesis of independent groups, the log-likelihood function about
θ can be expressed by

l(θ) =

N∑
i=1

li(θ) =

N∑
i=1

li(ψ, λi) ,

with li(ψ, λi) =
∑T

t=1 log p(yit|xit;ψ, λi) being the log-likelihood contribution
for the ith cluster. Let us define the full maximum likelihood (ML) estimate for

model (1) as θ̂ = (ψ̂, λ̂) = argmaxθ l(θ). Standard likelihood inference on the
parameter of interest is typically based on the profile log-likelihood

lP (ψ) =

N∑
i=1

li
(
ψ, λ̂iψ

)
=

N∑
i=1

liP (ψ) , (2)

where λ̂iψ is the constrained ML estimate of λi for fixed ψ obtained, under
standard regularity conditions, by equating to zero the score

lλi(θ) =
∂li(ψ, λi)

∂λi
(3)
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and solving for λi (i = 1, . . . , N). Given λ̂ψ = (λ̂1ψ, . . . , λ̂Nψ), the full con-

strained ML estimate for fixed ψ is denoted by θ̂ψ = (ψ, λ̂ψ).
The general expression taken by the logarithmic version of the MPL is

lM (ψ) = lP (ψ) +M(ψ) , (4)

where the modification term M(ψ) serves to remedy the effect of replacing the

unknown nuisance parameter λ with the estimate λ̂ψ in the profile likelihood.
Such plug-in effect typically translates in bias of the profile score function. The
expression of M(ψ) largely corrects this bias, making the MPL much closer to
a proper likelihood [25, 15].

The independence hypothesis among clusters implies the additive formM(ψ)=∑N
i=1 Mi(ψ). By using Severini’s formulation of the MPL [36], the ith summand

in the modification term equals

Mi(ψ) =
1

2
log jλiλi(θ̂ψ)− log Iλiλi(θ̂; θ̂ψ) , i = 1, . . . , N. (5)

In (5), jλiλi(θ) = −∂2li(ψ, λi)/(∂λi∂λi) is evaluated at the constrained ML

estimate θ̂ψ and Iλiλi(θ̂; θ̂ψ) is an approximation of a term involving sam-
ple space derivatives in the original Barndorff-Nielsen’s MPL. In particular,
Iλiλi(θ̂; θ̂ψ) = Eθ0

{
lλi(θ0)lλi(θ1)

}∣∣
θ0=θ̂,θ1=θ̂ψ

indicates the scalar expected value

calculated with regard to the full ML estimate θ̂ of the product of partial score
functions defined in (3) evaluated at two different points in the parameter space,

i.e. θ̂ and θ̂ψ. In contrast to the original formulation introduced by [3, 4], Sev-
erini’s variant of M(ψ) is computable even when the conditional probability
density or mass function of yit given xit does not belong to full exponential or
composite group families.

[35] gives sufficient conditions under which inferences on ψ conducted via
the profile or the modified profile likelihood are adequate when dealing with
independent clustered data. In more detail, usual results apply in the (T ×N)-
asymptotics for quantities based on lP (ψ) if N = o(T ), while it suffices that
N = o(T 3) to achieve reliable conclusions using the MPL in (4). This explains
why the employment of lM (ψ) should be preferred in the presence of highly
stratified datasets where the quantity of groups is much larger than the amount
of observations per group.

3. Monte Carlo modified profile likelihood

Analytical computation of (5) is fairly simple in a number of widespread sta-

tistical models (see, e.g., [6] and [7]). However, the expected value Iλiλi(θ̂; θ̂ψ)
cannot be readily obtained in circumstances that demand special assumptions to
correctly model the relevant aspects of the phenomenon under study. Sometimes
its exact calculation is too cumbersome, sometimes infeasible.

One convenient expedient to compute Severini’s MPL even when the neces-
sary expectation is not available in closed form foresees to approximate Iλiλi(θ̂; θ̂ψ)
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by the following empirical quantity based on R Monte Carlo replicates:

I∗λiλi
(θ̂; θ̂ψ) =

1

R

R∑
r=1

lrλi
(θ̂)lrλi

(θ̂ψ) , i = 1, . . . , N, (6)

where lrλi
(·) is the score (3) computed on observations yrit of the rth sample

(r = 1, . . . , R) randomly generated under the ML fit of model (1), thus setting

(ψ, λ) = (ψ̂, λ̂). It is worth mentioning that such a strategy only requires to
derive the score function lλi(θ) and to simulate from the assumed distribution

of the data, with no additional fitting. Indeed, θ̂ and θ̂ψ in (6) are the estimates
derived from the observed dataset. This makes the approximation far less expen-
sive than a standard bootstrap from a computational standpoint. Moreover, the
execution time is not particularly influenced by the value of T and the number
of replications R usually does not need to exceed 500 for a reasonably accurate
estimation of ψ, as attested by preliminary sensitivity analyses.

The principal quality of this Monte Carlo solution is its broad applicability.
[5] already experimented it, proving its competitiveness with econometric in-
ferential methods in the estimation of dynamic fixed effects models for binary
panel data. Here, we propose to adopt and extend the same technique in order
to investigate the superiority of lM (ψ) with respect to ML procedures in alterna-
tive scenarios. To this end, we will consider regression models for missing binary
data (Section 4) and survival models for right-censored data (Section 5), two
practically relevant settings in which explicit formulation of (5) is either com-
putationally involving or impossible due to the particular modelling framework.
Specifically, in the survival analysis case we will use a fitted semiparametric
model for generating the Monte Carlo samples to calculate (6), making infer-
ence robust with respect to a possibly misspecified censoring distribution.

For ease of reference, from now on Severini’s version of the MPL obtained
by making use of Monte Carlo simulation will be called Monte Carlo MPL
(MCMPL). The corresponding log-likelihood function is lM∗(ψ) = lP (ψ) +
M∗(ψ), where the modification term takes the form

M∗(ψ) =
N∑
i=1

M∗
i (ψ) =

N∑
i=1

{
1

2
log jλiλi(θ̂ψ)− log I∗λiλi

(θ̂; θ̂ψ)

}
,

with I∗λiλi
(θ̂; θ̂ψ) defined in (6).

Generally, both lP (ψ) and lM∗(ψ) are maximized numerically. Of course, the
higher the dimension of ψ, the larger the number of iterations for the numerical
optimization could be. Nevertheless, for fixed R, the overall computational effort
required by lM∗(ψ) increases linearly with the number of iterations and, in our
experience, hardly becomes too costly with respect to lP (ψ).
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4. Regression models for missing binary data

4.1. Introduction

The lacking registration of some data is the rule rather than the exception in
quantitative research analysis. [34] developed the first basic classification of data
still in use today: missing completely at random (MCAR), missing at random
(MAR) and missing not at random (MNAR). While the first two categories are
associated with an ignorable mechanism of missingness, when data are MNAR
the probability of missing observations also depends on values that are unob-
served, and thus the supposed model must take into account the missingness
process for providing valid results [24, Section 15.1].

Among the various approaches proposed to deal with the nonignorable incom-
pleteness of the data, selection models and pattern-mixture models play a major
role [16, Chapter 18]. Let us consider independent possibly missing clustered ob-
servations yit and define the corresponding missingness indicators Mit such that
Mit = 1 if yit is unobserved and Mit = 0 otherwise (i = 1, . . . , N, t = 1, . . . , T ).
From a likelihood viewpoint, the joint distribution of Yit and Mit in some global
parametrization ϕ has to be specified. Following the classical formulation of se-
lection models, we shall assume a marginal distribution for Yit depending on
the parameter θ and a conditional distribution of Mit given Yit = yit depending
on γ, so that

pY,M (yit,mit|xit;ϕ) = pY (yit|xit; θ)pM |Y (mit|yit, xit; γ) , (7)

with ϕ = (θ, γ).

Computationally speaking, in moderately complex models for incomplete
datasets, maximization of the log-likelihood function incorporating all the avail-
able information is often quite an arduous task. Indeed this function, named
observed log-likelihood, involves integrals or summations over the distribution
of the missing data which can be hardly tractable. It is well-known that the EM
algorithm [14] is a possibly advantageous strategy for ML estimation whenever
data either are partially not observed or may be viewed as such. This method is
pervasive in the literature of missing data, and many extensions to the original
version have been posited in the years [24, Section 8.5]. Optimization problems
in likelihood inference may also be solved by numerical iterative algorithms dif-
ferent from the EM. For example, we recall the Nelder-Mead simplex method
[27] applied by [41] and [42] in presence of arbitrarily MNAR clustered observa-
tions, and the popular Newton-Raphson algorithm employed by both [30] and
[39].

A universally optimal solution to maximize the log-likelihood in studies with
incomplete observations is impossible to prescribe. It is yet important to point
out that, regardless of the selected technique, nonignorable missing-data models
need to be fitted with special care because the available information may be
insufficient to estimate all parameters [18].
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4.2. Setup and Monte Carlo modified profile likelihood

We focus here on possibly missing clustered binary observations. Adopting the
typical factorization of selection models defined in (7), for independent data yit
one can write the marginal probability mass function

Yit ∼ Bern(πit), πit = πit(θ) = F (λi+βTxit) , i = 1, . . . , N, t = 1, . . . , T, (8)

with F (·) a suitable cumulative distribution function (CDF) and β = (β1, . . . , βp)
vector of regression parameters, whereas the conditional model for the missing-
ness indicator introduced in Section 4.1 may be expressed by

Mit|Yit = yit ∼ Bern(ζit) , i = 1, . . . , N, t = 1, . . . , T, (9)

where ζit ∈ (0, 1). Notice that, since covariates are considered given and entirely
observed, in writing the two distributions we neglect the conditioning on the p-
vector xit for succinctness.

A general formulation for ζit is

ζit = ζit(γ) = P (Mit = 1|Yit = yit) = G(γT
1 xit + γ2yit) , (10)

where G(·) is a CDF and γ1 = (γ11, . . . , γ1p). The parameter of primary interest
in the joint model described by (8)–(10) is the regression coefficient β ∈ IRp, and
the incidental parameters are grouped in λ = (λ1, . . . , λN ) ∈ IRN , so that θ =
(β, λ) ∈ Θ ⊆ IRp+N . In the binary regression with the indicator of missingness
as response, the coefficients are γ = (γ1, γ2) ∈ Γ ⊆ IRp+1, thus the overall
parameter is given by ϕ = (θ, γ) ∈ Φ ⊆ IR2p+N+1. To simplify reference, let us
gather the parameters common to all clusters in one vector and denote it by
ψ = (β, γ) ∈ IR2p+1. We finally stress that expression (10) does not contemplate
the presence of an intercept, either common or cluster-specific, in the model for
Mit in order to avoid identifiability issues during the fitting phase (see, e.g., the
discussion in [30, Section 6]).

According to the assumption about the missing-data mechanism, it is possi-
ble to identify different relations between the probability of missingness and the
variables in the study. Such relations, in their turn, translate into constraints
on the model parameters [30]. Here, since covariates are nonrandom, from spec-
ification (10) follows that data can be either MCAR, when γ2 = 0, or MNAR
otherwise [2].

Models like (8) for complete datasets were already investigated in [6], who
showed how to analytically derive Severini’s MPL in order to consistently esti-
mate β when N is much larger than T . The presence of missing values, how-
ever, creates trouble in the explicit calculation of the adjustment term. The
expectation therein should be evaluated with regard to the joint distribution
pY,M (yit,mit; ϕ̂), taking also the missing-data mechanism into account, but the
correct way of doing so is not without ambiguity. More specifically, in the light of
the arguments made by [19], one expects to be allowed to neglect the missingness
process only when data are MCAR.
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Consider now the most general MNAR framework and, for the sake of clarity,
denote by yobs the vector of observed entries in the dataset y = (yit) and by ymis

the vector of remaining missing elements. As highlighted in [24, Section 6.2],
the actual data consist of yobs and of the vector containing the indicators of
missingness, m = (mit). The observed log-likelihood about ϕ is obtained by
summing over all possible values of ymis the joint probability mass function of
Y = (Y obs, Y mis) and M , so that

l(ϕ) =

N∑
i=1

li(ϕ) = log

{ ∑
ymis

pY
(
yobs, ymis; θ

)
pM |Y

(
m|yobs, ymis; γ

)}

has the global ML estimate ϕ̂ as maximizer and can be decomposed in the N
cluster-specific contributions taking the form

li(ϕ) =

T∑
t=1

[
mit log

{
(1− πit)ζ

0
it + πitζ

1
it

}
(11)

+ (1−mit)
{
yit log πit + (1− yit) log(1− πit) + log(1− ζit)

}]
,

where ζ0it = G(γT
1 xit) and ζ1it = G(γT

1 xit+γ2) (i = 1, . . . , N). The score function
(3) in the global parametrization ϕ equals here

lλi(ϕ) =

T∑
t=1

{
mit log

fit(ζ
1
it − ζ0it)

πitζ1it + (1− πit)ζ0it
+ (1−mit)

(yit − πit)fit
πit(1− πit)

}
, (12)

where fit = fit(θ) = ∂F (λi + βTxit)/∂λi. Then, differentiating one more time
with respect to λi and changing the sign of the obtained derivative lead to

jλiλi(ϕ) =
T∑

t=1

[
mit

{
f ′
it

fit
− (ζ1it − ζ0it)fit

πitζ1it + (1− πit)ζ0it

}
+ (1−mit)(yit − πit)

{
f ′
it − f2

it

πit(1− πit)
− fit(1− 2πit)

π2
it(1− πit)2

}]
, (13)

where f ′
it = f ′

it(θ) = ∂2F (λi + βTxit)/∂λ
2
i . The constrained estimate λ̂iψ which

solves the equation lλi(ϕ) = 0 can be found numerically and its substitution
for λi (i = 1, . . . , N) in (11) permits to obtain the MNAR profile log-likelihood,

lP (ψ) =
∑N

i=1 l
i
P (ψ). Defined ϕ̂ψ = (ψ, λ̂ψ), the same replacement in formula

(13) gives instead jλiλi(ϕ̂ψ).
Now computing Iλiλi(ϕ̂; ϕ̂ψ) = Eϕ0

{
lλi(ϕ0)lλi(ϕ1)

}∣∣
ϕ0=ϕ̂,ϕ1=ϕ̂ψ

over the un-

conditional sampling distribution, using the terminology of [19], is not obvious.
Indeed, the joint distribution of (Yit,Mit) was not specified directly, but divided
in the two factors (8) and (9). The mean of the product of scores should then

be calculated with respect firstly to pM |Y (mit|yit; γ̂) and secondly to pY (yit; θ̂),
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with sufficiently intricate computational steps. Viceversa, the Monte Carlo so-
lution presented in Section 3 may be applied quite plainly. Particularly, the
approximation (6) in the MNAR case takes the form

I∗λiλi
(ϕ̂; ϕ̂ψ) =

1

R

R∑
r=1

lrλi
(ϕ̂)lrλi

(ϕ̂ψ) , i = 1, . . . , N, (14)

where lrλi
(·) is the score (12) of the rth partially observed sample yrit (r =

1, . . . , R) obtained in two stages: first, a complete dataset yr,Cit is simulated un-

der model (8) with θ = θ̂ and second, some entries in this dataset are deleted and
considered missing according to the specification (9) with MNAR probability

ζit = ζit(γ̂) = G(γ̂T
1 xit + γ̂2y

r,C
it ). Note that ψ̂ = (θ̂, γ̂) is the global maximizer

of the MNAR profile log-likelihood lP (ψ) which also takes the missingness pro-
cess into consideration. Therefore, the average of score products over the R
incomplete samples properly estimates the unconditional expectation required.

Before proceeding, it seems worthwhile making a few more comments about
the general formula (11). Supposing an ignorable MCAR missing-data mecha-
nism by imposing γ2 = 0 in (10) yields clearly to ζ0it = ζ1it = ζit = G(γT

1 xit),
and hence (11) simplifies to

li(ϕ)=

T∑
t=1

[
mitlog ζit + (1−mit)

{
yitlog πit + (1−yit)log(1−πit) + log(1−ζit)

}]
.

Since our interest is only on the parameter β, and ζit does not carry any useful
information about it, we can rely on the equivalent function

li(θ) =
∑

t: yit∈yobs

{
yit log πit + (1− yit) log(1− πit)

}
, (15)

which is the ordinary group-related log-likelihood in binary regressions com-
puted only on the recorded data. Indeed, when the missingness mechanism is
MCAR, a complete-case analysis discarding units with missing values is un-
biased, as the wholly observed cases are basically a random sample from the
reference population [24, Section 3.2]. For this specific model, it is also fully
efficient because θ and γ are distinct, provided that the full parameter space is
Φ = Θ× Γ [24, p. 120]. This means that likelihood inference can be conducted
disregarding the process which generates the missing observations. As a major
implication for our study, the expected value involved in Severini’s MPL may
be derived from the conditional distribution of Yit given Mit = 0. Specifically,
it can be shown [6] that such expectation has the closed-form expression

Iλiλi(θ̂; θ̂β) =
∑

t: yit∈yobs

fit
(
θ̂β

)
fit

(
θ̂
){

1− πit

(
θ̂β

)}
πit

(
θ̂β

) , i = 1, . . . , N, (16)

where estimates θ̂ = (β̂, λ̂) and θ̂β = (β, λ̂β) descend from ordinary ML inference
on the parameter of interest β via the MCAR profile log-likelihood lP (β) based
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on (15). Furthermore, inasmuch as under the hypothesis of ignorable missingness
it is possible to use the function l(θ) with components like that in (15), the
general Monte Carlo approximation reported in (14) admits to be reformulated
in the MCAR case as

I∗λiλi
(θ̂; θ̂β) =

1

R

R∑
r=1

lrλi
(θ̂)lrλi

(θ̂β) , i = 1, . . . , N, (17)

where lrλi
(θ) =

∑
t: yit∈yobs(yrit − πit)fit/{πit(1 − πit)} is the score of the in-

complete sample yrit simulated by the two-step procedure above, but with an

important difference: now θ̂ results from the maximization of l(θ), while γ̂ = γ̂1
is obtained by a separate ML fit of the binary regression based on (10) subject
to the constraint γ2 = 0, with the missingness indicator as dependent variable
and the vector of covariates xit as unique predictor.

Below, the utility of Monte Carlo approximation in the presence of incom-
plete data will be evaluated through simulation experiments referring to binary
regression with different missingness processes. Specifically, objects of compar-
ison shall be the unadjusted profile log-likelihood, either the MCAR lP (β) or
the MNAR lP (ψ), the modification proposed by Severini lM (β) that ignores the
missing values and is analytically computed by formula (16), and the MCMPL
that accounts for some presumed missingness mechanism. In order to avoid
confusion, its logarithmic MCAR variant employing the estimate (17) will be
denoted by lM∗(β), whereas lM∗(ψ) shall indicate the MNAR MCMPL with
habitual expectation approximated by (14).

4.3. Logistic regression: simulation studies

The following analyses are performed supposing a logistic link between the mean
of the response and the predictors, meaning F (·) = logit−1(·) in model (8), along
with G(·) = logit−1(·) in the expression for the probability of missingness (10),
where logit−1(·) denotes the CDF of the logistic random variable. Pairing these
assumptions with that of an MCAR mechanism brings about the equality

Iλiλi(θ̂; θ̂β) =
∑

t: yit∈yobs

[
1− logit−1

(
λ̂i + β̂Txit

)]
, i = 1, . . . , N,

whose right-hand side does not depend on the parameter of interest. Hence the
only part of Severini’s modification term relevant to estimating β is log|jλλ

(̂
θβ
)
|/2,

and one can write

M(β) =
1

2

N∑
i=1

log

[ ∑
t: yit∈yobs

logit−1(λ̂iβ + βTxit)
{
1− logit−1

(
λ̂iβ + βTxit

)}]
.

(18)

As the single cluster contribution to the profile log-likelihood lP (β) equals (15)
with πit replaced by logit−1(λi + βTxit), it is simple to show that in such a
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setting the score related to the ith incidental parameter equals

lλi(θ) =
∑

t: yit∈yobs

{
yit − logit−1(λi + βTxit)

}
, i = 1, . . . , N,

thus the expression of the MCAR Monte Carlo estimate I∗λiλi
(θ̂; θ̂β) follows im-

mediately from the previous formula and (17). Loosely speaking, if observations
are MCAR, lM (β) takes the same form as in general logistic regression for clus-
tered data with no missing values, yet is computed only on the complete units.
Its numerical maximization can then be automatically implemented in the R
software [33] exploiting the code of the current version of the package panelMPL
[8], which can handle binary regression with logit or probit links.

For the reasons discussed above, one analytical formulation of Severini’s MPL
is not immediately obtainable when missingness of the data is hypothesized to
be nonignorable. On the contrary, M∗(ψ) can be calculated via Monte Carlo
simulation through (14) simply by recalling that in expressions (12) and (13)
one has

fit =
{
1− logit−1(λi + βTxit)

}2
,

f ′
it = −2 logit−1(λi + βTxit)

{
1− logit−1(λi + βTxit)

}
.

In the MNAR scenario, the functions lP (ψ) and lM∗(ψ) are optimized nu-
merically using a quasi-Newton method (in the R function nlminb). Standard
errors of the parameters’ estimates are calculated using the second numerical
derivative of the functions at their maxima. Notice that in the MNAR case the
argument ψ = (β, γ) of the objective functions to be optimized has dimension
equal to 2p+1, whereas in the MCAR case the argument β is only p-dimensional.
The higher complexity in the maximization problem is reflected by longer execu-
tion times and by some numerical instabilities, especially due to the estimation
of γ and its variance, which however are not of direct interest.

It is worth recalling that, as is common practice for binary longitudinal re-
gressions, the optimization stage needs to be anticipated by the omission of
non-informative groups [6] from the sample under analysis. In missing-data sit-
uations, whatever the supposed mechanism, the clusters which cannot contribute
to estimate β are those with yobsit = 0 or yobsit = 1 for every t = 1, . . . , T and
those which are totally unobserved, i.e. where yit = ymis

it for each t = 1, . . . , T
(i = 1, . . . , N).

The two principal simulation experiments are recognisable according to the
model used to select the missing values in the experimental datasets of dimen-
sions T = 4, 6, 10 and N = 50, 100, 250. In both scenarios, we consider p = 1
and the covariate xit is simulated by means of independent draws from the
N(−0.35, 1) distribution, with intercepts λi (i = 1, . . . , N) also independently
generated as N(−0.35, 1). The global parameters in (8) and (10) for generating
the S = 2000 samples with MCAR observations are set equal to β = 1, γ1 = 2.5
and γ2 = 0. Instead, simulation of MNAR data is carried out with β = 1, γ1 = 5,
γ2 = 1. Such settings were chosen in order to observe a percentage of missing
observations in the resulting datasets varying between 35% and 40%.
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Table 1

Inference on β = 1 in the logistic regression for MCAR longitudinal data. The compared
methods are the MCAR profile log-likelihood lP (β), Severini’s exact MCAR MPL lM (β),
and the MCAR MCMPL lM∗ (β) computed with R = 500. Results based on a simulation

study with 2000 trials.

N T Method B MB SD RMSE MAE SE/SD 0.95 CI
50 4 lP (β) 0.827 0.677 0.929 1.244 0.693 0.693 0.789

lM (β) 0.193 0.160 0.482 0.519 0.323 0.979 0.965
lM∗ (β) 0.194 0.161 0.481 0.519 0.323 0.980 0.965

6 lP (β) 0.450 0.409 0.537 0.701 0.437 0.767 0.825
lM (β) 0.099 0.084 0.364 0.377 0.237 0.942 0.953
lM∗ (β) 0.101 0.085 0.365 0.378 0.237 0.941 0.953

10 lP (β) 0.242 0.215 0.309 0.393 0.244 0.851 0.848
lM (β) 0.049 0.031 0.250 0.255 0.165 0.947 0.946
lM∗ (β) 0.050 0.031 0.250 0.255 0.164 0.947 0.945

100 4 lP (β) 0.682 0.615 0.584 0.898 0.618 0.730 0.663
lM (β) 0.136 0.118 0.331 0.358 0.223 0.979 0.946
lM∗ (β) 0.137 0.119 0.331 0.358 0.223 0.980 0.948

6 lP (β) 0.428 0.400 0.355 0.556 0.404 0.814 0.707
lM (β) 0.091 0.078 0.249 0.265 0.164 0.976 0.948
lM∗ (β) 0.092 0.080 0.249 0.266 0.164 0.975 0.948

10 lP (β) 0.231 0.221 0.214 0.314 0.226 0.879 0.765
lM (β) 0.042 0.034 0.174 0.179 0.119 0.975 0.949
lM∗ (β) 0.042 0.034 0.174 0.179 0.118 0.975 0.949

250 4 lP (β) 0.619 0.597 0.351 0.712 0.597 0.757 0.390
lM (β) 0.117 0.111 0.210 0.241 0.159 0.980 0.924
lM∗ (β) 0.118 0.111 0.211 0.241 0.160 0.979 0.923

6 lP (β) 0.388 0.384 0.220 0.446 0.384 0.821 0.441
lM (β) 0.068 0.067 0.157 0.171 0.113 0.973 0.937
lM∗ (β) 0.069 0.067 0.157 0.171 0.113 0.972 0.935

10 lP (β) 0.215 0.213 0.130 0.251 0.213 0.905 0.564
lM (β) 0.029 0.028 0.106 0.110 0.072 1.004 0.948
lM∗ (β) 0.029 0.028 0.106 0.110 0.072 1.003 0.947

This simulation setup is taken from a conditional model, with a random
effects specification. Such a choice also allows the comparison with inference
from a marginal model with generalized estimating equations (GEE). Indeed,
although the two approaches are not directly comparable, if the random effects
model is correctly specified the corresponding coefficient of xit in the marginal
model would approximately equal βm = β/

√
1 + σ2

λ/c
2, where c = 1.7 and

σ2
λ is the variance of the random effects’ distribution [1, Section 9.4.1]. Here

σ2
λ = 1, and therefore βm = 0.862. In addition, results for the case where λi =∑T
t=1 xit/T + ui, with ui ∼ N(0, 1), are made available in the Supplementary

material. In that setting, incidental parameters are correlated with the covariate,
thus a random effects model would be wrongly specified and the comparison with
GEE unfeasible. Instead, the MCMPL approach guarantees the same qualitative
results under both frameworks.

Tables 1, 2 and 3 report the performance of the compared inferential functions
in respect of bias (B), median bias (MB), root mean squared error (RMSE) and
median absolute error (MAE) of the corresponding estimators. Precisely, with
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Table 2

Inference on β = 1 in the logistic regression for MCAR longitudinal data. The compared
methods are the MNAR profile log-likelihood lP (ψ), the MNAR MCMPL lM∗ (ψ) computed

with R = 500 and GEE. Results based on a simulation study with 2000 trials.

N T Method B MB SD RMSE MAE SE/SD 0.95 CI
50 4 lP (ψ) 0.582 0.446 1.035 1.187 0.655 0.661 0.823

lM∗ (ψ) 0.008 0.002 0.619 0.619 0.417 0.895 0.914
GEE 0.032 0.023 0.306 0.308 0.205 1.010 0.961

6 lP (ψ) 0.346 0.310 0.583 0.677 0.415 0.752 0.862
lM∗ (ψ) 0.008 0.014 0.430 0.430 0.267 0.912 0.939
GEE 0.015 0.009 0.259 0.259 0.171 0.980 0.949

10 lP (ψ) 0.213 0.193 0.333 0.395 0.249 0.840 0.862
lM∗ (ψ) 0.030 0.019 0.272 0.273 0.179 0.958 0.948
GEE 0.007 0.006 0.193 0.193 0.128 0.994 0.950

100 4 lP (ψ) 0.458 0.411 0.663 0.805 0.501 0.703 0.783
lM∗ (ψ) -0.059 -0.042 0.443 0.447 0.285 0.902 0.911
GEE 0.008 -0.000 0.218 0.218 0.146 0.995 0.951

6 lP (ψ) 0.333 0.315 0.386 0.510 0.340 0.798 0.796
lM∗ (ψ) 0.016 0.015 0.289 0.289 0.178 0.965 0.953
GEE 0.005 0.000 0.176 0.176 0.119 1.018 0.956

10 lP (ψ) 0.204 0.197 0.230 0.307 0.214 0.868 0.809
lM∗ (ψ) 0.024 0.019 0.188 0.190 0.126 0.985 0.949
GEE 0.001 -0.008 0.137 0.137 0.092 0.995 0.954

250 4 lP (ψ) 0.389 0.375 0.405 0.562 0.397 0.724 0.688
lM∗ (ψ) -0.091 -0.064 0.311 0.325 0.189 0.878 0.909
GEE -0.001 -0.005 0.136 0.136 0.092 1.002 0.950

6 lP (ψ) 0.287 0.286 0.238 0.373 0.289 0.809 0.661
lM∗ (ψ) -0.009 -0.004 0.179 0.179 0.123 0.982 0.956
GEE -0.006 -0.010 0.110 0.111 0.075 1.005 0.951

10 lP (ψ) 0.188 0.187 0.142 0.236 0.188 0.882 0.673
lM∗ (ψ) 0.012 0.012 0.117 0.117 0.078 0.998 0.947
GEE -0.009 -0.010 0.084 0.085 0.058 1.011 0.951

specific reference to β̂ we compute

Bβ̂ =

S∑
s=1

(
β̂s − β

)
/S ,

MBβ̂ =
(
β̂(S/2) + β̂(S/2+1)

)
/2− β ,

RMSEβ̂ =

√√√√ S∑
s=1

(
β̂s − β

)2
/S ,

MAEβ̂ =
(
|β̂ − β|(S/2) + |β̂ − β|(S/2+1)

)
/2 ,

where β is the value of the regression coefficient used to simulate the S datasets,
β̂s is its ML estimate on the sth sample (s = 1, . . . , S) and x(s) denotes the sth
element in the vector of order statistics (x(1), . . . , x(S)). The empirical stan-

dard deviation (SD) of the estimates is also reported. Considering again β̂ for
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Table 3

Inference on β = 1 in the logistic regression for MNAR longitudinal data. The compared
methods are the MNAR profile log-likelihood lP (ψ), Severini’s exact MCAR MPL lM (β),

the MNAR MCMPL lM∗ (ψ) computed with R = 500 and GEE. Results based on a
simulation study with 2000 trials.

N T Method B MB SD RMSE MAE SE/SD 0.95 CI
50 4 lP (ψ) 0.327 0.252 0.949 1.004 0.566 0.727 0.915

lM (β) -0.061 -0.096 0.571 0.574 0.386 0.954 0.944
lM∗ (ψ) -0.097 -0.104 0.595 0.603 0.386 0.947 0.941
GEE -0.241 -0.250 0.342 0.418 0.303 1.036 0.883

6 lP (ψ) 0.227 0.183 0.547 0.592 0.364 0.829 0.922
lM (β) -0.160 -0.193 0.406 0.436 0.308 0.959 0.904
lM∗ (ψ) -0.047 -0.067 0.406 0.408 0.265 0.977 0.953
GEE -0.245 -0.256 0.276 0.369 0.278 1.043 0.847

10 lP (ψ) 0.150 0.136 0.340 0.371 0.233 0.884 0.905
lM (β) -0.217 -0.230 0.275 0.350 0.267 0.974 0.840
lM∗ (ψ) -0.016 -0.024 0.281 0.281 0.188 0.981 0.946
GEE -0.255 -0.258 0.212 0.332 0.266 1.040 0.773

100 4 lP (ψ) 0.295 0.270 0.605 0.673 0.419 0.767 0.886
lM (β) -0.095 -0.107 0.390 0.402 0.265 0.942 0.915
lM∗ (ψ) -0.094 -0.092 0.395 0.406 0.259 0.976 0.938
GEE -0.250 -0.261 0.229 0.339 0.268 1.075 0.823

6 lP (ψ) 0.217 0.192 0.378 0.436 0.271 0.849 0.887
lM (β) -0.167 -0.181 0.279 0.325 0.234 0.987 0.883
lM∗ (ψ) -0.046 -0.060 0.280 0.284 0.193 1.000 0.950
GEE -0.256 -0.262 0.193 0.321 0.266 1.064 0.759

10 lP (ψ) 0.149 0.142 0.240 0.282 0.186 0.893 0.882
lM (β) -0.223 -0.226 0.192 0.295 0.232 0.996 0.759
lM∗ (ψ) -0.015 -0.018 0.199 0.199 0.133 0.988 0.943
GEE -0.264 -0.267 0.150 0.303 0.267 1.036 0.585

250 4 lP (ψ) 0.239 0.223 0.368 0.438 0.279 0.800 0.841
lM (β) -0.135 -0.144 0.242 0.277 0.195 0.973 0.887
lM∗ (ψ) -0.112 -0.115 0.246 0.270 0.183 0.999 0.920
GEE -0.263 -0.264 0.145 0.300 0.264 1.070 0.596

6 lP (ψ) 0.174 0.169 0.230 0.289 0.199 0.873 0.858
lM (β) -0.198 -0.197 0.171 0.262 0.205 1.006 0.775
lM∗ (ψ) -0.074 -0.077 0.171 0.186 0.126 1.021 0.920
GEE -0.274 -0.276 0.120 0.299 0.276 1.051 0.411

10 lP (ψ) 0.128 0.128 0.144 0.193 0.138 0.937 0.838
lM (β) -0.246 -0.248 0.115 0.272 0.248 1.043 0.459
lM∗ (ψ) -0.032 -0.031 0.119 0.123 0.082 1.038 0.948
GEE -0.282 -0.285 0.091 0.297 0.285 1.071 0.159

illustration, one may write

SDβ̂ =

S∑
s=1

(
β̂s − ¯̂

β
)2
/(S − 1) ,

¯̂
β =

S∑
s=1

β̂s/S .

In addition, the ratio SE/SD, where SE stands for the average over simulations
of likelihood-based estimated standard errors, and empirical coverages of 0.95
Wald confidence intervals (CI) for β are shown. Note that the large values of
N examined here ensure adequacy of the quadratic approximation around the
maximum of the various log-likelihoods, hence the generally more accurate cov-
erages derived by inversion of the likelihood ratio statistic would be practically



Monte Carlo modified profile likelihood for clustered data 447

identical.
Behaviours of the likelihoods built under the correct MCAR hypothesis are

shown in Table 1. The latter attests the inadequacy of inference on β deriving
from the profile likelihood in this incidental parameters setting. The introduction
of the modification term, either explicitly calculated or approximated by Monte
Carlo simulation with R = 500, conspicuously refines the point estimation and
actual coverage of confidence intervals. In particular, as happens for complete
stratified data, the bias of the ML estimator is of order O(1/T ) regardless of the
value of N , as opposed to that of its modified version which is of order O(1/T 2).
On the contrary, for fixed T , confidence intervals become less precise as N
increases, since standard deviations get smaller. The most important evidence
supplied here by Table 1 is the absence of the need to take the MCARmechanism
into consideration when computing the MPL. Indeed, the performance of lM (β)
is essentially identical to that of lM∗(β) for all the sample sizes considered. This
finding confirms what argued by [19].

Inference on the same MCAR datasets can also be made via lP (ψ) and
lM∗(ψ), which assume a general nonignorable model of missingness. Moreover,
GEE provides a further alternative for inference, given that its consistency is
guaranteed under MAR, and therefore MCAR, mechanisms [1, Section 9.6.4].
Experimental outcomes of such analysis are presented in Table 2. Despite some
undercoverage of Wald intervals when T = 4, the global accuracy of the MNAR
MCMPL is considerable and definitely higher than that of the corresponding
unmodified profile likelihood. The latter proves to be more reliable than its
MCAR counterpart in Table 1, while lM∗(ψ) is generally superior in terms of
bias but inferior in terms of coverage to lM (β) and lM∗(β), which efficiently
avoid unnecessary estimation of the missingness parameters. However, as will
be seen in Table 3, lM∗(ψ) balances this loss of efficiency with its robustness to
the underlying missingness mechanism.

Fit of the model via GEE was implemented through the gee library in R [9],
specifying either an independence, exchangeable or unstructured within-cluster
correlation. The quasi-likelihood approach seems to work very well under the
MCAR assumption. It is yet important to bear in mind that MPL and GEE are
estimating two distinct models here (conditional and marginal, respectively, with
different true parameter value). Note that Table 2 reports the most favorable
results for GEE, obtained assuming independence of observations and using
non-robust standard errors of the estimates.

Table 3 refers to the second experiment based on datasets generated with
MNAR observations. Classical inference through the MNAR profile log-likelihood
is found imprecise, as expected. The most interesting simulation outcome con-
cerns the pattern of inferential results reached by the two versions of the MPL
considered. Indeed, for any given number of clusters, as T increases the accu-
racy of lM (β) deteriorates both in terms of bias and of confidence intervals’
coverage, whereas that of lM∗(ψ) improves. The fact that the MPL by Severini
leads to worse results for large T may seem counterintuitive at first. In fact, this
makes sense since incompleteness of the data is more perceived in larger groups
and thus the harmful impact of the wrong MCAR assumption reveals itself as
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Table 4

Estimates and related standard errors (in parenthesis) in the logistic regression for the
toenail data with missing response. The compared methods are the MCAR profile

log-likelihood lP (β), Severini’s exact MCAR MPL lM (β), MCAR MCMPL lM∗ (β), MNAR
profile log-likelihood lP (ψ) and MNAR MCMPL lM∗ (ψ), computed with R = 500.

lP (β) lM (β) and lM∗ (β) lP (ψ) lM∗ (ψ)
Estimate p-value Estimate p-value Estimate p-value Estimate p-value

β1 -0.482 (0.057) 0.000 -0.396 (0.048) 0.000 -0.495 (0.056) 0.000 -0.409 (0.048) 0.000
β2 -0.184 (0.094) 0.050 -0.122 (0.077) 0.110 -0.197 (0.095) 0.038 -0.140 (0.079) 0.077

T grows. Nevertheless, apart from some numerical instabilities that may occur
occasionally when T is small (mainly with T = 4), the MCMPL ensures better
inference on β than its analytical version based on the wrong model. In this
setting, lM∗(β) is still found equivalent to lM (β) and therefore is not shown
in the table. Finally, the GEE method based on independent observations and
non-robust standard errors proves, as expected, to be inconsistent when data
are MNAR [1, Section 9.6.4], suffering from severe bias in all simulation setups,
with accuracy getting worse as the number of clusters N increases.

In outline, the Monte Carlo strategy is particularly convenient in this missing-
data scenario. It allows indeed to easily calculate the MNAR MCMPL which
appears robust to the missingness mechanism, where the price to pay for this
robustness is only a minor loss in efficiency. As proved by Section S3 of the
Supplementary material, the same consideration can be made when a probit
link function is used in model (8).

4.4. Application to a toenail infection study

The solution detailed in Section 4.2 can be applied to the toenail data, carefully
described in [26, Section 2.3]. This dataset was collected upon a two-armed
clinical trial in N = 294 patients treated for toenail infection and followed-up
at T = 7 time occasions. The outcome variable codes whether the infection
was severe (yit = 1) or not (yit = 0), for t = 1, . . . , T . Each patient is here
identified as a cluster, containing 7 observations at the different follow-up visits.
This is a clear example of situations where the number of clusters (N = 294) is
much higher than the cluster size (T = 7). Two covariates were also recorded:
number of months from the first visit and the oral treatment, A or B, used. Note
that only the former is a time-varying covariate, as every subject was randomly
assigned to only one treatment for the whole duration of the study. The main
interest was to understand how the percentage of severe infections evolved over
time and if such evolution was affected by the treatment. Due to a variety of
reasons, the response is missing at some time points for several subjects. The
percentage of missing response in the sample is 7.29%. Although this value is
lower than those considered in the simulation studies, the results below indicate
a perceivable difference between inference based on the various approaches.

Model (8) is fitted to the data based on the assumption of the logistic link

πit = logit−1(λi + β1x1it + β2x2it),
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where x1it ∈ {0, 1, 2, 3, 6, 9, 12} measures the time in months from the first visit
of the ith patient and x2it is the interaction term between time and treatment.
We remark that the treatment is not included in the regression because the
presence of the fixed effects prevents those coefficients referred to covariates with
no within-cluster variation from being identified. According to the mechanism of
missingness supposed in (9), inference about β = (β1, β2) can be conducted by
either MCAR or MNAR methods. Results are partially shown in Table 4. Notice
that the output obtained by using the MCAR MCMPL lM∗(β) is not reported,
being basically indistinguishable from that of lM (β). Whatever the hypothesis
about the missingness process, both standard and modified profile likelihood
functions detect a strongly significant decrease over time in the percentage of
severe infections among subjects who receive oral treatment A, with a smaller
estimated effect given by the MPL. For what concerns β2, which represents the
difference in the evolution of infection between the two treatment arms, the
conclusion is less clear. This is in line with previous analyses neglecting the
missing data problem [26, Section 10.3]. Contrary to the ML fits, the use of the
MPL suggests no effect of oral treatment B in improving the recovery process
with respect to treatment A, at a 5% significance level. However, the p-value
is well below 0.1 if the data are assumed MNAR. This last hypothesis seems
indeed quite realistic, as the probability of missing a visit for one patient is likely
to depend on his current toenail infection status. The estimate of the parameter
associated with the response yit in the specification (9)-(10), γ2, equals −∞ for
both lP (ψ) and lM∗(ψ). This indicates the occurrence of separation in the data
available for estimating the MNAR probability of missingness. Particularly, one
obvious interpretation is that a patient with a severe toenail infection is much
more motivated to undergo the scheduled visit than a patient who has healed.
We note however that separation in the estimation of γ2 does not affect the
estimates of the remaining parameters, as usually happens in binary regression
without missing data. These considerations, along with the robustness confirmed
by the simulations of Section 4.3, further make the MNAR MCMPL the most
reliable inferential tool in this example.

5. Survival models for right-censored data

5.1. Setup and background

Let independent clustered failure times ỹit ≥ 0 be realizations of the random
variables Ỹit such that

Ỹit ∼ p
Ỹit

(ỹit|xit;ψ;λi) , i = 1, . . . , N, t = 1, . . . , T, (19)

where xit is a p-dimensional vector of fixed covariates. The survival function
of Ỹit is defined by S

Ỹit
(ỹit|xit;ψ;λi) = Pθ(Ỹit > ỹit) and the hazard function

equals

h
Ỹit

(ỹit|xit;ψ, λi) =
p
Ỹit

(ỹit|xit;ψ, λi)

S
Ỹit

(ỹit|xit;ψ, λi)
.
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Since observations may be right-censored, the sample actually consists of
realizations of the pair

(
Yit,Δit

)
, where Yit = min

(
Ỹit, Cit

)
with Cit random

censoring time and Δit event indicator being Δit = 1 if Ỹit ≤ Cit and Δit = 0
otherwise. The censoring mechanism is hypothesized to be independent and
non-informative, meaning that each Cit is unrelated to the other survival or
censoring times and its continuous distribution does not depend on θ. We also
suppose that the density of Cit is the same in all N groups.

Under this scenario, inferential solutions to the incidental parameters prob-
lem also need to cope with the presence of censored data. In the past years, the
application of the MPL has been experimented only to a limited extent because
its computation is not straightforward in regression frameworks like (19) with
general censoring scheme. The technique proposed by [31] to overcome such
complications relies on Monte Carlo simulations as well, but targets fully para-
metric settings where the distribution of censoring is completely defined. [32]
considered also higher-order asymptotics for semiparametric Cox regression. In
that case, an adjustment to the likelihood ratio statistic was obtained either
by implementation of a parametric bootstrap employing a reference censoring
mechanism or by simulation. However, not only their proposal considers infer-
ence on scalar parameters of interest, but also it does not usually improve on
the partial likelihood.

Model (19) can be viewed as an extension of the scenarios on which [11]
focused. Therein, the use of Severini’s frequentist integrated likelihood for es-
timating ψ was found to be superior to random effects models with seriously
misspecified frailty distribution. However, the computational effort implied by
their approach is remarkably sensitive to the number of predictors in the study,
and indeed they only consider cases with p = 0 or p = 1. In addition, the
authors specify some parametric distribution of Cit, whereas here we prefer to
avoid such a restriction which might affect the inferential results. On the one
hand, our choice relaxes the assumptions of the analysis, but on the other, it
prevents the term (5) in Severini’s MPL from being exactly calculated. In what
follows, the Monte Carlo strategy presented in Section 3 will be shown general
and flexible enough to tackle this difficulty.

5.2. Monte Carlo modified profile likelihood

Consider the observed couple
(
yit, δit

)
introduced in the previous section. If

the censoring times cit are independent realizations of a continuous random
variable with generic distribution pCit(cit; ς) and survival function SCit(cit; ς) =
Pς(Cit > cit), then data are drawn from the joint density

pYit,Δit(yit, δit;ϕ) =
{
p
Ỹit

(yit; θ)SCit(yit; ς)
}δit {

pCit(yit; ς)SỸit
(yit; θ)

}1−δit
,

(20)
where ϕ = (θ, ς) and, in the interests of conciseness, dependence on covariates
is omitted. The distribution of Cit is independent of the parameter θ and does
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not vary across clusters, thus the log-likelihood function about θ based on the
whole dataset

(
yit, δit

)
(i = 1, . . . , N, t = 1, . . . , T ) can be formulated by

l(θ) =

N∑
i=1

T∑
t=1

{
δit log pỸit

(yit; θ) + (1− δit) logSỸit
(yit; θ)

}
. (21)

Starting from the previous expression, the profile log-likelihood for ψ and the
score in this setting can be derived following the general definitions in (2) and
(3).

The first quantity to be computed in (5), jλiλi(θ̂ψ), is typically obtainable
with ease even with right-censored data. On the contrary, exact calculation of
the expected value in (5) should be carried out with reference to a fully spec-
ified model, i.e. the joint probability density function (20) comprising also the
distribution of the censoring times. However, in order to avoid unnecessary as-
sumptions, we will not specify a parametric form for pCit(cit; ς) and SCit(cit; ς),
as instead done by [11]. Indeed, such an assumption can be avoided for calcu-
lating the MPL via the Monte Carlo solution reported in Section 3, because
estimation of the censoring distribution can be implemented nonparametrically,
making the resulting approximation more robust.

With an unspecified density of Cit, it is still possible to simulate the Monte
Carlo samples (yrit, δ

r
it) (r = 1, . . . , R) on which (6) is based. Censoring times

are not available for units with an observed failure, but they can be simulated
by bootstrap techniques. The procedure is explained in the sequel. First, failure
times ỹrit are generated from the ML fit of model (19). Second, new censoring
times crit are determined by performing the conditional bootstrap described in
Algorithm 3.1 of [12, p. 85]. In particular, if the original indicator δit equals
zero we set crit = cit, otherwise we draw crit from the conditional distribution of
Cit|Cit > yit computed as

ŜCit|Cit>yit
(cit) =

ŜCit(cit)

ŜCit(yit)
,

where ŜCit(·) is the Kaplan-Meier nonparametric estimator of the survival func-
tion of Cit. Precisely, each crit corresponding to δit = 1 is found as the unique

solution c to the equation ŜCit(c) = ur
itŜCit(yit), with ur

it ∼ U(0, 1). Finally, for
i = 1, . . . , N and t = 1, . . . , T , the observed survival times are yrit = min(ỹrit, c

r
it)

and hence the new event indicators are defined as δrit = 1 if ỹrit ≤ crit and δrit = 0
if ỹrit > crit.

5.3. Weibull model

As an illustration, assume now the Weibull distribution for the random vari-
ables Ỹit. Consequently, in model (19) the probability density function can be
expressed as

p
Ỹit

(ỹit|xit;ψ;λi) = ηitξ
(
ηitỹit

)ξ−1
exp

{
−
(
ηitỹit

)ξ}
, i = 1, . . . , N, t = 1, . . . , T,

(22)
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where ηit=e−(λi+βTxit) controls the scale of the distribution. The interest is on
estimating the common shape parameter ξ > 0 and the regression coefficients
in β = (β1, . . . , βp) ∈ IRp, while treating the vector of group-related intercepts
λ = (λ1, . . . , λN ) ∈ IRN as nuisance. We shall then write θ = (ψ, λ), with
ψ = (ξ, β) ∈ IR+ × IRp.

The survival and hazard functions of Ỹit are, respectively, SỸit
(ỹit|xit;ψ;λi) =

exp
{
−
(
ηitỹit

)ξ}
and

h
Ỹit

(ỹit|xit;ψ, λi) = h0(ỹit; ξ)η
ξ
it = h0i(ỹit; ξ, λi)e

−ξ(βTxit) , (23)

where h0(ỹit; ξ) = ξỹ ξ−1
it is the baseline hazard parametrically modeled and

shared by all groups, whereas h0i(ỹit; ξ, λi) = h0(ỹit; ξ)e
−ξλi can be seen as the

equivalent for the ith cluster (i = 1, . . . , N). Thus (22) is a stratified proportional
hazards model, and its logarithmic transformation coincides with a so-called
accelerated failure time model (see, for instance, [11, Section 6]).

Denoting the number of failures recorded in the ith group by δi· =
∑T

t=1 δit
(i = 1, . . . , N) allows to write (21) under the Weibull model as

l(θ) =

N∑
i=1

{
ξ

T∑
t=1

δit log ηit + δi· log ξ + (ξ − 1)

T∑
t=1

δit log yit −
T∑

t=1

(ηityit)
ξ

}
.

(24)
Furthermore, the score in formula (3) equals

lλi(θ) = −ξδi· + ξ

T∑
t=1

(ηityit)
ξ , i = 1, . . . , N, (25)

and the relating cluster-specific constrained ML estimate is explicitly found as

λ̂iψ =
1

ξ

{
log

T∑
t=1

yξite
−ξ(βTxit) − log δi·

}
, i = 1, . . . , N. (26)

The profile log-likelihood function for ψ presented in (2) has the expression

lP (ψ) =

N∑
i=1

[
δi·

{
log δi· − log

T∑
t=1

yξite
−ξ(βTxit)

}
− ξ

T∑
t=1

δit(β
Txit)

+ δi·(log ξ − 1) + (ξ − 1)

T∑
t=1

δit log yit

]
, (27)

and its maximizer ψ̂ = (ξ̂, β̂) can be obtained numerically.
For what concerns the computation of the MPL, changing sign to the deriva-

tive of (25) with regard to λi gives

jλi,λi(θ̂ψ) = ξ2
T∑

t=1

(η̃ityit)
ξ , i = 1, . . . , N,
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where η̃it = exp
{
−(λ̂iψ + βTxit)

}
. In the second summand of (5), the usual

expectation can be estimated via Monte Carlo by

I∗λiλi
(θ̂; θ̂ψ) =

1

R

R∑
r=1

[{
− ξδri· + ξ

T∑
t=1

(η̃ity
r
it)

ξ

}{
− ξ̂δri· + ξ̂

T∑
t=1

(η̂ity
r
it)

ξ̂

}]
, (28)

where η̂it = exp
{
−(λ̂i + β̂Txit)

}
, δri· =

∑T
t=1 δ

r
it and (yrit, δ

r
it) (r = 1, . . . , R)

are the simulated datasets generated via the procedure described at the end of
Section 5.2.

The simulation results in the following section will shed light on the pos-
sibility to solve the incidental parameters problem using the MPL under the
Weibull model for clustered time-to-event data with unspecified censoring distri-
bution. Specifically, the studies will examine on a comparative basis the profile
log-likelihood lP (ψ) in (27) and the MCMPL lM∗(ψ) depending on the ap-
proximation (28). A comparison with a stratified Cox regression, which models
nonparametrically h0i(ỹit; ξ, λi) in (23), will also be considered.

5.4. Simulation studies

Two experiments of S = 2000 simulations are conducted to study inference
on ψ in the Weibull model for right-censored observations presented in Sec-
tion 5.3. The within-group size and the number of clusters in the artificial
samples are set equal to T = 4, 6, 10 and N = 50, 100, 250, respectively. The
regression model includes p = 2 covariates. The first, x1it, in each ith group
(i = 1, . . . , N) is obtained by imposing x1it = 0 for t = 1, . . . , T/2 and x1it = 1
for t = T/2 + 1, . . . , T . The second, x2it, is drawn from the standard normal
distribution. The common shape parameter is chosen as ξ = 1.5 and the vector
of regression coefficients as β = (−1, 1), while each cluster-related intercept is
independently sampled as λi ∼ N(0.5, 0.52). Failures ỹit are simulated via the
Weibull density function (22). The censoring times cit can be obtained by ran-
dom generation from the distribution Exp(ς), where the parameter is selected
in such a way as to control the overall proportion Pc of censored data. In detail,
given the quantities above and for a certain Pc, ς is fixed to the value solving
the equation

1

TN

N∑
i=1

T∑
t=1

P
(Ỹit > Cit) =
1

TN

N∑
i=1

T∑
t=1

∫ +∞

0

S
Ỹit

(y|xit;ψ, λi)pCit(y; ς)dy = Pc,

where � = (θ, ς) and pCit(y; ς) = ςe−ςy. Then, in each of the S fictitious datasets,
observations

(
yit, δit

)
stem from the usual definitions of censored failures and

event indicators, i.e. yit = min(ỹit, cit) and δit = 1 when ỹit ≤ cit, otherwise
δit = 0 (i = 1, . . . , N, t = 1, . . . , T ).

The first series of simulations considers data with censoring probability Pc =
0.2, the second relates to situations with higher proportion of censored ob-
servations, namely Pc = 0.4. Inferences from the profile likelihood and from
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Table 5

Inference on ξ = 1.5 in the stratified Weibull regression model for right-censored survival
data and probability of censoring Pc = 0.2. The compared methods are the profile

log-likelihood lP (ψ) and the MCMPL lM∗ (ψ) computed with R = 500. Results based on a
simulation study with 2000 trials.

N T Method B MB SD RMSE MAE SE/SD 0.95 CI
50 4 lP (ψ) 0.386 0.374 0.141 0.411 0.374 0.877 0.111

lM∗ (ψ) 0.006 0.001 0.109 0.109 0.073 1.005 0.958
6 lP (ψ) 0.229 0.227 0.100 0.250 0.227 0.907 0.287

lM∗ (ψ) 0.006 0.003 0.085 0.085 0.058 0.992 0.949
10 lP (ψ) 0.123 0.121 0.068 0.141 0.121 0.937 0.530

lM∗ (ψ) 0.004 0.002 0.063 0.063 0.041 0.988 0.950
100 4 lP (ψ) 0.378 0.375 0.101 0.391 0.375 0.859 0.006

lM∗ (ψ) -0.003 -0.003 0.078 0.078 0.052 0.981 0.944
6 lP (ψ) 0.222 0.218 0.068 0.232 0.218 0.930 0.053

lM∗ (ψ) 0.001 -0.001 0.058 0.058 0.039 1.017 0.955
10 lP (ψ) 0.118 0.118 0.047 0.127 0.118 0.958 0.257

lM∗ (ψ) -0.000 0.000 0.043 0.043 0.029 1.009 0.950
250 4 lP (ψ) 0.365 0.361 0.064 0.370 0.361 0.853 0.000

lM∗ (ψ) -0.011 -0.014 0.049 0.051 0.036 0.977 0.935
6 lP (ψ) 0.213 0.212 0.044 0.217 0.212 0.907 0.000

lM∗ (ψ) -0.006 -0.007 0.038 0.038 0.026 0.987 0.944
10 lP (ψ) 0.116 0.115 0.030 0.120 0.115 0.953 0.018

lM∗ (ψ) -0.002 -0.003 0.028 0.028 0.019 1.004 0.953

the MCMPL on ψ are investigated as done in Section 4.3. Notice that, before
proceeding to maximize the two functions for every simulated dataset, non-
informative clusters with only censored failure times must be discarded from
the study. Indeed, (26) shows that λ̂iψ is not finite if δi· = 0 and hence the
ith group does not make any contribution to estimating ψ (i = 1, . . . , N). Both

estimates ψ̂ and ψ̂M∗ =
(
ξ̂M∗ , β̂M∗

)
are found by joint numerical optimization

of lP (ψ) and lM∗(ψ), respectively.

It is well-known that the MPL can lead to both a location and a curvature
adjustment of the profile likelihood. These imply, respectively, a correction of
the bias and of the standard errors of the corresponding estimates. Typically,
both effects are present. But there are instances in which only the curvature
adjustment is needed for some components of ψ [7, Section 3.3]. This is the
case in the current example. Indeed, the presence of many nuisance parameters
does not bring bias in the estimation of the regression coefficients. For this
reason, although the MCMPL still remarkably refines the corresponding interval
estimation, statistical indicators referred to β are displayed in Section S4 of the
Supplementary material. On the other hand, both effects are present in the
estimation of ξ. Results are summarized in Tables 5 and 6.

The accuracy of lM∗(ψ) is extremely good for all unknown quantities and
diverse dimensions of the data, yet inferential conclusions on ξ drawn via lP (ψ)
are found quite misguided. Table 5 testifies how the Monte Carlo modification
is capable not only of greatly reducing the severe empirical bias of the ML esti-
mator, but also of correcting the excessively low actual Wald coverages derived
by the profile likelihood. Indeed, these can also be ascribed to the supplied stan-
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Table 6

Inference on ξ = 1.5 in the stratified Weibull regression model for right-censored survival
data and probability of censoring Pc = 0.4. The compared methods are the profile

log-likelihood lP (ψ) and the MCMPL lM∗ (ψ) computed with R = 500. Results based on a
simulation study with 2000 trials.

N T Method B MB SD RMSE MAE SE/SD 0.95 CI
50 4 lP (ψ) 0.453 0.440 0.177 0.486 0.440 0.836 0.131

lM∗ (ψ) -0.003 -0.009 0.124 0.124 0.083 1.000 0.945
6 lP (ψ) 0.272 0.266 0.120 0.298 0.266 0.885 0.277

lM∗ (ψ) 0.002 -0.003 0.096 0.096 0.062 0.996 0.947
10 lP (ψ) 0.144 0.140 0.081 0.165 0.140 0.916 0.525

lM∗ (ψ) 0.002 -0.002 0.072 0.072 0.047 0.982 0.949
100 4 lP (ψ) 0.450 0.444 0.130 0.468 0.444 0.805 0.011

lM∗ (ψ) -0.012 -0.017 0.092 0.092 0.062 0.952 0.933
6 lP (ψ) 0.259 0.255 0.083 0.272 0.255 0.902 0.059

lM∗ (ψ) -0.006 -0.009 0.067 0.067 0.046 1.010 0.951
10 lP (ψ) 0.137 0.135 0.056 0.148 0.135 0.928 0.259

lM∗ (ψ) -0.004 -0.006 0.050 0.050 0.034 0.996 0.951
250 4 lP (ψ) 0.431 0.428 0.081 0.439 0.428 0.812 0.000

lM∗ (ψ) -0.022 -0.024 0.056 0.061 0.043 0.971 0.912
6 lP (ψ) 0.249 0.248 0.054 0.255 0.248 0.865 0.000

lM∗ (ψ) -0.014 -0.016 0.044 0.046 0.031 0.971 0.926
10 lP (ψ) 0.134 0.134 0.035 0.139 0.134 0.933 0.021

lM∗ (ψ) -0.006 -0.006 0.032 0.032 0.022 0.996 0.944

dard errors of ξ̂, prominently downward biased for smaller T , independently of
N . Estimated variability of ξ̂M∗ is, conversely, much more trustworthy.

Performances of the two inferential tools under examination in the second
simulation study are summarized by Table 6, for what concerns the shape pa-
rameter. The reported indexes prove the convenience of lM∗(ψ) even when a
greater amount of data is subject to censoring. When Pc = 0.4 the empirical
bias of ξ̂M∗ remains systematically lower than that of ξ̂, reaching negligible val-
ues when T and N increase. In contrast, the imprecise point estimation provided
by lP (ψ) is especially critical when the within-group size is smaller and stays
basically constant as N grows, coherently with the existing theoretical knowl-
edge for models without censoring [35]. All the empirical coverage probabilities
based on the MCMPL are very close to the nominal level, while those based on
the profile likelihood are well below it, even for the aforementioned unreliable
estimated standard errors of ξ̂.

Both lP (ψ) and lM∗(ψ) are invariant under reparametrizations. Hence we
can also consider inference on the relative risks referred to the two covariates,
which are typically the measures of main interest in survival analysis. Under
the Weibull model (22), such quantities are expressed by RR1 = e−ξβ1 = e1.5

and RR2 = e−ξβ2 = e−1.5. Alternatively, these relative risks can be estimated
by fitting a stratified Cox proportional hazards regression, where a separate
baseline hazard function is supposed for each group. The function coxph in
the R package survival [40] performs such analysis. In Tables 7 and 9 for
RR1 and Tables 8 and 10 for RR2, we compare results from the fit of the
Weibull regression via the profile likelihood and via MCMPL with those ob-
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Table 7

Inference on the relative risk RR1 = e1.5 in the stratified regression for right-censored
survival data and probability of censoring Pc = 0.2. The compared methods are the profile
log-likelihood lP (ψ) and the MCMPL lM∗ (ψ) computed with R = 500 under the Weibull

model and the partial log-likelihood lCox under the Cox proportional hazards model. Results
based on a simulation study with 2000 trials.

N T Method B MB SD RMSE MAE SE/SD 0.95 CI
50 4 lP (ψ) 2.422 2.105 1.989 3.134 2.105 0.784 0.788

lM∗ (ψ) 0.105 -0.021 1.012 1.017 0.597 0.930 0.934
lCox 0.333 0.022 1.568 1.602 0.869 0.928 0.948

6 lP (ψ) 1.287 1.161 1.141 1.720 1.165 0.855 0.827
lM∗ (ψ) 0.074 -0.013 0.771 0.775 0.510 0.954 0.943
lCox 0.214 0.053 1.065 1.086 0.643 0.958 0.951

10 lP (ψ) 0.623 0.567 0.674 0.918 0.603 0.932 0.885
lM∗ (ψ) 0.027 -0.018 0.548 0.549 0.379 0.992 0.946
lCox 0.067 -0.013 0.685 0.688 0.458 0.985 0.953

100 4 lP (ψ) 2.311 2.146 1.358 2.681 2.146 0.792 0.446
lM∗ (ψ) 0.056 -0.013 0.700 0.702 0.446 0.936 0.940
lCox 0.201 0.040 1.019 1.038 0.610 0.969 0.950

6 lP (ψ) 1.203 1.147 0.756 1.421 1.147 0.894 0.608
lM∗ (ψ) 0.029 -0.009 0.516 0.517 0.351 0.994 0.950
lCox 0.105 0.063 0.696 0.704 0.448 1.003 0.951

10 lP (ψ) 0.620 0.588 0.485 0.787 0.593 0.912 0.748
lM∗ (ψ) 0.028 0.007 0.395 0.396 0.264 0.973 0.939
lCox 0.059 0.015 0.482 0.486 0.311 0.984 0.943

250 4 lP (ψ) 2.096 2.010 0.789 2.240 2.010 0.828 0.069
lM∗ (ψ) -0.047 -0.083 0.414 0.417 0.280 0.970 0.931
lCox 0.054 -0.006 0.594 0.597 0.397 0.994 0.954

6 lP (ψ) 1.139 1.124 0.467 1.231 1.124 0.902 0.215
lM∗ (ψ) -0.016 -0.028 0.320 0.320 0.221 1.002 0.946
lCox 0.040 0.022 0.427 0.429 0.286 1.011 0.953

10 lP (ψ) 0.575 0.561 0.290 0.644 0.561 0.953 0.466
lM∗ (ψ) -0.007 -0.017 0.237 0.237 0.158 1.016 0.952
lCox 0.014 -0.005 0.288 0.289 0.197 1.025 0.957

tained assuming the semiparametric survival model. Reported 0.95 Wald cov-
erages related with the Cox specification descend from the confidence intervals
for the relative risks returned by summary.coxph. The profile likelihood under
the Weibull model performs very poorly in estimating the relative risks, as a
result of the imprecise ML inference provided on the shape parameter ξ. On the
contrary, lM∗(ψ) proves to be extremely accurate in terms of both point and
interval estimation. Empirical coverages derived through the partial likelihood
of Cox are generally the closest to the nominal level, however this is due to
the larger variability of the obtained estimates with respect to those descending
from the MCMPL. Indeed, the latter exhibits the lowest RMSE and implies
a gain in efficiency over the semiparametric approach, which in turn is more
robust.

A thorough comparison between the outcomes of the two experiments above
may be helpful to check whether and how the incidence of censored data in the
sample affects the accuracy of the statistical techniques employed. Particularly,
lP (ψ) appears to suffer more than lM∗(ψ) from a high censoring probability.
Indeed, in making inference on ξ via the profile likelihood, only the coverages
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Table 8

Inference on the relative risk RR2 = e−1.5 in the stratified regression for right-censored
survival data and probability of censoring Pc = 0.2. The compared methods are the profile
log-likelihood lP (ψ) and the MCMPL lM∗ (ψ) computed with R = 500 under the Weibull

model and the partial log-likelihood lCox under the Cox proportional hazards model. Results
based on a simulation study with 2000 trials.

N T Method B MB SD RMSE MAE SE/SD 0.95 CI
50 4 lP (ψ) -0.071 -0.073 0.030 0.077 0.073 0.853 0.272

lM∗ (ψ) 0.000 -0.001 0.034 0.034 0.023 0.987 0.944
lCox -0.003 -0.005 0.052 0.052 0.035 1.010 0.953

6 lP (ψ) -0.046 -0.046 0.023 0.051 0.046 0.902 0.414
lM∗ (ψ) -0.000 -0.001 0.025 0.025 0.017 0.995 0.939
lCox -0.003 -0.003 0.034 0.034 0.023 1.014 0.950

10 lP (ψ) -0.026 -0.026 0.018 0.031 0.026 0.927 0.624
lM∗ (ψ) 0.000 -0.000 0.019 0.019 0.013 0.984 0.941
lCox -0.001 -0.001 0.023 0.023 0.015 0.995 0.948

100 4 lP (ψ) -0.071 -0.071 0.021 0.074 0.071 0.828 0.071
lM∗ (ψ) 0.002 0.002 0.024 0.024 0.017 0.960 0.942
lCox -0.002 -0.003 0.035 0.035 0.023 1.003 0.949

6 lP (ψ) -0.045 -0.046 0.016 0.048 0.046 0.906 0.194
lM∗ (ψ) 0.001 -0.000 0.018 0.018 0.012 1.005 0.949
lCox -0.002 -0.003 0.024 0.024 0.016 1.022 0.954

10 lP (ψ) -0.026 -0.026 0.012 0.028 0.026 0.939 0.409
lM∗ (ψ) 0.000 -0.000 0.013 0.013 0.009 0.999 0.948
lCox -0.001 -0.001 0.016 0.016 0.011 0.998 0.952

250 4 lP (ψ) -0.070 -0.071 0.013 0.071 0.071 0.847 0.001
lM∗ (ψ) 0.003 0.003 0.015 0.015 0.010 0.985 0.942
lCox -0.001 -0.002 0.022 0.022 0.015 1.002 0.949

6 lP (ψ) -0.044 -0.044 0.011 0.045 0.044 0.895 0.009
lM∗ (ψ) 0.002 0.002 0.011 0.012 0.008 0.986 0.954
lCox 0.000 -0.000 0.015 0.015 0.010 1.003 0.954

10 lP (ψ) -0.025 -0.025 0.008 0.026 0.025 0.945 0.099
lM∗ (ψ) 0.001 0.001 0.008 0.008 0.006 1.003 0.947
lCox 0.000 0.000 0.010 0.010 0.007 1.026 0.959

when N = 50 are slightly more adequate with Pc = 0.4. The same pattern is
observed with regard to the estimated relative risks. On the contrary, conclusions
descending from the MPL and the partial likelihood for the Cox model look less
impacted by the percentage of observations subject to censoring.

The empirical findings in this example are substantially in accordance with
those relating to the contrast between the profile likelihood and the integrated
likelihood in [11]. Nonetheless, there exist three important motivations to prefer
the MCMPL approach illustrated in Section 5.2. Firstly, it is far less compu-
tationally expensive, as the effort entailed by the numerical integration to cal-
culate Severini’s integrated likelihood in the regression setting is considerable.
Secondly, its basic procedure easily lends itself to encompass the bootstrap for
nonparametric estimation of the censoring mechanism, protecting against mis-
specification risks. And thirdly, it can handle different distributions of the failure
times Ỹit, such as logNormal or Gamma, whereas the method of [11] demands
to derive ad hoc formulae for finding a suitable reparametrization of the model
[38].
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Table 9

Inference on the relative risk RR1 = e1.5 in the stratified regression for right-censored
survival data and probability of censoring Pc = 0.4. The compared methods are the profile
log-likelihood lP (ψ) and the MCMPL lM∗ (ψ) computed with R = 500 under the Weibull

model and the partial log-likelihood lCox under the Cox proportional hazards model. Results
based on a simulation study with 2000 trials.

N T Method B MB SD RMSE MAE SE/SD 0.95 CI
50 4 lP (ψ) 3.175 2.620 2.784 4.222 2.620 0.746 0.829

lM∗ (ψ) 0.109 -0.076 1.172 1.177 0.716 0.939 0.925
lCox 0.477 0.050 1.978 2.035 0.989 0.893 0.950

6 lP (ψ) 1.651 1.419 1.501 2.231 1.433 0.819 0.836
lM∗ (ψ) 0.080 -0.030 0.912 0.915 0.584 0.944 0.939
lCox 0.295 0.074 1.259 1.293 0.752 0.958 0.953

10 lP (ψ) 0.764 0.675 0.830 1.128 0.720 0.901 0.884
lM∗ (ψ) 0.023 -0.041 0.640 0.640 0.433 0.979 0.942
lCox 0.080 -0.030 0.807 0.811 0.517 0.964 0.946

100 4 lP (ψ) 2.987 2.698 1.922 3.551 2.698 0.739 0.473
lM∗ (ψ) 0.019 -0.067 0.822 0.822 0.529 0.923 0.925
lCox 0.246 0.017 1.223 1.247 0.712 0.944 0.952

6 lP (ψ) 1.203 1.147 0.756 1.421 1.147 0.894 0.608
lM∗ (ψ) 0.029 -0.009 0.516 0.517 0.351 0.994 0.950
lCox 0.105 0.063 0.696 0.704 0.448 1.003 0.951

10 lP (ψ) 0.746 0.695 0.597 0.956 0.699 0.882 0.750
lM∗ (ψ) 0.016 -0.016 0.461 0.461 0.298 0.960 0.936
lCox 0.068 0.019 0.553 0.557 0.359 0.989 0.950

250 4 lP (ψ) 2.683 2.547 1.086 2.894 2.547 0.784 0.079
lM∗ (ψ) -0.089 -0.126 0.481 0.489 0.347 0.968 0.921
lCox 0.086 0.037 0.709 0.714 0.445 0.970 0.951

6 lP (ψ) 1.399 1.355 0.600 1.522 1.355 0.865 0.213
lM∗ (ψ) -0.055 -0.076 0.371 0.375 0.254 0.994 0.932
lCox 0.040 0.006 0.497 0.499 0.308 1.004 0.946

10 lP (ψ) 0.697 0.678 0.354 0.782 0.678 0.931 0.457
lM∗ (ψ) -0.021 -0.033 0.274 0.275 0.182 1.009 0.945
lCox 0.021 0.011 0.337 0.338 0.225 1.011 0.953

5.5. Application to an HIV clinical trial

We now employ the proposed methodology in the analysis of a dataset from
one clinical trial conducted to compare the time to death under two different
treatments for Mycobacterium avium complex, a frequent disease in late-stage
HIV-infected people [10]. Data are the observed survival times and the corre-
sponding event indicators, i.e. the realizations (yit, δit) from the pairs (Yit,Δit),
recorded along with the treatment used (xit = 0, 1, respectively, in treatment
groups “Tx 1” and “Tx 2”), for a total of 69 patients enrolled by N = 11
different medical centers. While such a number of clinics (i.e., groups) is small
compared with the simulation settings of the previous section, the interesting
aspect here is the relatively moderate amount of patients (i.e., cluster sizes Ti,
i = 1, . . . , 11) followed by most of the centers. Moreover, very few or no events
of death are observed in each group (only 5 people died in group “Tx 1”, and
13 in “Tx 2”), with a global proportion of censored observations equal to 74%.
We remark that the simulation-based evidence attested that ordinary inferential
techniques especially suffer from a high censoring probability.
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Table 10

Inference on the relative risk RR2 = e−1.5 in the stratified regression for right-censored
survival data and probability of censoring Pc = 0.4. The compared methods are the profile
log-likelihood lP (ψ) and the MCMPL lM∗ (ψ) computed with R = 500 under the Weibull

model and the partial log-likelihood lCox under the Cox proportional hazards model. Results
based on a simulation study with 2000 trials.

N T Method B MB SD RMSE MAE SE/SD 0.95 CI
50 4 lP (ψ) -0.082 -0.085 0.035 0.089 0.085 0.808 0.264

lM∗ (ψ) 0.003 0.001 0.040 0.041 0.028 0.981 0.943
lCox -0.004 -0.007 0.060 0.060 0.040 0.993 0.949

6 lP (ψ) -0.054 -0.055 0.027 0.061 0.055 0.861 0.382
lM∗ (ψ) 0.001 0.000 0.029 0.029 0.020 0.982 0.945
lCox -0.004 -0.005 0.039 0.040 0.027 1.000 0.954

10 lP (ψ) -0.030 -0.030 0.021 0.037 0.030 0.896 0.603
lM∗ (ψ) 0.001 0.001 0.021 0.022 0.014 0.968 0.940
lCox -0.001 -0.001 0.026 0.026 0.018 0.989 0.951

100 4 lP (ψ) -0.083 -0.083 0.024 0.086 0.083 0.790 0.066
lM∗ (ψ) 0.005 0.004 0.028 0.029 0.019 0.958 0.942
lCox -0.003 -0.005 0.040 0.040 0.027 1.005 0.953

6 lP (ψ) -0.045 -0.046 0.016 0.048 0.046 0.906 0.194
lM∗ (ψ) 0.001 -0.000 0.018 0.018 0.012 1.005 0.949
lCox -0.002 -0.003 0.027 0.027 0.018 1.036 0.956

10 lP (ψ) -0.030 -0.030 0.014 0.033 0.030 0.932 0.392
lM∗ (ψ) 0.001 0.001 0.015 0.015 0.010 1.007 0.951
lCox -0.001 -0.001 0.019 0.019 0.013 1.005 0.955

250 4 lP (ψ) -0.082 -0.083 0.015 0.083 0.083 0.809 0.001
lM∗ (ψ) 0.006 0.005 0.018 0.018 0.012 0.992 0.948
lCox -0.002 -0.002 0.025 0.025 0.017 1.008 0.949

6 lP (ψ) -0.051 -0.051 0.012 0.053 0.051 0.856 0.009
lM∗ (ψ) 0.004 0.004 0.013 0.014 0.010 0.976 0.936
lCox -0.000 -0.000 0.018 0.018 0.012 0.996 0.947

10 lP (ψ) -0.029 -0.029 0.009 0.031 0.029 0.936 0.080
lM∗ (ψ) 0.002 0.002 0.009 0.009 0.006 1.010 0.950
lCox -0.000 0.000 0.012 0.012 0.008 1.016 0.955

Fitting the Weibull model (23) via the profile likelihood returns estimates

ξ̂ = 1.150 (s.e. 0.236) and β̂ = −1.012 (s.e. 0.520). Exploiting the invariance

property, one can say that the estimated relative risk is e−ξ̂β̂ = 3.199, indicating
a clear higher mortality rate for patients under the second treatment (xit = 1).
The likelihood ratio test for H0 : β = 0 rejects at the 0.05 level the hypothesis
of no treatment effect (p-value = 0.027). Confidence intervals for ξ and β based
on the corresponding profile likelihood ratio statistics are (0.742, 1.669) and
(-2.310, -0.111), respectively.

The study performed through the MCMPL does not produce the same sig-
nificant results in support of the first treatment. The estimates are ξ̂M∗ = 1.051
(s.e. 0.221) and β̂M∗ = −0.981 (s.e. 0.564), implying an hazard ratio equal to

e−ξ̂M∗ β̂M∗ = 2.806. Testing H0 : β = 0 by means of the MPL ratio statistic
leads now to a more dubious conclusion, since the p-value equals 0.049, and
such uncertainty is reflected by the 0.95 confidence interval for β obtained by
inversion of the same quantity, namely (-2.400, -0.004). A similar interval for
ξ is instead (0.672, 1.538). Figure 1 provides a graphical representation of the
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Fig 1. Relative profile (dashed) and Monte Carlo modified profile (solid) log-likelihoods of
the HIV data for ξ and β, with corresponding 0.95 confidence intervals.

inferential discrepancy existing between the two contrasted methods, even in
this case with a moderate value of N .

Inference on the relative risk can also be made by fitting a stratified Cox
proportional hazards regression by means of the R function coxph, introduced
in Section 5.4. Specifically, under this model the estimated risk ratio is equal
to 1.953 (s.e. 1.054), with corresponding 0.95 confidence interval (0.641, 5.950)
returned as output. The analogue Wald confidence regions for the Weibull rela-
tive risk based on the profile likelihood and MCMPL, resulting upon application
of the Delta method, are instead (2.697, 3.702) and (2.378, 3.234), respectively.
Thus, in this specific example, the interval obtained under the semiparametric
Cox model is significantly wider than both those obtained assuming a Weibull
distribution for the survival times, since there is a substantial price to be paid
for the weaker assumption with such a moderate sample size.

6. Discussion

This work shows how to exploit Monte Carlo simulation for widening the field
of application of the MPL [3, 4]. [36] made a first step in this direction, yet
his approximation is still not approachable enough to deal with the today’s
degree of modelling sophistication for clustered units. Our solution, introduced
in Section 3, helps to fill such a gap in accessibility and to solve the incidental
parameters problem even when the experimental design imposes quite complex
assumptions on the analysis. The suggested procedure is easy, implementable in
broad generality and reasonably fast, and for these reasons could be thought of
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as the default choice in applications. Indeed, an extended version of the package
panelMPL is currently under development and will also handle the automatic
computation of the MCMPL for the model classes discussed here.

Section 4 addresses issues in inferences on the parameter of interest related
to the presence of missing values in binary grouped data. In this case analytical
calculation of Severini’s MPL is practicable but is not a simple task, while
its approximation can be done by means of a simple two-step procedure to
simulate the required Monte Carlo samples. Results of simulation studies are
presented here for the logistic regression scenario and for the probit regression
in the Supplementary material. In the analysis of MCAR observations Monte
Carlo simulation is found unnecessary to compute the MPL, as the inferential
precision of the MCAR MCMPL appears equivalent to that of the analytical
MPL which disregards the missing data. Remarkably, the MNAR MCMPL sets
an example of robustness to the ignorable incompleteness of the data. When
the true mechanism of missingness is nonignorable, the MNAR MCMPL proves
to be generally more accurate than Severini’s function, especially if T is not
too small, for any N . Justifications for this outcome are given in Section 4.3. To
explore the usefulness of the Monte Carlo strategy when computing the MPL on
partially MAR or partially missing always at random data for inference about
ψ [23] could be another possible direction of research.

Clustered survival times subject to right-censoring are discussed in Section
5. Under the Weibull regression model with group-related intercepts, our pro-
posed approximation to the MPL is made necessary by the lack of distributional
assumptions on the random censoring mechanism. An explicit calculation of Sev-
erini’s modification requires full parametric specification of the density for the
censoring times, whereas the Monte Carlo strategy enables to estimate it non-
parametrically, using a conditional bootstrap [12, Algorithm 3.1]. Experimental
outcomes examined in Section 5.4 corroborate the theory pertaining to inference
in the standard two-index asymptotic setting. Estimation of the parameter of
interest via the MCMPL is preferable to that via the profile likelihood in every
relevant respect and is not affected by the proportion of censored data in the
sample. Finally, the computational burden demanded by existing alternative
statistical procedures [11] is much heavier than that of the solution adopted
here.

The potential room for future applications is vast, thanks to the generality of
the methodology presented. One instance is given by semiparametric regression
models where the incidental nuisance parameters are expressed as unknown
real-valued functions [17].

Supplementary material

The Supplementary material (available at https://github.com/cdicaterina/
MCMPL) provides additional outputs of simulation experiments, along with the
code to reproduce all numerical results in the present paper.

https://github.com/cdicaterina/MCMPL
https://github.com/cdicaterina/MCMPL
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