

Electron. J. Probab. 25 (2020), no. 1, 1-16. ISSN: 1083-6489 https://doi.org/10.1214/19-EJP403

The Poincaré inequality and quadratic transportation-variance inequalities

Yuan Liu* ${ }^{*}$

Abstract

It is known that the Poincaré inequality is equivalent to the quadratic transportationvariance inequality (namely $W_{2}^{2}(f \mu, \mu) \leqslant C_{V} \operatorname{Var}_{\mu}(f)$), see Jourdain [10] and most recently Ledoux [12]. We give two alternative proofs to this fact. In particular, we achieve a smaller C_{V} than before, which equals the double of Poincaré constant. Applying the same argument leads to more characterizations of the Poincaré inequality. Our method also yields a by-product as the equivalence between the logarithmic Sobolev inequality and strict contraction of heat flow in Wasserstein space provided that the Bakry-Émery curvature has a lower bound (here the control constants may depend on the curvature bound).

Next, we present a comparison inequality between $W_{2}^{2}(f \mu, \mu)$ and its centralization $W_{2}^{2}\left(f_{c} \mu, \mu\right)$ for $f_{c}=\frac{|\sqrt{f}-\mu(\sqrt{f})|^{2}}{\operatorname{Var}_{\mu}(\sqrt{f})}$, which may be viewed as some special counterpart of the Rothaus' lemma for relative entropy. Then it yields some new bound of $W_{2}^{2}(f \mu, \mu)$ associated to the variance of \sqrt{f} rather than f. As a by-product, we have another proof to derive the quadratic transportation-information inequality from Lyapunov condition, avoiding the Bobkov-Götze's characterization of the Talagrand's inequality.

Keywords: Poincaré inequality; transportation-variance inequality; quadratic Wasserstein distance; quadratic transportation-information inequality.
AMS MSC 2010: 26D10; 60E15; 60J60.
Submitted to EJP on June 18, 2019, final version accepted on December 8, 2019.

1 Introduction

The aim of this paper is to investigate some links between the Poincaré inequality (PI for short) and various comparison inequalities of quadratic Wasserstein distance with variance. Some conclusions might be extended to abstract settings of metric measure spaces, nevertheless for simplicity, our basic framework is specified as follows. Let E be a connected complete Riemannian manifold of finite dimension, d the geodesic

[^0]distance, $\mathrm{d} x$ the volume measure, $\mathcal{P}(E)$ the collection of all probability measures on E, $\mu(\mathrm{d} x)=e^{-V(x)} \mathrm{d} x \in \mathcal{P}(E)$ with $V \in C^{1}(E), \mathrm{L}=\Delta-\nabla V \cdot \nabla$ the μ-symmetric diffusion operator with domain $\mathbb{D}(\mathrm{L})$, and $\Gamma(f, g)=\nabla f \cdot \nabla g$ the carré du champ operator with domain $\mathbb{D}(\Gamma)$, satisfying the integration by parts formula
$$
\int \Gamma(f, g) \mathrm{d} \mu=-\int f \mathrm{~L} g \mathrm{~d} \mu, \forall f \in \mathbb{D}(\Gamma), g \in \mathbb{D}(\mathrm{~L})
$$

Define the L^{p} Wasserstein (transportation) distance (also called Kantorovich metric) between $\nu, \mu \in \mathcal{P}(E)$ for any $p \geqslant 1$ by

$$
W_{p}(\nu, \mu)=\left(\inf _{\pi \in \mathcal{C}(\nu, \mu)} \int_{E \times E} d^{p}(x, y) \pi(\mathrm{d} x, \mathrm{~d} y)\right)^{1 / p}
$$

where $\mathcal{C}(\nu, \mu)$ denotes the set of any coupling π on $E \times E$ with marginals ν and μ respectively. Throughout this paper we focus on quadratic Wasserstein distance, so it is convenient to assume μ has a finite moment of order 2 . The reader is referred to several constant references as Bakry-Gentil-Ledoux [2] and Villani [16, 17] for detailed presentations.

Our motivation partially arises from the problem of how to characterize the exponential decay of quadratic Wasserstein distance along heat flow. It is known that the exponential decay of heat semigroup $P_{t}=\exp (t \mathrm{~L})$ in L^{2}-norm is equivalent to PI, which reads for any $f \in \mathbb{D}(\Gamma) \cap L^{2}(\mu)$

$$
\operatorname{Var}_{\mu}\left(P_{t} f\right) \leqslant e^{-2 t / C_{P}} \operatorname{Var}_{\mu}(f) \Longleftrightarrow \operatorname{Var}_{\mu}(f) \leqslant C_{P} \int \Gamma(f, f) \mathrm{d} \mu
$$

(simply denote by $\mu(h)=\int h \mathrm{~d} \mu$ the expectation and by $\operatorname{Var}_{\mu}(f)=\mu\left(f^{2}\right)-(\mu(f))^{2}$ the variance). Similarly, the exponential decay of P_{t} in relative entropy is equivalent to the logarithmic Sobolev inequality (LSI for short), which reads for any $f>0$ with $\sqrt{f} \in \mathbb{D}(\Gamma)$

$$
\operatorname{Ent}_{\mu}\left(P_{t} f\right) \leqslant e^{-2 t / C_{L S}} \operatorname{Ent}_{\mu}(f) \Longleftrightarrow \operatorname{Ent}_{\mu}(f) \leqslant \frac{1}{2} C_{L S} \mathrm{I}_{\mu}(f)
$$

(denote by $\operatorname{Ent}_{\mu}(f)=\int f \log f \mathrm{~d} \mu$ the relative entropy and by $\mathrm{I}_{\mu}(f)=\int \frac{\Gamma(f, f)}{f} \mathrm{~d} \mu$ the Fisher information). Somehow, we think it is tough to give a proper answer to the same question in Wasserstein space, namely to find some equivalent inequality characterizing $W_{2}^{2}\left(P_{t} \nu, \mu\right) \leqslant e^{-2 \kappa t} W_{2}^{2}(\nu, \mu)$ (or up to a multiple) with $\kappa>0$ for any $\nu=f \mu \in \mathcal{P}(E)$. When we turn to some weak replacements, one natural candidate is to compare W_{2} with variance, which can be quickly derived from the control inequality of weighted total variation (see [16, Proposition 7.10]) and Hölder inequality that

$$
W_{2}^{2}(\nu, \mu) \leqslant 2\left\|d^{2}\left(x_{0}, \cdot\right)(\nu-\mu)\right\|_{\mathrm{TV}} \leqslant 2 \int d^{2}\left(x_{0}, \cdot\right)|f-1| \mathrm{d} \mu \leqslant C \sqrt{\operatorname{Var}_{\mu}(f)}
$$

if $d^{4}\left(x_{0}, \cdot\right)$ is μ-integrable. At least, it follows the integrability of $W_{2}^{2}\left(P_{t} \nu, \mu\right)$ for $t \in[0, \infty)$ provided that PI holds true, which is helpful to the semigroup analysis more or less.

If μ fulfills the Talagrand's inequality ($\mathrm{W}_{2} \mathrm{H}$ for short), namely the control of relative entropy on $W_{2}(\nu, \mu)$ as

$$
W_{2}^{2}(\nu, \mu) \leqslant 2 C_{T} \operatorname{Ent}_{\mu}(f)
$$

it follows from the preliminary inequality $\operatorname{Ent}_{\mu}(f) \leqslant p\left(\operatorname{Var}_{\mu}(f)\right)^{\frac{1}{p}}$ for $p \geqslant 1$ that

$$
W_{2}^{2}(\nu, \mu) \leqslant 2 C_{T} p\left(\operatorname{Var}_{\mu}(f)\right)^{\frac{1}{p}}
$$

In particular, for $p=2$ it covers $W_{2}^{2}(\nu, \mu) \leqslant C \sqrt{\operatorname{Var}_{\mu}(f)}$, and for $p=1$ it gives

$$
\begin{equation*}
W_{2}^{2}(\nu, \mu) \leqslant 2 C_{T} \operatorname{Var}_{\mu}(f) \tag{1.1}
\end{equation*}
$$

which suggests an improved decay rate of W_{2} along heat flow. Since $\mathrm{W}_{2} \mathrm{H}$ implies PI with $C_{P} \leqslant C_{T}$ (see [2] for example), it is natural to ask what about the relation between PI and a transportation-variance inequality like (1.1). Indeed, Jourdain [10] proved their equivalence in dimension one. Ding [6] claimed a general inequality between W_{2} and the so called Rényi-Tsallis divergence of order α, which equals the variance for $\alpha=2$ (somehow, it is obscure for us to check Remark 3.3 therein for small variance, maybe we misunderstand something). Then Ledoux [12] provided a very streamlined proof to show a general result that PI is equivalent to the quadratic transportation-variance inequality ($\mathrm{W}_{2} \mathrm{~V}$ for short)

$$
W_{2}^{2}(\nu, \mu) \leqslant C_{V} \operatorname{Var}_{\mu}(f)
$$

for $C_{V} \leqslant 4 C_{P}$. We give two alternative proofs to this fact and achieve a smaller constant as $C_{V} \leqslant 2 C_{P}$. Conversely, various perturbation techniques ensure PI with a constant no more than C_{V} if assume $\mathrm{W}_{2} \mathrm{~V}$ (see [12]). Precisely, our first main result is the following.
Theorem 1.1. Let $\nu=f \mu \in \mathcal{P}(E)$. The Poincaré inequality implies next every inequality:

1. $W_{2}^{2}(\nu, \mu) \leqslant 2 C_{P} \sqrt{\operatorname{Var}_{\mu}(f)} \cdot \sqrt{\operatorname{Ent}_{\mu}(f)}$.
2. $W_{2}^{2}(\nu, \mu) \leqslant 2 C_{P} \operatorname{Var}_{\mu}(f)$.
3. $W_{2}^{2}(\nu, \mu) \leqslant 2 C_{P} \inf _{p \geqslant 1}\left\{p^{2}\left(\operatorname{Var}_{\mu}(f)\right)^{\frac{1}{p}}\right\}$.
4. $W_{2}^{2}(\nu, \mu) \leqslant 2 C_{P} \inf _{p \geqslant 1}\left\{p^{2}\left(C_{P} \mu(\Gamma(f, f))\right)^{\frac{1}{p}}\right\}$.
5. $W_{2}^{2}(\nu, \mu) \leqslant 2 C_{P}^{2} \mu(\Gamma(f, f))$.

Conversely, the above every one implies the Poincaré inequality with constant $\sqrt{2} C_{P}$.
Remark 1.2. If assume (1) or (5) prior to PI, the perturbation technique ensures PI with constant $\sqrt{2} C_{P}$. Note that the same technique doesn't work for (2) directly.

There are two approaches to this end, and both are contributed to get the inequality (see also (2.1) below)

$$
W_{2}^{2}(\nu, \mu) \leqslant 2 \sqrt{\operatorname{Ent}_{\mu}(f)} \int_{0}^{\infty} \sqrt{\operatorname{Ent}_{\mu}\left(P_{t} f\right)} \mathrm{d} t
$$

The first approach is a shortcut based on the interpolation technique developed by Kuwada [11] and further by [12]. The other one appeals to the derivative formula of $W_{2}^{2}\left(P_{t} f \mu, \mu\right)$ in t (almost everywhere), which is slightly different from what Otto-Villani employed in [15, Lemma 2]. Our method doesn't involve the theory of solving FokkerPlanck equation on Riemannian manifolds, so we have a by-product as reproving their lemma for nice initial data but avoiding the curvature condition.

Another by-product is to show the equivalence between the LSI and strict contraction of heat flow in Wasserstein space (here we actually mean a strictly exponential decay of $W_{2}\left(P_{t} f \mu, \mu\right)$ with some multiple in front) provided that the Bakry-Émery curvature has a lower bound. One can compare the following with the well known characterization of curvature-dimension condition through the heat flow contraction (see [2, Theorem 9.7.2] for this fact and [2, Subsection 3.4.5] for precise definition of curvature-dimension condition $C D(\rho, \infty)$).
Proposition 1.3. Assume V is a smooth potential such that the curvature-dimension condition $C D(\rho, \infty)$ holds for $\rho \in \mathbb{R}$. Then the next two statements are equivalent:

The Poincaré inequality and quadratic transportation-variance inequalities

1. there exist two constants $C>0$ and $\kappa>0$ such that for all $t>0$ and any $\nu=f \mu \in \mathcal{P}(E)$

$$
W_{2}\left(P_{t} \nu, \mu\right) \leqslant C e^{-\kappa t} W_{2}(\nu, \mu) ;
$$

2. there exists a constant $C_{L S}>0$ such that the LSI holds.

Remark 1.4. The constants involved here may depend on ρ. If the LSI holds, we have $\kappa=1 / C_{L S}$. Very recently, Wang [19] discussed exponential contraction in any $W_{p}(p \geqslant 1)$ for a class of diffusion semigroups and gave the implication from (2) to (1) as well.

Next, we are interested in the comparison of $W_{2}^{2}(\nu, \mu)$ to $\operatorname{Var}_{\mu}(\sqrt{f})$ rather than $\operatorname{Var}_{\mu}(f)$. In general, one can't expect a strong inequality as $W_{2}^{2}(\nu, \mu) \leqslant C \operatorname{Var}_{\mu}(\sqrt{f})$, since from PI it follows $W_{2}^{2}(\nu, \mu) \leqslant \frac{1}{4} C C_{P} \mathrm{I}_{\mu}(f)$, which is called the quadratic transportationinformation inequality ($\mathrm{W}_{2} \mathrm{I}$ for short, see [9]), and it is known that $\mathrm{W}_{2} \mathrm{I}$ is strictly stronger than PI and even than $\mathrm{W}_{2} \mathrm{H}$. Actually what we present first is a new inequality between the Wasserstein distance and its "centralization", which may be viewed as a special counterpart of the Rothaus' lemma for relative entropy (see [2, Lemma 5.1.4]), namely for any $a \in \mathbb{R}$

$$
\operatorname{Ent}_{\mu}\left((h+a)^{2}\right) \leqslant \operatorname{Ent}_{\mu}\left(h^{2}\right)+2 \mu\left(h^{2}\right)
$$

Precisely we have
Theorem 1.5. Let $\nu=f \mu, c=\mu(\sqrt{f})$ and $\sigma^{2}=\operatorname{Var}_{\mu}(\sqrt{f})$. Let $f_{c}=\frac{|\sqrt{f}-c|^{2}}{\sigma^{2}}$. If the Poincaré inequality holds, then there exists two constants C_{1} and C_{2} such that

$$
W_{2}^{2}(\nu, \mu) \leqslant C_{1} \sigma^{2} W_{2}^{2}\left(f_{c} \mu, \mu\right)+C_{2} \sigma^{2} .
$$

Remark 1.6. For instance, we can take $C_{1}=2$ and $C_{2}=96 C_{P}$. Actually our method implies that C_{1} can approach 1 but should be strictly greater than 1 . Moreover, f_{c} can be extended to $f_{\theta}=\frac{|\sqrt{f}-\theta|^{2}}{\mu\left((\sqrt{f}-\theta)^{2}\right)}$ for any $\theta \in(0,2 c)$ associated with two constants $C_{1}(\theta)$ and $C_{2}(\theta)$ depending on θ.

As consequence, when E has a finite diameter, it follows by the definition of W_{2}

$$
\begin{equation*}
W_{2}^{2}(\nu, \mu) \leqslant \sigma^{2}\left(C_{1}(\operatorname{diam} E)^{2}+C_{2}\right), \tag{1.2}
\end{equation*}
$$

which can't be directly concluded by Theorem 1.1 we think. Then it quickly derives $\mathrm{W}_{2} \mathrm{I}$ from PI again. Moreover, a LSI holds by using the HWI inequality in [15, 16, 2] under the curvature-dimension condition $C D(\rho, \infty)$, with the control constant $C_{L S}=\lambda\left(\left(1-\frac{\rho}{4} \lambda\right) \vee 1\right)$ for $\lambda=\sqrt{C_{P}\left(C_{1}(\operatorname{diam} E)^{2}+C_{2}\right)}$. There is a lot of literature concerning LSI, for example one can compare the above (1.2) with [18, Theorem 1.4] about the constant estimate on compact manifolds by means of semigroup analysis.

When E is unbounded, we have at least by using [16, Proposition 7.10] that

$$
\begin{equation*}
W_{2}^{2}(\nu, \mu) \leqslant C\left(\sigma^{2}+\int d^{2}\left(x_{0}, \cdot\right)(\sqrt{f}-c)^{2} \mathrm{~d} \mu\right) . \tag{1.3}
\end{equation*}
$$

It gives a direct way to derive $\mathrm{W}_{2} \mathrm{I}$ from the so-called Lyapunov condition. Recall [13], the Lyapunov condition here means there exists such a function $W>0$ satisfying that W^{-1} is locally bounded and for some $c>0, b \geqslant 0$ and $x_{0} \in E$ holds in the sense of distribution

$$
\begin{equation*}
\mathrm{L} W \leqslant\left(-c d^{2}\left(x, x_{0}\right)+b\right) W \tag{1.4}
\end{equation*}
$$

Partial proof in [13] applied the Bobkov-Götze's characterization of $\mathrm{W}_{2} \mathrm{H}$, namely there is a constant $C>0$ such that $\mu\left(\exp \left(Q_{C} h\right)\right) \leqslant \exp (\mu(h))$ for all $h \in L^{\infty}(\mu)$, where Q_{C} denotes the infimum-convolution operator and $Q_{C} h$ solves the Hamilton-Jacobi equation $\frac{\mathrm{d}}{\mathrm{d} t} Q_{t} h+\frac{1}{2}\left|\nabla Q_{t} h\right|^{2}=0$ for initial data h, see $[2,3]$ for example. Nevertheless, facing the

The Poincaré inequality and quadratic transportation-variance inequalities
stability problem for $\mathrm{W}_{2} \mathrm{H}$ under bounded perturbation, one needs various additional curvature conditions so far, for example see [8,14]. When we turn to the same problem for $\mathrm{W}_{2} \mathrm{I}$, it would be more robust if we can find a direct method to derive $\mathrm{W}_{2} \mathrm{I}$ from (1.4) with no appearance of $\mathrm{W}_{2} \mathrm{H}$. Actually, Theorem 1.5 takes on such a role.

The paper is organized as follows. In next Section 2, we give a quick proof to Theorem 1.1. In Section 3 and 4, we compute the derivative of quadratic Wasserstein distance along heat flow, and then complete the other proof of Theorem 1.1. The equivalence of the LSI and strict contraction of heat flow in Wasserstein space is shown in Section 5. Section 6 is devoted to the comparison inequality about centralization of quadratic Wasserstein distance, and Section 7 provides a direct proof of $\mathrm{W}_{2} \mathrm{I}$ under the Lyapunov condition.

2 The first proof of Theorem 1.1

Recall that, for any bounded Lipschitz function h, define its infimum-convolution for any $t>0$ by

$$
Q_{t} h(x):=\inf _{y}\left\{h(y)+\frac{1}{2 t} d^{2}(x, y)\right\},
$$

which solves the Hamilton-Jacobi equation (see for example [2, Section 9.4], [7, Section 3.3], [16, Section 5.4])

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} t} u+\frac{1}{2}|\nabla u|^{2}=0 \\
u(x, 0)=h(x)
\end{array}\right.
$$

According to [11, 12], for any decreasing function $\lambda \in C^{1}[0,+\infty)$ with $\lambda(0)=1$ and $\lim _{t \rightarrow \infty} \lambda(t)=0$, one has a semigroup interpolation by virtue of Hamilton-Jacobi equation, $t \rightarrow \infty$
integration by parts and the Hölder inequality that

$$
\begin{aligned}
\int_{E} Q_{1} h f \mathrm{~d} \mu-\int_{E} h \mathrm{~d} \mu & =\int_{E} \int_{0}^{\infty}-\frac{\mathrm{d}}{\mathrm{~d} t} Q_{\lambda} h P_{t} f \mathrm{~d} t \mathrm{~d} \mu \\
& =\int_{E} \int_{0}^{\infty} \frac{1}{2} \lambda^{\prime}\left|\nabla Q_{\lambda} h\right|^{2} P_{t} f-Q_{\lambda} h \cdot \mathrm{~L} P_{t} f \mathrm{~d} t \mathrm{~d} \mu \\
& =\int_{0}^{\infty} \int_{E} \frac{1}{2} \lambda^{\prime}\left|\nabla Q_{\lambda} h\right|^{2} P_{t} f+\nabla Q_{\lambda} h \cdot \nabla P_{t} f \mathrm{~d} \mu \mathrm{~d} t \\
& \leqslant \int_{0}^{\infty}-\frac{\mathrm{I}_{\mu}\left(P_{t} f\right)}{2 \lambda^{\prime}} \mathrm{d} t .
\end{aligned}
$$

Using the Kantorovich dual (see [2, Section 9.2], [16, Chapter 1]) yields for $\nu=f \mu$

$$
W_{2}^{2}(\nu, \mu)=2 \sup _{h}\left\{\int_{E} Q_{1} h f \mathrm{~d} \mu-\int_{E} h \mathrm{~d} \mu\right\} \leqslant \int_{0}^{\infty}-\frac{\mathrm{I}_{\mu}\left(P_{t} f\right)}{\lambda^{\prime}} \mathrm{d} t .
$$

It is flexible to choose a nice λ to prove Theorem 1.1. For instance, if $\sqrt{\operatorname{Ent}_{\mu}\left(P_{t} f\right)}$ is integrable on $[0, \infty)$, let $\lambda(t)=\frac{\int_{t}^{\infty} \sqrt{\operatorname{Ent}_{\mu}\left(P_{t} f\right)} \mathrm{d} t}{\int_{0}^{\infty} \sqrt{\operatorname{Ent}_{\mu}\left(P_{t} f\right)} \mathrm{d} t}$, then it follows

$$
\begin{align*}
W_{2}^{2}(\nu, \mu) & \leqslant \int_{0}^{\infty} \frac{\mathrm{I}_{\mu}\left(P_{t} f\right)}{\sqrt{\operatorname{Ent}_{\mu}\left(P_{t} f\right)}} \mathrm{d} t \cdot \int_{0}^{\infty} \sqrt{\operatorname{Ent}_{\mu}\left(P_{t} f\right)} \mathrm{d} t \\
& =2 \sqrt{\operatorname{Ent}_{\mu}(f)} \int_{0}^{\infty} \sqrt{\operatorname{Ent}_{\mu}\left(P_{t} f\right)} \mathrm{d} t . \tag{2.1}
\end{align*}
$$

We will revisit (2.1) in Section 4 by means of derivative estimate of Wasserstein distance.

The Poincaré inequality and quadratic transportation-variance inequalities

Proof. It consists of two parts.
Part 1. First of all, using the inequality $\log x \leqslant x-1$ yields that

$$
\operatorname{Ent}_{\mu}(f)=\int f \log \frac{f}{\mu(f)} \mathrm{d} \mu \leqslant \int f \cdot \frac{f-\mu(f)}{\mu(f)} \mathrm{d} \mu=\frac{1}{\mu(f)} \operatorname{Var}_{\mu}(f)
$$

For $\mu(f)=1$, we have $\operatorname{Ent}_{\mu}(f) \leqslant \operatorname{Var}_{\mu}(f)$. If PI holds with a constant C_{P}, we have further

$$
\operatorname{Ent}_{\mu}\left(P_{t} f\right) \leqslant \operatorname{Var}_{\mu}\left(P_{t} f\right) \leqslant e^{-\frac{2}{C_{P}} t} \operatorname{Var}_{\mu}(f)
$$

and then $\sqrt{\operatorname{Ent}_{\mu}\left(P_{t} f\right)}$ is integrable on $[0, \infty)$. It follows from (2.1) that

$$
\begin{aligned}
W_{2}^{2}(\nu, \mu) & \leqslant 2 \sqrt{\operatorname{Ent}_{\mu}(f)} \int_{0}^{\infty} \sqrt{\operatorname{Ent}_{\mu}\left(P_{t} f\right)} \mathrm{d} t \\
& \leqslant 2 \sqrt{\operatorname{Ent}_{\mu}(f)} \int_{0}^{\infty} e^{-\frac{1}{C_{P}} t} \sqrt{\operatorname{Var}_{\mu}(f)} \mathrm{d} t=2 C_{P} \sqrt{\operatorname{Ent}_{\mu}(f)} \sqrt{\operatorname{Var}_{\mu}(f)} .
\end{aligned}
$$

Inversely, assume there exists some $C>0$ such that

$$
\begin{equation*}
W_{2}^{2}(\nu, \mu) \leqslant 2 C \sqrt{\operatorname{Ent}_{\mu}(f)} \sqrt{\operatorname{Var}_{\mu}(f)} \tag{2.2}
\end{equation*}
$$

Various perturbation techniques give PI with a constant $\sqrt{2} C$, see [12, 17] and the references therein. For completeness, we write down a sketch.

Let h be Lipschitz and bounded with $\mu(h)=0$. Let $f_{t}=1+\lambda t h$ for $t \approx 0$ and some parameter $\lambda>0$. It follows from (2.2) that

$$
2 \int Q_{1}(t h) f_{t} \mathrm{~d} \mu \leqslant W_{2}^{2}\left(f_{t} \mu, \mu\right) \leqslant 2 C \sqrt{\operatorname{Ent}_{\mu}\left(f_{t}\right)} \cdot \sqrt{\operatorname{Var}_{\mu}\left(f_{t}\right)} .
$$

Substituting the Taylor's expansion $Q_{1}(t h)=t Q_{t} h=h t-\frac{1}{2}|\nabla h|^{2} t^{2}+o\left(t^{2}\right)$ at $t=0$ into the above inequality yields

$$
\begin{equation*}
-\mu(\Gamma(h, h))+2 \lambda \mu\left(h^{2}\right) \leqslant \sqrt{2} C \lambda^{2} \mu\left(h^{2}\right), \tag{2.3}
\end{equation*}
$$

which implies PI by taking $\lambda=\frac{\sqrt{2}}{2 C}$. We obtain the equivalence between PI and (2.2) now.
Part 2. When we bound relative entropy by other functionals, it should lead to new types of transportation-variance inequalities. Indeed, for any $p \geqslant 1$ holds by Jensen's inequality (recall $\mu(f)=1$ here) that

$$
\begin{aligned}
\operatorname{Ent}_{\mu}(f) & =\int f \log f \mathrm{~d} \mu \\
& \leqslant \log \mu\left(f^{2}\right)=\log \left(\operatorname{Var}_{\mu}(f)+1\right) \\
& \leqslant p \log \left(\left(\operatorname{Var}_{\mu}(f)\right)^{\frac{1}{p}}+1\right) \leqslant p\left(\operatorname{Var}_{\mu}(f)\right)^{\frac{1}{p}} .
\end{aligned}
$$

If PI holds, it follows similarly from (2.1)

$$
\begin{aligned}
W_{2}^{2}(\nu, \mu) & \leqslant 2 \sqrt{\operatorname{Ent}_{\mu}(f)} \int_{0}^{\infty} \sqrt{\operatorname{Ent}_{\mu}\left(P_{t} f\right)} \mathrm{d} t \\
& \leqslant 2 p \operatorname{Var}_{\mu}^{\frac{1}{2 p}}(f) \int_{0}^{\infty} \operatorname{Var}_{\mu}^{\frac{1}{2 p}}\left(P_{t} f\right) \mathrm{d} t \leqslant 2 C_{P} p^{2} \operatorname{Var}_{\mu}^{\frac{1}{p}}(f)
\end{aligned}
$$

which covers the second inequality in Theorem 1.1 for $p=1$ and also gives the third one

$$
W_{2}^{2}(\nu, \mu) \leqslant 2 C_{P} \inf _{p \geqslant 1}\left\{p^{2}\left(\operatorname{Var}_{\mu}(f)\right)^{\frac{1}{p}}\right\} .
$$

The Poincaré inequality and quadratic transportation-variance inequalities

Using PI again yields

$$
W_{2}^{2}(\nu, \mu) \leqslant 2 C_{P} \inf _{p \geqslant 1}\left\{p^{2}\left(\operatorname{Var}_{\mu}(f)\right)^{\frac{1}{p}}\right\} \leqslant 2 C_{P} \inf _{p \geqslant 1}\left\{p^{2}\left(C_{P} \mu(\Gamma(f, f))\right)^{\frac{1}{p}}\right\}
$$

which gives the fourth inequality in Theorem 1.1. It follows the fifth inequality by taking $p=1$ that

$$
\begin{equation*}
W_{2}^{2}(\nu, \mu) \leqslant 2 C_{P}^{2} \mu(\Gamma(f, f)) . \tag{2.4}
\end{equation*}
$$

Inversely, still following the routine of perturbation technique, (2.4) implies PI too. More precisely, recall the first part, we have a similar result as (2.3) that

$$
-\mu(\Gamma(h, h))+2 \lambda \mu\left(h^{2}\right) \leqslant 2 C_{P}^{2} \lambda^{2} \mu(\Gamma(h, h))
$$

which implies PI with a constant $\sqrt{2} C_{P}$ by taking $\lambda=\left(\sqrt{2} C_{P}\right)^{-1}$.

3 Derivative of quadratic Wasserstein distance along heat flow

In this section, we compute the derivative formula of $W_{2}\left(\nu_{t}, \mu\right)$ for $\frac{\mathrm{d} \nu_{t}}{\mathrm{~d} \mu}=P_{t} f$. Recall that, in our notation, Otto-Villani [15, Lemma 2] (see [16, Subsection 9.3.4] also) was actually concerned to the upper right-hand derivative of $W_{2}\left(\nu, \nu_{t}\right)$ and found a bound as

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} W_{2}^{+}\left(\nu, \nu_{t}\right) \leqslant \limsup _{s \rightarrow 0+} W_{2}\left(\nu_{t}, \nu_{t+s}\right) / s \leqslant \sqrt{\mathrm{I}_{\mu}\left(P_{t} f\right)} \tag{3.1}
\end{equation*}
$$

provided that $V \in C^{2}\left(\mathbb{R}^{n}\right)$ and $\mathrm{D}^{2} V \geqslant \rho \mathrm{I}$ for some $\rho \in \mathbb{R}$ (namely the curvature-dimension condition $C D(\rho, \infty)$). The difference between $W_{2}\left(\nu_{t}, \mu\right)$ and $W_{2}\left(\nu, \nu_{t}\right)$ is that the former might be integrable for $t \in[0,+\infty)$.

According to [16, Exercise 2.36], there exists $h_{t} \in L^{1}(\mu)$ such that $\mu\left(h_{t}\right)=0$ and $Q_{1} h_{t} \in L^{1}\left(\nu_{t}\right)$, and the conjugate pair $\left(Q_{1} h_{t}, h_{t}\right)$ attains the supremum as

$$
\begin{equation*}
W_{2}^{2}\left(\nu_{t}, \mu\right)=2 \sup _{\mu(\phi)=0} \int Q_{1} \phi \mathrm{~d} \nu_{t}=2 \int Q_{1} h_{t} \mathrm{~d} \nu_{t}=2 \int Q_{1} h_{t} P_{t} f \mathrm{~d} \mu \tag{3.2}
\end{equation*}
$$

Given nice initial data, we obtain the derivative formula for $W_{2}^{2}\left(\nu_{t}, \mu\right)$ in almost all t with no condition on curvature.
Lemma 3.1. Assume $f \in \mathbb{D}(\mathrm{~L})$ has a positive lower bound. Assume $\mathrm{L} f$ is bounded. Then for almost all $t>0$, there exists some $h_{t} \in L^{1}(\mu)$ satisfying (3.2) and

$$
\frac{\mathrm{d}}{\mathrm{~d} t} W_{2}^{2}\left(\nu_{t}, \mu\right)=2 \int Q_{1} h_{t} \mathrm{~L} P_{t} f \mathrm{~d} \mu
$$

Moreover $\left|\frac{\mathrm{d}}{\mathrm{d} t} W_{2}^{2}\left(\nu_{t}, \mu\right)\right| \leqslant 2 W\left(\nu_{t}, \mu\right) \sqrt{\mathrm{I}_{\mu}\left(P_{t} f\right)}$.
Proof. It consists of four steps. Note that $L^{1}\left(\nu_{t}\right) \subset L^{1}(\mu)$ in our case since f has a positive lower bound and then $\nu_{t}(|h|) \geqslant \inf f \cdot \mu(|h|)$. The assumption of $\mathrm{L} f \in L^{\infty}(E)$ is reasonable due to that the resolvent operator R_{λ} sends $C_{\mathrm{b}}(E)$ into $C_{\mathrm{b}}(E) \cap \mathbb{D}(\mathrm{L})$ and $\mathrm{L}=-R_{\lambda}^{-1}+\lambda \mathrm{I}$ (see for example Evans [7, Subsection 7.4.1]).

Step 1. To show the continuity of $W_{2}\left(\nu_{t}, \mu\right)$ in t.
Using the control inequality of weighted total variation (see [16, Proposition 7.10]) yields that for any $t, t^{\prime}>0$

$$
\begin{aligned}
W_{2}^{2}\left(\nu_{t^{\prime}}, \nu_{t}\right) & \leqslant 2 \int d^{2}\left(x_{0}, \cdot\right)\left|P_{t^{\prime}} f-P_{t} f\right| \mathrm{d} \mu \\
& =2 \int d^{2}\left(x_{0}, \cdot\right)\left|\int_{t}^{t^{\prime}} \mathrm{L} P_{s} f \mathrm{~d} s\right| \mathrm{d} \mu \leqslant 2\left|t^{\prime}-t\right| \cdot| | \mathrm{L} f \|_{\infty} \cdot \mu\left(d^{2}\left(x_{0}, \cdot\right)\right) .
\end{aligned}
$$

The Poincaré inequality and quadratic transportation-variance inequalities

It follows from the triangle inequality $\left|W_{2}\left(\nu_{t^{\prime}}, \mu\right)-W_{2}\left(\nu_{t}, \mu\right)\right| \leqslant W_{2}\left(\nu_{t^{\prime}}, \nu_{t}\right)$ that $W_{2}\left(\nu_{t}, \mu\right)$ is continuous in t.

Step 2. To choose a conjugate pair $\left(Q_{1} h_{t}, h_{t}\right)$ satisfying (3.2) and some auxiliary "maximality" (which will be introduced in (3.3) and applied for next step).

First of all, let $\left(Q_{1} \tilde{h}_{t}, \tilde{h}_{t}\right) \in L^{1}\left(\nu_{t}\right) \times L^{1}(\mu)$ satisfy $\mu\left(\tilde{h}_{t}\right)=0$ and

$$
W_{2}^{2}\left(\nu_{t}, \mu\right)=2 \int Q_{1} \tilde{h}_{t} \mathrm{~d} \nu_{t}
$$

$Q_{1} \tilde{h}_{t}$ may not have a gradient, so we take a sequence of bounded Lipschitz functions $\left\{\tilde{h}_{k, t}\right\}_{k \in \mathbb{N}}$ such that $\mu\left(\tilde{h}_{k, t}\right)=0$ and $\left(Q_{1} \tilde{h}_{k, t}, \tilde{h}_{k, t}\right)$ tends to $\left(Q_{1} \tilde{h}_{t}, \tilde{h}_{t}\right)$ in $L^{1}\left(\nu_{t}\right) \times L^{1}(\mu)$ as $k \rightarrow \infty$. Then $Q_{1} \tilde{h}_{k, t}$ is bounded Lipschitz too (see [7, Subsection 3.3.2]), and there exists $u_{k} \in[0,1]$ such that

$$
\begin{equation*}
\int Q_{1}\left(\left(1-u_{k}\right) \tilde{h}_{k, t}\right) \mathrm{d} \nu_{t}=\sup _{0 \leqslant u \leqslant 1} \int Q_{1}\left((1-u) \tilde{h}_{k, t}\right) \mathrm{d} \nu_{t} \tag{3.3}
\end{equation*}
$$

Denote $h_{k, t}=\left(1-u_{k}\right) \tilde{h}_{k, t}$.
Without loss of generality, assume $u_{\infty}=\lim _{k \rightarrow \infty} u_{k} \in[0,1]$, denote

$$
\begin{equation*}
h_{t}:=\left(1-u_{\infty}\right) \tilde{h}_{t}=\lim _{k \rightarrow \infty}\left(1-u_{k}\right) \tilde{h}_{k, t}=\lim _{k \rightarrow \infty} h_{k, t} \in L^{1}(\mu) . \tag{3.4}
\end{equation*}
$$

We want to show that $\left(Q_{1} h_{t}, h_{t}\right)$ is also a conjugate pair satisfying $W_{2}^{2}\left(\nu_{t}, \mu\right)=2 \int Q_{1} h_{t} \mathrm{~d} \nu_{t}$. The difference between $\left(Q_{1} h_{t}, h_{t}\right)$ and $\left(Q_{1} \widetilde{h}_{t}, \tilde{h}_{t}\right)$ is that the former can be approximated by a special sequence of bounded Lipschitz pairs with the property (3.3).

To this end, by the definition of infimum convolution, we have first

$$
h_{k, t} \geqslant Q_{1} h_{k, t}=\left(1-u_{k}\right) Q_{1-u_{k}} \tilde{h}_{k, t} \geqslant\left(1-u_{k}\right) Q_{1} \tilde{h}_{k, t}
$$

which means that $Q_{1} h_{k, t}$ falls between two L^{1}-convergent sequences. By virtue of the Prokhorov theorem (namely the tightness argument) together with the fact of $L^{1}\left(\nu_{t}\right) \subset L^{1}(\mu)$, one can extract a subsequence of $Q_{1} h_{k, t}$ (denoted by itself for the ease of notation) converging in $L^{1}\left(\nu_{t}\right)$. Denote $\phi_{t}=\lim _{k \rightarrow \infty} Q_{1} h_{k, t}$, which satisfies

$$
\phi_{t}(x)-h_{t}(y) \leqslant \frac{1}{2} d^{2}(x, y)
$$

almost everywhere and then $\phi_{t}(x) \leqslant Q_{1} h_{t}(x)$ and (since $\mu\left(h_{t}\right)=0$)

$$
2 \nu_{t}\left(\phi_{t}\right) \leqslant 2 \int Q_{1} h_{t} \mathrm{~d} \nu_{t} \leqslant W_{2}^{2}\left(\nu_{t}, \mu\right)
$$

On the other hand, due to the definition of $h_{k, t}$ in (3.3), it follows

$$
2 \nu_{t}\left(\phi_{t}\right)=\lim _{k \rightarrow \infty} 2 \nu_{t}\left(Q_{1} h_{k, t}\right) \geqslant \lim _{k \rightarrow \infty} 2 \nu_{t}\left(Q_{1} \tilde{h}_{k, t}\right)=W_{2}^{2}\left(\nu_{t}, \mu\right) .
$$

Hence, (ϕ_{t}, h_{t}) attains the supremum of the dual Kantorovich problem too. Moreover, it follows $\phi_{t}=Q_{1} h_{t}$ almost everywhere with respect to ν_{t} and μ as well since f has a positive lower bound.

Step 3. To estimate upper and lower derivatives of $W_{2}^{2}\left(\nu_{t}, \mu\right)$.
For $\left(Q_{1} h_{t}, h_{t}\right)$, we have

$$
\begin{align*}
\underline{D}_{t}^{+} & :=\liminf _{s \rightarrow 0+} \frac{W_{2}^{2}\left(\nu_{t+s}, \mu\right)-W_{2}^{2}\left(\nu_{t}, \mu\right)}{s} \\
& \geqslant \lim _{s \rightarrow 0+} \frac{2}{s}\left(\int Q_{1} h_{t} \mathrm{~d} \nu_{t+s}-\int Q_{1} h_{t} \mathrm{~d} \nu_{t}\right)=2 \int Q_{1} h_{t} \mathrm{~L} P_{t} f \mathrm{~d} \mu \tag{3.5}
\end{align*}
$$

The Poincaré inequality and quadratic transportation-variance inequalities

Similarly, we have

$$
\begin{align*}
\bar{D}_{t}^{-} & :=\limsup _{s \rightarrow 0+} \frac{W_{2}^{2}\left(\nu_{t}, \mu\right)-W_{2}^{2}\left(\nu_{t-s}, \mu\right)}{s} \\
& \leqslant \lim _{s \rightarrow 0+} \frac{2}{s}\left(\int Q_{1} h_{t} \mathrm{~d} \nu_{t}-\int Q_{1} h_{t} \mathrm{~d} \nu_{t-s}\right)=2 \int Q_{1} h_{t} \mathrm{~L} P_{t} f \mathrm{~d} \mu \tag{3.6}
\end{align*}
$$

Recall the approximating sequence $\left(Q_{1} h_{k, t}, h_{k, t}\right)$ for $\left(Q_{1} h_{t}, h_{t}\right)$ in Step 2, using the formula of integration by parts and the Hölder inequality yields that

$$
\left|\int Q_{1} h_{k, t} \mathrm{~L} P_{t} f \mathrm{~d} \mu\right|=\left|\int \nabla Q_{1} h_{k, t} \nabla P_{t} f \mathrm{~d} \mu\right| \leqslant \sqrt{\int\left|\nabla Q_{1} h_{k, t}\right|^{2} \mathrm{~d} \nu_{t}} \cdot \sqrt{\mathrm{I}_{\mu}\left(P_{t} f\right)}
$$

Since $Q_{s} h_{k, t}$ solves the Hamilton-Jacobi equation $\frac{\mathrm{d}}{\mathrm{d} s} Q_{s} h_{k, t}+\frac{1}{2}\left|\nabla Q_{s} h_{k, t}\right|^{2}=0$ (see [7, Subsection 3.3.2]), we have by (3.3) (namely the integral "maximality" for $Q_{1} h_{k, t}$) that

$$
\begin{aligned}
\int\left|\nabla Q_{1} h_{k, t}\right|^{2} \mathrm{~d} \nu_{t} & =\lim _{u \rightarrow 0+} 2 \int \frac{Q_{1-u} h_{k, t}-Q_{1} h_{k, t}}{u} \mathrm{~d} \nu_{t} \\
& =\lim _{u \rightarrow 0+} 2 \int \frac{\frac{1}{1-u} Q_{1}\left((1-u) h_{k, t}\right)-Q_{1} h_{k, t}}{u} \mathrm{~d} \nu_{t} \\
& \leqslant \lim _{u \rightarrow 0+} 2 \cdot \frac{\frac{1}{1-u}-1}{u} \cdot \int Q_{1} h_{k, t} \mathrm{~d} \nu_{t} \leqslant W_{2}^{2}\left(\nu_{t}, \mu\right)
\end{aligned}
$$

which implies by taking $k \rightarrow \infty$

$$
\begin{equation*}
2\left|\int Q_{1} h_{t} \mathrm{~L} P_{t} f \mathrm{~d} \mu\right|=\lim _{k \rightarrow+\infty} 2\left|\int Q_{1} h_{k, t} \mathrm{~L} P_{t} f \mathrm{~d} \mu\right| \leqslant 2 W_{2}\left(\nu_{t}, \mu\right) \sqrt{\mathrm{I}_{\mu}\left(P_{t} f\right)}=: A_{t} . \tag{3.7}
\end{equation*}
$$

Note that A_{t} is continuous in t.
Step 4. To show the Lipschitz property of $W_{2}^{2}\left(\nu_{t}, \mu\right)$.
For convenience, denote $F(t)=W_{2}^{2}\left(\nu_{t}, \mu\right)$. Heuristically, using (3.5) and (3.7) yields a local estimate that for any $t>0$ there exists $s>0$ such that $F(t+s)-F(t) \geqslant-O(s)$. It follows $F(b)-F(a) \geqslant-O(b-a)$ for any interval $[a, b] \subset \mathbb{R}^{+}$if one could "find" a finite partition of $[a, b]$ and sum up all the local estimates. Similarly, using (3.6) and (3.7) yields $F(b)-F(a) \leqslant O(b-a)$, and then gives the local Lipschitz property.

The rest of the proof is basically a careful application of Borel-Lebesgue covering theorem. Fix arbitrary $\varepsilon>0$. Let $K=\sup _{t \in[a, b]} A_{t}+\varepsilon$. For any $t \in[a, b]$, there exists some $\eta_{t} \in(0, b-a]$ by using (3.5) and (3.7) such that for all $s \in\left(0, \eta_{t}\right]$

$$
F(t+s)-F(t)>s\left(2 \int Q_{1} h_{t} \mathrm{~L} P_{t} f \mathrm{~d} \mu-\varepsilon\right) \geqslant-s\left(A_{t}+\varepsilon\right) \geqslant-s K \geqslant-\eta_{t} K
$$

On the other hand, the continuity of $F(t)$ implies there exists $\tilde{\eta}_{t} \in\left(0, \eta_{t}\right]$ such that for all $-s \in\left[-\tilde{\eta}_{t}, 0\right]$

$$
|F(t)-F(t-s)|<\eta_{t} K
$$

Then the open interval $I_{t}=\left(t-\tilde{\eta}_{t}, t+\eta_{t}\right)$ is of length no less than η_{t} and no more than $2 \eta_{t}$, and holds for any $t_{2} \geqslant t \geqslant t_{1}$ or $t \geqslant t_{2} \geqslant t_{1}$ in I_{t}

$$
\begin{equation*}
F\left(t_{2}\right)-F\left(t_{1}\right)>-2 \eta_{t} K \geqslant-2\left|I_{t}\right| K \tag{3.8}
\end{equation*}
$$

(Notice that we don't know whether (3.8) is true for $t_{2} \geqslant t_{1}>t$.)
The collection of all I_{t} becomes an open covering of $[a, b]$, which implies a finite sub-covering \mathcal{I}. To reduce overlaps, we have to do some selection. Starting from $t_{0}=a$, one can successively take the i-th open interval $I_{t_{i}}$ from \mathcal{I} for $i=1,2 \ldots$ satisfying next two properties:

The Poincaré inequality and quadratic transportation-variance inequalities
(1). $I_{t_{i}} \cap I_{t_{i-1}} \neq \emptyset$, and $I_{t_{i}}$ contains the right-hand endpoint of $I_{t_{i-1}}$.
(2). If there is another $I_{t_{*}} \in \mathcal{I}$ intersecting with $I_{t_{i-1}}$, then $I_{t_{*}} \subset \bigcup_{j \leqslant i} I_{t_{j}}$, namely the right-hand endpoint of $I_{t_{*}}$ doesn't exceed $I_{t_{i}}$. It means $I_{t_{i}}$ is the most effective cover than any other $I_{t_{*}}$.
This procedure will stop at time N once $I_{t_{N}}$ contains b.
Now, we have a chain $I_{t_{0}}, I_{t_{1}}, \ldots, I_{t_{N}}$ satisfying that each element only intersects with its neighbors, which means their overlap is at most 2 -fold for every point in $[a, b]$. Let $t_{i-1, i} \in I_{t_{i-1}} \cap I_{t_{i}}$ satisfy $t_{i-1, i} \leqslant t_{i}$ for $i=1, \ldots, N$ and $a \leqslant t_{0,1} \leqslant t_{1,2} \cdots \leqslant t_{N-1, N} \leqslant b$. It must occur either $t_{i-1, i} \leqslant t_{i} \leqslant t_{i, i+1}$ or $t_{i-1, i} \leqslant t_{i, i+1} \leqslant t_{i}$ for each i. In any case, we obtain an interpolation by (3.8)

$$
\begin{aligned}
F(b)-F(a) & =F(b)-F\left(t_{N-1, N}\right)+\sum_{i=1}^{N-1} F\left(t_{i, i+1}\right)-F\left(t_{i-1, i}\right)+F\left(t_{0,1}\right)-F(a) \\
& \geqslant-2\left|I_{t_{N}}\right| K-\sum_{i=1}^{N-1} 2\left|I_{t_{i}}\right| K-2\left|I_{t_{0}}\right| K \geqslant-8(b-a) K .
\end{aligned}
$$

Similarly, it follows from (3.6) and (3.7) that

$$
F(b)-F(a) \leqslant 8(b-a) K
$$

Combining the above estimates yields that $F(t)=W_{2}^{2}\left(\nu_{t}, \mu\right)$ is locally Lipschitz and then has a derivative for almost all $t>0$ as

$$
\frac{\mathrm{d}}{\mathrm{~d} t} W_{2}^{2}\left(\nu_{t}, \mu\right)=2 \int Q_{1} h_{t} \mathrm{~L} P_{t} f \mathrm{~d} \mu
$$

It follows that for almost all $t>0$

$$
\left|\frac{\mathrm{d}}{\mathrm{~d} t} W_{2}^{2}\left(\nu_{t}, \mu\right)\right| \leqslant 2 W_{2}\left(\nu_{t}, \mu\right) \sqrt{\mathrm{I}_{\mu}\left(P_{t} f\right)}
$$

which can be rewritten to

$$
\left|\frac{\mathrm{d}}{\mathrm{~d} t} W_{2}\left(\nu_{t}, \mu\right)\right| \leqslant \sqrt{\mathrm{I}_{\mu}\left(P_{t} f\right)} .
$$

The proof is completed.
Remark 3.2. It is interesting to ask further that whether $h_{t}=\tilde{h}_{t}$ almost everywhere (namely $u_{\infty}=0$ in (3.4)). For any positive α and β with $\alpha+\beta=1$, we have $\alpha Q_{1} \tilde{h}_{t}+$ $\beta Q_{1} h_{t} \leqslant Q_{1}\left(\alpha \tilde{h}_{t}+\beta h_{t}\right)$ and

$$
W_{2}^{2}\left(\nu_{t}, \mu\right)=2 \int \alpha Q_{1} \tilde{h}_{t}+\beta Q_{1} h_{t} \mathrm{~d} \nu_{t} \leqslant 2 \int Q_{1}\left(\alpha \tilde{h}_{t}+\beta h_{t}\right) \mathrm{d} \nu_{t} \leqslant W_{2}^{2}\left(\nu_{t}, \mu\right)
$$

which implies $\alpha Q_{1} \tilde{h}_{t}+\beta Q_{1} h_{t}=Q_{1}\left(\alpha \tilde{h}_{t}+\beta h_{t}\right)$ almost everywhere. It follows that for almost every $x \in E$ and $h=\tilde{h}_{t}$ or h_{t} or $\alpha \tilde{h}_{t}+\beta h_{t}, Q_{1} h(x)$ can take its value at the same critical point y_{x} such that $Q_{1} h(x)=h\left(y_{x}\right)+\frac{1}{2} d^{2}\left(x, y_{x}\right)$ (or the same point sequence $\left\{y_{x}^{(n)}\right\}$ such that $Q_{1} h(x)=\lim _{n \rightarrow+\infty} h\left(y_{x}^{(n)}\right)+\frac{1}{2} d^{2}\left(x, y_{x}^{(n)}\right)$). If $u_{\infty} \neq 0$ and \tilde{h}_{t} is bounded and differentiable, we have $\nabla h_{t}\left(y_{x}\right)=\nabla \tilde{h}_{t}\left(y_{x}\right)=x-y_{x}$ and then $\nabla h_{t}\left(y_{x}\right)=\nabla \tilde{h}_{t}\left(y_{x}\right) \equiv 0$ since $h_{t}=\left(1-u_{\infty}\right) \tilde{h}_{t}$, which means \tilde{h}_{t} has to be a constant function and furthermore $\tilde{h}_{t} \equiv 0$ for $\mu\left(\tilde{h}_{t}\right)=0$. This suggests that $h_{t}=\tilde{h}_{t}$ is true, however, it seems complicated to deal with L^{1} functions.

The same argument is also effective in reproving Lemma 2 in [15] as

$$
\left|\frac{\mathrm{d}}{\mathrm{~d} t} W_{2}\left(\nu, \nu_{t}\right)\right| \leqslant \sqrt{\mathrm{I}_{\mu}\left(P_{t} f\right)},
$$

which avoids using the second inequality in (3.1).

The Poincaré inequality and quadratic transportation-variance inequalities

4 The second proof of Theorem 1.1

Proof. Assume PI holds with a constant C_{P}. Recall that

$$
\operatorname{Ent}_{\mu}\left(P_{t} f\right) \leqslant \operatorname{Var}_{\mu}\left(P_{t} f\right) \leqslant \exp \left\{-2 t / C_{P}\right\} \operatorname{Var}_{\mu}(f),
$$

which implies $\operatorname{Ent}_{\mu}\left(P_{t} f\right) \rightarrow 0$ for $t \rightarrow \infty$. Using the same method in the second part of [15, Lemma 3] yields $W_{2}\left(\nu_{t}, \mu\right) \rightarrow 0$ too. More precisely, $W_{2}\left(\nu_{t}, \mu\right)$ decays exponentially fast due to that for any continuous ξ with $|\xi(x)| \leqslant C\left(d^{2}\left(x_{0}, x\right)+1\right)$,

$$
\begin{aligned}
\left|\int \xi \mathrm{d} \nu_{t}-\int \xi \mathrm{d} \mu\right| & \leqslant C \int\left|P_{t} f-1\right|\left(d^{2}\left(x_{0}, \cdot\right)+1\right) d \mu \\
& \leqslant C \sqrt{\operatorname{Var}_{\mu}\left(P_{t} f\right)} \sqrt{\mu\left(\left(d^{2}\left(x_{0}, \cdot\right)+1\right)^{2}\right)}
\end{aligned}
$$

where the integrability of $d^{4}\left(x_{0}, \cdot\right)$ comes from PI as well.
For simplicity, assume f fulfills all the conditions in Lemma 3.1, then we have by using the Hölder inequality to get (2.1) again

$$
\begin{aligned}
W_{2}^{2}(\nu, \mu) & =\left(\int_{0}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} s} W_{2}\left(\nu_{s}, \mu\right) \mathrm{d} s\right)^{2} \leqslant\left(\int_{0}^{\infty} \sqrt{\mathrm{I}_{\mu}\left(P_{s} f\right)} \mathrm{d} s\right)^{2} \\
& =\left(\int_{0}^{\infty} \frac{\sqrt{\mathrm{I}_{\mu}\left(P_{s} f\right)}}{\sqrt[4]{\operatorname{Ent}_{\mu}\left(P_{s} f\right)}} \cdot \sqrt[4]{\operatorname{Ent}_{\mu}\left(P_{s} f\right)} \mathrm{d} s\right)^{2} \leqslant 2 \sqrt{\operatorname{Ent}_{\mu}(f)} \int_{0}^{\infty} \sqrt{\operatorname{Ent}_{\mu}\left(P_{t} f\right)} \mathrm{d} t
\end{aligned}
$$

The following steps are the same as those in Section 2.
Alternatively, using Lemma 3.1 and Hölder inequality yields also for any $t>0$

$$
\begin{align*}
W_{2}^{2}\left(\nu_{t}, \mu\right)=\int_{t}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} s} W_{2}^{2}\left(\nu_{s}, \mu\right) \mathrm{d} s & \leqslant 2 \int_{t}^{\infty} W_{2}\left(\nu_{s}, \mu\right) \sqrt{\mathrm{I}_{\mu}\left(P_{s} f\right)} \mathrm{d} s \\
& \leqslant 2 \sqrt{\int_{t}^{\infty} W_{2}^{2}\left(\nu_{s}, \mu\right) \mathrm{d} s} \cdot \sqrt{\int_{t}^{\infty} \mathrm{I}_{\mu}\left(P_{s} f\right) \mathrm{d} s} \\
& =2 \sqrt{\int_{t}^{\infty} W_{2}^{2}\left(\nu_{s}, \mu\right) \mathrm{d} s} \cdot \sqrt{\operatorname{Ent}_{\mu}\left(P_{t} f\right)} \tag{4.1}
\end{align*}
$$

(4.1) looks like (2.1), which is still useful to prove Theorem 1.1 as follows.

Denote $\mathcal{W}_{t}=\sqrt{\int_{t}^{\infty} W_{2}^{2}\left(\nu_{s}, \mu\right) \mathrm{d} s}$ (it is finite since $W_{2}\left(\nu_{t}, \mu\right)$ decays exponentially fast), (4.1) can be rewritten to

$$
-\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{W}_{t} \leqslant \sqrt{\operatorname{Ent}_{\mu}\left(P_{t} f\right)} \leqslant \sqrt{\operatorname{Var}_{\mu}\left(P_{t} f\right)} \leqslant \exp \left\{-t / C_{P}\right\} \sqrt{\operatorname{Var}_{\mu}(f)}
$$

and then

$$
\begin{aligned}
\mathcal{W}_{t}=\int_{t}^{\infty}-\frac{\mathrm{d}}{\mathrm{~d} s} \mathcal{W}_{s} \mathrm{~d} s & \leqslant \int_{t}^{\infty} \exp \left\{-s / C_{P}\right\} \mathrm{d} s \sqrt{\operatorname{Var}_{\mu}(f)} \\
& =C_{P} \exp \left\{-t / C_{P}\right\} \sqrt{\operatorname{Var}_{\mu}(f)} .
\end{aligned}
$$

Substituting this estimate back to (4.1) for $t=0$ gives us

$$
\begin{aligned}
W_{2}^{2}(\nu, \mu) & \leqslant 2 \sqrt{\int_{0}^{\infty} 2 C_{P} \operatorname{Var}_{\mu}\left(P_{s} f\right) \mathrm{d} s} \cdot \sqrt{\operatorname{Ent}_{\mu}(f)} \\
& \leqslant 2 \sqrt{\int_{0}^{\infty} 2 C_{P} \exp \left(-\frac{2}{C_{P}} s\right) \operatorname{Var}_{\mu}(f) \mathrm{d} s} \cdot \sqrt{\operatorname{Ent}_{\mu}(f)} \\
& =2 C_{P} \sqrt{\operatorname{Var}_{\mu}(f)} \cdot \sqrt{\operatorname{Ent}_{\mu}(f)} .
\end{aligned}
$$

The Poincaré inequality and quadratic transportation-variance inequalities

The following steps are the same as before.
By the way, if one is concerned to the quantity $W_{2}^{2}\left(\tilde{\nu}_{t}, \mu\right)$ for $\frac{\mathrm{d} \tilde{\nu}_{t}}{\mathrm{~d} \mu}=\frac{\left|P_{t} \sqrt{f}\right|^{2}}{\mu\left(\left|P_{t} \sqrt{f}\right|^{2}\right)}$, it also decays exponentially fast provided that PI holds. Firstly we have for any $g^{2} \mu \in \mathcal{P}(E)$ (denote $m=\mu(g)$ and $\sigma_{t}^{2}=\mu\left(\left(P_{t} g-m\right)^{2}\right)$)

$$
\operatorname{Var}_{\mu}\left(g^{2}\right) \leqslant \int\left|g^{2}-m^{2}\right|^{2} \mathrm{~d} \mu \leqslant 2 \int|g-m|^{4} \mathrm{~d} \mu+8 m^{2} \int|g-m|^{2} \mathrm{~d} \mu
$$

Then it follows from PI that

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu\left(\left(P_{t} g-m\right)^{4}\right) & =-12 \mu\left(\left(P_{t} g-m\right)^{2}\left|\nabla P_{t} g\right|^{2}\right) \\
& \leqslant-3 C_{P}^{-1} \mu\left(\left(\left(P_{t} g-m\right)^{2}-\sigma_{t}^{2}\right)^{2}\right) \\
& =-3 C_{P}^{-1}\left[\mu\left(\left(P_{t} g-m\right)^{4}\right)-\sigma_{t}^{4}\right]
\end{aligned}
$$

and

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \sigma_{t}^{4}=-4 \sigma_{t}^{2} \mu\left(\left|\nabla P_{t} g\right|^{2}\right) \leqslant-4 C_{P}^{-1} \sigma_{t}^{4}
$$

Set $\Lambda_{t}=\mu\left(\left(P_{t} g-m\right)^{4}\right)+\lambda \sigma_{t}^{4}$ with the parameter λ, we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \Lambda_{t} \leqslant C_{P}^{-1}\left(-3 \Lambda_{t}+(3-\lambda) \sigma_{t}^{4}\right)
$$

which implies by taking $\lambda=3$ that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \Lambda_{t} \leqslant-3 C_{P}^{-1} \Lambda_{t}
$$

and then $\Lambda_{t} \leqslant \exp \left(-3 t / C_{P}\right) \Lambda_{0}$.
Hence using Theorem 1.1 yields for $g=\sqrt{f}$ that

$$
\begin{aligned}
W_{2}^{2}\left(\tilde{\nu}_{t}, \mu\right) & \leqslant 2 C_{P} \operatorname{Var}_{\mu}\left(\frac{\mathrm{d} \tilde{\nu}_{t}}{\mathrm{~d} \mu}\right) \leqslant \frac{2 C_{P}}{\left(\mu\left(\left|P_{t} g\right|^{2}\right)\right)^{2}} \operatorname{Var}_{\mu}\left(\left(P_{t} g\right)^{2}\right) \\
& \leqslant \frac{4 C_{P}}{m^{4}}\left(\Lambda_{t}+4 m^{2} \sigma_{t}^{2}\right) \leqslant \frac{4 C_{P}}{m^{4}}\left(e^{-3 t / C_{P}} \Lambda_{0}+e^{-2 t / C_{P}} 4 m^{2} \sigma_{0}^{2}\right)
\end{aligned}
$$

where the total rate is no more than $e^{-2 t / C_{P}}$.

5 The logarithmic Sobolev inequality and strict contraction of heat flow in Wasserstein space

In this section, we prove Proposition 1.3. The curvature-dimension condition plays a fundamental role such that we can compare several functionals for heat flow at different times. The derivative estimate in previous section is also useful.

Proof. Assume V is a smooth potential satisfying the curvature-dimension condition $C D(\rho, \infty)$.

If the LSI holds, it is known that the entropy along heat flow decays exponentially fast. Moreover, the Talagrand inequality comes true (see [15] or [2, Theorem 9.6.1]), namely for any positive bounded f and any $t>T>0$

$$
W_{2}^{2}\left(P_{t} f \mu, \mu\right) \leqslant 2 C_{L S} \operatorname{Ent}_{\mu}\left(P_{t} f\right) \leqslant 2 C_{L S} e^{-2(t-T) / C_{L S}} \operatorname{Ent}_{\mu}\left(P_{T} f\right)
$$

The Poincaré inequality and quadratic transportation-variance inequalities

On the other hand, based on the logarithmic Harnack inequlity (see [2, Remark 5.6.2])

$$
P_{T}(\log f)(x) \leqslant \log P_{T} f(y)+\frac{\rho d(x, y)^{2}}{2\left(e^{2 \rho T}-1\right)},
$$

it follows from the the same argument as [2, Page 446] that

$$
\operatorname{Ent}_{\mu}\left(P_{T} f\right) \leqslant \frac{1}{2 \beta(T)} W_{2}^{2}(f \mu, \mu)
$$

where $\frac{1}{\beta(T)}=\frac{\rho}{1-e^{-2 \rho T}}-\rho\left(=\frac{1}{2 T}\right.$ for $\left.\rho=0\right)$. Combining the above estimates yields

$$
W_{2}^{2}\left(P_{t} f \mu, \mu\right) \leqslant \gamma(T) e^{-2 t / C_{L S}} W_{2}^{2}(f \mu, \mu)
$$

by letting $\gamma(T)=\frac{C_{L S} e^{2 T / C_{L S}}}{\beta(T)}$, which attains its minimum at $T_{0}=\frac{1}{2|\rho|} \log \left(1+C_{L S}|\rho|\right)$. So now we obtain the exponential decay for $t>T_{0}$.

For $0<t \leqslant T_{0}$, there is a general bound according to the heat flow contraction in Wasserstein space (see [2, Theorem 9.7.2]) as

$$
W_{2}^{2}\left(P_{t} f \mu, \mu\right) \leqslant e^{-2 \rho t} W_{2}^{2}(f \mu, \mu)=e^{\left(2 C_{L S}^{-1}-2 \rho\right) t} e^{-2 t / C_{L S}} W_{2}^{2}(f \mu, \mu)
$$

Combining two regions gives us a control constant $C:=\sqrt{\max \left\{\gamma\left(T_{0}\right), e^{\left(2 C_{L S}^{-1}-2 \rho\right) T_{0}}, 1\right\}}$ such that for all $t>0$ and $\kappa:=C_{L S}^{-1}$

$$
W_{2}\left(P_{t} f \mu, \mu\right) \leqslant C e^{-\kappa t} W_{2}(f \mu, \mu)
$$

Conversely, if $W_{2}\left(P_{t} f \mu, \mu\right) \leqslant C e^{-\kappa t} W_{2}(f \mu, \mu)$, there exists t (independent of f) such that $\eta:=C e^{-\kappa t}<1$. Using the derivative estimate for nice f (see Lemma 3.1) yields

$$
\begin{aligned}
W_{2}^{2}(f \mu, \mu) & =W_{2}^{2}(f \mu, \mu)-W_{2}^{2}\left(P_{t} f \mu, \mu\right)+W_{2}^{2}\left(P_{t} f \mu, \mu\right) \\
& \leqslant \int_{0}^{t} 2 W_{2}\left(P_{s} f \mu, \mu\right) \sqrt{\mathrm{I}_{\mu}\left(P_{s} f\right)} \mathrm{d} s+\eta^{2} W_{2}^{2}(f \mu, \mu) \\
& \leqslant 2\left(\int_{0}^{t} W_{2}^{2}\left(P_{s} f \mu, \mu\right) \mathrm{d} s\right)^{\frac{1}{2}}\left(\int_{0}^{t} \mathrm{I}_{\mu}\left(P_{s} f\right) \mathrm{d} s\right)^{\frac{1}{2}}+\eta^{2} W_{2}^{2}(f \mu, \mu) .
\end{aligned}
$$

Based on the heat flow contraction and information contraction (see [2, Eq. 5.7.4])

$$
\mathrm{I}_{\mu}\left(P_{s} f\right) \leqslant e^{-2 \rho s} \mathrm{I}_{\mu}(f),
$$

we have further

$$
\begin{aligned}
W_{2}^{2}(f \mu, \mu) & \leqslant 2\left(\int_{0}^{t} C^{2} e^{-2 \kappa t} W_{2}^{2}(f \mu, \mu) \mathrm{d} s\right)^{\frac{1}{2}}\left(\int_{0}^{t} e^{-2 \rho s} \mathrm{I}_{\mu}(f) \mathrm{d} s\right)^{\frac{1}{2}}+\eta^{2} W_{2}^{2}(f \mu, \mu) \\
& \leqslant\left(\varepsilon+\eta^{2}\right) W_{2}^{2}(f \mu, \mu)+\frac{C^{2}\left(1-e^{-2 \kappa t}\right)\left(1-e^{-2 \rho t}\right)}{4 \kappa \rho \varepsilon} \mathrm{I}_{\mu}(f),
\end{aligned}
$$

where the last step comes from the Cauchy-Schwarz inequality for any $\varepsilon>0$. It follows $\mathrm{W}_{2} \mathrm{I}$ by taking $\varepsilon=\eta=\frac{1}{2}$ explicitly that

$$
W_{2}^{2}(f \mu, \mu) \leqslant \frac{2 C^{2}\left(1-e^{-2 \rho t}\right)}{\kappa \rho} \mathrm{I}_{\mu}(f) .
$$

Since $\mathrm{W}_{2} \mathrm{I}$ is equivalent to LSI under $C D(\rho, \infty)$ by virtue of the HWI inequality (see [15] or [2, Subsection 9.3])

$$
\operatorname{Ent}_{\mu}(f) \leqslant W_{2}(f \mu, \mu) \sqrt{\mathrm{I}_{\mu}(f)}-\frac{\rho}{2} W_{2}^{2}(f \mu, \mu)
$$

we complete the proof.

The Poincaré inequality and quadratic transportation-variance inequalities

6 Centralization of quadratic Wasserstein distance

Recall the notation $c=\mu(\sqrt{f})$ and $\sigma^{2}=\operatorname{Var}_{\mu}(\sqrt{f})$, now we prove Theorem 1.5.
Proof. For any bounded Lipschitz h with $\mu(h)=0$, let $m_{t}=\mu\left(Q_{t} h\right)$, we have

$$
\begin{aligned}
\mu\left(Q_{t} h f\right) & =\int Q_{t} h(\sqrt{f}-c)^{2} \mathrm{~d} \mu+2 c \int Q_{t} h(\sqrt{f}-c) \mathrm{d} \mu+c^{2} \int Q_{t} h \mathrm{~d} \mu \\
& =\int Q_{t} h(\sqrt{f}-c)^{2} \mathrm{~d} \mu+2 c \int\left(Q_{t} h-m_{t}\right)(\sqrt{f}-c) \mathrm{d} \mu+c^{2} m_{t}
\end{aligned}
$$

Taking any interval $[a, b] \subset \mathbb{R}^{+}$and any nonnegative $\phi \in C^{1}([a, b])$, we integrate both sides to get

$$
\begin{aligned}
& \mathbb{I}_{0}:=\int_{a}^{b} \mu\left(Q_{t} h f\right) \phi \mathrm{d} t \\
= & \int_{a}^{b} \mu\left(Q_{t} h(\sqrt{f}-c)^{2}\right) \phi \mathrm{d} t+2 c \int_{a}^{b} \mu\left(\left(Q_{t} h-m_{t}\right)(\sqrt{f}-c)\right) \phi \mathrm{d} t+c^{2} \int_{a}^{b} m_{t} \phi \mathrm{~d} t .
\end{aligned}
$$

For convenience, denote the right-hand three terms by $\mathbb{I}_{1}, \mathbb{I}_{2}, \mathbb{I}_{3}$ respectively. Using the Cauchy-Schwarz, Hölder and Poincaré inequalities yields for any $\lambda>0$

$$
\begin{aligned}
\mathbb{I}_{2} & =2 c \int\left(\int_{a}^{b}\left(Q_{t} h-m_{t}\right) \phi(t) \mathrm{d} t\right)(\sqrt{f}-c) \mathrm{d} \mu \\
& \leqslant \lambda c^{2} \int\left(\int_{a}^{b}\left(Q_{t} h-m_{t}\right) \phi(t) \mathrm{d} t\right)^{2} \mathrm{~d} \mu+\frac{1}{\lambda} \mu\left((\sqrt{f}-c)^{2}\right) \\
& \leqslant \lambda c^{2}(b-a) \iint_{a}^{b}\left(Q_{t} h-m_{t}\right)^{2} \phi^{2}(t) \mathrm{d} t \mathrm{~d} \mu+\frac{1}{\lambda} \sigma^{2} \\
& =\lambda c^{2}(b-a) \int_{a}^{b} \mu\left(\left(Q_{t} h-m_{t}\right)^{2}\right) \phi^{2}(t) \mathrm{d} t+\frac{1}{\lambda} \sigma^{2} \\
& \leqslant \lambda c^{2}(b-a) C_{P} \int_{a}^{b} \mu\left(\left|\nabla Q_{t} h\right|^{2}\right) \phi^{2}(t) \mathrm{d} t+\frac{1}{\lambda} \sigma^{2} \\
& =2 \lambda c^{2}(b-a) C_{P} \iint_{a}^{b}-\frac{\mathrm{d}}{\mathrm{~d} t} Q_{t} h \phi^{2}(t) \mathrm{d} t \mathrm{~d} \mu+\frac{1}{\lambda} \sigma^{2}
\end{aligned}
$$

where the last step comes from the Hamilton-Jacobi equation. Using the integration by parts gives

$$
\int_{a}^{b}-\frac{\mathrm{d}}{\mathrm{~d} t} Q_{t} h \phi^{2}(t) \mathrm{d} t=Q_{a} h \phi^{2}(a)-Q_{b} h \phi^{2}(b)+\int_{a}^{b} Q_{t} h \cdot 2 \phi \phi^{\prime} \mathrm{d} t
$$

If $\phi(a)=\phi(b)=0$, we have further

$$
\mathbb{I}_{2} \leqslant 4 \lambda c^{2}(b-a) C_{P} \int_{a}^{b} m_{t} \phi \phi^{\prime} \mathrm{d} t+\frac{1}{\lambda} \sigma^{2}
$$

and then

$$
\mathrm{I}_{2}+\mathbb{I}_{3} \leqslant c^{2} \int_{a}^{b} m_{t} \phi\left[4 \lambda(b-a) C_{P} \phi^{\prime}+1\right] \mathrm{d} t+\frac{1}{\lambda} \sigma^{2} .
$$

Now we want to drop the first integral on the right side of above inequality. For instance, take $a=\frac{1}{2}, b=1, \phi(t)=(t-a)(b-t)$ (satisfying $\phi(a)=\phi(b)=0, \phi \geqslant 0$ and $\left.\left|\phi^{\prime}\right| \leqslant \frac{1}{2}\right)$, and $\lambda=C_{P}^{-1}$, then for $t \in[a, b]$, the quantity

$$
\psi:=\left(4 \lambda(b-a) C_{P} \phi^{\prime}+1\right) \geqslant 0,
$$

The Poincaré inequality and quadratic transportation-variance inequalities
which implies $\int_{a}^{b} m_{t} \phi \psi \mathrm{~d} t \leqslant 0$ since the monotonicity of Q_{t} in t gives $m_{t}=\mu\left(Q_{t} h\right) \leqslant$ $\mu(h)=0$. Hence $\mathbb{I}_{2}+\mathbb{I}_{3} \leqslant C_{P} \sigma^{2}$.

Finally, combining all above estimates yields

$$
\mathbb{I}_{0} \leqslant \mathbb{I}_{1}+C_{P} \sigma^{2}
$$

Denote $M=\int_{a}^{b} \phi \mathrm{~d} t=\frac{1}{48}$, it follows

$$
M \cdot \mu\left(Q_{b} h f\right) \leqslant \mathbb{I}_{0} \leqslant \mathbb{I}_{1}+C_{P} \sigma^{2} \leqslant M \cdot \mu\left(Q_{a} h(\sqrt{f}-c)^{2}\right)+C_{P} \sigma^{2},
$$

which implies by the Kantorovich dual of W_{2}-distance that

$$
\frac{M}{2 b} W_{2}^{2}(f \mu, \mu) \leqslant \frac{M}{2 a} \sigma^{2} W_{2}^{2}\left(\frac{(\sqrt{f}-c)^{2}}{\sigma^{2}} \mu, \mu\right)+C_{P} \sigma^{2} .
$$

The proof is completed.
When we check the proof, for any θ still holds

$$
\begin{aligned}
\mu\left(Q_{t} h f\right) & =\mu\left(Q_{t} h(\sqrt{f}-\theta)^{2}\right)+2 \theta \mu\left(Q_{t} h(\sqrt{f}-\theta)\right)+\theta^{2} \mu\left(Q_{t} h\right) \\
& =\mu\left(Q_{t} h(\sqrt{f}-\theta)^{2}\right)+2 \theta \mu\left(\left(Q_{t} h-m_{t}\right)(\sqrt{f}-\theta)\right)+\left(2 \theta c-\theta^{2}\right) \mu\left(Q_{t} h\right) \\
& =\mu\left(Q_{t} h(\sqrt{f}-\theta)^{2}\right)+2 \theta \mu\left(\left(Q_{t} h-m_{t}\right)(\sqrt{f}-c)\right)+\left(2 \theta c-\theta^{2}\right) \mu\left(Q_{t} h\right) .
\end{aligned}
$$

Denote $\sigma_{\theta}^{2}=\mu\left((\sqrt{f}-\theta)^{2}\right)$. Once $\theta \in(0,2 c)$, we have by the same argument

$$
W_{2}^{2}(f \mu, \mu) \leqslant C_{1}(\theta) \sigma_{\theta}^{2} W_{2}^{2}\left(\frac{(\sqrt{f}-\theta)^{2}}{\sigma_{\theta}^{2}} \mu, \mu\right)+C_{2}(\theta) C_{P} \sigma^{2}
$$

where $C_{1}(\theta)$ and $C_{2}(\theta)$ are two constants depending on θ.

7 Application to quadratic transportation-information inequality

According to $[4,5,13]$, the Lyapunov condition (1.4) implies that there are two constants $C_{3}, C_{4}>0$ such that

$$
\begin{equation*}
\int d^{2}\left(x_{0}, \cdot\right) h^{2} \mathrm{~d} \mu \leqslant C_{3} \int|\nabla h|^{2} \mathrm{~d} \mu+C_{4} \int h^{2} \mathrm{~d} \mu, \tag{7.1}
\end{equation*}
$$

and then implies $\mathrm{W}_{2} \mathrm{I}$ by [13], which partially depends on two facts that (7.1) implies $\mathrm{W}_{2} \mathrm{H}$ and $\mathrm{W}_{2} \mathrm{H}$ has a Bobkov-Götze's characterization.

Now there appears another way. For unbounded manifolds, (7.1) implies there exists some $r>0$ such that

$$
\int d^{2}\left(x_{0}, \cdot\right) h^{2} \mathrm{~d} \mu \leqslant C_{5} \int|\nabla h|^{2} \mathrm{~d} \mu+C_{6} \int_{d\left(x_{0}, \cdot\right) \leqslant r} h^{2} \mathrm{~d} \mu,
$$

which leads to PI by [1]. Then using Theorem 1.5 and (7.1) and PI yields

$$
W_{2}^{2}(\nu, \mu) \leqslant 2 C_{1} \int\left(d^{2}\left(x_{0}, \cdot\right)+\mu\left(d^{2}\left(x_{0}, \cdot\right)\right)\right)(\sqrt{f}-c)^{2} \mathrm{~d} \mu+C_{2} \sigma^{2} \leqslant C_{7} \mathrm{I}_{\mu}(\nu \mid \mu)
$$

where we use the fact that for any x and any bounded h with $\mu(h)=0$ holds

$$
Q_{1} h(x) \leqslant \int h(y)+\frac{1}{2} d^{2}(x, y) \mathrm{d} \mu(y) \leqslant d^{2}\left(x_{0}, \cdot\right)+\mu\left(d^{2}\left(x_{0}, \cdot\right)\right) .
$$

Hence we reach $\mathrm{W}_{2} \mathrm{I}$.

The Poincaré inequality and quadratic transportation-variance inequalities

References

[1] Bakry, D., Barthe, F., Cattiaux, P., Guillin, A.: A simple proof of the Poincaré inequality for a large class of measures including the logconcave case, Electron. Commun. Probab. 13 (2008), 60-66. MR-2386063
[2] Bakry D., Gentil I., and Ledoux M.: Analysis and geometry of Markov diffusion operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 348. Springer, Cham, 2014. MR-3155209
[3] Bobkov S. G., Götze F.: Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal. 163 (1999), 1-28. MR-1682772
[4] Cattiaux P., Guillin A.: Functional Inequalities via Lyapunov conditions. In Optimal transportation, Theory and applications, London Mathematical Society Lecture Notes Series, 413, 274-287. Cambridge Univ. Press, 2014. MR-3328999
[5] Cattiaux P., Guillin A., and Wu L.-M.: A note on Talagrands transportation inequality and logarithmic Sobolev inequality, Proba. Theory Relat. Fields 148 (2010), no. 1-2, 285-304 MR-2653230
[6] Ding Y.: A note on quadratic transportation and divergence inequality, Statist. Probab. Lett. 100 (2015), 115-123. MR-3324082
[7] Evans L. C.: Partial differential equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. MR-2597943
[8] Gozlan N., Roberto C., and Samson P. M.: A new characterization of Talagrand's transportentropy inequalities and applications, Ann. Probab. 39 (2011), no. 3, 857-880. MR-2789577
[9] Guillin A., Léonard C., Wu L.-M., and Yao N.: Transportation information inequalities for Markov processes, Probab. Theory Relat. Fields 144 (2009), no. 3-4, 669-696. MR-2496446
[10] Jourdain B.: Equivalence of the Poincaré inequality with a transport-chi-square inequality in dimension one, Electron. Commun. Probab. 17 (2012), no. 43, 1-12. MR-2981899
[11] Kuwada K.: Duality on gradient estimates and Wasserstein controls, J. Funct. Anal. 258 (2010), 3758-3774. MR-2606871
[12] Ledoux M.: Remarks on some transportation cost inequalities, preprint (2018), see the website https://perso.math.univ-toulouse.fr/ledoux/publications-3/.
[13] Liu Y.: A new characterization of quadratic transportation-information inequalities, Probab. Theory Related Fields 168 (2017), 675-689. MR-3663628
[14] Milman E.: Properties of isoperimetric, functional and transport-entropy inequalities via concentration, Probab. Theory Related Fields 152 (2012), no. 3-4, 475-507. MR-2892954
[15] Otto F., Villani C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173 (2000), no. 2, 361-400. MR-1760620
[16] Villani C.: Topics in Optimal Transportation. Graduate Studies in Mathematics 58, American Mathematical Society, Providence RI, 2003. MR-1964483
[17] Villani C.: Optimal Transport: old and new. Grundlehren der Mathematischen Wissenschaf-ten 338, Springer-Verlag, Berlin, 2009. MR-2459454
[18] Wang F.-Y.: Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theory and Relat. Fields 109 (1997), no. 3, 417-424. MR-1481127
[19] Wang F.-Y.: Exponential contraction in Wasserstein distances for diffusion semigroups with negative curvature, Potential Anal., to appear.

Acknowledgments. I am so grateful to the anonymous referee for his/her conscientious reading with many suggestions and comments on the first version of this paper. I also thank Prof. Li-Ming Wu and Prof. Feng-Yu Wang very much for their kindly comments during the conferences held in WHU and BNU respectively. The author is supported by NSFC (no. 11431014, no. 11688101), AMSS research grant (no. Y129161ZZ1), and Key Laboratory of Random Complex Structures and Data, Academy of Mathematics and Systems Science, Chinese Academy of Sciences (No. 2008DP173182).

[^0]: *Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China. E-mail: liuyuan@amss.ac. cn
 ${ }^{\dagger}$ University of Chinese Academy of Sciences, Beijing 100049, China.

