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Abstract

We prove existence and uniqueness of distributional solutions to the KPZ equation
globally in space and time, with techniques from paracontrolled analysis. Our main
tool for extending the analysis on the torus to the full space is a comparison result
that gives quantitative upper and lower bounds for the solution. We then extend
our analysis to provide a path-by-path construction of the random directed polymer
measure on the real line and we derive a variational characterisation of the solution
to the KPZ equation.
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1 Introduction

In this work we solve the Kardar-Parisi-Zhang (KPZ) equation on the real line, i.e. we
construct a unique h : R≥0 ×R→ R such that

(∂t −
1

2
∆x)h =

1

2
(∂xh)2 + ξ, h(0) = h, (1.1)

where ξ is a Gaussian space-time white noise, the generalized Gaussian process on
R≥0 ×R with singular covariance structure E[ξ(t, x)ξ(s, y)] = δ(t−s)δ(x−y).

The KPZ equation was introduced in [32] as a model for the growth of a one-
dimensional interface that separates two two-dimensional phases of which one invades
the other. The conjecture of [32], now called strong KPZ universality conjecture, was
that any (1 + 1)–dimensional (one time and one space dimension) interface growth model
that is subject to random influences, surface tension, and lateral growth, shows the same
large scale behavior under the now famous 1−2−3 scaling, and that the KPZ equation
provides a prototypical example of such a model. Since then it became apparent that
there is a second, weaker universality in the class of (1+1)–dimensional interface growth
models: If the lateral growth or the random influence is very weak, then according to
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KPZ on R

the weak KPZ universality conjecture the model is expected to be well approximated
by the KPZ equation on large scales. See [40, 13, 41] for nice introductions to these
universality questions.

The difficulty with the KPZ equation is however that its solution h is not a differen-
tiable function in x, and therefore it is not clear how to interpret the nonlinearity (∂xh)2

on the right hand side of (1.1). This problem can be avoided by applying the Cole-Hopf
transform: The process w = eh formally solves the stochastic heat equation

(∂t −
1

2
∆x)w = wξ, w(0) = eh, (1.2)

which can be analyzed using Itô integration [44]. This was already observed by Kardar,
Parisi and Zhang [32], and the first mathematically rigorous formulation is due to Bertini,
Cancrini and Jona-Lasinio [4] who simply define h = logw for the solution w to (1.2), a
process that is strictly positive by a strong comparison result of Mueller [39]. Results
such as the scaling limit proven by Bertini and Giacomin [5] suggested that h is the
physically relevant solution process, but nonetheless it remained unclear if and in what
sense the Cole-Hopf solution actually solves the KPZ equation.

A rigorous proof of the existence of distributional solutions to the KPZ equation on
the torus was a milestone in the theory, reached by Hairer via rough paths [26] as well as
through his theory of regularity structures [27, 16]. Similar results have been obtained
by Gubinelli, Imkeller and Perkowski via paracontrolled distributions [21, 24]. These
theories were the starting point for the new research field of singular SPDEs, with many
developments in recent years that allow to study more singular or quasilinear equations,
with boundary conditions or on manifolds, and to derive qualitative properties of the
solutions.

At the center of this new pathwise approach to SPDEs lies the idea of expanding the
solution on small scales via the driving noise and higher order terms constructed from it.
The non-linearity can then be controlled in terms of the “enhanced noise”, called model
in regularity structures, i.e. the noise together with the higher order terms appearing in
the expansion of the solution, and the solution to the equation becomes a continuous
functional of the enhanced noise. However, in many situations (including for the KPZ
equation) the higher order terms can only be constructed with the help of a suitable
renormalisation, and this means that the solution we eventually find does not solve the
original equation, but a renormalised version of it [9].

But while we now have a good understanding in what sense the Cole-Hopf solution
solves the KPZ equation and how to interpret its renormalisation, all this is restricted
to the equation on the torus or in a finite volume with boundary conditions [17, 14, 19].
Since one of the main interests in the KPZ equation comes from its large scale behavior
it would be more natural to solve it on R, a space that can be arbitrarily rescaled. Using
the probabilistic notion of energy solutions [18, 22] it is possible to give an intrinsic
formulation of the KPZ equation on R, but this is essentially restricted to stationary
initial conditions [25].

Here we extend the pathwise approach described above, implemented in the language
of paracontrolled distributions, to develop a solution theory for the KPZ equation on
R for a fairly general set of initial conditions. The additional difficulty compared to
the equation in bounded volume is that here we have to work in weighted function
spaces, and the weights do not mix well with the nonlinearity: Roughly speaking, if the
growth of ∂xh can be controlled with the weight z, then we need the stronger weight
z2 to control (∂xh)2 and this prevents us from setting up a Picard iteration. That is the
reason why most works on singular SPDEs deal with equations in finite volume. First
steps to overcome this restriction were taken by Hairer and Labbé [28, 29] in their
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study of the linear rough heat equation and the linear parabolic Anderson model on the
whole Euclidean space. For non-linear equations, a priori estimates are a natural and
powerful tool and they were very successful in the study of the Φ4

d equations in the work
by Mourrat and Weber [38, 37], by Gubinelli and Hofmanova [20], and by Barashkov and
Gubinelli [3], all relying on the damping induced by the term −φ3. But such estimates
depend strongly on the structure of the equation and this prevents the development of
a general solution theory for singular SPDEs in infinite volume. In particular the KPZ
equation is neither linear nor does it have a damping term, and therefore we need a
different approach to control its solution in infinite volume.

A construction of pathwise solutions to the KPZ equation on the real line can probably
be obtained starting from Hairer-Labbé’s regularity structure based solution w to the
stochastic heat equation [29]. It should be possible to adapt the arguments from the
proof of [11, Theorem 5.1] to deduce a strong maximum principle for the (regularity
structure version of the) stochastic heat equation and thus the strict positivity of w.
Then a chain rule in regularity structures should show, similarly as in [24, Section 4.3],
that h = logw solves the KPZ equation in the regularity structure sense. The problem
with that approach is that it gives no control at all for the growth of h at infinity, and
therefore there is no hope to get uniqueness – after all there is non-uniqueness even
for classical solutions to the heat equation if we allow for too much growth. In this
work we derive a priori L∞ estimates with linear growth for the solution to the KPZ
equation on R, which give rise to an existence and uniqueness result and thus a complete
theory. To derive these bounds we use the comparison principle and the link between
KPZ equation and stochastic heat equation through the Cole-Hopf transform. There are
several known comparison results for the stochastic heat equation, mostly based on
probabilistic techniques and often relying on the specific probabilistic properties of the
Gaussian noise. But although this leads to sharp bounds for the growth at infinity, see
for example the work by Conus, Joseph and Khoshnevisan [12], there seem to be only
qualitative results for the decay at infinity, a notable result being the strict positivity of
the solution proven by Mueller [39] (and the regularity structure version of that result by
Cannizzaro, Friz and Gassiat [11] that we mentioned above). The analytic approach to
SPDEs we follow allows us to use the full power of classical comparison results, providing
us with quantitative and effective, if not sharp, upper and lower bounds, by restricting
ourselves to a suitable class of strictly positive initial conditions. These estimates are
very weak in terms of regularity but sufficient to avoid singularities when applying the
Cole-Hopf transform, and this allows us to lift the a priori bounds to paracontrolled
topologies and to prove uniqueness. Our solution is locally 1/2−ε Hölder continuous in
space and 1/4−ε in time, and it has linear growth at infinity whereas its “paracontrolled
derivative” may have sub-exponential growth.

As an application of our results, we give two alternative formulations of the KPZ
equation by linking it with the random directed polymer measure and with a variational
problem. The random directed polymer measure formally has the density

dQ

dP
=

1

Z
exp

(∫ T

0

ξ(T − t,Wt) dt

)
with respect to the Wiener measure P on C([0, T ]), where Z is a normalisation constant.
On the torus this measure was constructed by Delarue and Diel [15], see also [10], who
observed that Q formally solves the SDE with distributional drift

dXt = ∂xh(T − t,Xt)dt+ dWt,

and then proceeded to construct a unique martingale solution X by solving the Kol-
mogorov backward equation using rough path integrals. On the real line Alberts, Khanin
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and Quastel [1] gave a different, probabilistic construction of Q, based on Kolmogorov’s
extension theorem, but they did not establish the link to the SDE beyond formal calcula-
tions. Here we combine the approaches of [15] and [1], which have existed independently
so far, and give a rigorous explanation of the above SDE. We give a path-by-path con-
struction of the random directed polymer measure that does not depend on the statistical
properties of the white noise, but only on the “model” associated to it. We also show
that the KPZ equation can be interpreted as the value function of the stochastic control
problem

h(t, x) = sup
v
Ex

[
h(γvt )−

∫ t

0

ξ(t− s, γvs ) ds− 1

2

∫ t

0

v2
s ds

∣∣∣ξ],
where under Px

γvt = x+

∫ t

0

vs ds+Wt

for a Brownian motion W that is independent of ξ and where the supremum is taken
over all processes v on [0, T ] adapted to W , but possibly dependent on the realization of
ξ. This representation was previously derived in [24] for the KPZ equation on the torus.

1.1 Structure

In the first section we introduce techniques from paracontrolled calculus for SPDEs
in a weighted setting, cf. [21, 24, 36]. Among them are the commutation and product
estimates from Lemmata 2.10 and 2.8, as well as tailor-made Schauder estimates for
the weighted setting, e.g. Lemma 2.14. The existence and uniqueness of solutions to
the KPZ equation follows from a comparison result, Lemma 3.10. The lower estimate
guarantees that the Cole-Hopf solution is the unique paracontrolled solution to the KPZ
equation and that the latter depends continuously on the parameters of the equation
(Theorem 3.19). When considering uniqueness of solutions to PDEs on the whole space
it is important to add some weight assumptions on the initial conditions. In this work
we assume roughly linear growth of the initial condition (for the precise statement see
Assumption 3.7 and Table 2). This is imposed upon us by the Cole-Hopf transform and
the weighted Schauder estimates. These conditions suffice to start the equation in the
invariant measure, the two sided Brownian motion [31, 7].

Section 4 addresses the random directed polymer measure Q. We prove sub-
exponential moment estimates (Lemma 4.5) and we show that the polymer measure is
absolutely continuous with respect to a reference measure PU which we refer to as the
partial Girsanov transform (cf. [24, Section 7]) and which is in turn singular with respect
to the Wiener measure. We conclude with two characterizations of the solution h to the
KPZ equation. The first, via the Feynman-Kac formula (Remark 4.13), states that the
solution h is the free energy associated to the measure Q. The second is a variational
representation à la Boué-Dupuis (Theorem 4.16), cf. [8, 43]. The rest of this work is
dedicated to technical, yet crucial, results. In particular (Section 5) we prove a solution
theorem for linear SPDEs, which applies to all linear equations studied in [29, 24, 36].

Remark 1.1. Our approach uses the Cole-Hopf transform in several crucial steps. But
we expect that the transform can be entirely avoided by making stronger use of the
variational formulation of the KPZ equation, as soon as we can prove the following
conjecture: Let, with the notation of Section 2 below, X ∈ CC

−1/2−ε
p(ε) for all ε > 0, let

(∂t − 1
2∆x)Q = ∂xX, and let Q �X ∈ CC−εp(ε) for all ε > 0. Then we conjecture that the

paracontrolled solution u to

∂tu =
1

2
∆xu+ ∂x(uX) + f, u(0) = 0,
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grows sublinearly in the L∞ norm in space, provided that f does. That is, for some δ < 1

sup
t∈[0,T ]

sup
x∈R

|f(t, x)|
1 + |x|δ

<∞ ⇒ sup
t∈[0,T ]

sup
x∈R

|u(t, x)|
1 + |x|δ

<∞.

While this conjecture seems very plausible, we are at the moment not able to prove or
disprove it, and we leave it for future work.

2 Preliminaries

2.1 Notations

Define N = {1, 2, 3, . . . } and N0 = N
⋃
{0}. For inequalities we use the following

convention. For a set X and two functions f, g : X → R we write f . g if there exists a
constant C > 0 such that for all x ∈X : f(x) ≤ Cg(x). When the constant C depends on
some parameter κ and we want to underline this fact we shall write: f .κ g. For vector
spaces X ⊆ V and f, g ∈ V we shall write equations of the kind f = g +X if f−g ∈ X.

2.2 Fourier transform

We review basic knowledge and notations regarding the Fourier transform. We define
the space of Schwartz functions S (R) as the space of smooth and rapidly decaying
functions. The dual space S ′(R) is the space of tempered distributions. Let ϕ ∈ S (R),
then we define for all ξ ∈ R:

ϕ̂(ξ) = Fϕ (ξ) =

∫
R

ϕ(x)e−ixξdx

and for ϕ ∈ S ′(R) we define the Fourier transform in the sense of distributions:

〈ϕ̂, ψ〉 = 〈Fϕ,ψ〉 = 〈ϕ,Fψ〉, ∀ψ ∈ S (R) .

For ϕ ∈ S (R) the Fourier transform has the inverse

F−1ϕ (x) =
1

2π

∫
R

ϕ(ξ)eixξdξ.

Since we will consider functions that have more than just polynomial growth at infinity,
it is necessary that we go beyond the setting of tempered distributions and consider
tempered ultra-distributions. This theory is presented in [42] or [6]. For a simple and
hands-on introduction to all the tools we need we refer to [36].

Consider the function
ω(x) = |x|δ, δ ∈ (0, 1)

with δ fixed once and for all. Using this weight, we define spaces of exponentially
decaying Schwartz functions and their duals as follows.

Definition 2.1. For f ∈ S (R)we define the seminorms

pα,λ(f) = sup
x∈R

eλω(x)|∂αf(x)|

πα,λ(f) = sup
x∈R

eλω(x)|∂αF (f)(x)|

for λ > 0 and α ∈ Nd0, and the associated locally convex space

Sω(R)=
{
f ∈ S (R)

∣∣ pα,λ(f) <∞, πα,λ(f) <∞∀λ > 0, α ∈ Nd0
}
,

and we denote by S ′ω(R)its dual, which we call the space of tempered ultra-distributions.
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We have the inclusions

Sω(R)( S (R)( S ′(R) ( S ′ω(R).

Finally, we can define the Fourier transform on the space of tempered ultra-distributions
just as before: For f ∈ S ′ω(R)we set

〈Ff, ϕ〉 = 〈f,Fϕ〉, 〈F−1f, ϕ〉 = 〈f,F−1ϕ〉.

We have introduced the Fourier Transform for exponentially decaying functions so that
we can extend the Littlewood – Paley theory also to weighted functions. We now fix the
weights that we are allowed to use.

Definition 2.2. We denote by ρ(ω) the set of all measurable, strictly positive functions
z : R→ (0,∞) such that for some λ > 0 and uniformly over all x, y ∈ R

z(x)−1 . z(y)−1eλω(x−y).

If this bound holds true we say that z is ω-moderate.

The need for considering ω-moderate weights can be explained by the following
calculation: to estimate the convolution ϕ ∗ f we can compute∣∣∣∣ϕ ∗ f(x)

z(x)

∣∣∣∣ . 〈|ϕ(x− ·)eλω(x−·)|, |f(·)/z(·)|〉.

Now we can intuitively bound the last term by some weighted norm of f assuming that
ϕ is fixed and rapidly decaying.

Definition 2.3. In this work we shall consider the following two families of polynomial
(resp. exponential) weights that lie in ρ(ω),

p(a)(x) = (1 + |x|)a, a > 0,

e(l + t)(x) = exp((l + t)|x|δ), l ∈ R, t ≥ 0, δ ∈ (0, 1).

Note that we distinguish the parameters t and l because later we will consider time
dependent weights.

2.3 Littlewood–Paley theory

In this section we review the construction of weighted Hölder–Besov spaces. For a
comprehensive introduction to Littlewood–Paley theory we refer to [2]. For a treatment
of weighted spaces we also refer to [36, 35]. Following their constructions we fix a dyadic
partition of unity generated by two smooth functions ρ−1 and ρ, that belong to Sω(R)

and are supported in a ball around the origin B and an annulus around the origin A ,
respectively. We then define ρj(x) = ρ(2−jx), j ≥ 0. Now we define the Littlewood–Paley
blocks: for ϕ ∈ S ′ω(R) and j ≥ −1 let ∆jϕ = F−1 (ρjϕ̂). We will use the following
notation for paraproducts:

Sif =
∑
j≤i−1

∆jf, f 4 g =
∑
i

Si−1∆ig, f � g =
∑
|i−j|≤1

∆if∆jg.

Definition 2.4 (Hölder–Besov spaces). For any α ∈ R and weight function z ∈ ρ(ω) we
define the space:

C α
z =

{
ϕ ∈ S ′ω(R) | ‖ϕ‖Cα

z
=
∥∥2αj ‖∆jϕ/z‖L∞

∥∥
`∞

<∞
}
.

We denote with C α for the space C α
z with weight z = 1 and use the norm

‖f‖∞,z = sup
x∈R

∣∣∣∣f(x)

z(x)

∣∣∣∣ .
EJP 24 (2019), paper 117.
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The following result is of central importance in Littlewood–Paley theory. The classical
proof can be found for example in [2, Lemma 2.1]. Here we will just discuss the proof in
the weighted case. The main difference is that the inequality does not hold uniformly
over all scaling factors λ. Instead we have to assume that λ is bounded away from zero.

Proposition 2.5 (Bernstein inequality). Let B be a ball about the origin, let µ ∈ Nd0 and
z ∈ ρ(ω) a weight function. Write |µ| =

∑d
i=1 µi. Then for any λ ≥ λ0 > 0 and f ∈ L∞z we

have: If supp(Ff) ⊂ λB, then

‖∂µf‖∞,z .λ0,µ λ
|µ|‖f‖∞,z.

Proof. Choose a compactly supported function ψ ∈ Sω(R) with ψ = 1 on B and set
ψλ(·) = ψ(λ−1·). Then

∂µf = ∂µF−1 (ψλFf) = (2π)
d
2 f ∗ ∂µF−1ψλ.

Now it is immediate to see that F−1ψλ(x) = λdF−1ψ(λx), and hence

∂µF−1ψλ(x) = λd+|µ|∂µF−1ψ(λx).

Moreover, since z ∈ ρ(ω) there exists ν > 0 such that

1

z(x)
.
eνω(x−y)

z(y)
≤ ecω(λ(x−y))

z(y)
,

where in the last step we used that ω(x) = |x|δ, λ ≥ λ0 and c = ν/λδ0. So eventually we
can estimate:

‖∂µf‖∞,z .λ0

∥∥∥∥∫
R

ecω(λ(x−y))

z(y)

∣∣∣f(y)λd+|µ|∂µF−1ψ(λ(x− y))
∣∣∣ dy∥∥∥∥

∞

. λ|µ| ‖f‖∞,z
∥∥ecω(λ(·))∂µF−1ψ(λ(·))λd

∥∥
L1

.ψ,δ,z ‖f‖∞,z λ
|µ|

where in the last step we changed variables and used the assumption that ψ is in Sω(R)

and the growth assumptions on z to conclude that the second norm is finite uniformly
over all λ ≥ λ0.

As a simple consequence of this result one finds that for any distribution f , uniformly
over j ≥ −1, ‖∆j∂

µf‖∞,z . 2j|µ|‖∆jf‖∞,z, which delivers the following result.

Corollary 2.6. If f ∈ C α
z then ∂µf ∈ C

α−|µ|
z with

‖∂µf‖
C
α−|µ|
z

. ‖f‖Cα
z

uniformly over all distributions f .

Moreover we can also deduce the characterisation of Hölder–Besov spaces.

Corollary 2.7 ([35], Lemma 2.1.23). For any α ∈ (0,∞) \ N and z ∈ ρ(ω) we find the
equivalence between the following norms:

‖f‖Cα
z
� ‖f‖∞,z +

∑
µ∈Nd
|µ|=bαc

(
‖∂µf‖∞,z + sup

x
sup
|x−y|≤1

|∂µf(x)− ∂µf(y)|
z(x)|x− y|α−bαc

)
.

We conclude this section with a first set of paraproduct estimates. For this reason we
define the “commutator” C(f, g, h) = (f 4 g)� h− f(g � h).

EJP 24 (2019), paper 117.
Page 7/56

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP362
http://www.imstat.org/ejp/


KPZ on R

Lemma 2.8. Consider α, β, γ ∈ R, f ∈ C α
z1 , g ∈ C β

z2 and h ∈ C γ
z3 and let us write z = z1 ·z2,

where zi ∈ ρ(ω). Then

‖f 4 g‖β,z . ‖f‖∞,z1 ‖g‖β,z2 ,

‖f 4 g‖α+β,z . ‖f‖α,z1 ‖g‖β,z2 if α < 0,

‖f � g‖α+β,z . ‖f‖α,z1 ‖g‖β,z2 if α+ β > 0.

We also have that for z = z1 · z2 · z3:

‖f 4 (g 4 h)−(fg)4 h‖α+γ,z . ‖f‖α,z1‖g‖α,z2‖h‖γ,z3 if α = β > 0, γ ∈ R,
‖C(f, g, h)‖β+γ,z . ‖f‖α,z1 ‖g‖β,z2 ‖h‖γ,z3 if α+β+γ > 0 and β+γ 6= 0.

Proof. The first three estimates are shown in [36, Lemma 4.2]. The estimate for the
commutator C is from [36, Lemma 4.4].

2.4 Time dependence

Throughout this work we mostly use an arbitrary but finite time horizon T > 0 which
will be fixed from now on. When we change the time horizon we will explicitly state it.
We define the heat operator L and the associated semigroup Pt:

L = ∂t−∆x, Ptf(x) =

∫
R

1√
2πt

e−
|x−y|2

2t f(y)dy, (2.1)

with ∆x = ∂2
x. In this section the aim is to encode the following information:

1. Time dependent weights.

2. Parabolic space-time regularity.

3. Blow-up at time t = 0.

Here as before we follow the notation of [36]. For an arbitrary horizon Tr ≥ 0 we denote
by

X = (X (s))s∈[0,Tr]

an increasing sequence of Banach spaces. A typical example could be the sequence
X (s) = C α

e(l+s). In fact we will use only two kinds of time dependent weights, which we
will refer to through the following abuse of notation:

e(l + t)p(a) = (e(l + t)(·)p(a)(·))t∈[0,T ],

e(l + t) = (e(l + t)(·))t∈[0,T ],

where the t on the left-hand side is only a formal way of representing time dependence.
In applications it will always be clear whether t is fixed or whether we are considering a
time-dependent weight. Now we define the following space of functions for given β ≥ 0:

M βX ([T`, Tr]) =
{
f : ([T`, Tr])→ S ′ω such that

t 7→ tβf(t) is continuous from [T`, Tr] to X (Tr) and

‖f‖Mβ(X ) = sup
T`<t≤Tr

∥∥tβf(t)
∥∥

X (t)
<∞

}
We also write CX ([T`, Tr]) for the space M 0X ([T`, Tr]). Similarly we can define Hölder
continuity through the following norm for α ∈ (0, 1):

‖f‖CαX ([T`,Tr]) = sup
T`<t≤Tr

‖f(t)‖X (t) + sup
T`<s,t≤Tr

s6=t

‖f(t)− f(s)‖X (t∨s)

|t− s|α
.
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So eventually we find the parabolically scaled Hölder spaces with respect to a possibly
time dependent z and of regularity α ∈ (0, 2) with a blow-up of order β in zero and for
parameters 0 ≤ T` ≤ Tr:

L β,α
z ([T`, Tr]) =

{
f : [T`, Tr]→ S ′ω, such that

‖f‖L β,α
z

=
∥∥t 7→ tβf(t)

∥∥
C
α
2 L∞z ([T`,Tr])

+ ‖f‖MβCα
z ([T`,Tr]) < +∞

}
.

In general we omit from writing the dependence on the time interval [0, T ]. Finally, we
will write L α

z for L 0,α
z .

With these definitions at hand we are ready to go on with our theory. First, we
introduce parabolically scaled paraproducts. Let ϕ : R→ R≥0 be a smooth function with
compact support and total mass 1 which is non-predictive, that is:

supp(ϕ) ⊂ [0,+∞).

Then for any continuous function f : R≥0 →X (here X is any Banach space) and i ≥ 0

we define the operator

Qif(t) =

∫
R

22iϕ(22i(t− s))f(s ∨ 0)ds =

t∫
−∞

22iϕ(22i(t− s))f(s ∨ 0)ds.

Remark 2.9. As in [24, 36] we silently identify Qif with Qi1t>0f if f has a blow-up in
zero, i.e. if f ∈M βX for β > 0.

We have suggestively called ϕ non-predictive because thanks to the condition on its
support, Qif(t) depends only on f

∣∣
[0,t]

. Now we can introduce the parabolically scaled
paraproduct

f≺≺g =
∑
i

(Si−1Qif)∆ig.

With this definition at hand we obtain a second set of paraproduct estimates.

Lemma 2.10. Consider α ∈ R, γ < 0, β ≥ 0. Choose two, possibly time dependent,
weights zi : R≥0 → ρ(ω), for i = 1, 2 such that zi is pointwise increasing in time and
write z(t) = z1(t)z2(t). Then

tβ‖f≺≺g(t)‖Cα
z(t)

. ‖f‖MβL∞z1
([0,t]) ‖g(t)‖Cα

z2(t)
,

tβ‖f≺≺g(t)‖Cα+γ
z(t)

. ‖f‖MβCγ
z1

([0,t]) ‖g(t)‖Cα
z2(t)

.

Moreover, for α ∈ (0, 2) we find the following estimate

‖f≺≺g‖L β,α
z

. ‖f‖L β,δ
z1

(‖g‖CCα
z2

+ ‖Lg‖CCα−2
z2

)

for any δ > 0. Finally, we also have the following commutation results:

tβ‖(L(f≺≺g)− f≺≺(Lg))(t)‖Cα+γ−2
z(t)

. ‖f‖L β,γ
z1

([0,t]) ‖g(t)‖Cα
z2(t)

,

tβ‖(f≺≺g − f 4 g)(t)‖Cα+γ
z(t)

. ‖f‖L β,γ
z1

([0,t]) ‖g(t)‖Cα
z2(t)

.

Proof. These estimates are shown in [36, Lemmas 4.7–4.9].

Now we pass to a result regarding derivatives in L β,α
z spaces.

Lemma 2.11. Consider a parameter α ∈ (0, 1) and a weight z : R≥0 → ρ(ω) which is
pointwise increasing in time. Then

‖∂xf‖L β,α
z

. ‖f‖L β,α+1
z

.
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Proof. Since ‖∂xf(t)‖Cα
z(t)

. ‖f(t)‖Cα+1
z(t)

we can easily control the spatial regularity. Let

us concentrate on the time regularity. We estimate for t ≥ s:

‖∂xf(t)tβ − ∂xf(s)sβ‖∞,z(t) ≤
∞∑

j=−1

‖∂x[∆jf(t)tβ −∆jf(s)sβ ]‖∞,z(t)

Now let us fix a j0 such that 2−j0 ≤ |t− s|1/2 < 2−j0+1. We will use different estimates
on small scales and on large scales. Indeed, an application of Bernstein’s inequality
(Proposition 2.5) gives for the large scales

j0∑
j=−1

‖∂x[∆jf(t)tβ−∆jf(s)sβ ]‖∞,z(t)

.
j0∑

j=−1

2j‖∆j [f(t)tβ−f(s)sβ ]‖∞,z(t) . 2j0 |t− s|
α+1
2 ‖f‖L β,α+1

z
,

while on small scales

∞∑
j=j0+1

‖∆j [∂xf(t)tβ−∂xf(s)sβ ]‖∞,z(t) .
∞∑

j=j0+1

2−jα‖f‖L β,α
z

. 2−j0α‖f‖L β,α
z

.

Substituting 2−j0 ' |t− s|1/2 delivers the required result.

We conclude the preliminaries by stating some important estimates regarding the
heat semigroup, commonly referred to as Schauder estimates. We write

VT`(f)(t) =
t

∫
T`

Pt−sfsds,

where Pt is the semigroup defined by Equation (2.1).

Proposition 2.12. Fix α ∈ (0, 2) and z ∈ ρ(ω).

1. For γ ∈ R such that β = (α+γ)/2 ∈ [0, 1) we find that:

‖P·f‖L β,α
z

. ‖f‖C−γz .

2. If we fix also a ≥ 0 such that α+2a/δ ∈ (0, 2) and β+a/δ ∈ [0, 1) we find that:

‖VT`(f)‖L β,α
e(l+t)

([T`,Tr]) .Th ‖f‖MβC
α+2a/δ−2

e(l+t)p(a)
([T`,Tr])

uniformly over all 0 ≤ T` < Tr ≤ Th.

Proof. These are the weighted analogues of the estimates of [24] or [21] and can be
found as well in [36]. A slight difference is the dependence on the interval [T`, Tr]. Note
that VT`(f)(t) = V (f·+T`)(t−T`). Thus the proof follows by proving:

‖t 7→ (t+κ)βV (f)(t)‖Lα
e(l+t)

.Th ‖(t+κ)βft‖CC
α−2−2a/δ

e(l+t)p(a)
([T`,Tr])

uniformly over κ in [0, Th]. This follows from the same calculations as in [24, Lemma
6.6].

In the previous result the role of e(l + t) and p(a) only comes into play with the
parameter a/δ. Although this seems a minor detail in the statement, it is actually the key
point that allows us to solve linear singular SPDEs on the whole real line with exponential
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weights. This approach has been developed by Hairer and Labbé in [28, 29] and it is
also present in [15, 30].

In the next result we show our last product estimate. Since our definition of the L α

spaces does not allow for negative α we state in the following theorem the classical
result of Young integration with parabolic scaling. Recall the definition of L from
Equation (2.1).

Lemma 2.13 (Young Integration). As before let zi, i = 2 be pointwise increasing, time-
dependent weights. Conisder f ∈ L β,α

z1 and g ∈ L γ
z2 with β ∈ [0, 1) and α, γ ∈ (0, 2). If

α+γ−2 > 0, we have
f · ∂tg ∈ LL β,α+γ

z1·z2

and the following two estimates hold true:

‖V (f · ∂tg)‖L β,α+γ−ε
z1·z2 ([0,Th]) .Th ‖f‖L β,α

z1
([0,Th])‖g‖L γ

z2
([0,Th]),

‖V (f · ∂tg)‖
L
β,α+γ−2a/δ−ε
e(l+t)

([T`,Tr])
.Th ‖f‖L β,α

e(l+t)
([T`,Tr])‖g‖L γ

p(a)
([T`,Tr])

for any ε > 0 and 0 ≤ T` ≤ Tr ≤ Th.

Proof. The proof of this result is the content of Lemma D.3 and the preceding results.

The next result shows how to interpolate between different L β,α
z spaces.

Lemma 2.14. Fix some parameters α ∈ (0, 2), β ∈ [0, 1), ε ∈ [0, α) ∩ [0, 2β] as well as a
time-dependent point-wise increasing weight z and 0 ≤ T` ≤ Tr. Then

‖f‖
L
β−ε/2,ζ
z ([T`,Tr])

. ‖f‖L β,α
z ([T`,Tr]),

for any ζ < α−ε. Finally, for α ∈ (0, 2), β ∈ [0, 1) and ε ∈ [0, α)

‖f‖L β,α−ε
z ([T`,Tr]) . ‖T

β
` f(T`)‖Cα−ε

z(T`)
+ (Tr−T`)ε/2 ‖f‖L β,α

z ([T`,Tr])

Proof. This result is analogous to [36, Lemma 3.10]. We only discuss the first statement.
Note that here we allow also for ε = 2β. This is possible because, using the same
arguments as in the proof of [24, Lemma 6.8] we obtain the following bound (uniformly
over ζ ≤ α−ε):

sup
t∈[0,T ]

‖f(t)‖Cα−2β
z(t)

+ ‖f‖Cα/2−εL∞z . ‖f‖L β,α
z

.

However, it is a priori not clear that f : [0, T ]→ C ζ
z(T ) is a continuous function. Since we

have Hölder continuity in L∞z(T ) of f and a uniform bound in C α−2β
z we can conclude by

interpolation, at the price of an arbitrarily small loss of regularity, which explains the
strict inequality ζ < α−ε.

With these results we end our brief introduction to the theory of paracontrolled
analysis and Schauder estimates.

3 The paracontrolled KPZ equation

Here we briefly review the notion of paracontrolled solutions to the KPZ equation
first introduced in [24] and [21]. For counting regularity we will use the index α. We
will use the index a for counting the polynomial growth of the noise at infinity and we
recall that δ ∈ (0, 1) is used in our definition of ultra-distributions. We will work under
the following standing assumptions on the parameters.

Assumption 3.1.
2

5
< α <

1

2
, 0 ≤ a/δ < 5α−2

6
.
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Here α counts the regularity of the solution to the heat equation with additive
space-time white noise and a counts its polynomial growth at infinity. In general α ∈
(1/3, 1/2) will be sufficient, we will need some tighter control only in Section 4 (see e.g.
Proposition 4.2), while a has to be sufficiently small to apply the results of Theorem 5.5.
We can compile the following rule-of-thumb table.

Table 1: Rule-of-thumb for the Parameters

α δ a

1/2− 1− 0+

Let us introduce the extended data for the KPZ equation. We collect in the next
table all the terms involved. Here and throughout this work we will use the notation
X(·) = ∂xY

(·).

Table 2: Extended Data of the KPZ Equation

Regularity Definition

Y(θ, Y0, c , c )



Y L α
p(1+a) LY = θ

Y L 2α
p(a) LY = 1

2 (∂xY )2 − c
Y L α+1

p(a) LY = ∂xY ∂xY

Y L 2α+1
p(a) LY = ∂xY � ∂xY + c

Y L 2α+1
p(a) LY = 1

2 (∂xY )2 − c
∂xY � ∂xY CC 2α−1

p(a)

X CC α−1
p(a) X = ∂xY

Y L α+1
p(a) LY = ∂xY

Here we assume that θ ∈ LCα/2(R;C∞b (R)) is a (spatially) smooth noise and C∞b (R) is
the space of bounded and infinitely differentiable functions with all derivatives bounded.
The reason for assuming only distributional regularity of θ in the time variable is that
we do not want to exclude spatial mollifications of the space-time white noise, which
are convenient from a probabilistic point of view because they preserve the Markovian
structure of the equation. We solve the equations for the elements in Y(θ) by taking all
initial conditions equal to zero, except Y (0) = Y0 is assumed to be non-trivial. We are
interested in starting the KPZ equation at its invariant measure, and for that purpose it
is convenient to let Y0 be of the form

Y0(x) = B(x) + Cx,

where B is a two sided Brownian motion and C ∈ R (cf. [41, Section 1.4]). Note that we
have added X = ∂xY to the table because we assume that it has a better behavior at
infinity than Y . Indeed, while Y may have superlinear growth at infinity, its derivative
X is started in the invariant measure for the rough Burgers equation, which has the
growth of white noise on R, i.e. it grows less than any polynomial.

We now rigorously define the spaces of functions we will work with. For a finite
collection I of Banach spaces Xi we call product norm on×i∈I Xi the norm: ‖ · ‖×Xi

=

maxi∈I ‖πi(·)‖Xi
with πi being the projection on the i-th coordinate.
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Definition 3.2. We shall call Y ∞kpz be the image of the map Y(θ, Y0, c , c ) in the space

L α
p(1+a) ×L 2α

p(a) ×L α+1
p(a) ×L 2α+1

p(a) ×L 2α+1
p(a) × CC 2α−1

p(a) × CC α−1
p(a)

as we let (θ, Y0, c , c ) vary in LCα/2(R;C∞b (R)) × C∞b (R) × R × R. We define Ykpz

as the closure of the image of Y(θ, Y0, c , c ) in the above space endowed with the
product norm, which we will refer hereafter as ‖ · ‖Ykpz . For any Y ∈ Ykpz we define the
distribution ξ by ξ = LY .

These tools are sufficient to define paracontrolled solutions to the KPZ equation.

Definition 3.3. We say that h is a paracontrolled solution to the KPZ equation (1.1) with
initial condition h ∈ C(R,R) and with external data Y ∈ Ykpz if there exists an κ ∈ R
and β] ∈ (0, 1), β′ ∈ (0, α+1

2 ) such that h is of the form:

h = Y + Y + Y + hP ,

where hP is paracontrolled by Y in the sense that

L β′,α+1
e(κ) 3 hP = h′≺≺Y + h],

with h′ in L β′,α
e(κ) and h] in L β],2α+1

e(κ) , and if the following conditions are satisfied:

LhP = L(Y + Y ) + (XX −X �X ) +X X +
1

2
(X )2

+ (X +X +X )∂xh
P +

1

2
(∂xh

P )2,

hP (0) = h− Y (0),

(3.1)

and
h′ = X + ∂xh

P . (3.2)

Remark 3.4. Note that all the terms involved in the last equation are well defined. In
particular, the product X · ∂xhP is well defined by applying the commutation results
for paraproducts of Lemma 2.8 and Lemma 2.10. The two crucial ingredients for this
purpose are the paracontrolled nature of hP and the fact that the resonant product
∂xY � ∂xY is given a priori in Ykpz.

For smooth noises θ the definition amounts to h satisfying the equation

Lh =
1

2
(∂xh)2 − c + θ.

In this sense a paracontrolled solution h to the KPZ equation with white noise forcing
solves

Lh =
1

2
(∂xh)�2 + ξ,

where (∂xh)�2 = “(∂xh)2 −∞”, with ∞ being the limit lim
n→∞

cn as some smooth noise

θn converges to ξ. In particular, (∂xh)�2 is a continuous functional on the space of
paracontrolled distributions.

A similar argument holds for the RHE (1.2). It is possible to define paracontrolled
solutions to a renormalised version of the equation:

Lw = w � ξ, w(0) = w0 (3.3)

with w � ξ =“w(ξ −∞)” with∞ = lim c .
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Definition 3.5. We say that w is a paracontrolled solution to the RHE equation (3.3)

with initial condition w0 of the form w0 = w0e
Y (0)+Y (0)+Y (0) with w0 ∈ C β

e(l), for some

β ∈ (0, 2α+1], and external data Y ∈ Ykpz if there exists a κ ∈ R such that w is of the
form:

w = wP eY+Y +Y , L β′,α+1
e(κ) 3 wP = w′≺≺Y + Y ]

for w′ = X wP + ∂xw
P ∈ L β′,α−ε

e(κ) and w] ∈ L β̂,2α+1−ε
e(κ) with ε ∈ (6a/δ, 3α−1), where we

define

β̂ =
2α+1−β

2
, β′ =

α+1−β
2

∨ 0, (3.4)

and such that wP solves the equation

LwP =
[
(XX −X �X ) + L(Y +Y ) +X X +

1

2
(X )2

]
wP

+ [X+X +X ]∂xw
P

wP (0) = w0.

(3.5)

The existence of global in space solutions to the RHE is already established in [29]. In
Section 5 we review their approach and prove an existence result for the paracontrolled
setting (Proposition 5.6).

Now we briefly discuss how white noise can be lifted to extended data for the KPZ
equation.

Theorem 3.6 (Renormalisation). Let ξ be a white noise on [0, T ]×R, let B be an inde-
pendent two-sided Brownian motion on R, and let C ∈ R. Then for any α < 1/2 and a > 0

(see Table 2), (ξ,B + Cx) is almost surely associated to a Y(ξ,B + Cx) ∈ Ykpz: There

exists a sequence (ξn, Y n0 , cn , cn ) in LCα/2(R;C∞b (R))× C∞b ×R×R such that almost
surely (ξn, Y n0 )→ (ξ,B + Cx) in the sense of distributions and such that

Yn = Y(ξn, Y n0 , cn , cn )→ Y(ξ,B + Cx),

where the convergence is in Lp(Ω; Ykpz), for all p ∈ [1,+∞). Moreover, while ξn and

Y n0 are of course random processes, the constants cn , cn can be chosen deterministic.
Finally also the following asymmetric product converges:

∂xY
,n � ∂xY → ∂xY � ∂xY in Lp(Ω;CC 2α−1

p(a) ).

Proof. Let ξ̃n(ψ) = ξ|[−n,n](
∑
k∈Z ψ(·, 2kn+ ·)) and

Ỹ n0 (ψ) = (B + Cx)|[−n,n]

(∑
k∈Z

ψ(·, 2kn+ ·)
)

be the (spatial) 2n-periodization of ξ and B + Cx, respectively. Let ϕ ∈ C∞c (R) be even
and such that ϕ(0) = 1 and define

ξn = ϕ(n−1∂x)ξ̃n = F−1(ϕ(n−1·)F ξ̃n), Y n0 = ϕ(n−1∂x)Ỹ n0 = F−1(ϕ(n−1·)F Ỹ n0 )

as the spatial regularization of ξ̃n respectively Ỹ n0 through the Fourier multiplier ϕ(n−1·).
It is not hard to show that (ξn, Y n0 ) ∈ LCα/2(R;C∞b (R)) × C∞b (R). In Section 9 of [24]
the construction of Y(ξ,B) is performed in the periodic case, and slightly adapting the
arguments of that paper we also obtain the convergence in our setting (for C = 0):
it suffices to change the definition of E = Z \ {0} to E = R and to replace Lp(T) by
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Lp(R, p(a)) for a > 1/p in the computations following equation (84). Since p can be
arbitrarily large, a > 0 can be as small as we need.

It remains to treat the case C 6= 0. But adding Cx to Y0 only results in changing
Y (t) → Y (t) + Cx (here we used that spatial convolution with the heat kernel leaves
Cx invariant, because it is a harmonic function). Also, the approximations to Cx are
smooth uniformly in n, and therefore adding these additional terms does not change
the regularities or divergences. The result regarding the asymmetric resonant product
follows along the same lines: for clarity it is postponed to Lemma C.1.

Assumption 3.7. We will work under the following assumptions:

1. Fix Y ∈ Ykpz and a sequence (θn, Y n0 , cn , cn ) ∈ LCα/2(R;C∞b (R)) × C∞b × R × R
such that Yn := Y(θn, Y n0 , cn , cn )→ Y in Ykpz.

2. Consider h of the form:

h− Y (0) ∈ C β
p(δ)

for some β ∈ (0, 2α+1] and assume that there exists a sequence h
n
, Y n(0) in C∞b (R)

such that:

h
n − Y n(0)→ h− Y (0) in C β

p(δ).

3. For α satisfying Assumption 3.1 we write, as in Equation (3.4):

β′ =
α+1−β

2
∨ 0.

In addition, write M > 0 for a constant such that:

sup
n
‖Yn‖Ykpz+ sup

n
‖hn − Y n(0)‖Cβ

p(δ)
≤M.

Remark 3.8. In particular, we can choose any initial condition h̄ in the space C β
p(δ).

Indeed, in Theorem 3.6 we can set C = 0 in the initial condition for Y , and then
Y (0) ∈ C β

p(δ). It is canonical to assume a bit of Hölder regularity for the initial condition
of the KPZ equation, this is already needed for the equation on the torus [26, 24]. The
constraint on the growth is not so natural, in the case of smooth ξ we would expect that
at least subquadratic growth is sufficient. But with our methods sublinear growth is the
best we can hope for, because we need eh̄ to be a tempered ultra-distribution.

For the smooth data Yn and initial condition h
n

we can solve the KPZ equation.

Proposition 3.9. For Yn and h
n

as in Assumption 3.7 there exists a unique paracon-
trolled solution hn to the KPZ equation with hn(0) = h

n
as in Definition 3.3, with h, h′,n

and h],n in C∞b (R) as well as in L α+1, L α, L 2α+1, respectively.

Proof. This is a classical application of the Schauder estimates, cf. [24, Section 4].
Global existence in time follows from a partial Cole-Hopf transform, since vn = eh

n−Y n

solves the linear equation

Lvn = vn
(

1

2
(∂xY

n)2−cn
)

+ ∂xv
n∂xY

n

with continuous-in-time and smooth-in-space data.
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3.1 Existence

First, we will prove an a priori estimate for the smooth solutions hn(t, x) to the KPZ
equation, similar to the one from [24, Corollary 7.4].

Lemma 3.10. Under Assumption 3.7 and for hn as in Proposition 3.9, we have uniformly
over n ∈ N, t ∈ [0, T ] and x ∈ R

hP,n(t, x) = [hn−Y n−Y ,n−Y ,n](t, x) &M −(1+|x|)δ. (3.6)

Proof. Recall that the function hP,n solves

LhP,n = L(Y ,n+ Y ,n) + (XnX ,n−Xn �X ,n) +X ,nX ,n +
1

2
(X ,n)2

+ (Xn +X ,n +X ,n)∂xh
P,n +

1

2
(∂xh

P,n)2,

hP,n(0) = h
n − Y n(0).

By comparison, e.g. [34, Lemma 2.3], we see that hP,n ≥ −vn where the latter solves the
following equation:

Lvn = − [L(Y ,n+Y ,n) + (XnX ,n−Xn �X ,n) +X ,nX ,n +
1

2
(X ,n)2]

+ (Xn+X ,n+X ,n)∂xv
n,

vn(0) = − [h
n − Y n(0)].

Now we find an upper bound for vn. We consider the transformation ũn = exp(vn) which
solves the equation

Lũn = − [L(Y ,n+Y ,n) + (XnX ,n−Xn �X ,n) +X ,nX ,n +
1

2
(X ,n)2]ũn

+(Xn+X ,n+X ,n)∂xũ
n − 1

2
(∂xũ

n)2/ũn,

with ũn(0) = exp(−[h
n−Y n(0)]). Again, by comparison it follows that ũn ≤ un with the

latter solving

Lun = − [L(Y ,n+Y ,n) + (XnX ,n−Xn �X ,n) +X ,nX ,n +
1

2
(X ,n)2]un

+ (Xn+X ,n+X ,n)∂xu
n,

with initial condition un(0) = exp(−[h
n−Y n(0)]). Up to a sign this equation is just

(3.5). Proposition 5.6 and Assumption 3.7 then imply that this equation admits a unique
paracontrolled solution un such that for a sufficiently large κ

sup
n
‖un‖

L β′,α+1
e(κ)

< +∞.

Hence by Lemma 2.14 un is uniformly bounded in CC ζ
e(κ) for some ζ > 0. Indeed, since

β > 0 it follows that β′ < α+1
2 . We can conclude by the monotonicity of the logarithm.

Remark 3.11. A lower bound for hn can be formally derived using the Feynman-Kac
formula and Jensen’s inequality as follows:

hn(t, x) = logE

[
exp

(∫ t

0

θn(t− s, x+Ws)ds

)]
≥ − logE

[
exp

(
−
∫ t

0

θn(t− s, x+Ws)ds

)]
,
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where W is a Brownian motion and we recall that θn is deterministic. We can then use
the Feynman-Kac formula once more to derive an upper bound for the expectation on
the right hand side, which leads to a lower bound for hn. Since in general θn is only
a distribution in time and also we are interested in bounds for hP,n and not for hn, we
argue through the comparison principle instead.

Remark 3.12. The previous proposition provides us with a pathwise quantitative lower
bound for the solution w to the rough heat equation (3.3). Lower bounds for the stochastic
heat equation are classical by now. Mueller [39] proved that the solutions are strictly
positive even when started in a nonnegative, nonzero initial condition (see also [11,
Theorem 5.1] for a pathwise version of this result), while in [12] there are tight estimates
regarding an upper bound for the solution. These results already relied on comparison
principles, but only with respect to the initial condition. While the lower bound of [11] is
also pathwise, it is, along with the other quoted lower bounds bounds, only qualitative
and gives no quantitative control. The price we pay for our result is that we restrict
ourselves to strictly positive initial conditions, which satisfy Assumption 3.7.

Now we show that the sequence hn converges to some h. In the following lemma we
collect the results regarding the rough heat equation.

Lemma 3.13. Under Assumption 3.7 and for hn as in Proposition 3.9, consider wP,n =

eh
n−Y n−Y ,n−Y ,n

. There exists a κ ≥ 0 such that:

wP,n → wP = we−Y−Y −Y in L β′,α+1
e(κ) ,

where w solves the rough heat equation (3.3) on the entire space with initial condition
w0 = eh, in the sense of Definition 3.5.

Proof. The initial condition wn(0) = eh
n

is of the form wn0 e
Y n(0) with wn0 converging to

w0 in C β
e(l), for some l ∈ R. Indeed this follows from Assumption 3.7 and Lemma A.1,

since we know that
lim
n
‖(hn−Y n(0))− (h−Y (0))‖Cβ

p(δ)
= 0.

Thus, the first result is a consequence of Proposition 5.6.

This lemma and the previous lower bound allow us to deduce the convergence of
hn by exploiting the continuity of the Cole-Hopf transform. A priori it is not clear why
taking the logarithm is a continuous operation, since it has a singularity in zero.

Proposition 3.14. Under Assumption 3.7 and for hn as in Proposition 3.9, there exists
κ ≥ 0 such that:

hP,n = hn−Y n−Y ,n−Y ,n −→ h−Y−Y −Y def
= hP in L β′,α+1

e(κ) . (3.7)

Moreover h = log(w), where w is the solution to the rough heat equation with initial

condition eh and hP = log(wP ). In addition, we have a sub-linear bound for hP :

sup
t∈[0,T ]

‖hP (t, ·)‖L∞
p(δ)

< +∞. (3.8)

Proof. First, we use the results from Lemma 3.10, so that we can find a C > 0 and an
r ≤ 0 such that

wP,n(t, x) = exp(hn−Y n−Y ,n−Y ,n)(t, x) ≥ Ce(r|x|δ)

In view of this and Lemma 3.13, we can apply Lemma A.3, which guarantees that up to
choosing a larger κ

log(wP,n) −→ log(wP ) = hP in L β′,α+1
e(κ) .
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Finally, the lower bound in L∞p(δ) for hP follows from Lemma 3.10. The upper bound
follows from the monotonicity of the logarithm and the Cole-Hopf transform.

We have found a function h which is a candidate for being a solution to the KPZ
equation on the whole real line. We have shown that h is of the form

h = Y+Y +Y +hP

with hP ∈ L β′,α+1
e(κ) . Now we want to prove that hP is of the form

hP = h′≺≺Y + h]

with h′ ∈ L β′,α
e(κ) and h] ∈ L β],2α+1

e(κ) for some β] ∈ (0, 1). We observe that hn is already
paracontrolled, since we have started with a paracontrolled solution. This allows us to
control the derivative term.

Lemma 3.15. Under Assumption 3.7 and for hn as in Proposition 3.9 there exists a κ ≥ 0

such that
h′,n −→ h′

def
= X + ∂xh

P in L β′,α
e(κ) .

Proof. Equation (3.2) from Definition 3.3 and the fact that hn is a solution to the KPZ
equation tell us that

h′,n = ∂x(Y ,n + hP,n).

Now both therms on the right-hand side of this equation converge in L β′,α
e(κ) for an

appropriate κ ≥ 0. Indeed, it follows from Proposition 3.14 that hP,n+Y ,n converges in

L β′,α+1
e(κ) . By Lemma 2.11 this is enough to obtain convergence in L β′,α

e(κ) of the spatial
derivative.

Now we consider the rest term h]. Here we use a different argument.

Lemma 3.16. Under Assumption 3.7 and for hn as in Proposition 3.9 there exists a κ ≥ 0

such that the sequence h],n converges to a function h] in L β],2α+1
e(κ) , for β] = β′ ∨ (1−β).

Moreover h] satisfies:
h] = hP − h′≺≺Y ,

as well as the equation:

Lh] = Z(Y, hP , h′) +X � ∂xh
], h](0) = h− Y (0), (3.9)

where we define Z as

Z(Y, hP , h′) = L(Y +Y )+X 4X +X X +
1

2
(X )2+

1

2
(∂xh

P )2

+ (X +X )∂xh
P+X 4 ∂xh

P+X � ∂x(h′≺≺Y )

+
[
h′ 4 L(Y )−L(h′≺≺Y )

]
.

Proof. Since hn is a paracontrolled solution to the KPZ equation we know from Defini-
tion 3.3 that h],n satisfies the equation

Lh],n = Z(Yn, hP,n, h′,n) +Xn � h],n, h],n(0) = h
n − Y n(0).

Now, h
n−Y n(0) converges to h−Y (0) in C β

p(δ) and Yn converges to Y in Ykpz. Moreover

from the previous results we know that hP,n converges to hP in L β′,α+1
e(κ) as well as

that h′,n converges to h′,n in L β′,α
e(κ) . At this point, since β > 0 (upon choosing a ζ ′
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small enough), we can conclude by the continuous dependence on the parameters from
Proposition 5.8:

h],n → h] in L β],2α+1
e(κ) ,

up to taking a larger κ, where h] is the solution to equation (3.9). This proves the
result.

The two lemmata above suffice to show that h is a paracontrolled solution to the KPZ
equation. We collect all the information about h in the following theorem.

Proposition 3.17. For any Y ∈ Ykpz and initial condition h satisfying Assumption 3.7
the function h constructed in Proposition 3.14 is a paracontrolled solution to the KPZ
equation as in Definition 3.3.

Proof. That h has the correct structure follows from Proposition 3.14, Lemma 3.15 and
Lemma 3.16. In addition, hP solves Equation (3.1), since h] solves Equation (3.9).

3.2 Uniqueness

It is a rule-of-thumb that in order to obtain uniqueness for PDEs on the entire space
some growth assumptions are needed in order to avoid solutions that do not have physical
meaning. We will work under the assumption of sublinear growth in L∞. This is mainly
due to the fact that we work within the framework of the Cole-Hopf transform. First, we
show that the exponential map preserves the paracontrolled structure of a solution.

Lemma 3.18. Let β̂, β′ be defined as in Definition 3.5 for some β > 0. Consider a
function hP ∈ L β′,α+1

e(l) that is paracontrolled, in the sense that hP = h′≺≺Y + h] with

h′ ∈ L β′,α
e(l) and h] ∈ L β],2α+1

e(l) , with β] = β′ ∨ (1−β) and suppose that h] solves Equation

(3.9) for some initial condition. Suppose moreover that ‖hP ‖∞,p(δ) < +∞. Then the
exponential wP = exp(hP ) satisfies:

wP = w′≺≺Y + w]

with w′ = wPh′ ∈ L β̄′,α
e(κ) and w] ∈ L β̄],2α+1

e(κ) for an appropriate κ ≥ 0 and some β̄′, β̄] ∈
(0, 1).

Proof. It follows from the growth assumptions on hP as well as from Lemma A.2 that wP

lies in L β′,α+1
e(κ) and wPh′ lies in L β̄′,α

e(κ) for some κ large enough and β̄′ > (β′−1/2)∨ 0+β′.
We still need to show that

L(wP−w′≺≺Y ) ∈M β̄]C 2α−1
e(κ) + L(L β̄],2α+1

e(κ) ).

Indeed (recall that for a function space X we write f = g +X if f−g ∈ X):

L(wP−w′≺≺Y ) = wPL(h′≺≺Y +h])− 1

2
wP (∂xh

P )2 − w′ 4X + M β̄′C 2α−1
e(κ)

= wP
(
h′ 4X−

[
h′ 4 L(Y )−L(h′≺≺Y )

]
+

[
Z(Y, hP , h′)−1

2
(∂xh

P )2+X � ∂xh
]

])
− w′ 4X + M β̄′C 2α−1

e(κ)

= wP
[
Z(Y, hP , h′)−1

2
(∂xh

P )2−
[
h′ 4 L(Y )−L(h′≺≺Y )

]
+X � ∂xh

]

]
+M β̄′C 2α−1

e(κ)

where we have applied the paraproduct estimates from Lemmata 2.10 and 2.8. We now
consider one term at a time. Let us start with the product wP (X � ∂xh]). We work with β
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small enough, so that we always have a non-trivial blow-up. The opposite case is simpler.
Since X � ∂xh

] has regularity 3α−1. Applying Lemma 2.14 we thus find:

wP (X � ∂xh
]) ∈M β]C ε

e(κ)

for ε ∈ (0, β).
Next we treat the term wP

[
Z(Y, hP , h′)− 1

2 (∂xh
P )2−[h′ 4 L(Y )−L(h′≺≺Y )]

]
. We

find:

wP
[
Z(Y, hP , h′)−1

2
(∂xh

P )2−[h′ 4 L(Y )−L(h′≺≺Y )]
]

= wPL(Y +Y )

+wP
[
X 4X +X X +

1

2
(X )2+(X +X )∂xh

P+X 4 ∂xh
P+X � ∂x(h′≺≺Y )

]
.

Here applying Lemma 2.13 we have that the term on the first row lies in

L(L
(β′−1/2)∨0,2α+1
e(κ) ). The terms on the second row on the other hand lie in M β̄′C 2α−1.

Hence, we can conclude that for some β̄] ∈ (0, 1) the statement of the Lemma is true.

Theorem 3.19. For any initial condition h̄ satisfying Assumption 3.7, there exists a
unique paracontrolled solution to the KPZ equation in the sense of Definition 3.3 for β′

as in Definition 3.5 and β] as in Lemma 3.16, under the condition that

‖hP ‖∞,p(δ) < +∞.

In addition, for Yi ∈ Ykpz and hi satisfying Assumption 3.7 for i = 1, 2, with

‖Yi‖Ykpz , sup
n
‖hni −Y ni (0)‖Cβ

p(δ)
≤M

we can estimate for some κ = κ(M) large enough:

‖hP1 −hP2 ‖L β′,α+1
e(κ)

+ ‖h′1−h′2‖L β′,α
e(κ)

+ ‖h]1−h
]
2‖L β],2α+1

e(κ)

.M ‖Y1−Y2‖Ykpz + ‖h1−Y1(0)−(h2−Y2(0))‖Cβ
p(δ)

.

Finally, the function w = exp(h) is the solution to the RHE in the sense of Definition 3.5.

Proof. The existence of solution satisfying the required bound follows from Proposition
3.14. Let us prove uniqueness. Hence suppose that h is a solution to the KPZ with
‖hP ‖∞,p(δ) < +∞. From the previous result we deduce that indeed wP = exp(hP ) is
paracontrolled. We need to show that it solves the rough heat equation (3.5): since this
equation has a unique paracontrolled solution our result will follow. First, we apply the
chain rule to see that

∂tw
P = wP · ∂thP , ∂2

xw
P = wP · (∂2

xh
P + (∂xh

P )2)

with all products classically well-defined. Thus wP solves:

(∂t −
1

2
∂2
x)wP = wP

[
(X +X +X ) � ∂xhP

+ L(Y + Y ) + (XX −X �X ) +X X +
1

2
(X )2

]
where we have marked the product that needs the paracontrolled structure of hP to be
well defined with the diamond symbol. In view of the fact that ∂xwP = wP∂xh

P and by
considering smooth approximations we see that:

wP (X � ∂xhP ) = X � ∂xwP
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and thus wP solves Equation (3.5). Hence the local Lipschitz dependence on the parame-
ters follows from same property of the exponential and logarithmic map from Lemmata
A.1, A.3 as well as of the solution to the RHE (Proposition 5.6) and the solution to the
Sharp equation (Proposition 5.8).

4 Polymer measure

In this section we build the random directed polymer measure associated to white
noise and study its link to the solution h of the KPZ equation. From this point onwards
we will use arrows to denote time inversion with respect to the time horizon T , i.e. we
write

←−
f for the function

←−
f (t) = f(T−t).

4.1 An informal calculation

Let us consider a formal solution to the SDE

dγt = ∂x
←−
h (t, γt)dt+ dWt, γ0 = x0, (4.1)

where W is a Brownian motion started in x0 ∈ R. There are two issues with this SDE. The
first is that ∂xh is only a distribution. The approaches developed by Delarue and Diel [15]
as well as Cannizzaro and Chouk [10] have tackled this aspect successfully. The second
issue is that in our setting ∂xh is of exponential growth, so a priori we would expect that
the solution γ could explode in finite time. What gives us hope is that the exponential
growth of ∂xh is mostly due to our approach through the Cole-Hopf transform.

We exploit the random directed polymer measure associated to white noise to build
a weak solution to the SDE (4.1), avoiding the use of h, and replacing it instead with
elements of Y up to a rest term Y R (cf. [24, Section 7]). In the remainder of this
preamble we present a formal calculation that explains the approach.

Consider the Wiener measure Px0
started in x0 on the space C([0, T ];R). Denote

with γ the coordinate process on C([0, T ];R). We define the measure Qx0
given by the

Radon-Nikodym derivative:

dQx0

dPx0

= exp

(∫ T

0

∂x
←−
h (s, γs)dγs −

1

2

∫ T

0

|∂x
←−
h |2(s, γs)ds

)
, (4.2)

where h is a solution to KPZ for a (spatially) smooth noise θ ∈ LCα/2(R;C∞b (R)), with
extended data Y(θ) and with initial condition h. By Girsanov’s theorem under this
measure the coordinate process is a weak solution to the SDE (4.1). We can formally

apply the Itô formula to
←−
h :

←−
h (t, γt)−

←−
h (0, x0) = −

∫ t

0

(
1

2
|∂x
←−
h |2 + (

←−
θ −c ))(s, γs)ds+

∫ t

0

∂x
←−
h (s, γs)dγs.

Now define the random directed polymer measure Q̃x0
by:

dQ̃x0

dPx0

= C exp

(∫ T

0

(
←−
θ (s, γs)−c )ds

)
, (4.3)

where C > 0 is a normalizing constant. Note that unless h = 0 the polymer measure is
not exactly the measure that solves the SDE (4.1). Indeed:

dQx0

dPx0

= exp

(
←−
h (T, γT )−

←−
h (0, x0) +

∫ T

0

(
←−
θ (s, γs)−c )ds

)
.
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Since (∂t + 1
2∆x)(

←−
Y +

←−
Y ) = −(

←−
θ −c ) − 1

2 |∂x
←−
Y |2 and writing U =

←−
Y +

←−
Y we can

apply Itô’s formula to U(t, γt) and write:∫ t

0

(
←−
θ (s, γs)−c )ds =

∫ t

0

∂xU(s, γs)dγs −
∫ t

0

1

2
|∂xU |2(s, γs)ds+ Rest,

where the rest is

Rest =

∫ t

0

(
1

2
|
←−
X |2+

←−
X
←−
X )(s, γs)ds+ U

∣∣(0,x0)

(t,γt)
.

Finally, defining Y R as the solution to:

(∂t −
1

2
∆x)Y R =

1

2
|X |2 +XX + (X+X )∂xY

R, Y R(0) = 0, (4.4)

the rest term can be rewritten as

Rest =

∫ t

0

←−
XR(s, γs)(dγs − ∂xUds) +

[
U +

←−
Y R
](0,x0)

(t,γt)
.

In this way we can do the change of measure in two steps:

1. We build the singular measure PUx0
with:

dPUx0

dPx0

= exp

(∫ t

0

∂xU(s, γs)dγs −
1

2

∫ t

0

|∂xU |2(s, γs)ds

)
2. Under PU the process Wt = γt −

∫ t
0
∂xU(s, γs)ds is a B. M. started in x0, so that we

can obtain the measures Qx0
and Q̃x0

as absolutely continuous perturbations by
setting

dQx0

dPUx0

= exp

(∫ T

0

←−
XR(s, γs)dWs +

[←−
h − U −

←−
Y R
](T,γT )

(0,x0)

)
(4.5)

dQ̃x0

dPUx0

=

exp

(∫ T
0

←−
XR(s, γs)dWs +

[
U +

←−
Y R
](0,x0)

(T,γT )

)
EPUx0

[
exp

(∫ T
0

←−
XR(s, γs)dWs +

[
U +

←−
Y R
](0,x0)

(T,γT )

)] . (4.6)

This approach goes back to [24, Section 7] for the equation on the torus, but due to
the weighted spaces in which we have to work it becomes much more complicated in our
setting and actually we cannot directly make sense of (4.5, 4.6). In the next paragraphs
we shall show how to rigorously carry out the analysis and how to construct the measures
PUx0

,Qx0 and Q̃x0 via the partial Girsanov transform that we just illustrated.

4.2 A paracontrolled approach

In order to construct the measure PUx0
we prove the existence of martingale solutions

to the associated SDE:
dγt = ∂xU(t, γt)dt+ dWt, γ0 = x0. (4.7)

The essential tool for solving the martingale problem is to solve the backward
Kolmogorv equation

(∂t +
1

2
∆x + ∂xU∂x)ϕτ = f, ϕτ (τ) = ϕ0, t ∈ [0, τ ], (4.8)

for τ ∈ [0, T ] and a sufficiently large class of forcings f and terminal conditions ϕ0.
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Remark 4.1. This approach to SDEs with singular drift was established in the work
by Delarue and Diel [15] who used rough path integrals (inspired by [26]) to solve the
Kolmogorov equation. In contrast to our setting, the assumptions on the weight in
[15] do not allow linear growth for Y . This is only a technical issue, but overcoming
it would result in several lengthy calculations. Thus we prefer to follow Cannizzaro
and Chouk [10] who formulated the approach of Delarue and Diel in the paracontrolled
framework and thereby also extended it to higher dimensions. This suits our setting
better and allows the reader to have a complete overview and a better understanding of
the techniques at work.

The first results concern the existence of solutions to the Kolmogorov equation.

Proposition 4.2. Fix any l ∈ R,Y ∈ Ykpz, τ ∈ [0, T ] as well as an initial condition
ϕ0 ∈ C 2α+1

e(l) and a forcing f ∈ CC 2α−1
e(l) ([0, T ]). In this setting Equation (4.8) has a unique

paracontrolled solution ϕτ . Moreover for any M > 0, if we denote by ϕ1
τ and ϕ2

τ the
respective solutions to the equation for two different external data Y1 and Y2, initial
condition ϕ0

1 and ϕ0
2 and forcings f1 and f2 such that

‖Yi‖Ykpz , ‖ϕ0
i ‖C 2α+1

e(l)
, ‖fi‖CC 2α−1

e(l)
([0,T ]) ≤M,

we find that for some κ = κ(l, T ) and any ε ∈ (6a/δ+1−2α, 3α−1) :

sup
τ∈[0,T ]

‖ϕ1
τ−ϕ2

τ‖Lα+1−ε
e(κ)

.M‖ϕ0
1−ϕ0

2‖C 2α+1
e(l)

+ ‖f1−f2‖CC 2α−1
e(l)

([0,T ]) + ‖Y1−Y2‖Ykpz .

Proof. This result is a consequence of Theorem 5.5. By time reversal it suffices to solve
the equation

(∂t −
1

2
∆x − ∂x(XT−τ+XT−τ )∂x)←−ϕ τ =

←−
f , ←−ϕ 0(τ) = ϕ0, t ∈ [0, τ ],

where we write ←−g (t) = g(τ−t) and the terms Xt−τ , XT−τ belong to the data YT−τ as

constructed in Proposition B.2. We thus know that YT−τ ∈ Y ζ,b
kpz (see Definition B.1) for

b = 2a (recall that a is the polynomial growth coefficient of our data) and some ζ > 1/2−α.
Then we apply Theorem 5.5 with the coefficients chosen as follows: F (YT−τ )(u) = ∂xu

and

R(YT−τ , f)(u) = −
←−
f +XT−τ∂xu+XT−τ 4 ∂xu,

where the parameter f lives in the space X = CC 2α−1([0, T ]). An application of the
Schauder estimates and the estimates for paraproducts shows that R and F satisfy
the requirements of Assumption 5.1. Thus we find a solution ←−ϕ τ ∈ L α+1−ε

e(κ) for any

ε ∈ (6a/δ+2ζ, 3α−1), where both the parameter κ and the estimates on the norm of the
solution can be chosen uniformly over τ as a consequence of the estimates from Theorem
5.5, since (cf. Proposition B.2):

sup
t∈[0,T ]

‖YT−τ‖Y ζ,b
kpz

< +∞.

In the following we will show how to use the existence of solutions to the PDE to find
unique martingale solutions to the martingale problem (4.7). For technical reasons in
order to construct the polymer measure we will need a slightly more complicated version
of the space Ykpz, in which we add as a requirement the convergence of an asymmetric
product. This convergence is guaranteed in the case of space-time white noise by the
result of Theorem 3.6.
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Definition 4.3. For Yn,Y ∈ Ykpz we say that Yn → Y in Y poly
kpz if the convergence holds

in Ykpz and in addition the following asymmetric resonant product converges:

∂xY
,n � ∂xY → ∂xY � ∂xY in CC 2α−1

p(a) .

Similarly, we say that Y belongs to Y poly
kpz if there exists a sequence Yn ∈ Y ∞kpz such that

Yn → Y in Y poly
kpz .

Proposition 4.4. For any x0 ∈ R and Y ∈ Y poly
kpz there exists a unique probability mea-

sure PUx0
on C([0, T ];R) such that under this measure the coordinate process (γt)t∈[0,T ]

satisfies:

1. PUx0
(γ0 = x0) = 1,

2. for any τ ≤ T, l ∈ R and for any f in CL∞e(l)([0, τ ]) and ϕ0 in C 2α+1
e(l) the paracontrolled

solution ϕ(t, x) to Equation (4.8) on the interval [0, τ ] satisfies that

ϕ(t, γt)−
∫ t

0

f(s, γs)ds, t ∈ [0, τ ]

is a square integrable martingale under PUx0
, with respect to the canonical filtration.

3. γ is a.s. ζ-Hölder continuous for any ζ < 1/2.

We split the proof of this proposition in two lemmata, which are interesting in
themselves. In the first one we derive a priori estimates for the exponential moments of
a solution to the SDE.

Lemma 4.5. Consider any M, l ≥ 0. Fix any x0 ∈ R and Y ∈ Y ∞kpz which has norm
‖Y‖Ykpz ≤M . There exists a constant C = C(M, l, T ) > 0 such that the strong solution
γt to the SDE (4.7) with the uniformly Lipschitz drift ∂xU satisfies:

sup
0≤t≤T

Ex0

[
el|γt|

δ
]
≤ CeC|x0|δ .

Proof. Fix a terminal condition ϕ0 such that ϕ0(x) = el|x|
δ

for |x| > 1 and is smooth and
bounded for |x| ≤ 1. For any τ ∈ [0, T ] and Y ∈ Ykpz with ‖Y‖Ykpz ≤ M it follows from
Proposition 4.2 that there exists a constant C = C(M, l, T ) such that the solution ϕτ to

Equation (4.8) with forcing f = 0 and terminal condition ϕ0 satisfies |ϕτ (t, x)| ≤ CeC|x|δ .
From the Itô formula and the fact that we chose a bounded noise we know that ϕτ (t, γt)

is a true martingale. Hence:

sup
τ∈[0,T ]

Ex0

[
el|γτ |

δ
]
' sup
τ∈[0,T ]

Ex0
[ϕτ (τ, γτ )] = sup

τ∈[0,T ]

ϕτ (0, γ0) ≤ CeC|x0|δ .

With this result at hand we can prove tightness and convergence for the laws of the
solutions associated to the SDE.

Lemma 4.6. Consider a sequence Yn in Y ∞kpz such that Yn → Y in Y poly
kpz . Let W be a

Brownian motion and γn the strong solutions to the SDE (4.7) driven by the smooth and
bounded drift ∂xUn. Then there exists a measure PUx0

on C([0, T ];R2) such that, denoting
with (γ,W ) the canonical process on this space:

(γn,W )⇒ (γ,W )

in the sense of weak convergence of measures. The process γ is the unique martingale
solution to the martingale problem of Proposition 4.4 and it is ζ-Hölder continuous for
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any ζ < 1/2. In addition, for any process Hn adapted to the filtration (Fn
t ) = σ(γns |s ≤ t)

if the three processes (γn, Hn,W ) jointly converge to (γ,H,W ), then also:

(γn, Hn,W, ∫HndW )⇒ (γ,H,W, ∫HdW )

in the sense of weak convergence on C([0, T ];R4).

Proof. We articulate the proof of this lemma as follows. First, we show tightness for the
law of γn. Then we show that the weak limits of γn are the unique martingale solution to
the given martingale problem. From this we deduce the first weak convergence result.
Finally, we address the issue with the stochastic integral. Let us denote with (Fn

t )t∈[0,T ]

the filtration generated by γn and note that W is an Fn-Brownian motion. Also, let
(Ft)t∈[0,T ] be the canonical filtration, i.e. the one generated by the coordinate process
(γt)t∈[0,T ].

Step 1. For any τ and h such that 0 ≤ τ ≤ τ+h ≤ T we consider the solution ϕnτ+h to
the Kolmogorov PDE (4.8) with f = 0 and ϕnτ+h(τ+h, x) = x driven by the external data
Yn. Then we see that

γnτ+h−γnτ =ϕnτ+h(τ+h, γnτ+h)−ϕnτ+h(τ, γnτ ) + ϕnτ+h(τ, γnτ )−ϕnτ+h(τ+h, γnτ )

=

∫ τ+h

τ

∂xϕ
n
τ+h(s, γns )dWs + ϕnτ+h(τ, γnτ )−ϕnτ+h(τ+h, γnτ ).

Hence, we get from the Burkholder-Davis-Gundy inequality for any p ≥ 1

Ex0

[
|γnτ+h − γnτ |2p

]
. E

[∣∣∣∣ ∫ τ+h

τ

|∂xϕnτ+h(s, γns )|2ds
∣∣∣∣p]

+ Ex0

[
|ϕnτ+h(τ, γnτ )−ϕnτ+h(τ+h, γnτ ))|2p

]
.

Now we can apply our uniform bound

sup
n

sup
0≤τ≤τ+h≤T

‖ϕnτ+h‖L 2α+1−ε
e(κ)

< +∞

for some κ large enough together with the result of the previous lemma to see that the
second term is uniformly bounded by hp(2α+1−ε), whereas the first term can be estimated
via:

E

[∣∣∣∣ ∫ τ+h

τ

|∂xϕnτ+h(s, γns )|2ds
∣∣∣∣p] . hp−1E

[ ∫ τ+h

τ

|∂xϕnτ+h(s, γns )|2pds
]
. hp.

Hence, we eventually find:

Ex0

[
|γnτ+h − γnτ |2p

]
. hp+hp(2α+1−ε) . hp,

and thus an application of Kolmogorov’s continuity criterion gives for all ζ < 1/2 and all
p > 1/(2ζ):

sup
n
Ex0

[
sup

0≤s≤t

|γnt −γns |2p

|t− s|2p(ζ−1/(2p))

]
< +∞.

This is enough to ensure the tightness of the sequence Bn and also of the couple (Bn,W ),
as well as the Hölder continuity of the limiting process.

Step 2. Next we prove that all weak limit points of γn are solutions to the martingale
problem of Proposition 4.4. Uniqueness of such solutions can then be proven as in [15,
Proof of Theorem 8]. Fix f and ϕ0 as required. Then the solutions ϕn to Equation (4.8)
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with smooth noise θn converge to the solution ϕ in L α+1−ε
e(κ) for ε ∈ (6a/δ+1−2α, 3α−1).

For fixed n we have that

Mn
t = ϕn(t, γnt )−

∫ t

0

f(s, γns )ds =

∫ t

0

∂xϕ
n(s, γns )dWs

is a martingale with respect to the filtration (Fn
t )t∈[0,T ] (since W is an Fn-Brownian

motion) and satisfies, due to our exponential bound from Lemma 4.5:

sup
n
E

[
sup

0≤t≤T0

|Mn
t |2
]
< +∞.

Hence the sequence is uniformly integrable and together with Lemma 4.5 and the
Skorohod embedding theorem this guarantees that up to taking a subsequence

Mn
t →Mt = ϕ(t, γt)−

∫ t

0

f(s, γs)ds =

∫ t

0

∂xϕ(s, γs)dW s

almost surely and in L1 and it follows the latter is a martingale with respect to the
canonical filtration (Ft)t∈[0,T ].

Step 3. By tightness we can show that along a subsequence (γnk ,W )⇒ (γ,W ). If we
can prove that the joint law of (γ,W ) is uniquely defined, the joint weak convergence fol-
lows. If the drift were a smooth function we could observe that W t = γt−

∫ t
0
∂xU(s, γs) ds,

with the right hand-side being a measurable function of the process γ. In the rough
setting one has to be more careful, since it is not clear how the last term is defined.
We will show that for a sequence of measurable functions Fn it is possible to write
(γt,W t) = limn(γt, Fn(γ)). Indeed for n ∈ N one can solve the equation

(∂t+
1

2
∆x+(X+X )∂x)ϕn = Xn+X ,n, ϕn(T ) = 0.

We can subtract the term of lowest regularity to find ϕn = Y ,n + ψn with ψn solving:

(∂t+
1

2
∆x+(X+X )∂x)ψn = X ,n+(X +X)X ,n, ψn(T ) = 0.

Since Yn → Y in Y poly
kpz the resonant product X �X ,n converges to X �X in CC 2α−1

p(a) .
Thus along the same lines of Theorem 5.5 it is possible to find a paracontrolled solution
to the previous equation with the structure:

ψn = (∂xψ
n +X ,n)≺≺Y + ψ],n

with ψn ∈ L α+1−ε
e(l+t) , ψ],n ∈ L 2α+1−ε

e(l+t) for any l > 0 and ε ∈ (6a/δ+1−2α, 3α−1). Moreover,
because the resonant product converges to the right limit, as n→∞ the above solutions
ψn converge in L α+1−ε

e(l+t) to the solution ψ of

(∂t+
1

2
∆x+(X+X )∂x)ψ = X +(X +X)X , ψ(0) = 0.

Similarly the solutions ϕn,n to the equation

(∂t+
1

2
∆x+(Xn+X ,n)∂x)ϕn,n = Xn+X ,n, ϕn,n(0) = 0,

exhibits the same structure ϕn,n = Y ,n + ψn,n and by the Lipschitz dependence on
the parameters in Theorem 5.5 we have that ψn,n converges to ψ in L α+1−ε

e(l+t) . Along
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the subsequence (nk)k along which (γnk ,W ) converges to (γ,W ) we can now apply [33,
Theorem 2.2] to see that

Ãnkt =

∫ t

0

(
←−
Xnk+

←−
X ,nk)(s, γnks )ds

=←−ϕ nk,nk(t, γnkt )−←−ϕ nk,nk(0, x0)−
∫ t

0

∂xϕ
nk,nk(γnks )dWs

converges to

At :=←−ϕ (t, γt)−←−ϕ (0, x0)−
∫ t

0

∂xϕ(γs)dW s.

By using ϕn instead of ϕnk,nk we find that:

At = lim
n
Ant := lim

n

∫ t

0

(
←−
Xn+

←−
X ,n)(s, γs)ds

Now since

(γ,W ) = (γ, γ−x0−A) = lim
n

(γ, γ−x0−An) = lim
n

(γ, Fn(γ))

we find the required uniqueness of the law.

Step 4. Finally, as we already noted, the convergence of the stochastic integrals
along a subsequence is a consequence of [33, Theorem 2.2]

4.3 Polymer measure

Our next aim is to construct the “full” polymer measure Qx0
. In principle we would

like to apply the formulas (4.5) or (4.6) for the explicit Radon-Nikodym derivative with
respect to PUx0

. Unfortunately we do not have sufficient control of the growth of XR, so
we need to argue differently. Even for “smooth” noises θ in LCα/2(R;C∞b (R)) Equation
(4.3) does not make sense, since we lack smoothness in time. Thus we follow the
calculations at the beginning of this section and define the continuum polymer measure
in the following way.

Definition 4.7. For Y in Y ∞kpz and consider the solution eh to the RHE for an initial

condition eh = eY (0) · w0, with w0 ≥ 0, w0 ∈ C β
e(l), for some l ∈ R, β > 0, we define:

dQx0(Y)

dPx0

= exp

(∫ T

0

(
1

2
|
←−
X |2−c )(s, γs)ds+

[←−
Y −
←−
h
](0,x0)

(T,γT )

)
·
dP
←−
X
x0

dPx0

,

where P
←−
X
x0

is the measure under which the coordinate process γ solves dγ =
←−
X (γ)dt+dW

for a Brownian motion W started in x0 and where Px0 is the Wiener measure.

Although the above notation suggests that we use the solution h to the KPZ equation
associated to a smooth noise, this is really just notation (which we chose because it
fits the Gibbs measure formalism). Actually the construction of the continuum random
polymer measure does not depend on the existence of the solution h: we only need to
understand the solution w = eh to the RHE with some strictly positive initial condition.

The construction of the polymer measure we review in the following is already known
from a work by Alberts, Khanin and Quastel [1]. We implement their strategy in our
pathwise setting and we link it with the approach of Delarue and Diel [15]. The idea is to
show convergence of the finite dimensional distributions by controlling the density of the
transition function with respect to the Lebesgue measure. Eventually a tightness result
guarantees that the limiting measure is supported in the space of continuous functions.
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Lemma 4.8. Fix x0 ∈ R,Y ∈ Ykpz and h such that w0 = eh−Y (0) ∈ C β
e(l) for some

l ∈ R, β > 0. Then we can define a measure Qx0
= Qx0

(Y) on R[0,T ] through its finite
dimensional distributions as follows. For any n ∈ N and 0 = t0 ≤ t1 < . . . < tn ≤ T we
define:

Qx0
(γt1 = dx1, . . . , γtn = dxn) =

n∏
i=1

Z(ti−1, xi−1; ti, xi)dxi, (4.9)

where y 7→ Z(s, x; t, y) is the probability density

Z(s, x; t, y) = e−
←−
h (s,x)Z(s, x; t, y)e

←−
h (t,y),

where
←−
f (r) = f(T−r) and Z(s, x; t, y) solves:

(∂s +
1

2
∆x)Z +

←−
ξ � Z = 0, s ∈ [0, t], Z(t, x; t, y) = δ(x−y). (4.10)

If Y ∈ Y ∞kpz this measure coincides with the one from Definition 4.7. Moreover, if

Ym → Y in Ykpz and wm0 → w0 in C β
e(l) the measures converge weakly, i.e.:

Qx0(Ym)⇒ Qx0(Y).

Finally, for any M, l ≥ 0 there exists a constant C = C(M, l, T ) > 0 such that:

sup
0≤t≤T

EQx0

[
el|γt|

δ
]
≤ Ce−

←−
h (0,x0)eC|x0|δ (4.11)

uniformly over Y, w0 such that ‖Y‖Ykpz , ‖w0‖C 2α+1
e(l)

≤M .

Remark 4.9. The existence of solutions to equation (4.10) requires the study of the
equation with initial condition in Hölder-Besov spaces with integrability index p ∈ [1,∞)

in order to tame the singularity of the Dirac delta. Although it would be straightforward
to generalize Theorem 5.5 in this direction (cf. [24]), we refrain from doing so in
this work and fix p = ∞. Indeed, we are mainly interested in the KPZ Equation,
where the nonlinearity does not allow initial conditions with integrability p 6= ∞. The
existence of solutions to (4.10) is one of the main results in [28] and we do not need
to repeat its proof. Hairer and Labbé show the existence of functions Z(t, x; s, y) which

lie locally in space and time in L
1/2−
p . The most important feature – and the only

one we will use – of these functions is that they are fundamental solutions to the
RHE. For simplicity, let us indicate with ∗ the contraction along a variable, so that
f(∗1, . . . , ∗n)h(∗1, . . . , ∗n) =

∫
dy1 · · · dynf(y1, . . . , yn)h(y1, . . . , yn). With this notation, the

function ϕ(s, x) = Z(s, x; t, ∗)g(∗) solves

(∂s +
1

2
∆x)ϕ+

←−
ξ � ϕ = 0, s ∈ [0, t], ϕ(t, x) = g(x). (4.12)

This equation can be solved also in our setting, as long as g ∈ C β
e(l) for β > 2α−1,

following Corollary 5.7 and the preceding discussion.

Proof of Lemma 4.8. The property highlighted in the previous remark suffices to show
that Z(s, x; t, y) is a probability distribution for any s, t, x, y and satisfies the Chapman-

Kolmogorv equations. Indeed for the first property it suffices to observe that since e
←−
h

solves Equation (4.12) with terminal condition eh and thus

e
←−
h (s,x) = Z(s, x; t, ∗)e

←−
h (t,∗).
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The Chapman-Kolmogorov equations are satisfied, since for 0 < s < r < t ≤ T :

Z(s, x; r, ∗)Z(r, ∗; t, y) = e−
←−
h (s,x)Z(s, x; r, ∗)Z(r, ∗; t, y)e

←−
h (t,y) = Z(s, x; t, y).

In particular, the Z form a consistent family of probability distributions and hence the
measure Qx0

is well-defined. Let us consider the case of spatially smooth noise. We
show that the one-dimensional distributions described by Z coincide with those of the
measure Qx0

as from Definition 4.7: the general case follows similarly. Fix a Lipschitz
function g and 0 < t ≤ T , then EQx0 [g(γt)] = u(0, x0) with

u(s, x) = e(
←−
Y −
←−
h )(s,x)EQx0

[
exp

(∫ t

s

(
1

2
|
←−
X |2−c )(r, γr)

)
· g(γt)e

−(
←−
Y −
←−
h )(t,γt)

∣∣Xs = x

]
.

Then the Feynman-Kac formula guarantees that u = e(
←−
Y −
←−
h )w with w solving

(∂s+∆x+
←−
X∂x)w = −

(1

2
|
←−
X |2−c

)
, s ∈ [0, t], w(t, x) = g(x)e−(

←−
Y −
←−
h )(t,x)

so that a simple calculation shows that e
←−
Y (s,x)w(s, x) = Z(s, x; t, ∗)e

←−
h (t,∗)g(∗). Hence

the claim follows. Let us pass to proving the convergence of the finite-dimensional
distributions. We check the convergence of

EQmx0
[g1(γt1) · · · gn(γtn)]

for all globally bounded and Lipschitz functions g, with Qmx0
= Qx0

(Ym) and 0 < t1 <

. . . < tn ≤ T . Then

EQmx0
[g1(γt1) · · · gn(γtn)] =

= Z
m

(0, x0; t1, ∗1)g1(∗1)

n−1∏
i=1

Z
m

(ti, ∗i; ti+1, ∗i+1)gi(∗i+1)

= e−
←−
h (0,x0)Zm(0, x0; t1, ∗1)g1(∗1)

[ n−1∏
i=1

Zm(ti, ∗i; ti+1, ∗i+1)gi(∗i+1)

]
e
←−
hm(tn,∗n).

The last term in the product Zm(s, x; tn, ∗n)e
←−
hm(tn,∗n)gn(∗n) solves in (s, x) Equation

(4.12) on [0, tn] with terminal condition

e
←−
hm(tn,x)gn(x) = e(

←−
Y m+

←−
Y ,m+

←−
Y ,m)(tn,x)gn(x)←−w P,m(tn, x)

where we used the structure of a solution eh to the RHE. Since gn
←−w P,m converges to

gn
←−w P in C α+1−ε

e(κ) for any ε ∈ (6a/δ+1−2α, 3α−1) (see Proposition 5.6), Corollary 5.7 guar-

antees that Zm(s, x; tn, ∗n)e
←−
hm(tn,∗n)gn(∗n) converges to Z(s, x; tn, ∗n)e

←−
h (tn,∗n)gn(∗n), the

latter solving Equation (4.12) on [0, tn] with terminal condition e
←−
h (tn,x)gn(x). Note that

the convergence holds in a space with an explosion at time s = tn. Since we are inter-
ested in the value of the solution only at the time tn−1 < tn this does not play a role. In
particular

Rmn (x) = e−(
←−
Y m+

←−
Y ,m+

←−
Y ,m)(tn−1,x)Zm(tn−1, x; tn, ∗n)e

←−
h (tn,∗n)gn(∗n)

converges to some Rn in C α+1−ε
e(κ) , up to taking a possibly larger κ. Now we pass to the

second-to-last term. Again

Zm(s, x; tn−1, ∗n−1)gn−1(∗n−1)e(
←−
Y m+

←−
Y ,m+

←−
Y ,m)(tn−1,∗n−1)Rmn (∗n−1)
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solves in (s, x) Equation (4.12). Since gn−1(x)Rmn (x) converges C α+1−ε
e(κ) this solution

converges once more via Corollary 5.7 to

Z(s, x; tn−1, ∗n−1)gn−1(∗n−1)e(
←−
Y +
←−
Y +

←−
Y )(tn−1,∗n−1)Rn(∗n−1).

Iterating this procedure n times we deduce the convergence of the finite-dimensional
distributions.

For the exponential bound let us choose a smooth function ϕ such that ϕ(x) =

exp(l|x|δ) for |x| > 1 and ϕ is smooth and bounded for |x| ≤ 1. Then:

EQx0

[
el|γt|

δ
]
' EQx0

[
ϕ(γt)

]
= Z(0, x0; t, ∗1)ϕ(∗1) ≤ C(M, l, T )e−

←−
h (0,x0)eC(M,l,T )|x0|δ ,

where in the last step as before we used the bounds from Corollary 5.7 and the fact that
β > 0.

Now we show that the polymer measure is supported on the space of continuous
functions.

Lemma 4.10. There exists a value acrit > 0 such that for Yn ∈ Y ∞kpz,Y ∈ Ykpz such that
Yn → Y in Ykpz for some a ≤ acrit (a being the growth parameter in Ykpz from Definition
3.2) and for a sequence of initial conditions

eh
n−Y n(0) = wn0 → w0 = eh−Y (0) in C 2α+1

e(l) ,

the sequence of measures Qnx0
is tight in C([0, T ]). Moreover any accumulation point has

paths which are almost surely ζ-Hölder continuous, for any ζ < 1/2.

Proof. We want to use the Kolmogorov criterion. For this reason we fix q > 1 and s ≤ t
with |t−s| ≤ 1 and will prove that

EQx0 (Y)

[
|γt−γs|2q

]
.M |t−s|q

uniformly over all Y ∈ Y ∞kpz and w0 = eh−Y (0) ∈ C β
e(l) such that ‖Y‖Ykpz , ‖w0‖Cβ

e(l)
≤ M .

Given such an estimate the tightness of the sequence as well as the Hölder continuity of
the limit points follow by an application of Kolomogorov’s continuity criterion. To find
this estimate fix Y ∈ Ykpz and w0 = eh−Y (0) ∈ C β

e(l) and let us rewrite the expectation
through the densities:

Z(0, x0; s, ∗1)| ∗1 − ∗2 |2qZ(s, ∗1; t, ∗2)e
←−
h (t,∗2)

where eh is the solution to the RHE with initial condition eh and external data Y. Let us
proceed one integration variable at a time: we consider x1 fixed and estimate

|x1− ∗2 |2qZ(s, x1; t, ∗2)e
←−
h (t,∗2). (4.13)

First, we shift x1 to zero. For this purpose we introduce the notation gx1(x) = g(x+x1)

and for Y = Y (θ, Y (0), c , c ) in Y ∞kpz we write Yx1 = Y(θx1 , Y (0)x1 , c , c ), where the
latter is obtained by shifting all the extended data by x1. Hence we find the identity:

Z(Y)(s, x+x1; t, y) = Z(Yx1)(s, x; t, y−x1),

then we rewrite the term under consideration as

ϕx1(r, x) = Z(Yx1)(r, x; t, ∗2)| ∗2 |2qe
←−
h x1 (t,∗2),
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and we aim at estimating ϕx1(s, 0) uniformly over x1. Note that ϕx1 solves Equation
(4.12):

(∂r+
1

2
∆x)ϕx1 = −

←−
θ x1 � ϕx1 , r ∈ [0, t], ϕx1(t, x) = |x|2qe

←−
h x1 (t,x)

in the sense of Corollary 5.7. Now we exploit the parabolic scaling of the equation. Let
us define λ =

√
|t−s| and write gx1

λ (r, x) = ϕx1(s+λ2r, λx) for r ∈ [0, 1], so that

(∂r+
1

2
∆x)gx1

λ = −λ2←−θ x1

s,λ � g
x1

λ , r ∈ [0, 1], gx1

λ (1, x) = λ2q|x|2qe
←−
h x1 (t,λx)

where formally the term
←−
θ x1

s,λ should be understood as
←−
θ x1

s,λ(r, x) = θ(T−s−λ2r, x1+λx).
Rigorously this means that gx1

λ solves Equation (4.12) on [0, 1] in the sense of Corollary
5.7 associated to the extended data Yx1

T−t,λ (see Definition B.1 and Proposition B.2).

Since eh solve the RHE it is of the form

e
←−
h x1 (t,x) = e(Y x1+Y ,x1+Y ,x1 )(T−t,x)wP,x1(T−t, x)

with wP ∈ L β′,α+1−ε
e(κ) for some κ sufficiently large, so that with Lemma 2.14:

sup
t
‖wP,x1(t, ·)‖L∞

e(κ)
≤ CeC|x1|δ

for some C(M) > 0. Hence by comparison gx1

λ ≤ ψ
x1

λ , the latter being the solution to

(∂r+
1

2
∆x)ψx1

λ = −λ2←−θ x1

s,λ � ψ
x1

λ , r ∈ [0, 1],

ψx1

λ (1, x) = λ2q|x|2qCeκ|x|
δ+C|x1|δe(Y x1+Y ,x1+Y ,x1 )(T−t,λx).

Following the results from Corollary 5.7 the solution ψx1

λ is of the form:

ψx1

λ (0, 0) = λ2qeC|x1|δe(Y x1+Y ,x1+Y ,x1 )(T−s,0)ψP,x1

λ (0, 0),

where we can estimate the norm of the last term:

‖ψP,x1

λ ‖Lα+1−ε
e(l)

. e
CT
(

1+‖Yx1T−t,λ‖Y
%,b
kpz

)q1
for % ∈ (1/2−α, α] and b = 2a and some C(M) > 0. Now it follows from the definition of
Yx1 , Definition B.1 (in particular from the fact that the norm ‖ · ‖Y %,b

kpz
does not depend

on Y , but only on X – otherwise we would obtain linear growth in x1) and Proposition
B.2 that:

sup
x1

sup
t∈[0,T )

sup
λ∈(0,1]

1

1+|x1|a
‖Yx1

T−t,λ‖Y %,b
kpz

.M 1.

Now choose acrit so that acritq1 = δ : for a ≤ acrit we can conclude that up to choosing a
larger C(M) > 0:

EQnx0

[
|γt−γs|2q

]
.M λ2qZ(0, x0; s, ∗1)e(Y+Y +Y )(T−s,∗1)eC|∗1|

δ

.M |t−s|qe−
←−
h (0,x0)e(Y+Y +Y )(T−s,x0)eC̃|x0|δ .M,x0

|t−s|q.

This concludes the proof.

We collect the two previous results in the following proposition.
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Proposition 4.11. For any x0, l ∈ R and Y which lies in Ykpz for a ≤ acrit (see Lemma

4.10) and eh−Y (0) ∈ C β
e(l) there exists a measure Qx0

on C([0, T ];R) such that for Yn ∈
Y ∞kpz converging Yn → Y in Ykpz and initial conditions eh

n−Y n(0) → eh−Y (0) in C β
e(l), the

polymer measures converge weakly:

Qx0
(Yn)⇒ Qx0

(Y) in C([0, T ]).

In addition, under Qx0 the sample paths are a.s. ζ-Hölder continuous for any ζ < 1/2.

Now we show that the measure Qx0
we just built has a density with respect to the

singular Girsanov transform PUx0
, i.e. while we are not able to construct the measure

using Equation (4.5) from our formal discussion above, the equation holds a posteriori.
This equation is useful because it describes the singular part of the polymer measure in
terms of the solution Y R to the linear equation (4.4), and therefore it is not necessary to
understand the solution to the KPZ equation or the RHE in order to study the polymer
measure.

Recall that Y R was defined as the solution to

(∂t −
1

2
∆x)Y R =

1

2
|X |2 +XX + (X+X )∂xY

R, Y R(0) = 0.

Indeed we can find a paracontrolled solution Y R of the form:

Y R = Y +Y P , Y P = Y ′≺≺Y +Y ], Y ′ = X +∂xY
P .

The equation for Y P can be solved with calculations similar to the ones leading to
Proposition 5.6. Eventually we find a solution Y P ∈ L α+1

e(κ) for κ large enough.

Proposition 4.12. For any Y which lies in Y poly
kpz for a < acrit (see Lemma 4.10), the

measure Qx0
has a density with respect to the measure PUx0

which is given by:

dQx0

dPUx0

= exp
(∫ T

0

←−
XR(s, γs)dW s +

[
U+
←−
Y R−

←−
h
](0,x0)

(T,γT )

)
,

where W is the Brownian motion started in x0 from Lemma 4.6.

Proof. Under the above hypothesis the existence of the measure Qx0 is guaranteed
by Proposition 4.11, while the existence of the measure PUx0

follows from Proposition
4.4. From the computation at the beginning of this section, which lead us to Equation
(4.5), the above decomposition holds true at a smooth level. So for any Y ∈ Ykpz let
us choose Yn ∈ Y ∞kpz such that Yn → Y in Ykpz. For any M ∈ N let us fix a continuous
cut-off functional ηM on C([0, T ]) such that ηM (γ) = 1 if ‖γ‖∞ ≤ M , and ηM (γ) = 0 if
‖γ‖∞ ≥M + 1. For any continuous and bounded functional f on C([0, T ]) we have

EQnx0

[
f(γ)ηM (γ)

]
= EPUnx0

[
f(γ)ηM (γ)e

( ∫ T
0

←−
XR,n(s,γs)dWs+

[
Un+

←−
Y R,n−

←−
h n
](0,x0)

(T,γT )

)]
.

Now the left-hand side converges by Proposition 4.11, while the right-hand side con-
verges by Lemma 4.6. So we find that:

EQx0

[
f(γ)ηM (γ)

]
= EPUx0

[
f(γ)ηM (γ)e

( ∫ T
0

←−
XR(s,γs)dW s+

[
U+
←−
Y R−

←−
h
](0,x0)

(T,γT )

)]
.
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Taking f ≡ 1 and sending M →∞, we obtain from Fatou’s lemma that

exp

(∫ T

0

←−
XR(s, γs)dW s +

[
U+
←−
Y R−

←−
h
](0,x0)

(T,γT )

)
∈ L1(PUx0

).

Thus we can pass to the limit over M → ∞ and deduce the result by dominated
convergence.

Remark 4.13. We have discussed the construction of the measure Qx0
. This in particular

allows us to build the measure Q̃x0
from Equation (4.6) by choosing h = 0. In addition,

using the fact that the Radon-Nikodym derivative integrates to 1, we find a representation
for the solution h to the KPZ equation as follows:

[h−Y−Y −Y R](T, x0) = logEPUx0

[
e
∫ T
0

←−
XR(s,γs)dW s+[h−Y (0)](γT )

]
4.4 Variational representation

Here we show that we can solve the martingale problem (4.1) associated to the KPZ
equation, and that the solution solves a stochastic control problem. The first step is
to define martingale solutions in the paracontrolled setting. One main difference with
respect to the definition of [15, 10] is that we do not directly solve the PDE associated to
the martingale problem. This is because we cannot control the growth of the drift ∂xh at
infinity sufficiently well. Instead, we solve the PDE to remove the singular part ∂xU of
the drift, and then we add the regular part ν of the drift (which later will be a control)
back by hand.

Following [24, Section 7] we will denote by pm the set of progressively measurable
processes on [0, T ] × C([0, T ];R). By this we mean that ν ∈ pm if for any 0 ≤ t ≤ T the
restriction of ν to times smaller than t,

ν
∣∣
[0,t]×C([0,T ];R)

is B([0, t])⊗Ft −measurable,

where F = (Ft)0≤t≤T is the canonical filtration on C([0, T ];R).

Definition 4.14. For an element ν ∈ pm we say that a measure P on the filtered
measurable space (C([0, T ];R), (Ft)) is a martingale solution to the SDE

dγt = (∂xU + νt)(t, γt)dt+ dWt, γ0 = x0, (4.14)

if the following two conditions are satisfied for the coordinate process (γt):

1. P(γ0 = x0) = 1.

2. For any l ∈ R, τ ∈ [0, T ] and for any f in CL∞e(l)([0, τ ]), ϕ0 in C 2α+1
e(l) , let ϕ ∈ L α+1−ε

e(κ)

(see Equation (4.8) and Proposition 4.2) to the equation:

(∂t+
1

2
∆x+∂xU∂x)ϕ = f, ϕ(τ) = ϕ0. (4.15)

Then the process ϕ(t, γt) −
∫ t

0
[f(s, γs)+∂xϕ(s, γs)ν(s, γ)]ds is a square integrable

martingale on [0, τ ] with respect to the filtration (Ft).

This allows to show that the polymer measure solves the SDE (4.1).

Proposition 4.15. Consider Y ∈ Ykpz and let h be the solution to the KPZ equation
from Theorem 3.19. Under the assumptions of Proposition 4.11, the therein constructed
measure Qx0(Y) is a martingale solution to the SDE

dγt = ∂x
←−
h (s, γs)ds+ dWs, γ(0) = x0,

in the sense of the above definition, with control ν = ∂x(
←−
h−U).
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Proof. Consider τ, ϕ0, f as in Definition 4.14. We need to prove that

Mt = ϕ(t, γt)−
∫ t

0

[f(s, γs)+∂xϕ(s, γs)∂x(
←−
h−U)(s, γs)]ds, t ∈ [0, τ ],

is a martingale with respect to the measure Qx0
. In fact, consider smooth data Yn ∈ Y ∞kpz

such that Yn → Y in Ykpz. Then we can find solutions ϕn to the PDE (4.15) with ∂xU

replaced by ∂xUn. Since Proposition 4.2 guarantees that these solutions satisfy

ϕn → ϕ in L α+1−ε
e(κ)

for a suitably chosen κ ≥ 0 and ε ∈ (6a/δ+1−2α, 3α−1), and since the uniform sub-
exponential bound (4.11) holds true, the process

Mn
t = ϕn(t, γt)−

∫ t

0

f(s, γs)+∂xϕ
n(s, γs)∂x(

←−
h n−Un)(s, γs)ds, t ∈ [0, τ ],

is a Qnx0
-martingale such that for a suitable C ≥ 0

sup
n
EQnx0

[
sup

0≤t≤τ

∣∣Mn
t

∣∣2] . sup
n

sup
0≤t≤τ

EQnx0

[
eC|γt|

δ
]
< +∞,

where Qnx0
is the polymer measure associated to Yn, as in Proposition 4.11. The same

proposition guarantees that Qnx0
⇒ Qx0

. Hence the martingale property is preserved in
the limit.

We conclude this section on the polymer measure with a variational characterization
of the solution to the KPZ equation.

Theorem 4.16. Consider an extended data Y and an initial condition h which satisfies
Assumption 3.7. Let h be the paracontrolled solution to the KPZ equation from Theorem
3.19. The following representation holds true:

(T, x0) =

= sup
ν∈pm

γ∈M(ν,x0)

E

[
h(γT )− Y (0, γT ) +

1

2

∫ T

0

(
|
←−
XR|2 − |ν−

←−
XR|2(s, γs)

)
ds

]
,

where the optimal control ν is

ν(s, γ) = ∂x(
←−
h−U)(s, γs).

Proof. We follow step by step the original proof of [24, Theorem 7.3]. First, let us define

hR = h−Y−Y −Y R = hP − Y P ,

which is paracontrolled in the sense that hR = ∂xh
R≺≺Y + hR,] with hR ∈ L α+1

e(κ) and

hR,] ∈ L 2α+1
e(κ) for an appropriate κ ≥ 0. In addition hR is a paracontrolled solution to the

equation:

LhR =
1

2
|XR|2 + (X +X +XR)∂xh

R +
1

2
(∂xh

R)2,

hR(T ) = h− Y (0),

which by reversing time we can translate into

(∂t+
1

2
∆x+∂xU∂x)

←−
h R = −1

2
|
←−
XR|2−

←−
XR∂x

←−
h R−1

2
(∂x
←−
h R)2,

←−
h R(T ) = h−Y (0).
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This means that if we take a martingale solution γ to the problem

dγt = (∂xU + ν)dt+ dWt,

we can use hR as a test function, according to Definition 4.14. From this point onwards
we can follow exactly the proof of [24] to get to the conclusion that for any ν ∈ pm and
γ ∈M(ν, x0)

←−
h R(0, x0) = E

[
h(γT )− Y (0, γT ) +

1

2

∫ T

0

(
|
←−
XR|2 − |ν−

←−
XR|2(s, γs)

)
ds

]

+ E

[∫ T

0

1

2
|ν̃(s, γ)|2ds

]

≥ sup
ν∈pm

γ∈M(ν,x0)

E

[
h(γT )− Y (0, γT ) +

1

2

∫ T

0

(
|
←−
XR|2 − |ν−

←−
XR|2(s, γs)

)
ds

]

with ν̃ = ν−
←−
XR−∂x

←−
h R = ν−∂x(

←−
h−
←−
Y −
←−
Y ), where in the last line we took the supre-

mum on both sides in the line above and then forgot the term with ν̃. For fixed ν

equality

←−
h R(0, x0) = E

[
h(γT )− Y (0, γT ) +

1

2

∫ T

0

(
|
←−
XR|2 − |ν−

←−
XR|2(s, γs)

)
ds

]

holds only if ν̃ = 0. Thus the supremum is achieved in the polymer measure and equals←−
h R(0, x0).

5 Linear paracontrolled equations in weighted spaces

5.1 A solution theorem

We consider an abstract paracontrolled equation of the form:

Lu = R(Y, ν)(u) + [F (Y)(u)]4X +X � ∂xu, u(0) = u0, (5.1)

for some functionals R and F which we will specify later, and where Y ∈ Ykpz and ν

is simply an additional parameter living in a Banach space X , which we add to treat
certain applications. At an intuitive level R represents a smooth rest term, 4 is the
irregular part of a product and � is the ill-posed part of a product, the latter term being
the one which requires a paracontrolled structure from the solution.

Actually it will be necessary to consider slightly more general Y, allowing for an
additional singularity: see Definition B.1 for the definition of Y ζ,b

kpz .
Now we introduce the Banach space of paracontrolled distributions that will contain

the solution to Equation (5.1). Consider u0 ∈ C β
e(l) for some l ∈ R and β ∈ (2α−1, 2α+1]

(recall the regularity parameter α from Table 2 and the preceding discussion) as well as
a parameter ε > 0 and

β̂ =
2α+1−β

2
, β′ =

α+1−β
2

∨ 0. (5.2)

Furthermore, fix a time horizon Th ≥ 0 and Y ∈ Y ζ,b
kpz([0, Th]) for some values ζ, b ≥ 0

which we will specify later. The parameter ε represents a small gap between the
regularity of the solution we prove and the expected maximal regularity and appears
essentially to deal with the global spatial well-posedness. The parameter β̂ quantifies
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the time blow-up at t = 0 in the space C 2α+1. The parameter β′ quantifies the blow-up in
the space C α+1 (cf. Lemma 2.14).

Then we introduce a subset

D(Y) ⊂ L β′,α+1−ε
e(l+t) ([0, Th])×L β′,α−ε

e(l+t)p(a)([0, Th])×L β̂,2α+1−ε
e(l+t) 3 (u, u′, u])([0, Th]),

which is defined by the property:

(u, u′, u]) ∈ D(Y) ⇔ u = u′≺≺Y + u], u](0) = u0.

Moreover, we endow D(Y) with the product topology and a product norm. With some
abuse of notation we write

|||u||| = ‖(u, u′, u])‖D(Y).

Since we want to compare also paracontrolled distributions which are controlled by
different enhanced data we introduce the quantity

|||u1 : u2||| = max{‖u′1 − u′2‖L β′,α−ε
e(l+t)p(a)

, ‖u]1 − u
]
2‖L β̂,2α+1−ε

e(l+t)

}

for ui ∈ D(Yi). Since the proof of the solution theorem relies on a contraction argument
on a small time interval we also introduce the notation D0

S(Y) for S ≤ Th for the space
D(Y) where we replaced the time horizon Th with S. We also use the convention that
D0

0 (Y) = C β
e(l). This is motivated by the fact that a point in D0

S will later be an initial

condition for the solution on [S, S+τ ] for some small τ . Then if we fix 0 ≤ T` < Tr ≤ Th
and an initial condition uT` ∈ D0

T`
(Y), we consider the space DT`

Tr
(Y, uT`) of all functions

u in D0
Tr

such that

u|[0,T`] = uT` , u′|[0,T`] = u′T` , u]|[0,T`] = u]T` .

We endow this space with the product norm on:

L β′,α+1−ε
e(l+t) ([T`, Tr])×L β′,α−ε

e(l+t)p(a)([T`, Tr])×L β̂,2α+1−ε
e(l+t) ([T`, Tr]).

If we do not fix any initial condition, we write DT`
Tr

(Y). Furthermore we remind the
notation Vs for the integration operator:

Vs(f)(t) =

∫ t

s

Pt−hfhdh,

where (Pt) is the semigroup generated by 1
2∆x. Now we state the assumption on the

coefficients of the equation. As a rule-of-thumb they must be Lipschitz dependent on
u and locally Lipschitz dependent on Y ∈ Y ζ,b

kpz . Recall that X is an arbitrary Banach
space, and we write ‖ · ‖X for its norm.

Assumption 5.1 (On the parameters of the equation). Fix Th > 0. Let l ∈ R, ε ∈
[0, 3α−1), as well as a > 0 and ζ ≥ 0 be such that ε−6a/δ−2ζ > 0, and let b ≤ 2a and
β ∈ (2α−1, 2α+1] as well as β̂, β′ as in Equation (5.2) and consider 0 ≤ T` < Tr ≤ Th.
Given M > 0 we consider Yi in Y ζ,b

kpz([0, Th]) as well as νi in X and ui0 in C β
e(l) for i = 1, 2

such that:
‖νi‖X , ‖Yi‖Y ζ,b

kpz
, ‖ui0‖Cβ

e(l)
≤M

and we require that there exists a p ≥ 1 such that the following holds true:

1. There exists a γ > 0 such that uniformly over Y, ν and T`, Tr, we have that:

VT` ◦R(Y, ν) : L β′,α+1−ε
e(l+t) ([T`, Tr])→ L β′,2α+1−ε

e(l+t) ([T`, Tr])

EJP 24 (2019), paper 117.
Page 36/56

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP362
http://www.imstat.org/ejp/


KPZ on R

is a Lipschitz function which satisfies:

‖VT`(R(Y, ν)(u))‖
L β′,2α+1−ε
e(l+t)

([T`,Tr])

. (1+‖Y‖Y ζ,b
kpz

+‖ν‖X )p(Tr−T`)γ(1+‖u‖
L β′,α+1−ε
e(l+t)

([T`,Tr])
),

‖VT`(R(Y, ν)(u1))− VT`(R(Y, ν)(u2))‖
L β′,2α+1−ε
e(l+t)

([T`,Tr])

. (1+‖Y‖Y ζ,b
kpz

+‖ν‖X )p(Tr−T`)γ‖u1 − u2‖L β′,α+1−ε
e(l+t)

([T`,Tr])
,

‖VT`(R(Y1, ν1)(u1))−VT`(R(Y2, ν2)(u2))‖
L β′,2α+1−ε
e(l+t)

([T`,Tr])

.M,|||ui|||
D
T`
Tr

‖Y1−Y2‖Y ζ,b
kpz

+ ‖ν1−ν2‖X + (Tr−T`)γ‖u1 − u2‖L β′,α+1−ε
e(l+t)

([T`,Tr])
.

2. The map F (Y) : L β′,α+1−ε
e(l+t) ([T`, Tr]) → L β′,α−ε

e(l+t)p(a)([T`, Tr]) is Lipschitz continuous
(for fixed Y) and satisfies uniformly over Y,Y1,Y2 and T`, Tr:

‖F (Y)(u)‖
L β′,α−ε
e(l+t)p(a)

([T`,Tr])
. (1+‖Y‖Y ζ,b

kpz
)p(1 + ‖u‖

L β′,α+1−ε
e(l+t)

([T`,Tr])
)

‖F (Y)(u1)−F (Y)(u2)‖
L β′,α−ε
e(l+t)p(a)

([T`,Tr])

. (1+‖Y‖Y ζ,b
kpz

)p‖u1−u2‖L β′,α+1−ε
e(l+t)

([T`,Tr])
,

‖F (Y1)(u1)−F (Y2)(u2)‖
L β′,α−ε
e(l+t)p(a)

([T`,Tr])

.M,|||ui|||
D
T`
Tr

‖Y1−Y2‖Y ζ,b
kpz

+ ‖u1−u2‖L β′,α+1−ε
e(l+t)

([T`,Tr])
.

Remark 5.2. These assumptions provide a minimal working environment that is suffi-
cient for our needs, and they could of course be generalized. In every point, the first two
inequalities are necessary for the fixed-point argument, and the last one to obtain the
locally Lipschitz continuous dependence of the fixed point on the parameters.

The central idea in the paracontrolled approach is that the ill-posed resonant product
is well defined for paracontrolled distributions. This is the content of the next result.

Lemma 5.3 (Paracontrolled Product). Under the previous assumptions, for u in D0
Tr

(Y),

and Y ∈ Y ζ,b
kpz the following product estimate holds:

‖X � ∂xu‖M β̂+ζC 2α−1
e(l+t)p(3a)

([T`,Tr]) . (1+‖Y‖Y ζ,b
kpz

)2|||u|||D0
Tr
.

If we consider two different enhanced data Yi ∈ Y ζ,b
kpz as well as initial conditions

ui ∈ DT`
Tr

we can also bound

‖X1 � ∂xu1 −X2 � ∂xu2‖M β̂+ζC 2α−1
e(l+t)p(3a)

([T`,Tr]) .M,|||ui|||D0
Tr

‖Y1 −Y2‖Y ζ,b
kpz

+ |||u1 : u2|||D0
Tr
.

Proof. Let us prove the first estimate and assume Tr = T . We define

ũ] = ∂xu
]+∂xu

′≺≺Y ∈ L β̂,2α−ε
e(l+t)p(2a),

then we can compute:

X � ∂xu = u′ 4 (X � ∂xY ) + C(u′, ∂xY ,X) +X � C2(u′, ∂xY ) +X � ũ],

with C2(u′, ∂xY ) = u′≺≺∂xY −u′ 4 ∂xY . Now we can estimate one at the time all these
terms. For the first one we have:

‖u′ 4 (X � ∂xY )‖M β̂+ζC 2α−1
e(l+t)p(3a)

. ‖u′‖M β̂Cα−ε
e(l+t)p(a)

‖X � ∂xY ‖MζC 2α−1
p(b)

.
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Similarly we can treat the other terms, by applying the commutation results of Lemma
2.8 to the second term and Lemma 2.10 to the third term, as well as the resonant product
estimate from Lemma 2.8 for the last term. The second estimate follows similarly.

In view of the previous lemma, we can rigorously make sense of the equation under
consideration.

Definition 5.4. Under Assumption 5.1 a function u ∈ D(Y) is said to be a (paracon-
trolled) solution to Equation (5.1) if u′ = F (Y)(u) and if the equation is satisfied with
the last product X � ∂xu defined in the sense of Lemma 5.3.

Now we can prove the existence and uniqueness of solutions to the equation.

Theorem 5.5. Make Assumption 5.1 and let Y ∈ Y ζ,b
kpz . Then there exists a unique

solution to Equation (5.1) in the sense of Definition 5.4, and there is q ≥ 0 such that

|||u||| . e
CTh

(
1+‖Y‖

Y
ζ,b
kpz

+‖ν‖X

)q
(1+‖Y‖Y ζ,b

kpz
+ ‖ν‖X )p+1(1+‖u0‖Cβ

e(l)
).

Moreover, the solution depends locally Lipschitz continuously on the parameters of the
equation: for two solutions ui, i = 1, 2, associated to Yi and parameters νi we find that

|||u1 : u2||| .M,Th ‖u1
0 − u2

0‖Cβ
e(l)

+ ‖Y1 −Y2‖Y ζ,b
kpz

+ ‖ν1−ν2‖X .

Proof. Fix 0 ≤ T` < Tr ≤ Th and uT` ∈ D0
T`

(Y). Let us define the following map on

DT`
Tr

(Y, uT`). For t ≥ T` we write:

I (u)(t) = Pt−T`u0(T`) + VT`
(
R(Y, ν)(u) + F (Y)(u)4X +X � ∂xu

)
(t),

I ′(u)(t) = F (Y)(u)(t),

I ](u)(t) = I (u)(t)−I ′(u)≺≺Y (t),

and I (u) = uT` on [0, T`]. By induction, we assume that if T` > 0, then uT` is a solution
to the equation on [0, T`]: in particular we will use that u′T` = F (uT`).

For the sake of brevity we will write ||| · ||| for the norm in DT`
Tr

(Y, uT`) and |||uT` ||| for the

norm of uT` in D0
T`

(Y). We show that (I ,I ′,I ]) maps DT`
Tr

(Y, uT`) into itself, similar
arguments then show that (I ,I ′,I ])2 is a contraction on the same space (the presence
of the square will guarantee that also the derivative term is contractive). We proceed
one term at a time.

Step 1. Let us start with I , for which Assumption 5.1 yields

‖I (u)‖
L β′,α+1−ε
e(l+t)

([T`,Tr])
. ‖P·−T`uT`(T`)‖L β′,α+1−ε

e(l+t)
([T`,Tr])

+ (1+‖Y‖Y ζ,b
kpz

+‖ν‖X )p(Tr−T`)γ
(
1+‖u‖

L β′,α+1−ε
e(l+t)

([T`,Tr])

)
+ ‖VT`(F (Y)(u)4X)‖

L β′,α+1−ε
e(l+t)

([T`,Tr])
+ ‖VT`(X � ∂xu1)‖

L β′,α+1−ε
e(l+t)

([T`,Tr])
.

Regarding the first term: By the first estimate of the Proposition 2.12 we can bound it
with ~(β′, T`, |||uT` |||), with ~ satisfying the bound

~(γ, T`, |||uT` |||) .Th ‖u0‖Cβ
e(l)

1{T`=0} + (T`)
−γ |||uT` |||1{T`>0}.

Regarding the second term, we use the second estimate of the same proposition to
get:

‖VT`(F (Y)(u)4X)‖
L β′,α+1−ε
e(l+t)

([T`,Tr])
. (Tr−T`)γ1‖F (Y)(u)4X‖Mβ′Cα−1

e(l+t)p(2a)
([T`,Tr])

. (1+‖Y‖Y ζ,b
kpz

)p+1(Tr−T`)γ1‖u‖L β′,α+1−ε
e(l+t)

([T`,Tr])
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where the term (Tr−T`)γ1 is a consequence of the last estimate from Lemma 2.14 with
γ1 = (ε−4a/δ)/2 > 0. The last line follows from the third condition on F . A similar
estimate holds for the ill-posed product:

‖VT`(X� ∂xu)‖
L β̂,2α+1−ε
e(l+t)

([T`,Tr])
. (Tr−T`)γ2‖VT`(X � ∂xu)‖

L
β̂,2α+1−6a/δ−2ζ−λ
e(l+t)

([T`,Tr])

. (Tr−T`)γ2‖VT`(X � ∂xu)‖
L
β̂+ζ,2α+1−6a/δ

e(l+t)
([T`,Tr])

. (Tr−T`)γ2‖X � ∂xu‖M β̂+ζC 2α−1
e(l+t)p(3a)

([T`,Tr]) . (Tr−T`)γ2(1+‖Y‖Y ζ,b
kpz

)2|||u|||D0
Tr

. (Tr−T`)γ2(1+‖Y‖Y ζ,b
kpz

)2(|||uT` |||+ |||u|||),

where in the first step we used the last estimate from Lemma 2.14 and we defined
γ2 = (ε−6a/δ−2ζ−λ)/2 and λ ∈ (0, ε−6a/δ−2ζ). We chose to subtract an additional
(arbitrarily small) regularity λ in order to apply the second estimate of Lemma 2.14 in
the second step and thus gain a factor ζ in the time-explosion. Hence, we eventually
estimate:

‖VT`(X � ∂xu)‖
L β′,α+1−ε
e(l+t)

([T`,Tr])
. ‖VT`(X � ∂xu)‖

L β̂,2α+1−ε
e(l+t)

([T`,Tr])

From these estimates it follows that I maps DT`
Tr

(Y, uT`) into L β̂,α+1−ε
e(l+t) ([T`, Tr]).

Moreover similar calculations, based on the Lipschitz assumptions on the coefficients,
show that I is a contraction for fixed initial condition u(T`) = uT`(T`), provided that
(Tr−T`) . (1+‖Y‖Y ζ,b

kpz
)−(p+1)/(γ∧γ2).

Step 2. We consider the paracontrolled remainder term. Since uT` is a solution to the
equation on [0, T`] we find that:

u] = P·−T`(u
](T`)) + VT`

[
R(Y, ν)(u)) +X � ∂xu+ C4(F (Y)(u), ∂xX)

+ C3(F (Y)(u), Y )
]
,

where C4(u′, ∂xX) = u′≺≺∂xX−u′ 4 ∂xX. Proceeding as before we can estimate:

‖u]‖
L β̂,2α+1−ε
e(l+t)

([T`,Tr)
. (1+‖Y‖+‖ν‖X )p+1

[
1 + ~(β̂, T`, |||uT` |||)

+ (T`−Tr)γ‖u‖L β′,α+1−ε
e(l+t)

([T`,Tr])

+ (Tr−T`)γ2 |||u|||
]

+ (T`−Tr)γ2‖VT`(C4(F (Y)(u), ∂xX))‖
L
β′,2α+1−6a/δ

e(l+t)
([T`,Tr])

+ (T`−Tr)γ2‖VT`(C3(F (Y)(u), Y ))‖
L
β′,2α+1−6a/δ

e(l+t)
([T`,Tr])

where we used the same estimate as before for the rest term R and the ill-posed product.
Through the bounds from Lemma 2.10 for the commutators C3, C4 we can then estimate
the last two terms in the sum via

‖Y‖Y ζ,b
kpz
‖F (Y)(u)‖

L β′,α
e(l+t)

([T`,Tr])
. (1+‖Y‖Ykpz )p+1|||u|||D0

Tr

where in the last step we used the estimate on F from Assumption 5.1. Eventually we
find the following bound:

‖u]‖
L β̂,2α+1−ε
e(l+t)

([T`,Tr])
. (1+‖Y‖Y ζ,b

kpz
+‖ν‖X )p+1(1 + |||uT` |||+ (Tr−T`)γ∧γ2 |||u|||).

Step 3. Now we can conclude that for some q large enough and

T ∗ = (Tr−T`) . (1+‖Y‖Y ζ,b
kpz

+‖ν‖X )−q
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the map (I ,I ′,I ])2 is a contraction on DT`
Tr

(Y, uT`) and thus it has a unique fixed point.
Indeed, due to the presence of the square, and our assumptions on F , the derivative
I ′ inherits the contractive property from I . Since the length T ∗ of the interval [T`, Tr]

could be chosen independently of uT` , we can iterate this procedure and concatenate the
fixed points to get a solution on [0, Th]. Then the exponential bound follows immediately
by observing that we need to iterate approximately Th(1+‖Y‖Y ζ,b

kpz
+‖ν‖X )q times the

inequality

|||I (u)|||T`,Tr ≤ C(1+‖Y‖Y ζ,b
kpz

+‖ν‖X )p+1(1+~(T`, |||I (u)|||0,T`))

≤ C(T ∗)(1+‖Y‖Y ζ,b
kpz

+‖ν‖X )p+1(1+|||I (u)|||0,T`),

where in the last step we used that T` ≥ T ∗ so that we have a good bound on ~. The local
Lipschitz dependence on the parameters follows along the same lines.

In the remainder of the section we will apply this to several concrete linear equations.

5.2 Rough heat equation

In this section we show how to solve Equation (3.5), which we recall here:

LwP =
[
(XX −X �X ) + L(Y +Y ) +X X +

1

2
(X )2

]
wP

+ [X+X +X ]∂xw
P ,

wP (0) = w0.

This equation can be written in the form of Equation (5.1) with

R(Y)(u) =
[
X 4X +L(Y +Y )+X X +

1

2
(X )2

]
u

+X 4 ∂xu+ [X +X ]∂xu,

F (Y)(u) =X u+ ∂xu.

Our aim is clearly to apply Theorem 5.5: For this reason we have to check the
requirements from Assumption 5.1. The first step is counting the regularities. Taking
away the time derivative (which for technical reasons we treat differently) we find that
for fixed Th > 0 and uniformly over 0 ≤ T` < Tr ≤ Th:

‖R(Y)(u)−∂t(Y +Y )u‖Mβ′C 2α−1
e(l+t)p(2a)

([T`,Tr]) . ‖Y‖
2
Ykpz‖u‖L β′,α+1−ε

e(l+t)
([T`,Tr])

so that Proposition 2.12 applied to this term and Lemma 2.13 guarantee:

‖VT` [R(Y)(u)−∂t(Y +Y )u]‖
L β′,ν
e(l+t)

([T`,Tr])
. (1 + ‖Y‖Ykpz )2‖u‖

L β′,α+1−ε
e(l+t)

([T`,Tr])

for any ν < 2α+1−4a/δ. Thus the third and fourth estimates from Lemma 2.14 then
provide the bound:

‖VT` [R(Y)(u)−∂t(Y +Y )u]‖
L β′,2α+1−ε
e(l+t)

([T`,Tr])

. (T`−Tr)γ(1 + ‖Y‖Ykpz )2‖u‖
L β′,α+1−ε
e(l+t)

([T`,Tr])

for γ = (ε−4a/δ)/2. Similar estimates hold for the product ∂t(Y +Y )u in view of
Lemma 2.13.
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Let us pass to F . We immediately find:

‖F (Y, u)‖
L β′,α−ε
e(l+t)p(a)

([T`,Tr])
. (1+‖Y‖Y ζ,b

kpz
)‖u‖

L β′,α+1−ε
e(l+t)

([T`,Tr])
,

since by Lemma 2.11 the derivative ∂xu is controlled by

‖∂xu‖L β′,α−ε
e(l+t)

([T`,Tr])
. ‖u‖

L β′,α+1−ε
e(l+t)

([T`,Tr])
.

The bounds for the differences follow from the bilinearity of R and F . Hence applying
Theorem 5.5 guarantees the following result.

Proposition 5.6. For l, ε, ζ, b, a, β, β′, β̂ as in the requirements of Assuption 5.1, Equation
(3.5) admits a unique paracontrolled solution with local Lipschitz dependence upon the
parameters. That is, for initial conditions w1

0, w
2
0 and extended data Y1,Y2 which satisfy

the requirements of Assumption 5.1, there exist respectively two unique solutions wP1 , w
P
2

to the RHE, that satisfy:

|||wP1 : wP2 ||| .M ‖w1
0 − w2

0‖Cβ
e(l)

+ ‖Y1 −Y2‖Y ζ,b
kpz
.

Moreover we can bound the norm of the solution in terms of the extended data as follows:

|||wP ||| . e
CTh

(
1+‖Y‖

Y
ζ,b
kpz

)q
(1+‖w0‖Cβ

e(l)
)

for some q ≥ 0 large enough. In particular, if ζ = 0 these are the unique solutions to the
RHE in the sense of Definition 3.5.

We can also solve a time-reversed version of the RHE, Equation (4.12). In particular,
we are also interested in uniform estimates over parabolic scaling of the equation.

Consider some Y ∈ Ykpz with ξ = LY and let us write
←−
f s,λ(t, x) = f(T−s−λ2t, λx), as

well as fs,λ(t, x) = f(s+λ2t, λx). The aim is to solve the equation:

(∂t+
1

2
∆x)w = −λ2←−ξ s,λ � w, w(τ) = w0

for some τ ∈ [0, λ−2(T−s)], where formally λ2←−ξ s,λ � w = λ2(
←−
ξ s,λ−c )w. If w0 is of the

form:

w0(·) = e(
←−
Y s,λ+

←−
Y s,λ+

←−
Y s,λ)(τ,·)w0(·)

with w0 ∈ C β
e(l) for some β ∈ (2α−1, 2α+1], l ∈ R we consider solutions w of the form:

w = e
←−
Y s,λ+

←−
Y s,λ+

←−
Y s,λwP ,

with the time-reversed wPrev(t, x) = wP (τ−t, x) solving the equation

(∂t−
1

2
∆x)wPrev = −

[
(Xµ,λXµ,λ−Xµ,λ �Xµ,λ) + L(Yµ,λ+Yµ,λ)

+Xµ,λXµ,λ +
1

2
(Xµ,λ)2

]
wPrev + [Xµ,λ+Xµ,λ+Xµ,λ]∂xw

P
rev,

wPrev(0) = w0,

with µ = T−s−λ2τ . This is exactly the same equation as for the paracontrolled term
of the RHE, up to translations and scaling. Following Definition 3.2 and Proposition
B.2, translating the enhanced data by a factor µ and rescaling by a factor λ gives rise
to a valid element Yµ,λ of Y ζ,b

kpz for b = 2a and any ζ ∈ (1/2−α, α]. Hence the previous
equation admits a paracontrolled solution in the sense of Proposition 5.6. We collect this
information in the following result.

Corollary 5.7. For any w0 ∈ C β
e(l), for β ∈ (2α−1, 2α+1], l ∈ R and λ ∈ [0, 1], τ ∈

[0, λ−2(T−s)], and Y ∈ Ykpz there exists a unique paracontrolled solution wPrev to the
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previous equation. In particular the following bound holds for some κ, q ≥ 0 and any
ε ∈ (6a/δ+1−2α, 3α−1):

‖wP ‖
L β′,α+1−ε
e(κ)

([0,τ ])
. e

Cτ
(

1+‖YT−s−λ2τ,λ‖Y
ζ,b
kpz

)q
(1+‖w0‖Cβ

e(l)
).

Moreover the solution depends continuously on the parameters in the following sense:
for two different enhanced data Yi and initial conditions wi0 such that

‖Yi‖Ykpz , ‖wi0‖Cβ
e(l)
≤M

we can estimate

‖wp1−w
p
2‖L β′,α+1−ε

e(l+t)
([0,τ ])

.M ‖w1
0−w2

0‖Cβ
e(l)

+ ‖(Y1)T−s−λ2τ,λ−(Y2)T−s−λ2τ,λ‖Y ζ,b
kpz

5.3 Sharp equation

Now we consider the “Sharp” equation, that is Equation (3.9):

Lu = Z(Y, hP , h′) +X � ∂xu, u(0) = u0 ∈ C β
e(l). (5.3)

We do not need to look for paracontrolled solutions for this equation: it falls in the range
of Equation (5.1) with F = 0, and therefore we expect that the solution has a trivial
paracontrolled structure. For the set of parameters

ν = (hP , h′) ∈X = L β′,α+1
e(l) ×L β′,α

e(l) ,

(recall the definition of β̂, β′ from Equation (5.2)) we define

R(Y, hP , h′)(u) = Z(Y, hP , h′).

We only need to check that R satisfies the properties of Assumption 5.1. Since R is
constant in u this reduces to the first and third property. Due to the non-linearity in hP

we work under the additional assumption that β > 0. We see that:

VT`(Z(Y, hP , h′)) = Y +Y −P·−T` [(Y +Y )(T`)]+VT`(Q(Y, hP , h′))

with Q defined as

Q(Y, hP , h′) =X 4X +X X +
1

2
(X )2+

1

2
(∂xh

P )2 + (X +X )∂xh
P+X 4 ∂xh

P

+X � ∂x(h′≺≺Y ) +
[
h′ 4 L(Y )−L(h′≺≺Y )

]
.

Now define
β] = β′ ∨ (1−β) (5.4)

and note that due to our assumptions on β we have that β] ∈ (0, 1). In view of the
regularity assumptions on the enhanced data (see Table 2) and the paraproduct estimates
from Lemmata 2.8 and 2.10 we see that:

‖Q(Y, hP , h′)‖Mβ]C 2α−1
e(2l)

. (1+‖Y‖Ykpz+‖hP ‖L β′,α+1
e(l)

+ ‖h′‖
L β′,α
e(l)

)4

so that an application of the Schauder estimates of Proposition 2.12 guarantees that:

‖VT`(Z(Y, hP , h′))‖
L β],2α+1
e(2l)

([T`,Tr])
. (1+‖Y‖Ykpz+‖hP ‖L β′,α+1

e(l)

+ ‖h′‖
L β′,α
e(l)

)4.

The local Lipschitz dependence on the parameters then follows similarly by multi-linearity.
Thus we can apply Theorem 5.5 and obtain the result below.
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Proposition 5.8. For any l ∈ R u0 ∈ C β
e(l), for β ∈ (0, 2α+1], and Y ∈ Ykpz, (hP , h′) ∈X

there exists a κ > l such that Equation (3.9) has a unique solution h] in L β],2α+1
e(κ) , for

β] as in Equation (5.4). For two initial conditions ui0 and two extended data Yi and
parameters hPi , h

′
i where i = 1, 2, which satisfy the requirements of Assumption 5.1,

there exist respectively unique solutions h]1, h
]
2 to the equation and they satisfy

‖h]1−h
]
2‖L β],2α+1

e(κ)

.M ‖u1
0 − u2

0‖Cβ
e(l)

+ ‖Y1 −Y2‖Ykpz + ‖h′1−h′2‖L β′,α
e(l)

+ ‖hP1 −hP2 ‖L β′,α+1
e(l)

.

Proof. Theorem 5.5 yields that the paracontrolled solution to Equation (3.9), which
according to the theorem has only regularity α+1−ε, has a vanishing derivative since
F = 0. Moreover Y ∈ Y ζ,b

kpz for b = a and ζ = 0. Thus applying one last time the Schauder

estimates to the solution h] give us the bounds in L β],2α+1
e(κ) .

A Exponential and logarithm on weighted Hölder spaces

Here we discuss the regularity of the exponential and logarithmic maps on weighted
Hölder spaces.

Lemma A.1. Consider any α ∈ (0, 2) \ {1} and R, l̂ ≥ 0. Then there exists an l = l(R) ≥ 0

such that the exponential function exp maps

exp :

{
f ∈ C α

e(l̂)
(Rd) s.t. ‖f‖∞,p(δ) ≤ R

}
−→ C α

e(l)(R
d).

Moreover the exponential map is locally Lipschitz continuous, i.e. for f, g in the set above
such that

‖f‖α,e(l̂), ‖g‖α,e(l̂) ≤M

we can estimate:
‖ exp(f)− exp(g)‖α,e(l) .M,R ‖f − g‖α,e(l̂).

Proof. Due to our choice of α and the classical characterization of Besov spaces (see
Corollary 2.7), we need to find a bound for the uniform norm of exp(f) and, if α > 1,
∂x exp(f) as well as for the α Hölder seminorm of exp(f) or ∂x exp(f), according to
whether α < 1 or α > 1 respectively. Regarding the first bound, since ‖f‖∞,p(δ) ≤ R it
follows directly that

exp(f(x)−Rp(δ)(x)) ≤ 1,

implying that
‖exp(f)‖∞,e(R) ≤ 1.

Furthermore for any β ∈ (0, 1 ∧ α] we also have

sup
|x−y|≤1

|ef(x) − ef(y)|
e(l̃ + l̂)(x)|x− y|β

≤ sup
|x−y|≤1

ef(x)∨f(y)

e(l̃)(x)

|f(x)− f(y)|
e(l̂)(x)|x− y|β

. ‖f‖β,e(l̂)

whenever l̃ > R. Moreover exp is also locally Lipschitz continuous, since for any two
functions f and g as in the statement of this lemma we can write:

ef(u) − eg(u) =

∫ 1

0

exp
(
g(u) + t(f(u)−g(u))

)
(f(u)−g(u))dt

and therefore, for an appropriate choice of l̃,

‖exp(f)− exp(g)‖∞,e(l̃+l̂) .M ‖f − g‖∞,e(l̂).
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The same integral remainder formula gives

|ef(x) − eg(x) − (ef(y) − eg(y))| ≤
∣∣∣∣∫ 1

0

[eg(x)+u(f−g)(x) − eg(y)+u(f−g)(y)](f−g)(x)du

∣∣∣∣
+

∣∣∣∣∫ 1

0

eg(y)+u(f−g)(y)[(f−g)(y)− (f−g)(x)]du

∣∣∣∣,
so that applying inequalities of the kind |aã − bb̃| ≤ |a − b||ã| + |ã − b̃||b| along with an
appropriate choice of l̃ leads to the bound:

sup
|x−y|≤1

|ef(x) − eg(x) − (ef(y) − eg(y))|
e(l̃ + l̂)(x)|x− y|β

.M ‖f − g‖β,e(l̂).

Finally, if α ∈ (1, 2), we can write ∂xef = ef∂xf , so that via the previous calculations and
through an application of paraproduct estimates we deduce that ∂xef lies in C α−1

e(l) for

l = l̃ + l̂, along with the local Lipschitz continuity.

The same calculations also show that the result still holds if we introduce time
dependence:

Lemma A.2. Consider any α ∈ (0, 2) \ {1}, γ ∈ (0, 1) and R, l̂ ≥ 0. Then there exists an
l = l(R) ≥ 0 depending on R such that the exponential function maps:

exp :

{
f ∈ L γ,α

e(l̂)
s.t. sup

0≤t≤T
‖f(t)‖∞,p(δ) ≤ R

}
−→ L γ,α

e(l) .

Moreover this function is locally Lipschitz continuous i.e. for f, g with

‖f‖L γ,α

e(l̂)
, ‖g‖L γ,α

e(l̂)
≤M

we can estimate:
‖ exp(f)− exp(g)‖L γ,α

e(l)
.M,R ‖f − g‖L γ,α

e(l̂)
.

Now we pass to a dual statement, namely the continuity of the logarithm.

Lemma A.3. For given α ∈ (0, 2) \ {1}, γ ∈ (0, 1) and r, C, c, l̂ > 0 there exists an l =

l(r) > 0 depending on r such that the logarithm maps

log : A =
{
f ∈ L γ,α

e(l̂)

∣∣ ce−r|x|δ ≤ f(t, x) ≤ Cer|x|
δ
}
−→ L γ,α

e(l) .

Furthermore this map is locally Lipschitz continuous, i.e. for f, g ∈ A with

‖f‖L γ,α

e(l̂)
, ‖g‖L γ,α

e(l̂)
≤M

we can estimate:
‖ log(f)− log(g)‖L γ,α

e(l)
.M,r ‖f − g‖L γ,α

e(l̂)
.

Proof. As before we use the classical definition of Hölder spaces and we only treat spatial
regularity, as the time regularity follows similarly. We also just discuss the local Lipschitz
continuity, since then the first statement follows by choosing g = 1. For f, g ∈ A and for
all ξ ≥ f(t, x) ∧ g(t, x) we find

1

ξ
. e(r)(x).

Thus by the mean value theorem and for l ≥ l̂ + r:

‖log(f(t))− log(g(t))‖∞,e(l) . ‖f(t)−g(t)‖∞,e(l̂)
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uniformly in t ∈ [0, T ]. If α > 1 we can bound also the derivative in a similar way:∥∥∥∥∂xf(t)

f(t)
− ∂xg(t)

g(t)

∥∥∥∥
∞,e(l)

≤
∥∥∥∥∣∣∣∣ 1

f(t)

∣∣∣∣|∂xf(t)− ∂xg(t)|+ |∂xg(t)|
∣∣∣∣ 1

f(t)g(t)

∣∣∣∣|f(t)− g(t)|
∥∥∥∥
∞,e(l)

.M ‖∂xf(t)−∂xg(t)‖∞,e(l̂)+t
−γ‖f(t)− g(t)‖∞,e(l̂)

at the cost of taking a possibly larger l.
To treat the case α < 1 let |x− y| ≤ 1 and observe that

f(y)

f(x)
∨ g(y)

g(x)
.M e(l̂ + r)(x),

so we can apply again the mean value theorem to the logarithm:

∣∣ log(f(t, x))− log(g(t, x))−
(

log(f(t, y))− log(g(t, y))
)∣∣

e(l)(x) |x− y|α
=

∣∣∣ log β′ f(x)
f(y) − log β′ g(x)

g(y)

∣∣∣
e(l)(x) |x− y|α

.
e(l̂ + r)(x)

e(l)(x)

| [(f−g)(t, x)− (f−g)(t, y)] g(t, y) + (f−g)(t, y)(g(t, y)− g(t, x))|
|f(t, y)g(t, y)| |x− y|α

.M ‖f(t)− g(t)‖α,e(l̂) +t−γ ‖f(t)− g(t)‖∞,e(l̂) ,

once more for an appropriate choice of l > l̂ + r. Calculations similar to the one above
show that also in the case α > 1 we can find an l such that∥∥∥∥∂xff − ∂xg

g

∥∥∥∥
α−1,e(l)

.M ‖f(t)−g(t)‖α,l̂+t
−γ‖f(t)−g(t)‖∞,e(l̂).

This guarantees that

sup
t∈[0,T ]

tγ‖ log(f(t))− log(g(t))‖α,e(l) .M ‖f−g‖L γ,α
e(l)

.

We can argue similarly for the time regularity and this concludes the proof.

B Operations on the extended data

Here we discuss some operations on the space of extended data, more precisely
translation and parabolic scaling. For this purpose we consider a slightly different space
of external data. In contrast to the space Ykpz we will not take into account the norm of
Y , so that we can forget about its linear growth; we will also allow some of the terms in
the extended data to have inhomogeneous initial conditions which arise from shifting
the data in time; finally we consider a small time explosion for the resonant product
∂xY �X: this also arises naturally when shifting the data.

Definition B.1. Consider ζ ∈ [0, 1), b ≥ 0 and a time horizon Th ≥ 0. Let us write
Y ζ,b
kpz([0, Th]) for the closure in

CC α−1
p(a) ([0, Th])×L 2α

p(a)([0, Th])×L α+1
p(a) ([0, Th])×

×L 2α+1
p(a) ([0, Th])×L 2α+1

p(a) ([0, Th])×M ζC 2α−1
p(b) ([0, Th])

of the map Y(θ, c , c ) defined on LCα/2(R;C∞b (R))×R×R by:

Y(θ, c , c ) =
(
X,Y , Y , Y , Y , ∂xY �X

)
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where every tree Y • solves the same PDE as in Table 2 under the condition that

Y (0) = 0, Y (0) = 0, Y (0) = 0

implying that all other trees are allowed to have inhomogeneous initial conditions. To
keep the notation simple we omit from writing the dependence on these inhomogeneous
initial conditions. We will also sometimes omit the explicit dependence on Th and write
Y ζ,b
kpz .

Next we will formulate translations and parabolic scaling operations on the extended
data. As for the scaling, we will only zoom into small scales and therefore the scaling
parameter λ will be small: λ ∈ (0, 1]. Thus, for any τ ∈ [0, T ) we write θτ,λ(t, x) =

θ(τ+λ2t, λx). We change the time horizon accordingly to Tτ,λ = λ−2(T−τ). The question
we want to answer is whether for given Y(θn) ∈ Y ∞kpz converging to Y in Ykpz we can
show also the convergence of Y(θnτ,λ) to some Yτ,λ: this is the content of the following
result.

Proposition B.2. For any τ, λ as above and for every Y in Ykpz and ζ ∈ (1/2−α, α] there
exists a Yτ,λ in Y ζ,2a

kpz ([0, Tτ,λ]) such that whenever θn ∈ LCα/2(R;C∞b (R)) is such that

Y(θn, cn , cn ) converges to Y in Ykpz, then

Y(λ2θnτ,λ, λ
2cn , λ

2cn )→ Yτ,λ in Y ζ,2a
kpz ([0, Tτ,λ]),

where for a given smooth noise θ ∈ LCα/2(R;C∞b (R)) we define Y(λ2θτ,λ) by

Y (λ2θτ,λ)(t, x) = Y (θ)(τ+λ2t, λx)

and similarly for the elements Y (θτ,λ), Y (θτ.λ). The elements

Y (θτ,λ), Y (θτ,λ), Y (θτ,λ)

are defined respectively as the solution to

LY (θτ,λ) = ∂xY (θτ,λ)∂xY (θτ,λ), Y (θτ,λ)(0) = 0,

LY (θτ,λ) = ∂xY (θτ,λ)∂xY (θτ,λ), Y (θτ,λ)(0) = 0,

LY (θτ,λ) = ∂xY (θτ,λ), Y (θτ,λ)(0) = 0.

Furthermore we have the estimate:

sup
λ∈(0,1]

sup
τ∈[0,T )

‖Yτ,λ‖Y ζ,2a
kpz ([0,Tτ,λ]) .ζ ‖Y‖Ykpz .

Proof. We concentrate on the proof of the uniform bound. The convergence result then
follows from the fact that the rescaling operator is linear. Let us write Y •τ,λ for Y •(θτ,λ)

defined as above. Note that

Yτ,λ (t) = Λλ
[
Y (τ+λ2t)−Pλ2tY (τ)

]
and similarly for Y , where Λλ is the spatial rescaling operator with Λλf(x) = f(λx). We
can find the required bounds for Xτ,λ and for the tree terms Y •τ,λ in view of [21, Lemma
A.4]. While the results from [21] do not treat weighted spaces, they hold nonetheless in
the weighted setting. To see this one has to take care of the effect of rescaling, and it is
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only because we are zooming in (λ ≤ 1) that the scaling does not affect the weight. The
most complicated object that we have to consider is the ill-posed product

sup
λ∈(0,1]

sup
τ∈[0,T ]

sup
t∈[0,Tτ,λ]

tζ‖∂xYτ,λ(t) � ∂xYτ,λ(t)‖C 2α−1
p(2a)

.

First, we treat the rescaling parameter λ. Note that Yτ,λ(t) = Λλ

(
1
λYτ (λ2t)

)
, with the

convention Yτ = Yτ,1. Hence, we can write

∂xYτ,λ(t)� ∂xYτ,λ(t) = λ
[
Λλ∂xYτ (λ2t)� Λλ∂xYτ (λ2t)

]
= λΛλ

[
∂xYτ (λ2t)� ∂xYτ (λ2t)

]
+ λ Commutator ,

where “Commutator” is defined implicitly through the formula above, by taking the first
term on the right hand-side to the left. An application of [21, Lemma B1] (taking into
account the remark about the weights from above) tells us that:

λ‖ Commutator ‖C 2α−1
p(2a)

. λ2α‖∂xYτ (λ2t)‖Cα
p(a)
‖∂xYτ (λ2t)‖Cα−1

p(a)

and an application of [21, Lemma A4] tells us that:

λ‖Λλ
[
∂xYτ (λ2t)� ∂xYτ (λ2t)

]
‖C 2α−1

p(2a)
. λ2α‖∂xYτ (λ2t)� ∂xYτ (λ2t)‖C 2α−1

p(2a)
.

Now we can estimate the norm of the ill-posed product uniformly by:

λ2αtζ‖∂xYτ (λ2t)� ∂xYτ (λ2t)‖C 2α−1
p(2a)

. λ2α−2ζ(λ2t)ζ‖∂xYτ (λ2t)� ∂xYτ (λ2t)‖C 2α−1
p(2a)

and since ζ ≤ α, this can be bounded uniformly over λ and t by the quantity:

sup
τ∈[0,T ]

sup
t∈[0,T−τ ]

tζ‖∂xYτ (t)� ∂xYτ (t)‖C 2α−1
p(2a)

+ ‖∂xYτ (t)‖Cα
p(a)
‖∂xYτ (t)‖Cα−1

p(a)
.

It is easy to estimate the last term uniformly over t and τ . Let us consider the first term.
Here we have to take into account that Yτ (t) = Y (τ + t) − PtY (τ), where we recall
that Pt indicates convolution with the heat kernel and that it commutes with derivatives.
Since we have no a priori estimates for Pt∂xY (τ)� ∂xYτ (t) we need to apply the usual
estimates for the resonant product. For that purpose note that

‖Pt∂xY (τ)‖C 2ζ+α
p(a)

. t−ζ‖∂xY (τ)‖Cα
p(a)

and since 2ζ+2α−1 > 0 we can bound the norm of the ill-posed product by

‖∂xYτ (t)� ∂xY (τ+t)‖C 2α−1
p(2a)

. ‖Pt∂xY (τ)‖C 2ζ+α
p(a)
‖∂xY (t+τ)‖CCα−1

p(a)
+ ‖∂xY � ∂xY (t+τ)‖CCα−1

p(a)
. t−ζ .

Now all the required properties follow promptly.

C Asymmetric approximation of a resonant product

Next we prove a result which is a slightly asymmetric version of the computations in
[24, Section 9.5]. Indeed we show convergence of X ,n �X to X �X, that is we only
regularize one of the two factors.

Lemma C.1. Let ξ be a white noise on [0, T ]×R. Consider the sequence (ξn, Y n0 , cn , cn )

as in Theorem 3.6. Then for any a > 0 and α < 1/2 the resonant product

∂xY
,n � ∂xY → ∂xY � ∂xY in Lp(Ω;CC 2α−1

p(a) )

for some p = p(α, a) ∈ [1,+∞).
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Proof. Following the notation of [24, Section 9] we have a representation of X �X ,n

via a product of Wiener-Itô integrals as

X �X ,n(t, x) =

∫
(R×[0,T ])2

GX�X ,n

(t, x, η12)W (dη1)W (dη2)

with kernel

GX�X ,n

(t, x, η12) = eik[12]xψ0(k1, k2)Ht−s1(k1)ϕ(n−1k2)

∫
R

dσHt−σ(k2)Hσ−s2(k2).

Decomposing the above integral into different Wiener-Itô chaoses and setting η1 = (s1, k1)

and η−1 = (s1,−k1), the contribution to the chaos of order zero is given by:∫
R×R

dη1G
X�X ,n

(t, x, η1(−1))

=

∫
R×R

dη1Ht−s1(k1)ϕ(−n−1k1)

∫
R

dσHt−σ(−k1)Hσ−s1(−k1) = 0,

where we used that Hr(−k1) = −Hr(k1) and ϕ(−n−1k1) = ϕ(n−1k1) to see that the
integrand is antisymmetric under the change of variables k1 → −k1 and therefore its
integral must vanish. Hence we have to consider only the second Wiener-Itô chaos. To
show convergence of the sequence we first compute for q ≥ −1:

E
[
|∆q(X �X −X �X ,n)|2(t, x)

]
.

∫
(R×[0,T ])2

dη12|%q(k[12])G
X�X ,n

(t, x, η12)|2

=

∫
dk12ds1ds2 %q(k[12])ψ0(k1, k2)2|Ht−s1 |2(k1)·

· (1−ϕ(n−1k2))2
∣∣∣ ∫
R

dσHt−σ(k2)Hσ−s2(k2)
∣∣∣2

.
∫
dk12 %q(k[12])ψ0(k1, k2)2(1−ϕ(n−1k2))2k−2

2

where k[12] = k1+k2, dk12 = dk1dk2, and to obtain the inequality in the third line we have

estimated
∫ t

0
ds1 |Ht−s1 |2(k1) . 1 uniformly over k1 and∫ t

0

ds2

∣∣∣ ∫
R

dσHt−σ(k2)Hσ−s2(k2)
∣∣∣2 =

∫ t

0

ds (k2
2s)

2e−2sk22 . k−2
2 .

In particular we see that the for some annulus A such that supp(%j) ⊂ Aj = 2jA we
have that k[12] ∈ Aq and ψ0(k1, k2) > 0 implies k2 ∈ Aj for j & q so that we can estimate
the integral via∫

dk[12]dk2 %q(k[12])ψ0(k[12]−k2, k2)2(1−ϕ(n−1k2))2k−2
2 . 2q

∑
j&q∨(cn)

2−j . 2q−(q∨cn),

for some c > 0.
At this point it is possible to conclude, since for p such that pa > 1 and any δ > 0:

E
[
‖X �X ,n −X �X ‖p

B−κp,p(p(a))

]
=
∑
q

2−κqp
∫
R

E
[
|∆q(X � (X −X ,n))|2(t, x)

]p/2
1+|x|ap

. δ

where the last estimate holds if we choose q0 such that
∑
q≥q0 2−κqp ≤ δ and n such

that 2(q0−cn)p/2 ≤ δ in order to split up the last sum at the q0-th term and to obtain two
small terms. The time regularity follows similarly, see also Section 9.5 of [24]. By Besov
embedding we find the required convergence.
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D Schauder estimates

In this section we review classical Schauder theory for space-time distributions. Such
results are well-known in literature: we adapt them in order to deal with time-dependent
weights and blow-ups at time t = 0. The method of proof we use is essentially the same of
[23, Theorem 1], which is based on the construction of the Young integral. Such integral
is the content of the next lemma.

Lemma D.1. Let Th ≥ 0, β ∈ [0, 1), α, γ ∈ (0, 2) such that α+γ > 2. Then for f ∈
L β,α
z1 ([0, Th]) and h ∈ L γ

z2([0, Th]), where zi : R≥0 → ρ(ω) are point-wise increasing, it is
possible to define the Young integral:

It =

∫ t

0

f(r)dh(r)

such that t 7→ tβIt lies in Cγ/2L∞z1z2([0, Th]). This map is bilinear and satisfies the bound:

‖t 7→ tβIt‖Cγ/2L∞z1z2 ([0,Th]) .Th ‖f‖L β,α
z1

([0,Th])‖h‖L γ
z2

([0,Th]).

For f, h ∈ C∞b ([0, Th]×R;R), I is the unique map that satisfies ∂tIt = f∂th, I0 = 0.

Proof. Following the classical construction via the sewing lemma (cf. [16, Lemma 4.2])
we can build the integral

∫ t
s
f(r)dh(r) for any t ≥ s > 0. We repeat the construction in

order to get a tight control on the singularity in zero and the weights involved. We will
prove the result for time independent weights. The general case then follows from the
identity: ∫ t0 f(s)dh(s) = ∫ t0 f(s ∧ t)dg(s). Define for n ≥ 0 and tnk = k/2n

Int =

+∞∑
k=0

f(tnk+1)(h(tnk+1 ∧ t)−h(tnk ∧ t)),

unlike the more traditional integration scheme we choose a right base-point to remove
some tedious, but only technical difficulties when dealing with time blow ups. We want
to estimate the following quantity

∑
n≥0

sup
0≤s≤t≤T

‖tβ(In+1
t −Int )− sβ(In+1

s −Ins )‖L∞z1z2
|t−s|γ/2

.

We will treat only the case β > 0, since β = 0 follows similarly. We fix n and estimate one
of the terms above. We will divide the estimate in two parts.

Step 1. First we look on large scales, that is |t−s| > 2−n. To lighten the notation
we write gu,v = g(u)−g(v). We also write tn ( resp. tn) for the nearest left (resp. right)
dyadic point to t:

kn(t) = arg min
k|k≤2nt

|t−tnk |, tn = kn/2
n, tn = tn+1/2n.

We start by considering t ≤ 2s. In this case we will estimate the terms tβ(In+1
s,t −Ins,t) and

(tβ − sβ)(In+1
s −Ins ) separately. Let us start with the first one. Since |t−s| > 2−n we have

in particular that sn < t and a close inspection of the sums reveals that:

Int,s−In+1
t,s = fsn,sn+1hsn+1,s +

kn(t)−1∑
k=kn(s)+1

ftn+1
2k+2,t

n+1
2k+1

htn+1
2k+1,t

n+1
2k

+ ftn,tn+1
htn+1,tn + ftn,tn+1ht,tn+1

.
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Now if we call f(t) = tβf(t) we can write an increment of f as:

fu,v = u−βfu,v + (u−β−v−β)f(v).

Note that f is α/2-Hölder continuous so that substituting this formula we find:

‖Int,s−In+1
t,s ‖L∞z1z2 . ‖f‖L β,α

z1
‖h‖L γ

z2
·

·
{

1

2n(α+γ)/2

[
(sn+1)−β +

kn(t)−1∑
k=kn(s)+1

(tn+1
2k+1)−β + (tn+1)−β

]

+
1

2n(γ/2+1)

[
(sn+1)−β−1+α/2 +

kn(t)−1∑
k=kn(s)+1

(tn+1
2k+1)−β−1+α/2 + (tn+1)−β−1+α/2

]}

.‖f‖L β,α
z1
‖h‖L γ

z2

[ kn+1(t)∑
k=kn+1(s)+1

(tn+1
k )−β

1

2(n+1)(α+γ)/2

]
.

1

2n%
‖f‖L β,α

z1
‖h‖L γ

z2

1

2(n+1)(1−β)

[
(kn+1(t)+1)1−β − (kn+1(s)+1)1−β]

where for the first inequality we have used that for u ≥ v we can estimate v−β−u−β ≤
(u−v)v−β−1 and for the second inequality we have used that since α/2 ≤ 1, we can
estimate (k/2n)−1+α/2 ≤ (1/2n)−1+α/2. In the last line, since β ∈ [0, 1), we estimated∑b
a k
−β ≤ 2β ∫ b+1

a x−βdx for a ≥ 1 and we set % = (α+β)/2−1 > 0. Now using the
assumptions on t and s we can estimate the last quantity as follows:

tβ‖Int,s−In+1
t,s ‖L∞z1z2

|t−s|γ/2
. 2−n%tβ

((tn+1)1−β−(sn+1)1−β)

(t−s)γ/2
≤ 2−n%

(sn+1)−β(tn+1−sn+1)

(t−s)γ/2

≤ 2−n%tβ
tβ

sβ
(
|t−s|1−γ/2 + 2−n−1|t− s|−γ/2

)
. 2−n%,

now we treat the term (tβ−sβ)(In+1
s − Ins ). Here we only need to adapt the previous

calculations:

‖(tβ−sβ)(In+1
s − Ins )‖L∞z1z2
|t−s|γ/2

. (t−s)1−γ/2sβ−1‖In+1
s − Ins ‖L∞z1z2 (D.1)

. 2−n%sβ−1((sn+1)1−β−2−(n+1)(1−β)) . 2−n%

where in the last line we have estimated (sn+1)1−β ≤ s1−β + 2−(n+1)(1−β) together with
the fact that s ≥ 2−(n+1) since |t− s| > 2−n and t ≤ 2s.

We now consider t ≥ 2s. This time we will estimate the two terms tβIt and sβIs
separately. Indeed in this case we find t− s ≥ t/2 and we can estimate:

‖tβ(In+1
t −Int )− sβ(In+1

s −Ins )‖L∞z1z2
|t−s|γ/2

. t−γ/2+β‖In+1
t −Int ‖L∞z1z2 +s−γ/2+β‖In+1

s −Ins ‖L∞z1z2 ,

so that similar calculations to the ones from Equation (D.1) pull thorough.
Step 2. Now we have to consider the small-scales case with respect to n. If |t−s| ≤ 2−n

the increment Int,s−In+1
t,s can assume only one of the following three forms according to

the position of s, t w.r.t to dyadic points, assuming s, t are not dyadic themselves (i.e. of
the form k/2n+1):

ftn,tn+1ht,s if sn+1 > t, ftn,sn+1ht,s if sn > t, sn+1 < t, ftn,tn+1ht,sn if sn+1 < t,
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and these formulas can be extended continuously in the case that one or both of the
points s, t is dyadic. Here the difficulty is a formality, namely that in our notation the
points tn, tn+1 do not depend continuously on t. By continuity if is sufficient to control
the Hölder seminorm for non-dyadic points. We show how to estimate the second term.
The others follow similarly. As in the previous discussion we have:

tβ |ftn,sn+1ht,s| ≤ tβ
(
(sn+1)−β2−nα/2 + (sn+1)−β−1+α/22−n

)
|t−s|γ/2 . 2−nα/2|t−s|γ/2,

where in the last step we used that sn+1 = tn+1 and sn+1 ≥ 2−(n+1) together with the
estimate tβ ≤ (tn+1)β + 2−nβ. The result regarding smooth functions follows from the
properties of the Riemann integral.

We also need the following reformulation of [21, Lemma A.8], recall the definition of
of the Heat semigroup Pt from Equation (2.1).

Lemma D.2. For α ∈ R, δ ≥ 0, t > 0 it is possible to estimate

‖(Id−Pt)u‖Cα
z
. tδ/2‖u‖Cα+δ

z
.

Proof. For any q ≥ −1 it follows from [21, Lemma A.8]:

‖(Id−Pt)∆qu‖L∞z . tδ/2‖∆qu‖C δ
z
. tδ/22δq

∑
j∼q
‖∆ju‖L∞z .

The result then follows by multiplying with 2qα and summing over q.

Finally we can prove Schauder estimates for time-dependent distributions.

Lemma D.3. For any β ∈ [0, 1), α, γ ∈ (0, 2) such that α+γ > 2 and 0 ≤ η < γ−2a/δ and
0 ≤ T` ≤ Tr ≤ Th there exists a continuous bilinear map

VT` : L β,α
e(l+t)([T`, Tr])×L γ

p(a)([T`, Tr])→ L β,η
e(l+t)([T`, Tr]),

such that
‖VT`(f, h)‖L β,η

e(l+t)
([T`,Tr]) .Th ‖f‖L β,α

e(l+t)
([T`,Tr])‖h‖L γ

p(a)
([T`,Tr]).

Similarly, by identifying V0 with V , under the same assumption on β, α, γ, for given
zi : R≥0 → ρ(ω) point-wise increasing, i = 1, 2, we can build a map between the spaces

V : L β,α
z1 ([0, Th])×L γ

z2([0, Th])→ L β,η
z1z2([0, Th]),

such that
‖V (f, h)‖L β,η

z1z2
([0,Th]) .Th ‖f‖L β,α

z1
([0,Th])‖h‖L γ

z2
([0,Th])

for any 0 ≤ η < γ. For f, h ∈ C∞b ([0, T ]×R;R) the map VT` is the convolution with the
heat kernel:

VT`(f, h)(t) =

∫ t

T`

P (s−T`)fs∂shsds.

Proof. We prove only the result regarding exponential weights, since the second one
follows via the same calculations and is simpler. In addition, for clarity and without loss
of generality we assume [T`, Tr] = [0, T ]. Let us fix f ∈ L β,α

e(l+t) and h ∈ L γ
p(a) and let X

be the Young integral from Lemma D.1: Xt = ∫ t0 fsdhs. We approximate the convolution
with the heat kernel V (f, h) in the following way:

V nt =

b2ntc−1∑
k=3

P (t−tnk )Xtnk+1,t
n
k
.
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This approximation has the advantage of simplifying our calculations, but the disadvan-
tage of not being continuous in time. We want to show that V nt converges to some Vt
which lies in L β,η

e(l+t) for η < γ−2a/δ. For this reason fix κ, ε ≥ 0 small at will such that

γ+κ > 2 and ζ = (η+κ+ε)/2+a/δ < 1. We divide the proof in two steps, estimating
the spatial and the temporal regularity differently. For tn, tn, tnk , kn(t) we use the same
definition as in the proof of Lemma D.1.

Step 1. We show that for fixed t the sequence V nt converges in C η
e(l+t). As in the

previous proof we show that:∑
n≥0

tβ‖V n+1
t −V nt ‖Cη

e(l+t)
. ‖f‖L β,α

e(l+t)
‖h‖L γ

p(a)

thus deducing the existence of a limit Vt with supt∈[0,T ] t
β‖Vt‖Cη

e(l+t)
. ‖f‖L β,α

e(l+t)
‖h‖L γ

p(a)
.

We can write the difference of the increments as:

V nt −V n+1
t =

b2ntc−1∑
k=3

(P (tn+1
2k+1−t

n+1
2k )−Id)P (t−tn+1

2k+1)Xtn+1
2k+2,t

n+1
2k+1

− P (t−tn)Xtn+1,tn1{kn+1(t)>5} − P (t−tn+1
3 )Xtn+1

4 ,tn+1
3

1{kn+1(t)=5}

Now we can estimate

‖V nt −V n+1
t ‖Cη

e(l+t)
.
b2ntc−1∑
k=3

1

2(n+1)κ/2
‖P (t−tn+1

2k+1)(Xtn+1
2k+2,t

n+1
2k+1

)‖Cη+κ
e(l+t)

+
‖Xtn+1,tn‖C−ε

e(l+t)

|t−tn|(η+ε)/2
1{kn+1(t)>5} +

‖Xtn+1
4 ,tn+1

3
‖C−ε

e(l+t)

|t−tn+1
3 |(η+ε)/2

1{kn+1(t)=5}

.
b2ntc−1∑
k=3

‖Xtn+1
2k+2,t

n+1
2k+1
‖C−ε

p(a)e(l+t)

2(n+1)κ/2|t−tnk |(η+κ+ε)/2+a/δ

+
‖Xtn+1,tn‖C−ε

p(a)e(l+t)

|t−tn|(η+ε)/2+a/δ
1{kn+1(t)>5} +

‖Xtn+1
4 ,tn+1

3
‖C−ε

p(a)e(l+t)

|t−tn+1
3 |(η+ε)/2+a/δ

1{kn+1(t)=5}

where we have applied the first Schauder estimate from Proposition 2.12 and the
bound ‖f‖Cν

p(a)e(l+t)
. |t−s|−a/δ‖f‖C ν

e(l+s)
, for t ≥ s. Now we have to estimate the

norm of the increment. Here the time explosions come into play: we write Xu,v =

u−βXu,v + (u−β−v−β)X(v), with X(t) = tβX(t) ∈ Cγ/2L∞p(a)e(l+t) according to the result

of Lemma D.1. Since v−β−u−β ≤ (u−v)v−β−1 we can estimate

‖Xtn+1
2k+2,t

n+1
2k+1
‖C−ε

p(a)e(l+t)
. (tn+1

2k+1)−β2−(n+1)γ/2‖f‖L β,α
e(l+t)

‖h‖L γ
p(a)

.

At this point we can conclude, since:

‖V nt −V n+1
t ‖Cη

e(l+t)
. ‖f‖L β,α

e(l+t)
‖h‖L γ

p(a)

(
2−n%

b2ntc−1∑
k=1

2−n|t−tnk |−ζ(tn+1
2k+1)−β

+
(tn)−β2−(n+1)γ/2

|t−tn|(η+ε)/2+a/δ
1{kn+1(t)>5,tn<tn+1} +

(tn+1
3 )−β2−(n+1)γ/2

|t−tn+1
3 |(η+ε)/2+a/δ

1{kn+1(t)=5}

)
with % = (κ+γ)/2−1. Now the sum can be dominated by an integral:

b2ntc−1∑
k=3

2−n|t−tnk |−ζ(tn+1
2k+1)−β .

∫ b2ntc
32−n

|t−s|−ζs−βds . t1−ζ−β . t−β

EJP 24 (2019), paper 117.
Page 52/56

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP362
http://www.imstat.org/ejp/


KPZ on R

where we used that 2−n(tn+1
2k+1)−β ≤ 2−n(tnk )−β ≤ 2β ∫ t

n
k+1

tnk
s−βds as well as the fact that

ζ < 1. Finally we bound the two rest terms. Under the condition tn < tn+1 we can
estimate

(tn)−β2−(n+1)γ/2

|t−tn|(η+ε)/2+a/δ
. (tn)−β2−(n+1)(γ−η−ε)/2−a/δ . t−β2−n%2n(ζ−1)

since (tn/t)
−β . (1−1/t2n)−β . 2β, because kn+1(t) > 5 and thus t ≥ 2−n+2. Similarly

we can treat the last term:

(tn+1
3 )−β2−(n+1)γ/2

|t−tn+1
3 |(η+ε)/2+a/δ

. t−β2−n%2n(ζ−1).

Since % > 0 and ζ < 1 this allows to deduce the spatial regularity.
Step 2. Now we address the temporal regularity. Our aim is to estimate:

sup
0≤s≤t≤T

‖tβVt−sβVs‖L∞
e(l+t)

|t−s|η/2
. ‖f‖L β,α

e(l+t)
‖h‖L γ

p(a)
.

For simplicity, as there is no difference w.r.t. the previous case we omit taking care of
the norm of the functions. Let us first consider t ≥ s such that t ≤ 2s. Here we rewrite
the above quantity as:

tβVt−sβVs = tβ(Vt−P (t−s)Vs) + tβ(P (t−s)−Id)Vs − (tβ−sβ)Vs.

And we estimate all three these terms separately. The first one can be written as the
limit:

Vt−P (t−s)Vs = lim
n
Wn
t,s, Wn

t,s =

bt2nc−1∑
bs2nc+1

P (t−tnk )Xtnk+1,t
n
k

since the rest terms vanish in the limit. At this point we estimate W as before:

‖Wn
t,s−Wn+1

t,s ‖L∞e(l+t) ≤
bt2nc−1∑
bs2nc+1

‖(P (tn+1
2k+1−t

n+1
2k )−Id)P (t−tn+1

2k+1)Xtn+1
2k+2,t

n+1
2k+1
‖L∞

e(l+t)

+ ‖(P (t−sn+1)Xsn,sn+1 + P (t−tn)Xtn+1,tn)1|t−s|≥2−n‖L∞e(l+t)

.
bt2nc−1∑
bs2nc+1

(tn+1
2k+1)−β

2(n+1)(κ+γ)/2|t−tnk |κ/2+a/δ
+

(sn+1)−β

2n(γ/2−a/δ) 1|t−s|≥2−n

. 2−n%̃
(∫ t

s

u−β(t−u)−κ/2−a/δdu+ t−β |t−s|η/2
)

. 2−n%̃|t−s|η/2t−β

with %̃ = [(γ−η)/2−a/δ] ∧ [(κ+γ)/2−1], where we used the fact that ‖f‖C 0
z
. ‖f‖L∞z and

since t ≤ 2s and 1−κ/2−a/δ > η/2 we have estimated the integral by:∫ t

s

u−β(t−u)−κ/2−a/δdu . t−β−κ/2−a/δ+1

∫ 1

s/t

(1−u)−κ/2−a/δdu . t−β(t−s)1−κ/2−a/δ.

As for the second term since t ≤ 2s and via Lemma D.2 and the results of the first
step we estimate

‖tβ(P (t−s)−Id)Vs‖L∞
e(l+t)

. |t−s|η/2.

Finally, for the third term we estimate:

‖(tβ−sβ)Vs‖L∞
e(l+t)

. (t−s)1−µsβ−1+µ‖Vs‖L∞
e(l+t)
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for any µ ∈ (0, 1). For this purpose we follow the calculations in the first step. Indeed

‖V nt −V n+1
t ‖L∞

e(l+t)
.2−n%

∫ t

0

|t−s|−ε/2−a/δs−βds . t1−β−ε/2−a/δ

so that the result follows from the previous estimate by choosing µ = ε/2−a/δ, since
1−µ ≥ η/2. If we suppose that t > 2s we can estimate:

‖tβVt−sβVs‖L∞
(e(l+t)

|t−s|η/2
≤ sup

t
tβ−η/2‖Vt‖L∞

e(l+t)

and this quantity can be bounded via the arguments we just used. This concludes the
proof. The result regarding smooth functions follows again via Riemann integration.
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