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Abstract: Ranking, also known as learning to rank in machine learning
community, is to rank a number of items based on their relevance to a
specific query. In literature, most ranking methods use a uniform ranking
function to evaluate the relevance, which completely ignores the heterogene-
ity among queries. To admit different ranking functions for various queries,
a general U -process formulation for query-dependent ranking is developed.
It allows to incorporate neighborhood structure among queries via various
forms of smoothing weights to improve the ranking performance. One of
its salient features is its capability of producing reasonable rankings for
novel queries that are absent in the training set, which is commonly en-
countered in practice but often neglected in the literature. The proposed
method is implemented via an inexact alternating direction method of mul-
tipliers (ADMM) for each query parallelly. Its asymptotic risk bound is es-
tablished, showing that it achieves desirable ranking accuracy at a fast rate
for any query including the novel ones. Furthermore, simulated examples
and a real application to the Yahoo! challenge dataset also support the
advantage of the query-dependent ranking method against existing com-
petitors.
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1. Introduction

Ranking has a long-standing history in statistical literature [2]. It arises in med-
ical informatics, psychology, information retrieval, and many other fields, where
a number of items are to be ranked. Specifically, in information retrieval, rank-
ing finds applications in document retrieval [22], computational biology [1], and
collaborative filtering [23]. Taking document retrieval as an illustrating example,
its goal is to rank a large collection of text documents given a text-based query
and retrieve the top-ranked documents. In 2010, Yahoo! initiated a learning to
rank challenge on web search, and more than 1,000 teams had participated [9].

Broadly speaking, the existing ranking methods in literature can be catego-
rized into three types: pointwise methods, pairwise methods, and listwise meth-
ods. The pointwise methods convert ranking to an ordinal regression problem,
and then apply the existing ordinal regression methods to estimate the relevance
score. For example, OC SVM [29] embeds ranking in an ordinal SVM formu-
lation, which essentially decomposes ordinal regression into a series of binary
classification problems. However, as pointed out in [22], the pointwise methods
are often sub-optimal, since ranking concerns about the relative order of the
documents while ordinal regression focuses on the absolute relevance score of
each document-query pair. The pairwise methods try to correctly rank all the
document pairs for the same query, and formulate the ranking problem as mini-
mization of U -processes, such as RankSVM [17]. The listwise methods consider
all the documents associated with the same query simultaneously. They attempt
to find the most preferred ranking of the documents to maximize certain ranking
performance measures, such as SVM MAP [42].

In most existing ranking methods, a uniform ranking function is often as-
sumed for all queries. Yet its clear drawback is that it completely ignores the het-
erogeneity among different queries and thus the resultant ranking performance
is suboptimal. In practice, the semantics, frequencies and ranking patterns can
vary significantly from one query to another, and thus lead to sever hetero-
geneity among queries. For example, for two entirely different queries “Donald
Trump” and “LeBron James”, the number of political terms shall contribute
differently to the ranking performance for these two queries. Hence, using a
uniform ranking function would compromise different types of queries and dete-
riorate the ranking performance. In recent years, query-dependent ranking has
been proposed to circumvent this problem. For example, [14] proposes to use the
RankSVM to train a query-specific ranking function based on the nearest neigh-
bors of the target query, and [6] employs the query categorization to develop the
position-sensitive query-dependent loss functions to estimate the ranking func-
tion. Even though superior numerical performance has been widely reported,
very little is known about the asymptotic properties of the query-dependent
ranking methods, such as how the neighborhood structure of queries can affect
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the ranking accuracy.
The main contribution of this paper is two-fold. First, a general query-

dependent ranking formulation is developed based on the idea of kernel smooth-
ing, which not only contains the existing methods [14] as special cases, but also
allows for more appropriate modelling about the kernel weights. The formula-
tion admits query-specific ranking functions for different queries, incorporates
neighborhood structure among queries to improve the ranking performance, and
produces satisfactory rankings for novel queries that are not present in the train-
ing set. Second, asymptotic analysis is conducted to establish the uniform con-
vergence rate of the developed ranking formulation. The uniform convergence
is established for almost all queries, which provides theoretical guarantee for
the developed ranking formulation in producing appropriate ranking for novel
queries that are absent from the training set. More importantly, the established
rate of convergence is fast as it goes to zero as the number of queries diverges.
In sharp contrast, the existing results [11, 28], mainly based on the theory of
U -processes [27], are governed by the small number of documents retrieved for
each query, leading to a much slower rate of convergence.

The rest of the paper is organized as follows. Section 2 briefly introduces the
formulation of ranking and some popular ranking metrics. Section 3 presents
the proposed query-dependent ranking method and its implementation via the
inexact ADMM algorithm. Section 4 establishes asymptotic risk bounds for
the proposed method. Section 5 examines the numerical performance of the
proposed method in simulated examples and a real application to the Yahoo!
challenge dataset. A brief summary is given in Section 6, and the Appendix is
devoted to the technical proofs.

2. Ranking metrics

In ranking problem, a training observation is a triples of (query, document,
relevance), where each query is represented by a p-dimensional feature vector
Q ∈ Rp, its associated document is represented by a b-dimensional feature vec-
tor D ∈ Rb, and Y ∈ R denotes the relevance score describing how related D
is to Q. Here p and b are the number of features for the query and document,
respectively. Popular features used in Q includes number of terms, frequency of
each term, click-through rate of the query, and D includes document statistics,
textual similarity between the query and the document, the BM25 and PageR-
ank scores [9]. Typically, multiple documents are retrieved for the same Q, and
the primary goal of ranking is to construct a ranking function f that can pro-
duce an appropriate ranking of all the retrieved documents for each query. Yet
as discussed in the introduction, most of the existing ranking methods focus
on a uniform ranking function regardless of the heterogeneity among queries,
which in turn leads to suboptimal ranking performance. As a natural remedy,
query-specific ranking function fq0 shall be used for each query q0 to overcome
the limitation of a uniform ranking function.

To assess the ranking accuracy of fq0 , a number of metrics in literature can be
used, including Kendall’s tau [19], the expected reciprocal rank (ERR; [12]), the



468 B. Dai and J. Wang

discounted cumulative gain (DCG; [18]) and the normalized discounted cumu-
lative gain (NDCG; [18]). Kendall’s tau is a well-studied ranking metric, which
allows for convex surrogate losses [17] with established asymptotic properties
[11]. Both NDCG and ERR suggest to reward correctly top-ranked documents
more than those correctly ranked in the bottom. This is sensible in assessing
ranking accuracy in practice, but also casts great challenges both computation-
ally and theoretically. Particularly, it is proved in [37] that NDCG converges
to 1 almost surely for any ranking function when sample size goes to infinity,
suggesting that NDCG may not be able to distinguish the ranking functions at
limiting case. It has also been shown in [8] that no convex surrogate loss can
be calibrated for ERR, suggesting that nonconvex optimization is inevitable in
order to optimize ERR. Therefore, even though Kendall’s tau may not distin-
guish the top-ranked and bottom-ranked documents, we still focus on it in the
subsequent analysis, noting that the formulation can be naturally extended to
other reasonable ranking metrics.

Denote the ranking function for query q0 as fq0(D,D′) : Rb × Rb → R,
which provides the relative rank of documents D and D′. If fq0(D,D′) > 0,
then fq0 ranks D higher than D′ for q0, and vice versa. Kendall’s tau measures
the probability of correctly evaluating of the relative order of any two retrieved
documents,

τ(fq0) = P
(
(Y − Y ′)fq0(D,D′) ≥ 0

∣∣Q = q0
)
, (2.1)

where D and D′ are two independent documents retrieved for the same query
q0, and Y and Y ′ are their respective relevance scores. This definition slightly
differs from the existing Kendall’s tau in literature in that it takes conditional
expectation over the documents retrieved for q0. It still enjoys the desirable
properties of the existing Kendall’s tau, and admits many ranking metrics as
its special cases, including DCG with a specific discount and gain function [21].

More importantly, Kendall’s tau naturally leads to the pairwise ranking func-
tion fq0(D,D′) which focuses on the relative order of any pair of documents D
and D′. Note that in (2.1), (Y −Y ′)fq0(D,D′) ≥ 0 indicates fq0 correctly ranks
D and D′. Therefore, the mis-ranking error MRE(fq0) can be defined as

MRE(fq0) = 1− τ(fq0) = P
(
(Y − Y ′)fq0(D,D′) ≤ 0

∣∣Q = q0
)
. (2.2)

Lemma 1 gives the ideal ranking function f∗
q0(·) that yields the smallest MRE(fq0),

or equivalently the largest τ(fq0).

Lemma 1. The global minimizer of MRE(fq0) must satisfy that

sign
(
f∗
q0(d, d

′)
)
= sign

(
P (Y ≥ Y ′|Q = q0, D = d,D′ = d′)− 1/2

)
, (2.3)

for any two documents d and d′ retrieved for the same query q0.

It is clear that MRE(fq0) is a sensible ranking metric as f∗
q0 ranks each pair of

documents according to the most probable order. A similar result for the uniform
ranking function can be found in [11]. Essentially, MRE can be regarded as an
analogy to the misclassification error in classification, and the ideal f∗

q0 in (2.3)
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is analogous to the Bayes decision function [3]. One notable fact from Lemma
1 is that the ideal query-specific ranking function f∗

q0 is solely determined by
the documents retrieved for q0. Naturally, f

∗
q0 can be estimated by an individual

ranking method, which mimics the uniform ranking method but only use the
documents retrieved for q0. The individual ranking method accounts for the
heterogeneity among queries through different ranking functions. However, it
has its own limitations. First, the number of documents retrieved for a specific
query is often small. As provided in the Yahoo! challenge dataset, the average
number of documents per query is about 24, and thus the estimation accuracy
of fq0 can be unsatisfactory. Second and more severely, it is difficult to apply
the individual ranking method to produce rankings for novel queries that are
not present in the training set. Therefore, a flexible query-dependent ranking
method that allows pooling and sifting information across queries is in demand.

3. Query-dependent ranking

This section develops a general query-dependent ranking formulation, which not
only admits query-specific ranking function fq0 to account for the heterogene-
ity among different queries, but also incorporates the neighborhood structure
among similar queries to improve the ranking performance.

3.1. A general ranking formulation

Consider a training set of (qi, dij , yij); i = 1, . . . , n; j = 1, . . . , Ni, where qi ∈ Rp

is the feature of the i-th query, dij ∈ Rb is the feature of the j-th document
retrieved for qi, and yij ∈ R is the relevance score between dij and qi, n is
the number of queries, and Ni is the number of documents retrieved for qi.
Here xij is often created based on the query-document pair (qi, dij), such as
BM25, PageRank, query statistics and document statistics. Furthermore, let
xij = (qi, dij) for simplicity. Apparently, (xij , yij)’s are not independent as
multiple documents are retrieved for the same query. A query-specific ranking
function fq0(d, d

′) = fq0(x,x
′) is to be constructed to determine the relative

order of any pair of documents d and d′ so that high ranking accuracy can be
achieved.

For any given q0, the proposed query-dependent ranking method is formulated
as

min
fq0∈HK

1

n

n∑
i=1

πi

Ni(Ni − 1)

∑
j �=l

L
(
sign(yij − yil)fq0(xij ,xil)

)
+ λJ(fq0), (3.1)

where HK is a reproducing kernel Hilbert space (RKHS; [34]) specified by a
kernel function K(·, ·), L is a surrogate loss function, πi = π(qi, q0) is a weight
function, J(fq0) = ‖fq0‖2HK

is a regularization term, and λ is a tuning parameter.
The surrogate loss L can be set as the hinge loss L(u) = (1−u)+ [35], the ψ-loss
L(u) = min(1, (1 − u)+) [30, 39], or the logistic loss log(1 + exp(−u)) [44]. For
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illustration, we focus on the hinge loss L(u) = (1 − u)+ in the sequel, but the
proposed formulation can be adapted to other loss functions.

The key advantage of the ranking formulation in (3.1) is that it allows pooling
information from other queries for estimating fq0 . More specifically, the first loss
part in (3.1) can be regarded as an empirical version of

lπ(fq0) = E
(
π(Q, q0)L(sign(Y − Y ′)fq0(D,D′))

)
, (3.2)

where the expectation is taken with respect to (Q,D, Y,D′, Y ′), and (D,D′) are
a pair of documents retrieved for any query Q. It is clear that all the document-
query pairs can contribute to the estimation of fq0 , where their contributions
are controlled by π(Q, q0). This general formulation not only increases the effec-
tive sample size to improve estimation accuracy, but also provides a reasonable
estimation formulation for novel q0’s which are not present in the training set.

The proposed formulation in (3.1) is general in that π(q, q0) can take various
forms, leading to different ranking methods.

If π(q, q0) ≡ 1, then the developed ranking formulation in (3.1) degenerates
to the uniform ranking method (e.g. RankSVM; [17]), where fq0 = f for all q0’s
and can be obtained by solving

min
f∈HK

1

n

n∑
i=1

1

Ni(Ni − 1)

∑
j �=l

L
(
sign(yij − yil)f(xij ,xil)

)
+ λJ(f). (3.3)

If π(q, q0) = I(q = q0), then the developed ranking formulation reduces to the
individual ranking method, where each fqi is obtained by solving

min
fqi∈HK

1

Ni(Ni − 1)

∑
j �=l

L
(
sign(yij − yil)fqi(xij ,xil)

)
+ λJ(fqi). (3.4)

Note that individual method can only estimate fqi for the observed qi’s in the
training set.

A more appropriate choice is π(q, q0) = h−pW
(
h−1(q − q0)

)
, where W(·) is

the multivariate kernel function. Typically, W(·) is set as W
(
h−1(q − q0)

)
=

W (h−1‖q − q0‖), so that the contribution of documents retrieved for q decays
as q deviates from q0. Here h is the bandwidth for a kernel, and W (·) can be
any popular univariate smoothing kernel [13], such as the rectangular kernel,
the Epanechnikov kernel, the tri-cube kernel, or the Gaussian kernel. Note that
if the rectangular kernel is used, the developed ranking formulation becomes the
method in [14] using k-nearest neighbors. Moreover, W(·) can be defined as a
product kernel to admit ordinal and categorical features. More specifically, the
Kendall and Mallows kernels can be used to compute a similarity between two
ordinal features [20, 24], and the overlap kernels can be used for the categorical
features [4]. We can also use various numerical embeddings, including ordinal
embedding [31], Word2Vec [25] and graph embeddings [15], to pre-process the
ordinal, categorical and textual query features into continuous features to be
included in the kernel function.
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3.2. Scalable computation

One salient aspect of the ranking formulation in (3.1) is that it estimates fq0 for
each q0 separately, and thus the estimation can be parallelized to handle a large
number of queries. In addition, with the hinge loss L(u) = (1 − u)+, solving
(3.1) for each fq0 is a large-scale constrained convex optimization task, and can
be tackled by an efficient inexact alternating direction method of multipliers
algorithm (ADMM; [7]).

Denote a documents pair by x̃ =
(

x
x′

)
, and a kernel matrix by K with

Ktt′ = K(x̃t, x̃t′), where (x̃t, x̃t′) indexes all possible pairs of documents. By
the representer theorem [34] for the RKHS, the solution to (3.1) must be of
form fq0(x̃) =

∑
t αt,q0K(x̃t, x̃) + α0,q0 , and the penalty becomes J(fq0) =

1
2
αT

q0 Kαq0 . After introducing slack variables γ̃ijl, (3.1) can be rewritten as

min
αq0 ,γ̃ijl

1

n

n∑
i=1

π̃i

∑
j �=l

(γ̃ijl)+ +
λ

2
αT

q0Kαq0 (3.5)

subject to 1− yijl(
∑
t

αt,q0K(x̃ijl, x̃t) + α0,q0) = γ̃ijl, i = 1, · · · , n; j �= l,

where π̃i = 1
Ni(Ni−1)πi, yijl = sign(yij − yil), and x̃ijl =

(
xij

xil

)
. Clearly, the

optimization task becomes a weighted SVM [40], which can be solved by the
ADMM algorithm as follows.

First, let ξijl = (γ̃ijl)+ and γijl = ξijl − γ̃ijl ≥ 0, the augmented Lagrangian
of (3.5) is

Lρ(αq0 ,ξ,γ,u) =
1

n

n∑
i=1

π̃i

∑
j �=l

ξijl +
λ

2
αT

q0Kαq0

+
ρ

2

n∑
i=1

∑
j �=l

(
yijl

(∑
t

αt,q0K(x̃ijl, x̃t) + α0,q0

)
− 1 + ξijl − γijl + uijl

)2
,

subject to the positivity constraints ξijl ≥ 0 and γijl ≥ 0, for i = 1, · · · , n
and j �= l. Here ρ is a Lagrangian multiplier. The ADMM algorithm updates
αq0 , ξ, γ and u separately with others fixed, which requires substantial effort in
inverting large matrices. To alleviate the computing burden, the inexact ADMM
[36] is developed to bypass the matrix inversion and approximate the update in
the subproblems.

Specifically, the inexact ADMM iteratively updates α̃q0 , ξ, γ and u as follows,

α̃(k+1)
q0 =

ζ − λK̃

ζ
α̃(k)

q0 − ρ

ζ
v(k),

ξ
(k+1)
ijl = max

(
1− yijl

(
1,K

T
x̃ijl

)
α̃(k+1)

q0 − u
(k)
ijl −

1

nρ
π̃i, 0

)
,

γ
(k+1)
ijl = max

(
yijl

(
1,K

T
x̃ijl

)
α̃(k+1)

q0 − 1 + u
(k)
ijl , 0

)
,
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u
(k+1)
ijl = u

(k+1)
ijl + yijl

(
1,K

T
x̃ijl

)
α̃(k+1)

q0 − 1 + ξ
(k+1)
ijl − γ

(k+1)
ijl .

Here α̃q0 =
(
α0,q0
αq0

)
, K̃ is obtained by inserting 0 as the first row and column in

K, v(k) =
∑n

i=1

∑
j �=l

(
1,KT

xijl

)T
yijl(yijl

(
1,KT

xijl

)
α(k)

q0 − 1+ ξ
(k)
ijl − γ

(k)
ijl + u

(k)
ijl ),

Kx̃ijl
is a column in K corresponding to x̃ijl, ζ ≥ ϕmax(λK̃+ ρMT M) with

M =
(
yijl(1,K

T
xijl

)
)
i=1,··· ,n;j �=l

, and ϕmax(· ) denotes the largest eigenvalue of

a matrix.
The inexact ADMM algorithm converges to a global solution of (3.1), and

often produces reasonable approximations after a small number of iterations
[36]. Each iteration only involves some matrix multiplication, its computational
complexity is of order O

(
(
∑n

i=1 Ni(Ni − 1))2
)
. Furthermore, π̃i is usually trun-

cated to include only a small number of queries close to the target query, which
will further reduce the computational cost.

Once f̂q0 is obtained, it can be used to determine the relative order of any
pair (d, d′), but it still requires further adjustment to produce the ranking of
all documents due to the possible inconsistent order of the document pairs.
Specifically, the score for each document can be estimated by solving

min
s

∑
j,l

(sj − sl − f̂q0(xj ,xl))
2, (3.6)

where sj and sl are the relevance scores correspond to dj and dl respectively,
and the documents can be ranked according to the magnitude of s. Another
more direct way is to replace fq0 by the difference between two scoring func-
tions, fq0(xij ,xil) = sq0(xij)− sq0(xil). Then the proposed formulation can be
rewritten as

min
sq0∈HK

1

n

n∑
i=1

2πi

Ni(Ni − 1)

∑
j>l

L
(
sign(yij − yil)(sq0(xij)− sq0(xil))

)
+ λJ(sq0).

(3.7)
This formulation can largely alleviate the computation burden, especially when
the number of documents is large. However, a consistent scoring function does
not always exist, unless certain structure is imposed as in the bipartite ranking
problem [32, 11].

4. Asymptotic ranking theory

In this section, we establish some theoretical results to quantify the asymptotic
behavior of the query-dependent ranking formulation in (3.1). Its ranking accu-
racy, measured by MRE, converges to that of the ideal ranking function at a fast
rate, which is governed by the number of queries and various tuning parameters.

For simplicity, let HK be a RKHS with the Gaussian kernel K(x̃, x̃′) =

exp{−‖x̃−x̃′‖2

σ2 }, L(u) = (1 − u)+, and let N1 = N2 = · · ·Nn = N ; that is, the
numbers of documents are the same for all queries. Furthermore, assume the
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ideal ranking function f∗
q0 ∈ HK , and {(Qi, Zi1, · · · , ZiN )}ni=1 are sampled in-

dependently, where Zij = (Dij , Yij). Note that all these conditions are assumed
only for the clarity of the theoretical results, which can be naturally extended
to more general cases. The following technical assumptions are made.

Assumption A. Denote φz|q(z|q) as the conditional density of Z given Q =

q, and q = (q(1), · · · , q(p))T . For each q(j),
∫ ∂φz|q(z|q)

∂q(j)
dz and

∫ ∂2φz|q(z|q)
∂(q(j))2

dz are

bounded. The density φQ(q) is also bounded and has bounded first and second
derivatives with respect to q.

Assumption B. Assume that π(q, q0) = h−pW
(
h−1(q− q0)

)
, where W(·) is

a Lipschitz continuous multivariate kernel function satisfying
∫
Rp W(u)du = 1,∫

Rp uW(u)du = 0, and
∫
Rp u

TuW(u)du is bounded.
Assumptions A and B are standard assumptions in the literature of kernel

smoothing, and similar assumptions can be found in [38, 10, 16]. Specifically,
Assumption A is a smoothness condition quantifying the behavior of (Z,Q),
and assures the smoothness of the conditional distribution of Z given Q, so
that information across neighboring queries can be pooled together through
the weight function π(q, q0). It is a mild assumption and is satisfied if Z has
bounded support and φz|q(z|q) is twice-continuously differentiable with respect
to q. Assumption B is satisfied by many popular kernels including the Gaussian
kernel, the Epanechnikov kernel and the tri-cube kernel.

Lemma 2. Suppose Assumptions A and B are met, and let fπ
q0 =argminfq0 l

π(fq0).
Then for any η > 0, we have

lim
h→0

sup
q0∈Qη

(
MRE(fπ

q0)−MRE(f∗
q0)

)
= 0,

where Qη = {q : φQ(q) ≥ η} contains all the queries with marginal density
bounded away from η.

Lemma 2 shows that the query-dependent formulation in (3.2) is appropriate
in that its global minimizer converges to the ideal ranking function f∗

q0 when
h approaches 0. Lemma 2 also provides important foundation for establishing
the asymptotic consistency of the sample-based ranking function f̂q0 , estimated
from minimizing (3.1).

To proceed, we rewrite h and λ as hn and λn to emphasize their dependence
on n. Theorem 1 provides an upper bound for the mis-ranking error of f̂q0 ,
implying that it converges to the ideal performance at a fast rate.

Theorem 1. Suppose Assumptions A and B are met. There exists a constant
C > 0, such that for any η > 0, with probability at least 1− exp(−δ2n), it holds

sup
q0∈Qη

(
MRE(f̂q0)−MRE(f∗

q0)
)
≤ Cη−1(n−1/2h−(p+1)

n λ−1/2
n δn + λ−1/2

n h2
n + λn).

Theorem 1 establishes an upper bound for MRE(f̂q0). As a direct implication
of Theorem 1, we have

sup
q0∈Qη

(
MRE(f̂q0)−MRE(f∗

q0)
)
= Op(λ

−1/2
n h2

n + λn) +Op(n
−1/2h−(p+1)

n λ−1/2
n ).
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Setting hn=n−1/(6+2p), λn=n−2/(9+3p), the above convergence rate simplifies to

sup
q0∈Qη

(
MRE(f̂q0)−MRE(f∗

q0)
)
= Op(n

−2/(9+3p)).

It is clear that the proposed query-dependent ranking formulation can pool
information across neighboring queries, and ensures the ranking accuracy for all
queries in Qη converges at a rate in n. Note that this rate of convergence still
holds for diverging p, which corresponds to the case that the number of features
may increase with the number of queries. As a sharp contrast, most individual
ranking methods can only achieve a convergence rate in N [11], which is un-
desirable as N is often small in practice. For example, in the Yahoo! challenge
dataset, the average number of documents per query is about 24, which is far less
than the number of queries in the dataset. More importantly, the convergence
rate is established uniformly for all queries in Qη, which provides theoretical
guarantee on its ranking performance for the novel queries.

5. Numerical experiments

This section examines the performance of the query-dependent ranking meth-
ods, where π(q, q0) = h−pW (h−1‖q− q0‖2) with a Gaussian kernel, or set adap-
tively to the K-nearest neighbors as in [14]. For simplicity, we denote them as
q-SVM or kNN-SVM, respectively. Their performance is compared against the
uniform rankSVM [17] and the individual rankSVM, denoted as rank-SVM and
indv-SVM respectively. The ranking performance is measured by three widely
adopted metrics, including MRE, ERR and NDCG [9]. For a specific query q0,

we compute the predicted relevance score for each document by ŷi = f̂q0(xi),

and denote the decreasing rank of ŷ = (ŷ1, · · · , ŷN ) as (θ̂1, · · · , θ̂N ). Then, MRE
is estimated as

M̂RE =
2

N(N − 1)

∑
i<j

I(yθ̂i < yθ̂j ),

which is an empirical average of MRE based on the testing set. Normalized
Discounted Cumulative Gain (NDCG; [18]) uses graded relevance scale of doc-
uments to measure the ranking quality,

NDCG =
DCG

Ideal DCG
and DCG =

min(10,N)∑
i=1

2
yθ̂i − 1

log2(1 + i)
,

where the ideal DCG is the maximum possible DCG, obtained by sorting doc-
uments according to their relevance scores. Expected Reciprocal Rank (ERR;
[12]) is the expectation of the reciprocal of the position where a user stops his
search under cascade user model,

ERR =

N∑
i=1

1

i
R(yθ̂i)

i−1∏
j=1

(1−R(yθ̂j )),
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where R(y) = 2y−1
2max(y) , and max(y) is the maximal relevance score. To be con-

sistent, we report M̂RE, 1 - NDCG, and 1 - ERR in the numerical experiments.
Note that all the metrics are defined for each individual query, and the overall
ranking performance is measured as the average over all queries.

5.1. Simulated examples

The simulated examples {qi,xij , yij}i=1,··· ,n;j=1,··· ,N are generated as follows.
First, xij is generated independently from N(0b, 0.1Ib), where 0b is a vector of
b zeros and Ib is a b-dimensional identity matrix. Two examples are examined
with linear and nonlinear scoring functions.

Example 1: n = 40, N = 50, b = 40 with linear scoring function s∗i (xij) =
xT
ij β

∗
i .

Example 2: Similar as [41] with n = 40, N = 30, b = 4, where s∗i (xij) =
β∗
1,is1(x1,ij)+β∗

2,is2(x2,ij)+β∗
3,is3(x3,ij)+β∗

4,is4(x4,ij) with s1(u) = u, s2(u) =

(2u−1)2, s3(u) =
sin(πu)

2−sin(πu) and s4(u) = 0.1 sin(πu)+0.2 cos(πu)+0.3 sin2(πu)+

0.4 cos3(πu) + 0.5 sin3(πu).

Next, let (yij)
N
j=1 be the rank corresponding to the values of (s∗(xij))

N
j=1

in an ascending order, and qi = β∗
i + εN(0b, Ib) with ε denoting the level of

noise for constructing the query features. For each example, we fix εi = 0.1 and
consider four scenarios, composing of different neighborhood structures among
qi’s.

Scenario I : β∗
1 = · · · = β40 = 1b + N(1b, 0.1Ib) with 1b being a vector of b

ones.

Scenario II : β∗
1 = · · · = β∗

20 = (1T
b/2,0

T
b/2)

T +N(1b, 0.1Ib), and β∗
21 = · · · =

β∗
40 = (0T

b/2,1
T
b/2)

T +N(1b, 0.1Ib).

Scenario III : β∗
1 = · · · = β∗

10 = (1T
b/4,0

T
3b/4)

T + N(1b, 0.1Ib), β
∗
11 = · · · =

β∗
20 = (0T

b/4,1
T
b/4,0

T
b/2)

T +N(1b, 0.1Ib), β
∗
21 = · · · = β∗

30 = (0T
b/2,1

T
b/4,0

T
b/4)

T +

N(1b, 0.1Ib), β
∗
31 = · · · = β∗

40 = (0T
3b/4,1

T
b/4)

T +N(1b, 0.1Ib).

Scenario IV : β∗
i ∼ N(0b, Ib), i = 1, · · · , 40.

Furthermore, a proportion, denoted as γ, of queries and all of their retrieved
documents are reserved in the testing set to mimic the novel queries. For the
remaining queries, documents are assigned to the training, validation and testing
sets with ratio 20% : 20% : 60%.

In Example 1, the linear kernel is used for all methods, and in Example 2 the
Gaussian kernel is used. Scale parameter σ2 in the Gaussian kernel is fixed as
the median of pairwise Euclidean distances within the training set. A grid search
on the validation set is conducted to find the optimal λ, where the grid for all
methods is set as {10(ν−31)/10; ν = 1, · · · , 61}. For kNN-SVM, k = 15 is set, and
for q-SVM, h is set as the median of pairwise Euclidean distance between all
queries and the target query, and we truncate πi by taking top 15 queries closest
to the target query. Note that kNN-SVM treats the top 15 queries equally in
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Table 1

The averaged M̂RE, 1-ERR and 1-NDCG and their standard errors (in parenthesis) of
various methods in Example 1.

rank-SVM indv-SVM kNN-SVM q-SVM

Scenario I
̂MRE 0.04(0.001) 0.30(0.001) 0.08(0.001) 0.08(0.001)

γ = 0.0 1 - ERR 0.05(0.003) 0.50(0.008) 0.11(0.004) 0.10(0.004)
1 - NDCG 0.03(0.002) 0.45(0.006) 0.08(0.001) 0.08(0.001)

̂MRE 0.04(0.001) 0.35(0.001) 0.09(0.001) 0.08(0.001)
γ = 0.1 1 - ERR 0.05(0.003) 0.54(0.007) 0.11(0.004) 0.11(0.003)

1 - NDCG 0.04(0.002) 0.51(0.006) 0.09(0.003) 0.08(0.002)

̂MRE 0.05(0.001) 0.38(0.001) 0.09(0.001) 0.09(0.001)
γ = 0.2 1 - ERR 0.05(0.002) 0.59(0.007) 0.12(0.005) 0.11(0.004)

1 - NDCG 0.04(0.002) 0.56(0.006) 0.09(0.003) 0.09(0.003)

Scenario II
̂MRE 0.27(0.001) 0.30(0.002) 0.09(0.002) 0.09(0.002)

γ = 0.0 1 - ERR 0.45(0.007) 0.52(0.005) 0.12(0.005) 0.12(0.005)
1 - NDCG 0.40(0.005) 0.47(0.004) 0.09(0.001) 0.09(0.003)

̂MRE 0.27(0.001) 0.35(0.001) 0.09(0.002) 0.09(0.001)
γ = 0.1 1 - ERR 0.46(0.007) 0.55(0.006) 0.12(0.005) 0.12(0.005)

1 - NDCG 0.41(0.005) 0.51(0.005) 0.09(0.002) 0.09(0.001)

̂MRE 0.29(0.002) 0.38(0.001) 0.14(0.004) 0.11(0.002)
γ = 0.2 1 - ERR 0.45(0.006) 0.59(0.006) 0.19(0.006) 0.14(0.005)

1 - NDCG 0.42(0.005) 0.55(0.006) 0.16(0.004) 0.12(0.004)

Scenario III
̂MRE 0.30(0.002) 0.30(0.001) 0.23(0.004) 0.16(0.003)

γ = 0.0 1 - ERR 0.52(0.008) 0.52(0.007) 0.37(0.008) 0.26(0.007)
1 - NDCG 0.47(0.007) 0.47(0.006) 0.32(0.006) 0.21(0.003)

̂MRE 0.30(0.002) 0.34(0.002) 0.28(0.004) 0.21(0.003)
γ = 0.1 1 - ERR 0.51(0.006) 0.54(0.008) 0.44(0.006) 0.32(0.006)

1 - NDCG 0.48(0.005) 0.50(0.007) 0.40(0.006) 0.28(0.005)

̂MRE 0.31(0.001) 0.38(0.001) 0.33(0.004) 0.28(0.005)
γ = 0.2 1 - ERR 0.52(0.007) 0.58(0.006) 0.50(0.007) 0.38(0.006)

1 - NDCG 0.49(0.006) 0.55(0.006) 0.46(0.004) 0.28(0.005)

Scenario IV
̂MRE 0.48(0.002) 0.30(0.002) 0.42(0.003) 0.36(0.003)

γ = 0.0 1 - ERR 0.78(0.006) 0.52(0.007) 0.60(0.007) 0.62(0.007)
1 - NDCG 0.78(0.006) 0.47(0.006) 0.68(0.006) 0.59(0.007)

̂MRE 0.48(0.002) 0.34(0.001) 0.42(0.003) 0.38(0.003)
γ = 0.1 1 - ERR 0.79(0.005) 0.55(0.006) 0.72(0.006) 0.65(0.005)

1 - NDCG 0.78(0.005) 0.50(0.005) 0.60(0.006) 0.61(0.003)

̂MRE 0.48(0.003) 0.38(0.001) 0.44(0.003) 0.40(0.003)
γ = 0.2 1 - ERR 0.78(0.006) 0.58(0.007) 0.74(0.006) 0.65(0.005)

1 - NDCG 0.78(0.005) 0.55(0.006) 0.72(0.005) 0.62(0.005)

training, but q-SVM gives different weights to these 15 queries depending on
their closeness to the target query. For indv-SVM, as it is not applicable to
generate rankings for novel queries, a random ranking is given by indv-SVM to
the documents associated with the novel queries.

All scenarios are replicated 50 times, and the averaged performance measures
and their corresponding standard errors are summarized in Tables 1 and 2.

It is evident that q-SVM and kNN-SVM substantially outperform rank-SVM
and indv-SVM in Scenario II, III and IV, except that rank-SVM yields better
performance in Scenario I where a uniform scoring function is used to gener-
ate data for all queries. The amount of improvement is substantial, with the
largest improvement of 62.1% and 71.1% over rank-SVM and indv-SVM in

M̂RE, respectively. It is also interesting to note that both q-SVM and kNN-
SVM are very robust against missing ratio γ compared with indv-SVM, whose
performance can be severely deteriorated by the missing queries. Furthermore,
q-SVM and kNN-SVM share similar performance in Scenarios I and II. How-
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Table 2

The averaged M̂RE, 1-ERR and 1-NDCG and their standard errors (in parenthesis) of
various methods in Example 2.

rank-SVM indv-SVM kNN-SVM q-SVM

Scenario I
̂MRE 0.08(0.001) 0.22(0.003) 0.11(0.003) 0.11(0.004)

γ = 0.0 1 - ERR 0.09(0.006) 0.31(0.009) 0.12(0.005) 0.12(0.008)
1 - NDCG 0.07(0.004) 0.25(0.007) 0.10(0.004) 0.10(0.006)

̂MRE 0.08(0.001) 0.28(0.002) 0.11(0.004) 0.11(0.003)
γ = 0.1 1 - ERR 0.09(0.006) 0.35(0.008) 0.12(0.007) 0.13(0.008)

1 - NDCG 0.07(0.004) 0.30(0.007) 0.10(0.005) 0.10(0.005)

̂MRE 0.08(0.001) 0.32(0.002) 0.12(0.004) 0.11(0.004)
γ = 0.2 1 - ERR 0.09(0.005) 0.41(0.008) 0.14(0.006) 0.13(0.005)

1 - NDCG 0.07(0.003) 0.36(0.007) 0.11(0.004) 0.10(0.004)

Scenario II
̂MRE 0.27(0.003) 0.22(0.006) 0.14(0.010) 0.15(0.011)

γ = 0.0 1 - ERR 0.41(0.010) 0.32(0.012) 0.19(0.014) 0.20(0.017)
1 - NDCG 0.34(0.009) 0.26(0.010) 0.15(0.012) 0.16(0.014)

̂MRE 0.28(0.004) 0.28(0.003) 0.13(0.015) 0.15(0.018)
γ = 0.1 1 - ERR 0.41(0.012) 0.36(0.012) 0.17(0.013) 0.21(0.018)

1 - NDCG 0.35(0.011) 0.32(0.010) 0.14(0.012) 0.17(0.016)

̂MRE 0.29(0.005) 0.33(0.005) 0.15(0.015) 0.16(0.015)
γ = 0.2 1 - ERR 0.42(0.012) 0.42(0.014) 0.21(0.016) 0.22(0.017)

1 - NDCG 0.37(0.011) 0.37(0.012) 0.17(0.015) 0.18(0.016)

Scenario III
̂MRE 0.34(0.008) 0.22(0.007) 0.19(0.007) 0.17(0.006)

γ = 0.0 1 - ERR 0.51(0.017) 0.33(0.014) 0.27(0.011) 0.26(0.009)
1 - NDCG 0.46(0.016) 0.27(0.012) 0.22(0.009) 0.21(0.008)

̂MRE 0.34(0.009) 0.28(0.006) 0.21(0.007) 0.19(0.006)
γ = 0.1 1 - ERR 0.53(0.018) 0.39(0.013) 0.28(0.008) 0.27(0.007)

1 - NDCG 0.47(0.018) 0.33(0.011) 0.23(0.006) 0.22(0.006)

MRE 0.35(0.010) 0.32(0.004) 0.26(0.006) 0.23(0.008)
γ = 0.2 1 - ERR 0.52(0.017) 0.41(0.012) 0.35(0.013) 0.31(0.010)

1 - NDCG 0.47(0.017) 0.37(0.010) 0.30(0.010) 0.26(0.008)

Scenario IV
̂MRE 0.46(0.005) 0.22(0.003) 0.19(0.004) 0.17(0.004)

γ = 0.0 1 - ERR 0.32(0.014) 0.30(0.008) 0.26(0.008) 0.24(0.008)
1 - NDCG 0.75(0.014) 0.25(0.006) 0.21(0.006) 0.19(0.006)

̂MRE 0.47(0.005) 0.28(0.003) 0.20(0.006) 0.18(0.005)
γ = 0.1 1 - ERR 0.56(0.014) 0.36(0.007) 0.27(0.006) 0.26(0.007)

1 - NDCG 0.63(0.015) 0.31(0.006) 0.22(0.005) 0.21(0.006)

̂MRE 0.47(0.005) 0.32(0.002) 0.21(0.007) 0.20(0.007)
γ = 0.2 1 - ERR 0.68(0.014) 0.42(0.007) 0.29(0.009) 0.27(0.008)

1 - NDCG 0.64(0.015) 0.37(0.006) 0.24(0.007) 0.23(0.007)

ever, q-SVM outperforms kNN-SVM with the largest improvement of 30.4%
in Scenarios III, where the selected 15 queries for q-SVM and kNN-SVM are
“oversized”. It suggests that q-SVM is more robust against the misspecification
of the neighborhood due to the adaptively assigned weights.

More practically, to mimic the dependence of multiple retrieved documents
for the same query, we simulate the data based on xij = εi + εj in Scenario
III of Example 1, where εi, εj ∼ N(0b, 0.1Ib). As indicated in Table 3, the
proposed method consistently outperforms its competitors in both independent
and dependent scenarios with a similar amount of improvement.

To further examine the effect of the construction of query features, we set
ε = 0.1, 0.3, · · · , 0.9 in Scenario III with γ = 0.0, and the performance of q-
SVM and kNN-SVM are summarized in Figure 1. Clearly, the accuracies of
both q-SVM and kNN-SVM decrease as ε increases, and q-SVM consistently
outperforms kNN-SVM with various level of noise in the feature vector.

As for the computational cost of each method, we fix λ = 10−8 in Scenario
IV with different number of queries and documents, and the running times for
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Table 3

The averaged M̂RE, 1-ERR and 1-NDCG and their standard errors (in parenthesis) of
various methods in Scenario III of Example 1, with either independent or dependent

retrieved documents.

rank-SVM indv-SVM kNN-SVM q-SVM

Independent
̂MRE 0.30(0.002) 0.30(0.001) 0.23(0.004) 0.16(0.003)

γ = 0.0 1 - ERR 0.52(0.008) 0.52(0.007) 0.37(0.008) 0.26(0.007)
1 - NDCG 0.47(0.007) 0.47(0.006) 0.32(0.006) 0.21(0.003)

̂MRE 0.30(0.002) 0.34(0.002) 0.28(0.004) 0.21(0.003)
γ = 0.1 1 - ERR 0.51(0.006) 0.54(0.008) 0.44(0.006) 0.32(0.006)

1 - NDCG 0.48(0.005) 0.50(0.007) 0.40(0.006) 0.28(0.005)

̂MRE 0.31(0.001) 0.38(0.001) 0.33(0.004) 0.28(0.005)
γ = 0.2 1 - ERR 0.52(0.007) 0.58(0.006) 0.50(0.007) 0.38(0.006)

1 - NDCG 0.49(0.006) 0.55(0.006) 0.46(0.004) 0.28(0.005)

Dependent
̂MRE 0.38(0.002) 0.34(0.002) 0.25(0.003) 0.15(0.003)

γ = 0.0 1 - ERR 0.66(0.006) 0.62(0.006) 0.41(0.007) 0.22(0.006)
1 - NDCG 0.62(0.006) 0.58(0.005) 0.36(0.005) 0.18(0.004)

̂MRE 0.38(0.003) 0.37(0.002) 0.28(0.003) 0.17(0.003)
γ = 0.1 1 - ERR 0.64(0.005) 0.65(0.005) 0.44(0.007) 0.23(0.009)

1 - NDCG 0.60(0.005) 0.62(0.002) 0.39(0.006) 0.20(0.007)

̂MRE 0.42(0.004) 0.41(0.001) 0.34(0.004) 0.26(0.004)
γ = 0.2 1 - ERR 0.68(0.007) 0.70(0.006) 0.51(0.008) 0.35(0.008)

1 - NDCG 0.65(0.006) 0.67(0.006) 0.47(0.007) 0.31(0.006)

Fig 1. The side-by-side box-plot for M̂RE, 1 - ERR and 1 - NDCG of q-SVM and kNN-SVM
in Scenario III of Example 1 with various noise levels in constructing the query features.

Table 4

The running time of various methods in scenario IV with different number of queries and
documents.

rank-SVM indv-SVM kNN-SVM q-SVM

N = 20 0.134 0.146 0.458 0.432
n = 50 N = 50 1.013 0.579 1.030 0.989

N = 100 7.656 1.316 1.657 1.620

N = 20 0.709 0.233 1.377 1.334
n = 200 N = 50 16.863 2.115 3.558 3.829

N = 100 96.857 5.270 5.544 5.553

N = 20 5.027 0.344 3.309 2.892
n = 500 N = 50 76.486 5.166 9.200 8.137

N = 100 400.585 14.772 21.670 21.628
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Table 5

Comparison of the ranking function and the scoring function in Scenario II of both
examples with γ = 0.0.

rank-SVM indv-SVM kNN-SVM q-SVM

Example 1
̂MRE 0.27(0.001) 0.30(0.002) 0.09(0.002) 0.09(0.002)

Scoring 1 - ERR 0.45(0.007) 0.52(0.005) 0.12(0.005) 0.12(0.005)
1 - NDCG 0.40(0.005) 0.47(0.004) 0.09(0.001) 0.09(0.003)

̂MRE 0.28(0.002) 0.34(0.002) 0.18(0.003) 0.18(0.003)
Ranking 1 - ERR 0.44(0.007) 0.54(0.006) 0.27(0.008) 0.28(0.007)

1 - NDCG 0.38(0.006) 0.49(0.006) 0.23(0.006) 0.23(0.006)

Example 2
̂MRE 0.27(0.003) 0.22(0.006) 0.13(0.007) 0.12(0.006)

Scoring 1 - ERR 0.41(0.010) 0.32(0.012) 0.18(0.007) 0.17(0.014)
1 - NDCG 0.34(0.009) 0.26(0.010) 0.15(0.004) 0.13(0.011)

̂MRE 0.28(0.004) 0.24(0.005) 0.13(0.006) 0.13(0.006)
Ranking 1 - ERR 0.41(0.010) 0.37(0.007) 0.21(0.008) 0.19(0.011)

1 - NDCG 0.35(0.008) 0.30(0.006) 0.15(0.007) 0.15(0.009)

each method are summarized in Table 4. All experiments are conducted on a
PC with 8-core Intel Xeon CPU with 32GB RAM. As expected, the running
time of rank-SVM grows fast both in n and N , whereas kNN-SVM and q-SVM
are comparable with indv-SVM due to the fact that both methods are trained
through parallel computing.

Table 5 further compares the performance of the ranking and scoring func-
tions as discussed in Section 3.2. It suggests that the scoring function yields
similar ranking performance than the ranking function in both examples, even
though the theoretical properties of the scoring function remains unclear. Due
to the significant reduction of computational cost by using the scoring function,
it is recommended to be used in large-scale real applications.

5.2. Application to the Yahoo! challenge

Yahoo! Labs led a learning to rank challenge in 2010 based on a real dataset
that is used for training the Yahoo! search engine. The dataset contains 19,944
queries which are randomly selected from the query logs of the search engine,
and 473,134 documents retrieved from different external search engines and
various internal ranking functions. The average number of documents per query
is about 24, and some queries have less than 5 or more than 100 documents.
Note that the provided dataset is already processed, and the query-document
pairs are represented by 591 numerical features. These features are provided
regarding each query-document pair, where the largest category of features are
the textual relationship between the document and query, including counts of
occurrences in the document, average of the query terms, and BM25. Other
categories of features include document statistics, document classifier, topical
matching, click and external references. Furthermore, the relevance score ranges
from 0 (irrelevant) to 4 (perfectly relevant), which was judged by profes-
sional editors following some specific guidelines [9].

For illustration, we randomly select 150 queries and about 4,000 documents,
where each query has at least 20 documents. In text mining, a common practice
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Table 6

The averaged M̂RE, 1-ERR, 1-NDCG and their standard errors (in parenthesis), and
running time of various methods in the Yahoo! challenge dataset.

rank-SVM indv-SVM kNN-SVM q-SVM

̂MRE 0.376(0.003) 0.356(0.004) 0.328(0.005) 0.322(0.004)
Overall 1 - ERR 0.669(0.003) 0.662(0.003) 0.644(0.003) 0.644(0.003)

1 - NDCG 0.284(0.003) 0.266(0.003) 0.243(0.003) 0.239(0.003)

̂MRE 0.375(0.005) 0.341(0.004) 0.323(0.005) 0.318(0.005)
Observed 1 - ERR 0.667(0.004) 0.654(0.003) 0.640(0.004) 0.640(0.004)

1 - NDCG 0.286(0.003) 0.257(0.003) 0.241(0.003) 0.237(0.003)

̂MRE 0.391(0.010) 0.484(0.008) 0.369(0.011) 0.360(0.011)
Novel 1 - ERR 0.680(0.008) 0.731(0.007) 0.675(0.008) 0.680(0.007)

1 - NDCG 0.269(0.006) 0.343(0.008) 0.255(0.007) 0.253(0.006)

Time (sec) 276.818 35.417 183.911 199.057

is to map the textural queries and documents into a high-dimensional numerical
space through the Word2vec model [5]. However, the Yahoo! dataset has been
pre-processed, and the raw queries and documents are unavailable to public.
Among the 591 processed numerical features, 6 of them remain constant for all
the associated documents for each query, which are used as the query features
in the analysis. The remaining 586 features then serve as the document features.
The similarity between queries is computed by univariate Gaussian kernel, and
its bandwidth h is set as the median of the pairwise Euclidean distances within
the observed queries. For each query, its associated documents are randomly
split into the training, validation and testing sets with the ratio 60%: 20%:
20%, and we also reserve γ = 0.1 proportion of queries and all of their associated
documents into the testing set to mimic the novel queries.

We compare the proposed q-SVM with rank-SVM, indv-SVM, and kNN-
SVM. For all SVM-based methods, a grid search is conducted on the validation
set to find the optimal tuning parameters, where the grid for all methods is
set as {10(ν−31)/10; ν = 1, · · · , 61}. For q-SVM, we truncate the weights to in-
clude only the top 3 queries for the observed queries, but the top 20 queries
for novel queries. For kNN-SVM, k = 3 is set for observed queries and k = 20
is set for novel queries. The experiment is replicated 50 times, and the av-
eraged performance measures and the running times are summarized in Ta-
ble 6.

As suggested in Table 6, q-SVM yields better ranking performance than rank-
SVM, indv-SVM and kNN-SVM, with 14.4%, 9.6% and 1.8% improvement on

M̂RE, respectively. To scrutinize their performance, we also report their ranking
accuracies on the observed and novel queries separately. It is interesting to note
that indv-SVM yields accurate ranking for the observed queries, but fails to
provide reasonable ranking for the novel queries. The accuracies of rank-SVM,
kNN-SVM and q-SVM are deteriorated from the observed queries to the novel
queries, but q-SVM and kNN-SVM consistently outperform rank-SVM in terms

of M̂RE. The superior performance of q-SVM on both of the observed and
novel queries indicates that the query-dependent method with kernel weighting
provides an effective way to tackle the ranking problem.
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6. Summary

This paper develops a general query-dependent ranking formulation, which ad-
mits different ranking functions for different queries and incorporates neighbor-
hood structure among queries. The neighborhood structure not only helps to
improve the ranking performance, but also enables the formulation to produce
rankings for novel queries that are absent from the training set. The resultant
optimization task is implemented via a scalable inexact ADMM algorithm. The
asymptotic properties of the query-dependent ranking formulation are estab-
lished to support its advantage against the existing competitors. Although the
proposed formulation is formulated as a pairwise ranking method, it can be
extended to the pointwise and listwise methods as well.
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Appendix: technical proofs

Proof of Lemma 1. Since MRE(fq0) = P
(
(Y − Y ′)fq0(D,D′) ≤ 0

∣∣Q = q0
)
,

we have

f∗
q0(D,D′) = argmin

fq0

ED,D′EY,Y ′(I(sign(Y − Y ′)fq0(D,D′) < 0)|D,D′, Q = q0),

where I(·) is an indicator function. It then suffices to consider the point-wise
minimization for each pair (d, d′). Note that

EY,Y ′
(
I(sign(Y − Y ′)fq0(d, d

′) < 0)
∣∣D = d,D′ = d′, Q = q0

)
= Φ(d, d′, q0)I(fq0(d, d

′) < 0) + (1− Φ(d, d′, q0))I(fq0(d, d
′) > 0),

where Φ(d, d′, q0)=P (Y ≥ Y ′|D=d,D′=d′, Q=q0). Therefore, as a minimizer
of MRE(fq0), f

∗
q0(d, d

′) must satisfy that sign(f∗
q0(d, d

′)) = sign(Φ(d, d′, q0) −
1/2). This completes the proof of Lemma 1. �
Proof of Lemma 2. The proof mainly bases on the Taylor expression of
lπ(f). To this end, we first establish the upper bound for l(f, q), ∇ql(f, q) and
∇2

ql(f, q), where l(f, q) = E
(
L(sign(Y −Y ′)f(D,D′))|Q = q

)
. For simplicity, we

let f∗
q0(d, d

′) = sign(P (Y ≥ Y ′|Q = q0, D = d,D′ = d′) − 1/2). Note that the
value of fπ

q0 must be in [−1, 1], otherwise a truncation of fπ
q0 ,

f t
q0(d, d

′) =

{
sign

(
fπ
q0(d, d

′)
)
, if |fπ

q0(d, d
′)| ≥ 1,

fπ
q0(d, d

′), if |fπ
q0(d, d

′)| < 1,
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provides a smaller value of lπ(fq0), which contradicts with the fact that fπ
q0

minimizes lπ(fq0). In this light, we can conclude that both fπ
q0 and f∗

q0 are

contained in F =
{
f : supd,d′ |f(d, d′)| ≤ 1

}
.

Then we have supf∈F L(sign(Y−Y ′)f(D,D′)) ≤ 1+supf∈F supd,d′ |f(d, d′)| ≤
2, which implies that supf∈F,q∈Qη

l(f, q), supf∈F,q∈Qη
‖∇ql(f, q)‖∞ as well as

supf∈F,q∈Qη
‖∇2

ql(f, q)‖max are all bounded based on Assumption A, where
‖ · ‖∞ and ‖ · ‖max denote the vector infinity norm and matrix max norm re-
spectively. It further concludes that T (q) = l(f, q)φQ(q) and its first and second
derivatives are all bounded for any f ∈ F , and q ∈ Qη.

Using similar technique for multivariate kernel density estimation [16], it
follows from Assumption B that there exists a constant c0 such that

lπ(f) = EQ

(
π(Q, q0)l(f,Q)

)
=

∫
Rp

π(q, q0)T (q)dq =

∫
Rp

W(u)T (q0 + hu)du

=

∫
Rp

W(u)
(
T (q0) + uT∇T (q0) + c0h

2
)
du = T (q0) +O(h2), (6.1)

where ∇T (q0) is the gradient of T evaluated at q = q0. Therefore, for any given
η, we have

sup
q0∈Qη

(
MRE(fπ

q0)−MRE(f∗
q0)

)
≤ sup

q0∈Qη

(
l(fπ

q0 , q0)− l(f∗
q0 , q0)

)

= sup
q0∈Qη

((
l(fπ

q0 , q0)−
lπ(fπ

q0)

φQ(q0)

)
−

(
l(f∗

q0 , q0)−
lπ(f∗

q0)

φQ(q0)

)

+
1

φQ(q0)

(
lπ(fπ

q0)− lπ(f∗
q0)

))

≤ sup
f∈F,q0∈Qη

2
∣∣∣l(f, q0)− lπ(f)

φQ(q0)

∣∣∣+ sup
q0∈Qη

1

φQ(q0)

(
lπ(fπ

q0)− lπ(f∗
q0)

)

≤ sup
f∈F,q0∈Qη

2
∣∣∣l(f, q0)− l(f, q0)φQ(q0) + c0h

2

φQ(q0)

∣∣∣ ≤ sup
q0∈Qη

2
∣∣∣ c0h

2

φQ(q0)

∣∣∣ ≤ 2η−1c0h
2,

(6.2)

where the third inequality follows from (6.1) and the fact that fπ
q0 minimizes of

lπ(fq0). The desired result follows immediately after (6.2). �
Proof of Theorem 1. We first introduce some notations. Let L(fq0 , zij , zil) =
L
(
sign(yij − yil)fq0(dij , dil)

)
, zij = (dij , yij), zil = (dil, yil), and lπn(fq0) =

1
n

∑n
i=1

πi

N(N−1)

∑
j �=l L(fq0 , zij , zil). Since f̂q0 minimizes lπn(fq0) + λn‖fq0‖2HK

,

we have lπn(f̂q0) + λn‖f̂q0‖2HK
≤ lπn(0) = π̄, where π̄ = n−1

∑n
i=1 πi. Further-

more, by the Law of Large Number and similar treatment in (6.2), there exists a
constant c1 such that π̄ ≤ 2E

(
π(Q, q0)

)
≤ 2φQ(q0) +O(h2

n) ≤ c21 with probabil-
ity tending to 1 when hn is sufficiently small and n is sufficiently large. Hence,

‖f̂q0‖HK
≤ c1λ

−1/2
n and ‖f∗

q0‖HK
≤ c1λ

−1/2
n when λn is sufficiently small. There-

fore, both f∗
q0 and f̂q0 belong to HK(λn) =

{
f ∈ HK : ‖f‖HK

≤ c1λ
−1/2
n

}
.
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We now are ready to bound MRE(f̂q0)−MRE(f∗
q0),

sup
q0∈Qη

(
MRE(f̂q0)−MRE(f∗

q0)
)
≤ sup

q0∈Qη

(
l(f̂q0 , q0)− l(f∗

q0 , q0)
)

= sup
q0∈Qη

((
l(f̂q0 , q0)−

lπ(f̂q0)

φQ(q0)

)
−

(
l(f∗

q0 , q0)−
lπ(f∗

q0)

φQ(q0)

)

+
1

φQ(q0)

(
lπ(f̂q0)− lπ(f∗

q0)
))

≤ sup
f∈HK(λn),q0∈Qη

2
∣∣∣l(f, q0)− lπ(f)

φQ(q0)

∣∣∣+ sup
q0∈Qη

1

φQ(q0)

(
lπ(f̂q0)− lπ(f∗

q0)
)

≤ sup
f∈HK(λn),q0∈Qη

2
∣∣∣l(f, q0)− lπ(f)

φQ(q0)

∣∣∣+ sup
q0∈Qη

1

φQ(q0)

(
lπn(f̂q0)− lπn(f

∗
q0)

)

+ sup
q0∈Qη

1

φQ(q0)

(
lπ(f̂q0)− lπn(f̂q0)− lπ(f∗

q0) + lπn(f
∗
q0)

)

≤ sup
f∈HK(λn),q0∈Qη

2
∣∣∣l(f, q0)− lπ(f)

φQ(q0)

∣∣∣+ sup
f∈HK(λn),q0∈Qη

2

φQ(q0)
|lπn(f)− lπ(f)|

+ sup
q0∈Qη

1

φQ(q0)

(
λn‖f∗

q0‖
2
HK

− λn‖f̂q0‖2HK

)

≤ sup
f∈HK(λn),q0∈Qη

2
∣∣∣l(f, q0)− lπ(f)

φQ(q0)

∣∣∣
+ sup

f∈HK(λn),q0∈Qη

2η−1|lπn(f)− lπ(f)|+ η−1λn‖f∗
q0‖

2
HK

= M1 +M2 + η−1λn‖f∗
q0‖

2
HK

, (6.3)

where the third last inequality follows from the fact that f̂q0 is minimizer for

lπn(fq0) + λn‖fq0‖2HK
. Therefore, to bound MRE(f̂q0)−MRE(f∗

q0), it suffices to
bound M1 and M2, separately.

Step 1: Similar as in proof of Lemma 2, we need to bound

sup
f∈HK(λn),q∈Qη

l(f, q), sup
f∈HK(λn),q∈Qη

‖∇ql(f, q)‖∞ and

sup
f∈HK(λn),q∈Qη

‖∇2
ql(f, q)‖max.

Specifically,

sup
f∈HK(λn),q∈Qη

l(f, q) = sup
f∈HK(λn),q∈Qη

∫
L(f, z, z′)φ(z, z′|q)dzdz′

≤ sup
f∈HK(λn)

(1 + sup
d,d′

|f(d, d′)|) ≤ 1 + c2λ
−1/2
n ,

where φ(z, z′|q) is the conditional density of (Z,Z ′) given Q = q, the last in-
equality follows from the fact that there exists a constant c2 such that
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supd,d′ |f(d, d′)| ≤ c2λ
−1/2
n [26], if ‖f‖HK(λn), ≤ c1λ

−1/2
n . Next, for each compo-

nent q(j), j = 1, · · · , p, there exists a constant c3 such that

sup
f∈HK(λn),q∈Qη

∂l(f, q)

∂q(j)
= sup

f∈HK(λn),q∈Qη

∫
L(f, z, z′)

∂φ(z, z′|q)
∂q(j)

dzdz′

≤ c3 sup
f∈HK(λn)

(1 + sup
d,d′

|f(d, d′)|) ≤ c3(1 + c2λ
−1/2
n ),

where the second inequality follows from Assumption A. Similarly, there exists

a constant c4 such that supf∈HK(λn),q∈Qη
‖∇2

ql(f, q)‖max ≤ c4(1 + c2λ
−1/2
n ).

Therefore, for a constant c5, we have

max
{

sup
f∈HK(λn),q∈Qη

l(f, q), sup
f∈HK(λn),q∈Qη

‖∇ql(f, q)‖∞,

sup
f∈HK(λn),q∈Qη

‖∇2
ql(f, q)‖max

}
≤ c5λ

−1/2
n .

Hence, by mimicking (6.2), there exists a constant c6 such that

M1 ≤ sup
f∈HK(λn),q0∈Qη

2
∣∣∣l(f, q0)− l(f, q0)φQ(q0) + c5λ

−1/2
n h2

n

φQ(q0)

∣∣∣ ≤ c6λ
−1/2
n h2

nη
−1,

(6.4)

suggesting that the bias due to kernel smoothing can be controlled by hn and
λn.

Step 2: Denote Gn =
√
n
(
1
n

∑n
i=1 g(qi, zi1, · · · , ziN )−E

(
g(Q,Z1, · · · , ZN )

))
.

For any rn > 0, we have

P∗(M2 ≥ rn) = P∗(‖Gn‖G ≥ η
√
nrn/2)

= P∗
(∥∥Gn

∥∥
G/(h−(p+1)

n λ
−1/2
n )

≥ η
√
nhp+1

n λ1/2
n rn/2

)
, (6.5)

where P∗ is the outer probability, ‖Gn‖G = supg∈G |Gn|, and the functional

space G is defined as G =
{
g(Q,Z1, · · · , ZN ) = π(Q,q0)

N(N−1)

∑
j �=l L(f, Zj , Zl) : f ∈

HK(λn), q0 ∈ Qη

}
.

For any q1, q2 ∈ Qη and f1, f2 ∈ HK(λn), there exists a constant c7 depending
on the Lipschitz constant for W(·) such that

‖g1 − g2‖∞ =
∥∥∥ π(Q, q1)

N(N − 1)

∑
j �=l

L(f1, Zj , Zl)−
π(Q, q2)

N(N − 1)

∑
j �=l

L(f2, Zj , Zl)
∥∥∥
∞

≤
∥∥∥ π(Q, q1)

N(N − 1)

∑
j �=l

(
L(f1, Zj , Zl)− L(f2, Zj , Zl)

)∥∥∥
∞

+
∥∥∥π(Q, q1)− π(Q, q2)

N(N − 1)

∑
j �=l

L(f2, Zj , Zl)
∥∥∥
∞
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≤ h−p
n ‖f1 − f2‖∞ + c5λ

−1/2
n ‖π(Q, q1)− π(Q, q2)‖∞

≤ h−p
n ‖f1 − f2‖∞ + c7λ

−1/2
n h−(p+1)

n ‖q1 − q2‖∞, (6.6)

where the last inequality follows from the Lipschitz continuity of the kernel
function, and the second last inequality follows from the Lipschitz continuity of
hinge loss.

It then suffices to consider the covering number ofHK(λn). By using Example
4 in [43], there exists a constant c8 depending only on b such that

logN
(
ε,HK(λn)/(c1λ

−1/2
n ), ‖ · ‖∞

)
≤ c8

(
log(1/ε)

)2b+1
.

For any given η, Qη is a bounded set by Assumption A. Together with (6.6),
for a constant c9 depending on η, the covering number of G is,

logN(ε,G/(h−(p+1)
n λ−1/2

n ), ‖ · ‖∞) ≤ c8
(
log(1/ε)

)2b+1
+ c9 log(1/ε).

An application of Theorem 2.14.10 in [33] with a constant c10 depending on b,
yields that

P∗(M2 ≥ rn) = P∗
(∥∥Gn

∥∥
G/(h−(p+1)

n λ
−1/2
n )

≥ η
√
nhp+1

n λ1/2
n rn/2

)

≤ c10 exp(−nη2h2(p+1)
n λnr

2
n). (6.7)

We are now ready to derive the probability bounds for (6.3). Together with

(6.4), and letting rn = tn − c6η
−1λ

−1/2
n h2

n − η−1λn‖f∗
q0‖2HK

in (6.7), for any
tn > 0, we have

P

(
sup

q0∈Qη

(
MRE(f̂q0)−MRE(f∗

q0)
)
≥ tn

)
≤ P(M1 +M2 + λnη

−1‖f∗
q0‖

2
HK

≥ tn)

≤ P∗(M2 ≥ rn) ≤ c10 exp(−nη2h2(p+1)
n λnr

2
n).

The desired result then follows immediately. �
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[16] Wolfgang Härdle. Smoothing techniques: with implementation in S.
Springer Science & Business Media, 2012. MR1140190

[17] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin rank
boundaries for ordinal regression. In Advances in Large Margin Classifiers,
pages 115–132. MIT, 2000.

[18] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation
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