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Abstract

For a random walk killed at leaving a cone we suggest two new constructions of a
positive harmonic function. These constructions allow one to remove a quite strong
extendability assumption, which has been imposed in our previous paper (Denisov
and Wachtel, 2015, Random walks in cones). As a consequence, all the limit results
from that paper remain true for cones which are either convex or star-like and C2.
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1 Introduction and the main result

Consider a random walk {S(n), n ≥ 1} on Rd, d ≥ 1, where

S(n) = X(1) + · · ·+X(n)

and {X(n), n ≥ 1} is a family of independent copies of a random vector X = (X1, X2, . . . ,

Xd). We will assume that the random variables have zero mean, unit variance, and
are uncorrelated, that is E[Xi] = 0,Var(Xi) = 1 for 1 ≤ i ≤ d and cov(Xi, Xj) = 0 for
1 ≤ i < j ≤ d.

Denote by Sd−1 the unit sphere of Rd and Σ an open and connected subset of Sd−1.
Let K be the cone generated by the rays emanating from the origin and passing through
Σ, i.e. Σ = K ∩ Sd−1. Let τx be the exit time from K of the random walk with starting
point x ∈ K, that is,

τx = inf{n ≥ 1 : x+ S(n) /∈ K}.

In the present paper we are concerned with the existence of a positive harmonic function
V for a random walk killed at the exit from K, that is a function V which solves the
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following equation
E[V (x+X), τx > 1] = V (x), x ∈ K.

Harmonic function V (x) plays a central role in our approach to study of the Markov
processes confined to unbounded domains. This approach was initiated in [8], where we
studied random walks in a Weyl chamber, which is an example of a cone. These studies
were extended in [9], where we considered random walks in general cones. In particular,
in [9] we showed that

P(τx > n) ∼ CV (x)

np/2
, n→∞,

and proved global and local limit theorems for random walks conditioned on {τx > n}.
The approach suggested in [9] was further extended to one-dimensional random walks
above the curved boundaries [11], [6], [7], integrated random walks [10], [5], products
of random matrices [14], and Markov walks [13].

This approach is based on the universality ideas and heavily relies on corresponding
results for Brownian motion, or, more generally, diffusion processes. Thus, an important
role is played by the harmonic function of the Brownian motion killed at the boundary
of K, which can be described as the minimal (up to a constant), strictly positive on K
solution of the following boundary problem:

∆u(x) = 0, x ∈ K with boundary condition u
∣∣
∂K

= 0.

The function u(x) and constant p can be found as follows. If d = 1 then we have only
one non-trivial cone K = (0,∞). In this case u(x) = x and p = 1. Assume now that
d ≥ 2. Let LSd−1 be the Laplace-Beltrami operator on Sd−1 and assume that Σ is regular
with respect to LSd−1 . With this assumption, there exists a complete set of orthonormal
eigenfunctions mj and corresponding eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ . . . satisfying

LSd−1mj(x) = −λjmj(x), x ∈ Σ (1.1)

mj(x) = 0, x ∈ ∂Σ.

Then
p =

√
λ1 + (d/2− 1)2 − (d/2− 1) > 0,

and the harmonic function u(x) of the Brownian motion is given by

u(x) = |x|pm1

(
x

|x|

)
, x ∈ K. (1.2)

We refer to [2] for further details on exit times of Brownian motion. For symmetric stable
Lévy processes asymptotics for exit times and related questions have been considered in
[1], [3] and [15], see also references therein.

In [9] we showed that one construct a harmonic function for the random walk killed
at τx as follows

V (x) = lim
n→∞

E[u(x+ S(n), τx > n].

The existence and positivity of V was shown under certain assumptions. The geometric
assumptions in [9] can be summarised as follows,

(i) K is either starlike with Σ in C2 or convex. We say that K is starlike if there exists
x0 ∈ Σ such that x0 +K ⊂ K and dist(x0 +K, ∂K) > 0. Clearly, every convex cone
is also starlike, for the proof see Remark 15 in [9].

(ii) We assume that there exists an open and connected set Σ̃ ⊂ Sd−1 with
dist(∂Σ, ∂Σ̃) > 0 such that Σ ⊂ Σ̃ and the function m1 can be extended to Σ̃

as a solution to (1.1).
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Assumption (ii) is quite restrictive. For this assumption to hold it is necessary
to assume that the boundary of the cone is piecewise infinitely differentiable. But
this condition is not sufficient. The restriction (ii) excludes many cones which are
of interest in various mathematical problems. For example, it is not clear whether
(ii) holds for linear transformations of the orthant Rd+, d ≥ 2 which appear often in
paths enumeration problems in combinatorics. (It is worth mentioning that (ii) holds
for any simply connected open cone in R2. This follows from the observation that
m1(x) = sin(C1 + C2x) in this two-dimensional situation.)

We have shown in [9] that the condition (ii) can be dropped in the case when the
random walk {S(n)} has bounded jumps, Raschel and Tarrago [17] have recently shown
that (ii) can be removed under stronger than in [9] moment restrictions on the vector
X. The main aim of this paper is to show that this assumption can be removed without
imposing any further conditions. Namely, we prove that (i) is sufficient and the following
result holds.

Theorem 1.1. Assume that either the cone K is convex or Σ is C2 and K is starlike. If
E|X|α is finite for α = p if p > 2 or for some α > 2 if p ≤ 2, then the function

V (x) := lim
n→∞

E [u(x+ S(n)); τx > n]

is finite and harmonic for {S(n)} killed at leaving K, i.e.,

V (x) = E [V (x+ S(n)); τx > n] , x ∈ K, n ≥ 1.

Furthermore, V (x) is strictly positive on the set

K+ := {x ∈ K : there exists γ > 0 such that for every R > 0

there exists n such that P(x+ S(n) ∈ DR,γ , τx > n) > 0} ,

where DR,γ := {x ∈ K : |x| ≥ R,dist(x, ∂K) ≥ γ|x|}.
We will present two very different proofs of this theorem. The first proof uses

preliminary bounds for the moments of exit times of τx due to [16], see Lemma 2.6 below.
The proof is similar to that in [9], but we use an additional idea of time-dependent shifts
inside the cone. Thus the approach is reminiscent of one-dimensional random walks
conditioned to stay above curved boundaries [6].

The second proof combines time-dependent shifts with an iterative procedure similar
to that in [8] and [10]. The main advantage of this approach is that in principle no
preliminary information on moments of exit times is needed. However, we use [16]
to obtain optimal moment conditions. If we assume two additional moments then this
approach becomes self-contained, see Remark 5.4 below.

A further advantage of new constructions consists in the fact that we do not use esti-
mates for the concentration function of the random walk {S(n)}, which were important
for the method used in [9].

Since the geometric assumption (ii) has been used in [9] in the construction of V (x)

only, Theorem 1.1 allows us to state limit theorems for random walks in cones proven in
[9] and in [12] for all cones satisfying (i).

Corollary 1.2. Under the conditions of Theorem 1.1, as n→∞,

P(τx > n) ∼ κV (x)n−p/2,

P

(
x+ S(n)√

n
∈ ·
∣∣τx > n

)
→ µ weakly,

where µ is a probability measure on K with the density H0u(y)e−|y|
2/2. Furthermore,

the process
{
x+S([nt])√

n
, t ∈ [0, 1]

}
conditioned on {τx > n} converges weakly in the space

D([0, 1], ‖ · ‖∞).
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Corollary 1.3. Assume that X takes values on a lattice R which is a non-degenerate
linear transformation of Zd. Then, under the assumptions of Theorem 1.1,

sup
y∈Dn(x)

∣∣∣∣np/2+d/2P (x+ S(n) = y, τx > n)− C0V (x)u

(
y√
n

)
e−|y|

2/2n

∣∣∣∣→ 0,

where
Dn(x) := {y ∈ K : P(x+ S(n) = y) > 0}.

The constant C0 is a product of the volume of the unit cell in R and of a factor, which
depends on the periodicity of the distribution of X.

In the proof of Theorem 5 in [9] we have required the strong aperiodicity of X. This
has been done to use the simplest version of the local limit theorem for unrestricted
random walks from Spitzer’s book [18]. But this standard result can be replaced by
Stone’s local limit theorem which is valid for all lattice walks, see [19].

2 Preliminary estimates

We first collect some useful facts about the classical harmonic function u(x).

Lemma 2.1. There exists a constant C = C(d) such that for x ∈ K

|∇u(x)| ≤ C u(x)

dist(x, ∂K)
,

|uxi | ≤ C
u(x)

dist(x, ∂K)
,

∣∣uxixj ∣∣ ≤ C u(x)

dist(x, ∂K)2
,

∣∣uxixjxk ∣∣ ≤ C u(x)

dist(x, ∂K)3
. (2.1)

Proof. Recalling that every partial derivative uxi is harmonic and using the mean value
theorem for harmonic functions, we obtain

uxi(x) =
1

Vol(B(x, r))

∫
B(x,r)

uxi(y)dy,

where B(x, r) is the ball of radius r around x and r < dist(x, ∂K). By the Gauss-Green
theorem,

uxi(x) =
1

Vol(B(x, r))

∫
∂B(x,r)

u(z)(ν(z), ei)dz,

where ν(z) is the outer normal at z. Choosing r = dist(x, ∂K)/2 and applying the Harnack
inequality in the ball B(x, dist(x, ∂K)), we conclude that

|uxi(x)| ≤ 3 · 2d−2 Vol(∂B(x, r))

Vol(B(x, r))
u(x) = 3d · 2d−1 u(x)

dist(x, ∂K)
.

This implies the desired estimate for uxi(x). Since uxj is harmonic as well we can write

|uxixj | =

∣∣∣∣∣ 1

Vol(B(x, r))

∫
∂B(x,r)

uzi(z)(ν(z), ej)dz

∣∣∣∣∣
≤ C(d)

Vol(B(x, r))dist(x, ∂K)

∫
∂B(x,r)

u(z)|(ν(z), ej)|dz ≤ C(d)2
u(x)

dist(x, ∂K)2

The inequality for the third derivative can be proved analogously. The inequality for the
gradient immediately follows from the inequality for the first derivative.
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For every cone K one has the bound

dist(x, ∂K) ≤ |x|, x ∈ K.

Furthermore, it follows from (1.2) that

u(x) ≤ C|x|p, x ∈ K.

In the next lemma we derive more accurate estimates for u(x).

Lemma 2.2. Assume that either the cone K is convex or Σ is C2 and K is starlike. Then

C1 (dist(x, ∂K))
p ≤ u(x) ≤ C2|x|p−1dist(x, ∂K), x ∈ K (2.2)

and
|∇u(x)| ≤ C3|x|p−1, x ∈ K. (2.3)

Proof. The upper bound in (2.2) is (0.2.3) in Varopoulos [20] and the lower bound has
been proved in Lemma 19 in [9]. Combining the upper bound in (2.2) with Lemma 2.1,
we obtain (2.3).

We will extend the function u by putting u(x) = 0 for x /∈ K.

Lemma 2.3. Assume that either the cone K is convex or Σ is C2 and K is starlike. Let
x ∈ K. Then,

|u(x+ y)− u(x)| ≤ C|y|
(
|x|p−1 + |y|p−1

)
(2.4)

and, for |y| ≤ |x|/2,
|u(x+ y)− u(x)| ≤ C|y||x|p−1. (2.5)

For p < 1 and x ∈ K,
|u(x+ y)− u(x)| ≤ C|y|p. (2.6)

Proof. Consider first the case p ≥ 1. To prove (2.4) consider first the case when the
interval [x, x+ y] lies in K. Then,

|u(x+ y)− u(x)| =
∣∣∣∣∫ 1

0

(∇u(x+ ty), y)dt

∣∣∣∣ ≤ |y|∫ 1

0

|∇u(x+ ty)|dt.

Hence, by (2.3),

|u(x+ y)− u(x)| ≤ C3|y|
∫ 1

0

|x+ ty|p−1dt ≤ C2p−1|y|
(
|x|p−1 + |y|p−1

)
,

as required. Now if [x, x+ y] does not belong to K then we have two cases: x+ y ∈ K or
x+ y /∈ K. If x+ y ∈ K then there exist t1, t2 : 0 < t1 < t2 < 1 such that [x, x+ t1y) ⊂ K
and (x+ t2y, x+y] ⊂ K and x+ t1y, x+ t2y ∈ ∂K. If x+y /∈ K then there exists t1 : 0 < t1
such that [x, x+ t1y) ⊂ K and we put t2 = 1. Since in both cases x+ t1y, x+ t2y /∈ K and
u = 0 outside of K we obtain

|u(x)− u(x+ y)| = |u(x)− u(x+ t1y) + u(x+ t2y)− u(x+ y)|
≤ |u(x)− u(x+ t1y)|+ |u(x+ t2y)− u(x+ y)|

=

∣∣∣∣∫ t1

0

(∇u(x+ ty), y)dt

∣∣∣∣+

∣∣∣∣∫ 1

t2

(∇u(x+ ty), y)dt

∣∣∣∣
(by (2.3)) ≤ C4|y|

(∫ t1

0

+

∫ 1

t2

)
|x+ ty|p−1dt ≤ C|y|

(
|x|p−1 + |y|p−1

)
,
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as required. If p ≥ 1 then (2.5) is immediate from (2.4).

For p < 1 we will prove a stronger statement (2.6) which clearly implies (2.4).
Consider first again the case when the interval [x, x+ y] lies in K. If |x| ≥ 2|y| then

|u(x+ y)− u(x)| ≤ |y|
∫ 1

0

|∇u(x+ ty)|dt

≤ C|y|
∫ 1

0

|x+ ty|p−1dt ≤ C|y|(2|y| − |y|)p−1 ≤ C|y|p

and

|u(x+ y)− u(x)| ≤ |y|
∫ 1

0

|∇u(x+ ty)|dt

≤ C|y|
∫ 1

0

|x+ ty|p−1dt ≤ C|y|(|x| − |x|/2)p−1 ≤ C|y||x|p−1.

Therefore, we have (2.5) and (2.6) for |y| ≤ |x|/2. Furthermore, for |x| < 2|y| one has

|u(x+ y)− u(x)| ≤ C(|x+ y|p + |y|p) ≤ C(3p + 1)|y|p,

which completes the proof (2.6) in the case when [x, x+ y] ⊂ K. The case when [x, x+ y]

does not belong to K can be considered in the same way as for p ≥ 1.

For x ∈ K let

f(x) = E[u(x+X)]− u(x). (2.7)

Next we require a bound on f(x).

Lemma 2.4. Let the assumptions of Theorem 1.1 hold and f be defined by (2.7). Then,
for some δ > 0,

|f(x)| ≤ C |x|p

dist(x, ∂K)2+δ
for all x ∈ K with |x| ≥ 1.

Furthermore,

|f(x)| ≤ C for all x ∈ K with |x| ≤ 1.

Proof. Let x ∈ K be such that |x| ≥ 1. Put g(x) = dist(x, ∂K), and let η ∈ (0, 1). Then, for
any y ∈ B(0, ηg(x)), the interval [x, x+ y] ⊂ K. By the Taylor theorem,∣∣∣∣∣∣u(x+ y)− u(x)−∇u · y − 1

2

∑
i,j

uxixjyiyj

∣∣∣∣∣∣ ≤ R3(x)|y|3.

The remainder R3(x) can be estimated by Lemma 2.1,

R3(x) = Cd max
z∈B(x,ηg(x))

max
i,j,k
|uxixjxk(z)| ≤ C (1 + η)p

(1− η)3
|x|p

g(x)3
,

which will give us∣∣∣∣∣∣u(x+ y)− u(x)−∇u · y − 1

2

∑
i,j

uxixjyiyj

∣∣∣∣∣∣ ≤ C |x|
p

g(x)3
|y|3. (2.8)
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Then we can proceed as follows

|f(x)| = |E (u(x+X)− u(x))1(|X| ≤ ηg(x))|
+ |E (u(x+X)− u(x))1(|X| > ηg(x))|

≤

∣∣∣∣∣∣E
∇u ·X +

1

2

∑
i,j

uxixjXiXj

1(|X| ≤ ηg(x))

∣∣∣∣∣∣
+ C

|x|p

g(x)3
E
[
|X|31(|X| ≤ ηg(x))

]
+ CE [(|x|p + |X|p)1(|X| > ηg(x))] .

Here we used also the bounds |u(x+ y)− u(x)| ≤ C(|x+ y|p + |x|p) ≤ C(|x|p + |y|p) valid
for all x and y. After rearranging the terms we obtain

|f(x)| ≤

∣∣∣∣∣∣E
∇u ·X +

1

2

∑
i,j

uxixjXiXj

∣∣∣∣∣∣
+

∣∣∣∣∣∣E
∇u ·X +

1

2

∑
i,j

uxixjXiXj

1(|X| > ηg(x))

∣∣∣∣∣∣
+ C

|x|p

g(x)3
E
[
|X|31(|X| ≤ ηg(x))

]
+ CE [(|x|p + |X|p)1(|X| > ηg(x))] .

Now note that the first term is 0 due to EXi = 0, cov(Xi, Xj) = δij and ∆u = 0. The
partial derivatives of the function u in the second term can be estimated via Lemma 2.1,
which results in the following estimate

|f(x)| ≤ C
(
|x|p

g(x)
E [|X|; |X| > ηg(x)] +

|x|p

g(x)2
E
[
|X|2; |X| > ηg(x)

]
+
|x|p

g(x)3
E
[
|X|3; |X| ≤ ηg(x)

]
+ |x|pP(|X| > ηg(x))

+ E [|X|p; |X| > ηg(x)]

)
.

Hence, from the Markov inequality we conclude

|f(x)| ≤ C |x|p

η2g2(x)
E
[
|X|2; |X| > ηg(x)

]
+ C

|x|p

g3(x)
E
[
|X|3; |X| ≤ ηg(x)

]
+ CE [|X|p; |X| > ηg(x)] . (2.9)

Now recall the moment assumption that E|X|2+δ <∞ for some δ > 0. The first term is
estimated via the Chebyshev inequality,

|x|p

η2g2(x)
E
[
|X|2; |X| > ηg(x)

]
≤ |x|p

η2+δg2+δ(x)
E|X|2+δ.

The second term can be estimated similarly,

|x|p

g3(x)
E
[
|X|3; |X| ≤ ηg(x)

]
≤ |x|p

η2g3(x)
η1−δg1−δ(x)E|X|2+δ.

In order to bound the last term in (2.9) we have to distinguish between p ≤ 2 and p > 2.
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If p ≤ 2, then, by the Chebyshev inequality,

E [|X|p; |X| > ηg(x)] ≤ 1

(ηg(x))2+δ−p
E
[
|X|2+δ

]
≤ C |x|p

g2+δ(x)
,

as g(x) = dist(x, ∂K) ≤ |x|.
In case p > 2 we have, according to our moment condition, E[|X|p] < ∞. Conse-

quently,
E [|X|p; |X| > ηg(x)] ≤ C.

The second statement follows easily from the fact that u(x) is bounded on |x| ≤ 1 and
the inequality E[u(x+X)] ≤ C(1 + E[|X|p]).

We derive next an estimate for the maximum

M(n) := max
k≤n
|S(k)|,

which will be used several times in the proofs of our main results.

Lemma 2.5. If E|X|t <∞ for some t ≥ 2 then, uniformly in x, as n→∞,

E
[
M t(n); τx > n,M(n) > n1/2+ε/2

]
= o (E[τx ∧ n] ∨ 1) .

Proof. For every fixed a > 0 one has

P (M(n) > r, τx > n)

≤ P

(
M(n) > r,max

j≤n
|X(j)| ≤ ar

)
+ P

(
max
j≤n
|X(j)| > ar, τx > n

)
. (2.10)

Using first the standard union bound and then the Fuk-Nagaev-type inequality from
Corollary 23 in [9], one gets

P

(
M(n) > r,max

j≤n
|X(j)| ≤ ar

)
≤ 2dn

(√
de

a

)1/a ( n
r2

)1/(a√d)
. (2.11)

Furthermore,

P

(
max
j≤n
|X(j)| > ar, τx > n

)
≤

n∑
j=1

P (|X(j)| > ar, τx > n)

≤
n∑
j=1

P (|X(j)| > ar, τx > j − 1)

= E[τx ∧ n]P(|X| > ar). (2.12)

Combining (2.10)–(2.12), we conclude that

P (M(n) > r, τx > n) ≤ 2dn

(√
de

a

)1/a ( n
r2

)1/(a√d)
+ E[τx ∧ n]P(|X| > ar).

Choosing here a = 2ε√
d((1+ε)t+5)

and integrating the latter bound, one easily gets the

bound

E
[
(M(n))t; τx > n,M(n) > n1/2+ε/2

]
≤ C(a)

(
n−3/2 + E[τx ∧ n]E

[
|X|t; |X| > an1/2+ε/2

])
. (2.13)

Thus, the proof is complete.
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Finally, we will require the following results from [16].

Lemma 2.6. For every β < p we have

E[τβ/2x ] ≤ C(1 + |x|β) (2.14)

and
E[Mβ(τx)] ≤ C(1 + |x|β), (2.15)

where M(τx) := maxk≤τx |x+ S(k)|.
This is the statement of Theorem 3.1 of [16]. One has only to notice that e(Γ, R) in

that theorem is denoted by p in our paper.

3 First proof of Theorem 1.1

Since K is starlike there exists x0 ∈ K with |x0| = 1, x0 + K ⊂ K and R0 such that
dist(R0x0 +K, ∂K) > 1. For k ≥ 0 set

gk = k1/2−γR0x0,

where γ ∈ (0,min(1/2, p)). First we will show that it is sufficient to show convergence of

E[u(x+ gk + S(k)); τx > k]

as k to infinity.

Lemma 3.1. For any x ∈ K, as k →∞,

E[u(x+ gk + S(k)); τx > k]−E[u(x+ S(k)); τx > k]→ 0. (3.1)

Proof. Consider first the case p ≥ 1. Using (2.4), we obtain∣∣E[u(x+ gk + S(k)); τx > k]−E[u(x+ S(k)); τx > k]
∣∣

= |E[u(x+ gk + S(k))− u(x+ S(k)); τx > k]|
≤ C|gk|E[|x+ S(k)|p−1; τx > k] + C|gk|pP(τx > k)

≤ C|gk|E[|S(k)|p−1; τx > k] + C(1 + |x|p−1)|gk|pP(τx > k). (3.2)

Using the Markov inequality and (2.14) with β = p− pγ, we get

|gk|pP(τx > k) ≤ Ckp/2−pγE[τ
p/2−pγ/2
x ]

kp/2−pγ/2
→ 0, k →∞. (3.3)

Furthermore,

E[|S(k)|p−1; τx > k]

≤ k(1+ε)(p−1)/2P(τx > k) + E[|S(k)|p−1; τx > k, |S(k)| > k(1+ε)/2]

≤ k(1+ε)(p−1)/2P(τx > k) + k−(1+ε)/2E[|S(k)|p; τx > k, |S(k)| > k(1+ε)/2]. (3.4)

Choosing ε < γ/(p − 1), applying the Markov inequality and using (2.14) with β =

p− ε(p− 1), we conclude that

|gk|k(1+ε)(p−1)/2P(τx > k) ≤ |gk|k(1+ε)(p−1)/2
E[τ

p/2−ε(p−1)/2
x ]

kp/2−ε(p−1)/2
→ 0. (3.5)

If p > 2 then Eτx is finite and, by Lemma 2.5,

|gk|k−(1+ε)/2E[|S(k)|p; τx > k, |S(k)| > k(1+ε)/2]→ 0. (3.6)
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If p ≤ 2 then, using (2.14) once again, we have

E[τx ∧ k] ≤ k1−p/2+δ/2E[τp/2−δ/2x ] ≤ C(1 + |x|p)k1−p/2+δ/2.

Combining this estimate with Lemma 2.5, we obtain

E
[
|S(k)|p; τx > k, |S(k)| > k(1+ε)/2

]
≤ k−(2+δ−p)(1+ε)/2E

[
|S(k)|2+δ; τx > k, |S(k)| > k(1+ε)/2

]
→ 0.

Therefore, (3.6) remains valid for p ≤ 2. Combining (3.5) and (3.6), we conclude that

|gk|E[|S(k)|p−1; τx > k]→ 0.

Applying this and (3.3) to the right hand side in (3.2), we have (3.1).
We are left to consider the case p < 1. By (2.6), we immediately arrive at

|E[u(x+ gk + S(k))− u(x+ S(k)); τx > k]| ≤ C|gk|pP(τx > k)

≤ C|gk|p
E[τ

p/2−pγ/2
x ]

kp/2−pγ/2
→ 0.

Now we prove the existence of the limit of the sequence E[u(x+ gk + S(k)); τx > k].

Proposition 3.2. There exist a finite function V (x) such that

lim
k→∞

E[u(x+ gk + S(k)); τx > k] = V (x).

We shall split the proof of this proposition into several steps. To this end we shall use
the following decomposition:

u(x+ gk + S(k))I{τx > k}

= u(x) +

k∑
l=1

[u(x+ gl + S(l))I{τx > l} − u(x+ gl−1 + S(l − 1))I{τx > l − 1}]

= u(x)−
k∑
l=1

u(x+ gl + S(l))I{τx = l}

+

k∑
l=1

[u(x+ gl + S(l))− u(x+ gl−1 + S(l − 1))] I{τx > l − 1}

= u(x)− u(x+ gτx + S(τx))I{τx ≤ k}

+

k∑
l=1

[u(x+ gl + S(l))− u(x+ gl−1 + S(l))] I{τx > l − 1}

+

k∑
l=1

[u(x+ gl−1 + S(l))− u(x+ gl−1 + S(l − 1))] I{τx > l − 1}

=: u(x)−W (1)
k (x) +W

(2)
k (x) +W

(3)
k (x). (3.7)

The proposition will follow if we show that the expectations of all three random variables
in (3.7) converge, as k →∞, to finite limits.

Lemma 3.3. The sequence W (1)
k (x) converges almost surely and in L1 towards u(x +

gτx + S(τx)). Furthermore,

Eu(x+ gτx + S(τx)) ≤ C(1 + |x|p−γ). (3.8)
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Proof. The almost sure convergence is immediate from the fact that the sequence W (1)
k

is increasing. Thus, it remains to show that (3.8) holds.

Since x+S(τx) /∈ K, dist(x+gτx +S(τx), ∂K) ≤ |gτx | in the case when x+gτx +S(τx) ∈
K.

Assume first that p < 1. Combining (2.6) and (2.14), we obtain

E[u(x+ gτx + S(τx))] ≤ CE[|gτx |p] ≤ CE[τp/2−pγx ] ≤ C(1 + |x|p−γ).

Consider now the case p ≥ 1. Then, using the upper bound (2.2), we obtain

E[u(x+ gτx + S(τx))] ≤ CE[|gτx |(|x|+ |gτx |+ |S(τx)|))p−1]

≤ C
(
|x|p−1E|gτx |+ E|gτx |p + E[|gτx |M(τx)p−1]

)
.

Recalling the definition of the sequence gk, we have

E[u(x+ gτx + S(τx))] ≤ C|x|p−1Eτ1/2−γx + CEτp/2−pγx + CE
[
τ1/2−γx M(τx)p−1

]
.

Using (2.14), we conclude that the first two summands are bounded from above by
C(1 + |x|p−2γ). Applying the Hölder inequality with some p′ ∈ (p, p + pγ) to the third
summand, we get

E
[
τ1/2−γx M(τx)p−1

]
≤
(
Eτp

′/2−p′γ
x

)1/p′ (
EM (p−1)p′/(p′−1)(τx)

)(p′−1)/p′
By (2.15), EMβ(τx) ≤ Cβ(1 + |x|β), β < p. From this inequality and from (2.14), we infer
that

E
[
τ1/2−γx M(τx)p−1

]
≤ C(1 + |x|1−γ)(1 + |x|p−1).

As a result, (3.8) holds also for p ≥ 1.

Lemma 3.4. There exists W (2)(x) such that W (2)
k (x) converges a.s. and in L1 towards

W (2)(x). Moreover,

E[W (2)(x)] ≤ C(1 + |x|p−γ). (3.9)

Proof. It is clear that all claims in the lemma will follow from

∞∑
l=1

E[|u(x+ gl + S(l))− u(x+ gl−1 + S(l))|; τx > l − 1] ≤ C(1 + |x|p−γ). (3.10)

First we will consider the case p ≥ 1. Note that if x+ gl−1 + S(l) ∈ K then, by (2.4),

|u(x+ gl + S(l))− u(x+ gl−1 + S(l))| ≤ C|gl − gl−1|p + C|gl − gl−1||x+ gl−1 + S(l)|p−1

and, similarly, if x+ gl + S(l) ∈ K then

|u(x+ gl + S(l))− u(x+ gl−1 + S(l))| ≤ C|gl − gl−1|p + C|gl − gl−1||x+ gl + S(l)|p−1.

Hence, if either x+ gl + S(l) ∈ K or x+ gl−1 + S(l) ∈ K then

|u(x+ gl + S(l))− u(x+ gl−1 + S(l))|
≤ C|gl − gl−1|p + C|gl − gl−1|(|x+ gl−1|p−1 + |S(l − 1)|p−1 + |X(l)|p−1). (3.11)
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Since u = 0 outside of the cone the inequality (3.11) is obvious if both x+ gl + S(l) /∈ K
and x+ gl−1 + S(l − 1) /∈ K. Using (3.11), we have

k∑
l=1

|E[u(x+ gl + S(l))− u(x+ gl−1 + S(l)); τx > l − 1]|

≤ C
k∑
l=1

P(τx > l − 1)
(
|gl − gl−1|p + |gl − gl−1||gl|p−1

)
+ C

k∑
l=1

|gl − gl−1|E[|x|p−1 + |S(l − 1)|p−1 + |X(l)|p−1; τx > l − 1]. (3.12)

By (2.14), noting that |gl − gl−1| ≤ Cl−1/2−γ we obtain for every p ≥ 1,

k∑
l=1

P(τx > l − 1)
(
|gl − gl−1|p + |gl − gl−1||gl|p−1

)
≤ C

k∑
l=1

lp/2−1−pγP(τx > l − 1)

≤ CE[τp/2−pγx ] ≤ C(1 + |x|p−γ). (3.13)

Similarly,

(|x|p−1 + E[|X(1)|]p−1)

k∑
l=1

|gl − gl−1|P(τx > l)

≤ C(1 + |x|p−1)

k∑
l=1

P(τx > l)l−1/2−γ

≤ C(1 + |x|p−1)E[τ1/2−γx ] ≤ C(1 + |x|p−γ). (3.14)

It follows from (3.4) and from Lemma 2.5 that

E
[
|S(l − 1)|p−1; τx > l − 1

]
≤ l(p−1)/2+ε(p−1)/2P(τx > l − 1) + CE[τx]l−1/2−ε/2

in the case p > 2. Therefore, for ε < γ/(p− 1),

k∑
l=1

|gl − gl−1|E
[
|S(l − 1)|p−1; τx > l − 1

]
≤ C

k∑
l=1

lp/2−1−γ/2P(τx > l − 1) + CE[τx]

k∑
l=1

l−1−γ

≤ CE[τp/2−γ/2x ] + CE[τx].

Then, taking into account (2.14),

k∑
l=1

|gl − gl−1|E
[
|S(l − 1)|p−1; τx > l − 1

]
≤ C(1 + |x|p−γ). (3.15)

Similarly one shows that this relation is true in the case p ≤ 2. (Here one has to use the
assumption E|X|2+δ <∞ instead of E|X|p <∞.) Plugging (3.13)–(3.15) into (3.12), we
infer that (3.10) holds in the case p ≥ 1.
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Assume now that p < 1. On the event {τx > l − 1} one has

dist(x+ gl−1 + S(l − 1), ∂K) ≥ (l − 1)1/2−γ .

This implies that

x+ gl−1 + S(l) ∈ K |x+ gl−1 + S(l)| ≥ (l − 1)1/2−γ

2

provided that τx > l − 1 and |X(l)| ≤ (l−1)1/2−γ
2 . From these observations and from (2.5)

we obtain

E[|u(x+ gl + S(l))− u(x+ gl−1 + S(l))|; τx > l − 1, |X(l)| ≤ (l − 1)1/2−γ/2]

≤ C|gl − gl−1|(l − 1)(p−1)(1/2−γ)P(τx > l − 1).

Furthermore, by (2.6),

E[|u(x+ gl + S(l))− u(x+ gl−1 + S(l))|; τx > l − 1, |X(l)| > (l − 1)1/2−γ/2]

≤ C|gl − gl−1|pP(τx > l − 1)P(|X(l)| > (l − 1)1/2−γ/2).

Recalling that E|X(1)|2+δ < ∞ and that |gl − gl−1| ≤ C(l − 1)−1/2−γ for l > 2, one gets
easily

E[|u(x+ gl + S(l))− u(x+ gl−1 + S(l))|; τx > l − 1]

≤ C(l − 1)p/2−1−pγP(τx > l − 1), l ≥ 2.

Summing over l and using (2.14) we complete the proof.

Lemma 3.5. For every x ∈ K,

E

[ ∞∑
l=0

|f(x+ gl + S(l))|I{τ > l}

]
≤ C

(
1 + |x|p−γ +

|x|p

(dist(x, ∂K))γ

)
(3.16)

and

E[W
(3)
k (x)]→ E

[ ∞∑
l=0

f(x+ gl + S(l))I{τ > l}

]
. (3.17)

Proof. Recalling the definition of the function f , we have

E[W
(3)
k (x)] = E

[
k−1∑
l=0

f(x+ gl + S(l))I{τ > l}

]
.

This equality yields that (3.17) is a simple consequence of (3.16).

Applying Lemma 2.4 and using the elementary bound dist(y + gl, ∂K) ≥ l1/2−γ for
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y ∈ K, following from the choice of x0 and R0 in the definition of gl, we have

k−1∑
l=0

E[|f(x+ gl−1 + S(l − 1))|; τx > l − 1]

≤ C |x|p

(dist(x, ∂K))2+δ
+ C

k−1∑
l=1

E

[
|x+ gl + S(l)|p

dist(x+ gl + S(l), ∂K)2+δ
; τx > l

]

≤ C|x|p
k−1∑
l=0

E
[
(dist(x+ gl + S(l)), ∂K)−2−δ; τx > l

]
+ C

k−1∑
l=1

|gl|p−2−δP(τx > l)

+ C

k−1∑
l=1

|gl|−2−δE[|S(l)|p; τx > l].

Choosing γ sufficiently small, we have

k−1∑
l=1

|gl|p−2−δP(τx > l) ≤ C
k−1∑
l=1

lp/2−1−γP(τx > l)

≤ CE[τp/2−γ/2x ] ≤ C(1 + |x|p−γ). (3.18)

We next show that

k−1∑
l=1

|gl|−2−δE[|S(l)|p; τx > l] ≤ C(1 + |x|p−γ). (3.19)

Assume first that p > 2. Applying Lemma 2.5, we have

E[|S(l)|p; τx > l] ≤ lp(1+ε)/2P(τx > l) + CE[τx].

Combining this with the estimate |gl| ≥ cl1/2−γ , we obtain, for γ < δ
5+2δ and ε < δ−5γ−2γδ

p ,

k−1∑
l=1

|gl|−2−δE[|S(l)|p; τx > l]

≤ C
k−1∑
l=1

lp(1+ε)/2−(2+δ)(1/2−γ)P(τx > l) + CE[τx]

k∑
l=1

l−(2+δ)(1/2−γ)

≤ C
k−1∑
l=1

lp/2−γ/2−1P(τx > l) + CE[τx]

≤ CE[τp/2−γ/2x ].

Taking into account Lemma 2.6, we get (3.19) for p > 2.
If p ≤ 2 then the moment of order 2 + δ is finite and, consequently,

E[|S(l)|p; τx > l]

≤ lp(1+ε)/2P(τx > l) + l−(2+δ−p)(1+ε/2)E[|S(l)|2+δ; |S(l)| > l(1+ε)/2, τx > l]

≤ lp(1+ε)/2P(τx > l) + Cl−(2+δ−p)(1+ε/2)E[τx ∧ l],

where in the last step we used Lemma 2.5 once again. Noting that

E[τx ∧ l] ≤ l1−p/2+γ/2E[τp/2−γ/2x ]
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we obtain

E[|S(l)|p; τx > l]

≤ lp(1+ε)/2P(τx > l) + Cl−(2+δ−p)(1+ε/2)+1−p/2+γ/2E[τp/2−γ/2x ].

Summing over l we infer that (3.19) holds also for p ≤ 2, provided that γ and ε are
sufficiently small.

Using the bound dist(y + gl, ∂K) ≥ l1/2−γ and choosing γ sufficiently small, we
conclude that

∞∑
l=g(x)

E
[
(dist(x+ gl + S(l)), ∂K)−2−δ; τx > l

]
≤

∞∑
l=g(x)

l−(1/2−γ)(2+δ) ≤ Cg−γ(x).

Furthermore, if |S(l)| ≤ g(x)/2 then dist(x + gl + S(l), ∂K) > g(x)/2. Thus, by the
Chebyshev inequality,

E
[
(dist(x+ gl + S(l)), ∂K)−2−δ; τx > l

]
≤ Cg(x)−2−δ + Cl−(1/2−γ)(2+δ)

l

g2(x)
.

Consequently,

g(x)∑
l=0

E
[
(dist(x+ gl + S(l)), ∂K)−2−δ; τx > l

]
≤ Cg−γ(x).

As a result,
∞∑
l=0

E
[
(dist(x+ gl + S(l)), ∂K)−2−δ; τx > l

]
≤ Cg−γ(x).

Combining this with (3.18) and (3.19), we arrive at (3.16).

The claim of Proposition 3.2 is immediate from Lemmas 3.3, 3.4 and 3.5. Furthermore,
we have, for a sufficiently small γ, the estimate

|V (x)− u(x)| ≤ C
(

1 + |x|p−γ +
|x|p

(dist(x, ∂K))γ

)
. (3.20)

Lemma 3.6. The function V possesses the following properties.

(a) For any γ > 0, R > 0, uniformly in x ∈ DR,γ we have V (tx) ∼ u(tx) as t→∞.

(b) For all x ∈ K we have V (x) ≤ C(1 + |x|p).
(c) The function V is harmonic for the killed random walk, that is

V (x) = E [V (x+ S(n0)), τx > n0] , x ∈ K,n0 ≥ 1.

(d) The function V is strictly positive on K+.

(e) If x ∈ K, then V (x) ≤ V (x+ x0), for all x0 such that x0 +K ⊂ K.

The proof is identical with that of Lemma 13 in [9], for the proof of (c) one has to
notice that (3.20) implies that V (x) = u(x) +O(|x|p−γ) for x ∈ DR,γ .

EJP 24 (2019), paper 92.
Page 15/26

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP349
http://www.imstat.org/ejp/


Alternative constructions of a harmonic function in a cone

4 Proof of Corollary 1.2

As we have mentioned in the introduction, the proofs of the claims in the corollaries
are quite close to that in [9]. We demonstrate the needed changes by deriving the tail
asymptotics for τx. Proofs of other results can similarly be adapted to the present setting.

Let
Kn,ε :=

{
x ∈ K : dist(x, ∂K) ≥ n1/2−ε

}
,

where ε < γ/(1 + p). Similarly to the proof of Lemma 20 in [9] one can show that

u(y + gk) = (1 + o(1))u(y), y ∈ Kn,ε, |y| ≤
√
n (4.1)

uniformly in k ≤ n1−ε. Indeed, by (2.5),

|u(y + gk)− u(y)| ≤ C|gk||y|p−1 = C
|gk|
|y|
|y|p ≤ Cnε−γnp/2.

Also, by the lower bound in (2.2)

|u(y)| ≥ Cnp/2−pε.

Hence,
|u(y + gk)− u(y)|

|u(y)|
≤ Cn(1+p)ε−γ ,

which proves (4.1), as (1 + p)ε < γ.
Then, it follows from (4.1) that for any sequence θn → 0,

E
[
u(x+ S(νn)); τx > νn, νn ≤ n1−ε, |x+ S(νn)| ≤ θn

√
n
]

∼ E
[
u(x+ gνn + S(νn)); τx > νn, νn ≤ n1−ε, |x+ S(νn)| ≤ θn

√
n
]
,

where
νn := inf{n ≥ 0 : x+ S(n) ∈ Kn,ε}.

Applying this to (50) in [9], we obtain

P(τx > n, νn ≤ n1−ε)

=
κ + o(1)

np/2
E
[
u(x+ gνn + S(νn)); τx > νn, νn ≤ n1−ε

]
+O

(
1

np/2
E
[
|x+ S(νn)|p; τx > νn, νn ≤ n1−ε, |x+ S(νn)| > θn

√
n
])

.

In view of Lemma 24 in [9], O-term is o(n−p/2). Therefore, the proof will be completed if
we show that

E
[
u(x+ gνn + S(νn)); τx > νn, νn ≤ n1−ε

]
→ V (x). (4.2)

According to (3.7),

E
[
u(x+ gνn + S(νn)); τx > νn, νn ≤ n1−ε

]
= E[u(x)−W (1)

νn (x) +W (2)
νn (x) +W (3)

νn (x); νn ≤ n1−ε].

Now note that P(νn ≤ n1−ε) → 1 by the functional central limit theorem. Therefore,
since νn → ∞, as n → ∞, by Lemmas 3.3 and 3.4 and the dominated convergence
theorem we obtain, as n→∞,

E[u(x)−W (1)
νn (x) +W (2)

νn (x); νn ≤ n1−ε]

→ u(x)−Eu(x+ gτx + S(τx)) + E[W (2)(x)].
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Thus, (4.2) will follow from the convergence

E[W (3)
νn (x); νn ≤ n1−ε]→ E

[ ∞∑
l=0

f(x+ gl + S(l))I{τ > l}

]
. (4.3)

It is immediate from the definition of f(x) that the sequence

Yk := W
(3)
k (x)−

k−1∑
l=0

f(x+ gl + S(l))I{τx > l}

is a martingale. Upper bound (3.16) together with the dominated convergence theorem
imply that

E

[
νn−1∑
l=0

f(x+ gl + S(l))I{τx > l}; νn ≤ n1−ε
]

→ E

[ ∞∑
l=0

f(x+ gl + S(l))I{τx > l}

]
. (4.4)

Furthermore, by the optional stopping theorem,

E[Yνn ; νn ≤ n1−ε] = E[Yνn∧n1−ε ; νn ≤ n1−ε] = E[Yνn∧n1−ε ]−E[Yνn∧n1−ε ; νn > n1−ε]

= −E[Yn1−ε ; νn > n1−ε]

= −E[W
(3)
n1−ε(x); νn > n1−ε] + E

n1−ε−1∑
l=0

f(x+ gl + S(l))I{τx > l}; νn > n1−ε

 .
Using (3.16), the dominated convergence theorem and the fact that P(νn > n1−ε)

converges to 0 once again, we infer that

E[Yνn ; νn ≤ n1−ε] = −E[W
(3)
n1−ε(x); νn > n1−ε] + o(1).

Assume first that p < 1. Recalling the definition of W (3)
k and using (2.6), we have

|W (3)
k | ≤ C

k∑
l=1

|X(l)|pI{τx > l − 1}.

Then, for every fixed N ≥ 1,

E[|W (3)
n1−ε(x)|; νn > n1−ε]

≤ CE

[
N∑
l=1

|X(l)|p; νn > n1−ε

]
+ C

n1−ε∑
l=N+1

E|X(1)|pP(τx > l − 1, νn > l − 1).

The first summand on the right hand side converges to zero due to the fact that P(νn >

n1−ε)→ 0. Furthermore, by Lemma 14 in [9],

P(νn > n1−ε, τx > n1−ε) ≤ exp{−Cnε}. (4.5)

Therefore, we obtain

n1−ε∑
l=N+1

P(τx > l − 1, νn > l − 1) ≤
n1−ε∑
l=N+1

P(τx > l − 1, νl > l − 1)

≤
∞∑

l=N+1

e−Cl
ε

.
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Alternative constructions of a harmonic function in a cone

Letting here N →∞, we conclude that

E[|W (3)
n1−ε(x)|; νn > n1−ε]→ 0.

It remains to prove this relation for p ≥ 1. In this case, using (2.4), we have

|W (3)
k | ≤ C

k∑
l=1

(
|X(l)|p + |X(l)||x+ gl−1 + S(l − 1)|p−1

)
I{τx > l − 1}.

The summands with |X(l)|p have been already considered. For the remaining summands
we have for N ≥ 1,

E

n1−ε∑
l=1

|X(l)||x+ gl−1 + S(l − 1)|p−1I{τx > l − 1}; νn > n1−ε


≤ E

[
N∑
l=1

|X(l)||x+ gl−1 + S(l − 1)|p−1; νn > n1−ε

]

+ E|X(1)|
n1−ε∑
l=N+1

E
[
|x+ gl−1 + S(l − 1)|p−1; τx > l − 1, νn > l − 1

]
.

The first summand converges again to zero since P(νn > n1−ε) → 0. For the second
summand applying the Cauchy-Schwarz inequality and then using (4.5), we have

E
[
|x+ gl−1 + S(l − 1)|p−1; τx > l − 1, νn > l − 1

]
≤ (E [|x+ gl−1 + S(l − 1)|p])(p−1)/pP1/p(τx > l − 1, νn > l − 1)

≤ Clp/2e−Cl
ε

.

Therefore, letting N →∞, we complete the proof.

5 Second proof of Theorem 1.1

For every ε > 0 define

K̃n,ε :=

{
x ∈ K : dist(x, ∂K) ≥ 1

2

(
n1/2−ε +

|x|
n2ε

)}
.

5.1 Preliminary estimates

The next statement is the most important step in this proof of Theorem 1.1.

Proposition 5.1. Assume that the conditions of Theorem 1.1 are valid. Then, for every
sufficiently small ε > 0 there exists q > 0 such that

max
k≤n

∣∣∣E[u(x+ S(k)); τx > k]− u(x)
∣∣∣ ≤ C

nq
u(x), x ∈ K̃n,ε.

Lemma 5.2. For sufficiently small ε there exists q > 0 such that

max
k∈[
√
n,n]
|E[u(x+ S(k)), τx > k]− u(x)| ≤ C

nq
, x ∈ K̃n,ε.

Proof. For every x ∈ K define

x+k = x+ gk = x+ k1/2−γR0x0.
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Alternative constructions of a harmonic function in a cone

Clearly,

E[u(x+ S(k)); τx > k]

= E[u(x+ S(k))− u(x+k + S(k)); τx > k] + E[u(x+k + S(k)); τx > k].

If p ≥ 1 then, using (2.4), we get

E[|u(x+ S(k))− u(x+k + S(k))|; τx > k]

≤ Ck1/2−γE
[
|x|p−1 + |S(k)|p−1 + k(1/2−γ)(p−1)

]
≤ Ck1/2−γ

(
|x|p−1 + k(p−1)/2

)
.

In the case p < 1 we use (2.6) to obtain

E[|u(x+ S(k))− u(x+k + S(k))|; τx > k] ≤ C|gk|p ≤ Ckp(1/2−γ).

Combining these two cases, we have

E[|u(x+ S(k))− u(x+k + S(k))|; τx > k] ≤ Ck1/2−γ
(
|x|p−11{p ≥ 1}+ k(p−1)/2

)
.

Next,

E[u(x+k + S(k)); τx > k]

= u(x+k ) +

k∑
l=1

(
E[u(x+k + S(l)); τx > l]−E[u(x+k + S(l − 1)); τx > l − 1]

)
= u(x+k ) +

k∑
l=1

E[u(x+k + S(l))− u(x+k + S(l − 1); τx > l − 1]

−
k∑
l=1

E[u(x+k + S(l)); τx = l]

= u(x+k ) +

k∑
l=1

E[f(x+k + S(l − 1)); τx > l − 1]−E[u(x+k + S(τx)); τx ≤ k].

Using (2.4) and (2.6) once again, we have

|u(x+k )− u(x)| ≤ Ck1/2−γ
(
|x|p−11{p ≥ 1}+ k(1/2−γ)(p−1)

)
. (5.1)

By Lemma 2.4,∣∣∣∣∣
k∑
l=1

E[f(x+k + S(l − 1)); τx > l − 1]

∣∣∣∣∣ ≤ C
k−1∑
l=0

E

[
|x+k + S(l)|p

dist(x+k + S(l), ∂K)2+δ
; τx > l

]
.

Now note that on the event {τx > l} the random variable x+ S(l) ∈ K. Hence dist(x+k +

S(l), ∂K) ≥ Ck1/2−γ . Therefore,∣∣∣∣∣
k∑
l=1

E[f(x+k + S(l − 1); τx > l − 1]

∣∣∣∣∣ ≤ C
k−1∑
l=0

E

[
|x+k + S(l)|p

k(1/2−γ)(2+δ)
; τx > l

]

≤ C
k|x+k |p + kkp/2

k(1/2−γ)(2+δ)
≤ C |x|

p + kp(1/2−γ) + kp/2

k(1/2−γ)(2+δ)−1

≤ C |x|p + kp/2

k(1/2−γ)(2+δ)−1
. (5.2)
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Alternative constructions of a harmonic function in a cone

If p ≥ 1 then, using (2.2) and the fact that u(x) = 0 for x /∈ K, we obtain

E[u(x+k + S(τx)); τx ≤ k] ≤ E[|x+k + S(τx)|p−1dist(x+k + S(τx), ∂K), τx ≤ k]

≤ Ck1/2−γE[|x+k + S(τx)|p−1; τx ≤ k]

≤ Ckp(1/2−γ) + Ck1/2−γE[|x+ S(τx)|p−1; τx ≤ k].

To bound the second term we use the Burkholder inequality,

E[|x+ S(τx)|p−1; τx ≤ k] ≤ C|x|p−1 + CE[max
l≤k
|S(l)|p−1]

≤ C|x|p−1 + Ck(p−1)/2.

Then,
E[u(x+k + S(τx)); τx ≤ k] ≤ Ckp(1/2−γ) + Ckp/2−γ + Ck1/2−γ |x|p−1. (5.3)

If p < 1 then, applying (2.6), we obtain

E[u(x+k + S(τx)); τx ≤ k] ≤ Ckp/2−pγ .

In other words, (5.3) holds also for p < 1.
Combining now (5.1), (5.2) and (5.3), we obtain

|E[u(x+ S(k)); τx > k]− u(x)|

≤ C
(
k1/2−γ |x|p−1 + kp(1/2−γ) + kp/2−γ +

|x|p + kp/2

k(1/2−γ)(2+δ)−1

)
.

We can assume that γ < 1/2 is sufficiently small to ensure that γ < p/2 and

p/2 > (1/2− γ)(2 + δ)− 1 = δ/2− 2γ − γδ > 0.

Then,

max√
n≤k≤n

|E[u(x+ S(k)); τx > k]− u(x)|

≤ C
(
n1/2−γ |x|p−1 + np(1/2−γ) + np/2−γ + np/2−(δ/2−2γ−γδ) +

|x|p

nδ/4−γ−γδ/2

)
.

For every x ∈ K̃n,ε one has

|x| ≤ 2n2εdist(x, ∂K) and dist(x, ∂K) ≥ 1

2
n1/2−ε.

Combining these estimates with the lower bound in (2.2), we obtain

|x|p ≤ 2pn2pε

C1
u(x), (5.4)

|x|p−1 ≤ 2p−1n2(p−1)ε

C1

u(x)

dist(x, ∂K)
≤ 2p

C1
n(2p−1)ε

u(x)

n1/2
(5.5)

and

np/2 ≤ 2pnpε (dist(x, ∂K))
p ≤ 2p

C1
u(x)npε. (5.6)

Taking into account (5.4), (5.5) and (5.6), we arrive at the bound

max√
n≤k≤n

|E[u(x+ S(k)); τx > k]− u(x)|

≤ Cu(x)

(
n(2p−1)ε−γ + np(ε−γ) + npε−γ + npε−(δ/2−2γ−γδ) + n2pε−(δ/4−γ−γδ/2)

)
.

Clearly, we can pick sufficiently small ε > 0 in such a way that all exponents on the
right hand side of the previous inequality are negative. This completes the proof of the
lemma.
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Proof of Proposition 5.1. If k ∈ [
√
n, n] then the desired estimate is immediate from

Lemma 5.2. Thus, it remains to consider the case k <
√
n. Clearly,

E[u(x+ S(k)); τx > k]− u(x)

= E[u(x+ S(k))− u(x); τx > k]− u(x)P(τx ≤ k) (5.7)

By the Doob inequality, for every x ∈ K̃n,ε,

P(τx ≤ k) ≤ P

(
max
j≤k
|S(j)|2 ≥ n1−2ε

)
≤ C k

n1−2ε
. (5.8)

Using (2.4) and (2.6), we conclude that, for all k ≤
√
n,

E [|u(x+ S(k))− u(x)|; τx > n] ≤ CE
[
|S(k)||x|p−11{p ≥ 1}+ |S(k)|p

]
≤ C

(
n1/4|x|p−1 + np/4

)
.

Taking into account (5.5) and (5.6), we obtain

max
k≤
√
n
E [|u(x+ S(k))− u(x)|; τx > n] ≤ C

nq
u(x), x ∈ K̃n,ε. (5.9)

Combining (5.7)–(5.9) completes the proof of the proposition.

Define
νn := inf {n ≥ 0 : x+ S(n) ∈ Kn,ε}

and
ν̃n := inf

{
n ≥ 0 : x+ S(n) ∈ K̃n,ε

}
.

Lemma 5.3. There exists γ > 0 such that, for every x ∈ K,

max
k∈[n1−ε,n]

E
[
u(x+ S(k)); τx > k, ν̃n > [n1−ε]

]
≤ C(1 + |x|p−γ)

nq
.

Proof. Set
M(k) := max

j≤k
|x+ S(j)|

and split the expectation into two parts:

E
[
u(x+ S(k)); τx > k, ν̃n > [n1−ε]

]
= E

[
u(x+ S(k)); τx > k, ν̃n > [n1−ε],M([n1−ε]) ≤ n1/2+ε/2

]
+ E

[
u(x+ S(k)); τx > k, ν̃n > [n1−ε],M([n1−ε]) > n1/2+ε/2

]
. (5.10)

Set, for brevity, m = [n1−ε]. Now, using the relation,{
ν̃n > m,M(m) ≤ n1/2+ε/2

}
⊂
{

dist(x+ S(j), ∂K) ≤ 1

2

(
n1/2−ε +

|x+ S(j)|
n2ε

)
, |x+ S(j)| ≤ n1/2+ε/2, j ≤ m

}
⊂
{

dist(x+ S(j), ∂K) ≤ n1/2−ε, j ≤ m
}

= {νn > m} ,

we obtain

E
[
u(x+ S(k)); τx > k, ν̃n > n1−ε,M(m) ≤ n1/2+ε/2

]
≤ E

[
u(x+ S(k)); τx > k, νn > m,M(m) ≤ n1/2+ε/2

]
.
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Now, if p ≥ 1 then by (2.4),

u(x+ S(k)) ≤ u(x+ S(m)) + C|S(k)− S(m)|p + C|S(k)− S(m)||x+ S(m)|p−1.

If p < 1 we make use of (2.6) to obtain

u(x+ S(k)) ≤ u(x+ S(m)) + C|S(k)− S(m)|p

As a result,

u(x+ S(k)) ≤ u(x+ S(m)) + C|S(k)− S(m)|p

+ C|S(k)− S(m)||x+ S(m)|p−11{p ≥ 1}. (5.11)

Hence,

E
[
u(x+ S(k)); τx > k, νn > m,M(m) ≤ n1/2+ε/2

]
≤ E

[
u(x+ S(m)); τx > k, νn > m,M(m) ≤ n1/2+ε/2

]
+ CE

[
|S(k)− S(m)|p; τx > k, νn > m,M(m) ≤ n1/2+ε/2

]
+ C1{p ≥ 1}E

[
|S(k)− S(m)||x+ S(m)|p−1; τx > k, νn > m,M(m) ≤ n1/2+ε/2

]
.

First, since u(y) ≤ C|y|p, by (4.5), we conclude that

max
k∈[n1−ε,n]

E
[
u(x+ S(m)); τx > k, νn > m,M(m) ≤ n1/2+ε/2

]
≤ Cnp/2+ε/2P (τx > m, νn > m) ≤ Cnp/2+ε/2e−cn

ε

(5.12)

and

max
k∈[n1−ε,n]

E
[
|S(k)− S(m)|p; τx > k, νn > m,M(m) ≤ n1/2+ε/2

]
≤ max
k∈[n1−ε,n]

E [|S(k)− S(m)|p]P (τx > m, νn > m)

≤ Cnp/2e−cn
ε

. (5.13)

Second, for p ≥ 1 one has by the same argument,

max
k∈[n1−ε,n]

E
[
|S(k)− S(m)||x+ S(m)|p−1; τx > k, νn > m,M(m) ≤ n1/2+ε/2

]
≤ Cn1/2n(p−1)/2+ε/2e−cn

ε

. (5.14)

Therefore, combining (5.12), (5.13) and (5.14) we obtain, that the first expectation on
the right hand side of (5.10) can be estimated as follows,

max
k∈[n1−ε,n]

E
[
u(x+ S(k)); τx > k, ν̃n > [n1−ε],M([n1−ε]) ≤ n1/2+ε/2

]
≤ Cnp/2+ε/2e−cn

ε

. (5.15)

Using (5.11), we have for the second expectation on the right hand side of (5.10),

E
[
u(x+ S(k)); τx > k, ν̃n > m,M(m) > n1/2+ε/2

]
≤ E

[
u(x+ S(m)); τx > m, ν̃n > m,M(m) > n1/2+ε/2

]
+ CE

[
|S(k)− S(m)|p; τx > m,M(m) > n1/2+ε/2

]
+ C1{p ≥ 1}E

[
|S(k)− S(m)||x+ S(m)|p−1; τx > m,M(m) > n1/2+ε/2

]
:= E1 + E2 + E3.
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To estimate E1 we apply the upper bound from (2.2), and use the fact that on the event
{ν̃n > m},

dist(x+ S(m), ∂K) ≤ 1

2

(
n1/2−ε +

|x+ S(m)|
n2ε

)
.

Then,

E1 ≤
1

2
n1/2−εE

[
(x+ S(m))p−1; τx > m,M(m) > n1/2+ε/2

]
+

1

2n2ε
E
[
(x+ S(m))p; τx > m,M(m) > n1/2+ε/2

]
.

Using independence of increments we obtain

E2 ≤ Cnp/2P
(
τx > m,M(m) > n1/2+ε/2

)
and

E3 ≤ Cn1/2E
[
(x+ S(m))p−1; τx > m,M(m) > n1/2+ε/2

]
.

Combining these estimates and using the Markov inequality, we obtain

E1 + E2 + E3 ≤
C

nmin(pε/2,ε/2)
E
[
(M(m))p; τx > m,M(m) > n1/2+ε/2

]
.

Now note that by Lemma 2.5,

E
[
(M(m))p; τx > m,M(m) > n1/2+ε/2

]
≤ CE[τx ∧ n]. (5.16)

Note that for p > 2 the desired statement immediately follows from (2.14). If p ≤ 2 then,
using (2.14),

E[τx ∧ n] ≤ n1−p/2+δ/2E[τp/2−δ/2x ] ≤ C(1 + |x|p−δ)n1−p/2+δ/2.

By the assumption E|X|2+δ <∞,

E
[
|X|p; |X| > an1/2+ε/2

]
≤ Cn−(1/2+ε/2)(2+δ−p).

Then using directly the last inequality in the proof of Lemma 2.5 we can see that (5.16)
remains valid for p ≤ 2. The proof is complete.

Remark 5.4. The only place we need to use the results of [16] is the end of the last
Lemma. To make the proof self-contained we can use a different estimate in (5.16).
Namely, we can directly use the estimate (2.13) with t = p and then apply estimates
E[τx∧n] ≤ n and further assuming that E|X|p+2 <∞ the Markov inequality to probability.
This would give the desired estimate in (5.16). Thus we can avoid using the results of
[16] by imposing 2 additional moments.

5.2 Proof of Theorem 1.1

Fix a large integer n0 > 0 and put, for m ≥ 1,

nm = [n
((1−ε)−m)
0 ],

where [r] denotes the integer part of r. Let n be any integer. There exists unique m such
that n ∈ (nm, nm+1]. We first split the expectation into two parts,
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E[u(x+ S(n)); τx > n] = E1(x) + E2(x)

:= E [u(x+ S(n)); τx > n, ν̃n ≤ nm] + E [u(x+ S(n)); τx > n, ν̃n > nm] .

By Lemma 5.3, since nm ≥ n1−ε, the second term on the right hand side is bounded by

E2(x) ≤ C(x)

nqm
,

where

C(x) = C(1 + |x|p−γ).

For the first term we have

E1(x) =

nm∑
i=1

∫
K̃n,ε

P{ν̃n = i, τx > i, x+ S(i) ∈ dy}E[u(y + S(n− i)); τy > n− i].

Then, by Proposition 5.1,

E1(x) ≤
(

1 +
C

nq

) nm∑
i=1

∫
K̃n,ε

P{ν̃n = i, τx > i, x+ S(i) ∈ dy}u(y)

≤
(
1 + C

nq

)(
1− C

nqm

) nm∑
i=1

∫
K̃n,ε

P{ν̃n = i, τx > i, x+ S(i) ∈ dy}

×E[u(y + S(nm − i)); τy > nm − i]

=

(
1 + C

nqm

)
(

1− C
nqm

)E[u(x+ S(nm)); τx > nm, ν̃n ≤ nm].

As a result we have

E[u(x+ S(n)); τx > n] ≤

(
1 + C

nqm

)
(

1− C
nqm

)E[u(x+ S(nm)); τx > nm] +
C(x)

nqm
. (5.17)

Iterating this procedure m times, we obtain

max
n∈(nm,nm+1]

E[u(x+ S(n)); τx > n]

≤
m∏
j=0

(
1 + C

nqj

)
(

1− C
nqj

)
E[u(x+ S(n0)); τx > n0] + C(x)

m∑
j=0

n−qj

 . (5.18)

Since nm grows exponentially fast, we infer that

sup
n

E[u(x+ S(n)); τx > n] ≤ C(x) <∞. (5.19)
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An identical procedure gives a lower bound

E[u(x+ S(n)); τx > n] ≥ E1(x)

≥

(
1− C

nqm

)
(

1 + C
nqm

)E[u(x+ S(nm)); τx > nm, ν̃n ≤ nm]

≥

(
1− C

nqm

)
(

1 + C
nqm

)(E[u(x+ S(nm)); τx > nm]−E[u(x+ S(nm)); τx > nm, ν̃n > nm]
)

≥

(
1− C

nqm

)
(

1 + C
nqm

)(E[u(x+ S(nm)); τx > nm]− C(x)n−qm

)

≥
m∏
j=0

(
1− C

nqj

)
(

1 + C
nqj

)E[u(x+ S(n0)); τx > n0]− C(x)

m∑
j=0

n−qj . (5.20)

For every positive δ we can choose n0 = n0(δ) such that for all m ≥ 1,∣∣∣∣∣∣
m∏
j=0

(
1− C

nqj

)
(

1 + C
nqm

) − 1

∣∣∣∣∣∣ ≤ δ and
m∑
j=0

n−qj ≤ δ.

Then, for this value of n0 and all x ∈ K,

sup
n>n0

E[u(x+ S(n)); τx > n] ≤ (1 + δ)E[u(x+ S(n0)); τx > n0] + C(x)δ

and

inf
n>n0

E[u(x+ S(n)); τx > n] ≥ (1− δ)E[u(x+ S(n)); τx > n0]− C(x)δ. (5.21)

Consequently,

sup
n>n0

E[u(x+ S(n)); τx > n]− inf
n>n0

E[u(x+ S(n)); τx > n]

≤ 2δE[u(x+ S(n0)); τx > n0] + 2C(x)δ.

Taking into account (5.19) and that δ can be made arbitrarily small we conclude that the
limit

V (x) := lim
n→∞

E[u(x+ S(n)); τx > n]

exists for every x ∈ K.
For positivity of V note that by (2.4),

E[u(tx+ Sn0
); τtx > n0] ≥ u(tx)P(τtx > n0)−E[|Sn0

|p]− (t|x|)p−1E[|Sn0
|]

when p ≥ 1 and by (2.6),

E[u(tx+ Sn0); τtx > n0] ≥ u(tx)P(τtx > n0)−E[|Sn0 |p]

when p < 1. Also, C(tx) ≤ tp−γ |x|p−γ . Hence, it follows from (5.21) that there exists R
such that V (x) is positive for x ∈ DR,γ . The rest of the proof follows the corresponding
part of Lemma 13 of [9]. The proof is complete.
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