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Abstract

It is known that the Poincaré inequality is equivalent to the quadratic transportation-
variance inequality (namely W 2

2 (fµ, µ) 6 CVVarµ(f)), see Jourdain [10] and most
recently Ledoux [12]. We give two alternative proofs to this fact. In particular,
we achieve a smaller CV than before, which equals the double of Poincaré constant.
Applying the same argument leads to more characterizations of the Poincaré inequality.
Our method also yields a by-product as the equivalence between the logarithmic
Sobolev inequality and strict contraction of heat flow in Wasserstein space provided
that the Bakry-Émery curvature has a lower bound (here the control constants may
depend on the curvature bound).

Next, we present a comparison inequality between W 2
2 (fµ, µ) and its centralization

W 2
2 (fcµ, µ) for fc =

|
√
f−µ(

√
f)|2

Varµ(
√
f)

, which may be viewed as some special counterpart of

the Rothaus’ lemma for relative entropy. Then it yields some new bound of W 2
2 (fµ, µ)

associated to the variance of
√
f rather than f . As a by-product, we have another

proof to derive the quadratic transportation-information inequality from Lyapunov
condition, avoiding the Bobkov-Götze’s characterization of the Talagrand’s inequality.
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1 Introduction

The aim of this paper is to investigate some links between the Poincaré inequality (PI
for short) and various comparison inequalities of quadratic Wasserstein distance with
variance. Some conclusions might be extended to abstract settings of metric measure
spaces, nevertheless for simplicity, our basic framework is specified as follows. Let
E be a connected complete Riemannian manifold of finite dimension, d the geodesic
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distance, dx the volume measure, P(E) the collection of all probability measures on E,
µ(dx) = e−V (x)dx ∈ P(E) with V ∈ C1(E), L = ∆ − ∇V · ∇ the µ-symmetric diffusion
operator with domain D(L), and Γ(f, g) = ∇f · ∇g the carré du champ operator with
domain D(Γ), satisfying the integration by parts formula∫

Γ(f, g) dµ = −
∫
fLg dµ, ∀f ∈ D(Γ), g ∈ D(L).

Define the Lp Wasserstein (transportation) distance (also called Kantorovich metric)
between ν, µ ∈ P(E) for any p > 1 by

Wp(ν, µ) =

(
inf

π∈C(ν,µ)

∫
E×E

dp(x, y)π(dx, dy)

)1/p

,

where C(ν, µ) denotes the set of any coupling π on E × E with marginals ν and µ

respectively. Throughout this paper we focus on quadratic Wasserstein distance, so it
is convenient to assume µ has a finite moment of order 2. The reader is referred to
several constant references as Bakry-Gentil-Ledoux [2] and Villani [16, 17] for detailed
presentations.

Our motivation partially arises from the problem of how to characterize the expo-
nential decay of quadratic Wasserstein distance along heat flow. It is known that the
exponential decay of heat semigroup Pt = exp(tL) in L2-norm is equivalent to PI, which
reads for any f ∈ D(Γ) ∩ L2(µ)

Varµ(Ptf) 6 e−2t/CP Varµ(f) ⇐⇒ Varµ(f) 6 CP

∫
Γ(f, f)dµ

(simply denote by µ(h) =
∫
hdµ the expectation and by Varµ(f) = µ(f2) − (µ(f))2 the

variance). Similarly, the exponential decay of Pt in relative entropy is equivalent to the
logarithmic Sobolev inequality (LSI for short), which reads for any f > 0 with

√
f ∈ D(Γ)

Entµ(Ptf) 6 e−2t/CLSEntµ(f) ⇐⇒ Entµ(f) 6
1

2
CLSIµ(f)

(denote by Entµ(f) =
∫
f log fdµ the relative entropy and by Iµ(f) =

∫ Γ(f,f)
f dµ the

Fisher information). Somehow, we think it is tough to give a proper answer to the same
question in Wasserstein space, namely to find some equivalent inequality characterizing
W 2

2 (Ptν, µ) 6 e−2κtW 2
2 (ν, µ) (or up to a multiple) with κ > 0 for any ν = fµ ∈ P(E).

When we turn to some weak replacements, one natural candidate is to compare W2 with
variance, which can be quickly derived from the control inequality of weighted total
variation (see [16, Proposition 7.10]) and Hölder inequality that

W 2
2 (ν, µ) 6 2||d2(x0, ·)(ν − µ)||TV 6 2

∫
d2(x0, ·) |f − 1|dµ 6 C

√
Varµ(f)

if d4(x0, ·) is µ-integrable. At least, it follows the integrability of W 2
2 (Ptν, µ) for t ∈ [0,∞)

provided that PI holds true, which is helpful to the semigroup analysis more or less.
If µ fulfills the Talagrand’s inequality (W2H for short), namely the control of relative

entropy on W2(ν, µ) as

W 2
2 (ν, µ) 6 2CTEntµ(f),

it follows from the preliminary inequality Entµ(f) 6 p (Varµ(f))
1
p for p > 1 that

W 2
2 (ν, µ) 6 2CT p (Varµ(f))

1
p .
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In particular, for p = 2 it covers W 2
2 (ν, µ) 6 C

√
Varµ(f), and for p = 1 it gives

W 2
2 (ν, µ) 6 2CTVarµ(f), (1.1)

which suggests an improved decay rate of W2 along heat flow. Since W2H implies PI
with CP 6 CT (see [2] for example), it is natural to ask what about the relation between
PI and a transportation-variance inequality like (1.1). Indeed, Jourdain [10] proved their
equivalence in dimension one. Ding [6] claimed a general inequality between W2 and
the so called Rényi-Tsallis divergence of order α, which equals the variance for α = 2

(somehow, it is obscure for us to check Remark 3.3 therein for small variance, maybe we
misunderstand something). Then Ledoux [12] provided a very streamlined proof to show
a general result that PI is equivalent to the quadratic transportation-variance inequality
(W2V for short)

W 2
2 (ν, µ) 6 CV Varµ(f)

for CV 6 4CP . We give two alternative proofs to this fact and achieve a smaller constant
as CV 6 2CP . Conversely, various perturbation techniques ensure PI with a constant no
more than CV if assume W2V (see [12]). Precisely, our first main result is the following.

Theorem 1.1. Let ν = fµ ∈ P(E). The Poincaré inequality implies next every inequality:

1. W 2
2 (ν, µ) 6 2CP

√
Varµ(f) ·

√
Entµ(f).

2. W 2
2 (ν, µ) 6 2CPVarµ(f).

3. W 2
2 (ν, µ) 6 2CP inf

p>1

{
p2 (Varµ(f))

1
p

}
.

4. W 2
2 (ν, µ) 6 2CP inf

p>1

{
p2
(
CPµ(Γ(f, f))

) 1
p

}
.

5. W 2
2 (ν, µ) 6 2C2

Pµ(Γ(f, f)).

Conversely, the above every one implies the Poincaré inequality with constant
√

2CP .

Remark 1.2. If assume (1) or (5) prior to PI, the perturbation technique ensures PI with
constant

√
2CP . Note that the same technique doesn’t work for (2) directly.

There are two approaches to this end, and both are contributed to get the inequality
(see also (2.1) below)

W 2
2 (ν, µ) 6 2

√
Entµ(f)

∫ ∞
0

√
Entµ(Ptf)dt.

The first approach is a shortcut based on the interpolation technique developed by
Kuwada [11] and further by [12]. The other one appeals to the derivative formula of
W 2

2 (Ptfµ, µ) in t (almost everywhere), which is slightly different from what Otto-Villani
employed in [15, Lemma 2]. Our method doesn’t involve the theory of solving Fokker-
Planck equation on Riemannian manifolds, so we have a by-product as reproving their
lemma for nice initial data but avoiding the curvature condition.

Another by-product is to show the equivalence between the LSI and strict contraction
of heat flow in Wasserstein space (here we actually mean a strictly exponential decay of
W2(Ptfµ, µ) with some multiple in front) provided that the Bakry-Émery curvature has
a lower bound. One can compare the following with the well known characterization
of curvature-dimension condition through the heat flow contraction (see [2, Theorem
9.7.2] for this fact and [2, Subsection 3.4.5] for precise definition of curvature-dimension
condition CD(ρ,∞)).

Proposition 1.3. Assume V is a smooth potential such that the curvature-dimension
condition CD(ρ,∞) holds for ρ ∈ R. Then the next two statements are equivalent:
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1. there exist two constants C > 0 and κ > 0 such that for all t > 0 and any
ν = fµ ∈ P(E)

W2(Ptν, µ) 6 Ce−κtW2(ν, µ);

2. there exists a constant CLS > 0 such that the LSI holds.

Remark 1.4. The constants involved here may depend on ρ. If the LSI holds, we have
κ = 1/CLS . Very recently, Wang [19] discussed exponential contraction in any Wp (p > 1)

for a class of diffusion semigroups and gave the implication from (2) to (1) as well.

Next, we are interested in the comparison of W 2
2 (ν, µ) to Varµ(

√
f) rather than

Varµ(f). In general, one can’t expect a strong inequality as W 2
2 (ν, µ) 6 CVarµ(

√
f), since

from PI it follows W 2
2 (ν, µ) 6 1

4CCP Iµ(f), which is called the quadratic transportation-
information inequality (W2I for short, see [9]), and it is known that W2I is strictly stronger
than PI and even than W2H. Actually what we present first is a new inequality between
the Wasserstein distance and its “centralization”, which may be viewed as a special
counterpart of the Rothaus’ lemma for relative entropy (see [2, Lemma 5.1.4]), namely
for any a ∈ R

Entµ
(
(h+ a)2

)
6 Entµ(h2) + 2µ(h2).

Precisely we have

Theorem 1.5. Let ν = fµ, c = µ(
√
f) and σ2 = Varµ(

√
f). Let fc = |

√
f−c|2
σ2 . If the

Poincaré inequality holds, then there exists two constants C1 and C2 such that

W 2
2 (ν, µ) 6 C1σ

2W 2
2 (fcµ, µ) + C2σ

2.

Remark 1.6. For instance, we can take C1 = 2 and C2 = 96CP . Actually our method
implies that C1 can approach 1 but should be strictly greater than 1. Moreover, fc can be

extended to fθ = |
√
f−θ|2

µ((
√
f−θ)2)

for any θ ∈ (0, 2c) associated with two constants C1(θ) and

C2(θ) depending on θ.

As consequence, when E has a finite diameter, it follows by the definition of W2

W 2
2 (ν, µ) 6 σ2

(
C1(diamE)2 + C2

)
, (1.2)

which can’t be directly concluded by Theorem 1.1 we think. Then it quickly derives W2I
from PI again. Moreover, a LSI holds by using the HWI inequality in [15, 16, 2] under the
curvature-dimension condition CD(ρ,∞), with the control constant CLS = λ

(
(1− ρ

4λ)∨1
)

for λ =
√
CP (C1(diamE)2 + C2). There is a lot of literature concerning LSI, for example

one can compare the above (1.2) with [18, Theorem 1.4] about the constant estimate on
compact manifolds by means of semigroup analysis.

When E is unbounded, we have at least by using [16, Proposition 7.10] that

W 2
2 (ν, µ) 6 C

(
σ2 +

∫
d2(x0, ·)(

√
f − c)2dµ

)
. (1.3)

It gives a direct way to derive W2I from the so-called Lyapunov condition. Recall [13], the
Lyapunov condition here means there exists such a function W > 0 satisfying that W−1

is locally bounded and for some c > 0, b > 0 and x0 ∈ E holds in the sense of distribution

LW 6
(
−cd2(x, x0) + b

)
W. (1.4)

Partial proof in [13] applied the Bobkov-Götze’s characterization of W2H, namely there
is a constant C > 0 such that µ (exp(QCh)) 6 exp (µ(h)) for all h ∈ L∞(µ), where QC
denotes the infimum-convolution operator and QCh solves the Hamilton-Jacobi equation
d
dtQth+ 1

2 |∇Qth|
2 = 0 for initial data h, see [2, 3] for example. Nevertheless, facing the
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stability problem for W2H under bounded perturbation, one needs various additional
curvature conditions so far, for example see [8, 14]. When we turn to the same problem
for W2I, it would be more robust if we can find a direct method to derive W2I from (1.4)
with no appearance of W2H. Actually, Theorem 1.5 takes on such a role.

The paper is organized as follows. In next Section 2, we give a quick proof to Theorem
1.1. In Section 3 and 4, we compute the derivative of quadratic Wasserstein distance
along heat flow, and then complete the other proof of Theorem 1.1. The equivalence
of the LSI and strict contraction of heat flow in Wasserstein space is shown in Section
5. Section 6 is devoted to the comparison inequality about centralization of quadratic
Wasserstein distance, and Section 7 provides a direct proof of W2I under the Lyapunov
condition.

2 The first proof of Theorem 1.1

Recall that, for any bounded Lipschitz function h, define its infimum-convolution for
any t > 0 by

Qth(x) := inf
y

{
h(y) +

1

2t
d2(x, y)

}
,

which solves the Hamilton-Jacobi equation (see for example [2, Section 9.4], [7, Section
3.3], [16, Section 5.4]) {

d
dtu+ 1

2 |∇u|
2 = 0,

u(x, 0) = h(x).

According to [11, 12], for any decreasing function λ ∈ C1[0,+∞) with λ(0) = 1 and
lim
t→∞

λ(t) = 0, one has a semigroup interpolation by virtue of Hamilton-Jacobi equation,

integration by parts and the Hölder inequality that∫
E

Q1hfdµ−
∫
E

hdµ =

∫
E

∫ ∞
0

− d

dt
QλhPtfdtdµ

=

∫
E

∫ ∞
0

1

2
λ′|∇Qλh|2Ptf −Qλh · LPtfdtdµ

=

∫ ∞
0

∫
E

1

2
λ′|∇Qλh|2Ptf +∇Qλh · ∇Ptfdµdt

6
∫ ∞

0

− Iµ(Ptf)

2λ′
dt.

Using the Kantorovich dual (see [2, Section 9.2], [16, Chapter 1]) yields for ν = fµ

W 2
2 (ν, µ) = 2 sup

h

{∫
E

Q1hfdµ−
∫
E

hdµ

}
6
∫ ∞

0

− Iµ(Ptf)

λ′
dt.

It is flexible to choose a nice λ to prove Theorem 1.1. For instance, if
√

Entµ(Ptf) is

integrable on [0,∞), let λ(t) =
∫∞
t

√
Entµ(Ptf)dt∫∞

0

√
Entµ(Ptf)dt

, then it follows

W 2
2 (ν, µ) 6

∫ ∞
0

Iµ(Ptf)√
Entµ(Ptf)

dt ·
∫ ∞

0

√
Entµ(Ptf)dt

= 2
√

Entµ(f)

∫ ∞
0

√
Entµ(Ptf)dt. (2.1)

We will revisit (2.1) in Section 4 by means of derivative estimate of Wasserstein dis-
tance.
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Proof. It consists of two parts.
Part 1. First of all, using the inequality log x 6 x− 1 yields that

Entµ(f) =

∫
f log

f

µ(f)
dµ 6

∫
f · f − µ(f)

µ(f)
dµ =

1

µ(f)
Varµ(f).

For µ(f) = 1, we have Entµ(f) 6 Varµ(f). If PI holds with a constant CP , we have further

Entµ(Ptf) 6 Varµ(Ptf) 6 e
− 2
CP

t
Varµ(f),

and then
√

Entµ(Ptf) is integrable on [0,∞). It follows from (2.1) that

W 2
2 (ν, µ) 6 2

√
Entµ(f)

∫ ∞
0

√
Entµ(Ptf)dt

6 2
√

Entµ(f)

∫ ∞
0

e
− 1
CP

t
√

Varµ(f)dt = 2CP

√
Entµ(f)

√
Varµ(f).

Inversely, assume there exists some C > 0 such that

W 2
2 (ν, µ) 6 2C

√
Entµ(f)

√
Varµ(f). (2.2)

Various perturbation techniques give PI with a constant
√

2C, see [12, 17] and the
references therein. For completeness, we write down a sketch.

Let h be Lipschitz and bounded with µ(h) = 0. Let ft = 1 + λth for t ≈ 0 and some
parameter λ > 0. It follows from (2.2) that

2

∫
Q1(th)ftdµ 6W 2

2 (ftµ, µ) 6 2C
√

Entµ(ft) ·
√

Varµ(ft).

Substituting the Taylor’s expansion Q1(th) = tQth = ht− 1
2 |∇h|

2t2 + o(t2) at t = 0 into
the above inequality yields

−µ(Γ(h, h)) + 2λµ(h2) 6
√

2Cλ2µ(h2), (2.3)

which implies PI by taking λ =
√

2
2C . We obtain the equivalence between PI and (2.2) now.

Part 2. When we bound relative entropy by other functionals, it should lead to new
types of transportation-variance inequalities. Indeed, for any p > 1 holds by Jensen’s
inequality (recall µ(f) = 1 here) that

Entµ(f) =

∫
f log fdµ

6 logµ(f2) = log(Varµ(f) + 1)

6 p log((Varµ(f))
1
p + 1) 6 p(Varµ(f))

1
p .

If PI holds, it follows similarly from (2.1)

W 2
2 (ν, µ) 6 2

√
Entµ(f)

∫ ∞
0

√
Entµ(Ptf)dt

6 2pVar
1
2p
µ (f)

∫ ∞
0

Var
1
2p
µ (Ptf)dt 6 2CP p

2Var
1
p
µ (f),

which covers the second inequality in Theorem 1.1 for p = 1 and also gives the third one

W 2
2 (ν, µ) 6 2CP inf

p>1

{
p2(Varµ(f))

1
p

}
.
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Using PI again yields

W 2
2 (ν, µ) 6 2CP inf

p>1

{
p2(Varµ(f))

1
p

}
6 2CP inf

p>1

{
p2
(
CPµ(Γ(f, f))

) 1
p

}
,

which gives the fourth inequality in Theorem 1.1. It follows the fifth inequality by taking
p = 1 that

W 2
2 (ν, µ) 6 2C2

Pµ(Γ(f, f)). (2.4)

Inversely, still following the routine of perturbation technique, (2.4) implies PI too.
More precisely, recall the first part, we have a similar result as (2.3) that

−µ(Γ(h, h)) + 2λµ(h2) 6 2C2
Pλ

2µ(Γ(h, h)),

which implies PI with a constant
√

2CP by taking λ = (
√

2CP )−1.

3 Derivative of quadratic Wasserstein distance along heat flow

In this section, we compute the derivative formula of W2(νt, µ) for dνt
dµ = Ptf . Recall

that, in our notation, Otto-Villani [15, Lemma 2] (see [16, Subsection 9.3.4] also) was
actually concerned to the upper right-hand derivative of W2(ν, νt) and found a bound as

d

dt

+

W2(ν, νt) 6 lim sup
s→0+

W2(νt, νt+s)/s 6
√

Iµ(Ptf), (3.1)

provided that V ∈ C2(Rn) and D2V > ρI for some ρ ∈ R (namely the curvature-dimension
condition CD(ρ,∞)). The difference between W2(νt, µ) and W2(ν, νt) is that the former
might be integrable for t ∈ [0,+∞).

According to [16, Exercise 2.36], there exists ht ∈ L1(µ) such that µ(ht) = 0 and
Q1ht ∈ L1(νt), and the conjugate pair (Q1ht, ht) attains the supremum as

W 2
2 (νt, µ) = 2 sup

µ(φ)=0

∫
Q1φdνt = 2

∫
Q1htdνt = 2

∫
Q1htPtfdµ. (3.2)

Given nice initial data, we obtain the derivative formula for W 2
2 (νt, µ) in almost all t

with no condition on curvature.

Lemma 3.1. Assume f ∈ D(L) has a positive lower bound. Assume Lf is bounded. Then
for almost all t > 0, there exists some ht ∈ L1(µ) satisfying (3.2) and

d

dt
W 2

2 (νt, µ) = 2

∫
Q1ht LPtfdµ.

Moreover | d
dtW

2
2 (νt, µ)| 6 2W (νt, µ)

√
Iµ(Ptf).

Proof. It consists of four steps. Note that L1(νt) ⊂ L1(µ) in our case since f has a
positive lower bound and then νt(|h|) > inf f · µ(|h|). The assumption of Lf ∈ L∞(E) is
reasonable due to that the resolvent operator Rλ sends Cb(E) into Cb(E) ∩ D(L) and
L = −R−1

λ + λI (see for example Evans [7, Subsection 7.4.1]).
Step 1. To show the continuity of W2(νt, µ) in t.
Using the control inequality of weighted total variation (see [16, Proposition 7.10])

yields that for any t, t′ > 0

W 2
2 (νt′ , νt) 6 2

∫
d2(x0, ·) |Pt′f − Ptf |dµ

= 2

∫
d2(x0, ·)

∣∣∣∣∣
∫ t′

t

LPsfds

∣∣∣∣∣dµ 6 2|t′ − t| · ||Lf ||∞ · µ(d2(x0, ·)).
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It follows from the triangle inequality |W2(νt′ , µ)−W2(νt, µ)| 6W2(νt′ , νt) that W2(νt, µ)

is continuous in t.
Step 2. To choose a conjugate pair (Q1ht, ht) satisfying (3.2) and some auxiliary

“maximality” (which will be introduced in (3.3) and applied for next step).
First of all, let (Q1h̃t, h̃t) ∈ L1(νt)× L1(µ) satisfy µ(h̃t) = 0 and

W 2
2 (νt, µ) = 2

∫
Q1h̃tdνt.

Q1h̃t may not have a gradient, so we take a sequence of bounded Lipschitz functions
{h̃k,t}k∈N such that µ(h̃k,t) = 0 and (Q1h̃k,t, h̃k,t) tends to (Q1h̃t, h̃t) in L1(νt)× L1(µ) as
k →∞. Then Q1h̃k,t is bounded Lipschitz too (see [7, Subsection 3.3.2]), and there exists
uk ∈ [0, 1] such that∫

Q1

(
(1− uk)h̃k,t

)
dνt = sup

06u61

∫
Q1

(
(1− u)h̃k,t

)
dνt. (3.3)

Denote hk,t = (1− uk)h̃k,t.
Without loss of generality, assume u∞ = lim

k→∞
uk ∈ [0, 1], denote

ht := (1− u∞)h̃t = lim
k→∞

(1− uk)h̃k,t = lim
k→∞

hk,t ∈ L1(µ). (3.4)

We want to show that (Q1ht, ht) is also a conjugate pair satisfyingW 2
2 (νt, µ) = 2

∫
Q1htdνt.

The difference between (Q1ht, ht) and (Q1h̃t, h̃t) is that the former can be approximated
by a special sequence of bounded Lipschitz pairs with the property (3.3).

To this end, by the definition of infimum convolution, we have first

hk,t > Q1hk,t = (1− uk)Q1−uk h̃k,t > (1− uk)Q1h̃k,t,

which means that Q1hk,t falls between two L1-convergent sequences. By virtue of
the Prokhorov theorem (namely the tightness argument) together with the fact of
L1(νt) ⊂ L1(µ), one can extract a subsequence of Q1hk,t (denoted by itself for the ease
of notation) converging in L1(νt). Denote φt = lim

k→∞
Q1hk,t, which satisfies

φt(x)− ht(y) 6
1

2
d2(x, y)

almost everywhere and then φt(x) 6 Q1ht(x) and (since µ(ht) = 0)

2νt(φt) 6 2

∫
Q1htdνt 6W 2

2 (νt, µ).

On the other hand, due to the definition of hk,t in (3.3), it follows

2νt(φt) = lim
k→∞

2νt(Q1hk,t) > lim
k→∞

2νt(Q1h̃k,t) = W 2
2 (νt, µ).

Hence, (φt, ht) attains the supremum of the dual Kantorovich problem too. Moreover,
it follows φt = Q1ht almost everywhere with respect to νt and µ as well since f has a
positive lower bound.

Step 3. To estimate upper and lower derivatives of W 2
2 (νt, µ).

For (Q1ht, ht), we have

D+
t := lim inf

s→0+

W 2
2 (νt+s, µ)−W 2

2 (νt, µ)

s

> lim
s→0+

2

s

(∫
Q1htdνt+s −

∫
Q1htdνt

)
= 2

∫
Q1ht LPtfdµ. (3.5)
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Similarly, we have

D
−
t := lim sup

s→0+

W 2
2 (νt, µ)−W 2

2 (νt−s, µ)

s

6 lim
s→0+

2

s

(∫
Q1htdνt −

∫
Q1htdνt−s

)
= 2

∫
Q1ht LPtfdµ. (3.6)

Recall the approximating sequence (Q1hk,t, hk,t) for (Q1ht, ht) in Step 2, using the
formula of integration by parts and the Hölder inequality yields that∣∣∣∣∫ Q1hk,t LPtfdµ

∣∣∣∣ =

∣∣∣∣∫ ∇Q1hk,t ∇Ptfdµ

∣∣∣∣ 6
√∫

|∇Q1hk,t|2dνt ·
√

Iµ(Ptf).

Since Qshk,t solves the Hamilton-Jacobi equation d
dsQshk,t + 1

2 |∇Qshk,t|
2 = 0 (see [7,

Subsection 3.3.2]), we have by (3.3) (namely the integral “maximality” for Q1hk,t) that∫
|∇Q1hk,t|2dνt = lim

u→0+
2

∫
Q1−uhk,t −Q1hk,t

u
dνt

= lim
u→0+

2

∫ 1
1−uQ1

(
(1− u)hk,t

)
−Q1hk,t

u
dνt

6 lim
u→0+

2 ·
1

1−u − 1

u
·
∫
Q1hk,tdνt 6 W 2

2 (νt, µ),

which implies by taking k →∞

2

∣∣∣∣∫ Q1ht LPtfdµ

∣∣∣∣ = lim
k→+∞

2

∣∣∣∣∫ Q1hk,t LPtfdµ

∣∣∣∣ 6 2W2(νt, µ)
√

Iµ(Ptf) =: At. (3.7)

Note that At is continuous in t.
Step 4. To show the Lipschitz property of W 2

2 (νt, µ).
For convenience, denote F (t) = W 2

2 (νt, µ). Heuristically, using (3.5) and (3.7) yields a
local estimate that for any t > 0 there exists s > 0 such that F (t+ s)− F (t) > −O(s). It
follows F (b) − F (a) > −O(b − a) for any interval [a, b] ⊂ R+ if one could “find” a finite
partition of [a, b] and sum up all the local estimates. Similarly, using (3.6) and (3.7) yields
F (b)− F (a) 6 O(b− a), and then gives the local Lipschitz property.

The rest of the proof is basically a careful application of Borel-Lebesgue covering
theorem. Fix arbitrary ε > 0. Let K = sup

t∈[a,b]

At + ε. For any t ∈ [a, b], there exists some

ηt ∈ (0, b− a] by using (3.5) and (3.7) such that for all s ∈ (0, ηt]

F (t+ s)− F (t) > s

(
2

∫
Q1ht LPtfdµ− ε

)
> −s(At + ε) > −sK > −ηtK.

On the other hand, the continuity of F (t) implies there exists η̃t ∈ (0, ηt] such that for all
−s ∈ [−η̃t, 0]

|F (t)− F (t− s)| < ηtK.

Then the open interval It = (t− η̃t, t+ ηt) is of length no less than ηt and no more than
2ηt, and holds for any t2 > t > t1 or t > t2 > t1 in It

F (t2)− F (t1) > −2ηtK > −2|It|K. (3.8)

(Notice that we don’t know whether (3.8) is true for t2 > t1 > t.)
The collection of all It becomes an open covering of [a, b], which implies a finite

sub-covering I. To reduce overlaps, we have to do some selection. Starting from t0 = a,
one can successively take the i-th open interval Iti from I for i = 1, 2 . . . satisfying next
two properties:
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(1). Iti ∩ Iti−1
6= ∅, and Iti contains the right-hand endpoint of Iti−1

.
(2). If there is another It∗ ∈ I intersecting with Iti−1

, then It∗ ⊂
⋃
j6i

Itj , namely the

right-hand endpoint of It∗ doesn’t exceed Iti . It means Iti is the most effective
cover than any other It∗ .

This procedure will stop at time N once ItN contains b.
Now, we have a chain It0 , It1 , . . . , ItN satisfying that each element only intersects with

its neighbors, which means their overlap is at most 2-fold for every point in [a, b]. Let
ti−1,i ∈ Iti−1

∩ Iti satisfy ti−1,i 6 ti for i = 1, . . . , N and a 6 t0,1 6 t1,2 · · · 6 tN−1,N 6 b.
It must occur either ti−1,i 6 ti 6 ti,i+1 or ti−1,i 6 ti,i+1 6 ti for each i. In any case, we
obtain an interpolation by (3.8)

F (b)− F (a) = F (b)− F (tN−1,N ) +

N−1∑
i=1

F (ti,i+1)− F (ti−1,i) + F (t0,1)− F (a)

> −2|ItN |K −
N−1∑
i=1

2|Iti |K − 2|It0 |K > −8(b− a)K.

Similarly, it follows from (3.6) and (3.7) that

F (b)− F (a) 6 8(b− a)K.

Combining the above estimates yields that F (t) = W 2
2 (νt, µ) is locally Lipschitz and

then has a derivative for almost all t > 0 as

d

dt
W 2

2 (νt, µ) = 2

∫
Q1ht LPtfdµ.

It follows that for almost all t > 0∣∣∣∣ d

dt
W 2

2 (νt, µ)

∣∣∣∣ 6 2W2(νt, µ)
√

Iµ(Ptf),

which can be rewritten to ∣∣∣∣ d

dt
W2(νt, µ)

∣∣∣∣ 6√Iµ(Ptf).

The proof is completed.

Remark 3.2. It is interesting to ask further that whether ht = h̃t almost everywhere
(namely u∞ = 0 in (3.4)). For any positive α and β with α + β = 1, we have αQ1h̃t +

βQ1ht 6 Q1

(
αh̃t + βht

)
and

W 2
2 (νt, µ) = 2

∫
αQ1h̃t + βQ1htdνt 6 2

∫
Q1

(
αh̃t + βht

)
dνt 6W 2

2 (νt, µ),

which implies αQ1h̃t + βQ1ht = Q1

(
αh̃t + βht

)
almost everywhere. It follows that for

almost every x ∈ E and h = h̃t or ht or αh̃t + βht, Q1h(x) can take its value at the
same critical point yx such that Q1h(x) = h(yx) + 1

2d
2(x, yx) (or the same point sequence

{y(n)
x } such that Q1h(x) = lim

n→+∞
h(y

(n)
x ) + 1

2d
2(x, y

(n)
x )). If u∞ 6= 0 and h̃t is bounded and

differentiable, we have ∇ht(yx) = ∇h̃t(yx) = x − yx and then ∇ht(yx) = ∇h̃t(yx) ≡ 0

since ht = (1 − u∞)h̃t, which means h̃t has to be a constant function and furthermore
h̃t ≡ 0 for µ(h̃t) = 0. This suggests that ht = h̃t is true, however, it seems complicated to
deal with L1 functions.

The same argument is also effective in reproving Lemma 2 in [15] as∣∣∣∣ d

dt
W2(ν, νt)

∣∣∣∣ 6√Iµ(Ptf),

which avoids using the second inequality in (3.1).
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4 The second proof of Theorem 1.1

Proof. Assume PI holds with a constant CP . Recall that

Entµ(Ptf) 6 Varµ(Ptf) 6 exp{−2t/CP }Varµ(f),

which implies Entµ(Ptf)→ 0 for t→∞. Using the same method in the second part of
[15, Lemma 3] yields W2(νt, µ)→ 0 too. More precisely, W2(νt, µ) decays exponentially
fast due to that for any continuous ξ with |ξ(x)| 6 C(d2(x0, x) + 1),∣∣∣∣∫ ξdνt −

∫
ξdµ

∣∣∣∣ 6 C

∫
|Ptf − 1|(d2(x0, ·) + 1)dµ

6 C
√

Varµ(Ptf)
√
µ((d2(x0, ·) + 1)2),

where the integrability of d4(x0, ·) comes from PI as well.
For simplicity, assume f fulfills all the conditions in Lemma 3.1, then we have by

using the Hölder inequality to get (2.1) again

W 2
2 (ν, µ) =

(∫ ∞
0

d

ds
W2(νs, µ)ds

)2

6

(∫ ∞
0

√
Iµ(Psf)ds

)2

=

(∫ ∞
0

√
Iµ(Psf)

4
√

Entµ(Psf)
· 4

√
Entµ(Psf) ds

)2

6 2
√

Entµ(f)

∫ ∞
0

√
Entµ(Ptf)dt.

The following steps are the same as those in Section 2.

Alternatively, using Lemma 3.1 and Hölder inequality yields also for any t > 0

W 2
2 (νt, µ) =

∫ ∞
t

d

ds
W 2

2 (νs, µ)ds 6 2

∫ ∞
t

W2(νs, µ)
√

Iµ(Psf)ds

6 2

√∫ ∞
t

W 2
2 (νs, µ)ds ·

√∫ ∞
t

Iµ(Psf)ds

= 2

√∫ ∞
t

W 2
2 (νs, µ)ds ·

√
Entµ(Ptf) (4.1)

(4.1) looks like (2.1), which is still useful to prove Theorem 1.1 as follows.

DenoteWt =
√∫∞

t
W 2

2 (νs, µ)ds (it is finite since W2(νt, µ) decays exponentially fast),

(4.1) can be rewritten to

− d

dt
Wt 6

√
Entµ(Ptf) 6

√
Varµ(Ptf) 6 exp{−t/CP }

√
Varµ(f),

and then

Wt =

∫ ∞
t

− d

ds
Wsds 6

∫ ∞
t

exp{−s/CP }ds
√

Varµ(f)

= CP exp{−t/CP }
√

Varµ(f).

Substituting this estimate back to (4.1) for t = 0 gives us

W 2
2 (ν, µ) 6 2

√∫ ∞
0

2CPVarµ(Psf)ds ·
√

Entµ(f)

6 2

√∫ ∞
0

2CP exp

(
− 2

CP
s

)
Varµ(f)ds ·

√
Entµ(f)

= 2CP

√
Varµ(f) ·

√
Entµ(f).
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The following steps are the same as before.

By the way, if one is concerned to the quantity W 2
2 (ν̃t, µ) for dν̃t

dµ = |Pt
√
f |2

µ(|Pt
√
f |2)

, it also

decays exponentially fast provided that PI holds. Firstly we have for any g2µ ∈ P(E)

(denote m = µ(g) and σ2
t = µ

(
(Ptg −m)2

)
)

Varµ(g2) 6
∫
|g2 −m2|2dµ 6 2

∫
|g −m|4dµ+ 8m2

∫
|g −m|2dµ.

Then it follows from PI that

d

dt
µ
(

(Ptg −m)
4
)

= −12µ
(

(Ptg −m)
2 |∇Ptg|2

)
6 −3C−1

P µ

((
(Ptg −m)

2 − σ2
t

)2
)

= −3C−1
P

[
µ
(

(Ptg −m)
4
)
− σ4

t

]
,

and
d

dt
σ4
t = −4σ2

t µ
(
|∇Ptg|2

)
6 −4C−1

P σ4
t .

Set Λt = µ
(

(Ptg −m)
4
)

+ λσ4
t with the parameter λ, we have

d

dt
Λt 6 C−1

P

(
−3Λt + (3− λ)σ4

t

)
,

which implies by taking λ = 3 that

d

dt
Λt 6 −3C−1

P Λt

and then Λt 6 exp (−3t/CP ) Λ0.
Hence using Theorem 1.1 yields for g =

√
f that

W 2
2 (ν̃t, µ) 6 2CPVarµ(

dν̃t
dµ

) 6
2CP

(µ(|Ptg|2))
2 Varµ

(
(Ptg)2

)
6

4CP
m4

(Λt + 4m2σ2
t ) 6

4CP
m4

(e−3t/CP Λ0 + e−2t/CP 4m2σ2
0),

where the total rate is no more than e−2t/CP .

5 The logarithmic Sobolev inequality and strict contraction of
heat flow in Wasserstein space

In this section, we prove Proposition 1.3. The curvature-dimension condition plays a
fundamental role such that we can compare several functionals for heat flow at different
times. The derivative estimate in previous section is also useful.

Proof. Assume V is a smooth potential satisfying the curvature-dimension condition
CD(ρ,∞).

If the LSI holds, it is known that the entropy along heat flow decays exponentially
fast. Moreover, the Talagrand inequality comes true (see [15] or [2, Theorem 9.6.1]),
namely for any positive bounded f and any t > T > 0

W 2
2 (Ptfµ, µ) 6 2CLSEntµ(Ptf) 6 2CLSe

−2(t−T )/CLSEntµ(PT f).
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On the other hand, based on the logarithmic Harnack inequlity (see [2, Remark 5.6.2])

PT (log f)(x) 6 logPT f(y) +
ρd(x, y)2

2(e2ρT − 1)
,

it follows from the the same argument as [2, Page 446] that

Entµ(PT f) 6
1

2β(T )
W 2

2 (fµ, µ),

where 1
β(T ) = ρ

1−e−2ρT − ρ (= 1
2T for ρ = 0). Combining the above estimates yields

W 2
2 (Ptfµ, µ) 6 γ(T )e−2t/CLSW 2

2 (fµ, µ)

by letting γ(T ) = CLSe
2T/CLS

β(T ) , which attains its minimum at T0 = 1
2|ρ| log(1 + CLS |ρ|). So

now we obtain the exponential decay for t > T0.
For 0 < t 6 T0, there is a general bound according to the heat flow contraction in

Wasserstein space (see [2, Theorem 9.7.2]) as

W 2
2 (Ptfµ, µ) 6 e−2ρtW 2

2 (fµ, µ) = e(2C−1
LS−2ρ)te−2t/CLSW 2

2 (fµ, µ).

Combining two regions gives us a control constant C :=

√
max{γ(T0), e(2C−1

LS−2ρ)T0 , 1}
such that for all t > 0 and κ := C−1

LS

W2(Ptfµ, µ) 6 Ce−κtW2(fµ, µ).

Conversely, if W2(Ptfµ, µ) 6 Ce−κtW2(fµ, µ), there exists t (independent of f ) such
that η := Ce−κt < 1. Using the derivative estimate for nice f (see Lemma 3.1) yields

W 2
2 (fµ, µ) = W 2

2 (fµ, µ)−W 2
2 (Ptfµ, µ) +W 2

2 (Ptfµ, µ)

6
∫ t

0

2W2(Psfµ, µ)
√

Iµ(Psf)ds+ η2W 2
2 (fµ, µ)

6 2

(∫ t

0

W 2
2 (Psfµ, µ)ds

) 1
2
(∫ t

0

Iµ(Psf)ds

) 1
2

+ η2W 2
2 (fµ, µ).

Based on the heat flow contraction and information contraction (see [2, Eq. 5.7.4])

Iµ(Psf) 6 e−2ρsIµ(f),

we have further

W 2
2 (fµ, µ) 6 2

(∫ t

0

C2e−2κtW 2
2 (fµ, µ)ds

) 1
2
(∫ t

0

e−2ρsIµ(f)ds

) 1
2

+ η2W 2
2 (fµ, µ)

6 (ε+ η2)W 2
2 (fµ, µ) +

C2(1− e−2κt)(1− e−2ρt)

4κρε
Iµ(f),

where the last step comes from the Cauchy-Schwarz inequality for any ε > 0. It follows
W2I by taking ε = η = 1

2 explicitly that

W 2
2 (fµ, µ) 6

2C2(1− e−2ρt)

κρ
Iµ(f).

Since W2I is equivalent to LSI under CD(ρ,∞) by virtue of the HWI inequality (see [15]
or [2, Subsection 9.3])

Entµ(f) 6W2(fµ, µ)
√

Iµ(f)− ρ

2
W 2

2 (fµ, µ),

we complete the proof.
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6 Centralization of quadratic Wasserstein distance

Recall the notation c = µ(
√
f) and σ2 = Varµ(

√
f), now we prove Theorem 1.5.

Proof. For any bounded Lipschitz h with µ(h) = 0, let mt = µ(Qth), we have

µ(Qthf) =

∫
Qth(

√
f − c)2dµ+ 2c

∫
Qth(

√
f − c)dµ+ c2

∫
Qthdµ

=

∫
Qth(

√
f − c)2dµ+ 2c

∫
(Qth−mt)(

√
f − c)dµ+ c2mt.

Taking any interval [a, b] ⊂ R+ and any nonnegative φ ∈ C1([a, b]), we integrate both
sides to get

I0 :=

∫ b

a

µ(Qthf)φdt

=

∫ b

a

µ(Qth(
√
f − c)2)φdt+ 2c

∫ b

a

µ
(
(Qth−mt)(

√
f − c)

)
φdt+ c2

∫ b

a

mtφdt.

For convenience, denote the right-hand three terms by I1, I2, I3 respectively. Using the
Cauchy-Schwarz, Hölder and Poincaré inequalities yields for any λ > 0

I2 = 2c

∫ (∫ b

a

(Qth−mt)φ(t)dt

)
(
√
f − c)dµ

6 λc2
∫ (∫ b

a

(Qth−mt)φ(t)dt

)2

dµ+
1

λ
µ((
√
f − c)2)

6 λc2(b− a)

∫ ∫ b

a

(Qth−mt)
2φ2(t)dtdµ+

1

λ
σ2

= λc2(b− a)

∫ b

a

µ
(
(Qth−mt)

2
)
φ2(t)dt+

1

λ
σ2

6 λc2(b− a)CP

∫ b

a

µ
(
|∇Qth|2

)
φ2(t)dt+

1

λ
σ2

= 2λc2(b− a)CP

∫ ∫ b

a

− d

dt
Qth φ

2(t)dtdµ+
1

λ
σ2,

where the last step comes from the Hamilton-Jacobi equation. Using the integration by
parts gives ∫ b

a

− d

dt
Qth φ

2(t)dt = Qahφ
2(a)−Qbhφ2(b) +

∫ b

a

Qth · 2φφ′dt.

If φ(a) = φ(b) = 0, we have further

I2 6 4λc2(b− a)CP

∫ b

a

mtφφ
′dt+

1

λ
σ2,

and then

I2 + I3 6 c2
∫ b

a

mtφ [4λ(b− a)CPφ
′ + 1] dt+

1

λ
σ2.

Now we want to drop the first integral on the right side of above inequality. For
instance, take a = 1

2 , b = 1, φ(t) = (t − a)(b − t) (satisfying φ(a) = φ(b) = 0, φ > 0 and
|φ′| 6 1

2 ), and λ = C−1
P , then for t ∈ [a, b], the quantity

ψ := (4λ(b− a)CPφ
′ + 1) > 0,

EJP 25 (2020), paper 1.
Page 14/16

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP403
http://www.imstat.org/ejp/


The Poincaré inequality and quadratic transportation-variance inequalities

which implies
∫ b
a
mtφψdt 6 0 since the monotonicity of Qt in t gives mt = µ(Qth) 6

µ(h) = 0. Hence I2 + I3 6 CPσ
2.

Finally, combining all above estimates yields

I0 6 I1 + CPσ
2.

Denote M =
∫ b
a
φdt = 1

48 , it follows

M · µ(Qbhf) 6 I0 6 I1 + CPσ
2 6M · µ(Qah(

√
f − c)2) + CPσ

2,

which implies by the Kantorovich dual of W2-distance that

M

2b
W 2

2 (fµ, µ) 6
M

2a
σ2W 2

2

(
(
√
f − c)2

σ2
µ, µ

)
+ CPσ

2.

The proof is completed.

When we check the proof, for any θ still holds

µ(Qthf) = µ(Qth(
√
f − θ)2) + 2θµ

(
Qth(

√
f − θ)

)
+ θ2µ(Qth)

= µ(Qth(
√
f − θ)2) + 2θµ

(
(Qth−mt)(

√
f − θ)

)
+ (2θc− θ2)µ(Qth)

= µ(Qth(
√
f − θ)2) + 2θµ

(
(Qth−mt)(

√
f − c)

)
+ (2θc− θ2)µ(Qth).

Denote σ2
θ = µ((

√
f − θ)2). Once θ ∈ (0, 2c), we have by the same argument

W 2
2 (fµ, µ) 6 C1(θ)σ2

θW
2
2

(
(
√
f − θ)2

σ2
θ

µ, µ

)
+ C2(θ)CPσ

2,

where C1(θ) and C2(θ) are two constants depending on θ.

7 Application to quadratic transportation-information inequality

According to [4, 5, 13], the Lyapunov condition (1.4) implies that there are two
constants C3, C4 > 0 such that∫

d2(x0, ·)h2dµ 6 C3

∫
|∇h|2 dµ+ C4

∫
h2dµ, (7.1)

and then implies W2I by [13], which partially depends on two facts that (7.1) implies
W2H and W2H has a Bobkov-Götze’s characterization.

Now there appears another way. For unbounded manifolds, (7.1) implies there exists
some r > 0 such that∫

d2(x0, ·)h2dµ 6 C5

∫
|∇h|2 dµ+ C6

∫
d(x0,·)6r

h2dµ,

which leads to PI by [1]. Then using Theorem 1.5 and (7.1) and PI yields

W 2
2 (ν, µ) 6 2C1

∫ (
d2(x0, ·) + µ

(
d2(x0, ·)

))
(
√
f − c)2dµ+ C2σ

2 6 C7Iµ(ν|µ),

where we use the fact that for any x and any bounded h with µ(h) = 0 holds

Q1h(x) 6
∫
h(y) +

1

2
d2(x, y)dµ(y) 6 d2(x0, ·) + µ

(
d2(x0, ·)

)
.

Hence we reach W2I.
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