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Abstract

We study the Wasserstein distance W2 for Gaussian samples. We establish the exact
rate of convergence

√
log log n/n of the expected value of the W2 distance between

the empirical and true c.d.f.’s for the normal distribution. We also show that the rate
of weak convergence is unexpectedly 1/

√
n in the case of two correlated Gaussian

samples.
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1 Introduction

In this article we investigate in details the asymptotic behaviour of the quadratic
Wasserstein distance between the empirical cumulative distribution function (c.d.f.) of a
sample X1, . . . , Xn of independent standard Gaussian random variables denoted by Fn
and the standard normal c.d.f. denoted by Φ. Thus we consider the random variable

W 2
2 (Fn,Φ) =

∫ 1

0

|F−1
n (u)− Φ−1(u)|2du.

More precisely we are interested in the exact rate of convergence of E
(
W 2

2 (Fn,Φ)
)
.

Define h(u) = Φ′◦Φ−1(u) for u ∈ (0, 1). First note that Corollary 19 in [1] does not apply in
this specific case where b = 2, and indeed we almost surely have limn→+∞ nW 2

2 (Fn,Φ) =

+∞. Secondly, to our knowledge the most precise result about the behaviour of W2(Fn,Φ)

is given by Theorem 4.6 (ii) in [9] which implies, as n → +∞, the convergence in
distribution

nW 2
2 (Fn,Φ)−

∫ 1−1/n

1/n

u(1− u)

h2(u)
du→

∫ 1

0

B2(u)− E
(
B2(u)

)
h2(u)

du, (1.1)
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W2 for Gaussian samples

where B is a standard Brownian bridge. This is not enough to control nE(W 2
2 (Fn,Φ))

since the deterministic centering integral is diverging. In [4] specific bounds on
nE(W p

p (Fn, F )) are given for log-concave distribution F . In the standard Gaussian
case Corollary 6.14 of [4] reads

c
log log n

n
6 E

(
W 2

2 (Fn,Φ)
)
6 C

log log n

n
(1.2)

where 0 < c < C < +∞. The main achievement below is to compute the exact asymptotic
constant in (1.2). As far as we know this is the first result of this kind.

In the spirit of [1] we moreover extend the investigations in the one sample case to the
two correlated samples case. More precisely, we study the random quantity W 2

2 (Fn,Gn)

where Fn,Gn are the marginal empirical c.d.f. obtained from a n-sample (Xi, Yi)16i6n

of standard Gaussian couples with correlation ρ. If the Gaussian marginals ΦX and
ΦY were not identical the general Theorem 14 in [2] would imply the convergence in
distribution √

n
(
W 2

2 (Fn,Gn)−W 2
2 (ΦX ,ΦY )

)
→ N

(
0, σ2(Σ)

)
(1.3)

where Σ is the covariance matrix of (X1, Y1) and σ2(Σ) has a closed form expression
that explicitly depends on Σ. In particular, Corollary 18 of [2] shows that for two
independent samples from two distinct Gaussian distributions N (ν, ζ2) and N (µ, ξ2) it
holds σ2(Σ) = 4(ζ2 + ξ2)(ν − µ)2 + 2(ζ2 + ξ2)(ζ − ξ)2.

Surprisingly, the second result below establishes that whenever the marginals are
the same, ΦX = ΦY = Φ, and the samples are not independent, that is ρ 6= 0, the rate of
weak convergence of W 2

2 (Fn,Gn) is 1/n and the limiting distribution is a slight variation
of the one given at Theorem 11 in [1], even if the sufficient condition of the latter result
is not satisfied.

2 The results

First we provide the limiting constant in (1.2).

Theorem 2.1. Let Fn be the empirical c.d.f. of an i.i.d. standard normal sample of size
n and Φ the c.d.f. of the standard normal distribution. Then it holds

lim
n→+∞

n

log log n
E
(
W 2

2 (Fn,Φ)
)

= 1,

lim
n→+∞

√
n

log log n
E (W2(Fn,Φ)) = 1.

Remark 2.2. This result is consistent with (1.1) and the fact that, by [3], we have∫ 1−1/n

1/n

u(1− u)

h2(u)
du = log log n+ log 2 + γ0 + o(1)

which implies that n
log lognW

2
2 (Fn,Φ)→ 1 in probability.

Remark 2.3. In the case of a sample of unstandardized normal random variables with
variance σ2 the expected W2-distance between the empirical and the true distribution
has the same rate as above and limiting constants σ2 and σ, respectively.

Remark 2.4. If Gn is a second empirical c.d.f. independent of Fn and build from
another sample we see that E

(
W 2

2 (Fn,Gn)
)

= E
(
W 2

2 (Fn,Φ)
)

+ E
(
W 2

2 (Gn,Φ)
)

since

E(
∫ 1

0
(F−1

n (u)− Φ−1(u))du) = 0. Therefore, in this independent case we have

lim
n→+∞

n

log log n
E
(
W 2

2 (Fn,Gn)
)

= 2

which is in contrast with the forthcoming dependent sample case.
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W2 for Gaussian samples

Second, in the setting of [2] and [1] we also get the rate of weak convergence in the
two correlated samples case.

Theorem 2.5. Let Fn and Gn denote the marginal empirical c.d.f. of a size n i.i.d.

sample of correlated bivariate standard normal with covariance ρ, 0 < |ρ| < 1. Let

Cρ(u, v) = P(X 6 Φ−1(u), Y 6 Φ−1(v)), u, v ∈ (0, 1),

G(u) =
BX(u)

h(u)
− B

Y (u)

h(u)
, u ∈ (0, 1),

where (BX ,BY ) are two standard Brownian bridges with cross covariance

Cov(BX(u),BY (v)) = Cρ(u, v)− uv, u, v ∈ (0, 1) .

Then we have the convergence in distribution

nW 2
2 (Fn,Gn)→ ||G||22 =

∫ 1

0

G(u)2du

and the limiting random variable is almost surely finite with finite expectation.

Remark 2.6. By Theorem 2.5 it holds
√
nW2(Fn,Gn)→ ||G||2 with a CLT rate and a non

degenerate limiting distribution with finite variance. This was not expected since in the
case of two independent samples, that is ρ = 0, it holds

E(||G||22) =

∫ 1

0

E(G(u)2)du = 2

∫ 1

0

u(1− u)

h2(u)
du = +∞

which proves by Theorem 1.3 of [8] that P(||G||2 = +∞) = 1, and is consistent with the
similar case where Gn is replaced with Φ as shown by Theorem 2.1.

Remark 2.7. Theorem 2.5 is an extension of Theorem 11 in [1] for Gaussian correlated
samples that proves that the dependency between two i.i.d. samples expressed through
the joint law may influence the rate of convergence of W 2

2 (Fn,Gn) if the marginal
distributions are the same. In the general CLT formulated at Theorem 14 of [2], only the
limiting finite variance of

√
n(W 2

2 (Fn,Gn)−W 2
2 (ΦX ,ΦY )) was affected by the joint law

if the marginal distributions are different, not the rate 1/
√
n as recalled at (1.3) above.

3 Proofs

3.1 Preliminaries

Note that the density quantile function h(u) = Φ′ ◦Φ−1(u) is symmetric on (0, 1) about
u = 1/2. Straightforward computations yield, as x→ +∞,

ψ(x) = − log(1− Φ(x)) =
x2

2
+ log x+

1

2
log(2π) +O

(
1

x2

)
,

ψ−1(x) =

√
2

(
x− 1

2
log x− 1

2
log(2π)− 1

2
log 2 +O

(
log x

x

))
.

As a consequence, we have, as u→ 1,

Φ−1(u) = ψ−1

(
log

(
1

1− u

))
=

√
2

(
log

(
1

1− u

)
− 1

2
log log

(
1

1− u

)
− 1

2
log(4π) +O

(
log log (1/(1− u))

log (1/(1− u))

))
, (3.1)
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W2 for Gaussian samples

and

h(u) = Φ′ ◦ Φ−1(u) =
√

2(1− u)

√
log

(
1

1− u

)(
1 +O

(
log log (1/(1− u))

log (1/(1− u))

))
. (3.2)

Let us extend the results concerning the first and second moments of the extreme order
statistics of a Gaussian sample stated at page 376 in [6].

Lemma 3.1. Let Z1 6 · · · 6 Zn denote the order statistics of X1, ..., Xn. Let 1 6 θ 6 2

and C > 0. For any k 6 C(log n)θ it holds

E (Zn−k) =
√

2 log n−
log log n+ 2(s1

k+1 − γ0) + log(4π)
√

8 log n
+O

(
(log log n)2

(log n)3/2

)
,

V (Zn−k) =
π2/6− s2

k+1

2 log n
+O

(
1

(log n)2

)
,

where, for k > 0, s1
k =

∑k
j=1 1/j, s2

k =
∑k
j=1 1/j2 and γ0 is the Euler constant.

Proof of Lemma 3.1. Following [6], let ξn−k+1 = n(1− Φ(Zn−k+1)) for k > 1. Since the
random variables ξ1/n < ... < ξn/n are the order statistics of n independent uniform
random variables, we see that ξn−k+1 has density

fξn−k+1
(x) =

(
n− 1

k − 1

)(x
n

)k−1 (
1− x

n

)n−k
1[0,n](x).

Step 1. Write Γ(k) = (k − 1)! and observe that(
n− 1

k − 1

)(
1

n

)k−1

= exp

k−1∑
j=1

log

(
1− j

n

) 1

Γ(k)
=

(
1 +O

(
(log n)3θ

n

))
1

Γ(k)

since we have

−
k∑
j=1

j

n
−

k∑
j=1

(
j

n

)2

6
k∑
j=1

log

(
1− j

n

)
6 −

k∑
j=1

j

n

max
16k6C(logn)θ

∣∣∣∣∣∣
k∑
j=1

log

(
1− j

n

)
+

k∑
j=1

j

n

∣∣∣∣∣∣ 6 1

n

[C(logn)θ]∑
j=1

j2

n
= O

(
(log n)3θ

n

)
.

Step 2. For k > 1 we have

E (Zn−k+1) = E

(
Φ−1

(
1− ξn−k+1

n

))
=

(n− 1)...(n− k + 1)

Γ(k)

∫ n

0

(x
n

)k−1 (
1− x

n

)n−k
Φ−1

(
1− x

n

)
dx

=

(
1− 1

n

)
...

(
1− k − 1

n

)∫ n

0

xk−1

Γ(k)

(
1− x

n

)n−k
Φ−1

(
1− x

n

)
dx

= exp

(
−s

1
k

n
− s2

k

2n2
(1 + o(1))

)
(E1,n + E2,n)

where, for p > θ + 1, x(n) = (log n)p and fΓ(k)(x) =
xk−1

Γ(k)
e−x for x > 0,

E1,n = (1 + o(1))

∫ x(n)

0

Φ−1
(

1− x

n

)
fΓ(k)(x)dx,

E2,n =

∫ n

x(n)

Φ−1
(

1− x

n

) xk−1

Γ(k)

(
1− x

n

)n−k
dx.
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W2 for Gaussian samples

Assume that k 6 C(log n)θ. By (3.1) it holds, for some K > 0 and all n large enough,

|E2,n| 6
∫ n

x(n)

xk−1
(

1− x

n

)n−k ∣∣∣Φ−1
(

1− x

n

)∣∣∣ dx
6 K

√
log n

∫ n/2

x(n)

exp
(
−(n− k)

x

n
+ (k − 1) log x

)
dx

+K

∫ n

n/2

xk−1
(

1− x

n

)n−k√
log

(
1

1− x/n

)
dx

6 K exp

(
−x(n) +

C(log n)θ + log log n

2
+ C(log n)θ+1

)
+K

∫ n

n/2

xk−1
(

1− x

n

)n−k−1

dx

6 K exp

(
− (log n)p

2

)
+Knk

(
1

2

)n−k−1

6 K exp (−(1 + o(1))(log n)p) .

Now turn to ∫ x(n)

0

Φ−1
(

1− x

n

)(n− 1

k − 1

)(x
n

)k−1 (
1− x

n

)n−k
dx

where, for 0 < x < x(n), we have, by (3.1),

Φ−1(1− x/n) =

√
2

(
log (n/x)− 1

2
log log (n/x)− 1

2
log(4π)−O

(
log log (n/x(n))

log (n/x(n))

))
=
√

2 log n− 2 log x+ log log (n/x) + log(4π)

2
√

2 log n
+O

(
(log log n)2

(log n)3/2

)
(3.3)

which is integrable near 0 with respect to the above density since

0 < log(log n− log x) = log log n+ log

(
1− log x

log n

)
6 log log n+

∣∣∣∣ log x

log n

∣∣∣∣ (3.4)

and log x, (log x)2 are integrable with respect to any Gamma distribution. Hence

E1,n

=

∫ x(n)

0

(√
2 log n− 2 log x+ log log n+ log(4π)√

8 log n
+O

(
(log log n+ |log x|)2

(log n)3/2

))
fΓ(k)(x)dx

= O

(
(log log n)2

(log n)3/2

)
+

∫ x(n)

0

(√
2 log n− 2 log x+ log log n+ log(4π)√

8 log n

)
fΓ(k)(x)dx

= O

(
(log log n)2

(log n)3/2

)
+

∫ +∞

0

(√
2 log n− 2 log x+ log log n+ log(4π)√

8 log n

)
fΓ(k)(x)dx

since we have x(n) = (logn)p, p > 1 thus, for any s > 1,∫ +∞

x(n)

fΓ(k)(x)dx = o

(
1

ns

)
,

∫ +∞

x(n)

log xfΓ(k)(x)dx = o

(
1

ns

)
.

and moreover – see [6] – it holds∫ +∞

0

log x fΓ(k)(x)dx = s1
k+1 − γ0,
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W2 for Gaussian samples

which yields the conclusion.
Similar computations give the claimed result for the variance. More precisely in the

step 2 when substituing Φ−1
(
1− x

n

)2
to Φ−1

(
1− x

n

)
in E1,n and E2,n it again appears

that we can only consider integrals up to x(n). Then it remains to compute, by substituing
the expression of E(Zn−k) and using equation (3.3) for Φ−1

(
1− x

n

)
:∫ x(n)

0

(
Φ−1

(
1− x

n

)
− E(Zn−k)

)2
(
n− 1

k − 1

)(x
n

)k−1 (
1− x

n

)n−k
dx

=

∫ x(n)

0

(
−

2(log x− (s1
k+1 − γ0))

2
√

2 log n
+
− log log (n/x) + log log n

2
√

2 log n
+O

(
(log log n)2

(log n)3/2

))2

×
(
n− 1

k − 1

)(x
n

)k−1 (
1− x

n

)n−k
dx.

We conclude along the same lines as above by the upper bound (3.4) and the fact that
the variance of the logarithm of a variable with distribution Γ(k) is π2/6− s2

k+1.

3.2 Proof of Theorem 2.1

We intend to mimic the sheme of proof worked out in [2] and [1] – specialized to
the simpler case of the distance between the empirical and true c.d.f.’s instead of
two correlated empirical ones. However all arguments have to be reconsidered since
the almost sure controls by means of the law of the iterated logarithm and strong
approximations can not be turned easily into L1 controls. Indeed, what happens now
is that the main part of the random integral we consider is also built from the extreme
parts rather than the inner part only. Moreover, only a very short extreme interval can be
neglected and the remainder extreme intervals define a divergent integral to be precisely
evaluated as a series. This is why the expectation rate is no more a CLT rate. Note that
the log log n in this paper only comes from the primitive of u(1− u)/h(u)2. Introduce the
following decomposition, for C > 0, γ > 1 and 1 < θ 6 2,

An =

∫ 1

1−1/(n(logn)γ)

(
Zn − Φ−1(u)

)2
du, Bn =

∫ 1−1/(n(logn)γ)

1−1/n

(
Zn − Φ−1(u)

)2
du,

Cn =

∫ 1−1/n

1−[C(logn)θ]/n

(
F−1
n (u)− Φ−1(u)

)2
du, Dn =

∫ 1−[C(logn)θ]/n

1/2

(
F−1
n (u)− Φ−1(u)

)2
du.

Step 1. We have, for γ > 1,

nAn
log log n

6
2Z2

n

(log n)γ log log n
+

2n

log log n

∫ 1

1−1/(n(logn)γ)

(
Φ−1(u)

)2
du

where

lim
n→+∞

E
(
Z2
n

)
(log n)γ log log n

= 0

and∫ 1

1−1/(n(logn)γ)

(
Φ−1(u)

)2
du =

∫ 1

1−1/(n(logn)γ)

2 log

(
1

1− u

)
(1 + o(1− u))

2
du

=

[
−2(1− u) log

(
1

1− u

)]1

1−1/(n(logn)γ)

= O

(
1

n(log n)γ−1

)
hence

lim
n→+∞

nE (An)

log log n
= 0.
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W2 for Gaussian samples

Step 2. Notice that for all u ∈ [1− 1/n, 1− 1/(n(log n)γ)], we have

Φ−1(u) =
√

2 log n+O

(
log log n√

log n

)
.

Next observe that

E (Bn) =
V (Zn)

n

(
1− 1

(log n)γ

)
+

∫ 1−1/(n(logn)γ)

1−1/n

(
E (Zn)− Φ−1(u)

)2
du

= O

(
1

n log n

)
+O

(
(log log n)2

n log n

)
,

hence

lim
n→+∞

nE (Bn)

log log n
= 0.

Step 3. Start with

Cn =

[C(logn)θ]∑
k=1

∫ 1−k/n

1−(k+1)/n

(
Zn−k − Φ−1(u)

)2
du.

Recall that

s1
k − γ0 = log k +

1

2k
+O

(
1

k2

)
.

Now, for 1 6 k 6
[
C(log n)θ

]
and u ∈ [1− (k + 1)/n, 1− k/n] we have

Φ−1(u) =

√
2

(
log (1− u)− 1

2
log log (1− u)− 1

2
log(4π)−O

(
log log n

log n

))
=
√

2 log n− 2 log k + log log n+ log(4π)√
8 log n

+O

(
(log log n)2

(log n)3/2

)

thus, by Lemma 3.1, we have, uniformly in k,

V(Zn−k) =
π2/6− s2

k+1

2 log n
+O

(
1

(log n)2

)

then

E
((
Zn−k − Φ−1(u)

)2)
= V(Zn−k) +

(
E(Zn−k)− Φ−1(u)

)2
=
π2/6− s2

k+1

2 log n
+O

(
1

(log n)2

)
+

(
log k − (s1

k+1 − γ0)
√

2 log n
+O

(
(log log n)2

(log n)3/2

))2

=
π2/6− s2

k+1

2 log n
+O

(
1

(log n)2

)
+

(
1 +O(1/k)

2k
√

2 log n
+O

(
(log log n)2

(log n)3/2

))2

.
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W2 for Gaussian samples

As a consequence,

E (Cn)

=
1

n

[C(logn)θ]∑
k=1

π2/6− s2
k+1

2 log n
+O

(
1

n(log n)2−θ

)

+
1

n

[C(logn)θ]∑
k=1

(
1 +O(1/k)

2k
√

2 log n
+O

(
(log log n)2

(log n)3/2

))2

= O

(
(log n)θ/2

n log n

)
+

1

n

[C(logn)θ]∑
k=[(logn)θ/2]

π2/6− s2
k+1

log n
+O

(
1

n log n

)
+O

(
(log log n)3

n(log n)3−θ

)

6
C(log n)θ

n log n

+∞∑
j=[(logn)θ/2]

1

j2
+O

(
(log n)θ/2

n log n

)

= O

(
(log n)θ/2

n log n

)
.

Thus, for any θ 6 2 we have

lim
n→+∞

nE(Cn)

log log n
= 0.

Step 4. Now we compute the limit of the main deterministic contribution to the main
stochastic term Dn, namely

D1,n =

∫ 1−[C(logn)θ]/n

1/2

u(1− u)

h2(u)
du.

Let vn be such that log vn = (log n)εn , lim
n→+∞

εn = 0, lim
n→+∞

εn log log n = +∞. By using

(3.2) it holds

1

log log n

∫ 1−[C(logn)θ]/n

1−1/vn

u(1− u)

h2(u)
du

=
1 + o(1)

2 log log n
(log(log n− log(

[
C(log n)θ

]
))− log log vn)

=
1 + o(1)

2 log log n
log

(
(1 + o(1)) log n

log vn

)
=

1 + o(1)

2
(1− εn)

and
1

log log n

∫ 1−1/vn

1/2

u(1− u)

h2(u)
du 6

1 + o(1)

2 log log n
(log log vn) =

1 + o(1)

2
εn.

Therefore

lim
n→+∞

D1,n

log log n
=

1

2
. (3.5)

Compared with the result of [3] recalled at Remark 2.2 the truncation at level 1/vn
instead of 1/n preserves the same first order.

Step 5. To show that E(Dn) behaves as D1,n + o(1) we proceed as in [2] with strong
approximation arguments. First, we substitute the uniform quantile process to the
general quantile process with a sharp control of the expectation of the random error
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W2 for Gaussian samples

terms in the Taylor Lagrange expansion. For short, write dn =
[
C(log n)θ

]
/n and

βXn (u) =
√
n(F−1

n (u)− Φ−1(u)) so that

nDn

log log n
=

1

log log n

∫ 1−dn

1/2

(βXn (u))2du.

Defining Ui = Φ(Xi) which is uniform on (0, 1) we obviously have U(i) = Φ(X(i)). Let
denote FUn the uniform empirical c.d.f. associated to the Ui and define the underlying
uniform quantile process to be

βUn (u) =
√
n((FUn )−1(u)− u) =

√
n(Φ(F−1

n (u))− u).

Thus for all 1/2 6 u 6 1− dn there exists a random u∗ such that |u− u∗| 6
∣∣βUn (u)

∣∣ /√n
and

βXn (u)h(u) =
√
n(F−1

n (u)− Φ−1(u))h(u)

=
√
n(Φ−1(Φ(F−1

n (u)))− Φ−1(u))h(u)

=
√
n

(
Φ(F−1

n (u))− u
h(u)

+
h′(u∗)

2h2(u∗)
(Φ(F−1

n (u))− u)2

)
h(u)

= βUn (u) + rn(u)

with

rn(u) =
1

2
√
n

(
βUn (u)

)2 h′(u∗)
h(u∗)

h(u)

h(u∗)

=
1

2
√
n

(
βUn (u)√

1− u

)2(
1− u
1− u∗

)(
(1− u∗) Φ′′(Φ−1(u∗))

Φ′2(Φ−1(u∗))

)
h(u)

h(u∗)
.

We study
nDn

log log n
=

1

log log n

∫ 1−dn

1/2

(βUn (u) + rn(u))2 du

h(u)2
.

Since we have

sup
0<u<1

u(1− u)

∣∣Φ′′(Φ−1(u))
∣∣

Φ′2(Φ−1(u))
= 1

it holds, by Lemma 6.1.1 in [7],

0 6
h(u)

h(u∗)
6

max(u, u∗)

min(u, u∗)

1−min(u, u∗)

1−max(u, u∗)
.

Now we introduce the sequence of events, with 0 < ε < 1,

An =

{∣∣∣∣∣ βUn (u)√
u(1− u)

∣∣∣∣∣ 6 (1− ε)
√
n(1− u), dn < u < 1− dn

}
. (3.6)

On the event An we have the following control of u∗,

max(u, u∗)

min(u, u∗)

1−min(u, u∗)

1−max(u, u∗)
6

4

ε2

since, for instance,

0 6
1− u
1− u∗

6 1 +
u∗ − u

1− u− (u∗ − u)
6 1 +

∣∣∣∣ βUn (u)√
u(1−u)

1√
n(1−u)

∣∣∣∣
1−

∣∣∣∣ βUn (u)√
u(1−u)

1√
n(1−u)

∣∣∣∣ 6
2

ε
,
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W2 for Gaussian samples

0 6
u

u∗
= 1 +

u− u∗

u+ u∗ − u
6 1 +

∣∣∣∣ βUn (u)√
u(1−u)

1√
n(1−u)

∣∣∣∣
1−

∣∣∣∣ βUn (u)√
u(1−u)

1√
n(1−u)

∣∣∣∣ 6
2

ε
,

and the same holds for the reverse ratios. Hence we have

1Anrn(u) 6
4

ε3
√
n

(
βUn (u)√

1− u

)2

thus

E

(∫ 1−dn

1/2

1An
rn(u)2

h(u)2
du

)
6
∫ 1−dn

1/2

16

ε6n(1− u)
E

(
βUn (u)√

1− u

)4
1− u
h(u)2

du.

By Lemma 3.2 below and (3.5) we have, when θ = 2,

sup
1/2<u<1−dn

E

(
βUn (u)√

1− u

)4

= O(1),

∫ 1−dn

1/2

1− u
h(u)2

du = O(log log n). (3.7)

It ensues

E

(∫ 1−dn

1/2

1An
rn(u)2

h(u)2
du

)
= O

(
log log n

(log n)2

)
.

By using the Cauchy-Schwartz inequality we easily get

lim
n→+∞

E

(∫ 1−dn

1/2

1An
βUn (u)rn(u)

h(u)2
du

)
= 0,

since by (3.7) we have, again for θ = 2,

∫ 1−dn

1/2

E(βUn (u)2)

h(u)2
du = O(log log n).

Step 6. Next we evaluate the probability of the rare event Acn from (3.6). To this aim
we work on the KMT probability space where we can define a sequence Bn of standard
Brownian bridges approximating the processes βUn in such a way that the error process
wn = βUn −Bn satisfies, for universal positive constants c1, c2, c3 and all x > 0, n > 1,

P

(
sup

0<u<1
|wn(u)| > c1√

n
(x+ log n)

)
6 c2 exp(−c3x). (3.8)
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Hence we have

P(Acn) = P

(
∃u ∈ [1/2, 1− dn],

∣∣∣∣∣ βUn (u)√
u(1− u)

∣∣∣∣∣ > (1− ε)
√
n(1− u)

)

6 P

(
sup

1/2<u<1−dn

∣∣∣∣∣ βUn (u)√
u(1− u)

∣∣∣∣∣ > (1− ε)(log n)θ/2

)

6 P

({
sup

1/2<u<1−dn

∣∣∣∣∣ Bn(u)√
u(1− u)

∣∣∣∣∣ > 1− ε
2

(log n)θ/2

}
. . .

· · · ∩

{
sup

1/2<u<1−dn

∣∣∣∣∣ wn(u)√
u(1− u)

∣∣∣∣∣ 6 1− ε
2

(log n)θ/2

})

+ P

(
sup

1/2<u<1−dn

∣∣∣∣∣ wn(u)√
u(1− u)

∣∣∣∣∣ > (1− ε)
2

(log n)θ/2

)

6 P

(
sup

1/2<u<1−dn

∣∣∣∣∣ Bn(u)√
u(1− u)

∣∣∣∣∣ > 1− ε
2

(log n)θ/2

)

+ P

(
sup

1/2<u<1−dn
|wn(u)| >

√
C

1− ε
2

(log n)θ√
n

)
.

Recall that 1 < θ 6 2. By the theorem of Borell-Sudakov (see [5], [10]) and (3.8) we
obtain, for any γ > 2, the constant C fixed as large as needed and all n large enough,

P(Acn) 6 exp

(
− (1− ε)2(log n)θ

8 sup1/2<u<1−dn(Var(Bn(u)/
√
u(1− u))

)

)
+ c2 exp

(
−c3(log n)θ

)
6 exp

(
− (1− ε)2

8
(log n)θ

)
+ c2 exp

(
−c3(log n)θ

)
6

1

nγ
.

Therefore we get, for any 0 < b < γ/2− 1,

E

(
1Acn

∫ 1−dn

1/2

n(F−1
n (u)− Φ−1(u))2du

)

6 P (Acn) 2n

∫ 1

0

Φ−1(u)2du+ 2E
(
1AcnnZ

2
n

)
6 2nP (Acn) +

√
P (Acn)n2E (Z4

n) = O

(
1

nb

)
.

Step 7. It remains to study

1

log log n

∫ 1−dn

1/2

E(βUn )2 du

h(u)2
.

At this stage the approximation bounds play a crucial role and there is no room for
relaxing the trimming constraints. To be more specific the only allowed choice θ 6 2 is
θ = 2. Choose an arbitrarily large constant C > 0. Given any 0 < η < 1, consider the
sequence of events

Bn =

{
|wn(u)| < η

√
u(1− u),

1

2
< u < 1− dn

}
.
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By (3.8), for any k1 > 0 there exists C = Cη > (1 + k1/c3)2/η2 > 0 and n0 > 0 large
enough such that for all n > n0 we have

1− P (Bn) 6 P

(
sup

1/2<u<1−dn
|wn(u)| > η

√
Cη
n

(log n)θ/2

)

6 P

(
sup

0<u<1
|wn(u)| > c1√

n

(
(η
√
Cη − 1) log n+ log n

))
6 c2 exp(−c3(η

√
Cη − 1) log n)

6
1

nk1
.

Lemma 3.2. For any p > 1 there exist constants C > 0 and κp such that we have, for

dn = [C (logn)2

n ] and all n large enough,

sup
dn<u<1−dn

E

(
|wn(u)|√
u(1− u)

)p
< 2ηp, sup

dn<u<1−dn
E

(
|βUn (u)|√
u(1− u)

)p
< κp.

Proof of Lemma 3.2. Start with

E

(
|wn(u)|√
u(1− u)

)p
6 ηp + E

(
1Bcn

|wn(u)|√
u(1− u)

)p
then set, for k > 0,

Fn =

{∣∣∣∣∣ Bn(u)√
u(1− u)

∣∣∣∣∣ < n : dn < u < 1− dn

}
,

Fcn ⊂
⋃

k∈N
Fn,k,

Fn,k =

{
n+ k 6 sup

0<u<1

∣∣∣∣∣ Bn(u)√
u(1− u)

∣∣∣∣∣ < n+ k + 1

}
.

Since
∣∣∣βUn (u)/

√
u(1− u)

∣∣∣ 6 n for dn < u < 1− dn and all n large enough, we have

1Fn,k sup
dn<u<1−dn

|wn(u)|√
u(1− u)

6 2n+ k + 1, 1Fn sup
dn<u<1−dn

|wn(u)|√
u(1− u)

6 2n.

By Sudakov-Borell theorem it holds P (Fn,k) 6 exp
(
−(n+ k)2/2

)
whereas P (Bcn) < 1/nk1 .

Hence by choosing k1 > p it holds

E

(
1Bcn

|wn(u)|√
u(1− u)

)p
6

(∑
k∈N

(2n+ k + 1)pP (Fn,k)

)
+ E

(
(2n)p1Fn∩Bcn

)
6
∑
k∈N

(2n+ k + 1)p exp
(
−(n+ k)2/2

)
+

(2n)p

nk1

= o(1),

which proves the first claimed upper bound. Since

E
(
|Bn(u)|/

√
u(1− u)

)p
< +∞

doesn’t depend on n the second expectation bound follows.
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By Lemma 3.2 we get

1

log log n
E

(∫ 1−dn

1/2

(wn(u))2 du

h(u)2

)

=
1

log log n
E

∫ 1−dn

1/2

(
wn(u)√
u(1− u)

)2
u(1− u)

h(u)2
du

 = O(η2)

and, by (3.5),

1

log logn
E

(∣∣∣∣∣
∫ 1−dn

1/2

wn(u)Bn(u)

h(u)2
du

∣∣∣∣∣
)

6

√√√√ 1

log log n
E

(∫ 1−dn

1/2

wn(u)2

h(u)2
du

)√√√√ 1

log logn
E

(∫ 1−dn

1/2

(Bn(u))2

h(u)2
du

)

= O(η)

√
1

log log n

∫ 1−dn

1/2

u(1− u)

h(u)2
du.

By choosing η as small as desired, the first assertion of Theorem 2.1 is proved.

Step 8. The sequence
√
n/ log log nW2(Fn,Φ) is bounded in L2, thus uniformly inte-

grable, and from (1.1) (see [9]) converges in probability to 1. Thus the convergence
holds in L1, which establishes the second assertion of Theorem 2.1.

3.3 Proof of Theorem 2.5

In Theorem 11 of [1] we proved that nW 2
2 (Fn,Gn) converges in distribution to

‖G‖22 =

∫ 1

0

(
BX(u)

h(u)
− B

Y (u)

h(u)

)2

du

under assumptions on the common probability distribution F of the samples ensuring that√
n(F−1

n (u) − F−1(u)) and
√
n(G−1

n (u) − G−1(u)) can be simultaneously approximated
on a suitable sub-interval of [0, 1] by BX(u)/h(u) and BY (u)/h(u) respectively. Here
BX(u) and BY (u) are two standard Brownian bridges coupled to the marginal samples
respectively, and are then correlated together as mentionned at Theorem 2.5 if the two
samples are. In [1] the imposed assumptions for the Gaussian approximation concerned
the tail of F with respect to the cost function, and the integrability condition∫ 1

0

u(1− u)

h2(u)
du < +∞

was morerover required. Under the latter condition, the expectation of ‖G‖22 is finite
since it is bounded by 4

∫ 1

0
u(1− u)/h2(u)du. Now, this upper bound is appropriated to

the independent case whereas in our currently dependent case the sample is Gaussian
and

E(‖G‖22) = 2

∫ 1

0

u− Cρ(u)

h2(u)
du

which we shall next prove to be finite if 0 < |ρ| < 1. Then, as the tail conditions of
Theorem 11 in [1] are satisfied by the Gaussian distribution F = G = Φ, the weak
convergence of nW 2

2 (Fn,Gn) is easily established by a straightforward adaptation of the
proof of the latter theorem. This long and technical proof is thus omitted. Notice that in
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the case ρ = 0 we have E(‖G‖22) = 2
∫ 1

0
u(1− u)/h2(u)du = +∞ and therefore by [8] the

random variable ‖G‖22 = +∞ a.s. and nW 2
2 (Fn,Gn) do not weakly converges.

Let us prove that ∫ 1

0

u− Cρ(u)

h2(u)
du < +∞.

Notice that for a > 0, as u→ 1,

1− Φ(aΦ−1(u)) = (4π)
1−a2

2
(1− u)a

2

a(log( 1
1−u ))

1−a2

2

(
1 +O

(
log log( 1

1−u )

log( 1
1−u )

))
.

First assume that −1 < ρ < 0. It holds

u− Cρ(u) = u− 1

2π
√

1− ρ2

∫ Φ−1(u)

−∞

∫ Φ−1(u)

−∞
exp

(
−x

2 + y2 − 2ρxy

2(1− ρ2)

)
dxdy

= u−
∫ Φ−1(u)

−∞

1√
2π
e−

y2

2 Φ

(
Φ−1(u)− ρy√

1− ρ2

)
dy

= u−
∫ u

0

Φ

(
Φ−1(u)− ρΦ−1(v)√

1− ρ2

)
dv =

∫ u

0

(
1− Φ

(
Φ−1(u)− ρΦ−1(v)√

1− ρ2

))
dv

=

∫ u

0

(
1− Φ

(
Φ−1(u)

√
1− ρ
1 + ρ

+
ρ(Φ−1(u)− Φ−1(v))√

1− ρ2

))
dv

6 u

(
1− Φ

(
Φ−1(u)

√
1− ρ
1 + ρ

))
= O

(
u(1− u)

1−ρ
1+ρ

(log( 1
1−u ))

2ρ
1+ρ

)
, u→ 1,

which proves that (u− Cρ(u))/h2(u) is integrable near 1 since −1 < ρ < 0. By symmetry
the same holds near 0.

Next the case 0 < ρ < 1 near 1 follows from the equality

u− Cρ(u) =

∫ u

0

(
1− Φ

(
Φ−1(u)− ρΦ−1(v)√

1− ρ2

))
dv

=

∫ 1
2

0

(
1− Φ

(
Φ−1(u)− ρΦ−1(v)√

1− ρ2

))
dv +

∫ u

1
2

(
1− Φ

(
Φ−1(u)− ρΦ−1(v)√

1− ρ2

))
dv.

Then we get, for the first term, the upper bound∫ 1
2

0

(
1− Φ

(
Φ−1(u)− ρΦ−1(v)√

1− ρ2

))
dv 6

1

2

(
1− Φ

(
Φ−1(u)√

1− ρ2

))

that is, up to a logarithmic factor, of order (1− u)
1

1−ρ2 as u→ 1.
The second term needs more attention. First we choose 0 < α < 1 such that for

all v ∈ [1/2, 1 − (1 − u)α
2

] we have, for u close to 1 and η arbitrarily small, Φ−1(v) 6
(α+ η)Φ−1(u) and 1− αρ >

√
1− ρ2. We take α < (1−

√
1− ρ2)/ρ, which is actually less

than ρ and we have for u close enough to 1,

Φ−1(v) 6 Φ−1(1− (1− u)α
2

) 6 (α+ η)Φ−1(u).

Thus it comes∫ 1−(1−u)α
2

1
2

(
1− Φ

(
Φ−1(u)− ρΦ−1(v)√

1− ρ2

))
dv 6

1

2

(
1− Φ

(
(1− (α+ η)ρ)Φ−1(u)√

1− ρ2

))
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that is, up to a logarithmic factor, of order (1 − u)
(1−(α+η)ρ)2

1−ρ2 , with (1−(α+η)ρ)2

1−ρ2 > 1 for u
close enough to 1.

It remains to study∫ u

1−(1−u)α2

(
1− Φ

(
Φ−1(u)− ρΦ−1(v)√

1− ρ2

))
dv.

Recall that for x > 0, 1− Φ(x) 6
e−

x2

2

√
2πx

. Thus we have

∫ u

1−(1−u)α2

(
1− Φ

(
Φ−1(u)− ρΦ−1(v)√

1− ρ2

))
dv

6
∫ u

1−(1−u)α2

e
− 1

2
Φ−1(u)2

1−ρ2 e
− 1

2
ρ2Φ−1(v)2

1−ρ2 e
ρΦ−1(u)Φ−1(v)

1−ρ2

√
2πΦ−1(u)−ρΦ−1(v)√

1−ρ2

dv

6
e
− 1

2
Φ−1(u)2

1−ρ2

√
2πΦ−1(u)(1− ρ)

∫ u

1−(1−u)α2

√
1− ρ2e

− 1
2
ρ2Φ−1(v)2

1−ρ2 e
ρΦ−1(u)Φ−1(v)

1−ρ2 dv

=
e
− 1

2
Φ−1(u)2

1−ρ2

√
2πΦ−1(u)(1− ρ)

∫ Φ−1(u)

Φ−1(1−(1−u)α2 )

√
1− ρ2e

− 1
2

y2

1−ρ2 e
ρΦ−1(u)y

1−ρ2
dy√
2π

=
e
− 1

2
Φ−1(u)2

1−ρ2

√
2πΦ−1(u)(1− ρ)

∫ Φ−1(u)−ρΦ−1(u)

Φ−1(1−(1−u)α2 )−ρΦ−1(u)

√
1− ρ2e

− 1
2

z2

1−ρ2 e
1
2
ρ2Φ−1(u)2

1−ρ2
dz√
2π

=
e−

1
2 Φ−1(u)2

√
2πΦ−1(u)(1− ρ)

∫ Φ−1(u)−ρΦ−1(u)

Φ−1(1−(1−u)α2 )−ρΦ−1(u)

√
1− ρ2e

− 1
2

z2

1−ρ2
dz√
2π

= O

(
1− u

log( 1
1−u )

)

since α < 1
ρ (1−

√
1− ρ2) < ρ and Φ−1(1− (1− u)α

2

) 6 (α+ η)Φ−1(u), with η arbitrarily
small by choosing u close to 1. Therefore this term is O((1− u)/ log(1/(1− u))) near 1.

Now collecting the previous results, as u→ 1 we finally obtain

u− Cρ(u)

h2(u)
= O

(
1

(1− u) log2( 1
1−u )

)

which proves that it is integrable near 1. By symmetry the same holds near 0. We
conclude that (u− Cρ(u))/h2(u) is integrable on (0, 1).
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