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On limit theory for functionals of stationary
increments Lévy driven moving averages

Andreas Basse-O’Connor* Claudio Heinrich' Mark Podolskij*

Abstract

In this paper we present new limit theorems for variational functionals of station-
ary increments Lévy driven moving averages in the high frequency setting. More
specifically, we will show the “law of large numbers” and a “central limit theorem”,
which heavily rely on the kernel, the driving Lévy process and the properties of the
functional under consideration. The first order limit theory consists of three different
cases. For one of the appearing limits, which we refer to as the ergodic type limit,
we prove the associated weak limit theory, which again consists of three different
cases. Our work is related to [10, 7], who considered power variation functionals of
stationary increments Lévy driven moving averages. However, the asymptotic theory
of the present paper is more complex. In particular, the weak limit theorems are
derived for an arbitrary Appell rank of the involved functional.
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1 Introduction

The last two decades have witnessed a great progress in limit theory for high fre-
quency functionals of continuous time stochastic processes. The interest in infill asymp-
totics has been motivated by the increasing availability of high frequency data in natural
and social sciences such as finance, physics, biology or medicine. Limit theorems in the
high frequency framework are an important probabilistic tool for the analysis of small
scale fluctuations of the underlying stochastic process and have numerous applications
in mathematical statistics e.g. in the field of parametric estimation and testing. Such
limit theory has been investigated in various model classes including It6 semimartingales
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Limit theory for stationary increments moving averages

(see e.g. [6, 22, 23]), (multi)fractional Brownian motion and related processes (see e.g.
[2, 3,4, 5, 19, 25]), and many others.

In this paper we investigate the asymptotic theory for high frequency functionals of
stationary increments Lévy driven moving averages. More specifically, we focus on an
infinitely divisible process with stationary increments (X;);>o, defined on a probability
space (2, F,P), given as

X, = / {9(t —s) — go(—s)} dLs, (1.1)

where L = (L;)ter is a two-sided Lévy process with no Gaussian component and Ly = 0,
and g, go : R — R are continuous functions vanishing on (—oo,0). In particular, this class
of stochastic processes contains the linear fractional stable motion, which has the form
(1.1) with g(s) = go(s) = s and the driving Lévy process L is symmetric stable. The
linear fractional stable motion is the most common heavy-tailed self-similar process,
and hence exhibit both the Joseph and Noah effects of Mandelbrot, cf. [32, Chapter 7].
Fractional Lévy processes are other examples of processes of the form (1.1), see e.g.
[28, Chapter 2.6.8]. Recent papers address various topics on linear fractional stable
motions including analysis of semimartingale property [8], fine scale behavior [11, 18],
simulation techniques [16] and statistical inference [1, 17, 26, 29]. We consider the class
of variational functionals of the type

—aan AT X), (1.2)

where f : R — R is a measurable function, (a,)nen, (bn)nen are suitable normalising
sequences, and the operator AZ X denotes the kth order increments of X defined as

kX Z ( ) (i—3)/n> 1> k. (13)

The usual first and second order increments take the forms AﬁlX = Xi/n — X(i—1)/n
and AY» X = X/, — 2X(i_1)/n + X(i—2)/n. The reason for considering general kth order
increments lies in statistical applications. Indeed, using higher order increments, with
k > 2, is often desirable since this gives rise to better convergence rates for various
estimators (cf. [26]). This fact is also seen in our asymptotic results Theorems 2.1, 2.5
and 2.6. The choice of the normalising sequences (a,)nen and (b,,),en depends on the
interplay between the form of the kernel g, the infinitesimal properties of the driving
Lévy process L and the growth/smoothness of the function f.

The asymptotic behaviour of statistics of the form (1.2) in the context of power
variation, i.e. f(z) = |z|P for some p > 0, has been characterized in the work [10, 7].
Further papers on related topics include [27] that investigate asymptotic normality for
functionals of the type (1.2) in the low frequency setting and for bounded functions f
(the article [29] extends the results of [27] to certain unbounded functions). Much more
is known about weak limit theory for statistics of discrete moving averages driven by
heavy tailed i.i.d. noise; we refer to [21, 35, 36] among others. However, the asymptotic
theory is investigated mostly for bounded functions f and under assumptions on the
kernel and the noise process, which are not comparable to ours. We will conclude the
discussion of related literature by mentioning the two papers [11, Section 5] and [18],
which show “law of large numbers” results of the ergodic type in the context of fractional
Lévy processes.

The aim of this work is to investigate the limit theorems for general functionals
V(f; k)™ We will start with first order asymptotic results, which consist of three different
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limits depending on the interplay between f, g and L. More specifically, the “laws of
large numbers” include stable convergence towards a certain random variable, ergodic
type convergence to a constant when the driving motion L is assumed to be symmetric
[-stable and convergence in probability to an integral of some stochastic process. In the
second step we will also prove three weak limit theorems associated with the ergodic
type convergence, consisting of a central limit theorem and two convergence results
towards stable distributions. Motivated by statistical applications, such as parametric
estimation of linear fractional stable motion (cf. [1, 17, 26, 29]), we will apply our theory
to functions f of the form

filx)=|zP, p>0 (power variation)
fa(w) = |2|"PLpz0y, pe€(0,1) (negative power variation)
fa(z) = cos(um) or sin(ux) (empirical characteristic function) (1.4)
falz) = () (empirical distribution function)
fs(x) = 1og(\m|)]1{$7g0} (log-variation)

among others. One of the major difficulties when showing weak limit theorems lies in the
fact that the ideas suggested in e.g. [21, 27, 35, 36] in the setting of bounded functions
f do not directly extend to a more general class of functions (also the proofs in [10] for
the power variation case use the specific form of the function f(x) = |z|?). As it has been
noticed in earlier papers on discrete moving averages (see e.g. [35, 36] and references
therein) the Appell rank of the function f often plays an important role for the weak
limit theory. It is defined as m’ = min{m € IN : ®.™(0) # 0} with

®,(2) = E[f(z + pS)] — E[f(pS)],

where S is a symmetric §-stable random variable with scale parameter 1, p > 0 and
@™ denotes the mth derivative of z — ®,(z). In this paper we will obtain weak limit
theorems for an arbitrary Appell rank without assuming boundedness or a specific form
of the function f. This is an important improvement over the existing results on limit
theory for heavy tailed moving averages, which have never been investigated in this
general setting. Our key observation is that it is much more convenient to impose
assumptions on the function ®, which are easy to check for all practical examples, rather
than on the function f itself.

The paper is structured as follows. Section 2 presents the required assumptions,
the main results and some remarks and examples. We present some preliminaries in
Section 3. The proofs of the first order asymptotic results are collected in Section 4.
Section 5 is devoted to the proofs of weak limit theorems, with a few more technical
results postponed to Section 6.

2 The setting and main results

We start by introducing various definitions, notations and assumptions that will be
important for the presentation of the main results. We recall that the Blumenthal-Getoor
index of L is defined as

1

B = inf {r >0: [1 |z|" v(dx) < oo} € [0,2],

where v denotes the Lévy measure of L. Furthermore, AL, := Ly, — L, with L, :=
lim4s, w<s Lo, Stands for the jump size of L at point s. If L is stable with index of stability
B € (0,2), the index of stability and the Blumenthal-Getoor index coincide, and both
will be denoted by 8. Let F = (F;)iecr be the filtration generated by the Lévy process
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L and (T,,)m>1 be a sequence of F-stopping times that exhausts the jumps of (L;);>o.
That is, {T\n(w) :m > 1} = {t > 0: AL;(w) # 0} and T3, (w) # Ty (w) for all m # n with
T (w) < 0.

Our first set of conditions, which has been originally introduced in [10], concerns the
behaviour of the Lévy measure v at infinity and the functional form of the kernel g:

Assumption (A): The function g: R — R satisfies
g(t) ~t* astl0 forsomea«a >0, (2.1)

where g(t) ~ w(t) ast | 0 means thatlim, | g(t)/w(t) = 1. For some 6 € (0, 2| it holds that
limsup,_, . v(z: |z| > )t < 0o and g — go is a bounded function in L(R. ). Furthermore,
g € C*((0,00)) where k is as in (1.3), i.e. denoting the order of increments under
consideration. Assume moreover there exists a § > 0 such that |¢®) (t)] < Ct*~* for
all t € (0,9), and such that both |¢'| and |¢*)| are in LY((§,)), and are decreasing on
(6,00).

Assumption (A) ensures in particular that the process X, introduced in (1.1), is well-
defined in the sense of [30], see [10, Section 2.4]. When L is a [3-stable Lévy process, we
may and do choose 6 = . By adjusting the Lévy measure v, we may also include the
case where (2.1) is replaced by g(t) ~ ¢ot* as ¢ | 0 for some ¢y # 0.

The limiting behaviour of V(f; k)™ depends on the interplay of the order k of the
increments introduced in (1.3), the Blumenthal-Getoor index § of the driving Lévy
process, and the power « in (2.1) characterizing the behaviour of g at 0. Throughout this
paper we reserve the symbols k, «, and S for these quantities and never use them in a
different context.

For Theorem 2.1(i) below, we need to slightly strengthen Assumption (A) if § = 1:

Assumption (A-log): In addition to (A) suppose that

/500 19 (5)” Tog(1/1g" (s)]) ds <

with 6 and 6 as in (A).

In order to formulate our main results, we require some more notation. For p > 0 we
denote by C?(R) the space of r := [p]-times continuous differentiable functions f : R — R
such that f(") is locally (p — r)-Holder continuous if p ¢ IN. We introduce the function
hi: R — R by

k
[k .
ORIV 4 [CELS & 2.2
i=0 J
where y; := max{y,0} for all y € R. We recall that a sequence (Z"),ecn of random

variables defined on (Q2, 7, P) with values in a Polish space (F, £) converges stably in law
to Z, which is defined on an extension (', 7/, P’) of the original probability space, if for
all bounded continuous g : £ — R and for all bounded F-measurable random variables
Y it holds that
Elg(Z")Y] = E'[g(2)Y],

where I’ denotes the expectation on the extended space. We denote the stable conver-
gence in law by Z" £ 7 , and refer to [20, 31] for more details. Note, in particular, that
stable convergence in law is a stronger property than convergence in law, but a weaker
property than convergence in probability. In the framework of stochastic processes we

u.c.p.

write Z" — Z for uniform convergence in probability, i.e. when sup,¢(o 71 |Z{' — Zi| L0

holds for all 7' > 0. Furthermore, we denote by Z" de}i' Z the stable convergence of

finite dimensional distributions.
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2.1 Law of large numbers

Our first theorem presents the “law of large numbers” for the statistic V(f; k)"
defined at (1.2). The sequence (U,,)m>1 below is i.i.d. (0, 1)-distributed, defined on
an extension (', 7', P’) and independent of F. Here and throughout the paper we
denote by S35(p) the symmetric S-stable distribution with scale parameter p > 0, that is
Y ~ SBS(p) if Elexp(ifY)] = exp(—|pf|?) for all § € R.

Theorem 2.1. Suppose Assumption (A) holds and assume that the Blumenthal-Getoor
index satisfies § < 2. Let 0, « and k be as in Assumption (A). The following hold.

(i) Let k > « and suppose that (A-log) holds if = 1. If f is such that f € C?(R) and
fU9(0)=0forj=0,...,[p], for somep > 3V L. Then, taking a, = 1 and b,, = n®
we have the stable convergence

V(f;ik)" £—_§> Z Zf(ALTmhk(l+Um)).

m: T, €[0,1] [=0

(ii) Suppose that L is a symmetric [3-stable Lévy process with scale parameter py, > 0.
Moreover, assume that E[|f(L1)|] < oo, and H := a + 1/8 < k. Then, setting
a, = 1/n and b, = nl, we obtain

V(f;k)" 5 E[f(poS)], (2.3)

where S ~ SBS(1) and po = pr||hel| s (w)-

(iii) Suppose that (1V 8)(k — a) < 1 and that f is continuous and satisfies |f(z)| <
C(1V |z|?) for all z € R, for some q,C > 0 with q(k — o) < 1. With the normalising
sequences a,, = 1/n and b,, = nF it holds that

1
Vi [ i) du
0
where (F,)ycr is defined by

F, = / g (u—s)dL, a.s. forallu € R. (2.4)

— 00

Theorem 2.1 may be viewed as a generalization of [10, Theorem 1.1] from power
variation to general functionals. The limiting random variable in Theorem 2.1(i) is indeed
well-defined, as we show in Lemma 4.1 below. We remark that one of the conditions of
Theorem 2.1(i) is the restriction oo < k — 1/p. This restriction on the parameter « gets
weaker when p gets larger, but on the other hand the condition f € C?(R) is stronger for
a larger p. Thus, there is a trade-off between these two conditions.

The three cases of the theorem are closely related to the three limits for the power
variation derived in [10, Theorem 1.1]. Let us briefly explain the main intuition behind
Theorems 2.1(ii) and (iii). We use the symbol = to denote that the difference of left and
right hand side term converge to O, in probability.

The crucial step in the proof of Theorem 2.1(ii) is the approximation

A" X ~ Al,Y  in probability

where (Y})c[0,0) is the linear fractional stable motion defined via

Viim [{6=9)7 = ()3 }aL,
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It is well known that the process Y is H-self-similar and its increment process is ergodic
(see e.g. [15]). Hence, under assumptions of Theorem 2.1(ii), we may conclude by
Birkhoff’s ergodic theorem for e.g. k = 1:

1 .
Zf z/n Yv(i—l)/n g ﬁz Y }/z 1 —>E[f(Y1—Y0)]

This is exactly the statement of (2.3) for the case k£ = 1.

Under the assumptions of Theorem 2.1(iii) it turns out that the stochastic process F
defined at (2.4) is a version of the kth derivative of X. Hence, we conclude by Taylor
expansion:

n

V(f;k)":%zf( kAnkX Nfo F(L 1)/n —>/ f(F,)du, asn — oco.

i=k
This explains the statement of Theorem 2.1(iii).

Remark 2.2. In contrast to the power variation case investigated in [10], the assump-
tions of Theorems 2.1(i) and (ii), and of Theorems 2.1(i) and (iii), are not mutually
exclusive, and hence two limit theorems can hold at the same time. This phenomenon
appears already in the simpler setting of Lévy processes. Assume for example that L is a
symmetric 3-stable Lévy process and consider the function f(z) = sin?(z). If k = 1 and
we choose a,, = b, = 1 we deduce the convergence

Zsm (A} L) == Z sin?(ALg, ) < 00

m: Ty, €[0,1]

using, in particular, |f(z)| < Cz2. On the other hand when we choose the normalising
sequences a, = n~ " and b, = n'/? we readily deduce by the strong law of large numbers
that

1 n . 1/ﬁ d a.s. .2
=3 A L) & E - o Blsin?(Ly))].
P sin®(n i1 sin? ie1) [sin®(L1)]

This example shows that we can obtain two dlfferent limits for two different scalings. O
In the next step we present a functional version of Theorem 2.1. For this purpose we
introduce the sequence of processes

[nt]

= a, Z F(bn AL X

In the proposition below we will use the Skorokhod M;-topology, which was introduced
in [34]. For a detailed exposition we refer to [39].

Proposition 2.3. Suppose Assumption (A) holds and assume that the Blumenthal-Getoor
index satisfies < 2. We have the following three cases:

(i) Under the conditions of Theorem 2.1(i) we have the stable convergence
V(f; k) V(f k) : Z Zf ALT hi(l+ U, ))
m:Tp, €[0,t] =0

Moreover, the stable convergence also holds with respect to Skorokhod M;-
topology if additionally the following assumption is satisfied:

(FC) Each of the two functions z +— f(z)1,>0y and x — f(z)l{,<0y is either non-
negative or non-positive.
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(ii) Under the conditions of Theorem 2.1(ii) we have

V(f; k)] == tE[f(poS)],

where S and py have been introduced in (2.3).

(iii) Under the conditions of Theorem 2.1(iii) we have

t
‘NﬁM?ﬁQZ:ﬂEJM

where (F,).cr has been defined at (2.4).

We remark that the uniform convergence results of Proposition 2.3(ii) and (iii) are
easily obtained from Theorem 2.1(ii) and (iii) by the following argument. Observe the
decomposition f = f* — f~, where fT (resp. f~) denotes the positive (resp. negative)
part of f. Then fT, f~ satisfy the same assumptions as f in the setting of Theorem 2.1(ii)
and (iii). Furthermore, since f*, f~ > 0, the statistics V(fT; k) and V(f~;k)} are
increasing in ¢ and the corresponding limits in Proposition 2.3(ii) and (iii) are continuous
in t. Consequently, the uniform convergence is obtained from the pointwise convergence
by Dini’s theorem.

2.2 Weak limit theorems

In this section we present weak limit theorems associated to the ergodic type limit
from Theorem 2.1(ii). Throughout this section we assume that E[|f(S5)|] < oo, where
S ~ SBS(1). As mentioned in the introduction, the crucial quantity in this context is the
function ®, defined via

®,(z) = E[f(z + pS)| - E[f(pS)], z€R,p>0.
Similarly to limit theory for discrete moving averages, see e.g. [21, 35, 36], the Appell

rank of the function f often plays a key role for the asymptotic behaviour of the statistic
V(f; k)" —E[f(poS)]. In our setting, the Appell rank m} is defined as
m’ :=min{r € N : <I>(pr) (0) # 0},

p

where @E,T) (x) :== 68; ®,(x) for r = 1,2,.... Note that we have Appell rank one if and
only if ®/(0) # 0, and Appell rank greater or equal two if and only if ®/(0) = 0. The
Appell rank is an analogue of the Hermite rank used in the context of Gaussian processes.
However, the non-Gaussian case is usually much more complicated due to the lack
of orthogonal series expansions. While the Appell rank m; usually depends on the
parameter p, we always have that m} = 1 for all p > 0 in the framework of the imaginary
part of the characteristic function f3(z) = sin(uz) and the empirical distribution function

f1 (cf. Remark 6.7). Moreover, m7 > 1 for all p > 0 when f is an even function, in fact,

in this case we have that 0 = %@p(()) = 82—2{)@,(0) (cf. Remark 6.7). Indeed, m} > 1 for
all p > 0 therefore holds in the setting of power variations f; and fs, real part of the
characteristic function f3(z) = cos(uz) and the log-variation fs.

For our weak limit theorems we will need the following smoothness assumptions

on ®,:

Assumption (B): The function (p,z) — ®,(z) is C*?((0,00) x R), and for all £ € (0,1)
there are p € [0,1] and C > 0 such that, forall p € [e,e"!] and z,y € R

@, () — ()| < Cla =y, (2.5)

git
Wq),,(a:)‘ <C forallj=0,1,2 andr = 0,1 withr + j > 0. (2.6)
EJP 24 (2019), paper 79. http://www.imstat.org/ejp/
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Note that (2.6) implies Lipschitz continuity of ®,, and therefore the p-Holder as-
sumption (2.5) may be viewed as a growth condition on ®,. In particular, (2.5) implies
that |®,(z)| < C|z|P. Note also that (2.6) implies (2.5) with p = 1, however, in several
cases we need p < 1. Before presenting our main weak limit theorems, we remark that
Assumption (B) is satisfied for our key examples, its proof is postponed to the end of
Section 6.

Remark 2.4. The following two classes of functions satisfy the assumption (B).

(i) (Bounded functions). Any bounded measurable function f satisfies (B) for any
p € [0, 1]. This covers, in particular, the empirical distribution function fy(z) = 1(_ s (%),
and the empirical characteristic functions f3(z) = sin(uz) or f3 = cos(uz) from (1.4),
where u € R is a fixed real number.

(ii) (A class of unbounded functions). Suppose that f € L] .(R) and there exists K > 0
and ¢ < 1 such that f € C3([-K, K]¢) and |f'(x)|,|f"(z)|,|f"(z)] < C and |f'(z)| <
Clz|?9~1 for |z| > K. Then f satisfies (B) with p = ¢ when ¢ > 0, and p = 0 when ¢ < 0.
This covers, in particular, the power functions f(z) = |2|?1 ;. where ¢ € (—1,0)U (0, 1],
thatis, f; and f, from (1.4). Furthermore, the logarithmic function f5(z) = log(|=|)1 {50}
from (1.4) is also covered by the above condition and hence satisfies (B). In this case we
may choose any p € (0, 1]. O

In the following we will need to strengthen Assumption (A).

Assumption (A2): Suppose that Assumption (A) holds for a and k. In addition, assume
that |g®¥) (t)] < Ct*~* for all t > 0, and for the function ¢ : (0,00) — R defined as
¢(t) = g(t)t— the limit lim;}o (V) exists in R forall j =0, ..., k.

In the following two theorems we present weak limit results associated with Theo-
rem 2.1(ii) in the case of “short memory” (small «) or “long memory” (large o). The
long memory case depends heavily on the Appell rank of the function f, whereas the
short memory case does not depend on the Appell rank. In the theorems below we
follow the notation of Theorem 2.1, i.e. L is a symmetric S-stable Lévy process with
scale parameter pr, (X¢) is given by (1.1), H = a +1/8, po = pr||hxl|Lsw), S ~ SBS(1),
a, =1/n and b, = nfl.

Theorem 2.5 (“Short memory"”). Assume that (A), (A2) and (B) hold, that p in (B) is such
that p < 3/2, and E[f(L1)?] < oo. Assume furthermore that o < k — 2/3. We then have

\/ﬁ(vu; B - E[f(posn)é/v(o,n?), 2.7)

where the variance is given as 1> := lim,, ., 72, with n,, defined in (5.16).

Theorem 2.6 (“Long memory”). Assume that (A), (A2) and (B) hold

(i) (Appell rank=1). If m% =1,p=1,3 € (1,2) anda + 1/ < k < a + 1, then we have
the convergence in law

ke 8 (V£ = L)) £855(0), .8)

where the scale parameter o is given by (5.22). ,
(i) (Appell rank>1). Ifp < /2, Z£®,(0) = 0 = 525-®,(0), for all p € (0,00), and
a+1/8 < k< a+2/8, then we have the convergence in law

G <V(f; k)" — E[f(poS)]> “58((k — @)B,0, p1,m), (2.9)
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where the right hand side denotes the (k—a)5-stable distribution with location parameter
0, scale parameter p; and skewness parameter 1, which are specified in (5.46).

Remark 2.7. (i) We note that the limiting distribution in Theorem 2.6(i) is only non-
degenerate in the Appell rank one case, or more precisely when a%@po(O) # 0, which
follows from (5.40).

(ii) We also remark that the condition m; > 2 in Theorem 2.6(ii) is required to hold for
all p > 0, which is in strong contrast to the discrete framework of e.g. [36] where only
assumptions on mj are made. The reason for our stronger condition on the Appell rank is
the fact that the scaled increments n'? A7, X are only asymptotically S5S(po)-distributed.

(iii) Theorems 2.5 and 2.6(ii) give a rather complete picture of possible limits when the
Appell rank is strictly large than one. Indeed, we cover all cases a € (0,k — 1/53) except
the critical value of & = k — 2/5. This is not the case for the setting of Appell rank one.
Not only we need to assume that 8 € (1,2), but we also have that k —2/8 < k — 1. Hence,
the limit theory in the framework of 3 € (0, 1], and also 3 € (1,2) with a € [k —2/58,k — 1],
is still an open problem.

(iv) Notice that Theorem 2.5, which has the fastest rate of convergence, never holds for
k =1 since 8 € (0,2). Hence, for the purpose of statistical estimation, it makes sense to
use higher values of k to end up in the setting of Theorem 2.5. We refer to [26] for more
details on statistical applications using higher order increments. O

Similarly to Proposition 2.3 one might be able to prove the functional versions of
Theorems 2.5 and 2.6. However, we dispense with the precise exposition of these results
in this paper.

2.3 Outline of the proofs of Theorems 2.5 and 2.6

The strategy of the three proofs Theorems 2.5, 2.6(i) and 2.6(ii) are quite different,
and are briefly outlined in the following.

* For the proof of Theorem 2.5 we approximate V(f; k)" by
Vom = Y (Fn A7 X™) — E[f(n" A7, X™)]), where
i=k
t
X = [ ot =) o)} dLe
t—m/n
More precisely, the main part of the proof is to show
lim limsup E[n " (V(f; k)" — Vyi.m)?] = 0.

m—0o0 n_sco
It is then sufficient to establish asymptotic normality of (V}, ., )nen for each m > 1,
which follows by the central limit theorem for m-dependent sequences of random

variables. This general approach to deriving central limit theorems is popular in
the literature, see [27] for an example.

* The main idea of the proof of Theorem 2.6(i) is to approximate V(f; k)™, in a
suitable sense, by a linear functional V,, of (n'! Al X )i, given by

n
Vn:c"ZnHAZkX, n € NN,
i=k

where c,, are certain chosen constants. With such an approximation in hand, the
proof boils down to showing that the S55-stable random variables V,, converge in
distribution.
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* For the proof of Theorem 2.6(ii) we decompose V (f; k)" as
V(R =Y K+ > 7, (2.10)
r==k r=k

where {Z, } >, is suitable defined i.i.d. sequence of random variables to be defined
in (5.43) below. We argue that the first sum, on the right-hand side of (2.10), is
asymptotically negligible and that the random variables Z, are in the domain of
attraction of a (k — «)3-stable random variable with location parameter 0, scale
parameter p; and skewness parameter 7; as defined in (5.46) in the proof. Similar
decompositions have been applied to derive stable limit theorems for discrete time
moving averages, see for example [21].

3 Preliminaries

Throughout all our proofs we denote by C' a generic positive constant that does not
depend on n or w, but may change from line to line. For a random variable Y and ¢ > 0
we denote ||Y|, = E[|Y|?]'/9. Throughout this paper we will repeatedly use the fact
that if L is a symmetric -stable Lévy process with scale parameter py, then for each
measurable function ¢ with [*_|¢(s)|? ds < oo the integral [}, ¢(s) dLs is a symmetric
[-stable random variable with scale parameter

1/8
([ 1ol as) " = pulllis 3.1)
R
see [32, Proposition 3.4.1]. We will also frequently use the notation
k Ik
VACED M el W) 3.2)
=0

which leads to the expression

i/n
ATX = / g (s) dLs (3.3)

for the the kth order increments of X. For the functions g;, we have the following simple
estimates from [10].

Lemma 3.1 (Lemma 3.1 in [10]). Suppose that Assumption (A) is satisfied. It holds that
\gfk(s)\ <C(i/n—s)” fors e [(i—k—1)/n,i/n],
l9i'k(s)| < Cn~k((i—k)/n—s)**  forse (i/n—d,(i—k—1)/n), and
1975.(8)] < Cn7F (Lyi— ) pn—s,i/m—61(5) + 9% (1 = k) /n = )L —oo,(i—1) yn—6)(5)),
for s € (—o0,i/n — d].
We briefly recall the definition and some properties of the Skorokhod M;j-topology, as
it is not as widely used as the J;-topology. It was originally introduced by Skorokhod [34]

by defining a metric on the completed graphs of cadlag functions, where the completed
graph of ¢ is defined as

Iy ={(z,t) e Rx Ry : z=0ad(t—)+ (1 —a)p(t), for some a € [0, 1]}.
The M;-topology is weaker than the J;-topology but still strong enough to make many

important functionals, such as supremum and infimum, continuous. It can be shown
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that the stable convergence in Theorem 2.1(i) does not hold with respect to the J;-
topology (cf. [9]). Since the M;-topology is metrizable, it is completely characterized
through convergence of sequences, which we describe in the following. A sequence
¢n, of functions in D(R,R) converges to ¢ € D(R4,R) with respect to the Skorokhod
M;-topology if and only if ¢, (t) — ¢(¢) for all ¢ in a dense subset of [0, ), and for all
too € [0,00) it holds that

limlimsup sup w(¢n,t,d) =0.
010 n—oo 0<t<too

Here, the oscillation function w is defined as
w(e,t,0) = sup {lo(t2) — [¢(t1), o(t3)]1},
OV (t—08)<t1<ta<tz<(t+0)Atoo
where for b < a the interval [a, b] is defined to be [b,a], and |a — [b, (]| := infsep o |a — dI.
We refer to [39] for more details on the M;-topology.

4 Proof of Theorem 2.1

4.1 Proofs of Theorem 2.1(i) and Proposition 2.3(i)

We concentrate on the proof of Proposition 2.3(i), since it is a stronger statement
than Theorem 2.1(i). The proof is divided into three parts. First, we assume that L is
a compound Poisson process and show the finite dimensional stable convergence for
the statistic V' (f; k)7. Thereafter we argue that the convergence holds in the functional
sense with respect to the M;-topology, when f satisfies condition (FC). Finally, the results
are extended to general Lévy processes by truncation. For this step, an isometry for
Lévy integrals, which is due to [30], plays a key role.

Since C4(R) C CP(R) for p < ¢ we may and do assume that p ¢ IN. Note that, if
f€CP(R)and fU)(0) =0forall j =0,...,[p], then for any N > 0 there exists a constant
C'n such that

|f9)(x)| < Cyl|x|P~7, forallz € [-N,N], and j =0,...[p|. (4.1)

By the assumption p > ﬁ this implies the following estimate to be used in the proof
below. For all N > 0 there is a constant C such that

|f9)(z)] < Cylz|, forallz e [-N,N], and j =0,...,[p], (4.2)

where v,; = —b=J _ The following lemma ensures in particular that the limit in Theo-
J p(k—a)

rem 2.1(i) exists.

Lemma 4.1. Lett > 0 be fixed. Under conditions of Theorem 2.1(i) there exists a finite
random variable K > 0 such that

> D |f(ALp, (14 Up))| < K, and (4.3)

m: T, €[0,t] 1=0

n—1
> Y ALy, n®gi, 41 (Tw))| < K, foralln, (4.4)
m: T, €[0,] 1=0

where i,, denotes the random index such that T,,, € (=1 im]

n ’'mn

Proof. Throughout the proof, K denotes a positive random variable that does not depend
on n, but may change from line to line. For the first inequality note that |hx (I + Uy, )| <
C(l—k)**foralll > k and |hy(l+ U,,)| < C for I € {0, ..., k}. This implies in particular

O —k)**sup,epo |AL|, forl>k

ALz, (W)hi(l+ Up)| <
ALz, (w)hi( ) {Csupse[o’t]|ALs|, for | € {0, ..., k}.
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Therefore, we find by (4.1) a random variable K such that
|f (AL, hi(l+ Up))| < K|ALz, his(1+ Upy)|”

for all I > 0 and all m. Consequently, the left-hand side of (4.3) is dominated by

K( > |ALp, P+ D> |ALg, | i (1— k)(a"")P> <K,

m: Ty, €[0,1] m: T €]0,t] l=k+1

for some random variable K, where we used that (o — k)p < —1, and that

Z ALz, |P < o0, since p > f.
m: Ty, €[0,t]

The inequality (4.4) follows by the same arguments since Lemma 3.1 implies the existence
of a constant C' > 0 such that foralln € IN

nGipin(Tm) < C forl € {0,...,k}, and
ngi, +i0(Tm) < C(1 —k)*7F, forl € {k+1,...,n—1}. 0

4.1.1 Compound Poisson process as driving process

In this subsection, we show the finite dimensional stable convergence of V (f; k) under
the assumption that L is a compound Poisson process. The extension to functional
convergence when condition (FC) is satisfied follows in the next subsection, the extension
to general L thereafter.

Let 0 <7T; < T < ... denote the jump times of (L;);>0. For ¢ > 0 we define

Q. = {w € Q: for all m with T, (w) € [0,t] we have [T}, (w) — Tr—1(w)| > €
and AL (w) = 0forall s € [—¢,0] and |ALy(w)| < ¢! forall s € [0,]}.

We note that Q. 1€, as € | 0. Letting

i/n—e

i/n
Mi e ::/ 9i'k(s) dLs, and R, . ::/ gi'k(s) dLs,

n—e oo
we have the decomposition AZkX = M;ne + Rine. It turns out that M;, . is the

asymptotically dominating term, whereas R, ,, . is negligible as n — co. We show that,
on (.,

[nt] . . [ee]
N FnMne) S 2, where Zoi= Y. N f(ALp, hi(l+ Un)),  (4.5)

i=k m: T €[0,8] 1=0

as n — oo. Here (U,,)m>1 are independent identically #/([0, 1])-distributed random
variables, defined on an extension (', F',IP’) of the original probability space, that
are independent of F. For this step, the following expression for the left hand side is
instrumental. On (), it holds that

[nt]
f(naMi,n,e) = th,a,
i=k

where
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viti= S S f AL, gin i (T): (4.6)

m: Ty, €(0,[nt]/n] 1=0

Here, i,, denotes the random index such that 7, € ((i;, — 1)/n,4,n/n], and v} is defined
as

[en] A ([nt] — im) if Ty — ([en] +im)/n > —e¢,

(4.7)
[en] = 1A ([nt] —ipm) I Tp — ([en] +im)/n < —e.

vt = vt (e, m) = {

Additionally, we set v]* = oo if T}, > [nt]/n. The following lemma proves (4.5).
Lemma 4.2. On )., forr > 1,and 0 < t; < --- < t, <t, we have the stable convergence

L*S
(Vs V) = (%4, .., Zy,),  asn — oo.

Proof. By arguing asin [10, Section 5.1], we deduce for any d > 1 the stable convergence
in law

{nagim+l,n(Tm)}l,m§d L_; {hk(l + Um)}l,mgd

as n — oo. Defining

d
thﬂ = Z Z f(n*ALz, gi,+1.0(Tm)) and

m<d: Ty, €(0,[nt]/n] =0

d
Zi= > > f(ALp, (4 Un)),

m<d: T,, €(0,t] I=0
we obtain by the continuous mapping theorem for stable convergence in law
,d Ay £—5 rrd d
(fo ,...,thf ) — (Z{,....Z{), asn— o, (4.8)

for all d > 1. Therefore, by a standard approximation argument (cf. [13, Theorem 3.2]),
it is sufficient to show that

lim sup{ max |V, — Vt"’d|} 2550, asd — co, and (4.9)
n—oo te{ty,...,tr}
sup |Z2¢ - Z,| =50, as d — co. (4.10)
s€0,t]

For all s € [0,¢] and sufficiently large n we have

dvuy"
[Vt = Ve < > > FALp, 1 g 41,0 (T))|
m<d: T, €(0,[ns]/n] I=dAv]™
+ >, > I (ALp,nGip110(Tw))|
m>d: Ty, €(0,[ns]/n] 1=0
n—1
< D> (AL g1 (T)]
m: Ty, €(0,t] I=dAv]"®
n—1
+ Z Z | f(ALT,, G 41,0(Tin))|-
m>d: T, €(0,[nt]/n] I=0
EJP 24 (2019), paper 79. http://www.imstat.org/ejp/
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Therefore, (4.9) follows from Lemma 4.1 by the dominated convergence theorem since
the random index v]" = v*(n,w) satisfies liminf, ., v}*(n,w) = oo, almost surely.
Lemma 4.1 also implies (4.10), since

sup |Zf —Zs| <

s€[0,t]
> SIFAL b (U+Un))l+ Y. D IA(ALy, hi(l+ Up))-
m<d: T, €(0,t] I=d+1 m>d: T,, €(0,t] [=0
The lemma now follows from (4.8), (4.9) and (4.10). O

Recalling the decomposition (4.5) and applying the triangle inequality, the proof can
be completed by showing that

[nt]

n:fo (N AT X) — f(n®Mip0)| =5 0, 4.11)

as n — oo. We first argue that, on Qc, {n*M; c,n* A} X}nenic(k,... [ne)) @re uniformly
bounded by a constant on (2., which will allow us to apply the estimate (4.1). The
random variables M; , . satisfy by construction either [n®M;, .| = 0 or [n®M,,,
In®g;"(Tin)ALr,, | for some m, where we recall that on €. it holds that 7}, — T;;,—1 > €.
Consequently, they are uniformly bounded by Lemma 3.1, where we used that &£ > «
and that the jumps of L are bounded on ().. The uniform boundedness of n“A”, X =
n®(M; n.e + Rin.) follows by [10, Egs. (4.8), (4.12)] which implies that for any 7, >0

sup {n* "R, .|} < oo, almost surely. (4.12)
neN, ie{k,...,[nt]}
In order to show (4.11) we apply Taylor expansion for f at n®M, ,, ., and bound the
terms in the Taylor expansion using (4.1) and the following lemma.
Lemma 4.3. Let ¢ : R — R be continuous and such that |¢(x)| < C|z|" for all x € [—1,1]
for some v € (0,1/(k — «)). It holds on €. that

[nt]
limsup{ (k—a)y— IZW}TL M”,E)} <C, a.s.

n—oo

Proof. We have on ).
[nt]

ZW’” Mzns |*

m
Uy 0o

W= > [ ALg, gi 410 (T)),

m:Tp, €(0,[nt]/n] 1=0

where

and v{:; is the random index defined in (4.7). By Lemma 3.1 the random variables
n*g;,, +i1.n(Tim) are bounded for I = 0, ..., k. Forl € {k+1,...,n — 1}, Lemma 3.1 implies
that ng;,, y1.n(T) < C(I — k)*~*. Since the random index v}" satisfies v;” < n for all
m, we obtain on €,

[nt]

k n
Z WJ n Mz n €)| < C Z <Z |nagim+l,n(Tm)|’y + Z |(l - k)a_kr{) .

miTm €(0,¢] ~ 1=0 I=k+1

It follows by comparison with the integral |, : +1(s — k)(@=F)7 45 that the right hand side
multiplied with n(*~®)7~1 is convergent, where we used that (o« — k)y € (—1,0) and that
the number of jumps of L(w) in [0, ¢] is uniformly bounded for w € Q.. O
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Considering the sum J, in (4.11), Taylor expansion up to order r = [p| shows that

[nt] [nt]
J <Z’n Rznaf(aMan o T'Z’ zna f(r)( aMzna""TR
i=k
=5+ + S+ TR, (4.13)

where TR, denotes the Taylor rest term. Recalling the estimate (4.2), we can now
estimate the jth Taylor monomial S; for j = 0,..., [p] by applying Lemma 4.3 on ¢ = 9,
where we remark that v; = p(i;_ja) € (0,1/(k — «)). Using (4.12) and recalling that
p > k — «, we obtain that for sufficiently small n > 0

[nt] [nt]

1 a - no
]'Z|nRzn6) f(]( MZTL&')‘<CTL L nzk‘f('j) M’L’ILS)|
<Cn 7, (4.14)
where the second inequality follows from Lemma 4.3 since (k — a)v; — 1 = —j/p. For the

Taylor rest term T'R,. we obtain by the mean value theorem:

[nt

T' Z‘ zns f( )(5 ) f(T)(naMiJl;E))L
with &; ,, € (n*|M; n |, n%|Xinc|). Since n®|M; ,, | and n*| X, ,, .| are bounded and ) is
locally (p — r)-Holder continuous, it follows that

TR, <Cn sup IR n.e|”
neN, ie{k,...,[nt]}

From (4.12) it follows that TR, — 0 as n — oo, where we recall that (o« — k)p < —1.
Together with (4.13) and (4.14) this implies J,, — 0, and it follows that

[ns]
sup Fn*M; o) p =0
Z

s€[0,t]
on €2.. Now, the proposition follows from Lemma 4.2 by letting ¢ — 0.

4.1.2 Functional convergence

In this subsection we show that if f satisfies (FC) and under the assumption that L is a
compound Poisson process, the convergence in Proposition 2.3(i) holds in the functional

1) —S

sense with respect to the Skorokhod M;-topology. To this end, we denote by -N——+
the stable convergence of cadlag processes on D([0,¢]; R) equipped with the Skorokhod
M, -topology. We first replace (FC) by the following stronger auxiliary assumption.

(FC’) It holds that f is either non-negative or non-positive.

This assumption puts us into the comfortable situation that our limiting process is
monotonic. Recall the definition of the processes V™ ¢ and Z introduced in (4.5) and (4.6),
respectively. In Lemma 4.2 the stable convergence of the finite dimensional distributions

‘C]ul —S

of V™ to Z was shown. The functional convergence V"¢ ——— Z on (). follows from
the following lemma.

Lemma 4.4. The sequence of D([0,t])-valued random variables (V"*1q_),>1 is tight
with respect to the Skorokhod M;-topology.
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Proof. It is sufficient to show that the conditions of [39, Theorem 12.12.3] are satisfied.
Condition (i) is satisfied, since the family of real valued random variables (Vt”’e)nzl is
tight by Lemma 4.2. Condition (ii) is satisfied, since the oscillating function w; introduced
in [39, Chapter 12, (5.1)] satisfies w,(V"™¢,0) = 0 for all § > 0 and all n, since V™€ is
monotonic by assumption (FC’). O

Lemma 4.5. Let (X,,),en be a tight sequence of stochastic processes in (ID([0,t]), M),

and let X be a stochastic process in (D([0,t]), M;) such that X, T14d X Then X, 53 x
in (ID([Oa t])a Ml)

Proof. In the following we equip D(]0, t]) with the the M;-metric, and recall that D([0, ¢])
is a Polish space, see [39, Section 12.8]. For any subsequence (ny)ken, (Xn, )ken is tight
in D([0,¢]) and hence there exists a subsequence (k;)ien such that (X, )ien converges

stably in law in D(]0, ¢]), cf. Proposition 3.4(1) in [20]. Since X, de&’" X it follows that
Xy, £75 X in ([0, ¢]), which implies X,, = X in D([0,#]) since (n))ren was arbitrarily
chosen. O

The functional convergence in Proposition 2.3(i) follows when f satisfies (FC’) by
Lemmas 4.2, 4.4 and 4.5. Now, for general f satisfying condition (FC) we decompose
f=fr+ f-with fi(z) = f(2)l{z50y and f_(2) = f(z)1{y<0}. Both functions f, and f_
satisfy (FC’), and the functional convergence of V(f; k)™ and V(f_; k)™ follows, with the
corresponding limits denoted by Z* and Z~. Note that Z* jumps exactly at those times,
where the Lévy process L jumps upward, and Z~ at those, where it jumps downward.
In particular, Z+ and Z~ do not jump at the same time, which implies that summation
is continuous at (Z*, Z~) with respect to the M;-topology (cf. [39, Theorem 12.7.3]).
Thus, an application of the continuous mapping theorem yields the convergence of
V(fik)" = V(fy;k)" + V(f_; k)" towards Z = Z* + Z~. Let us stress that indeed the
sole reason why the extra condition (FC) is required for functional convergence is that
summation is not continuous on the Skorokhod space in general, and the convergence of
V(f+; k)" and V(f_; k)™ does not necessarily imply the convergence of V(f; k)™.

4.1.3 Extension to infinite activity Lévy processes

In this section we extend the results of Proposition 2.3(i) to moving averages driven
by a general Lévy process L, by approximating L by a sequence of compound Poisson
processes (L(j));>1. To this end we introduce the following notation. Let N be the jump
measure of L, thatis N(A) := #{t: (t, AL;) € A} for measurable A C R x (R\ {0}), and

define for j € IN
X,(j) == /( oy (= 9) — ol N s, ).
—00,t| X 7%,%

Denote X; () :== Xy — X¢(j). The results of the last section show that Proposition 2.3(i)
holds for X (j), since it is a moving average driven by a compound Poisson process.
By letting j — oo we will show that the theorem remains valid for X by deriving the

following approximation result

Lemma 4.6. Suppose that f satisfies the conditions of Proposition 2.3(i). It holds that

lim hmsup]P( sup [V(X, f; k)" = V(X(5), f; k)7 > s> =0, foralle>0. (4.15)

] n—oo s€[0,t]

EJP 24 (2019), paper 79. http://www.imstat.org/ejp/
Page 16/42


https://doi.org/10.1214/19-EJP336
http://www.imstat.org/ejp/

Limit theory for stationary increments moving averages

Proof. In the following we say that a family {Y}, ; }, jen of random variables is asymptot-
ically tight if for any € > 0 there is an N > 0 such that

limsupP(|Y,, ;| > N) <e, forallje N

n—oo
We deduce first for p > 8V — the asymptotic tightness of the two families

[nt]

{ZWA” } and { max naA?kX(j)} 7 (4.16)
JEN i=k,...,[nt] ’ n,jEN

and tightness of

[nt]

{Zmo‘A" X|p} and { max |n°‘AZkX|} . (4.17)
eN =k,

7[” ne]N
The authors of [10] showed the stable convergences in law

[nt] [nt]
Z neAnLXG)P S Z;, and Y [neAnX|P 5 7, (4.18)
i=k

where Z; and Z are defined as in [10, Eq. (4.34)]. The asymptotic tightness of the first
family of random variables in (4.16) follows from the tightness of the family {Zj }jE]N,
see [10, Eq. (4.35)]. The asymptotic tightness of the second family of random variables
from (4.16) follows from the tightness of the first family by the estimate max;—1,._, |a;| <
(>, |ai|p)1/p for ai,...,a, € R. The second statement of (4.18) implies (4.17) by similar
arguments. The (asymptotic) tightness of the two families on the right-hands side of
(4.16) and (4.17) allows us, for the proof of (4.15), to assume that |naA7kX(])| and

In*A}, X| are uniformly bounded by some Ny > 0.
Consider first the case p < 1. By local Holder-continuity of f of order p we have that

[nt]

sup [V (f,X;k)} =V (f,X(j);k)}| < Cw, Z In A7 X
s€0,t]
and (4.15) follows from [10, Lemma 4.2], where we used that p > ﬁ\/ (=) a) Letnowp > 1.

We can find &, ; € [nA7; X X (5), aA”kX] such that |f(n*A7 X X(4) - f(n n*A? X)| =
[n* AL X (5) f (Eing)], E=2(BV 725) we obtain by (4.1) that

(0 A X (1) = F(n*ATX)| < O [0 AP X (1)1~
< O I AL X (€in g < Cln® AT X ()T + Cln® AL X ()| In® A7 X7,

where in the second inequality we used that v < p — 1 by assumption and that &; ,, ; €
[—No, No), and the last inequality follows from the triangle inequality. Thus, in order to
complete the proof of (4.15), it is sufficient to show that for all ¢ > 0 we obtain

[nt]

lim hmsupIP(Z In® A X (Tt > 5) =0, and (4.19)

J—=0 n—oo ek
[nt]
Z AL X (5)|In“ AL X[ > E) —0. (4.20)
1=k

lim limsup IP (
J—=0 n—oo

By definition it holds that v+ 1 > A ,and (4.19) follows from [10, Lemma 4.2]. For
(4.20) we choose Holder conjugates 6, and 0, =6,/(6; —1) with 6, € (6 \Y, kia,p), where

EJP 24 (2019), paper 79. http://www.imstat.org/ejp/
Page 17/42


https://doi.org/10.1214/19-EJP336
http://www.imstat.org/ejp/

Limit theory for stationary increments moving averages

we used that p > 1. The Holder inequality and the estimate P(|XY| > ¢) < P(|X| >
e/N)+ P(|Y]| > N) for any N > 0 leads to the decomposition

[nt]
(Z AL X (5)|In“ A X[ > 5)

[nt]

01 [nt]
< P(Z|n“A"kX( N (;) ) +]P<Z AL X|?2 > N02>

1=k 1=k
_. 71 2
= Jn,j,N + 5N

Since 61 > BV ;—;, yet another application of [10, Lemma 4.2] yields that

lim limsup J, ; y =0 forall N >0, andalle > 0.

J—© n—oo

Moreover, 6; < p implies 76, > gV ﬁ Therefore, it follows from the asymptotic
tightness of the first family of random variables from (4.17) that

1imsup1imsup.] gn — 0, asN — oo,
J—00 n— oo

which completes the proof of the lemma. O

Finally, the proof of Proposition 2.3(i) can be completed by letting j — co. More
precisely, we introduce for j € IN the stopping times

T, if |ALp | > 1/4,
Tm,j =
oo else.

The results of the last two subsections show that

VG R = S S (AL bl - Up),

m: T, ;€[0,t] 1=0

and that the convergence holds in the functional sense with respect to the M;-topology
if f satisfies (FC). From Lemma 4.1 and an application of the dominated convergence
theorem it follows that

sup |Zs — 729 250, asj— oc.

s€[0,t]
Proposition 2.3(i) follows therefore from Lemma 4.6 and a standard approximation
argument (cf. [13, Theorem 3.2]). O

4.2 Proof of Theorem 2.1(ii)

As mentioned earlier the proof relies upon replacing the increments of X by the
increments of its tangent process, which is the linear fractional stable motion. To make
this approximation precise we will use a scaling argument to transfer the Theorem 2.1(ii)
into to a low-frequency result. For all n > 1 let g,(z) = n%g(x/n), z € R, and set

Xk: < >gn (r—3j), and Yi”:/Rgbn(i—s)dLs.

Jj=

The self-similarity of L of index 1/ implies that for all n € IN that

(AKX i=k,. .0} 2V i=k,...,n}. (4.21)
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In fact, to show (4.21) it is enough to note that for all d,...,0, € R we have that

E[exp(iZGjnHA;{kXﬂ {exp( / (ZHTL gjk ) )}
:exp( pL/‘ZG an;Lk ‘ ds):exp(—pﬁ/ﬂ{‘;%d)ﬁ(j—u)‘ﬁdu)
— B[ exp (i Z 0;7)], (4.22)
j=k

where the first equality follows by (3.3), the second equality follows by (3.1), the third
equality follows by the substitution © = ns and the definitions of ¢,, and g¢,, and the
fourth equality follows also follows by (3.1). From (4.21) we obtain for all n € IN that

V(fXx)m 4L % S, (4.23)
i=k

For fixed n € IN, {(Y;>°,Y;")}i=k,... is a two-dimensional stationary sequence. Indeed,
this follows by a substitution argument similar to the one used in (4.22). Hence, by the
triangle inequality we have that

B LS - DY )| < 2 S EIA0r) - 50
i=k i=k i=k
< B — 7)) (@.24)

From [10, Eq. (4.44)] we deduce that E[|Y;" — ¥,>°|’] = 0 as n — oo for all p < 3, which
by Lemma 6.5 used on p = 1 implies that E[|f(Y*) — f(¥,>°)|] as n — oo, and hence the
right-hand side of (4.24) converges to zero as n — co.

Furthermore, set

}Q“:/hk(i—s)dLs7 i €N,
R

(recall the definition of Ay in (2.2)). We note that for H = a4+ 1/8 < 1, Y*° is the k-order
increments of the linear fractional stable motion. When H = o+ 1/8 > 1, the linear
fractional stable motion is not well-defined, but Y °° remains well-defined when H < k
since hy, is locally bounded and satisfied |hy(z)| < Kx® % for > k + 1, and therefore
hi € LP(R). Process (Y;°);cr is mixing since it is a symmetric stable moving average,
see e.g. [15]. This implies, in particular, that the discrete time stationary sequence
{Y;},ez is mixing and hence ergodic. According to Birkhoff’s ergodic theorem (cf. [24,
Theorem 10.6])

n

Z f(Y>°) = B[f(Ye°)]  almost surely and in L' (4.25)
i=k

1
n

as n — oo. We now conclude that V(f; X)" L, E[f(Y;>°)] as n — oo by (4.23), (4.24) and
(4.25), which completes the proof of Theorem 2.1(ii).

4.3 Proof of Theorem 2.1(iii)

Let us first remark that the growth condition |f(x)| < C(1V |z|?) for some ¢q with
q(k — a)) < 1 is weaker for larger ¢ and can therefore be thought of as

|f(2)| < Clz|==—° for |z| = oo,
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if £ > a. Whereas for £ < a we require only that f is of polynomial growth. Since by
the assumptions of the theorem we have k — o < 1, we may and do assume that ¢ > 1.
We recall that a function £ : R — R is absolutely continuous if there exists a locally
integrable function &’ such that

¢
s) = / & (u)du, foralls<t.

This implies that ¢ is differentiable almost everywhere and the derivative coincides with
¢ almost everywhere. If £’ can be chosen absolutely continuous we say that £ is two
times absolutely continuous, and similarly we define k-times absolute continuity.

By an application of [14, Theorem 5.1] it has been shown in [10, Lemma 4.3] that
under the condition (k — a)(1 vV 8) > 1 the process X admits a k-times absolutely
continuous version and the k-th derivative is a version of the process (F),),cr defined in
(2.4). Moreover, [10, Lemma 4.3] shows that for every ¢ > 1, ¢ # 0 with ¢(k — «) < 1 the
process F admits a version with sample paths in L%([0,1]), almost surely, which implies
fo [f(Fu)|du < fo (LA |F|)du < C + Cfol |Fy|%du < oco. With these prerequisites
at hand Theorem 2 1(iii) is a consequence of the following Lemma, which despite
its intuitive statement requires some work. We denote by W* the space of k-times
absolutely continuous functions ¢ on [0, 1] satisfying ¢*) € L1([0, 1]).

Lemma 4.7. Let £ € W* 9, and suppose that f is continuous and |f(x)| < C(1V |z|?) for
some q > 1. Asn — oo it holds that

V(& fk)" ‘1Zf (n"A7E) — / f&M) d (4.26)

Proof. Assume first ¢ € C**1([0,¢]). Taylor approximation shows that
AL = €5 +ain

where |am\ < C/nforalln > 1, k <i < n. We can therefore assume without loss
of generality that f has compact support and admits a concave modulus of continuity
wy, i.e. a continuous increasing function wy : [0,00) — [0, c0) with w;(0) = 0 such that
|f(x) — f(y)] < wy(Jz —y|) for all z,y. We have by Jensen'’s inequality that

1 n
<limsupqws| — Qi n =0.
)| < timsu { f(ng;7|)}

The result follows by the convergence of Riemann sums

LS sy~ [ s as
ik - 0 )

In the following we extend the result to general ¢ € W*¢ by approximating ¢ with a
sequence (£™),,>1 of functions in C**+1([0, 1]). To this end, choose {™ such that

n

Z (k)

i=k

3\>—‘

limsup‘ (& f,k)

n—o0

1
/ |eF) —em()j4 gs < 1/m,  for all m. (4.27)
0

Indeed, the existence of such a sequence follows since continuous functions are dense in
L49([0,1]). Note that (4.27) and Jensen’s inequality imply that fol 1€k —gm R gs <
C/m'/4, since we assumed ¢ > 1. Since ¢"(®) converges in L9([0,1]), the family
(J¢™(*)|4),,>, is uniformly integrable. Hence, by the assumption |f(z)| < C(1V |z|?)
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for x € R, we obtain uniform integrability of { f (§m’(’“))m21}. By continuity of f, we have
that f(¢™®) — £(¢(®)) in measure (with respect to the Lebesgue measure on [0, 1]), and
thus by uniform integrability also in L ([0, 1]):

1
timsup [ [f(€)  f(€ )] ds =0,

Hence, (4.26) follows if we show

limsup sup [V/(&; £,k)" — V(E™; £,k)"] = 0. (4.28)

m—oo nelN

In order to show (4.28) we split the sum

V(& f k)" = VE™ fR)"] < = Z |F(nFATE) — f(nFATE™)]
into sums over the following sets of indices, where N and M are positive constants:

Al ={ie{k,...,n} : n*|A}E > N}
BN = {i € {k,..,n} : nF|A}E < N, nF|ATE™ > M}
Cont = {i € {kyon} - nP|ATEl < N, 0 |A7E™ < MY,

m,n

and estimate the corresponding sums separately. The following relationship between
A?,¢ and £*) will be essential. For all { € W*“ we have

i/n s1 Skp—1
AVIRS =/ / / ¢ dsy, . .. ds
’ % s1—1/n Sk—1—1/n

In particular, it follows that
ki e (k) ko [ (k)
N €5 L g sy, s0)E[(i—k) /nyifn]k} ASk - ds1 =k / | g ds.

(4.29)
The AY term: We show that for given € > 0 we can find sufficiently large N such that,
for a suitable constant C,

kAP €] < /[

’ n

lim sup sup{ Z | f(n*ATE f(nkAZkfm)‘}

m—oo0 nclN EAN

< lim sup sup {n_lC Z |nkAZk£|q+n_lC Z \nkAZkfm|q]l{|nkA?k5m|>1}

-
m—oo neN ieAN ieAN

+n7'C Z |f(nkAZkfm)|]1{|nkA;fk£mgl}}
1€EAN
=: lim sup sup {C’Il,n,N +Clapm, N + CIg,n7m7N} <eg, (4.30)

m—oo nclN

where the first inequality follows from |f(z)| < C(1V |z|?). First we consider I ,, y. By
(4.29) we have for all i € AY

i/ N
k—1 (k) k—1 (k) -
N <k / |5 |nds < k /d n|&s |]l{|§gk)‘>cmk} ds + 5

EJP 24 (2019), paper 79. http://www.imstat.org/ejp/
Page 21/42


https://doi.org/10.1214/19-EJP336
http://www.imstat.org/ejp/

Limit theory for stationary increments moving averages

where Cp  := N(2kF)~!. Therefore, again by (4.29), it follows that

i/n
InFAT €| < KR 1/ 1€ |n ds < 2kF— 1/ €E®|n ds — N
ik izk

< 2% /;k ‘ggk)‘]l{‘fék)|>co,k}n ds. (4.31)

Consequently, recalling that ¢ > 1, we have by Jensen’s inequality

71 Z |nkAn |q < (Zk‘k 1)qkq 1 71 Z / |§k| ]l{‘g(k)bc }’FL ds

i€EAN i€AN

kyq (k)|q
< (2k%) /0 |€5%] 1{\E§k)|>co,k} ds. (4.32)
It follows for sufficiently large N > 0 that

limsup sup{l1 n,n} <e. (4.33)

m—oo nelN

Next, we argue that the same holds for the I5 ,, ,,, v term. By (4.27) and Minkowski's
inequality it follows for any A € B([0, 1]) that [, |§T’(k)|q ds <2171 [, |§§k)|‘1 ds + C/m.
Consequently, it holds that

_1 Z |nkAn 5"L|qﬂ{\nkAnk§m\>1} < Cn~ 1 Z / é—m,(k)|qn ds

1€EAN i€EAN

C
k
<CZ/ €019 ds + — <CZ/ et s,y B+

1€ AN i€AN

ol
(k) |q ~
= 0/0 671 e 5 4y B8+

where the first inequality follows from (4.29) and the third from (4.31). This shows that
for sufficiently large NV it holds that

lim sup sup{[2 nom, N < €. (4.34)

m—oo nelN

Next, we estimate the term I3 ,, ,,,, v. Introducing the notation
Dy = {i € {k,...,n} : n|AT ™| <1}
we have

I3 nm,N = n”! Z |f(nkA;L,kf(m))| < n_1|A7IX N Dyl sup  [f(2)] (4.35)

i€ANMDm n s€(-1.1)

where |AY N D,, ,,| denotes the number of elements of AY N D,), ,,. Using (4.29) we have
foralli € AN N D,,.n

N —1 < nF|A7, (e — gm ()| < gF-1 / R — &M ds,
k) i—k

n

and it follows that

Lk-1 i/n .
|AY N Dypn| = Z 1< Z N1 /iik |€(B) — em ()| ds
1€ANND,y, i€ANND n o
nkk nkk
mk)| s < 4.36
_N—l/ ‘5 gs | s > (N_l)ml/q7 ( )
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where in the last inequality we used (4.27) and Jensen’s inequality. With (4.35) it follows
that for all N > 1 we have

limsup sup{Zs , m v} =0. (4.37)

m—oo neN

Combining (4.33), (4.34) and (4.37) we conclude that (4.30) holds for sufficiently large
N.

The Bﬁ;% term: We show that for any € > 0 and any N > 0 we can find a sufficiently
large M such that

lim sup sup {nl Z | f(n"ATLE) — f(nkAZkfm)’}

m—oo n€lN iEB%jﬁI
< lim sup sup {n_l g ‘f(nkA?kﬁﬂ +nt E |nkA2k£m|q}
m—o0 nelN O NM . N,M
i1€EBy’ i€By’

=: lim sup sup{ mNM T I N} <E (4.38)

m—o0o nelN

The argument for J} .m0 18 similar to the one used for I3 ,,, ,, v above. We assume that
M > N. Fori e BN M3t holds by (4.29) that

M- N <nHlAL(E - €| <K [l - € ds

n

Consequently, arguing as in (4.36), we obtain for all m € IN

1 k

n m kn
s ds < ’
N/O 18 = &1 ds < = Ny

where |BJ")| denotes the number of elements in BJ». Then, it follows that for all
M >N

k
BN-M| <
1B | < U

lim sup sup{ nmNM}<hmsupsup{n B sup [f(s)]}

m—o0 neN m—o00 nelN s€[—N,N]

E* }
<limsupsup{ ——— su s =0. (4.39)
m—>oop n6113/ { (M - N)ml/q se[flg,N] |f( )|

For J?2 m,N,m We obtain by arguing as in (4.32) with £%) replaced by ¢™®*) and N
replaced by M that

1
JT% m,N,M = (2kk) / |§;n7(k)|q]l{‘52"=(k)|>1w/2kk} dSv

for all m,n, N. Since (|¢™(*)|?),,>, is uniformly integrable we can for ¢ > 0 find suffi-
ciently large M such that

limsup sup{J7 . vy} < & (4.40)

m—oo nelN

Now, (4.38) follows from (4.39) and (4.40).
The CJ-M term: We show that for all N, M > 0 we have that

lim sup sup {nl Z ‘f(nkAZkf) - f(nkAﬁkfmﬂ} = 0. (4.41)
m—oo neIN . N. M
1€Cmn
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Since [n*A7£] < N and [n*A7, ™| < M for all i € C))', we can replace f by a

m,n

continuous function &)N7 M with compact support, such that f(z) = ® ~,u(x) for all

z € [—(NVM),NV M]. Denote by Wy, the concave modulus of continuity for @y as. It
holds that

sup {n_l > |fmFAre) - f(nkA?,k:fm)‘}

nelN ieC,JX;,Jy
= sup {nl E |<5N7M(nkAZk§) - fiN,M(nkAZkgmﬂ}
nelN CNM
1i€Cmin
n 1
< sup {wN,M (n1 S kAT - Azkm) } < Ty (k’“ [ 1 —en) ds),
ne . 0
Jj=k

where the first inequality follows by Jensen'’s inequality from concavity of wy s, and we
used (4.29) in the last inequality. Now, (4.41) follows by (4.27).

Finally, by (4.30), (4.38) and (4.41), for any € > 0 we can find sufficiently large N, M
such that

limsup sup (nl Z |f(nkAZk.§) - f(nkAﬁkfm)’) <e.
i=k

m—0o0 N—roQ

By letting € — 0 we obtain (4.28) and the proof of the lemma is complete. O

5 Proofs of Theorems 2.5 and 2.6

Before carrying out the proofs we will introduce some notation and estimates to be
used in the following.
Definitions and notation: For any function ¢ on the real line we denote

k

DR(s) = D21 (5)uts -,

Furthermore, set
t
gn(8) :=n%g(s/n), 7(s) = Dkgn(t —s), and Y;':= / ¢} (s)dLs, (5.1)
— 00

for n € IN. By our assumptions on the function g it holds that g,(s) — s¢, and con-
sequently ¢7'(s) — hi(t — s) as n — oo, where hj, was defined in (2.2). Therefore, we
complement (5.1) by defining

¢
@7°(s) == hi(t —s), and Y;>° ::/ hi(t — s)dLs.

We recall that (F;);cr denotes the filtration generated by L and introduce additionally
the o-algebras
Fli=o(L,—L,|s<ru<s+1),

S

remarking that (F!)cr is not a filtration. We denote
r+1
Ujl, = / ¢7(s)dLs, wheren € NU{occ} and j > k,
and introduce the notation
pj = peloflle@yoay, and p" = prll¢f|Le ). (5.2)
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Note that Y,* ~ S3S(p") for all r > k and n € IN, which follows by (3.1).
Preliminary estimates: For £ < § and v > 0 there is a C' > 0 such that for all p € (0, 1]
and S ~ S55(1) we have

Cp? for v > 6,
EfloS|¢ A o] < { 1r 5.3)
Cp" for v < 3,

where the first case follows by [10, Lemma 5.5], and the second case is a standard
estimate. The function ¢} introduced above satisfies the estimate

16511 2o oy < C*F, (5.4)

for all j € IN and all n € INU {co}, which follows from Taylor expansion and the condition
(A2) in Section 2. Moreover, gb;? satisfies the following estimate that has been derived in
[10, Eq. (5.92)]. There exists a C > 0 such that foralln € Nand j € IN

167 — &1 Lao,1) < Cn @ (5.5)

Remark 5.1. In the proofs of Theorems 2.5 and 2.6 we may and do replace E[f(poS)] by
]E[f(nHA;ka)] in (2.7), (2.8) and (2.9). Indeed, to show this claim we first show that the
function p — G(p) := E[f(pS)] is continuously differentiable on (0, c0). Let g3 denote the
density of a S3S random variable. By substitution we have that

Glp) = | f(wastu/p) dn. (5.6)

Since E[|f(S5)|] < oo it follows that [ |f(u)|(1 A |u|~17#)du < oo, cf. [38, Theorem 1.2].
We have that gg € C*°(R), according to [33, Remark 28.2], and for all » > 1, the rth
derivative of gg satisfies

95 @) < CAAJ2|7777),  zeR. (5.7)

Indeed, to show the estimate (5.7) we use the dual representation for stable densities
given in [40, (2.5.5)], which implies that

gs(z) =27 Pg(x=P), x>0, (5.8)

where ¢ is the density of a 1/5-distribution. By r-times differentiation of (5.8), the
estimate (5.7) follows. Hence, from the estimate (5.7) used on » = 1 and (5.6), it follows
that G € C'((0,00)). By [10, Lemma 5.3] we have that

Cn~! fora € (0,k —2/8)

5.9
Cinla—k)B+1 fora e (k—2/8,k—1/pB). ©-9

o1 llgisll sy — o) < {

Hence, for large enough n, we obtain the estimate

[ELF (07 87, X)] = Bl (o) < (_ max |G/ @)]) |[n™ prllghelloqe — pofs  (5.10)

z€[po—e,potel

and by (5.10) and (5.9) it follows that

B[ (nf A7, X)] - E[f(poS)]‘ 0 asm— oo, (5.11)

an

where a,, = v/n for Theorem 2.5, a,, = nk—«=1/8 for Theorem 2.6(i), and a, = nt~ =B

for Theorem 2.6(ii). Eq. (5.11) proves the above claim that we may replace E[f(poS)] by
E[f(n" A}, X)] in Theorems 2.5 and 2.6. O
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We have that {nHA"kX}T k.., {Y;ﬂ}r:k ,,,,, n, Cf. (4.21), and to deduce Theo-
rems 2.5 and 2.6 we show, cf. Remark 5.1, convergence in distribution for the properly
normalised version of

=Y (f( E[f(Y,M)]) =Y V", (5.12)
r=k r=k
where we denoted V" := f(Y,*) — E[f(Y,")] for brevity.

5.1 Proof of Theorem 2.5

We recall the definition of Y, and S, from (5.1) and (5.12), and define additionally,
fora < b, a,b € [0,00] and m > 0,

ymlab] — / ¢"(s) dLs, yrm = ymloml
r—>b
S = > (FO™) = BLF (™).
r==k
By [13, Theorem 3.2], the statement of the theorem follows if we show the following
three results

lim limsup E[n (S, — Sm.n)?] =0, (5.13)
m—=00 np—oo
1
%Smmiw\/'(o,nfn), for some 7?2, € [0,0), and (5.14)
7772”—”72, as m — oo. (5.15)
We show (5.14) first. Set 0" = cov(f(Y;""™), f(Y;{}")) for n € WU {oc}. Since the

sequence (Y;»™),—y .. is stationary the variance of S, ,, is then given by

n~tvar(S,.m) = n_l{(n —k+1)0y™ + 2Z(n — k- j)&?’m}.
j=1
An application of Lemma 6.5 with p = 2 yields that the covariances 0;“” converge to
0;0’7” for all m,j, as n — oo. Since the sequence (Y,"™),_. ... is m-dependent, (5.14)
follows now from the central limit theorem for m-dependent sequences, see e.g. [12],
with the limiting variance

e, =000 +2) 07 (5.16)
j=1
Next, we argue that 72, is a Cauchy sequence, which then shows (5.15) with 7>
lim,;,— oo nfn. This is indeed an immediate consequence of (5.13) since

bl = | = i 028, — S 2| < Timsip /2S00 — 5,
n—oo n—oo L?
< limsupn71/2‘5nm—5n —|—limsupn71/2‘5n—Snr —0
n—o00 ’ L n—00 T L2

as m,r — oo by (5.13). The proof of (2.7) can thus be completed by deriving (5.13),
which we do in the following.
We can express S, and S, ., as the telescoping sums

S0 =3 S OBV Fr ]~ BLFVIF ),
r=k j=1
Z Z SN Freji] = E[F (V™) Fr—j]).
r=k j=1
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Indeed, the first telescoping sum coincides with S,, almost surely, since by the backwards
martingale convergence theorem and Kolmogorov’s 0-1 law E[f(Y,")|F,—;] = E[f(Y,™)],
as j — oco. We denote forn > 1 and m,r,57 >0

& = B = O Femjia] = BIA(Y?) = SO )IFe ],

and obtain

Snm =D & (5.17)

r=Fk j=1

Making the decomposition

n'E[(S, — Snml)2]

n oo 2 n m 2 n 2
<o B|(X 3 ep) [+ae| (L) | caoe|(Lar) |
r=k j=m+1 r=k j=2 r=k
we show that each summand on the right hand side converges to 0. Observing that
cov(§™,€0) =0, unlessr —j=1"—j,
an application of Cauchy-Schwarz inequality and Fatou’s lemma yields
nilE[(Sn - Sn,m)z] < SnilQn,l,m + 3n71Qn,2,m + 3n71Qn,3,ma

where

Qn,l,m - Z Z Z E I/QE[(g ) ]1/27

rkj 2)’2

Qn2m = Z Z Z 1/2E[(§3,Zg)2]1/2’

r=k j=m+41 j'=m+1
Qnam =) B[]
r==k

and we denoted ' = r — j + j'. For the proof of (5.13) it remains to show that

lim sup — Q,,”,,%O asm — oo, fori =1,2,3.
n—oo

Estimation of Q) 1,m»: We introduce the notation

" (x) = E[f(z +Y,"7)],

which allows us to write E[f(Y,")|F,—;] = @?(YJ”U ), due to the independence of the
increments of L. For 2 < j < m we obtain

€1y = By (V01 = B (R — (B (1) — B () st

The involved random variables can be decomposed into the sum of independent random
variables as
anv[j—lm] _ mi[j—Lj] + yrn,b%m] + yrnv[mm]
Yr”’[j"’o] — yrn,[j,m] + yrm[mm]
yrn,[jflm] — yrn,[jfl’j] + y;m[j,m].
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Denoting by F; [ JRIE [? m] and F[r'rln,oo] the corresponding distribution functions, we obtain
///{CD u—i—v—&—w)—&)?(v—i—w)
(q)j 1(’LL + U) )} dF] 1 J]( )dF[?,m] (,U)dF[yTln,oo] (U))
Using the relation EI;;’( )=Ef(z+ Y"1 +Y" b= 1’J]) f]R +2)dF};_, j(2), we
obtain

2
= [ ([ Dot 20 ) 4R 0aE (0D w0
/ / / / Dy j(u,v,w, 2)dF_y 5y (2)dF;_y y(w)dE ) (0)dE, o (w),  (5.19)

where
D, j(u,v,w,z) = (T);}_l(qu v+ w) — 6?_1(1) +w+z)— (&)?_1(u +v) — (5;;_1(0 + 2))
=Py (utvtw)—Ppr (v+w+2z)— (@p;;l(u +v) = Ppn (v + 2)),

and p7_, is the scale parameter of the S35 random variable Y, »i=1, 1t follows from
Lemma 6.1 that D,, ; satisfies the estimate

D s, v,w,2) < O(lu— 2P A (u—2)%)(Jw* Aw?), forall j>2,neN, (5.20)

where p is as in (2.5), provided {p?,l}jzgmem is bounded away from 0 and oco. This is
indeed the case, as follows from the estimates

= [ JrePs < 1ol = o end
r—j+

r 1
(p?_l)ﬂz/ |pr(s)[Pds — /0 s*Pds > 0 asn— oo,

r—1

where the convergence follows by the dominated convergence theorem, since Assump-
tion (A) implies the existence of a C' > 0 such that |¢]"(s)| < C|r — s|* forall s € [r — 1, 7]
and all n > 1.

Applying (5.20) on the right hand side of (5.19) yields the estimate

E[(")%)
S C(/};z ‘ ‘217 A (’LL— Z) dFj 1]]( )dF[T;_]_J](Z)) /];‘w|2p /\'LU2 dF[:Ln7OO](w)

It follows now from (5.4) and (5.3) that IE[(§ )2 < C( li ]]p[m OO]) where pﬁ'q,j] and
p[m o) Are the scale parameters of the stable dlStrlbuthHS F[ i1,4] and F[m,oo]' respectively.

By (3.1) and (5.4) the scale parameters satisfy Plio1g) = = prll9} s o, < Cj*~*, and

Tr—m oo o0
(Pinoe))” = P2 / j6n(s)Pds = pr > N6 l7agoy <C Y 17C7R.
—00

l=m+1 l=m+1
It follows that

E[(é-:}&m)Q] SC’jﬂ(afk) Z lﬁ(afk)’
l=m+1
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for all j € {2,...,m} and we obtain

) 1 m s 2 0o B
llmsuann,ngC(ij(a k)) ( Z 1B(e k)>7

n— o0 =2 l—mt1

which converges to 0, as m — oo since f(a — k) < —2.

Estimation of ), 2,,: This term is estimated by similar, and in fact easier, arguments
as used for the estimation of (), 1,,» which we do not repeat here.

Estimation of Q,, 3,m: Using the inequality E{E[X|F] — E[Y|F] }2 <2EX? +2EY? we
obtain

n—k+1
n

E[(f(Y{") = fO7™)%],

S

1
7Qn,3,m S
n

SCE(F) = f™)?] =
r==k

and it is sufficient to argue that limsup,,_, . E[(f(Y{") — f(Y7"™))?] — 0 as m — oo.
However, this follows by Lemma 6.5 with p = 2, and completes the proof of (5.13), and
thus of Theorem 2.5. O

5.2 Proof of Theorem 2.6(i)
In the following section we set for all n € IN

P, (z).

S, = @7,..(0) ZYT”, where @/ (z) = p
r=k

To prove Theorem 2.6(i), it is enough to show that the following (5.21) and (5.22) hold,
where

nk_a_l/ﬁ_l(sn - Sn) i} 07 (5.21)
nk*O‘*1/5*1S‘nimS‘BS(U)7 with o := pp®/ (O)c(l)/ﬂ. (5.22)

Proof of (5.21): We showNa stronger statement than (5.21), namely convergence in L”
for a suitable v > 1. Let f,(z) = f(x) — ®/,(0)z, and set

B,(2) = Elf,(x + 5)] ~ B, ()] = @, (a) - @,

»(0)z,

forallz € R, n € Nand S ~ SBS(p). For all € > 0 there exists C' > 0 such that
|®/(2)] < C and |®)(z)] < C forallz € Rand p € [¢,¢ ], and since ®,(0) = @,(0) = 0 it
follows that R

1o ()] < Ce(lz] A l2]*), (5.23)

which will be crucial for the following estimates. We set
(g = Blfon VN Frojir] = Elfon (V) Frg] = Elfpn (V)IFL ]+ E[F ()],

and decompose S,, — Sn as follows

n

S5 =3 (i SEDS (i (ELfpe (V)] = B ) = Vo + Wae (5.24)
r=k

j=1 r=k j=1
In the following we will estimate W,, and V,, separately.
Estimation of W,,: By the substitution s = » — 5 we obtain the representation

n—1 n—s

Wom S (S (B0 - EFO7) = Y DI where

s=—00 j=(k—s)V1 §=—00
D= > (Bl (Y )IF] = BIFYE)).
j=(k—s)Vv1
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Since {D” : s € Z} is a martingale difference sequence, the von Bahr-Esseen inequality
[37, Theorem 1] yields that for any v € (1, )

n—1

E[[W,] <2 > B[|D:]

n—s

<23 (Y ®IBA-0n)E - B 629

s=—00 j=(k—s)V1
where the second inequality follows by Minkowski’s inequality. We have that

[),(0) = @} (0)] < Clp™ = | < C|I"1 = 1717] = Cll} 1 g0,y < CF7H
(5.26)

where the first inequality follows by boundedness of 5°5-®,(z), for the second inequality
we use that p", p} are bounded away from 0 and oo, cf Lemma 6.3, and the last inequality
is (5.4). By a calculation similar to (5.18) we obtain the identity

[fp ( s-‘r])‘]:sl] - E[f(}/;j_])] = ”(U]n-i-s s) - E[(I)P;’(an-&-s,s)} - ( )U_]n-i-s s

and hence for all r € (1,2) with ry < 8, we have

BB, (2122 - Bl ) |

< O(Blldyy (U0 )] + 1} 0) = B (O B[V ])
< OBV ]+ 190 (0) = @ ()77 ) < ¢ (et o jrle-bied)
< gjrrle=hk) (5.27)

where the estimate |§>p; (x)] < Clz|" is used in the second inequality (cf. (5.23)), and
(5.26) is used in the third inequality. From (5.25) and (5.27) we deduce

n—s

s ¥ (% )

s=—00 j=(k—s)V1

n— n

s=—o0 j=k—s s=—n+1 j=k—s s=k—1

»

= C(A;, + A + A7),

We may and do choose r and § such that (o — k) # —1 and —f5 < ry(av — k) < —1. Recall
that —8 < B(a — k) < —1 by assumption, and r,v > 1 satisfies ry < 5. We start by
estimating A/, as follows

Z ns'r(a k) v < Cn’YT(Ué k)+14y (5.28)

where we have used ry(« — k) < —1 in the last inequality. By Jensen’s inequality we have

n n+s
A <t Z( Z jrvta= k)) <Cont Zsmm W+ < Cprie—k)+r+1 (5.29)
s=1 j=k+s
where we have used ry(« — k) < —1 in the second inequality, and rv(a — k) > —2 in the
last inequality. For v < § close enough to § we have that r(a—k) > —1forallr € (1,5/7),
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by the assumption o > k£ — 1. The substitution v = n — s yields that
n v ~ n
A/y:/ < CZ (er(afk)) < CZ,U'yr(osz)Jr'y < n'yr(osz)+’y+17 (5.30)
v=1 =1 v=1

where we have used r(«a — k) > —1 in the second inequality, and vr(a — k) > —2 in the
last inequality. The above three estimates (5.28)-(5.30) show the bound

E[|W,|"] < CpYrle=R+y+L (5.31)

Estimation of V,,: By the substitution s = r — 5 we have that

S NOICHED SNED NN S JRT:

r=k j=1 S=—00 r:kv(s-&-l) 8§=—00

where M = Z:l:k\/(s+l) ¢'r—s- Since (M)sez is a martingale difference for all fixed
n € IN, we have by the von Bahr-Esseen inequality [37, Theorem 1] for all y € [1, 2] with
v < [ that

n—1 n—1 n
DAUESI DA U DI (D SR < 1 (5.32)
§=—00 s=—o00 r=kV(s+1)

where the last inequality follows from the Minkowski inequality. In the following we
define the random variables ¥’ . il >3, by
=B | Fr Vv Fen] =BG | Fry vV Froi] (5.33)
= E[f(Y") | Fro; Vv Fomt] = BIf (V) | Froj vV Froid]

—AB[EF ) [ Froj] | Froy v Focd] = BE[F(Y) | Foog] | Fooy V Froia] )

By a telescoping sum argument similar to (5.17), we obtain the representation

n
7,9,L

oo
Gy =D 0%
I=y
Since {19?,3‘,1: l=4,j+1,...}1is a martingale difference sequence, the von Bahr-Esseen
inequality [37, Theorem 1] yields that

(¢, < 2ZE 97 5.7] < CZJ“” Bvjle=hn < gja=hytt (5.34)
l=j l=j
for all v € (1, 8) such that (o — k)y < —1. Here we have used Lemma 6.2 in the second
inequality, and the third inequality follows, since (o« — k)y < —1, from comparison with
the integral

o0 o0 1
l(afk)v</ kg L
2T ) =y

(j— 1)(a*k)v+1.
v—1

From (5.32) and (5.34) we have

n

E[V,"] <C S ( Z (r— S)Q(Q—k)-i-l/’y)V

s=—00 r=kV(s+1)

-n n k—1 n

ol vy
_ C{ Z (Z(T _ S)Q(afk)+1/“/) n Z (Z(T _ S)Q(afk)+1/7>
s=—o0 r=k s=—n+1 r=k
5 (3 e} e B )
s=k r=s+1
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We estimate B}, B! and B! in a similar fashion as in (5.28)-(5.30), but need to divide into
several cases depending on the value of v(« — k). As, ultimately, we will choose v such
that E[|V,,|?] — 0, we may and do exclude in the following the cases y(a—k) = (—1—+)/2
and y(« — k) = —3/2. We find the following estimates

B < Cn27(a7k)+v+2’ B < Cn2’y(a7k)+'y+2 for 7(a - k) > _3/27
" "l ont for v(a — k) < —3/2,
B < CnQW(aik)JerrQ for 7(a - k) > (71 - 7)/27
"7l on fory(a — k) < (-1 —-7)/2,
which implies
E[[V.]"] < C(n%(a—’ﬂ+7+2 n n) (5.35)

Combining (5.24) with the estimates (5.31) and (5.35) yields

E anfafl/ﬁfl (Sn—5n) H < C’(nfv/ﬁJrW(T*l)(a*k)+1Jrn*W/ﬁJrW(a*k)ﬂL?+n7(k*a*1/ﬁ*1)+1 ,

(5.36)
The three terms on the right-hand side of (5.36) converge to zero as n — oo. Indeed,
it follows that the first term converges to zero, by choosing v € (1, ) close enough
to 8 and then choose r € (1, 3/7) close enough to /v, which can be done under the
above restrictions on r and v. The second term converges to zero due to the assumption
v(a—k) < —1 and the third term converges to 0 for v close enough to 5 by the assumption
a > k — 1. Hence, (5.36) completes the proof of (5.21).

Proof of (5.22): In the following we write g; , , for g{fk, given in (3.2), to stress the
dependence of the order of increments £ > 1. We have

ke /A5, L9l (0)nt YT AT X = @, (0)nk ! (Ag,,HX - Ag,l’k,lx), (5.37)
r=k
where the last equality follows by the telescoping sum structure. According to the mean
value theorem there exists 61,605 € [—k/n,0] (depending on » and s) such that
’nkfl (gn,n,k—1(8) - gk—l,n,k—1(5)) ’ < C‘g(kfl)(l —s+01) —g* V(s + 92)‘

< C(1gueny + Lpeon s ™) = c(s),  (5.38)

where the last inequality follows by Assumption (A2) and the mean value theorem for
s < —1, and by the assumption o > k — 1 for the case |s| < 1. The function ¢ in (5.38)
is in L?(ds), due to the fact that a < k — 1/3. Hence, by the dominated convergence
theorem, we have

B B
/ ’nkil (gn,n,k_l(s)fgk_17n7k_1(5))‘ ds — / ’g(kfl)(l—s)fg(kfl)(—s) ds =: cg < 00,
R R
(5.39)
as n — oo. By [10, Lemma 5.3], p" — p*> which implies that /. (0) — @/~ (0) by
continuity of p — <I>;(O) on (0,00). Therefore, by (5.37) and (5.39) we conclude that

nhmem /818, 4 689(a),  with o i= pr @) (0)ch”, (5.40)

which completes the proof of Theorem 2.6(i).
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5.3 Proof of Theorem 2.6(ii)

Before we start the proof of Theorem 2.6(ii) we will deduce some estimates on ¢ p(:r)
relying on the assumption of Appell rank greater or equal to 2 in this theorem. Let
e € (0,1) be fixed. The mean value theorem, together with assumptions (2.5) and (2.6)
and the Appell rank greater or equal to 2 condition, %CIJP(O) = 0 for all p > 0, implies
that

|®p(z) — p(y)| < C((l Alz[+ 1A YD =yl ge—y<1y + |2 — y|p]1{|xfy\>1}) (5.41)
forall 7, € R and p € [¢, e~ !]. Specializing (5.41) to y = 0 yields that
|®,(2)] < C(|zP A |z|?), r€R, peleel] (5.42)

Next let € R and py, p2 € [¢,¢!]. From an application of the mean value theorem in
the p variable it follows that there exists p € [¢,e~!] such that

0
95, (2) = @y, (@)] < Clor = pa] - | 5 @5()]

< Clpy = paol (1A [212) < Clox = pal (Il A Jo?)

where in the second inequality we use that \#Sapép(x) < P,(x) < C, aa;ap ®,(0) =
0 and E%@,,(O) = 0; the latter fact follows since ®,(0) = 0 for all p > 0.
For all r > k we define Z, by

Z j+77“ - [ (U]O-T-rv)]} (5.43)

where the sum is almost surely absolutely convergent. Indeed, this fact follows by the
same arguments as in [10, (5.19) b], where this statement is derived in the context of
power variation (the proof relies on the estimate (5.42)). Since for all j > 0 the sequence
(Uﬁr,r)rzk is i.i.d., the random variables Z,,r > k are i.i.d. as well. For n > 1,m,r > 0
we denote

"= BV F ] - BV|F ] - BVFL ],
R =3¢, and  Qr:=Y E[V'|F.
j=1 j=1

The sums R} and )] converge almost surely, which follows by the arguments of [10,
(5.21)] and thereafter. We obtain the following important decomposition

S, Z R + Z Q= Z)+ Y 2y, (5.44)
r=k r=k

where we will argue that the first two sums in (5.44) are negligible in probability. In
order to derive

1 n P
n@ms Y RE L0,
r==k

we may argue along the lines of the proof of (5.22) in [10, Proposition 5.2] where this
statement is derived in the context of power variation (note that R” corresponds to R"°
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in their notation). Key to the proof is the estimate [10, Lemma 5.7], which we generalize
to our setting in Lemma 6.2. Similarly, we obtain

R S (QF — Z,) 5 0
r==k

by arguing along the lines of the proof of (5.24) in [10, Proposition 5.2]. The proof relies
on the estimates (5.3)-(5.5) and [10, Eq. (5.15), (5.18)], as well as on Lemma 6.4. The
estimate [10, Eq. (5.15)] is in our context replaced by (5.41), where we need to argue
that for sufficiently large N the set {p} : n € {N,...,00},j € IN} is bounded away from 0
and oo, which is done in Lemma 6.3.

It therefore remains to show that Z, is in the domain of attraction of a (k — «)3-stable
random variable, which we do in two steps. First we define the random variable

Q= ®(Ly1 — L) — E[®(Lyq1 — Ly)], where &(z):= Z 5 (05°(0)2)

oo
J

Jj=1

and show that it is in the domain of attraction of a (kK — «)S-stable random variable S.
Thereafter we argue that we can find r > (k — ) such that

P(|Z, — Q| >x) <Cz™", forallz >1, (5.45)

which yields that Zj is in the domain of attraction of S as well, and an application of [32,
Theorem 1.8.1] concludes the proof.

Let us first remark that the function ® and the random variable () are well-defined.
Indeed, since p3° — p> € (0, 00), the set {p5°};en is bounded away from 0 and oo and by
(5.42) it follows for any v € (p, §) that

Jj=1 =

J=1

By choosing v > 1/(k — «a) it follows that ® and ) are well-defined. Moreover, an
application of the dominated convergence theorem shows that & is continuous.

In order to show that @ is in the domain of attraction of a (k — «)3-stable random
variable we next determine constants c_, c; such that

lim 2%~ P(Q < —z) =c_, lim 2*"P(Q > z) =c;.
r—00

r—00

Then it follows by [32, Theorem 1.8.1] that the random variable @ is in the domain of
attraction of a (k — ) 3-stable random variable with scale parameter p; and skewness
parameter 7)1, given by

1/(k—a)B _
P (C++C—> . and g = TS (5.46)
T(k—a)B Ct e

Here the constant 7, v € (0,2), is defined as

1=y
- AT 7L (5.47)
71'/2 ify=1.

In the following we derive explicit expressions for c; and c_, which are stated in (5.51)
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and (5.53) below. For x > 0 it holds by substituting ¢ = (z/u)*/(*~*) that

xl/(afk)é(x):xl/(a*k)/o By (675 (0))

1 > () — a—k
= k " a /0 épﬁ[(w/u)l/(kfa)] (¢1+[(.L/u)1/(k7“)](0)x)u 1+1/( ) du
(5.48)
1 o0
/ cI>,,)oo(k'oéu)u_1“/(“"@) du:= Ky, aszx — o, (5.49)
—a Jy

where k, = a(a —1)...(a — k + 1). The convergence as well as the existence of the
integral follow from the estimate (5.42) and the dominated convergence theorem, where
we use that {p;”} is bounded away from 0 and co. The convergence of the integrand
from (5.48) as * — oo follows since by the mean value theorem for all t € R there is a
& € [t — k — 1,t] such that

057 (0) = hu([t]) = ka(€)3 ",
which implies the convergence
¢(1>1[(z/u)1/<k*a)](0)x — kqu, asx — oo.

Similarly we obtain for x < 0 that

o]/ P ()

0
/ <I>poo(k:au)|u|_1+1/(a_k) du:=+k_, asxz— —oo. (5.50)

—a

We argue next that

lim x(k_o‘)BIP(Q > ) = TapL (n{fo‘]l{,uw} + H’iﬁa]l{,{ix)}) =cy, (5.51)

Tr—r00
where 73 was defined in (5.47) and p;, denotes the scale parameter of the Lévy process
L. To this end we make the decomposition

P(Q>z)=P(Q>x Ly — Ly > 0) +P(Q >z, L1 — Ly, < 0), (5.52)

and analyse the two summands separately. Consider the first summand and assume
x4 > 0. By (5.49) it follows that ®(y) — oo as y — oo and we have for sufficiently large =
that

P(E(Lk+1 — Lk) > {L‘7Lk+1 — L > 0) = IP(|6(L]€+1 — Lk)| > $,Lk+1 — L > 0)

Applying Lemma 6.6 with £(z) = ®(z) and ¢ (z) = 2¥/*~%k,, we deduce from (5.49)
that
lim x*=PP(Q > a, L1 — Ly, > 0) = lim a* = P (kh=(Lyyy — Li) > 2¥7)

xTr—r0o0 Tr—r 00
k—a
= Topprt ™",
where the second identity follows from [32, Property 1.2.15]. If k. < 0, it follows from
(5.49) that lim sup,_, ., ®(x) < 0 and therefore that ®(z) is bounded for z > 0. We obtain

lim z*~*PP(Q > x, Lyy1 — Ly, > 0) = 0.

r—00

The same identity holds for « = 0, as follows from Lemma 6.6, (5.49), and the estimate

IP(E(L}PH — Lk) > {)37L]€+1 — Ly > 0) < P(|6(Lk+1 — Lk)| > LL‘,Lk+1 — Ly > 0)
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We conclude that the first summand of (5.52) satisfies

lim x(k*a)ﬂIP(Q >a, L1 — Ly >0) = Tglei_‘_ My, >0}

T—>00

By similar arguments, applying Lemma 6.6 on the function ¢(x) = ®(—2) and using
(5.50), we obtain for the second summand of (5.52) the convergence

lim x(k_o‘)ﬁlP(Q >x, Lpiy — Lk <0) = TBpL/{ B WA

Tr—r00

which completes the proof of (5.51). Arguing similarly for P(Q) < —z) we derive that
lim z*~9PP(Q < —z) = oL (|6 |~ My, <oy + |/-£_|k7°‘]1{,t<0}) =c_. (5.53)

r—00

This shows that @ is in the domain of attraction of a (k — a)S-stable random variable
with location parameter 0, and scale and skewness parameters as given in (5.46).

Now the proof of the theorem is completed by showing (5.45). To this end it is by
Markov’s inequality sufficient to show that E[|Z;, — Q|"] < oo for some r > (k — a)f.
Indeed (k — ) > 1, and an application of Minkowski’s inequality yields

HZk—QHr<ZH<I>p, UsSin) = ®pe (65°(0)(Ligr — L)) | (5.54)

We remark that by the mean value theorem there exists a constant C' > 0 such that for
all z € [0,1] and j € IN it holds that

16551 (@) = 5°(0)] = [k (j + & + ) — hi(§)] < Cj*
Since {p$°}jen is bounded away from 0, there is a § > 0 with § < p2° for all j. Letting
re = (k —a)f 4+ ¢ with € € (0,4), an application of Lemma 6.4 yields
[ @0 (UL i) — Ppee (65°(0) (Lir — L)) ||,

a—k—1
< O824 — 67 O + 16550 — 6F ONFTeT) < CGEFD0-9) 4 jatera).
(5.55)
For sufficiently small € > 0, both powers of j on the right-hand side of (5.55) are smaller
than —1, which together with (5.54) implies ||Z; — Q|| < oo, and thus (5.45). Since Q@ is
in the domain of attraction of a (k — ) 3-stable random variable with scale parameter

p1 and skewness parameter 71, and r > (k — «)f3, so is Z. This completes the proof of
Theorem 2.6(ii). O

6 Auxiliary results

In this section we show some technical results used in the proofs of Theorems 2.5
and 2.6.

Lemma 6.1. Let p be as in (2.5). For any € > 0 there exists a finite constant C. > 0 such
that for all p € [e,e7 '], a € R and =,y > 0 we have that

Yy px
F(a,z,y) := ‘/ / ) (a+u+v) dudv| < CaP Nx)(y” Ay).
o Jo

Proof. Let us first remark that z¥ A x = x1 <1} + 271 ;~1y since p < 1. By assumption,
®/ () and ®//(z) are uniformly bounded for p € [¢,¢7'] and z € R. Boundedness of ®//
immediately implies F'(a,x,y) < Cxy. Moreover, it holds that

y o y
/O/O@Z(a—i—u—ﬁ—v)dudv:/o Pl (a+z+v)— P (a+v)dv

= (Ppla+tz+y)—P,(at+y)) — (Ppla+z)—Py(a)).
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The first equality and boundedness of @/, implies F(a,z,y) < Cy, and consequently
F(a,z,y)1{z>13 < CaPyl,~1}, and similarly F(a, z,y)1ys1y < CoyPly,sqy. Finally, the
second equality together with (2.5) implies that F(a, x, las1y>1y S CxPly,sg sy <
CaPyPl(;>1,4>1), completing the proof. O

Lemma 6.2. For all v € [1,2] there exists a C > 0 such that foralln € N, r € {k,...,n},
j € N and! > j it holds that

Cjle—kple=hp for 8 <~ < /p,
Hﬁ .7, l| ] (a—k —k
Cjla—k)rila=k)y for~ < 3,
where 19:}7]-7[ was defined in (5.33).
Proof. 1t is sufficient to consider the case r = 1, since for fixed j,/,n the sequence
(19?’ j, )ren is stationary. Without loss of generality we may assume that [ > 2 V j since the
case [ = j = 1 can be covered by choosing a larger constant. To this end we remark that
(E[]97 1.1"])nen is bounded, since Y, ~ S3S(p™) with p™ (which was introduced in (5.2))
bounded away from 0 and co by [10, Lemma 5.3]. By definition of ¢ it holds that
070 = ELF (YY) [ Fio; v Fiod] = B[ (Y]") | Fid]
—{Blf(") | Fi; v Fa] = BIFY) | Foil}

1,40 =

Define for —oo < a < b < 1 the random variable

b
Ua@]:m/ o7 (s) dL

Let in the following L be an independent copy of L and define ﬁ[’;,b] accordingly, and
denote by E the expectation with respect to L only. Moreover, we denote by pi =
167115 ([1—1,1—jju[2—j,1]), i-€. the scale parameter of fll:lj &7 dLg + f;_j 7 dLs. Then,
decomposing fioo @7 dL, into the independent integrals
1 -1 11 1—j 2—j 1
[ evar= [ orare [ Cevans [ Cerans [ Cevan+ [ oo

—1 1-1 —Jj 2—j
we obtain the expression
250 = B[ @, (U o + Uty + Ul o) = @ (U e + Ul + Tty )
= @or (Ul + Uiy + Ui o ) + @on (Ul o + Ul + Uﬁfj,2fj])}
Ullia-g (1—j2—41 o
= / / pnl(U[ioo7_l]+u+v) du dv},
11— i—j2—j) -

and by substitution there is a random variable W”l such that

~ 107 12Ut |5ﬁ—j,z—jJ*U[i—j,z—n|
|07 ;.1 <E / / (W"l +u+v) dudv
0 0

We denote ¢,(x) := |z|” A |z|. Suppose in the following that v > 3. Using Lemma 6.1,
Jensen'’s inequality, the inequality ¢, (|z — y|) < 2(¢,(|z]) + ¢p(Jy])) and the independence
of U and U, we obtain that

E[[97 ;,1"] < CEE[ (U7 11—y — Ul ia—gDep (U -2y = Uty ]l
S CEE[ey (1U 11—y + e (UL g DIEE[L) (U 25 ) + 23 (UG 257 D]]
S C||¢?||§ﬁ([_l,1_l])||¢?H§B([1_j,2_j]) S Cl(a_k)ﬁj(a_k)ﬁ~
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In the third inequality we used the estimate (5.3), where we remark that by assumption
v > f and py < (3, and the expression (3.1) for the scale parameter of integrals with
respect to a stable Lévy process. The last inequality follows from (5.4). For v < § we
use the same arguments above, however, due to the fact that (5.3) gives at different
estimate in this case we obtain the bound E[|97 ; ,[7] < C1(®~k)7;(e=k)7, which concludes
the proof. O

Lemma 6.3. The set {p} : n € {N,...,00},j € N} is bounded away from 0 and oc for
sufficiently large N € IN.

Proof. Choose ¢ > 0 such that ¢ < p™ < e 'and e < p5° < e ! forall j € IN. It follows
from [10, Lemma 5.3] that p"* — p*° and we can choose N sufficiently large such that
lp" = p* ~! +¢/3. Moreover, p}
converges to p" uniformly in n by the estimate

1) = (P = 1812 oy < €7,

where we used (5.4), and that the function z — |z B, restricted to a compact set, is
uniformly continuous. Consequently, we can find a J > 0 such that for all j > J and all n
it holds that [p} — p"| < £/3, implying that ¢/3 < p} < e~ ' +2¢/3 forall j > J and n > N.
For j € {1,..., J} we use that p} — p%° € (e, e~ 1) as n — oo, which follows similarly from
(5.5). Therefore choosing N larger if necessary, we obtain /3 < Py < e~! +1 for all
je€Nandn > N. O

The following auxiliary result was derived in [10] in the context of power variation.
The proof relies only the estimate (5.41) on @,.

Lemma 6.4. ([10, Lemma 5.4]). Under the setting of Theorem 2.6(ii), we have for any
q > 1 with q # (3 that there exists § > 0 and a finite constant C' such that for all ¢ € (0, ),
p>dand k, 7 € LP([0,1)) satisfying ||| 150,11, |7l 0,17 < 1 and

‘%(AZ@MM)_%(AZQMM)

CHH T”LIS([Q 1] 5 < q

<
LR + I o) s = 30y + I = 71850 )} 8> 0

q

We will need the following minor extension of [27, Lemma 2.1]:

Lemma 6.5. ([27, Lemma 2.1]). Let {X,, : n € Ny} denote symmetric 8-stable random
variables such that X,, — X, in probability. Suppose that f : R — R is a measurable
function such that E[| f(Xo)[?] < oo for some p > 1. Then, E[|f(X,,) — f(Xo)|’] — 0.

Note that Lemma 6.5 relies heavily on the -stable assumption, and a similar result
(with no continuity assumptions on f) does not hold for e.g. discrete random variables.

Proof. If f is bounded, p = 2 and X,, — X almost surely, Lemma 6.5 is [27, Lemma 2.1].
However, going through the proof of [27, Lemma 2.1] shows that it also holds for a
general p > 1 and if X,, — X in probability, by using the same arguments. To extend
Lemma 6.5 from bounded f, to unbounded f satisfying E[| f(X)|P] < oo, it is enough to
show tightness of {|f(X,,)|? : n > 1}, due to a truncation argument. The density of X,
satisfies

fx, (@) =ptgs(z/pn), T ER, (6.1)

where g3 is the density of a standard symmetric 3-stable random variable and p,, is the
scale parameter for X,, for n € INy. Since E[|f(Xo)|’] < oo and p,, — p (follows since
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X, — X in distribution), we deduce tightness of {|f(X,)[? : n > 1} from (6.1). This
completes the proof. O

Lemma 6.6. Let ¢, £ be continuous functions on R with ¥ (z) ~ &(x) for v — co. Let X
be a random variable taking values in R, and vy > 0 such that

lim 2"P(|Y(X)| > z) =k
T—00

where k € [0,00). Then it holds that
lim 2 "P(|{(X)] > z) = k.
Tr—r00

Proof. Denote (z) = £(z)¢(x) with ¢(x) — 1 for © — oco. Let ¢ > 0. By continuity
of ¢ and £ we can choose z sufficiently large such that ¢(y) € (1 —¢,1 + ) whenever
min(|¢(y)|, |€(y)]) > = and y > 0. Since X takes values in R, this implies that ¢(X) €
(1 —€,1+ ¢) whenever |[¢(X)| > = or |{(X)| > x. It follows that

2T [P([$(X)| > x) = P(|E(X)] > @) = B2 (Lgjpx)5a>1e0)} T 1w <a<icx)})]
<2B[27 1 e cpp(x)i< 2] = 2B[27 e cuoon — 27 L <poon)

—=2k((14+e)"=(1—-¢)7), asxz — occ.
The lemma follows by letting ¢ — 0. O

Proof of Remark 2.4. (i): We will start by verifying (B) for any bounded measurable
function f. Let gg denote the density of a standard symmetric 3-stable random variable.
By substitution we have

- / F@)as((y — 2)/p) dy — / F()95(u/0) dy. (6.2)
R R

Recall from (5.7) that gg € C*°(R), and for all r > 1, the rth derivative of g satisfies
957 (2)| < CAA|] TP, zeR. (6.3)
By the (6.2), (6.3) and using that f is bounded, it follows that p — ®,(z) is C*((0,00))

and

gp@p(w) = - /f2</]R (f(y)gb((y —x)/p)(y — w)) dy — /R (f(y)gg(y/p)y) dy)

- /R ( f(:c+py)g}3(y)y) dy + /}R (f(py)g’g(y)y> dy,

which implies existence of C' > 0 such that |8%<I>,,(x)\ <Cforallp€ [e,e '] and z € R.
By similar arguments one can verify the remaining conditions of (B).

(ii): Next we suppose that f € L. _(R) and there exists K > 0 and ¢ < 1 such that
[ € C}([~K.K]*) and | f'(2)] |/"(2)], |/ (2)] < C and |f'(@)| < Cle|*~! for || > K. In
the following we will verify that f satisfies (B) with p = ¢ when ¢ > 0, and p = 0
when ¢ < 0. Let £ € C°(R) be a function such that £ = 1 on [— K, K]. By the equality
1=¢+ (1 —¢) and substitution we have

- / f(py)gs(y) dy = / [+ py)gs(y) dy

=/f W95y — 2)/) dy+/fx+yp)(1—§( +y0))gs(y) dy
= B, () + B, (1),
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Since f is locally integrable and ¢ has compact support we have f¢ € L'(R), and due to
the fact that |¢’| is bounded

‘881: ‘—’P_l/f v)95((y —2)/p) dy’<0p /\f s)|ds <oo.  (6.4)

On the other hand, it follows that (f(1 — &))’ is bounded. Indeed, since f(1 — &) =0 on
[- K, K] it is enough to show that (f(1 —¢))’ is bounded for |z| > K. For |z| > K we have
(f(1 =&)Y = f'(1 =& — f&¢ which is bounded due to the fact that f’ is bounded and f is
continuous for |z| > K, and ¢’ has compact support. Therefore,

'690 ’_’/ f(1 =)' (w +yp)gsly dy\<0/\gﬁ )l dy < oo. (6.5)

From (6.4) and (6.5) it follows that %(I)p(x) is bounded. By similar arguments one
can verify the remaining conditions of (2.6). To verify (2.5) we will use that gg is both
Lipschitz continuous and bounded, and hence for any p € [0,1], p € [¢,e!]

B(0) ~ B,0)| < [ 17(@8C)(g((u— 2)/p) - ga((u ~ 1)/ du
<c(1A|x—y\ /|f W) du < Clz — y|P.

For 0 < ¢ < 1and x # 0 we have that |(f(1—¢))'(z)| < C|z|9~! which implies that f(1—¢)
is g-Holder continuous, and therefore

B(0) =y < [ [(F(1 =)o+ ) = (F(1 = D)o+ w)]gs(w) du

<c( [ gatw du)le — gl

This concludes the proof of (2.5) with p = ¢ when 0 < ¢ < 1. For ¢ < 0, we have that
f € L'(R), and hence it follows by (6.2) and boundedness of gg that |®,(z)| < C for all
r € R and p € [¢, ¢ !], which shows (2.5) with p = 0. O

Remark 6.7. In the following we prove the statements on the Appell rank at the begining
of Subsection 2.2. Suppose first that f is an even function. Since S is a symmetric
random variable and ®,(z) = E[f(z + pS)] — [f(pS)] we have that z — ®,(«) is an even
function for all p. Hence, 8%CIJP(O) =0 and 828 ®,(0) = 0. Next consider the function
f(x) = sin(uz) for all z € R, where u # 0. We have that

P, (z) = E[sin(u(x + pS))] — E[sin(upS)] = %(E[eiu(r+ps)}) = sin(ux)e“’”‘lﬂ,

and hence 2@ ,(0) = ue=!Pul” £ 0. Finally, we let f(x) = 1(_oo () for all € R, where
u € R. Then
®,(x) =P(S < (u—2)/p) = P(S < u/p),

and hence -2 5-©,(0) = —pgs(u/p), where gz denotes the density of a standard S35 random
variable. Since gg(z) # 0 for all z € R (see e.g. Theorem 1.2 in [38]), it follows that
8%(13 »(0) # 0, which completes the proofs of the statements.
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