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Abstract

We prove an invariance principle for a class of zero-drift spatially non-homogeneous
random walks in R¢, which may be recurrent in any dimension. The limit X is an
elliptic martingale diffusion, which may be point-recurrent at the origin for any d > 2.
To characterize X, we introduce a (non-Euclidean) Riemannian metric on the unit
sphere in R? and use it to express a related spherical diffusion as a Brownian motion
with drift. This representation allows us to establish the skew-product decomposition
of the excursions of X and thus develop the excursion theory of X without appealing
to the strong Markov property. This leads to the uniqueness in law of the stochastic
differential equation for X in R?, whose coefficients are discontinuous at the origin.
Using the Riemannian metric we can also detect whether the angular component of
the excursions of X is time-reversible. If so, the excursions of X in R? generalize the
classical Pitman-Yor splitting-at-the-maximum property of Bessel excursions.
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1 Introduction

A large class of spatially non-homogeneous zero-drift random walks (Markov chains)
on RY (d > 2) was introduced in [9], where it was shown that such a walk may be transient
or recurrent in any dimension d > 2. These walks are martingales with uniformly non-
degenerate increments (see assumptions (A1)-(A2) below). A non-homogeneous random
walk with zero drift and fixed covariance matrix exhibits the classical dichotomy of Pélya’s
theorem: recurrence for d = 1, 2 and transience for d > 3 [20, Thm 4.1.3]. The anomalous
recurrence behaviour of the walks in [9] is achieved by varying the limiting increment
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covariance matrix, as described by a matrix-valued function 2 : $¢~! — R¢ ® R? on the
unit sphere $%~! in R? (see assumptions (A3)-(A4) below). This is a genuinely many-
dimensional phenomenon: essentially, a one-dimensional walk whose increments have
zero mean and two moments is always recurrent [20, Thm 4.1.2].

An important element of the classical theory of spatially homogeneous random walks
is the Donsker invariance principle, which describes the scaling limit for the class of
homogeneous random walks whose increments have zero mean and positive-definite
covariance in terms of Brownian motion (BM) on R?. This paper studies scaling limits of
the non-homogeneous random walks introduced in [9]. The assumptions (A0)-(A6) that
we impose are described formally in Section 2, along with some examples; we make some
remarks on the motivation behind these assumptions at the start of Section 1.1. Under
these assumptions, we prove that under diffusive scaling, the random walk converges
weakly to a diffusion process X = (X;,t € R, ) whose law is determined uniquely by o2
via the stochastic differential equation (SDE)

dX; = o(X)dW,, Xy =x0 € R™ (1.1)

Here x is the radial projection onto $%~! of any x € R? (with an arbitrary choice 0 € $¢~!
for the origin 0), (W;,t > 0) denotes a standard BM on R%, o : $971 — RY®@R? is a square
root of 02 (i.e., o(u)o' (u) = %(u) for all u € $9!) and x( a non-random point. Our first
main result says that the SDE (1.1) characterizes uniquely in law a continuous strong
Markov process (a diffusion), which will serve as the limit in our invariance principle.

Theorem 1.1. Let the positive-definite symmetric matrix-valued function 2 : $¢=1 —
R¢ ® R? satisfy (A4)—(A6) below. Then, for any starting point X, = xo in R?, weak
existence and uniqueness in law hold for SDE (1.1) and the strong Markov property is
satisfied. Moreover, the law of X does not depend on the choices of the square-root o
and 0 € $4-1.

The process X possesses certain universal properties, in some aspects resembling
those of a BM on R? (in the special case where o2 is the identity, it is BM). In partic-
ular, the norm process ||X|| is a constant multiple of a Bessel process of ‘dimension’
(parameter) V/U > 1, where U and V describe via (A6) the stability properties of o2,
The key difference to the case of BM is that, due to the possible recurrence of the
random walk in any dimension d > 2, the scaling limit X may visit the origin infinitely
often (when V/U < 2). Since the diffusion coefficient is discontinuous at 0, the proof
of the uniqueness in law requires the development of the excursion theory of X before
the strong Markov property can be established. This step constitutes the main techni-
cal contribution of the paper (see Section 3.6 below) and provides an insight into the
structure of the excursions of X. The backbone of the excursions is provided by the
excursions of the radial (Bessel) component, and the full excursion description rests on
the introduction of a (non-Euclidean) Riemannian metric on $¢-! (Section 3.3 below),
yielding a skew-product decomposition of the excursions of X, which in turn entails a
generalization of Stroock’s representation of spherical BM [11, p. 83] (see (1.3) below).
The new geometry on the sphere also yields a multi-dimensional generalization of the
splitting-at-the-maximum property of Bessel excursions [23]. Furthermore, the choice of
the square root of o2 turns out to be relevant for the pathwise uniqueness of SDE (1.1),
which may fail, thus generalizing to higher dimensions the example of Stroock and
Yor [27] for complex BM. These and other features of the law of X’ are described in more
detail in Section 1.1 below. The proof of Theorem 1.1 is in Section 3 with an overview in
Section 3.1.

Having characterized the scaling limit, we state our invariance principle. For a
discrete-time process X = (X,,,,m € Zy), anyn € N and ¢t € Ry, define |n¢| := max{k €
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Z, :k <nt}and

Xo(t) =n"12X ). (1.2)

The paths of X,, = (X, (t),t € Ry) are in the Skorohod space Dy = D(R.;RR%) of right-
continuous functions with left limits, endowed with the Skorohod metric (see e.g. [8,
§3.5]).

Theorem 1.2. Let (A0)-(A6) below hold for the random walk X. Let X be Ehe unique
(weak) solution of (1.1) with Ay = 0. Then, as n 1 oo, the weak convergence X,, = X on
D, holds.

The class of random walks satisfying (A0)-(A6) consists of R%valued Markov chains
with an asymptotically stable increment covariance structure: see Section 2 for some
examples. Thus Theorem 1.2 may be viewed as a multi-dimensional generalization
of the classical invariance principle of Lamperti [19] for R, -valued Markov chains
with asymptotically constant variance of the increments. The proof of Theorem 1.2
hinges on the radial invariance principle in [10], where it was shown that the process
of norms of the walk converges weakly to a Bessel process of dimension V/U, and a d-
dimensional invariance principle for martingale diffusions with discontinuous coefficients
given in Theorem 4.1 below. Invariance principles with continuous coefficients, such
as [8, Thm 7.4.1, p. 354], do not apply in our setting (both formally and) because, by
Corollary 3.24 below, the process X may hit the discontinuity point 0 infinitely many
times. In order to deal with the point-recurrence of &, it is necessary to control the
amount of time X spends near 0. This is achieved via the occupation times formula and
the analysis of the local time of the radial component of X (see proof of Lemma 4.10
below). Note that neither the specific form of the law of the radial component nor the
fact that X has no drift are crucial for the validity of Theorem 4.1. Some consequences
of Theorem 1.2 for random walks are in Section 1.2 below. Its proof is in Section 4 below.

1.1 The diffusion limit

As described in [9], the recurrence/transience of our non-homogeneous random
walks is determined by the interplay between the radial and transverse components
of the variance of the increments. It is thus natural to assume some stability for these
components of o2 : $971 — R? @ R? (see (A4) below): namely, we require constant total
tro?(u) = V and radial u'o?(u)u = U instantaneous variances for all u € $¢-! and
some positive reals U < V. This ensures that the radial component of the process has a
Bessel limit [10]. Further assumptions on ¢? in Theorem 1.1 are smoothness (A5), which
ensures that the angular part of the limit can be described in terms of a diffusion on
the sphere, and a structural condition ¢?(u)u = Uu for all u € $¢~! ((A6) below), which
ensures the existence of a skew-product decomposition of the excursions of X'.

X is a self-similar Markov process on R¢ (with Brownian scaling)

The process || X| /U is Bessel of dimension V/U > 1 (see Lemma 3.2 below). Hence,
if V/U € (1,2] (resp. V/U > 2), then liminf;_, || X;]] = 0 (resp. lim;_, || X;]| = o0) and
the origin 0 is recurrent for X if and only if V/U < 2. (The Foster-Lyapunov criteria [22,
Thm 6.2.1] do not apply, even if Theorem 1.1 has been established, since x — 02(X) is
discontinuous.) Let Py, be the law of X started at Xy = x¢ € R?. Define ) = ();,t > 0)
by Y := ¢X,.-2;, for some constant ¢ > 0. Then the scale invariance of x — o(%) and
W in (1.1) imply that ) solves SDE (1.1) with )y = ¢x¢. By Theorem 1.1, the law of Y
equals P.,,, making X a globally defined self-similar Markov process on R¢, which may
hit 0 infinitely many times.
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A stationary diffusion ) on $¢~!

Consider the following Stratonovich SDE on gd-1

Aoy = (0sy(P1) — drpy ) 0 AWy — (I — ¢ ) Ao (b )dt, (1.3)

where I is the d by d identity matrix, W is a standard BM on R?, o, is the unique
symmetric square root of o2, which is hence smooth by Lemma 3.1 below, and the
vector field Ay is a linear combination of the derivatives of the columns of o, defined
in Section 3.4 below. By Lemma 3.6 below, SDE (1.3) has a unique strong solution over
t € R, for any starting point on $¢~!. We reserve ¢ for such a solution of (1.3) indexed
by R.. We also describe how to construct a stationary solution v of (1.3) indexed by R.

In the case 02 = osy = I, SDE (1.3) clearly reduces to Stroock’s representation of the
BM on $¢~! with the Riemannian metric induced by the ambient Euclidean space [11,
p. 831 (X in this case is a BM on R%).

The key ingredient of the excursion measure of X is the stationary distribution u
on $?~1 of the solution ¢ of (1.3). In order to analyse ¢ and characterize p, it turns out
to be essential to modify the geometry on $¢~! via the Riemannian metric g, (v1,v2) :=
(072(x)v1,v2), where x € $971, v;,v5 € R? are in the tangent space of $¢~! at x and
(-,-) is the inner product on R?. On the Riemannian manifold ($?~!, g), by Lemma 3.6,
¢ is a BM with drift, generated by G = (1/2)A, + Vi, where A, is the Laplace-Beltrami
operator and Vj is a tangential vector field on $%!, explicit in ¢ and its derivatives of
order one. Prop. 3.7 states that the stationary measure p is unique. We can use the
stationary measure u to define a stationary solution ¢ of (1.3), indexed by R, with law Py
(see Prop. 3.7 below), namely, ¢; has law u for any ¢ € R and the evolution of (¢, s > t)
is determined by (1.3).

The proof of Prop. 3.7 shows that in fact u(dx) = p(x)d,x, where p : 397! - Ris a
strictly positive density with respect to the Riemannian volume element d,x on (891, 9)
(see e.g. [12, p. 291] for a definition), uniquely determined by the PDE G*p = 0 with G*
denoting the adjoint of G on L?($¢~!;d,x). Recall that for any vector field V on $¢-1,
divV is the trace of the endomorphism of the tangent space given by the directional
derivatives of V via the Levi-Civita connection and, for any smooth f on $¢~!, we have
Ay f = div(grad(f)) (see Section 3.3 below). Integration by parts implies that p is the
unique positive solution of the PDE

%Agp —div(pVy) =0, satisfying /sd ) p(x)dyx = 1. (1.4)

In the case that V[, = grad I}, for a smooth F, : $9~! — R, the definition of grad Fy
on (857!, g) in Section 3.3 below implies that p := exp(2Fp)/ [qu—: exp(2Fp(x))dyx is the
unique solution of (1.4). Moreover, by [15, Thms 4.2 & 6.1], SDE (1.3) is time reversible:
for any random time 7' € R, independent of ¢, the process (¥r_¢,t € R4) solves (1.3)
started according to the law u. In particular, if Fy = 0, then ¢ is the stationary spherical
BM on (397!, g) and the measure y is uniform with respect to the volume element.

Point-transient case: skew-product decomposition of X’

Suppose that 2 < V/U. If A, # 0, a Bessel process r/v/U of dimension V/U (with
ro = || Xo|]) is strictly positive and we may define p4(t) = f: r, 2du for t,s > 0. Then the
process (r:¢,,(),t € Ry ), where the solution ¢ of SDE (1.3), started at ¢ = Xy, and r
are independent, has the same law as X (see Section 3.5).

The relevant case for Theorem 1.2 is X; = 0. As X’ starts from O and never returns, a
natural description of its law is via a family of entrance laws at positive times s and the
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subsequent evolution. The latter is given in terms of a Bessel process and a time-changed
angular process solving (1.3) as above: (rtqbps(t),t > s) with ¢¢ := 235. The random vector
X, is forced to be independent of r, and distributed according to the stationary law u of
¢, due to the rapid spinning of the process X as it leaves 0: p4(t) — oo as s | 0 for fixed
t > 0 (see Lemma 3.12 below). As p4(t) = ps(1) + p1(t) for any s,¢ > 0, the processes
(7410, (1), t > 0) and (X, ¢ > 0) are equal in law, where 1) (the stationary solution to (1.3))
and r are independent. The analogy with the classical case of the skew product of BM
on R? in both cases & # 0 and X, = 0 (see [25, §IV.35, p. 73] and [13, p. 276]) is clear.

Point-recurrent case: skew-product decomposition of excursions of X

Assume V/U € (1,2) and &y = 0. The process X returns to O infinitely often since
| X||/v/U is Bessel of dimension V/U. As the excursions of X turn out to exhibit the rapid
spinning behaviour at each end, its excursion measure may be constructed as follows.
Mark each Bessel excursion by an independent draw ¢ from the law Py on C(R, $¢ 1),
the stationary solution to (1.3) given in Prop. 3.7 below. Since, due to rapid spinning
at the beginning of each excursion of X, the angular component of the excursion is
distributed according to the stationary measure p of SDE (1.3) at all times, we need to
map the marked Bessel excursion by time-changing the mark v via an additive functional
of the Bessel excursion, see Section 3.6.1 below for details. Note that the mapping has
to be defined for Bessel excursions lasting longer than a (for any fixed a > 0), since the
time-change can only be “anchored” at a pre-specified time during the life time of the
excursion. Although this causes some technical difficulties, the mapped Poisson point
processes can be interpreted consistently (for all a > 0). Its excursion measure turns out
to be that of X.

We stress that this construction of the excursion measure depends only on o2, which
specifies the dimension of the Bessel process and hence its excursion measure and
determines the marks via SDE (1.3) (the mapping uses only the information contained
in the Bessel excursion). Moreover, the local time at 0 of X can be defined as that of
|IX]| at 0, without a reference to the strong Markov property of X. Hence, once the
excursion measure has been constructed (Section 3.6.1 below), the key step in the proof
of Theorem 1.1 consists of establishing that (without the strong Markov property) the
point process of excursions of X is the Poisson point process with the excursion measure
described above. The details are in Section 3.6.2 below.

In the case A # 0, up to the first hitting time of 0, the skew product of excursions
coincides with the generalized Lamperti representation for self-similar Markov processes
on R?\ {0} [1], where the Lévy process is a scalar BM with drift and the angular
component equals the diffusion on $9-1 in (1.3) started at 230. Note also that there is a
literature (see e.g. [28] and the reference therein) on the extensions of strong Markov
processes on R\ {0} with skew-product decomposition beyond the first hitting time of
the origin, of which X is an example.

Splitting excursions at the maximum: a generalized Pitman-Yor representation

If the vector field V; in (1.4) has a potential, the excursions of X provide a multi-
dimensional generalization of the famous Pitman-Yor [23] representation of the Bessel
excursions with dimension § = V/U € (1,2). Let U = 1 and recall from [23] that
the unique maximum M of the Bessel excursion e” is drawn from the o-finite density
9=3 on the interval (0,00). Then, conditional on M, the excursion e" is obtained by
joining back to back two independent Bessel processes 5 and 3’ of dimension 4 — §, both
started at 0 and run until the first times (7}, and TJ’M respectively) they hit M: e"(t) =

m—m
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1{t € (0, Tn]}Bt + 1{t € (Tns, Tns + TM)}B’TAHT],W_t. A trivial (but crucial) observation is
that when the maximum is reached, the process is neither at the beginning nor the end
of the excursion. Hence, due to rapid spinning, the angular component é* (Ty;) of the
corresponding excursion e of X’ at T); must follow the stationary law p of SDE (1.3).
As SDE (1.3) is time-reversible (see the paragraph after (1.4) above), the excursion eX
equals

e (t) = 1{t € (0, Tns]} e p(ar 1) + 1{t € (Tns, Tos + Tzl\/f)}B/TM+T'M—t¢;f(t—TM), (1.5)

where ¢, ¢’ are solutions of SDE (1.3) with the same initial condition ¢y = ¢}, distributed
according to p, and driven by independent BMs. The time-changes p(t) = fot ﬂ;;_sds,
t € (0,Th], and p/(t) = [y B7,° s, t € [0,T},), satisty limgyo p(Ths — 1) = limypry, /(1) =
Q.

In the limit as U 1 V, which is excluded from our results, the angular motion
degenerates to a constant as the trace of o2 equals the radial eigenvalue. The radial
part becomes the modulus of the scalar BM, while rapid spinning and (1.5) suggest that
the singular diffusion in the limit changes the ray it lives on every time it hits the origin
according to a law on $9-1 which is the limit of the stationary measures of SDE (1.3) as
V/U |} 1. It hence appears that the limiting singular diffusion is a generalization of the
Walsh BM (or Brownian spider) [2] to Re.

Smooth square roots and pathwise uniqueness: the Stroock-Yor phenomenon

SDE (1.1) need not (but clearly could) possess pathwise uniqueness even if o2 is the
identity (consider o(u) = diag (sgn(u1), ..., sgn(ug)) and recall the scalar Tanaka SDE [24,
§IX.1, Ex. (1.19)]). This behaviour persists even for smooth square roots o. Below we
give a generalization of the SDE for complex Brownian motion in [27, Thm 3.12], with
the property that the failure of pathwise uniqueness occurs precisely when the solution
starts from (or visits) 0.

Note first that a simple application of the occupation times formula and the fact that
X, = 0 if and only if ||X;|| = 0 imply that if X’ solves SDE (1.1) for a given choice of 0,
then it also solves the SDE for any other choice 0 € $¢~1. If a square root ¢ satisfies
(I) Po(u) = o(Pu) for all u € $9~!, where P € SO(d) \ {I} !, then It6’s formula and the
remark above imply that for any solution (X, W) of (1.1) started from 0, the process
(Y,W), where Y := PX, is also a solution. By Theorem 1.1, X and ) have the same law
but are clearly not equal. If, in addition, o satisfies (II) u = o(u)c for all u € $4-1 and
some c € $971, the BM driving the process ||X|| equals ¢'W (Lemma 3.2 below), making
||X|| adapted to W. Moreover, assuming X never visits 0, the BM driving the angular
component via SDE (1.3) is a time-change of fo | Xs]|~tdW, (see (3.15) and Prop. 3.11
below). Hence the skew product || X;[|¢,, ), t € Ry, where po(t) = f(f | X.]|~2du, makes
X a strong solution of (1.1).

It remains to exhibit a smooth ¢ satisfying (I) and (II) above. Note first that (I)
may only hold in even dimensions. We rely on the Lie group structure of the spheres
in dimensions d € {2,4} for our examples. Pick a positive-definite 4 € R? ® R¢ and
let o(u) = R(u)A, where R : $¢7! — SO(d) is smooth. For d = 4, view $° as unit
quaternions and define R by R(u)v := u e v, where u e v denotes the multiplication of
quaternions v € R* and u (see e.g. [25, p. 229]). It is easy to check that R(u) € SO(4) and
R(u)e; = u for all u € $3, where e; is the first standard basis element of R?, i.e. the real
unit quaternion. If Ae; = e; (as is the case if (A6) holds), then (II) holds. Moreover, o(u)
is a smooth square root of 0?(u) = R(u)A2R(u)~!. Pick a unit quaternion p € $°\ {e;}

1SO(d) is the group of orientation-preserving orthogonal matrices in R% ® R< and I is the identity matrix.
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and define P := R(p) € SO(4). The associativity of the product e yields the matrix
identity PR(u) = R(Pu) for u € $3, implying (I). Hence pathwise uniqueness fails when
Xo = 0. Since o?(u)u = u, the process X hits 0 if and only if tr(c2(u)) = tr(A?) € (1,2)
and we may choose independently a different rotation P for each excursion, exhibiting
uncountably many solutions of (1.1) for a fixed BM W. The complex case is analogous: a
BM in [27, Thm 3.12] solves (1.1) with o(u) = R(u) a multiplication by u € $*.

1.2 Angular convergence and the first exit from large balls of the random walk

We now describe the behaviour of the angular component of the random walk X
and its asymptotic law at 77 := inf{m € Z; : || X,|| > av/n} its first exit out of the ball
centred at 0 with radius a+/n (for some a > 0). Both statements are easy consequences
of Theorem 1.2.

Let r be a Bessel process of dimension § > 1, 7o = 0, and 7, := inf{t € Ry : 7y = a}
(thus 7, < oo a.s). Recall that P[r; < 2] = [ /% z20~Le=2dz/T(5/2) for all z € Ry [24,
Cor. XI.1.4], where I" denotes the gamma function, and E[exp(—\7,)] = (av2X)"/(2"T (v +
1)I,(av/2)\)), for any A > 0, where I, denotes the modified Bessel function of the first
kind of order v := (§ — 2)/2 (see [16] for a series expansion of the density of 7, in terms
of the zeros of Bessel functions).

Corollary 1.3. Let the random walk X satisfy the assumptions of Theorem 1.2 with
U =1 and define 6 := V. Let the random vector § with the law . on $4-1 whose density
satisfies (1.4), be independent of r. Then, as n — oo, the following weak limits hold:

n~'2X, = r0 (and hence X,, = 0) and (77/n,n"2X.n) = (7,,ab).

For a continuous f : $¢~' — R, Cor. 1.3 and [4, Thm 2.1] imply lim, 1. E[f(X,)] =
Jsa—1 fdu. However, the ergodic average }L ZZ;& f (Xk) cannot in general converge in
probability to the constant de,l fdu, since by Theorem 1.2, an analogous argument to
the one in the proof of Lemma 4.10 below and (1.2), the average converges weakly to a
non-degenerate limit (for a non-constant function f): 1 ZZ;& f(Xp) = fol f(X)at.

Proof of Corollary 1.3. By (1.2) and Theorem 1.2, n=1/2X,, = X,,(1) = X,. Since X, = 0,
the skew product structure (Lem. 3.12 (polar case) and Prop. 3.21 (point-recurrent case))
yields the first limit. The mapping theorem [4, Thm 5.1] implies the second (x — %
is continuous on R? \ {0} and P[X; = 0] = 0). Note that 7" = 7%(X,,) and 7, = 7%(r),
where 7%(z), © € Dy, is defined in (4.9). As r reaches new maxima immediately after
Ty, limp_yq Tb(r) = 7%(r) holds a.s. By Lemma 4.7, Remark (a) just after it, Theorem 1.2

and [4, Thm 5.1] the final limit holds. O

2 Assumptions and examples

Let {e1,...,e4} be the standard orthonormal basis in R® (d > 2) with respect to the
Euclidean inner product (-,-) on R?, and $¢~! := {u € R?: ||u|| = 1} the unit sphere in
R4, where || - || is the Euclidean norm. For x € R?\ {0} and the origin 0, let % := x/||x||
and 0 := e, respectively.

Let X = (X,,,n € Z) be a discrete-time, time-homogeneous Markov process on an
unbounded Borel subset X of R?. Suppose Xy is a non-random point in X. Denote the
increments of X by A,, := X,,1; — X,,. Since the law of A,, depends only on X,,, we often
take n = 0 and write A for Ag. Let Px[-] = P[- | Xo = x] and Ex[-] = E[- | Xo = ¥]
denote the probabilities and expectations when the walk is started from x € X. We make
the following assumptions.

(A0) Suppose that sup,cx Ex[[|A[] < o0.
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By (A0), the mean u(x) := Ex[A] and the covariance matrix M(x) := Ey[AAT] exist
vx € X.

(A1) Suppose that p(x) = 0 for all x € X.
The next assumption ensures that A is uniformly non-degenerate.
(A2) There exists v > 0 such that tr M (x) = Ex[||A]|?] > v for all x € X.

For a matrix M € R? ® R¢ define the norm ||M|| := supycga-1 || Mul|. Throughout the
paper, let o2 (u) be a positive-definite matrix for all u € 41,

(A3) Suppose that, as 7 — oo, we have (7) = supyex; x| > [|M (X) — a?(x)|| — 0.

(A4) Suppose that there exist constants U,V with 0 < U < V < oo such that, for all
u € $9°1, (u,0%(u)u) = U and tro?(u) = V. In the case 2U = V, suppose in
addition that £(r) as defined in (A3) satisfies ¢(r) = O(r~?) for some § > 0.

Under assumptions (A0)-(A4), it was proved in [9] that the walk is transient if and only if
2U < V, while [10] gives an invariance principle for the radial component || X||. The full
invariance principle of the present paper requires additional structure on the limiting
covariance matrix o2 to ensure that the angular part is a suitably well-behaved process
on the sphere.

(A5) Suppose that 62 : $¢71 — R? ® R? is a C*°-function.

Controlling the dependence between the radial and angular components requires the
following.

(A6) Suppose that u is an eigenvector of ¢%(u) for all u € $¢-1.

Following [9, §3], we describe a family of examples satisfying (A0)-(A6) in which
the increment distribution is supported on an ellipsoid having one distinguished axis
aligned in the radial direction. The model is specified by positive constants a,b. Let
Q« be an orthogonal matrix representing a transformation of R that maps e; to %, and
write D = V/d diag (a,b,...,b). Given Xy, the law of X; is generated by taking ¢ uniform
on $971; if Xy = 0 set X; = ¢, otherwise set X; — Xy = Q«D(. In words, from X, # 0
the position X; is generated by taking a uniform point on the unit sphere centred at
X, stretched differentially in the radial and transverse directions to give a point on an
ellipsoid. The special case a = b is a Pearson-Rayleigh random walk. A calculation [9,
p. 104] shows that

o%(u) = a*uu’ 4+ v*(I —uu').

2 2

In particular, tro?(u) = a? + (d — 1)b?, o?(u)u = a?u, and (u,0?(u)u) = a?, while
M(x) = 0?(x) for x # 0. Thus (A0)-(A6) hold. Without loss of generality, we may
take U = a = 1. Then V = 1+ (d — 1)b?, and oy(u) = uu’ + b(I —uu'), so that the
spherical part of X" is driven by the SDE (3.8), which reduces in this case to dX; =

b(I — XtXtT)th — W H%H dt, which corresponds to a BM on $?~! sped up by a factor
of b. The diffusion limits generated by this family of random walks thus include the
classical skew-product description of BM as a special case, but also include examples

where 0 is recurrent.
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3 The diffusion limit

3.1 Overview

Let oy : $9-1 — R? @ R? be the unique positive-definite matrix-valued function
satisfying asycr:y = 02, ie. Osy is the unique symmetric square root of o2. Pick any
measurable square root o : 371 — RY®R of 02 and note that, since 02 and o, commute,
the matrix o' (u)o(u) is orthogonal for all u € §¢-1. By Lévy’s characterisation of

Brownian motion, it is hence sufficient to prove Theorem 1.1 for the SDE
dX, = ooy (X)dW;,  Xo =% € R (3.1)

The next step is to establish weak existence for SDE (3.1). We start with a simple
lemma.

Lemma 3.1. Under (A4) and (A5), o, is uniformly elliptic in the following sense: there
exists a constant \ > 0 such that (v,os,(u)v) > A for allu,v € $9-1.

Proof. Since o? is positive-definite, by (A5) and the compactness of $%~! there exists
¢ > 0 such that det(c?) > ¢ on $9~!. By (A4) we have tro?(u) = V. Hence the
smallest eigenvalue Apin(u) of 0%(u) satisfies ¢ < Apin(u)V 7! for all u € $¢-!. Since
osy is symmetric and non-degenerate, its eigenvalues are positive and the smallest
one is equal to y/Amin(u). Hence the inequality in the lemma holds for the constant
A= (g/VI=1)1/2, O

Since the function x — o, (%) is bounded and uniformly elliptic by Lemma 3.1, [18,
§2.6, Thm 1] implies that weak existence holds for SDE (3.1). Once uniqueness in law for
SDE (3.1) is established, the strong Markov property (and hence Theorem 1.1) follows
by [26, Thm 6.2.2].

The proof of uniqueness in law proceeds as follows. Throughout this section, assume
U = 11in (A4). In Section 3.2 we prove that the radial component of any solution of (3.1)
is Bessel of dimension V' > 1. Section 3.3 introduces the Riemannian structure on the
sphere, needed in Section 3.4 to characterize the law of a stationary diffusion on $%~*
indexed by R. This process is a key ingredient in the description of the projection of
the path of the solution X of SDE (3.1) (away from 0) onto $4-1  In Section 3.5 we
analyse the case when 0 is polar for the radial process (V > 2). We prove that any
solution has a skew-product decomposition constructed using the components from
Sections 3.2 and 3.4 that are unique in law. In Section 3.6 we consider the recurrent
case (1 < V < 2). We develop the excursion theory (away from 0) of the solution X
of (3.1) without reference to the strong Markov property of X. We characterize the
excursion measure in terms of the excursion measure of the radial part, given in [23],
and the law of the diffusion on $%~! from Section 3.4. This implies the uniqueness in law
for SDE (3.1).

3.2 The radial process
Let r := ||X|| be the radial part of a solution X of SDE (3.1).

Lemma 3.2. Let (A4) hold and ¢? : $~! — R? ® R? be measurable. For any solution
(X,W) of SDE (3.1), adapted to a filtration (F;,t > 0), the process y = (y;,t > 0),
vt := || X;||?, is the unique strong solution of SDE

t
v = || XolI* + 2/ VIsdZ, 4+ Vt, t>0, (3.2)
0

where (Z;,t > 0) is an (F;) Brownian motion given by Z; = fg X0y (X,)dW,. In
particular, the law of r = ,/y is BESY (||, ).
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Remark 3.3. A solution X of SDE (3.1) is continuous and hence predictable (see [24,
§IV.5]). Since x — 0y, (X)X is measurable on R? (recall that we defined 0 := e;), the
integrand in the definition of Z is a bounded predictable process. Hence the stochastic
integral Z is well defined, even though (due to rapid spinning, see Section 3.6 below)
its integrand is far from continuous. Moreover, the integrand does not in general have
paths in D, (defined in Section 4.1 below).

Remark 3.4. Assuming (A6), the Brownian motion Z in Lemma 3.2 can be expressed as
t A
= / X dw,. (3.3)
0

Proof of Lemma 3.2. For any solution (X, W) of (3.1), the processes y and Z defined in
the lemma are (F;)-adapted. It6’s formula and the assumption (A4) imply that equa-
tion (3.2) holds. The process Z is a Brownian motion by Lévy’s characterisation, (A4)
and assumption U = 1. Since SDE (3.2) has weak existence and pathwise uniqueness,
the law of y is BESQ"(||Ao]?). O

3.3 A Riemannian structure on $%!

This section introduces a Riemannian metric g on $¢~!, gives an explicit description
of its inverse tensor in local coordinates and relates it to the Laplace-Beltrami operator
corresponding to g (see [14] as reference on Riemannian geometry).

Identify the tangent space T, $9~! at x € $9~! with the (d — 1)-dimensional linear
subspace {v € R? : (v,x) = 0} of R and let the cotangent space 7;$?~! be the vector
space dual of 7, $?~!. Denote by 7$%~' and 7*$%"! the tangent and cotangent [14,
Def 2.1.9] bundles over $¢~!, respectively. Any smooth section of the vector bundle
T*$9-1 @ T*$9-1, defined in [14, Def 2.1.10], is known as a (0, 2)-tensor field. Let

gx(v1,v2) 1= (a’Q(X)vl,w) for any x € $97! and vy, vy € Ty 8% L. (3.4)

By (A5), g is a symmetric positive-definite (0, 2)-tensor field, i.e., a Riemmanian metric on
the smooth manifold $¢~!. The metric g provides a canonical way of identifying tangent
and cotangent vectors: the map § : 799! — T*$%~! given by g, (v) : Tx$% ! — R,
where §x(v)(u) := gx(v,u) for any x € $971, v,u € T$%"!, is a bundle isomorphism [14,
Def. 2.1.6]. For any f € C>($9"! R), there exists a unique smooth section df of the
cotangent bundle 7*$%!, representing the action of the derivative of f on each tangent
space [14, §1.2]. A vector field on the sphere is an element in the module F(TSdil) (over
the ring C>($971, R)) of smooth sections of T$%~! [14, Def 2.1.3]. Let the gradient of
f be grad f := g—'(df). Hence grad f is the unique vector field satisfying the identity
g(grad f, X) = df X for all X € I'(T'S?"!). Moreover, the operator grad : C>*($¢" 1, R) —
[(TS$%"1) is defined in a coordinate free fashion.

There exists a unique connection (the Levi-Civita connection) [14, Def 4.1.1] V :
TS x T(T$%1) — T$9! on ($971, g), which is metric and torsion-free [14, Thm 4.3.1].
In short, the connection V allows us to compare tangent vectors in nearby tangent spaces
in a way that is compatible with the geometry induced by the metric g, cf. [14, §§4.1
& 4.2]. In particular, a vector field X € I'(T'$¢~1) gives rise to a linear endomorphism
(VX)y : TS ! — T8 ! for any x € $9~! [14, Def. 4.1.1]. Put differently, V, X is the
derivative of the vector field X at x in the direction v € T,,$¢1. Define the divergence
of the vector field X to be the trace of this linear endomorphism, (div X)(x) := tr(VX)x.
This yields a coordinate-free definition of the divergence operator div : T'(T'$%"1) —
C>°($971,R). The Laplace-Beltrami operator A, : C*°($¢71,R) — C>°($%"!,R) on the
Riemannian manifold (397!, g) can now also be defined in a coordinate-free way as
A, f == div(grad f) for any f € C*°($9 1, R).
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We now introduce local coordinates on $¢~! in order to identify the bundle isomor-
phism ! : T7*$¢=1 — T$9!. For each q € {1,...,d}, define [¢] := {1,...,d} \ {q}
and, throughout this section, identify R?~! with the linear subspace of R? spanned by
{es;i € [g]}. Consider an atlas of charts z, : H — B?~! on $?~!, where + is either + or
— Hf = {x=(z1,...,34)" €$?7!: £z, > 0} is a hemisphere, B*~! is the open unit ball
in R"" and z,(x) := }_,c|,) zi€i- The derivative of the smooth inverse z, ' : B*~" — H-
induces a linear isomorphism dz, ' (2) : T.B*~" — T, H " for each z € B~". Using
the canonical identification 7. B~ = R*"! for all z € B*"!, at each x € H} we obtain
the basis By := {E; := dz; ' (z4(x))es; i € [q]} of T,$?~! and dual basis B} := {E;;i € [¢]}
of Tz8%"1, defined by E*( ;) = d;; for i,j € [¢q], where §;; is the Kronecker delta. We
interpret the tangent vector E; as a linear map E; : C*(HZF, R) — C*(HF, R) satisfying
the Leibniz rule, E;(f) : x — 8;(f o z;')(z4(x)), where ; is the partial derivative in the
i-th component [12, p. 247].

Lemma 3.5. Assume (A4)~(A6). For x € H, the matrix (g (x)); je[q corresponding
to the linear isomorphism ' : Ty$9~' — T,$%! in terms of the bases B and By,
equals g (x) = 07;(x) — x;x; for any i,j € [q]. The inverse matrix (g;(x)); je[q), COI-
responding to the isomorphism g : Ty$41 — T:$971, is given by g;;(x) = ai_jQ(x) +

0ot (X) 5/ (X, eq)2 — (0,7 (x)z; + 0,7 (x)1;)/ (X, eq), for any i, j € [q]. Moreover, in the

coordinates on Hq , A4 equals

Agf = Z g (E ZF Ein(f for any f € C*(HF, R),

1,5€[q] kelq]
where I'}; := 5 37,1 6" (Ei(gje) + Ej(9ie) — Ee(gi5)) fori, j, k € [q].

Proof. Recall that B?~! ¢ R?! = Lin{e;;i € [¢]} ¢ R?. For any point z € B?"! and
tangent vector u € R*"! we have dz_'(2)u = u — e,(z,u)/(z,"(2),e,). Since g;;(x) =
9x(dz; (24(x))ei, dz; ' (z4(x))e;) for any 4, j € [¢], the formula for g;;(x) follows by (3.4).

We now prove that (g% (x)); je[q, defined in the lemma, is the inverse of (g;;(x))i je[q-
Define (d — 1)-dimensional square matrices S~ and S as follows: S;; := UZJQ(X) and
Sij == a;;(x) for any i,j € [q]. Define (d — 1)-dimensional vectors S, S, by S_, := aq_f(x)
and S; := 07,(x) for i € [¢]. Let 5 := 02,(x) and s~ := 0,(x). Since 0~ *(x)o?(x) is the
identity on R?, we have

STS+S;S) =1, S S,=-sS;, SS;=-s"5, (3.5)

where I denotes the identity matrix on R?~!. Denote 2 := z,(x), and D := £./1 — ||z]]2.
Since x = z + De, € $¢71, the assumption in (A6) implies 0~ %(x)(z + De,) = z + De,
(recall U = 1). Hence the following identities hold,

S7z2g =24 — DS, z;S; =(1-s7)D, Szg =24 — DS, (3.6)

where z, denotes the (d — 1)-tuple of coordinates of z expressed in the basis {e;;i € [¢]}
of R4~1. Define (d — 1)-dimensional square matrices G, G~ as follows:

G~ =85 — 22, G =545 242, /D* — (2487 + S, 2,)/D

A direct calculation, using identities in (3.5)—(3.6) and the fact that S = ST and S~ = ST,
yields GG~ = I. It remains to note that G;; = ¢"/(x) and G;; = g;;(x) for all 4, j € [q].
The expression for the Laplace-Beltrami operator A, = div grad = tr Hess, in local
coordinates in terms of the Christoffel symbols F is well-known, cf. [12, Ch V, Egs (4.19)
& (4.32)]. O
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3.4 A stationary diffusion on $9~!

Define A : R?\ {0} - R?®@ R? by A(y) := 04 (¥), y € R?\ {0}, and note that it is
an extension of gy : $97! - R¢®@ R%. For any j € {1,...,d}, define 4; : R?\ {0} — R?
by A;(y) = A(y)e; and note that its derivative DA;(y) at y € R?\ {0} (i.e. a linear
endomorphism of R? satisfying (4;(y + h) — 4,(y) — DA;(y)h)/||h|| — 0 as |h| — 0)
exists since, by Lemma 3.1, o, can be expressed as an absolutely convergent power
series in o2, which is smooth by (A5). Let Ay : R¢\ {0} — R? be given by Ay(y) :=
130 DAj(y)A;(y) for any y € R%\ {0}.

Let So, Sj : $971 — R? be Sy(x) := —(I —xx")Ap(x) and S;(x) := (05 (x) —xx)e; for
any x € $97 1 and j € {1,...,d}. Let C(Ry,$?!) be equipped with the Borel o-algebra
generated by the compact-open topology [6, §XII.1], which coincides with the o-algebra
generated by the projections at any time t € R, cf. [4, p. 57].

Lemma 3.6. Assume (A4)—-(A6). Then the following statements hold.

(@) So(x),...,S8q4(x) € T$% ! for all x € $9~! and the vector fields Sy, ...,S; are in
D(T$4 ).

(b) Let W be a standard Brownian motion on R¢. The Stratonovich SDE on $%°!, given

by
d

dXe = So(Xo)dt + Y S;(Xy)odWf,  Xo=xe8", (3.7)

j=1

has a unique strong solution in the sense of [12, Ch 'V, Def 1.1 & Thm 1.1].

(c) Let P denote the law of the solution of (3.7) on C(R,$%"1). Then {P,,x € $¢71} is
a strongly Markovian system [12, p. 204], determined uniquely by its generator G,

1
Gf =So(f)+ 5D Si(Sif))  forany f € C*(8""R),
i=1
where the vector fields S;, i € {0,...,d}, are viewed as linear (over R) maps

C>®($971 R) — C>($¢"1, R) satisfying the Leibniz rule.

d) Vo:=G — %Ag is a vector field in T'(T'$~'), making the solution of (3.7) a Brownian
motion with drift on the Riemannian manifold (8¢, g) with generator %Ag + V.

(e) Any solution (X, W) of the It6 SDE

. o -1 X
10X, = (00 (X0) — X X] )aW, — Vdet’ Xo=xe$l (38
t

satisfies || X;|| = 1 for allt € Ry and is a solution of SDE (3.7).

Proof. The vector fields S;, j € {0,...,d}, are tangential to $¢~* by (A6) and smooth
by (A5). Hence (a) holds. Moreover, we may interpret S; as a linear map on C“(Sd‘l, R)
satisfying the Leibniz rule [12, p. 248] (see e.g. (3.9) below). Hence part (b) of the
lemma follows from [12, Ch V, Thm 1.1]. The family of laws {Py,x € Sdil} is a strongly
Markovian system generated by the second order differential operator G by [12, Ch 'V,
Thm 1.2], which establishes part (c).

To establish part (d), consider a chart z, : H,;t — BI~! (for some ¢ € {1,...,d})
and the corresponding frame field {E;,i € [¢]}, defined in the paragraph preceding
Lemma 3.5. Then we can express the vector field S; on Hqi as a linear mapping from

EJP 24 (2019), paper 48. http://www.imstat.org/ejp/
Page 12/38


https://doi.org/10.1214/19-EJP302
http://www.imstat.org/ejp/

Invariance principle for non-homogeneous random walks

C>®(HF,R) — C°(HF R), satisfying the Leibniz rule, as follows: for any x € H; and
J € [g] we have

S (1)) = (D2,(x)8;(x))" S Ei(f)(x)es = 3 81x)Es()(x), (3.9
i€[q] i

where the second equality holds by Dz, = z,, and where S;:(x) = (Sj(x),e;). This
implies S;(5;(f)) = 22, rejq SiSKE;(Ex(f)) + > relq Vi, Er(f) for some functions Vj, ; €
C®(HF R), k,j € [q], and all f € C*(HZE R). The definition of S; above, (A4), (A6)
and Lemma 3.5 imply Z Si(x)Sk(x) = g'*(x) for all x € HF and i,k € [g]. Hence,
by the definition of G in the lemma and the expression for A, in the local coordinates
on H;t in Lemma 3.5, the equality Vo(f) = > ¢, Vo,iEi(f) holds for some functions
Vo.i € COO(HjE,]R), i € [¢]. Since such an equality holds for every ¢ € {1,...,d} and
choice of + (i.e. for every chart in our atlas), Vj satisfies the Leibniz rule and is hence an
element of I'(7°$%~1), implying (d).

Extend the vector fields Sp, S1, . . ., Sq to R4\ {0} by defining Sy(y) := —(I—-y3")Ao(y)
and S;(y) == (A(y) —yy")e;, j € {1,...,d}, for any y € R?\ {0}. Define a function
R : RY\ {0} — R? by R(y) := %Z?Zl DS;(y)S;(y). To prove (e), we establish the
following formula

V—-1y

R(y)=(I - ny)A()(Y) T m

Let G(y) := y forany y € R%\ {0} and note that A = AoG and DG(y) = (I-yy")
implying DG(y)y =0, DG(y)" = DG(y) and DA;(y)y = DA,;(y)DG(y)y =0 forall j €
{1,...,d}. Since S;(y) = 4;(y)—¥(¥.e;), we get DS;(y) = DA;(y)—(y'e;I+ye;) DG(y)
by the product rule, where I is the identity matrix on R?. Hence, using the fact that
Aly)y =y, we get DS;(y)S;(y) = DA;(y)A;(y) — (¥ e; + ye;)(Aly) — 33 )ej/lyl.-
Summing over j € {1,...,d} yields the identity 2R(y) = 24,(y) — tr(A(y) —yy)y/lyl-
Differentiating the identity A(y)y =y (iny) yields I = A(y) + Z?Zl(y, e;)DA,(y), and
hence A(y) = A?(y) +Z?=1<y, e;)DA;(y)A(y), for all y € R%\ {0}. Since A is symmetric
we have DA(y)'e; = DA;(y)"e; foralli,j € {1,...,d}. Hence we have 2(Ay(y),e;) =
Ef:1<Ai(y),DAi(y)Tej> = tr(DA,;(y)A(y)). Together with (A4), this implies tr A(y) =
V +2(Ap(y),y) and (3.10) follows.

Let (X, W) be a solution of (3.8). A simple application of It6’s formula yields d|| X,||? =
0, implying the first statement in (e) By (3.10) it follows that X in fact satisfies the
SDE dX; = (So(X;) + R(Xy))dt + z S;(X;)dW;, where S;, j € {1,...,d}, are defined
above (3.10). By the definition of the Stratonov1ch integral on R< [12, Ch III, §1,
Eq (1.10)], it follows that dX, = Sy(X,)dt + 37| S;(X;) o dW/. Since S; = S, j €
{0,...,d}, on $4—1 and X stays on the sphere for all time, SDE (3.7) holds for X (see [12,
ChV, Rem 1.1]). O

for all y € R?\ {0}. (3.10)

By Lemma 3.6(c), the map x +— Px[A] on $¢~! is Borel measurable for any Borel
measurable set A in C(R,,$%"!). We can hence define a transition function on $¢~1,
Pi(x, ) = Px[¢; € -], where (t,x) € Ry x $¢71 and (¢,,u € Ry ) is the coordinate
process on C(R,,$?!). In particular, the law ]P of the solution of (3.7), started according
to a probability measure v on $47!, equals P[-] = [q, , v(dx)Py[-].

Proposition 3.7. Let (A4)—(A6) hold. There exists a unique probability measure . on
$9=1 with full support, such that u(-) = [gu—, p(dx)Py(x,-) forallt € R, and the transition
function P,(x,-) converges to its stationary measure y in the following sense:?

Jm - sup [Py(x, ) = p(- )y = 0. (3.11)

O xegd-1

ZRecall that [|v1 (-) — va(:)|lTv := supgga—1 |[v1(A) — v2(2A)| for probability measures vy and v on gd-t,
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Furthermore, there exists a unique law Py[-] on the Borel sets of C(R,$%"!) with
compact-open topology, satisfying Py([¢s € -] = () and Py[¢sit € - | 5] = Pi(vs, - ) for
all (s,t) € R x R, where (¢, u € R) denotes the coordinate process on C(R,S$%1).
Remark 3.8. (a) The unique stationary measure p exists and has full support essentially
because the vector fields Sy, ..., Sy in Lemma 3.6(a) span 7$%~ ! at every x € $¢~!. The
proof uses the representation in Lemma 3.6(d) of the process as a Brownian motion with
drift and applies the well-known results for the stability of elliptic diffusions on compact
Riemannian manifolds [22].

(b) The geometry introduced in Section 3.3 allows us to characterize the time-reversibility
of the diffusion X satisfying SDE (3.7). This leads to an explicit description, given in (1.5)
of Section 1.1 above, of the excursions of the process X appearing in Theorem 1.1.

(c) Kolmogorov’s extension theorem [24, Thm II1.1.5] and the first statement in Prop. 3.7
imply that Py[-] exists and is unique: for ¢; < --- < ¢ in R the finite-dimensional dis-
tribution is fm (dx1) fal Py, 4, (x1,dx2) - fat Ptk tr_, (Xk_1,dxy) for measurable sets
2A; €871 i=1,... k (cf [24, §XIL.4]).

Proof of Proposition 3.7. By Lemma 3.6(d), the generator of the strong Markov process
satisfying SDE (3.7) takes the form G = %Ag + Vo. The volume element d,x on the
Riemannian manifold ($?7!, g) is a (d — 1)-dimensional form, given in local coordinates
on Hy by vdet G [];c, dzi, where G = (g;(x))ije[q (see [12, p. 291] and Lemma 3.5
above) Let G* be the adjoint of G with respect to the measure d,x. Assumptions of [22,
Ch 4, Thm 11.1] are satisfied for the generator G since its second order term is the
Laplace-Beltrami operator and the vector field Vj is smooth by (A5). Hence by [22, Ch 4,
Thm 11.1], all harmonic functions for G are constant and there exists a unique positive
function h € C?($9~!, R) satisfying G*h = 0 and [, , h(x)dgx = 1. Moreover, by [22,
Ch 4, Thm 11.1(ix)], the assumptions of [22, Ch 4, Thm 8.6] for the Riemannian manifold
(8971, g) and the operator G are satisfied, implying that u(dx) = h(x)d,x is the unique
stationary probability measure for the transition function P;(x,dy). Again, by [22, Ch 4,
Thm 11.1(ix)], the assumptions of [22, Ch 4, Thm 9.9] for ($?~!,g) and G are satisfied.
Hence, as $%~! is compact, [22, Ch 4, Thm 9.9] implies the convergence in total variation
in (3.11). O

3.5 Proof of Theorem 1.1 when O is polar for the radial process

Assume throughout this section that V' > 2 (and U = 1) and let (X', W) be any solution
to (3.1), adapted to (F:, ¢ > 0), on a probability space that supports a one-dimensional
(F:) Brownian motion, independent of (X, W). By Lemma 3.2, 0 is polar for r = || X|.

Lemma 3.9. Let (A4) hold. If either (i) s > 0; or (ii) Xy # 0 and s = 0, define

t
ps(t) ::/ r;zdm t > s. (3.12)

Then, almost surely, p, : [s,00) — Ry is continuously increasing and limo ps(t) = oo.
Its continuous inverse c¢s : Ry — [s,00) is ¢s(t) := inf{u > s : ps(u) = t}. In particular
cs(0) = s.

Lemma 3.9 is a direct consequence of the next lemma.

Lemma 3.10. Pick z,m € R, and § > 2. Let 8 = (8,t > 0) be BES?(z), 7, := inf{t >
0: B = m} (withinf() = oo) and f,,(y) :== (m —y)~2 Ifm > z orz > 0 = m, then
fOT"‘ fm(Bu)du = oo a.s. If x = m = 0, then for any t > 0 it holds that fg fo(Bu)du = cc a.s.

Proof. If x < m, then 7, € (0,00) a.s. for any 6 > 2, and y — |y — m|fn(y) is not
integrable at m, so [5, Thm 2.2, Eq (2.5)] shows f fm(Bu)du = 0 a.s. If x> 0=m,
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then 79 = oo a.s. for any § > 2, and the same result follows from [5, Thm 2.3(ii)] (when
6 > 2) and [5, Thm 2.4] (6§ = 2). Assume x = m = 0 and time-reverse [ killed at
T, (for some large a > 0) at the last time the process visits some b € (0,a) (this is a
co-optional time, see [24, Ch VII.4] for details on time reversals). The time reversal is
a diffusion on (0,a) with the same volatility function as 8 and the scale function given
by 5 =1/(s(a) — s) : (0,a) — R, where s(y) = —y>~° (resp. log(y)) if § > 2 (resp. § = 2).
Note that lim, o 5(y) = 0, limy, 5(y) = oo and 5f/5" = (s(a) — s) fo/s" is not integrable
at 0. Hence the lemma follows by [21, Thm 2.11(ii)]. O

Proposition 3.11. Suppose that (A4), (A5) and (A6) hold. Assume either (i) s > 0; or
(ii) Xy # 0 and s = 0 hold. Let a standard one-dimensional Brownian motion Z be
given by (3.3) and let c, be as in Lemma 3.9. The process ¢ = (p;,t > 0) on $¢71,
defined by ¢; := /’\?Cs(t), is a strong solution of SDE (3.8) started at pg = X, and driven
by a d-dimensional Brownian motion (B;,t > 0) adapted to the filtration (F, ,t > 0),
independent of (Z;,t > 0).

Proof. By assumption we have r, > 0 a.s. Since 0 is polar for BESQ" (r2), (r; %t > s) is a
continuous semimartingale. Hence d(r; ') = —r; 2dZ; — (V — 3)/(2r})dt by 1t&’s formula
and (3.2). By (A6), the covariation equals d[X, 1], = oy (X)d[W, =W T],05y (X)X, /77 =
—X,/r2dt, and It6’s product rule implies

dX, = f(X)r72dt + g(X)r AWy, ¢ > s, (3.13)
where we have used the notation
and g(z) = oy (&) — 22", for any = € R%. (3.14)
Define continuous local martingales A = (A;;¢ > 0) and ¢ = ((;;t > 0) by
cs(t) cs(t)
Ap = / rptdW,  and (= / rtdZ,, (3.15)
S S

where Z is given in (3.3). Both A and ¢ are adapted to (F._¢),t > 0). By [24, Prop. V.1.4-

s

5] and Lemma 3.9 it holds that [4, A7), = T [“" 9% — 1, where I is the identity
matrix on R?, and [(,(]; = t. Hence, by Lévy’s charazterisation theorem, both A and
¢ are (}'Cs(t)) Brownian motions. Furthermore, by (3.3) and [24, Prop. V.1.4-5], we
have that ¢, = fSCS(t) Xr;tdw, = fot ¢, dA, for all t > 0. Let (y,,t > 0) be a one-
dimensional (F;) Brownian motion, independent of (X', W). Define (F, ;) Brownian

motion y = (v,t > 0) by vy, := f:s(t) r,1dy! and note that [¢,7] = 0. Define B = (B;,t > 0)
by B; i= A¢ — [ pudCu + [o pudy, and observe d[B, BT], = (I — .07 )% dt + ppp] dt = Idt
and d[B, (]s = (I — o] )d[A, AT + @id[7, ¢Je = 0. In particular, B is a d-dimensional
(Fe.(+)) Brownian motion, independent of .

We now show B is independent of Z. By the Markov property, B; depends on
Fs = Fe,0) only via By = 0, so B is independent of F;. Hence B is independent of
(Z,t € [0,s]). It remains to prove that B is independent of (Z, — Z,,t > s). Note that
by (3.15) and Lemma 3.9 it holds that Z, ) — Z, = [ ruridZ, = [ re,(w)d¢, for
all t > 0. Hence the covariation of 7, ;)-local martingales M := Z. .y — Z5 and B is
identically equal to zero. Since the inverse of the quadratic variation [M], = ¢s(u) — s
equals ps(s + u), by Knight’s theorem [24, Thm V.1.9], the processes M,,S(SJr 9 and B are
independent Brownian motions. It only remains to note that M, (,4u) = Zs+u — Zs for
any u > 0.
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By definition we have ¢; = X, + fsc‘“(t) dX,. Hence the change of variable formulas
for Stieltjes [24, Prop. 0.4.1] and stochastic [24, Prop. V.1.4] integrals and (3.13) imply

t
V-1
0 = Yo —|—/ (Osy(u) — Oupy)dA, — —5 pudu, t>0. (3.16)
0

Since (osy (01) =10 )AB; = (05y (01) — el ) (L= prpp )dA +prdn) = (05 (00) —prp] )d Ay,
the process ¢ satisfies SDE (3.8) driven by (B;,t > 0) as required. O

Proof of Theorem 1.1 in the transient case with Xy # 0. By Prop. 3.11 (enlarge the prob-
ability space if needed), the law of any solution X of SDE (3.1), satisfying Xy # 0, is
equal to that of (1, (1),t > 0), where r ~ BESY (|| X)), po(-) is given in (3.12) and ¢ is
the unique solution of (3.8) with ¢y = )30, independent of r. O

In order to characterize the law of X in the case V > 2 with Ay = 0, we need to
understand the law of the /’\A,’s (for any fixed s > 0) and its dependence on the path of the
radial process r. Define F7,_ := o(r,t > 0). Since r ~ BESY(0) is non-negative and 72 is
a strong solution of SDE (3.2), we have 7' = o(r?,t > 0) = o(Z;,t > 0). Recall that by
Prop. 3.7, the process ¢ defined in Prop. 3.11 has a unique stationary measure pu.

Lemma 3.12. Suppose that (A4), (A5) and (A6) hold. Then for anyt > 0, /'\AQ has the law
u and is independent of F_. Put differently, the conditional law takes the form

P[X, €| FL] = u(-), a.s., foranyt > 0.

Proof. Fix t > 0 and let s € (0,t). By Prop. 3.11 and Lemma 3.9 we have X, = Ppo(t)
where ¢ satisfies SDE (3.8). By (e), (b) and (c) of Lemma 3.6 and Prop. 3.7, ¢ is strong
Markov with the transition function P,(x, -) that does not depend on s. Hence, for
A C $9-1 we find

PX, € A| FL] =EPX, € A | o(X) VFL] | Fi] = E[P, (1) (Xs, ) | FL], (3.17)

as ¢, () depends on F/_ only through p,(t) and ¢ = X;. Crucially, (3.17) holds for any
fixed time s € (0,¢), and also for any random time s = S € (0, ¢) if S is F_-measurable.
By Lemma 3.10 we have lim, | p,(t) = co. Hence, for sufficiently small s, an arbitrarily
large time interval separates ¢y = X, and ©p,(t), and so stationarity must be attained
at the latter, regardless of X, Formally, we apply the uniform ergodicity of ¢ in (3.11).
Lemmas 3.9 and 3.10 imply that for any v > 0, there is an F/_ -measurable random
variable S = S(t,u) with S € (0,t) a.s. such that pg(t) > u. By (3.11), for any £ > 0 there
exists u > 0 such that |P, (0, 2) — u(2A)| < €, a.s. Hence, by (3.17) applied at the
random time S, we have |P[X; € 2 | FL] — u(A)| < ¢, a.s. Since ¢ > 0 was arbitrary, the
result follows. O

Proof of Theorem 1.1 in the transient case with Xy = 0. For any k € IN and open set
U C RF, define the measurable function F;y : (0,00)* — [0,1] by Fy(ts,...,tx) =
Py[(¢1y,...,%¢,) € U], where the law Py|[-] is defined in Prop. 3.7. By Lemma 3.9,
Prop. 3.11 and Lemma 3.12 we have P[(X,,,..., &, ) € U | FL] = Fu(ps(t1), ..., ps(te))
a.s. for0 < s <t < --- < tx. Hence ]P[(é\?tl,...,é\?tk) € U] = EFy(ps(tr),...,ps(tr))-
Therefore the finite-dimensional distributions of (2&, t > 0) are uniquely determined by
Py[-] and the law of r. Moreover, by Lemma 3.2, the law of (||X|, X), and hence of X, is
uniquely determined by BESV(O) and Pg[-]. The uniqueness in law of (3.1) implies that
X is strong Markov and Theorem 1.1 follows in the transient case. O
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3.6 Proof of Theorem 1.1 in the recurrent case: rapid spinning of X

In this section we assume V € (1,2) and U = 1. Hence, by Lemma 3.2, r = || X]| is
BESV(O) where X is a solution of SDE (3.1). We recall briefly the necessary elements of
excursion theory (see [23, Ch XII], [3, Ch IV] as a general reference). Since 0 is regular
and instantaneous for r, there exists Markov local time L = (L;,¢ > 0) at 0. By [24,
Prop. XI.1.11], up to a constant factor, L is a time-change of the local time at 0 of a
Brownian motion, where the time-change is a constant multiple of ( f(f ra 2V D dus t > 0).
Hence, by [5, Thm 2.4], lim;oo Ly = oo PP-a.s. Let L;l = inf{t > 0 : Ly > A} (for
A > 0) be the right-continuous inverse of L and L;,l = limypa Lgl (for A > 0), La} = 0.
The process (L;l, A > 0) is a subordinator (i.e. a Lévy process with non-decreasing
paths). Furthermore, as L tends to infinity, L~ is not killed: P[L;' € R,VA € R;] = 1.
Define the (countable) set of jump times by A" := {\ > 0 : L;,l < L;l}, set 7} =
L' — L' and note that both L' and L} are stopping times for any A\ € R;. For
any w € Cg = C(Ry,RY), let 7o(w) := inf{t > 0 : w(t) = 0} (inf() = o) and define
Eq ={w e Cy:0 < 79(w) < coand w(t) =0forallt¢ (0,70(w))} with the topology
induced by the compact-open topology [6, §XII.1] on C,4. Let §4 be the zero function in Cg,.
Since 0 is recurrent for the strong Markov process r, by [3, Ch IV, Thm 10(i)], the point
process e” = (e}, A > 0) with values in & U {61}, defined by e (t) := r -1, 1{t < 7]}
(resp. e} = 01) if A € A" (resp. A ¢ A"), is a Poisson point process (PPP) V\;ith excursion
measure p, on &;.

3.6.1 Marked Bessel excursions

Pick a € (0,00) and let ¢ A a := min(¢,a),t V a := max(t,a) for any ¢ € R. For any w € &
satisfying mo(w) > a, define ¢% : (0, 79(w)) — R by the formula

tVa
02 (t) :=sgn(t — a) / w(u)?du, t € (0, 79(w)). (3.18)
tAa
Let Sl(a) ={w € & w > 0,79(w) > aand limyr ) 05 (1) = —limgg 0, () = oo}
and, for d € IN \ {1}, define the set £ := {w € & : |w| € £} and the map ¥, :
£ x C(R,841) — €1V,

t)-000%(t) te (0, ,
b)) o {10050 1€ (0.70(w)
0 te R\ (0,70(w)).
The topology on £ éa) is induced by the compact-open topology on Cy4 [6, §XII.1]. Hence the
Borel o-algebra on S(ga) is generated by 7, : £ — RY, m,(w) := w(t), for any t € Ry [4,
p. 571.
Lemma 3.13. The following statements hold for any fixed a € (0, c0).

(i) Forw € 51(“), 0% : (0,79(w)) — R is continuous, increasing and ¢, : R — (0, 79(w)),
given by c%(u) := inf{t € (0,79(w)) : 0%(¢) > u}, is continuous, increasing and
c2(0) = a.

w

(ii) Pick b € (0,a), w € & and let I¢(w) = @b, (t) — 02,(t), t € (0,70(w)). Then
I¢(w) > 0 does not depend on t, satisfies c2(u) = ¢’ (u + I¢(w)) for all u € R
and limy_,o I (w) = oo.

(iii) ®, : 5fa) x C(R, %9 1) — Ec(la) is a Borel isomorphism, i.e. ®, is a bijection with
), w e S, and both &, and

inverse given by @, ' (w) = (|jw]|, wocf,, /[woci,,
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are Borel measurable. Moreover, for any s € R, the map 55(1) - Ry, w— cﬁwu(s), is
continuous.

(iv) Define the set T\ := {(b,w) € (a,00) x £ : w € Sc(lb)} for any d € N. Then the
map Q, : T\ x C(R,$%1) = €Y x C(R,$%1), Qa(b,w,6) := (w,0(- + Ib(w)), is
continuous and the equality ®; ' (w) = Qq (b, ®; ! (w)) holds for any (b,w) € T\,

(v) The map {(b,t',w) € (0,00)2x & 1w € El(be/)} — R, (b,V,w) — 0% (b), is continuous.

Remark 3.14. (a) The maps ¢, and @;1 in Lemma 3.13(iii) are homeomorphisms. The
proof of this fact is more complicated than that of Lemma 3.13(iii) and is omitted as it is
not used.

(b) The topology on T((f) is induced by (a, o) x Séa). Parts (iii) and (iv) of Lemma 3.13
imply that the map (b, w) — @;1(11)), defined on T&a), is measurable. The map in (v) is
measurable.

Proof of Lemma 3.13. Since w(u) > 0forall u € (0, 79(w)), (i) holds. Note that 51(“) C El(b)
and Ij(w) = [, 1/w(u)?du. Part (i) follows by the representation of ¢, from (i) and the
definition of £

For part (iii), note that 7o(w) = 7o(®,(w, 0)) for all w € £* and 6 € C(R,$%1). Since
6 is bounded and w is continuous and equals 0 on R, \ (0, 7o(w)), both ®, and its inverse
are well-defined. Since the o-algebra on £ éa) is generated by the projections, the map @,
is Borel measurable if and only if 7; o ®, is a measurable map into R? for every t € R,..
Since, for any measurable set A in R?, (my o ®,)"!(A) is either empty or the whole space
we may assume ¢ > 0. Then, (1, 0 ®,)~1({0}) = (E/\ {w € £ : w(t) > 0}) x C(R,$%1)
is clearly measurable. It is therefore sufficient to prove that (m; o ®,)~!(B) is open for
any ball B centred at b € R? of radius ¢’ € (0, ||b||). Pick (w,0) € (7 o ®,)"1(B) and
set e := (¢ — || ®a(w,0)(t) —b])/2 > 0. Then I, := inf cnq,1ve) w(s) > 0. In particular,
[t Na,tVa] C(0,70(w)). Define Sy := Supycipna,ive w(s). There exists & € (0,1) such
that if |09, (t) — s| < do then [|0(0%(t)) — 0(s)|| < £/(3Sw + 3). Assume now that ¢ # « and
pick 6 € (0,1) smaller than min{e/3, I, /2, 6o I} (4(2S,, + 1)|a — t|)~'}. Define the compact
Ky :=[tANa,tVal C Ry (resp. Ko := [p4(t) — 1,0%(t) + 1] C R), €1 := 0 (resp. &2 =
€/(35y + 3)) and the neighbourhood N, (K;) := {u € El(a) D SUPgeg, [w(s) —u(s)] < er}
(resp. N, (K2) :={¢ € C(R, S ) : sup e, [|0(s)—d(s)|| < e2}) of w (resp. 6) in £ (resp.
C(R,$%1)). Pick (u,¢) € N, (K1) x Ne,(K>) and note that u(s) > I, — § > I,,/2 for all
s € K;. Hence, by (3.18), we have |0% (t)—0%(t)| < 4(2S,+1)|a—t|I,*6 < dp < 1, implying
w(t) 1000 (£)) — 001 ()] < /3 and 08 (t) € K. Hence u(t)[[6(of (1)) — #(o(1)) | < =/3 and
the following inequalities hold

[@a(w,0)(t) = Pa(u, @) ()| < Jw(t) —u(t)|
+ u(®)(10(e, (1)) — 0(ea (D) + 10(eu(t)) — ¢(eu(®)I)

<e.

Thus ||Pg(u, ¢)(t) — b|| < e+ ||Pu(w,0)(t) — b|| < &, implying N, (K1) X N, (K2) C
(m; o ®,)~1(B) and hence that m; o ®, is measurable for ¢ # a. If t = a, we have % (t) = 0
forall u € £*). Hence (u, ¢) € £\ x C(R, $9~1), such that [w(t) — u(t)| < (w(t) Ae)/2 and
16(0) — (0)]] < 2e/w(t), satisfies @, (u, ¢)(t) € B (where (w, ), B, e are as above) and the
measurability of m; o ®, follows.

Due to the product structure of the image, the map ®,! is measurable if g(ga) —
C(R,R?\ {0}), w = wocf,,, is measurable, which is equivalent to g : £ — R\ {0},
gs(w) = w(cjj,, (s)), being measurable for every s € R. The map g is in fact continuous.
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If s =0, then g,(w) = w(a) is an evaluation at a, which is continuous in the compact-
open topology. If s # 0, let B denote an open ball centred at b € R?\ {0} of radius
e € (0,]b])), pick w € g;'(B) and let ¢ := (¢’ — ||gs(w) — b]|)/2. Define t == cft,(s) # a
and let S| = SuPpepna,ival WD), Ljw) = infpepnava [wp)|, K1 = [0,70(w)] and
S|w| = SUPpek, w(p)||. There exists dp € (0,1) such that [t — do,t + o] C (0,70(w))
and Vz € [t — do,t + do] we have |jw(z) — w(t)|| < /2. Choose ¢ € (0,1) smaller than
min{e/2, Iy /2, 001}, (4(2S )y +1)|a—1(S)w) +1)*) "'}, and pick arbitrary u in N5(K1) :=
{u € £+ sup,ey, |w(p) — u(p)| < 8}. Then |of, (t) — oft, ()] < do/(Sju + 1)* and
hence Qﬁuu(t) € Ky := [QﬁwH(t) -1, gﬁw”(t) +1]. As s = g‘le”(t), cﬁwl‘(s) = cﬁuu(gﬁu”(t)) and
sup{||u(cﬁu”(q))||2 1q € Ko} < (S| + 1)2, we have

[l (8) = €l ()] < ffuy (8) = ffu O (S +1)* < o (3.19)

Hence,

gs(w)=gu (W) < ew(et, () =w(cfty (DI lwe, () —ulet, ()] < e/2+e/2 =
¢ and the inclusion Ns(K;) C g;!(B), implying the continuity of g;, follows. Since d,
could be arbitrarily small, the bound in (3.19) also implies the continuity of w — cﬁwu (s).

The equality in part (iv) follows from (ii) and (iii). What remains to be proved is that
(b,w,0) — 6(- + I’(w)) is continuous at an arbitrary point (by, wo, 6p) € T{* x C(R, $4-1).
Since for any t € R we have ||0y(t + 1% (wp)) — 0(t + I2(w))|| < [|6o(t + 1% (wo)) — Oo(t +
I (wo)l| + 180t + I2(wo)) — Bo(t + I(w))]| + 6ot + I%(w)) — 6(t + I°(w))|, the uniform
continuity of 6, on any compact, together with the proximity of (bg, wo) and (b, w), yields
a uniform control on compacts of the first two terms. The third term is controlled by the
proximity of 6y and 6 in C(R,$%!). The estimates, analogous to the ones in the proof
of (iii), are omitted.

Pick (b, b)), wo) in the domain of the map in (v) and let (b, b’, w) be an arbitrary element

close to it. If by = b, then gf,é(bo) = 0 and wo(bg) > 0. Then b and b’ must be very close to
bo (and hence each other) and w must be positive in the neighbourhood of by. Hence the
continuity of the map in (v) follows. If by < b, then —Q%’ (bo) = fbl:f’ du/wi(u) and wy is
bounded away from zero on compact interval K D [bg,b)]. Moreover, we may assume
that b < v/, K D [b,b'] and that w is uniformly close to wy on K. Hence gfﬁ’(bo) — 0% (b)| is
arbitrarily small and the continuity follows. The remaining case b < by is analogous. O

Remark 3.15. The continuity of the functions g,, s € R, in the proof of Lemma 3.13(iii)
above does not imply the continuity of the map @ .

Define Ej = Ua>05(§“) C &4 (for d € IN) with the topology induced by that of C,.

Proposition 3.16. The excursion measure of r satisfies j1,.(£; \ £;) = 0. Let Py be the
law on C(R,$%~') from Prop. 3.7. Then there exists a unique o-finite atomless Borel
measure v on £, satisfying v(A N Eéa)) = pr @ Py[® (AN Sc(l“))] for all a > 0 and Borel
measurable A C £ .

Remark 3.17. By Prop. 3.16, ¢” is a PPP on &7 U {6;} and v induces a PPP on £ U {d4}.

Proof of Proposition 3.16. In order to establish y,.(&; \ £) = 0, note that by [23], the
excursion measure j, has the following representation: any excursion e} has a finite
maximum and this maximum is attained at a unique time. Furthermore, conditional
on the maximum being at some level M > 0, the excursion has the same law as the
path formed by taking two independent BES4_5(O) processes, both run up until their
first hitting time of the level M, and placing them end-to-end. Since 2 < 4 —§ < 3, by
Lemma 3.10, any excursion in the support of p,. is in 51+.

Let U = (U* )\ > 0) be a family of independent stationary diffusions ¥* = (¥}, ¢ € R)
with the law Py from Prop. 3.7. Assume that r is independent of ¥. By the Marking
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and Mapping theorems of [17] (the latter applies since ®, is measurable and bijective
by Lemma 3.13(iii)), the point process e"¥¢ = (eg’q”“, A > 0), defined by e;"l”“ =0y, if
77 < a,and iV := ®, (e, W), if 77 > a, is a PPP in £ U {6,} with excursion measure
pr @ Py [®;1(-)] on £ of finite total mass 11, @ Py [®; ()] = e (EL”) < c0. Moreover,
by [17, p. 13], u, ® Py [®, ()] is atomless. Hence any measure v satisfying the identity
in the proposition for all a € (0, c0) is also atomless, o-finite and unique.

The proposition now follows from the claim that y, ® Pg[®, ! (A)] = u, @ Py[®, ' (A)]
for any 0 < b < a and measurable A C Ec(la).

It remains to establish this claim. Consider @ : £” x C(R,$41) — £ x C(R, $7-1),
Q(w,0) = Qp(a,w,), where Q, is defined in Lemma 3.13(iv). Hence Q = ®,! o

<I>b|£1<a> C(R,$9-1) is a Borel isomorphism. It suffices to show that () is measure preserving,

i.e. iy ® Py[B] = y1, ® Py[Q(B)] for any measurable B C £”) x C(R,$%"1). The measure
(r/ ur(éfl(b))) ® Py, restricted to Sl(b) x C(R,$%"1), is the probability law of the random el-
ement (X,Y) := (e}, U*v), where ), is the time of the first jump of size greater than b of
the subordinator L~!. In particular, we need to show P[(X,Y) € B] = P[Q"*(X,Y) € B].
Since Q' (w,0) = (w,0(- — I#(w))), I#(w) depends only on w by Lemma 3.13(ii) and, by
Prop. 3.7, the process Y is stationary, it holds that P[(X,Y) € B | o(X)] = P[Q7*(X,Y) €
B| 0(X)], implying the claim. O

3.6.2 Proof of Theorem 1.1 in the recurrent case

Let (X, W) be a solution of SDE (3.1) with X, = 0, adapted to (F;,¢ > 0). Since we are
only interested in the law of the solution, we may assume that we are in the canonical
setting, i.e. the probability space is 2 = C(R4,R"™) (for some n € IN) and the filtration
satisfies the usual conditions with respect to the probability measure P on (2. Define the
point process e = (e}, ¢ > 0) of excursions of X away from 0 by e} := §qif £ € Ry \ A",
and e} : Ry — RY, where

e (u) = Yo w € 0m), (3.20)
‘ 0 weR,\ (0,77),

if £ € A" (the notation introduced earlier in Section 3.6 will be used throughout
Section 3.6.2). The point process |e*| = (|le}|,¢ > 0) with excursions |le} (u)| =
TLzl+u1{U <77}, u € Ry, for any ¢ € A", is clearly equal to the PPP ¢” defined above.

Since X; = 0 if and only if r; = 0, e” takes values in £; U {d,}. The key step in the proof
of Theorem 1.1 is to characterize e?: this will establish uniqueness in law of X (see
Corollary 3.23), and, at the same time, show that e¥ is a PPP with excursion measure
from Prop. 3.16 (Corollary 3.24).

For the rest of the section, fix an arbitrary (F;)-stopping time 7 with P[7 < oo] = 1.
Then LZ} is an (F;)-stopping time. Define 7 = (7,,u > 0) by 7, = rL-14, By the
strong Markov property of r, the process 7 is strong Markov with respect to the filtration
(.Fin U > 0), has the same law as r and is independent of .FL;. The (Markov)

local time (iu,u > 0) of 7 at 0 satisfies L, = L;-1,,— L;. The inverse local time
Ly

Lt = (i;l, u > 0) is a subordinator satisfying i;l = LZ} o= LZ}, independent of
]-"in. Pick a > 0 and define recursively the stopping times: p := 0 and p? := inf{t >
o 7y, > a} for any n € IN. Here 7/,;, = o= L7t — it__l is the jump of the
subordinator L~! and 7 is the epoch of local time corresponding to the n-th excursion

of 7, lasting longer than a. For any v € R;, the equality ezu“q = e%u holds, where

.
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(e}, > 0) is given by €], := 7;-1,,1{u <7}, u € Ry. Finally, for any b € (0,a), let
=

Ny(t) :=sup{m € N : L#ZI_ < t} (with convention sup ) := 0) be the number of excursions
of 7 started before time ¢t € R with length at least . Note that all the random elements
defined in this paragraph depend on the choice of the stopping time 7. The next result is
the basis of our characterization of e.

Theorem 3.18. Suppose that (A4), (A5) and (A6) hold, withU =1 and V € (1,2). For
any a > 0, n € IN and finite (F;)-stopping time 7, the regular conditiona] distribution
of the random element eL fur (defined in (3.20) with ¢ = L, + p7) in 5 , given ]-'in,
takes the form

Plef 1 €1 Fpotl = i @ Pal0 ()i (E)  as.

Here the law Py on C(R,$%7!) is defined in Prop. 3.7 and y, is the excursion measure
of the PPP e". In particular, the excursion efTwﬂ, is independent of]-'L;l and its law on

Ec(la), pr @ Py [®H( )]/ pr (€ a)), depends neither on n € N nor on the stopping time 7.

Remark 3.19. Theorem 3.18 would follow trivially if we knew that X was strong Markov.
However, this cannot be assumed a priori. Once the uniqueness in law of SDE (3.1) has
been established, the strong Markov property of X follows.

As eiwn € 55;”, we can define the process 6" by (e} .,0%") := @, (eLTw );
then /%™ has paths in C(R,$~!). The key step in the proof of Theorem 3.18 is given by
the following lemma.

Lemma 3.20. Under assumptions (and notation) of Theorem 3.18, the regular condi-
tional distribution of 0" takes the form P[0*" € - | Fpo1V F] = Py[-] a.s. (recall

‘7:;0 :O'(’f't7t20)).

Proof. Since C(R,$%"!) is Polish, the regular conditional distribution P[#%" € - | F LoV

Fr] exists. Moreover, as every trajectory of 6%™ is continuous, it is sufficient to prove
that P-a.s. the finite-dimensional distributions at rational times coincide with those
of Py. Since the set of all finite subsets of the rationals is countable and the Borel
o-algebra on $9! is generated by a countable family of open balls, by a diagonalization
argument it suffices to prove that the finite-dimensional distributions at a given set of
(rational) times (evaluated on the products of the finite intersections of generating sets)
coincide PP-a.s. We establish this in two steps. First, we show that the process (6;"", ¢ > 0)

solves SDE (3.8), started at 08’" = )eaJrL_l and driven by a Brownian motion B
(Lr+ni)—

independent of 7. Second, we use this to prove the equality of the finite-dimensional
marginals of the two measures.

Since, for s € R, the map w — ¢%(s) on Ec(la) is continuous (and hence measurable)

by Lemma 3.13(iii), we may define a non-negative random variable 7,(s) := cer e (s) +
L( Ll - . Since 7,(0) — sz is the first time an excursion of 7 lasts longer than a, after

n — 1 such excursions have occurred, 7,(0) is a finite (F;)-stopping time. The definition
of ¢¢ implies that 7,(s) = 7,(0) + inf{t € (0,00) : f;’:((oo)Ht ry 2du > s} is also an (F)-
stopping time for any s > 0. In fact for 0 < s < w it holds that 7,(s) < n.(u) < LLlJmn.
Put differently, (n,(s),s > 0) is a stochastic time-change and we can define the filtration
(gs,s > 0) bygs Zifa( ) -

Since, on the stochastic interval (0, LL1+#,L 1a(0)), the process r, (0)+

and (F,,(0)+¢)-adapted, we can define continuous local martlngales A = (As;5>0) and

is continuous
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Na(s) Na(s)
Ay = / quldI/Vu and (s := / r;leu,
n n,

where Z is given in (3.3). Both A and ( are adapted to (Gs,s > 0). As in the proof of
Prop. 3.11, it follows that A and ¢ are (G;) Brownian motions. We may then apply [24,
Prop. V.1.4] and (3.3) to ¢ to obtain (; = fo e () T na(u)dW .(u)- Similarly we get

A, = Og gl(u)dW (w)- Since by definition X, ) = 0" for all u € Ry, we find (s =

Jy (62)TdA, for all s > 0. Without loss of generality there exists a one-dimensional (7;)
Brownian motion, ¥ = (9, ¢ > 0), independent of (X, W). Define a (Gs) Brownian motion

v = (y4,t > 0) by v, := :”((09)) r-1d7,. Then, as in the proof of Prop. 3.11, the process

B = (By,t > 0), By := A, — [ 0%"d(, + [; 62 d,, is a d-dimensional (G,) Brownian
motion, 1ndependent of ¢.

We next show that B is independent of Z. Recall that 7,(0) and L + un are (Fy)-
stopping times. Since By = 0, B is independent of Gy = F,,, (o) and hence of (Zs, 0<s<
1a(0)). B is measurable with respect to \/ ., Gs € F, L7t and hence independent of

THuy

a

the Brownian motion (Z, i1 —Z;-1 ,u>0). We now prove that B is independent
Lr+u? Lr+u?
- Z

of the stopped Brownian motion (Zs,s > 0), Zy = Z(3+77a(0))/\[’;71_+,4,g Ne

the G,-local martingale M = (My,u > 0), My := Z,, ) — Zy,(0), and note that M, =
o Tha @) (02™)TdA, = [ 1y, (1)d¢,. Hence the covariation of M and B is identically equal
to zero. Furthermore, the quadratic variation [M], = ¢ (u) —a of M converges,

(0)- Define

7LT+u3
ie., [M]oo = limoo[M]y = LL1+;4 — 14(0), with inverse given by v — % . (a +v),
v € [0,[M]). Since the limit My, := limyjoo M, = ZL 1 e (0) €Xists, “we can

Lr+pg
define the processes (M, (a+1),0 <t < [M]), which is 1ndependent of B by [24,
-

ha

Thm V.1.9]. Then noting that M. (att) = Z, for any t € [0,[M] ], we verify that B is
rtul

independent of Z, and hence (by Lemma 3.2) of r.
By Lemma 3.2, the process o (0) . is a continuous semimartingale on the stochastic

interval (0, TLo4pn — a). In partlcular an analogous calculation to the one that estab-
lished (3.13) implies

. . 77@(0)+t . na(0)+t .
Xna(0)+t = Xpo(0) + / ) S du+ / ©) 9( X AW, t € (0,7F 4y — ),
Na Na

with f, ¢ in (3.14). Applying the stochastic time-change (c%. (u) — a,u > 0) with [24,

Lr+pg

Prop. V.1.4] and noting that n,(u) = 77,1(0)4—(3;}2 o (u) —a and ;Em(u) =02" forallu € Ry,
Tul

ot L1 driven

implies that (62", u > 0) satisfies the SDE in (3.8), started at 65" = % T

by the Brownian motion A defined above. It is easy to see from the definition of the Brow-

nian motion B above that [ (0w, (027") — 027 (02™) )AB,, = [ (0w (02™) — 027 (02™)T)d A,

for all t > 0. Hence (%™, u > 0) satisfies SDE (3.8) driven by B independent of F7_.
The second step in the proof of the lemma analyses the conditional law of §%™. The

number of excursions longer than b started before the start of the n-th excursion of

7 of length at least a, i.e. Nb(LHn ), is F., measurable. Fix t € R and note that by
Lemma 3.13(ii) we have limyyo t + Iy (e}, +;w) = 0o. On the event {Nb(f,;nl,_) =k—1},

by Lemma 3.13(ii)-(iii), it holds that ;" = =" Pick an arbitrary measurable

t+1"(eL un)

EJP 24 (2019), paper 48. http://www.imstat.org/ejp/
Page 22/38


https://doi.org/10.1214/19-EJP302
http://www.imstat.org/ejp/

Invariance principle for non-homogeneous random walks

subset 2 C $¢~!. Then it holds that

PO, € A | Fyoa VFL] =Y HNy(Lyt ) = k= 3P0y .,

T
I (] ) €| }—sz v FL]
kEN

For all b € (0, a) such that Ij(e},_, ,.) > —t, the first step of the proof implies
[Pl €| Fyv v FLL] — w(2)] < /S APergey (@) — p@)Pafda], (321)

where Py[de] := Yoy 1{Ny(L,_) =k — 1JP[65" € dz | F; 1 v FL] is a probability
measure on $%~!, P is the transition function from Prop. 3.7 and x denotes its stationary
measure. By (3.11) in Prop. 3.7, Lemma 3.13(ii) and (3.21), for any £ > 0 there exists
b € (0,a) such that [P[0;"" € A | F -1 v FL] — u(A)| < e. Hence we must have P[f" €
A | FpoV Frl=u) =Py[{f € C(R,$¢71) : f(t) € A}]. An analogous argument shows
that finite-dimensional distributions of Py[-] and P[0;"" € - | F Tl FI_] coincide. This
proves the lemma. . O

Proof of Theorem 3.18. Pick an arbitrary measurable set B in £C(la) and define a subset
A:=®,1(B) of 51(“) x C(R,$9"1). A standard argument, based on the Monotone-Class
Theorem, implies that the function Fj4 : 81(“) — [0,1], given for e € £ by Fa(e) :=
fC(R sd-1) 1{A}(e, f)Pg[df], is measurable. Hence Lemma 3.20, the tower property and
the definition of the map @' imply Plef .. € B | ]-"L;] = Pl(ef 4,n,0°") € A |
]-"L:] =E[Fa(e], 4 ,n) | ]:Lli]’ Since r is strong Markov, we get IP[e/LYTJrMZ, € B ]-"L:] =
E[F4(e], 1 ,n)]. Since the law of the excursion e . . is given by s, (- )/ur(é'fa)), the
theorem follows. O

Pick v € (0,00) and a measurable B C R?. Let B, := {y : y € B\ {0}, |lyl| = v}
be the intersection B N (v$¢~!) projected onto the unit sphere. For any b € R, define
the measurable set A°(B) := {f € C(R,$¢7!) : f(b) € B,}. The remaining step in
our characterization of e? is provided by the following result, which will enable us to
describe finite-dimensional distributions.

Proposition 3.21. Pick k € IN and indices 0 =: ig < 11 < 19 < -+ < ip_1 < 1. Define
n := i), and choose measurable sets B, ..., B, C R? and times 0 < u; < us < -+ < Up,.
For0 <i<j<mn,letF;;: (R x(0,00)7" — [0,1] be F; j(by,vp;i +1 < p < j):=
IP\p[ﬁ;:HlQlf}; (Bp)). Define a; 1= uj — Eii»— forany j € {1,...,n} (recall that L depends
on 7). Then, on the event Ej, := {L = iuil <L
L = Ly, }, it holds that

Uig+1 Uig+1 Luz‘Q < Lui2+1 = LuiS <0<

Wi _q+1

P efTJriuj (a;) € B; forjed{l,...,n} ’}'in vfgo]

k—1
=[] Fivies <Q:%z+1(ap)7e%up (ap);ii +1<p< zm) . (3.22)
=0

up

Remark 3.22. In (3.22), for any p € {i; + 1,...,4,+1}, it holds that L,,, = L and

- Uip+1
hence e% refers to a single excursion. Note also that F; depends on the sequence
Up

11 < --- < i and not just on the index k. This information is suppressed from the notation
for brevity.
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Proof of Proposition 3.21. A moment'’s reflection reveals that F; ;, defined in the proposi-
tion, is measurable and Fj, ¢ FJ . Note that a; is 7 -measurable and a; > 0 IP-a.s. for any
j€{1,...,n}. Moreover, on Ej, by Remark 3.22 the triplet (a;,+1, ap, ez ) is in the do-
main of the map in Lemma 3.13(v) forall € {0,...,k—1} andp € {iy+1,...,441}. Hence

we may define F/ -measurable random variables t] := o, ,’f“ (ap) and v} := eE (ap). In
Uup

Lug
fact, on Ej, v} > 0 and ¢] > 0 P-a.s. Hence the right-hand side of (3.22) is well-defined
on E), and F]_-measurable.

Assume first that k = 1, i.e. iy = n, Fy = {L,, = L,,} and a; = u;j — L;ul for

j€{1,...,n}. Pick b > 0 and let E? := E; N {a; > b}. By (iii) and (iv) of Lemma 3.13,
the map @, : T\¥ x C(R, $9-1) — &Y x C(R,$%!) is measurable. Hence, on E?, we may

define a random element Q(a1, @, '(ef ) =®;l(ef ). Recall that N,, (L;})is
“'j+LL7— ~ 'u,j+LLT
the number of excursions or 7 that started prior to L*1 with length of at least a;. Clearly,

Nal(L 1) is F7_-measurable. Hence, conditional on Fp-1 vV FL, the law of g Nes (La)
equals Py[-] by Lemma 3.20, where ®_!(e} er, ) = (e’i ,0“1’N“1(E;11)). On E?, the
h¥

left-hand side of (3.22) is

-1
ity

P [gm Ve (i) € ot ( )forje{l,...,n}‘]-'Lgi VF;] = Fon(t8 ol < p < n).

Since this identity is independent of b and E?  F; as b | 0, the proposition holds for
k=1and anyi; =n € IN.

We proceed by induction: assume that (3.22) holds for some k£ € IN and any increasing
sequence of indices of length at most k. Pick an event Ejy,;. Put differently, choose
a sequence of indices 0 = ip < i1 < -+ < ik < ig+1 = n. The (F;)-stopping time
p=1L Ly u;, satisfies LL <p<Lj, ! Since Ly Lis an (F1)- stopplng time, the o-algebra
.7-'L_1 is well defined and contains .7-"L_ For the sequence 0 < i1 < --- < i}, define the

event FE. as in the statement of the proposition Note that Ex41 = E N E}, 41, Where

By = A{Lu;, < Lu; 1 = Lu, v}, and Eyy1, Ey, By, € FL,. Define a BESY (0) process

v’ = (rl,,u>0)byr = It 4y Then its Markov (resp. inverse) local time L'=(L,,u>
4

0) (resp. L'~ = (L;jl,u > 0)) equals L, = LLZ;+u — L, (resp. Lijl LZ tu Zpl) and

L'~ is a subordinator independent of F Lt
P

Pick j € {ix +1,...,ik+1}. On Ej ,, the inequality u; + L' > szl holds. Hence we
can define positive times v := u; + Lyt - LZ: that clearly satisfy r/, = 7,,. Furthermore,
T g
we have
-1 —1 -1
and LL(/_:LL —LLP.

uf ( uj+LEi)_

Hence we find a; = u; + L7 — L7 =) — L' forallje {ix+1,... ix41}.

J

,1)—

U

Let e = (eL/7u > 0) be the PPP given by eu( u) =71 JHu< T:}, u € Ry, where

/L;11+
TZ;/ =L - L;;_l is the size of the jump of the subordinator L'~! at the moment of
local time y. It holds that e’iuﬁ = ezu_+fl = e’L'qui1 = e’L'/;,‘ , and hence t], = ZTk,+1 (aj),
J 3 L, Ly J Lu,’.
vl = eTL/, (a;), forall j € {ix + 1,...,ip41}. Trivially it holds that eL - = ej-fn +LJ , SO
Lp

me may apply the basis of the induction (i.e. £ = 1) to the stopping time p on the event
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E;. ., as follows:

P ef (a])EBJ, jE{ik+17~--,ik+1}’~FLL;\/‘Fgo}

u +L
Lp

Qip +1 r’ - . .
= Fiinin | 0,0 (a5),€Lr (a5)iie +1 < j <ippa
L/I ’LLJ
"
J

Hence Ple} (aj) € By, j € {ix +1,. zk+1}|fL 1V L] =

L, +LLT

J <'igy1) on E} . Define the event Dy, := ﬂjzl{eL et (a;) € Bj}NEy € ‘FLZ;' On the
vitiL,

JoJ.;
Zk Zk+1(tkﬂvk7lk + 1 S

event Ey.,

E |:].{Dk}IP |:efu.+L1 (aj) S Bj, j € {ik +1,.. .,ik+1} ‘szl \/.7:;0:| ‘szl \/.7:;0:|
J LT T
*P[Dk’}'L 1V FL ] Z,wzHl(tk,vk,zkJrl<] <igt1),

which equals the left-hand side in (3.22). The proposition follows by the induction
hypothesis. O

Corollary 3.23. Let X be a solution of SDE (3.1) started at 0 and adapted to (F;,t > 0).

(a) Let T be a finite (F)-stopping time. Then the process X = (X,,t > 0), defined by
X, = XLzlth, is independent Of.FLZI and has the same law as X.

(b) Let Y be a solution of SDE (3.1) started at 0. Then the laws on C4 of X and )Y

coincide.
Proof. (a) If we prove that for any 0 < u; < us < --- < u, and measurable sets
By, ..., B, C RY the equality P[X,, € By,...,X,, € B, [Fppr] = PlXu, € Biy.. s Xy, €

B,] holds P-a.s., part (a) follows by a diagonalization argument (cf. first paragraph in

the proof of Lemma 3.20), since Xy = X, and all the traJectorles of X are continuous.

Recall that L, - = L, + L,. Hence, for all u > 0, X, = eL L. (u — LE ) and in
L.,. w—

particular (take 7 = 0) X, = eL (u - L; L _). Note that the set Ej in Prop. 3.21 is
determined by k£ € {1,...,n} and the 1ndlces i1 < ... < idp_1 (wWith ig = 0 and i, = n)

and should be denoted by E;*"""*~'. Furthermore, E;"""*"* N E)"""'~' %  if and
only if k = k',i1 = 4},...,ik—1 = i},_,, in which case the two sets clearly coincide. Put
1,1 ..... ’Lk 1

differently, this finite family of sets is pairwise disjoint. Since the union of £,
equals the entire probability space, we can define a path functional

F(X) = Z 1{E217~...lk o H s ( angl(ap)’eEup (ap)iit+1<p< il+1> .

kyig<-<igp_1 up

Note that F' is defined PP-a.s. on €2 and is measurable. Furthermore, F' is a function only
of the radial component 7 = = ||X|| of X. By Prop. 3.21, we get P[X,, € By,..., X, €
B,|F LoV FI] = F(X). An identical argument applied to X' (with 7 = 0) yields P[X,, €
By,... 7T){un € B,|Fo V FL ] = F(X). By the strong Markov property of r, the process 7,
and therefore F(X), is independent of Fp1. Hence P[X,, € By,...,X,, € B, |J-" ]

E[F(X)] a.s. Since the laws of 7 and 7 coincide, we have E[F(X)] = E[F(X)] = lP[Xu1 €
By,..., X, € By]. This concludes the proof of (a).
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(b) As before it is sufficient to show P[X,, € By,..., Xy, € Byl =P/'[Vu, € B1,..., V0, €
B,] for any 0 < u; < up < --- < u,, and measurable sets By, ..., B, C R, where P'[-]
is the probability measure on the space where ) is defined. Prop. 3.21 implies this
statement, using the same argument as in part (a) as the processes || X|| and ||| have
the same law. O

Corollary 3.24. Let X be a solution of SDE (3.1) started at 0. The point process e* on
é’j U{d4}, defined in (3.20), is a PPP with excursion measure characterized in Prop. 3.16.

Proof. Let X be adapted to (F;,t > 0). Pick A € Ry and recall that L' is an (F)-

stopping time. Define X = (Xt,t > 0) by X, = XL 1t

Claim 1. The process X is independent of F Lt and its law is equal to that of X.
Proof of Claim 1. Define an (F;)-stopping time 7 : =inf{t > 0: L; > A}. Since the local
time L is contlnuous and limy4oo Ly = 00 a.s., it holds that P[L, = \] = P[r < o] = 1. In
particular, Ly L= L ! and, by Corollary 3.23(a), the claim follows.

Define the filtration (Gx,A > 0) by G, := ‘/_'.L)\l Pick a > 0 and a measurable set

mesa
Claim 2. The countlng process N% = (Nf‘, A > 0), where N/\ equals the cardinality of
the set {s € (0, )] : eX € 2}, is a (G, )-Poisson process with intensity p, @ Py [®,1(21)].
Before proving the claim, note that it implies that e* is a PPP with excursion measure
v from Prop. 3.16. Indeed, for disjoint sets %f;,...,%, in 5(“), the respective count-
ing processes N%1, ... N*» are, by Claim 2, (G,)-Poisson processes that cannot jump
simultaneously. Hence they must be independent. For any collection of disjoint sets
Ap % (s1,t1], -+, Apn X (8n,tn] in EF x Ry satisfying 0 < v(2;) < oo forall j € {1,...,n},
by Prop. 3.16 there exists a > 0 such that all the sets are contained in 8&“) X R4. Further-
more, the numbers of points of e* in each of the sets is given by n independent Poisson
rvs NZ_‘-" — Ngj with intensities (t; — s;)v(2;).
Proof of Claim 2. Tt is clear from the definition of N* that it is adapted to (Gy, A > 0).
Pick A, i € Ry. It is sufficient to prove that N2, , — N} is independent of G, and has
the same law as N . The number of excursions of A’ in 2 completed during the time
interval (L " LM#}

from Claim 1, completed in the time interval (0, L;!]. Recall that L)' = Ly} i

is by construction equal to the number N of excursions in 2 of X
L;l is

is independent of G,, so is NQL N3+/\ N3}. Since, by Claim 1, the laws of X and X

coincide, so do the laws of NV 3‘ and N 3‘ This concludes the proof of Claim 2. O

Proof of Theorem 1.1 in the recurrent case. As mentioned in §3.1, weak existence for
SDE (3.1) follows from [18, §2.6, Thm 1]. When xy = 0, Corollary 3.23 shows uniqueness
in law of solutions to (3.1), and, as mentioned in §3.1, the strong Markov property then
follows by [26, Thm 6.2.2]. The case xy # 0 is essentially the same, but one must deal
separately with the initial partial excursion; since the case xy = 0 is the one we need for
Theorem 1.2, we omit the details of the (minor) adjustments required for other case. O

4 Invariance principle

4.1 Invariance principle with discontinuous coefficients

Recall that D; = D(R,;R?) is a space of functions = : Ry — R? that are right-
continuous and have left limits (i.e. z(t) = lim,; z(s) for any ¢t € Ry, x(t—) := limgp; 2(s)
exists in R? for any ¢ > 0 and, by convention, z(0—) := x(0)). We endow Dy with the
Skorokhod metric (see e.g. [8, §3.5]). By [8, Prop 3.5.3, p. 119], the induced topology
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on the continuous functions C; = C(R, ; R?) coincides with the compact-open topology.
Theorem 4.1 may be viewed as an extension of [8, Thm 7.4.1, p. 354] to a setting with
discontinuous coefficients. It is key in establishing Theorem 1.2.

Theorem 4.1. Let a = (a;;) : R? — R?® R? be a bounded function that is continuous on
R9\ {0}, with image contained in the set of symmetric, non-negative definite matrices in
R? ® R?. Suppose that the C; martingale problem for (G, v) is well-posed, where G f :=
%Zaijaiajf (for a smooth f : R — R with compact support) and v is a distribution
R?. Forn € N, let Z, be a process with sample paths in D, and let A, = (A%)
be a symmetric R @ R%-valued process started at zero, such that AY has sample
paths in D, and A, (t) — A, (s) is non-negative definite for allt > s > 0. Set FJ' :=
0(Zn(s), An(s),s < t). Suppose that Z! and Z! ZJ — A% are F}*-adapted local martingales
for each i,j € {1,...,d}. Let 7} := inf{t > 0 : || Z,(t)|| > ror||Z,(t—)|| > r} (with
convention inf {) := co) and suppose that for everyr >0, T >0, and i,j € {1,...,d},

lim E| sup [|Zn(t) — Zn(t)||2] =0; (4.1)
n—00 0<t<TATE
lim E| sup |A7(t) — Aiﬂ(t)ﬂ = 0; (4.2)
n—co 0<t<TATE
and, as n — oo, .
sup |AY(t) — / a;;(Zn(s))ds 250, (4.3)
0<t<TATY 0

where —+ denotes convergence in probability and s A t := min{s,t} for s,t € [0,00].
Assume sup,, .y E || Z,(0)||> < co. Suppose that Z,(0) and ||Z,|| converge weakly to a
probability law v on R¢ and the law of a Bessel process of dimension greater than one,
respectively. Then Z, converges weakly to the solution of the martingale problem for
(G,v).

The underlying idea for the proof of Theorem 4.1 is standard: show that every
subsequence of (7, ), has a further subsequence converging weakly to the law given
by the solution of the martingale problem (G,v) (cf. proof of [8, Thm 7.4.1, p. 3541]).
Since a in Theorem 4.1 is bounded, a; := sup,cp« ai;(x) is finite for each ¢ € {1,...,d}.
Since A% (t) > A¥(t—) forallt > 0andi € {1,...,d},

= 1 > M i —_ ; >
Np := inf {t >0 1I£1iaSXd{An (t) — a;t} > 1}

is an (F}*)-stopping time. Since n,, > inf{t > 0 : maxj<;<q |A%(t) — fot ai;(Zn(s))ds| > 1}
and (4.3) holds for any 7', > 0, we have that

Mn, i) 00 as n — oo. (4.4)
Define for givenr > 0, n € N and 4,j € {1,...,d} the processes Z,TL and flilj by
Z;;(t) = Zn(t Ay AT and /Nlif (t) == AY(t Ay A TS, (4.5)

respectively (flij depends on r but this is suppressed from the notation as it is clear
from the context). Observe that for any 7' > 0 and (F;*)-stopping time 7 less than 7', the
modulus of any component of Z” () — Z”(0) is bounded above by an integrable random
variable:

1Z0() = ZoO < 2r + sup 1 Za(t) = Zu(t-)]]. (4.6)

0<t<TATE
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Since Z"(0) = Z,(0) is integrable by assumption, the local martingale Z’ is of class
(DL) and therefore a martingale [24, Prop. IV1.71, An analogous argument, relying
on (4.1)-(4.2), the inequality |ZT iZri| < (Z71)? 4 (Z77)? and the square integrability of

1 Z.(0)], ZriZr — Al is also a martingale. Furthermore, since A”(0) = 0 for
all indices i € {1,...,d}, for any ¢t > 0 we have
flﬁf(t) <ait+1+ sup (Aif(s) — Aﬁf(s—)) . 4.7)
OSSSt/\"':{

Lemma 4.2. For each r > 0, the sequence of the laws of processes (Z,’;)RE]N on Dy
is relatively compact in the metric space of all probability measures on D, with the
Prokhorov metric.3

Proof. We prove the lemma by establishing the sufficient condition for the relative
compactness of the sequence (Z;)nem given in [8, Thm 3.8.6, pp. 137-138]. Fix an
arbitrary 7 > 0 and let Bx denote a closed ball of radius K > 2r + 1 in R%. Note that
the bound in (4.6) and the Markov inequality imply

P [Z;(t) € By forallt e [0, T]] > P

2r + 2. (0) +  sup |Z7L(t)_Zvn(t_)||SK]

0<t<TATT
Co

Zl—m forallTlE]N,

where Cj > 0 depends on the quantities sup,,cy E [sup0<t<TAT£ 1Z.(t) — Z, (t—)||2} and
sup,cw E || Z,(0)]|?, which are finite by assumption. As K is independent of n and can
be arbitrarily large, the compact containment condition [8, Eq (7.9), p. 129] holds
for (Z{L),LE]N. Hence condition (a) of [8, Thm 3.7.2], also assumed in [8, Thm 3.8.6,
pp. 137-138], holds.

Since Z"" and (Z!*)2 — A’ are martingales for all i € {1,...,d}, it holds that

=[5 (om0 ]

=1

[HZTHh) Zn(t H ‘]—'"} -

for any ¢, h > 0. With this in mind, define

@)= s > (A0 - L)

0<t<TATE i—1

for any ¢ > 0. In order to compare ~, () with the corresponding quantity for the limiting

process, let
d

t+s
Tn(6) :==vn(d) — sup Z/t ai;i (Z7(s))ds.

te[0,TAT] v

Now we have from (4.3) that

and  sup
0<t<TATE

sup
0<t<TATT

flff(t)—/ aii(Z7(s))ds

0

t+3
Aii(t+ ) — / 0 (Z7())ds

0

3See [8, §3.1, p. 96] for the definition and properties of the Prokhorov metric on the set of probability
measures defined on a Borel o-algebra on a metric space. In this context we use the Skorokhod metric d on
Dy, cf. [8, §3.5, p. 116]. The induced topology is the one of weak convergence of probability measures [8,
Thm 3.3.1, p. 108].
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both tend to zero in probability, implying that I",,(d) also tends to zero in probability:

d ~ . ~ t+6 ~
@) < sup S| Ai(+8) — Al(r) - / aii(Z5(s))ds

tel0,TATr] 59

oo (4.8)

Since the upper bound in (4.7) is non-decreasing in ¢, we get

d

IMOIESY <3ai(T+5) +2+2  sup  (AJ(s) —Aff(s—))>~

— S€[0,(T+8)Arg]

By (4.2) the right-hand side of this inequality converges in L' as n — co. Thus the
sequence (I',,(9))nen must be uniformly integrable and hence by (4.8) converges to zero
in L'. By adding and subtracting the relevant term we find

d t+6 ~ d
limsup E~, () < limsupE|T,(d)| + limsupE  sup Z/ aii(Zy(s))ds < 5Zai.
t i=1

n—o0o n—00 n— 00 te[0,TAT]] i—1

Hence it clearly holds that lims_ limsup,,_, E~,(6) = 0 and the relative compactness
of Z] now follows from [8, Thm 3.8.6, p. 137-138] (see also [8, Rem 8.7(b), p. 138]). O

For any path = € Dy, we define the time 7" (z) of its first contact with the complement
of the open ball of radius r in R? (centred at the origin) by

T (z) :=inf{t >0 : ||lz(#)|| >r or |z(t—)|>r}, (4.9)

where inf ) = co. If it is clear from the context which path x we are considering, to
simplify the notation we sometimes write 7" for 7"(x). Note that if x is continuous,
then 77 (z) = inf{t > 0 : ||z(¢)|| > r}. The following lemma is important in the proof of
Theorem 4.1.

Lemma 4.3. Let P be a probability measure on Dy. Then the complement in R of the
set {r € Ry : P[lim,—,, 7® = 7"] = 1} is at most countable, with 7" defined in (4.9).

To prove Lemma 4.3 we first need to establish properties of the function r — 7".

Lemma 4.4. Fix © € D,;. The function r — 7"(z), mapping Ry into [0,00], is non-
decreasing, has right limits and is left continuous. Put differently, for any r € Ry
the limit limg, 75 =: "1 exists in [0,00] and, for r > 0, it holds that limg, 75 = 77.
Furthermore, for any r € R, the following hold:

(i) if 7" = oo then limg,, 7° = 77;

(ii) if 7" < oo then for any ¢ > 0 there are at most finitely many s € [0,r] such that
75t > 1 e,

Remark 4.5. The topology on [0, o] is that of the one-point compactification of R. If
7"(x) = oo, then the function s — 7°(z) defined on [0, 7] may have an infinite number
of jumps greater than any given positive constant. If 7"(z) < oo, then the inequality
77T (2) > 77 (x) may hold invalidating the limit in Lemma 4.4(i).

Proof of Lemma 4.4. Observe that 7" (z) = inf{t > 0 : supg<s<; ||z(s)|| > r} is the gener-
alized inverse [7] of the non-decreasing right-continuous function ¢ — supy< ., ||z(s)].
Thus [7, Prop 2.3] r — 7"(x) is non-decreasing, has right limits and is left-continuous.
It follows from the left continuity and monotonicity that 7" = co implies the limit in (i).
Assume 7" < oo and pick ¢ > 0. The intervals in the family {[7%,7°") : s € [0,7]} are
disjoint and contained in the bounded interval [0, 7"]. Hence there can only be finitely
many s € [0, r] satisfying the condition in (ii). O
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Proof of Lemma 4.3. Let A 5 := {s € [0,7] : P[7*" > 7° +¢] > 6} for arbitrary ¢,d > 0,
re ]R+.
Claim. A{ ; is at most countable.

Note first that the claim implies the lemma. By Lemma 4.4, the following equivalence
holds for any r € R, : lim, . 7° = 77 <= 7"+ = 7", Hence it suffices to show the set
{reRy :P[r"" > 7" >0} = U2, U, Uit A2 5,
is at most countable, which clearly holds by the claim, where (¢ )ren, (9;)ien and (sp)nen
are monotone sequences satisfying ¢ | 0, §; | 0 and s,, T occ.

Proof of Claim. Assume that A{ ; is uncountable and let I be the set of its isolated points
(i.e.z € I'ifand only if v € A ; and there exists a neighbourhood U of z in R4 such that
{z}=UnN A;ié). Then I is at most countable. To see this, note that for each = € I there
exists a rational number ¢, < z, such that (¢, ) VAL 5 = 0 (for € I N Q we may take
¢, := x). For any distinct points z,y € I, it clearly holds ¢z 7 qy. Hence the cardinality of
I is at most that of Q and the uncountable set A’ ; \ I has no isolated points.

Consider r; := sup{y € Ag’ s \ I} < r. There exists a strictly increasing sequence
(pi)ien in A7 5\ T with limit p; 1 1. It is also clear that any z € {rPit > 7Pl 4 £} C Dy
satisfies 7P (z) < co. Hence the event B™ := {7-1’3’r > TP 4 ¢} i.0. satisfies: P[B™] > §
and, for each path = € B™, the function s — 7°(z) has infinitely many jumps of size at
least € on the interval [0, r;]. Furthermore, since these jumps occur along a subsequence
of (p})iew, Lemma 4.4 implies for any x € B™ that 7%(z) < oo for all s € [0,r;) and
T (x) = 0.

Since (AL ; \ I) C [0,71], it holds that (AL 5\ I) C A['; making A”'; uncountable. Fur-
thermore, since A7'; \ {r1} = Us<,, A 5, there exists r’ < ry such that A”'s is uncountable.
We can now repeat the construction above, with A7 ; substituted by Ag: s, to define the
event B" (for some r € (0,r']) with properties analogous to those of B"'. In particular
P[B™2] > ¢ and, since each x € B™ satisfies 772(x) = oo, it must hold B™ N B™ = (). As
before, there exists r”/ < r, such that Ag:; is uncountable. By the same construction
there exists r3 € (0,7”] and an event B" satisfying P[B™] > ¢ and B™ N (B"™ U B"2) = (),
since x € B satisfies 773 (z) = oo while for any x € B™ U B we have 773 (z) < co. We
can thus inductively construct a sequence of pairwise disjoint events (B"™),cn in Dy
each of which has probability at least § > 0. This contradicts the fact that the total mass
of P is equal to one. O

Remark 4.6. The proof of the claim, contained in the proof of Lemma 4.3, shows that
AL 5 is in fact locally finite.

In order to apply Lemma 4.3 in the proof of Theorem 4.1, we need another fact about
the metric space (Dgy, d), where the metric d : Dy x Dy — R that induces the Skorokhod
topology is defined in [8, Eq. (5.2), p. 117] (see also [8, §3.5]).

Lemma 4.7. Pickr > 0. Assume that © € D, satisfies lim,_,,. 7°(x) = 7" (z) (see (4.9) for
definition of 7"(x)). Then the function Dy — [0, 0], given by y — 7" (y), is continuous
at xz. If in addition it holds that either ||z(7"(x)—)|| < r or ||x(7"(z))|| < r, then the map
Dy — Dy, given by y — y(- A7"(y)), is continuous at x.

Remark 4.8. (a) The lemma implies that if z € C,4 satisfies lim,_,, 7°(x) = 77(z), the
map Dy — Dy x [0,00], given by y — (y(- A7"(y)),7"(y)), is continuous at z.

(b) It is easy to construct = € C4, such that both y — 77 (y) and y — y(- A 7"(y)) are
discontinuous at x. The key feature of such a function x is that 77 (z) > 77 (z) (see
Lemma 4.4 for the definition of 7% (z)).

EJP 24 (2019), paper 48. http://www.imstat.org/ejp/
Page 30/38


https://doi.org/10.1214/19-EJP302
http://www.imstat.org/ejp/

Invariance principle for non-homogeneous random walks

(c) If z € Dy \ Cy4, then the additional assumption in the lemma is necessary for the
continuity of y — y(- A7"(y)) to hold at z. To see this, for any » > 0 and ¢ € [0, 1),
consider z.(t) := (t+¢)1(0 <t <)+ (r+1)1(r <t < 00). Then z, clearly satisfies
the first assumption in the lemma but not the second one. Note that for any
e € (0,1) we have d(xg,x.) < e and |xg(t A7"(20)) — x(EAT ()] > 1(r <t < 0).

Proof of Lemma 4.7. Let « € Dy satisfy lims_,, 7°(x) = 7"(x). We first prove that for
any sequence (z,)nen in Dy, such that d(z,,x) — 0, it holds that 7" (z,) — 7" (x). Note
that d(z,,z) — 0 and the definition of d in [8, Eq. (5.2), p. 117] imply that there exists
a sequence (A,)nen of strictly increasing, Lipschitz continuous, surjective functions
An : Ry — Ry satisfying

sup{||zn(An(t)) — @), |An(t) —¢t| : t € [0,T]} - 0  forany T > 0. (4.10)

If 7"(x) = oo, then for any 7" > 0 30 > 0 such that sup,cjo r{llz(®)[], [[z(t-)I[} < r — 4.
By (4.10), for all sufficiently large n € IN we have sup,cp x, (my{llzn(s)lI} < 7 —46/2,
implying 7" (x,,) > T — 1. Since T was arbitrary, it holds that 7" (x,,) — co.

Assume now that 77(z) < oo and that (7" (z,))nen does not converge to 7"(x). By
passing to a subsequence (again denoted by (z,,),cn), we may assume that Je > 0 such
that |77 (x,) — 7"(z)| > e for all n € N. Pick T > 7"(z) + € and note that without loss
of generality we may assume (for all n € IN) that either 7" (x,) > 7"(z) + € or 7" (z,,) <
7"(x) — €. Consider first the former case. By Lemma 4.4, our assumption is equivalent
to 7"t (z) = 7"(x). Hence 3§ > 0 and an interval [to, so] contained in (7" (z),7"(z) + €),
such that inf,c(y, 5] [2()|| > 7 + 6. As [to, s0] C [0,T], by (4.10) there exists n € IN and
t € (to,s0) such that A\, (t) < sp and ||z, (A ()] = [|z(@)]] — [|2(t) — zn(An ()] > 7+ /2,
contradicting 7" (x,,) > 77 (x) + & > A (8).

Consider now the case 7" (z,) < 7"(x) — € for all n € IN. Then for a sequence §,, | 0
we have sup,cp,-(z)—e) |Zn(s)| > 7 — 5. Hence there exists a sequence (t,)nen in
(0,7"(x) — ¢) such that ||z, (¢,)| — 7. By (4.10) it holds that X\, *(t,) < 7"(z) — /2 for
all sufficiently large (and thus wlog all) n € IN. Furthermore, the triangle inequality
and (4.10) imply [[[2(A; " (tn)) ]| = 7| < [2(A7* () = 2n(ta)]| + |2 (ta)] = 7| — 0, since
A, H(tn),tn € [0, 7] for all n € IN. By passing to a convergent subsequence, there exists
a < 77(z) — /2 such that either A\ '(t,) T « or A\;!(t,) | a. Hence we either get
|lz(a=)|| = r or ||z(a)|] = r, contradicting the fact that & < 7"(z). This implies the
continuity of the map y — 7" (y) at z.

Consider the map y — y(- A 7"(y)) in the case 7"(z) = oco. Then z(- A7"(z)) = =
and, as we have already established, 7"(z,,) — co. By the definition of the metric d
(see [8, Eq. (5.2), p. 117]), we have d(x, (- A7T"(zy)), z(-AT"(2))) < d(zp, 2) + d(@p, 0 (- A
7 (20))) < d(2p,2) +e77 @) 0.

In the case 7" (z) < oo, we have already seen that 7"(x,,) — 7"(x). By definition [8,
Eq. (5.2), p. 117], for any y € Dy, t € R, and a sequence (¢,),cn converging to ¢t we have

d(y(- A tn),y(- A1) < ly(t) —y@Ea)ll + [t = tal e[sglgl] ly(s)]l

for all large n € IN. Recall that y is bounded on compact intervals. Hence if either ¢,, | ¢
ort, — t and y is continuous at ¢, then d(y(- A t,),y(- At)) — 0.* Therefore the estimate

d(@n(- AT (2n)), 2(- AT (2))) < d(n(- AT (2n)), 2(- AT (20)))

+d(x(- AT (xn)), 2(- AT"(2)))
<d(zp,z)+dxz(- AT (zn)), (- AT"(x)))

4Note that if ¢, 1 ¢, d(y(- A tn),y(- At)) may be bounded from below by a positive constant Vn € IN.
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implies the lemma, except when 7" (z,,) 1T 7" (z) and z(7"(z)—) # z(7"(z)).

Assuming 7" (z,,) T 7"(z) < oo and z(7"(z)—) # z(7"(x)), by lim,_,, 7%(x) = 7"(z) it
holds that z(7"(x)—) < z(7"(x)). Furthermore, since by assumption it either holds that
x(t"(x)—) < r or (7" (x)) < r, we must have z(7"(z)—) < r. Hence there exists § > 0
such that sup,c(o ;r(z)) [2(t)|| < r —d. Therefore by (4.10) 3N € NN such that foralln > N
and 1 € [0,7"(z)) we have [z, (An ()] < J(t)] + [2n(n(0)) — 2(0)] < 7 — 5/2. Thus we
obtain A, (7" (z)) < 7" (z,) for all n > N. As )\, is increasing, for every ¢t € [0,7"(z)] it
holds that ||z, (An(t) AT (2)) — 2t AT"(2))|| = |2n(An(t)) — 2(¢)||. Furthermore, since

T (20) € M (77 (), T ( )], forall t € (77 (z), A\, 1(7"(x,))] we have

[0 (An () AT (2n)) = (AT (@))]] = 20 (An(t) — (7" (2))]
< lz(@) = 2(7" (@) + [lza(An(t)) = z(@)]].

Hence, for any T' > 7" (), it holds that

sup |lzn(An(t) AT () — 2t A T"(2))]l

te[0,T]
= sup [lzn(An(t)) —2(t)] + sup [2n(An(t)) — (7" ()|
te[0,77 ()] te(rm (@), TAN (77 (w0))]
< sup |lzn(An(t) — ()] + sup lz(t) — (7" (),
te[0,T] te(rm(x), A0 (77 (2))]

where the inequality uses the assumption 7" (z,,) < 77 (z). The first summand in the bound
tends to zero by (4.10) and the second by the right continuity of x and A\, (7"(z)) — 7" (z).
Hence d(z,(- A 7" (x,)),z(- A 7"(x))) — 0 by [8, Prop. 3.5.3, p. 119] and the lemma
follows. O

The next task in the proof of Theorem 4.1 is to construct a limiting process.

Lemma 4.9. Fix rq > 0. There exists a process Z"® with paths a.s. in Cy4, such that for
all but countably many r € (0,7¢) it holds that

(Z’fbk( /\T )7 nk):>(Zro('/\Tr)aTr)7 (411)

where 77 = 77(Z,) is given in Theorem 4.1, 7" = 7"(Z"°) is defined in (4.9) and =
denotes the weak convergence of probability measures on D, x [0,00]. Furthermore,
the law of || Z™ (- A 7")|| equals that of a Bessel process (of dimension greater than one)
stopped at level r. In particular it holds that (Z™ (- A7"),7") € Dg x R4 a.s.

Proof. Lemma 4.2 implies the existence of a convergent subsequence (Zﬁ?c)kelN of the
sequence (Z;O)nG]N defined in (4.5). Denote its limit by Z". By (4.4) and the definition
of the metric d : Dy x Dy — R4 in [8, Eq. (5.2), p. 117], which induces the Skorokhod
topology, it holds that
d(Z 7o

ng?

Zno (- ATR)) < e 250 ask - oo

It hence follows that the sequence (Z,, (- A 7,,%))ren also converges weakly to Z°.
Furthermore, by [8, Thm 3.10.2, p. 148] and assumption (4.1), the process Z" is
continuous, i.e. the support of its law is contained in Cy.

Pick r € (0,79). It follows from Lemmas 4.3 and 4.7 and the mapping theorem
(see [4, p. 20]) that the joint convergence in (4.11) holds for all but countably many
r < ro. Furthermore, from (4.11) we have that || Z,, (- A7} )| = [[Z(- A 7")]|| for all
but countably many r < ro. By assumption in Theorem 4.1, the weak limit of || Z,, || is

a Bessel process. Hence, again by Lemmas 4.3 and 4.7, the fact that a Bessel process
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has continuous trajectories and the mapping theorem [4, p. 20], the law of || Z7(- A T7)||
equals that of a Bessel process stopped at level r for all but countably many r < ro. The
final statement in the lemma is equivalent to saying that a Bessel process of dimension
greater than one reaches every positive level with probability one. This is immediate
in the transient case. In the recurrent case it follows from the fact that the height of

excursions away from zero is not bounded. O
Define the function F; ; : Dg x Ry — R by the formula F; ;(y, T fo a;j(y(s))ds for
any ¢,j € {1,...,d}, where q;; is a coefficient in the generator G in Theorem 4 1

Lemma 4.10. Fix ry > 0. Then for all but countably many r € (0,79), the sequence of
processes F; j(Zy,, - N1, ) = (Fi j(Zn,,t A1, );t > 0) converges weakly to the process
F,j(Zm, - ANT") = (F;;(Z™,t AT7);t > 0) as k — oo forany i,j € {1,...,d},

Remark 4.11. In the proof of [8, Thm 7.4.1, p. 355], the statement of the lemma is used
implicitly and follows directly from the continuity assumption on a;; in [8, Thm 7.4.1,
p. 355] (which implies that F; ; is itself continuous at any continuous path) and the
analogue of the the weak limit in (4.11). In our case the coefficient a;; is discontinuous
at the origin and the process ||Z"|| may visit zero infinitely many times. Hence we must
rely on the more detailed information about the limit law || Z"(- A 77)|. In particular,
we use the fact that the Bessel process of dimension greater than one is a continuous
semimartingale and apply the occupation times formula to quantify the amount of time it
spends around zero.

Proof of Lemma 4.10. Let ¢ > 0 and take smooth functions ¢5, ¢5 : Ry — [0, 1] satisfying
¢5(u) =1forall u > ¢, ¢5(u) =0 for all u < &/2 and ¢5(u) + ¢5(u) = 1 for all u € R;. Let

FE @)= [ asle()eile(o)l)ds,  where ke (1,2}

Then since a;; is continuous on R%\ {0} and ¢ is continuous and vanishes in a neighbour-
hood of 0, we have that Filf : Dy x Ry — R is continuous at any point (z,7T) € Cg x R..
Hence (4.11) in Lemma 4.9 implies the convergence Filf(an, ATH ) = Filf(Z"U, “ATT)
for all but countably many r < ry.

Consider now Fff : Dg x Ry — R. Since a;; is globally bounded, there exists a
constant C' > 0 such that

F2 (2, T)) < c/ 65(l2(s))ds V(2. T) € D x Ry 4.12)

By Lemma 4.9, we may assume that ||Z™(- A 77)|| is a Bessel process (of dimension
greater than one) stopped at level . The random field (L¢(a)):,qer, of Bessel local times
exists by [24, Thm VI.1.7] since the process is a continuous semimartingale with the
local martingale component equal to Brownian motion. Furthermore, it is well known
that (L;(a)):,acr, has a bi-continuous modification, i.e. the map (t,a) — L¢(a) is a.s.
continuous on Ri. Then, by the occupation times formula [24, p. 224] and (4.12) we get

sup [F25(Z7, A7) < C [ 63(127(s) s =€ [ 5(@Lor(a)da, @13
teRy 0 0

since the quadratic variation of ||Z™ (- A7")|| is dominated by that of the Brownian motion
and the support of ¢ is contained in [0, ¢]. Since (x,t) — fot #5(||x(s)||)ds is continuous
on Dy x Ry, Lemma 4.9 and the mapping theorem [4, p. 20] imply

Sup |F2E(Zne t ATE,)| < C / ¥ 65(1Znn (5))ds = C / S5(1Z7(s))ds.  (4.14)

teR4
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If the convergence in the lemma fails, there exists a bounded uniformly continuous
map h : C; — R (with the uniform topology on C;) and ¢; such that

|EhOFz‘}j(ZTO,-/\TT)—EhOFi,j(an, '/\T,Ck)|>60 Vk € N, (4.15)

where we have passed to a subsequence without changing the notation. Then there
exists § > 0 such that if z,y € C; satisfy sup,cg, |z(t) —y(?)| <, then |h(z) —h(y)| < €o/6.
Fix a monotone sequence ¢, | 0 and note that we may assume that /C is not an atom
of fOE” 5" (a)L.r(a)da for any n € IN, where C is the constant in (4.13) and (4.14). Note
that by the inequality in (4.14) and the fact that F; ; = Filf + Fff we have

g T T:;k
[EhoF; j(Zn,, A1, )~ hoFi{} (Zny, N )| < €0/6+CLP /0 05| Zn, (s)|Nds > 6/C

any ¢ > 0 and some constant C}, > 0. By the dominated convergence theorem there
exists ¢,, such that

€0
12C,°

P { ’ ¢5"(a)Lor(a)da > 5/0} < (4.16)
0

By Lemma 4.9 and since §/C is not an atom of fs" 5" (a)Lyr(a)da, there exists kg € IN
such that for all £ > ky we have

€0 €o

<1PU 65 () Lor(a )da>5/C} oo < o

/ 65 (17, (5)[)ds > 6/C

Hence it holds that
BhoFj(Zn,, - AN1h)—BhoF 5 (Zy,, - ATh )| <eo/3 Yk > ko. (4.17)

Since we already know Filf(an, “ATY) = F;f(ZTU, -AT"), there exists k1 > ko, such
that

EhoFl5m (Zn,, -ATh ) —EBho Flrm(Z, - AT")| <eo/3  Vk > ki (4.18)

Similarly, by (4.13) and (4.16), we get

En
EhoF, ;(Z™, -ANT")—Eho Filf”(Z“’, AT < %0 + CpP [/ 5" (a)Lrr(a)da > 6/C
0

€0
< —.
3
This inequality, coupled with (4.17), (4.18) and the triangle inequality, contradicts the

statement in (4.15), which proves the lemma. O

Lemma 4.10 is key in proving that the processes in (4.19) are true martingales, which
will in turn imply that the limit Z™ is a solution of the stopped martingale problem. We
establish the martingale property in the next lemma.

Lemma 4.12. Fix o > 0 and pick r € (0,r9). Then the components of the process

Z"™ (- AT") are martingales. Moreover, for any i,j € {1,...,d}, the following process is a
martingale:
ATT
ZroNANTTYZTOI (AT — / aij(Z7(s))ds (4.19)
0
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Proof. Recall that the sequence (Z}”LO),L@N, defined in (4.5), is relatively compact by
Lemma 4.2. Furthermore, the process Z™ was defined as a weak limit of a convergent
subsequence (Z,?;)kem. For any 4,j € {1,...,d} the processes Z,Tl(:i and fli{k (see (4.5)
for definition) give rise to martingales Z;?C’izgg’j — fli{k (see the argument following the
display in (4.6)). Hence, for any index i € {1,...,d} and k € IN, we have that
EI(Z;" (1)) = BlZ5, (0] + B |47 ()] foralt>0.

Thus by (4.2), (4.7) and the assumption on the square integrability of Z,,, (0) in Theo-
rem 4.1, we have that sup,cy ]E[||Z£‘;c (t)]|?] < co and hence the family (HZ;};C ) ken is
uniformly integrable for every ¢t > 0.

To prove that the components of Z™ are martingales with respect to the natural
filtration (o(Z.° : v € [0, 5]), s € Ry ), note first that each o-algebra o(Z° : u € [0, s]) is
generated by the w-system of events of the form {Z"™(s;) € A;,...,Z™(s,) € A,} for
any p € N and sq,...,s, € [0,s], where A,,..., A, are rectangular boxes in R¢. Hence
it is sufficient to show that for any 0 < s; < ...s, < s <t and a non-negative, bounded,
continuous f : R ® R? — R it holds that

E[(Z7(t) — Z""(s)) f(Z7(s1),..., 2" (sp))] = 0. (4.20)

By the Skorokhod representation theorem [8, Thm 3.1.8, p. 102] we may assume that
the zero mean random variables (Z;ivi(t) - Zj;‘;vi(s)) f(Z]0(s1),..., 20 (sp)) converge
almost surely as £k — oo to the random variable in (4.20). Furthermore, since f is
bounded, this sequence is uniformly integrable by the argument in the first paragraph of
this proof. This implies the convergence in L' and hence the identity in (4.20). Since
Z™ is a martingale, so is Z™ (- A ") for any r € (0,79).
Consider now the process in (4.19). We start by establishing the following fact.

Claim. For any 4, j € {1,...,d} and all but countably many r € (0,7¢) it holds that

ATT
Zt CANTR )20 (AT ) = A (AT ) = ZTO’i('/\TT)ZTO’j('ATT)—/O ai;i (Z"7(s))ds,

where the stopping times 7/ = 77(Z,) and 7" = 77(Z") are as in Lemma 4.9.

Proof of Claim. By definition it holds that Zﬁ% = Z". Hence, as in the proof of
Lemma 4.9, since Z"° has continuous trajectories it follows from Lemmas 4.3 and 4.7
and the mapping theorem [4, p. 20] that Z;?C( “ATh )= Z™(-AT"). Thus it holds that
Zroi(- NTEVZI0I (A TE ) = ZT0N( AT ZT0T (AT,

To prove the claim it therefore suffices to show that A% (-A77 ) = fO'MT a;j(Z"(s))ds.
With this in mind, we note that

A9 (ATE )= Uy + Vie + F j(Zny, - AT, (4.21)

Nk

where Uy, := A (<A77 ) — A% (- A77) — 0 by (4.4)(4.5) and Vj, := A (- A 70 ) —

Fij(Zns - A1) 20 by the assumption in (4.3). The representation of fl;ﬂk (-ATh)
in (4.21), [8, Cor. 3.3.3, p. 110] and Lemma 4.10 imply

ATT
A (A7) = /0 ai; (27 (s))ds, (4.22)

and the claim follows.

Since Z[0'Z0:) — AiJ is a martingale by the argument following (4.6), the stopped
process Mj, := Z1°%(- A i )Ziod (- Arh ) — A% (- A 77 ) is also a martingale for every
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k € IN. Hence the process in (4.19) will be a martingale by the analogous argument to
the one that established the martingale property of Z"°-* above, if we prove that for any
t > 0 the family of random variables {M}(t) : k € IN} is uniformly integrable. With this in
mind, note that 2\A§{k| < flifk + A{L{; since the matrix flnk is non-negative definite. The
< (Zreh)? + (Zre7)? implies

elementary inequality 2| 270+ Z70+J o

MOl < Z (A, )P+ Z3d (AT )P+ AL (EAT) + A (AT ).

Since the sequence (Aj{k (tnTh )+ fl{i (t A7), ))ken is bounded in L' by (4.2) and (4.7),
{My(t) : k € N} will be uniformly integrable if {Z70(t A 77 )2 : k € N} is uniformly
integrable for all i € {1,...,d}. Note that by (4.6), for any r € (0,79), we have that

Z;z’%mr;kffg(supIZn<o>|2+4r3+ sup ||znk<s>—znk<s—>|2>'
nelN ogsgt/w;k

The right-hand side converges in L! by (4.1). Hence {Z0(t A7/, )? : k € IN} is uniformly
integrable and the lemma follows for all but countably many r € (0,7). Note however
that there exist r,, 1 ro such that the martingale properties in the lemma hold for all r,,.

Since a stopped martingale is a martingale, the lemma follows for all r € (0,rg). O

Proof of Theorem 4.1. By Lemma 4.12 and It6’s formula for continuous semimartingales,
the process Z™ constructed in the proof of Lemma 4.9 solves the stopped martingale
problem (see [8, p. 216] for the precise definition) (G,v,{z € R? : ||z|| < r}) for any
r € (0,79). Since the martingale problem (G, v) is well-posed, by [8, Thm 4.6.1, p. 216]
there exists a unique solution to the stopped martingale problem. Furthermore, if
Z is a solution of the martingale problem (G,v) on Dy, then Z(- A 77(Z)) must be a
solution to the stopped martingale problem by the optional sampling theorem (cf. [8,
pp. 216-217]), where 7" (Z) is defined in (4.9). In particular (since ry > 0 is arbitrary)
for all but countably many » > 0, any subsequence of Z, (- A 7)), where 7 is defined in
Lemma 4.9, has by Lemma 4.9 a further subsequence that converges weakly to the law of
the process Z(- A7"(Z)). It hence follows that the entire sequence must be convergent,
Zn(-NTF) = Z(- ANT"(Z)), for all but at most countably many r > 0.

In order to prove that this implies Z,, = Z, note that 77(Z) — oo a.s. as r — oo, since
the paths of Z are in Dy (in fact in C;), and it holds that

dZ,,Z(-AT7(Z2) <e ™ P 50  as.asr— oo,

where d : Dy x Dy — Ry, defined in [8, Eq. (5.2), p. 117], is the Skorokhod metric.
Pick any uniformly continuous and bounded map h : Dy — R. This class of maps is
convergence determining [8, Prop. 3.4.4, p. 112]. Pick ¢ > 0 and let ¢ € (0, 1) satisfy:
if d(x,y) < 0 then |h(x) — h(y)| < €/6. Let Cp > 0 satisfy sup,cp, |h(z)] < Ch. By
Lemmas 4.3 and 4.7 and the mapping theorem (see [4, p. 20]), there exists » > 0 such
that 77 = 77(Z) and P[7"(Z) < log(1/6)] < £/(12C},). Without loss of generality we may
assume that log(1/6) is not an atom of 7" (Z). Hence we may choose Ny € IN such that for
all n > Ny we have P[7] <log(1/6)] < &/(6Cy) and |Eh(Z,(-A7))—Eh(Z(-AT"(Z)))] <
/6. This implies the inequalities

| En(Zn) —EMZ)| < [E(Zn) = E(Zn(- A1)+ [ER(Zn(- A7) —ER(Z(- A T"(2)))]

n

+|Eh(Z(-AT"(2))) —ERh(Z)]

< Plr; > 10g(1/5)]% + % + Pl (2) > log(l/é)]% + % + % <e,

which completes the proof. O
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4.2 Proof of Theorem 1.2

Recall the definition of the scaled process )~(n = ()zn(t),t > 0) in (1.2) in terms of the
chain X = (X,,,m € Z), X,(t) =n~/2X |, for t € R. Theorem 1.2 will follow from
Theorem 4.1 and the main result of [10]:

Lemma 4.13.~Suppose that (A0)-(A4) hold. Without loss of generality assume that
U = 1. Then || X,,|| converges weakly to the V -dimensional Bessel process started at 0.

Proof of Theorem 1.2. Define A,(t) = 1 Z};ﬂfl M(X,,) , where M (x) is the covariance
matrix of the increment at x € X and, as usual, an empty sum is 0. Define Z,, := )~(n and
note that Z! ZJ — A% is a local martingale for all 4,5 € {1,...,d}. By Lemma 4.13 we
have | Z,|| = BES"(0) as n — oo. Let a(x) := 02(X) be a non-negative definite matrix-
valued function on R%, where o2 satisfies (A3)—(A6). Let the generator G be defined
as in Theorem 4.1 for this coefficient a. Then the C; martingale problem for (G, o) is
well-posed by Theorem 1.1, where &y denotes the delta measure on R? concentrated at
the origin. In order to apply Theorem 4.1, it remains to establish the assumptions (4.1),
(4.2) and (4.3) for Z,, and A,. Condition (4.1) follows from [10, Lem 2]. Since by
assumption |M;;(y)| < supyex: |z |M (%)|| < oo for a sufficiently large r > 0 and any
y € X with [|y[| > r, condition (4.2) follows from lim, . + Emaxo<m<|n7) [Mij(Xm)| = 0.
Finally (4.3) is verified by [10, Lem 5] for the coordinate functional ¢ : RY@ R¢ — R,
¢(B) = B;;. Thus Theorem 4.1 yields Theorem 1.2. O
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