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Free energy of directed polymers in random
environment in 1 + 1-dimension at high temperature*
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Abstract

We consider the free energy F (β) of the directed polymers in random environment in
1 + 1-dimension. It is known that F (β) is of order −β4 as β → 0 [3, 28, 42]. In this
paper, we will prove that under a certain dimension free concentration condition on
the potential,

lim
β→0

F (β)

β4
= lim
T→∞

1

T
PZ
[
logZ√

2(T )
]

= −1

6
,

where {Zβ(t, x) : t ≥ 0, x ∈ R} is the unique mild solution to the stochastic heat
equation

∂

∂t
Z =

1

2
∆Z + βZẆ, lim

t→0
Z(t, x)dx = δ0(dx),

whereW is a time-space white noise and

Zβ(t) =

∫
R

Zβ(t, x)dx.
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Free energy of 1 + 1 DPRE

1 Introduction and main result

Directed polymers in random environment was introduced by Henly and Huse in the
physical literature to study the influence by impurity of media to polymer chain [25]. In
particular, random media is given as i.i.d. time-space random variables and the shape of
polymer is achieved as time-space path of walk whose law is given by Gibbs measure
with the inverse temperature β ≥ 0, that is, time-space trajectory s up to time n appears
as a realization of a polymer with probability

µβ,n(s) =
1

Zβ,n
exp (βHn(s))P 0

S(S[0,n] = s), s ∈
(
Zd
)n+1

,

where Hn(s) is a Hamiltonian of the trajectory s = (s0, · · · , sn), (S, P xS ) is the simple

random walk on Zd starting from x ∈ Zd, S[0,n] = (S0, S1, · · · , Sn) ∈
(
Zd
)n+1

, and Zβ,n is
the normalizing constant which is called the quenched partition function.

There exists β1 such that if β < β1, then the effect of random environment is weak
and if β > β1, then environment has a meaningful influence. This phase transition is
characterized by the uniform integrability of the normalized partition functions. Also,
we have another phase transition characterized by the non-triviality of the free energy,
i.e. there exists β2 such that if β < β2, then the free energy is trivial and if β > β2, then
the free energy is non-trivial. The former phase transition is referred to weak versus
strong disorder phase transition and the latter one is referred to strong versus very
strong disorder phase transition. We have some known results on the phase transitions:
β1 = β2 = 0 when d = 1, 2 [21, 28] and β2 ≥ β1 > 0 when d ≥ 3 [13, 19]. In particular,
the best lower bound of β1 is obtained by Birkner et.al. by using size-biased directed
polymers and random walk pinning model [7, 9, 11, 12, 10, 35].

There has been a lot of progress for Zd-lattice model in the past three decades
[13, 15, 19, 20, 16, 21, 28, 6]. Also, one dimensional case has received considerable
attention in connection with KPZ equation [2, 1, 37]. In particular, it is believed that the
critical exponent for the transversal fluctuation of the path is 2

3 and the critical exponent
for the longitudinal fluctuation of the free energy is 1

3 for β 6= 0 [20]. This conjecture and
several problems are partially solved under the integrable settings [40, 23, 18].

Recent progress is reviewed in [17].

1.1 Model and main result

To define the model precisely, we introduce some random variables.

• (Random environment) Let {η(n, x) : (n, x) ∈ N × Zd} be R-valued i.i.d. random
variables with

Q[η(n, x)] = 0, Q
[
η(n, x)2

]
= 1, and

λ(β) = logQ[exp (βη(n, x))] ∈ R for any β ∈ R,
(1.1)

where Q is the law of η’s.

• (Simple random walk) Let (S, P xS ) be a simple random walk on Zd starting from
x ∈ Zd which is independent of {η(n, x) : (n, x) ∈ N × Zd}. We write PS = P 0

S for
simplicity.

Then, the Hamiltonian Hn(s) is given by

Hn(s) = Hn(s, η) =

n∑
k=1

η(k, sk), s = (s0, · · · , sn) ∈
(
Zd
)n+1

,
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Free energy of 1 + 1 DPRE

and

Zβ,n = Zβ,n(η) = PS

[
exp

(
β

n∑
k=1

η(k, Sk)

)]
.

It is clear that

Q [Zβ,n(η)] = exp (nλ(β))

for any β ∈ R.
The normalized partition function is defined by

Wβ,n(η) :=
Zβ,n(η)

Q [Zβ,n(η)]

= Zβ,n(η) exp (−nλ(β))

= PS [exp (βHn(S)− nλ(β))]

= PS

[
n∏
k=1

ζk,Sk(β, η)

]
, (1.2)

where we write for each (n, x) ∈ N×Zd

ζn,x(β, η) = exp (βη(n, x)− λ(β)) .

Then, the following limit exists Q-a.s. and in L1(Q) [19, 22]:

F (β) = lim
N→∞

1

N
logWβ,N (η)

= lim
N→∞

1

N
Q [logWβ,N (η)]

= sup
N≥1

1

N
Q [logWβ,N (η)] . (1.3)

The fact that the limit in N can be replaced by supremum in N plays a key role in the
proof of our main theorem.

The limit F (β) is a non-random constant and called the quenched free energy. Jensen’s
inequality implies that

F (β) ≤ lim
N→∞

1

N
logQ [Wβ,N (η)] = 0.

It is known that F (β) < 0 if β 6= 0 when d = 1, 2 [21, 28] and F (β) = 0 for sufficiently
small |β| when d ≥ 3.

Recently, the asymptotics of F (β) near high temperature (β → 0) are studied: There
exists β0 > 0 and c ∈ (0,∞) such that for β ∈ (−β0, β0)

− c−1β4 ≤ F (β) ≤ −cβ4, if d = 1 (1.4)

[28, Theorem 1.4, Theorem 1.5], [42, Theorem 1.1], [3, Theorem 1.3] and

lim
β→0

β2 log |F (β)| = −π, if d = 2 (1.5)

[28, Theorem 1.6], [34, Theorem 1.2], [6, Theorem 1.1].
In particular, it is conjectured [38, 39, 17] that when d = 1,

lim
β→0

1

β4
F (β) = − 1

24
, (1.6)

where 1
24 appears in the literature of stochastic heat equation or KZP equation [8, 4].

Our main result answers this conjecture under a certain condition on η.
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Theorem 1.1. Suppose d = 1. Also, we assume (1.1).

(i) (Upper estimate) We have that

lim
β→0

F (β)

β4
≤ −1

6
.

(ii) (Sharp assymptotics) We consider the following dimension free concentration in-
equality condition on η: There exists a non-decreasing function g : (−∞, 0)→ [0,∞)

such that ∫ 0

−∞
g(t)dt <∞

and that for any m ∈ N and for any differentiable convex function f : Rm → R, we
have that

Q (f(η) < a− t)Q (f(η) > a, |∇f(η)| ≤ c) ≤ g
(
t

c

)
, a ∈ R, t, c ∈ (0,∞), (1.7)

where η = {η1, · · · , ηn} are i.i.d. random variables with the marginal law Q(ηe ∈ dx)

and |∇f(η)| =

√√√√ m∑
i=1

∣∣∣∣ ∂∂ηi f(η)

∣∣∣∣2.

If in addition, we assume the above dimension free concentration inequality, then we
have

lim
β→0

1

β4
F (β) = −1

6
. (1.8)

The following theorem by Alberts, Khanin and Quastel is a key theorem to obtain our
main theorem.

Theorem 1.2. ([2, Theorem 2.1, Lemma A.1]) Suppose d = 1. Let {βn : n ≥ 1} be a
R-valued sequence with βn → 0 and r > 0. Then, the sequence {Wrβn,bTβ−4

n c(η) : n ≥ 1}
is L2(Q)-bounded and converges in distribution to Zr√2(T ) =

∫
R
Zr√2(T, x)dx for each

T > 0, where Zβ(T ) is the partition function of the continuum directed polymer for β ≥ 0

at T > 0: Zxβ (t, y) is the unique mild solution to the stochastic heat equation

∂Z =
1

2
∆Z + βZẆ,

with the initial condition lim
t→0
Z(t, y)dy = δx(dy) and W is a time-space white noise and

PZ is the law of Zxβ . We write

Zxβ (t) =

∫
R

Zxβ (t, y)dy

and Zβ(t) = Z0
β(t) for simplicity.

Here, we will give an intuitive explanation of our main theorem. We have from (1.3)
that for fixed n ∈ N

F (βn) = lim
T→∞

1

bTβ−4
n c

Q[logWβn,bTβ−4
n c(η)].

Then,

lim
n→∞

F (βn)

β4
n

= lim
n→∞

lim
T→∞

1

β4
nbTβ−4

n c
Q[logWβn,bTβ−4

n c(η)].
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Therefore, if we can exchange the limits in n and T and {logWβn,bTβ−4
n c(η) : n ∈ N} is

uniformly integrable, then we have that

lim
n→∞

F (βn)

β4
n

= lim
n→∞

lim
T→∞

1

β4
nbTβ−4

n c
Q[logWβn,bTβ−4

n c(η)]

= lim
T→∞

lim
n→∞

1

β4
nbTβ−4

n c
Q[logWβn,bTβ−4

n c(η)]

= lim
T→∞

1

T
PZ
[
logZ√2(T )

]
.

Thus, the heart of our main result is just the exchangeability of limits in n, T and integral.

Remark 1.3. (i) A dimension free concentration inequality assumption is used to
prove the uniform integrability of {logWβn,bTβ−4

n c(η) : n ∈ N}.

(ii) The limit value − 1
6 in (1.8) appears as the limit of the free energy of the continuum

directed polymers (see Lemma 2.2):

FZ(β) = lim
T→∞

1

T
PZ

[
log

∫
R

Zxβ (T, y)dy

]
at β =

√
2.

− 1
6 is different from the value − 1

24 in the conjecture (1.6). However, since F (β) has
the scaling relation (see also Lemma 2.2), we have

−1

6
= FZ(

√
2) = −(

√
2)4FZ(1) = −

√
2

4

24
.

The factor
√

2 which comes from the periodicity of simple random walk is missed in
the conjecture (1.6) .

Remark 1.4. (i) The idea of a dimension free concentration inequality (1.7) is inspired
by [14]. In [14], they obtain the sharp asymptotics of the critical curve for discrete
random pinning model by comparing the partition functions of the continuum
random pinning model under a similar assumption, that is they prove such an
exchange of the limits β → 0 and N → ∞. Actually, the techniques for random
pinning model are often applied to directed polymers in random environment. For
example, the coarse-graining argument and the fractional moment method used
in this paper are developed in the literature in random pinning model [41, 24] and
then applied to directed polymers in random environment [28].

(ii) A dimension free concentration inequality (1.7) is fairly general. It is known that
the following distribution satisfies (1.7).

(a) If η(n, x) is bounded, then (1.7) holds with g(t) = e−t
2

[30, Corollary 4.10].

(b) If the law of η(n, x) satisfies a log-Sobolev inequality (for example Gaussian
distribution), then (1.7) holds with g(t) = e−t

2

[30, Theorem 5.3, Corollary 5.7]

(c) If the law of η(n, x) has the probability density with cγ exp (−|x|γ), then (1.7)
holds with g(t) = e−|t|

γ

(γ ∈ [1, 2]) [30, Proposition 4.18, Proposition 4.19].

1.2 Organization of this paper

This paper is structured as follows:

• We first give the strategy of the proof of our main result in section 2.
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• Section 3 is devoted to prove the statements mentioned in section 2 related to
discrete directed polymers.

• Section 4 is also devoted to prove the statement mentioned in section 2 related to
continuum directed polymers.

• Section 5 is devoted to prove the propositions which are discussed in section 4.

• Appendix is devoted to some formulas on Gaussian heat kernels.

2 Proof of Theorem 1.1

In this section, we give the strategy of the proof of Theorem 1.1.

2.1 Proof of limit inferior

The proof of the limit inferior is simple.
From the definition of free energy (1.3), we have for any N ≥ 1

F (β) = sup
N≥1

1

N
Q[logWβ,N (η)] ≥ 1

N
Q[logWβ,N (η)].

By taking β = βn, N = bTβ−4
n c for n ≥ 1 and T > 0, we have that

1

bTβ−4
n c

Q
[
logWβn,bTβ−4

n c(η)
]
≤ F (βn)

i.e.

β−4
n

bTβ−4
n c

Q
[
logWβn,bTβ−4

n c(η)
]
≤ 1

β4
n

F (βn).

Thus, if
{

logWβn,bTβ−4
n c(η) : n ∈ N

}
is uniformly integrable, then we have from Theo-

rem 1.2 that

1

T
PZ
[
logZ√2(T )

]
≤ lim
n→∞

1

β4
n

F (βn).

Taking the limit in T , we have that

lim
T→∞

1

T
PZ
[
logZ√2(T )

]
≤ lim
n→∞

1

β4
n

F (βn). (2.1)

Therefore, it is enough to show the following lemmas.

Lemma 2.1. Suppose d = 1. We assume (1.7). Then, for each T > 0{
logWβn,bTβ−4

n c(η) : n ∈ N
}

is uniformly integrable.

Lemma 2.2. For β ∈ R, we have the limit

FZ(β) = lim
T→∞

1

T
PZ [logZβ(T )] = sup

T>0

1

T
PZ [logZβ(T )] . (2.2)

In particular, we have

FZ(β) = β4FZ(1) = −β
4

24
. (2.3)

We should take n = bβ−4
n c in general. However, we may consider alternatively

βn = n−
1
4

case without loss of generality. Throughout the rest of paper, we take βn = n−
1
4 .
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2.2 Proof of limit superior

The proof of the limit superior is more complicated than the one of the limit inferior.

We will give an idea of the proof. The basic technique is the coarse-graining argument
and the fractional moment method from [28].

It is clear by Jensen’s inequality that for each θ ∈ (0, 1), T ∈ N, and N ∈ N,

1

NT
Q [logWβn,NTn(η)] =

1

θNT
Q
[
logWβn,NTn(η)θ

]
≤ 1

θNT
logQ

[
Wβn,NTn(η)θ

]
. (2.4)

We will take the limit superior of both sides in N →∞, n→∞, T →∞, and then θ → 0

in this order. Then, it is clear that

lim
n→∞

1

β4
n

F (βn) ≤ lim
θ→0

lim
T→∞

lim
n→∞

lim
N→∞

1

θNT
logQ

[
Wβn,NTn(η)θ

]
.

We divide Z into the blocks with size of order n1/2: For y ∈ Z, we set

Bny =
[
(2y − 1)bn1/2c+ y, (2y + 1)bn1/2c+ y

]
.

We remark that {Bny : y ∈ Z} are disjoint and cover Z, that is

Bnx ∩Bny = ∅ if x 6= y and
⋃
y∈Z

Bny = Z.

For each ` ∈ N, we denote by Bny (`) the set of lattice points z ∈ Bny such that

z − ` ∈ 2Z,

that is the set of lattices in Bny which can be reached by random walk (S, PS) at time `.

We would like to estimate the right hand side in (2.4).

For θ ∈ (0, 1), we have that

Q
[
Wβn,NTn(η)θ

]
≤
∑
Z

Q
[
Ŵβn,NTn(η, Z)θ

]
,

where for Z = (z1, · · · , zN ) ∈ ZN ,

Ŵβn,NTn(η, Z)

= PS

[
NTn∏
i=1

ζi,Si(βn, η) : S`Tn ∈ Bnz`(`Tn) for all ` = 1, · · · , N

]

is the decomposition of partition function by the sequence of blocks where S passes
through for time k = Tni (i = 1, · · · , N ) and we have used the fact (a+ b)θ ≤ aθ + bθ for
a, b ≥ 0 and θ ∈ (0, 1). Then, we have from the Markov property and shift invariance of
the environment that

Q
[
W θ
βn,NTn(η)

]
≤

∑
z∈Z

Q

 max
x∈Bn0 (0)

P xS

[
Tn∏
i=1

ζi,Si(βn, η) : STn ∈ Bnz

]θN

. (2.5)
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Taking limit in N in (2.4) with (2.5), we have that

1

β4
n

F (βn) ≤ 1

θT
log
∑
z∈Z

Q

 max
x∈Bn0 (0)

P xS

[
Tn∏
i=1

ζi,Si(βn, η) : STn ∈ Bnz

]θ .
We will divide the summation in the right hand side into two parts |z| ≥ T 2 and

|z| < T 2.
For |z| < T 2, we bound each term by

Q

 max
x∈Bn0 (0)

P xS

[
Tn∏
i=1

ζi,Si(βn, η)

]θ .
which we may believe from Theorem 1.2 that it converges to PZ

[
sup

x∈[−1,1]

(
Zx√

2
(T )
)θ]

.

Indeed, we have the following lemma.

Lemma 2.3. We have that

lim
n→∞

Q

 max
x∈Bn0 (0)

P xS

[
Tn∏
i=1

ζi,Si(βn, η)

]θ = PZ

[
sup

x∈[−1,1]

(
Zx√

2
(T )
)θ]

.

Also, we should estimate
∑
|z|≥T 2

Q

 max
x∈Bn0 (0)

P xS

[
Tn∏
i=1

ζi,Si(βn, η) : STn ∈ Bnz

]θ. Since

Q

[
P xS

[
Tn∏
i=1

ζi,Si(βn, η) : STn ∈ Bnz

]]
= P xS (STn ∈ Bnz ),

we obtain by Hölder’s inequality that

Q

P xS
[
Tn∏
i=1

ζi,Si(βn, η) : STn ∈ Bnz

]θ ≤ P xS (STn ∈ Bnz )θ

which decays like exp(− |z|
2

T ) in |z| so we may believe that

∑
|z|≥T 2

Q

 max
x∈Bn0 (0)

P xS

[
Tn∏
i=1

ζi,Si(βn, η) : STn ∈ Bnz

]θ
decays like exp(− |T |

4

T ). Rigorously, we will confirm the followings.

Lemma 2.4. There exist some constant Cθ,1 > 0 and Cθ,2 > 0 which depends on θ such
that

∑
|z|≥T 2

Q

 max
x∈Bn0 (0)

P xS

[
Tn∏
i=1

ζi,Si(βn, η) : STn ∈ Bnz

]θ ≤ Cθ,1 exp(−Cθ,2T 3)

for any n ≥ 1.

Thus, we have that

lim
n→∞

1

β4
n

F (βn) ≤ 1

θT
log

(
Cθ,1 exp(−Cθ,2T 3) + 2T 2PZ

[
sup

x∈[−1,1]

(
Zx√

2
(T )
)θ])

.

The following result gives us an upper bound of the limit superior:
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Lemma 2.5. We have that

lim
θ→0

lim
T→∞

1

Tθ
logPZ

[
sup

x∈[−1,1]

(
Zx√

2
(T )
)θ]
≤ FZ(

√
2).

In the rest of the paper, we will prove the above lemmas.

3 Proof of Lemma 2.1, Lemma 2.3, and Lemma 2.4

I this subsection, we will give the proofs of lemmas related to directed polymers in
random environment.

3.1 Proof of Lemma 2.1

We takeRm as REn in the proof of Lemma 2.1 with En = {1, · · · , Tn}×{−Tn, · · · , Tn}
which contains all time-space points where simple random walk can reach up to time Tn.

Proof of Lemma 2.1. SinceWβn,Tn(η) is L2-bounded from Theorem 1.2, {log+Wβn,Tn(η) :

n ∈ N} is uniformly integrable so that it is enough to see that {log−Wβn,Tn(η) : n ∈ N}
is uniformly integrable, where we set

log+ x =

{
log x, x ∈ [1,∞)

0, x ∈ (0, 1)
, log− x =

{
0, x ∈ [1,∞)

− log x, x ∈ (0, 1)
.

The uniform integrability of {log−Wβn,Tn(η) : n ∈ N} is equivalent to

lim
M→∞

sup
n∈N

∫ ∞
M

Q(− logWβn,Tn(η) > t)dt = 0. (3.1)

We will prove (3.1) under the assumption (1.7).
When we look at Wβn,Tn(η) as the function of {η(i, x) : (i, x) ∈ En}, logWβn,Tn(η) is

differentiable and convex. Indeed, we have that

∂

∂η(i, x)
logWβn,Tn(η) =

1

Wβn,Tn(η)
PS

[
βn

Tn∏
k=1

ζk,Sk(βn, η) : Si = x

]

and for s ∈ [0, 1], for η = {η(i, x) : (i, x) ∈ En} and η′ = {η′(i, x) : (i, x) ∈ En},

Wβn,Tn(sη + (1− s)η′) = PS

[
Tn∏
k=1

ζk,Sk(βn, sη + (1− s)η′)

]
≤Wβn,Tn(η)sWβn,Tn(η′)1−s.

Thus, we can take f(η) = logWβn,Tn(η) in (1.7). Then, we have that

Q(logWβn,Tn(η) < a− t)

≤ Q(logWβn,Tn(η) > a, |∇ logWβn,Tn(η)| ≤ c)−1g

(
t

c

)
, a ∈ R, t, c ∈ (0,∞). (3.2)

We will set a = − log 2 and Proposition 3.1 below yields (3.1). Indeed, we have from
Proposition 3.1 and (3.2) that there exists C > 0 such that∫ ∞

M

Q(− logWβn,Tn(η) > t)dt ≤ C
∫ ∞
M+log 2

g

(
t

c

)
dt

which uniformly converges to 0 as M →∞.
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Free energy of 1 + 1 DPRE

Proposition 3.1. Suppose (1.7). Then, there exists some c > 0 such that{
Q

(
Wβn,Tn(η) >

1

2
, |∇ logWβn,Tn(η)| ≤ c

)−1

: n ∈ N

}
is bounded.

The idea of the proof comes from [15] and [32].

Proof. It is easy to see that

|∇ logWβn,Tn(η)|2 = β2
n

∑
(i,x)∈En

(
1

Wβn,Tn(η)
PS

[
Tn∏
k=1

ζk,Sk(βn, η) : Si = x

])2

= β2
n

∑
(i,x)∈En

µηβn,Tn(Si = x)2

= β2
n

(
µηβn,Tn

)⊗2

[]{1 ≤ i ≤ Tn : Si = S′i}] ,

where µηβ,n is the probability measure on the simple random walk paths defined by

µηβ,n(s) =
1

Wβ,n(η)
exp

(
β

n∑
i=1

η(i, si)− nλ(β)

)
PS(S[0,n] = s)

for s = (s0, s1, · · · , sn) ∈ Zn+1,
(
µηβn,Tn

)⊗2

is the product probability measure of µηβn,Tn,

and S and S′ are two independent directed polymers each of whose law is µηβn,Tn.
We write

Ln(s, s′) = ]{1 ≤ i ≤ n : si = s′i}

for s = (s1, · · · , sn) and s′ = (s′1, · · · , s′n) ∈ Zn.
We define the event An on the environment by

An =

{
η : Wβn,Tn(η) ≥ 1

2
, β2

n

(
µηβn,Tn

)⊗2

[LTn(S, S′)] ≤ C1

}
for some C1 > 0 which we will take large enough later. We claim that for C1 > 0 large
enough, there exists a constant δ > 0 such that

Q(An) > δ (3.3)

for all n ≥ 1.
We observe that

Q(An) = Q

({
η : Wβn,Tn(η) ≥ 1

2

})
−Q

({
η : Wβn,Tn(η) ≥ 1

2
, β2

n

(
µηβn,Tn

)⊗2 [
LbTn(S, S′)

]
> C1

})
≥ Q

({
η : Wβn,Tn(η) ≥ 1

2

})
−Q

({
η : PS,S′

[
β2
nLTn(S, S′)

Tn∏
i=1

ζi,Si(βn, η)ζi,Si(βn, η)

]
>
C1

4

})

≥ Q
({

η : Wβn,Tn(η) ≥ 1

2

})
− 4

C1
Q

[
PS,S′

[
β2
nLTn(S, S′)

Tn∏
i=1

ζi,Si(βn, η)ζi,S′i(βn, η)

]]
, (3.4)

EJP 24 (2019), paper 50.
Page 10/43

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP292
http://www.imstat.org/ejp/


Free energy of 1 + 1 DPRE

where we have used the Chebyshev’s inequality and (S′, PS′) is the simple random walk
on Z starting from the origin and PS,S′ is the product measure of PS and PS′ .

Recalling that Q [Wβn,Tn(η)] = 1, Paley-Zygmund’s inequality yields that

Q

({
η : Wβn,Tn(η) ≥ 1

2

})
= Q

({
η : Wβn,Tn(η) ≥ 1

2
Q [Wβn,Tn(η)]

})
≥ 1

4

(Q [Wβn,Tn(η)])
2

Q [Wβn,Tn(η)2]

=
1

4

1

Q [Wβn,Tn(η)2]
.

The L2-boundedness of Wβn,Tn(η) (see Theorem 1.2) implies that there exists C2 > 0

such that for all n ≥ 1

Q
[
Wβn,Tn(η)2

]
≤ C2.

Hence, we have that for all n ≥ 1

Q

({
η : Wβn,Tn(η) ≥ 1

2

})
≥ 1

4C2
. (3.5)

By Fubini’s theorem, we have that

Q

[
PS,S′

[
β2
nLTn(S, S′)

Tn∏
i=1

ζi,Si(βn, η)ζi,S′i(βn, η)

]]
= PS,S′

[
β2
nLTn(S, S′) exp ((λ(2βn)− 2λ(βn))LTn(S, S′))

]
and

Q
[
Wβn,Tn(η)2

]
= Q

[
PS,S′

[
Tn∏
i=1

ζi,Si(βn, η)ζi,S′i(βn, η)

]]
= PS,S′ [exp ((λ(2βn)− 2λ(βn))LTn(S, S′))] .

We will see that there exists a constant r > 0 such that

PS,S′
[
β2
nLTn(S, S′) exp ((λ(2βn)− 2λ(βn))LTn(S, S′))

]
≤ Q

[
Wrβn,Tn(η)2

]
(3.6)

for any n large enough. If (3.6) holds, then the L2-boundedness of Wβn,Tn(η) also implies
that there exists C3 > 0 such that

Q

[
PS,S′

[
β2
nLTn(S, S′)

Tn∏
i=1

ζi,Si(βn, η)ζi,S′i(βn, η)

]]
≤ C3

and combining this with (3.4) and (3.5), we have that

Q(η ∈ An) ≥ 1

4C2
− 4C3

C1

and we obtain (3.3) by taking C3 > 0 large enough.
Since

λ(2βn)− 2λ(βn)

β2
n

→ λ′′(0) = 1,
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we have that

β2
n ≤ 2 (λ(2βn)− 2λ(βn))

for n large enough and hence it holds by the fact ex ≥ x for x ∈ R that

PS,S′
[
β2
nLTn(S, S′) exp ((λ(2βn)− 2λ(βn))LTn(S, S′))

]
≤ PS,S′ [exp (3 (λ(2βn)− 2λ(βn))LTn(S, S′))]

for any n large enough. Also, we have

λ(2rβn)− 2λ(rβn)

λ(2βn)− 2λ(βn)
→ r2

as n→∞ for r > 0 and hence (3.6) follows.

3.2 Proof of Lemma 2.3

We define for x, y ∈ Z

W x
β,n(η) = P xS

[
n∏
k=1

ζk,Sk(β, η)

]
, W x

β,n(η, y) = P xS

[
n∏
k=1

ζk,Sk(β, η) : Sn = y

]

and for u ∈ [−1, 1]

fn(u) := Wun1/2

βn,Tn(η) =

{
Wun1/2

βn,Tn
(η), un1/2 ∈ Bn0 (0)

linear interpolation, otherwise.

Since the finite dimensional distributions
{
W xin

1/2

βn,Tn
(η) : 1 ≤ i ≤ m

}
for

x1n
1/2, · · · , xmn1/2 ∈ Bn0 (0) converge to

{
Zxi√

2
(T ) : 1 ≤ i ≤ m

}
(see [2, Section 6.2]), the

tightness of {fn(x)θ : x ∈ [−1, 1]} in C[−1, 1] and Lp-boundedness of max
x∈Bn0 (0)

W x
βn,Tn(η)θ

for some p > 1 imply Lemma 2.3.

We will use Garsia-Rodemich-Rumsey’s lemma [36, Lemma A.3.1] many times through-
out this paper.

Lemma 3.2. Let φ : [0,∞) → [0,∞) and Ψ : [0,∞) → [0,∞) be continuous and strictly
increasing functions satisfying

φ(0) = Ψ(0) = 0, lim
t→∞

Ψ(t) =∞.

Let f : Rd → R be a continuous function. Provided

Γ =

∫
Br(x)

∫
Br(x)

Ψ

(
|f(t)− f(s)|
φ(|t− s|)

)
dsdt <∞,

where Br(x) is an open ball in Rd centered at x with radius r, then for all s, t ∈ Br(x),

|f(t)− f(s)| ≤ 8

∫ 2|t−s|

0

Ψ−1

(
4d+1Γ

λdu2d

)
φ(du),

where λd is a universal constant depending only on d.
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Applying Lemma 3.2 with Ψ(x) = |x|p, φ(u) = uq for p ≥ 1, q > 0 and pq > 2d, we have
that

|f(t)− f(s)| ≤ 2
2
p+q+3q

λ
1
p

d

(
q − 2d

p

) |t− s|q− 2d
p

(∫
Br(x)

∫
Br(x)

(
|f(v)− f(w)|
|v − w|q

)p
dvdw

) 1
p

(3.7)

for t, s ∈ Br(x) (r > 0). In particular, if t, s ∈ Br(x) satisfies |t − s| < δ for some δ > 0,
then

|f(t)− f(s)| ≤ Cp,q,d|δ|q−
2d
p

(∫
Br(x)

∫
Br(x)

(
|f(v)− f(w)|
|v − w|q

)p
dvdw

) 1
p

(3.8)

and hence

sup
t∈Br(x)

|f(t)| ≤ |f(x)|+ Cp,q,dr
q− 2d

p

(∫
Br(x)

∫
Br(x)

(
|f(v)− f(w)|
|v − w|q

)p
dvdw

) 1
p

. (3.9)

Proof of Lemma 2.3. It is enough to show the tightness of
{
fn(x)θ : x ∈ [−1, 1]

}
in

C[−1, 1] and L2/θ-boundedness of max
x∈[−1,1]

W xn1/2

βn,Tn(η)θ.

We apply (3.7) to fn(u)θ. Then, it follows that

max
x∈Bn0 (0)

(
W x
βn,Tn(η)

)θ ≤ (Wβn,Tn(η))
θ

+ Cp,qBp,q,n,θ, (3.10)

where

Bp,q,n,θ =

(∫ 1

−1

∫ 1

−1

(
|fn(v)θ − fn(w)θ|

|v − w|q

)p
dvdw

) 1
p

.

We have the following proposition whose proof will be given in the end of this
subsection.

Proposition 3.3. For p =
5

θ
> 1, there exist CT,θ > 0 and ηp,θ =

pθ

2
=

5

2
such that

Q
[
|fn(v)θ − fn(w)θ|p

]
≤ CT,θ|v − w|ηp,θ , (3.11)

for v, w ∈ [−1, 1].

To prove Lemma 2.3, we set p =
5

θ
> 1, q =

2θ

3
> 0 with pq =

10

3
> 2 and

ηp,θ =
pθ

2
=

5

2
which satisfies ηp,θ − pq = −5

6
> −1 in the following.

Tightness of
{
fn(x)θ : x ∈ [−1, 1]

}
in C[−1, 1]: It follows from (3.8) and (3.11) that for

any δ > 0

Q

 sup
t,s∈[−1,1]
|t−s|<δ

∣∣fn(t)θ − fn(s)θ
∣∣


≤ Cp,q,1|δ|q−
2
p

(∫ 1

−1

∫ 1

−1

Q

[(
|fn(v)θ − fn(w)θ|

|v − w|q

)p]
dvdw

) 1
p

≤ CT,θ,1|δ|q−
2
p
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and hence, we have from the L2-boundedness of fn(0) that for any ε > 0

lim
δ→0

sup
n≥1

Q

 sup
t,s∈[−1,1]
|t−s|<δ

∣∣fn(t)θ − fn(s)θ
∣∣ > ε

 = 0

and

lim
λ→∞

sup
n≥1

Q
(
fn(0)θ > λ

)
= 0

so that the tightness of
{
fn(x)θ : x ∈ [−1, 1]

}
in C[−1, 1] holds (see [27, Chapter 2, Theo-

rem 4.10]).
L2/θ-boundedness of maxx∈[−1,1]W

xn1/2

βn,Tn
(η)θ: It follows from (3.10) that

Q

[(
max

x∈Bn0 (0)

(
W x
βn,Tn(η)

)θ)2/θ
]θ/2

≤ Q
[(

(Wβn,Tn(η))
θ
)2/θ

]θ/2
+ Cp,qQ

[
B

2/θ
p,q,n,θ

]θ/2
.

The first term in the right hand side is bounded from Theorem 1.2. Also, we have from
Proposition 3.3 that

Q
[
B

2/θ
p,q,n,θ

]θ/2
= Q

(∫ 1

−1

∫ 1

−1

(
|fn(v)θ − fn(w)θ|

|v − w|q

)p
dvdw

) θ
5

2
θ

 θ
2

≤ Q
[(∫ 1

−1

∫ 1

−1

(
|fn(v)θ − fn(w)θ|

|v − w|q

)p
dvdw

)] θ
5

≤ CT,θ,2.

Thus, the L2/θ-boundedness of maxx∈[−1,1]W
xn1/2

βn,Tn
(η)θ follows and therefore Lemma 2.3

follows.

Proof of Proposition 3.3. We remark that

|fn(t)θ − fn(s)θ| ≤
∣∣∣W tn1/2

βn,Tn(η)−W sn1/2

βn,Tn(η)
∣∣∣θ ,

where we have used that (x+ y)θ ≤ xθ + yθ for x ≥ 0, y ≥ 0 so that for p ≥ 1,

Q
[
|fn(t)θ − fn(s)θ|p

]
≤ Q

[∣∣∣W tn1/2

βn,Tn(η)−W sn1/2

βn,Tn(η)
∣∣∣pθ] .

First, we will estimate

Q

[∣∣∣W x
βn,Tn(η)−W y

βn,Tn
(η)
∣∣∣2] ,

for x, y ∈ Bn0 (0). When we define i.i.d. random variables by

en(k, x) = exp (βnη(k, x)− λ(βn))− 1, (k, x) ∈ N×Z,

we find that

Q[en(k, x)] = 0, and
Q
[
en(k, x)2

]
β2
n

=
e(λ(2βn)− 2λ(βn))− 1

β2
n

→ 1. (3.12)
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Then, we can write

W x
βn,Tn(η) = P xS

[
Tn∏
i=1

(1 + en(i, Si))

]

= 1 +

Tn∑
k=1

∑
1≤i1<···<ik≤Tn

∑
x∈Zk

k∏
j=1

pij−ij−1(xj − xj−1)en(ij , xj)

=

Tn∑
k=0

Θ(k)(x),

where pn(y) = PS(Sn = y) for (n, y) ∈ N×Z, x0 = x, x = (x1, · · · , xk), and

Θ(k)(x) =


1, k = 0∑
1≤i1<···<ik≤Tn

∑
x∈Zk

k∏
j=1

pij−ij−1
(xj − xj−1)en(ij , xj), k ≥ 1.

Then, it is easy to see that

Q
[
Θ(k)(x)

]
= 0, k ≥ 1

and

Q
[
Θ(k)(x)Θ(`)(y)

]
= 0, k 6= `, x, y ∈ Z.

Thus, we have that

Q

[∣∣∣W x
βn,Tn(η)−W y

βn,Tn
(η)
∣∣∣2]

=

Tn∑
k=1

Q

[(
Θ(k)(x)−Θ(k)(y)

)2
]

=

Tn∑
k=1

(
Q[en(0, 0)2]

)k ∑
1≤i1<···<ik≤Tn

∑
x∈Zk

(pi1(x, x1)− pi1(y, x1))2
k∏
j=2

pij−ij−1
(xj−1, xj)

2,

where pn(x, y) = P xS (Sn = y) for x, y ∈ Zd.
Combining (3.12) with the fact that for k ≥ 1

1

nk/2

∑
1≤i1<···<ik≤Tn

∑
x∈Zk

k∏
j=1

pij−ij−1
(xj − xj−1)2 ≤ Ck4T

k/2

Γ
(
k
2 + 1

) ,
where Γ(s) is a Gamma function at s > 0 [2, Section 3.4 and Lemma A.1], we have

Q

[(
Θ(k)(x)−Θ(k)(y)

)2
]

≤
Tn∑
i=1

∑
z∈Z

(pi(z − x)− pi(z − y))2Q[en(0, 0)2]
Ck−1

5 T
k−1
2

Γ
(
k−1

2 + 1
)

= 2Q[en(0, 0)2]
Ck−1

5 T
k−1
2

Γ
(
k−1

2 + 1
) ∑

1≤i≤Tn

(p2i(0)− p2i(x− y)).
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Since we know that there exists a constant c > 0 such that for all i ≥ 1 and x, y ∈ Z
with y ∈ 2Z,

|pi(x+ y)− pi(x)| ≤ c|y|
i3/2

+
2√
2πi

∣∣∣∣exp

(
− (x+ y)2

2i

)
− exp

(
−x

2

2i

)∣∣∣∣ (3.13)

(see [29, Theorem 2.3.6]) and in particular for the case x = 0,

|p2i(0)− p2i(y)| ≤ 1√
πi

∣∣∣∣1− exp

(
−y

2

4i

)∣∣∣∣ ≤ 1√
πi

(
y2

i
∧ 1

)
, (3.14)

we have that

∞∑
i=1

|p2i(0)− p2i(y)| ≤ c|y|

and therefore

Q

[(
Θ(k)(x)−Θ(k)(y)

)2
]
≤ C

∣∣∣∣x− y√n
∣∣∣∣ Ck−1

5 T
k−1
2

Γ
(
k−1

2 + 1
) (3.15)

and

Q

[∣∣∣W x
βn,Tn(η)−W y

βn,Tn
(η)
∣∣∣2] ≤ CT,1 ∣∣∣∣x− y√n

∣∣∣∣ ,
for x, y ∈ Bn0 (0), where we remark that

CT,1 = C
∑
k≥1

Ck−1
5 T

k−1
2

Γ(k−1
2 + 1)

.

Now, we would like to estimate

Q

[∣∣∣W tn1/2

βn,Tn(η)−W sn1/2

βn,Tn(η)
∣∣∣pθ]

for pθ ≥ 2, s, t ∈ [−1, 1] with sn1/2, tn1/2 ∈ Bn0 (0).
Then, the hypercontractivity established in [33, Proposition 3.11, Proposition 3.12,

and Proposition 3.16] allows us to estimate

Q

[∣∣∣W tn1/2

βn,Tn(η)−W sn1/2

βn,Tn(η)
∣∣∣pθ] .

Indeed,

Q

[∣∣∣W tn1/2

βn,Tn(η)−W sn1/2

βn,Tn(η)
∣∣∣pθ]1/pθ

= Q

∣∣∣∣∣
Tn∑
k=1

(
Θ(k)(tn1/2)−Θ(k)(sn1/2)

)∣∣∣∣∣
pθ
1/pθ

≤
Tn∑
k=1

Q

[∣∣∣Θ(k)(tn1/2)−Θ(k)(sn1/2)
∣∣∣pθ]1/pθ

≤
Tn∑
k=1

κkpθ

(
Q

[(
Θ(k)(tn1/2)−Θ(k)(sn1/2)

)2
]1/2

)
,
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where κpθ = 2
√
pθ − 1 sup

n≥1

Q[en(0, 0)pθ]1/pθ

Q[en(0, 0)2]1/2
<∞. κpθ is finite since

lim
n→∞

1

βn
Q
[
|en(0, 0)|pθ

]1/pθ
= Q

[
|η(0, 0)|pθ

]1/pθ
.

We obtain from (3.15)

Q

[∣∣∣W tn1/2

βn,Tn(η)−W sn1/2

βn,Tn(η)
∣∣∣pθ] ≤

≤ CT,p,θ|t− s|
pθ
2 ,

where we have used the fact that there exists a constant c, C ∈ (0,∞) such that for x ≥ 1

4

c22xx1/2Γ(x)2 ≤ Γ(2x) ≤ C22xx1/2Γ(x)2 (3.16)

which is a conclusion of the Stirling’s formula [5, (3.9)]

Γ(x) =
√

2πxx−
1
2 e−x+ θx

12x , as x→∞, θx ∈ (0, 1) .

Thus, we find that for p ≥ 2
θ

ηp,θ =
pθ

2

in (3.11). Therefore, the proof completed when we take p =
5

θ
and q =

2θ

3
.

3.3 Proof of Lemma 2.4

The idea is the same as the proof of Lemma 2.3.

Proof of Lemma 2.4. For x ∈ B0(0), we set

W x
β,Tn(η,A) =

∑
y∈A

P xS

[
Tn∏
k=1

ζk,Sk(β, η) : STn = y

]

for A ⊂ Z and also, we regard
{
fn,A(u) = Wun1/2

β,Tn (η,A) : u ∈ [−1, 1]
}

as a continuous

function on [−1, 1] in a similar manner to fn(u).

It follows by the same argument as the proof of Lemma 2.3 that for p =
5

θ
, q =

2θ

3
,

and z ∈ Z

Q

max
x∈Bn0

 ∑
w∈Bnz

W x
βn,Tn(η, w)

θ
 ≤ Q [(Wβn,Tn(η,Bnz ))

θ
]

+ Cp,qQ [Bp,q,n,θ,z,T ]

≤

∑
y∈Bnz

pTn(y)

θ

+ Cp,qQ [Bp,q,n,θ,z,T ] ,

where

Bp,q,n,θ,z,T =

(∫ 1

−1

∫ 1

−1

∣∣fn,Bnz (u)θ − fn,Bnz (v)θ
∣∣p

|u− v|pq
dudv

)1/p

,
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whose expectation is finite (see Proposition 3.4 below).
Since ∑

w∈Bnz

pTn(x,w) ≤ P (STn ≥ |2|z| − 2|n1/2) ≤ exp

(
− (2|z| − 2)2

T

)
(3.17)

for x ∈ B0(0) and for |z| ≥ T 2, we have that

∑
|z|≥T 2

∑
y∈Bnz

pTn(y)

θ

≤ Cθ,3 exp
(
−Cθ,4T 3

)
.

Combining this with Proposition 3.4, the proof has been completed.

Proposition 3.4. For p =
5

θ
> 1 and η′p,θ =

9

2
, there exist Cθ,5 > 0, Cθ,6 > 0 such that

Q
[∣∣fn,Bnz (u)θ − fn,Bnz (v)θ

∣∣p] ≤ Cθ,5|u− v|η′p,θ exp

(
−Cθ,6|z|

2

T

)
, (3.18)

for u, v ∈ [−1, 1].

In particular, for p =
5

θ
> 1, q =

2θ

3
> 0, there exist Cθ,7 > 0 and Cθ,8 > 0 such that

Q [Bp,q,n,θ,z,T ] ≤ Cθ,7 exp

(
−Cθ,8|z|

2

T

)
.

Proof of Proposition 3.4. We know that∣∣fn,Bnz (u)θ − fn,Bnz (v)θ
∣∣ ≤ ∣∣∣Wun1/2

βn,Tn(η,Bnz )−W vn1/2

βn,Tn(η,Bnz )
∣∣∣θ .

as the proof of Proposition 3.3. In the following, we will estimate

Q

[∣∣∣Wun1/2

βn,Tn(η,Bnz )−W vn1/2

βn,Tn(η,Bnz )
∣∣∣pθ] .

We write

W x
βn,Tn(η, w)

= P xS

[
Tn∏
i=1

(1 + en(i, Si)) : STn = w

]
= pTn(w − x)

+

Tn∑
k=1

∑
1≤i1<···<ik≤Tn

∑
x∈Zk

(
k∏
i=1

pij−ij−1(xi − xj−1)en(ij , xj)

)
pTn−ik(w − xk)

=

Tn∑
k=0

Θ(k)(x,w),

where

Θ(k)(x,w)

=


pTn(x,w), k = 0

Tn∑
k=1

∑
1≤i1<···<ik≤Tn

∑
x∈Zk

(
k∏
i=1

pij−ij−1
(xi − xj−1)en(ij , xj)

)
pTn−ik(w − xk), k ≥ 1.
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where we set i0 = 0 and x0 = x.

Then, we have that

Q
[
Θ(k)(x,w)

]
= 0, k ≥ 1

Q
[
Θ(k)(x, y)Θ(`)(z, w)

]
= 0, k 6= `.

Hence,

 ∑
w∈Bnz

(Θ(0)(x,w)−Θ(0)(y, w))

2

=

 ∑
w∈Bnz

(pTn(w − x)− pTn(w − y))

2

≤

 ∑
w∈Bnz

|pTn(w − x)− pTn(w − y)|

 ∑
w∈Bnz

(pTn(w − x) + pTn(w − y))


and (3.13) implies that for u, v ∈ [−1, 1] with v < u and for z ≥ T 2

∑
w∈Bnz

∣∣∣pTn(w − un1/2)− pTn(w − vn1/2)
∣∣∣

≤
∑
w∈Bnz

c|u− v|n1/2

(Tn)3/2

+
∑
w∈Bnz

2√
2πTn

exp

(
− (un1/2 − w)2

2Tn

)(
1− exp

(
− (u− v)(2w − un1/2 − vn1/2)

2Tn1/2

))

≤ c |u− v|
T 3/2n1/2

+
2√

2πTn

∑
w∈Bnz

exp

(
− (un1/2 − w)2

2Tn

)
(u− v)(2w − un1/2 − vn1/2)

2Tn1/2

≤ c |u− v|
T 3/2n1/2

+
4|u− v|√

2πT
exp

(
−|z − 1|2

2T

)
2z + 4

2T

= CT,2|u− v|,

where CT,2 → 0 as T → ∞. The same argument holds for u < v or for z ≤ −T 2.
Combining this with (3.17), we have that for u, v ∈ [−1, 1] and |z| ≥ T 2

 ∑
w∈Bnz

(Θ(0)(un
1
2 , w)−Θ(0)(vn

1
2 , w))

2

≤ CT,2|u− v|

 ∑
w∈Bnz

(
pTn(w − un 1

2 ) + pTn(w − vn 1
2 )
)

≤ 2CT,2|u− v| exp

(
− (2|z| − 2)2

T

)
.
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Also, we have that for k ≥ 1

Q


 ∑
w∈Bnz

(Θ(k)(un
1
2 , w)−Θ(k)(vn

1
2 , w))

2


= Q[en(0, 0)2]k
∑

1≤i1<···<ik≤Tn

∑
x∈Zk

(pi1(x1 − un
1
2 )− pi1(x1 − vn

1
2 ))2

(
k∏
i=2

pij−ij−1
(xj − xj−1)2

) ∑
w∈Bnz

pTn−ik(w − xk)

2

≤ Q[en(0, 0)2]k
∑

1≤i1<···<ik≤Tn

(p2i1(0)− p2i1(n
1
2 (u− v)))

k∏
i=2

p2(ij−ij−1)(0)

≤ C|u− v| C
k−1
5 T

k−1
2

Γ
(
k−1

2 + 1
)

as the proof of Lemma 2.3.

Hence, we obtain by Hölder’s inequality that for p = 5
θ

Q

[∣∣∣∣Wun
1
2

βn,Tn(η,Bnz )−W vn
1
2

βn,Tn(η,Bnz )

∣∣∣∣pθ
]

≤ Q

[∣∣∣∣Wun
1
2

βn,Tn(η,Bnz )−W vn
1
2

βn,Tn(η,Bnz )

∣∣∣∣ 92 ∣∣∣∣Wun
1
2

βn,Tn(η,Bnz ) +W vn
1
2

βn,Tn(η,Bnz )

∣∣∣∣ 12
]

≤ Q

[∣∣∣∣Wun
1
2

βn,Tn(η,Bnz )−W vn
1
2

βn,Tn(η,Bnz )

∣∣∣∣9
] 1

2

Q

[
Wun

1
2

βn,Tn(η,Bnz ) +W vn
1
2

βn,Tn(η,Bnz )

] 1
2

≤ CT,3|u− v|9/2
 ∑
w∈Bnz

(pTn(un
1
2 , w) + pTn(vn

1
2 , w))

 1
2

≤
√

2CT,3|u− v|9/2 exp

(
−2||z| − 1|2

T

)
where we have used the hypercontractivity as the proof of Lemma 2.3. In particular,
CT,3 is given by

C

∑
k≥1

κk9

(
Ck−1

5 T
k−1
2

Γ(k−1
2 + 1)

)1/2
9

and we can find from (3.16) that CT,3 is independent of the choice of z and

lim
T→∞

1

T
logCT,3 ≤ C <∞.

Thus, we have that there exist Cθ,5 > 0 and Cθ,6 > 0

Q
[∣∣fn,Bnz (u)θ − fn,Bnz (v)θ

∣∣p] ≤ Cθ,5|u− v|9/2 exp

(
−Cθ,6|z|

2

T

)
for u, v ∈ [−1, 1].
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Also, when we take p =
5

θ
> 1, q =

2θ

3
> 0 with pq =

10

3
> 2 in (3.8), there exist

Cθ,7 > 0, Cθ,8 > 0 and η′p,θ =
9

2
which satisfies η′p,θ − pq =

7

6
> −1 so that

Q[Bp,q,n,θ,z,T ] ≤ Q
[
Bpp,q,n,θ,z,T

]1/p

=


∫ 1

−1

∫ 1

−1

Q

[∣∣∣∣Wun
1
2 ,

βn,Tn
(η,Bnz )−W vn

1
2 ,

βn,Tn
(η,Bnz )

∣∣∣∣pθ
]

|u− v|pq
dudv


1/p

≤ Cθ,7 exp

(
−Cθ,8|z|

2

T

)
.

4 Continuum directed polymers

To prove Lemma 2.2 and Lemma 2.5, we recall the property of continuum directed
polymers.

4.1 Continuum directed polymers

The mild solution to stochastic heat equation

∂tZ =
1

2
∆Z + βZẆ, lim

t↘0
Z(t, y)dy = δx(dy)

has the following representation using Wiener chaos expansion: For x, y ∈ R

Zxβ (T, y) = ρT (x, y)

+
∑
n≥1

βn
∫

∆n(0,T )

∫
Rn
ρρρn(t,x|0, x;T, y)W(dt1dx1) · · ·W(dtndxn),

where we set

ρt(x, y) = ρt(x− y) =
1√
2πt

exp

(
− (x− y)2

2t

)
, t > 0, x, y ∈ R,

and

ρρρ1(t1, x1|s, x; t, y) = ρt1−s(x, x1)ρt−t1(x1, y)

ρρρn(t,x|s, x; t, y) = ρt1−s(x, x1)

(
n−1∏
i=1

ρti+1−ti(xi, xi+1)

)
ρt−tn(xn, y)

for x, y ∈ R, x = (x1, · · · , xn) ∈ Rn, 0 ≤ s < t and for

t ∈ ∆n(s, t) = {t = (t1, · · · , tn) : s < t1 < · · · < tn < t}.

Also, we define the four parameter field by

Zβ(s, x; t, y) = ρt−s(x, y)

+
∑
n≥1

βn
∫

∆n(s,t)

∫
Rn
ρρρn(t,x|s, x; t, y)W(dt1dx1) · · ·W(dtndxn),
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for 0 ≤ s < t <∞ and for x, y ∈ R.

Also, we define

Z(s,x)
β (t) =

∫
R

Zβ(s, x; t, y)dy, for 0 ≤ s < t <∞, x ∈ R.

We write

Zβ(t, x) = Zβ(0, 0; t, x), Zβ(t) = Z(0,0)
β (t), and Zxβ = Z(0,x)

β (t)

for t > 0 and x ∈ R.

We denote by PZ the probability measure on the white noiseW on [0,∞)×R.

Then, we have the following fact [1, Theorem 3.1]:

Theorem 4.1. There exists a version of the field Zβ(s, x; t, y) which is jointly continuous
in all four variables and have the following properties:

(i) PZ [Zβ(s, x; t, y)] = ρt−s(y − x).

(ii) (Stationary): Zβ(s, x; t, y)
d
= Zβ(s+ u0, x+ z0; t+ u0, y + z0).

(iii) (Scaling): Zβ(r2s, rx; r2t, ry)
d
=

1

r
Zβ√r(s, x; t, y).

(iv) (Positivity): With probability one, Zβ(s, x; t, y) is strictly positive for all tuples
(s, x; t, y) with 0 ≤ s < t.

(v) The law of
Zβ(s, x; t, y)

ρt−s(y − x)
does not depend on x or y.

(vi) It has an independent property among disjoint time intervals: for any finite
{(s1, ti]}ni=1 and any xi, yi ∈ R, the random variables {Zβ(si, xi; ti, yi)}ni=1 are mutu-
ally independent.

(vii) (Chapman-Kolmogorov equations): With probability one, for all 0 ≤ s < r < t

and x, y ∈ R,

Zβ(s, x; t, y) =

∫
R

Zβ(s, x; r, z)Zβ(r, z; t, y)dz.

We remark that by Fubini’s theorem with Theorem 4.1 (i) and (iv)

PZ [Zβ(t)] = 1

for t > 0. Also, Theorem 4.1 (iii) implies that for any t > 0, x ∈ R, β ∈ R, r > 0

Zβ(0, 0, r2t, rx)

ρr2t(rx)

d
=
Zβ√r(0, 0, t, x)

ρt(x)
(4.1)

The following is a corollary of [4, Theorem 1.1].

Theorem 4.2.
1

T
logZ1(T, 0) converges to − 1

4!
in probability as T →∞.

Also, the following is the result obtained by Moreno [32]:

Corollary 4.3. For any β ≥ 0, t > 0, x ∈ R and p ≥ 1, we have that
(
Z√2(t)

)−1 ∈ Lp and(
Z√2(t, x)

)−1 ∈ Lp.
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4.2 Proof of Lemma 2.2 and Lemma 2.5

We can apply some techniques of discrete directed polymers in random environment
to continuum directed polymer. The proof of the following lemma is such an example.
Actually, the proof is analogous to the concentration inequality of DPRE [19, Proposition
1.5] and [31].

Lemma 4.4. We have that for β > 0

lim
θ→0

lim
T→∞

1

Tθ
logPZ

[
(Zβ(T ))

θ
]
≤ FZ(β).

To prove Lemma 4.4, we use the following lemma.

Lemma 4.5. ([31, Theorem 2.1]) Let (Ω,F , P ) be a probability space. Let {Xi : 1 ≤ i ≤
n} be a finite sequence of supermartingale differences with filtration Fi with F0 = {∅,Ω}.
If for some constant K > 0 and all i ∈ {1, · · · , n},

P
[
e|Xi|

∣∣∣Fi−1

]
≤ K, a.s., (4.2)

then

P
[
etSn

]
≤ exp

(
t2Kn

1− t

)
, for all t ∈ (0, 1),

and

P

(
Sn
n
> x

)
≤ exp

(
−
(√

x+K −
√
K
)2
)
, for all x > 0,

where S0 = 0 and for i ∈ {1, · · · , n}, Si = Si−1 +Xi.

Proof of Lemma 4.4. It is enough to show that there exists a K = Kβ > 0 such that

PZ [exp (θ (logZβ(T )− PZ [logZβ(T )]))] ≤ exp

(
Tθ2K

1− |θ|

)
. (4.3)

for |θ| ∈ (0, 1).
We define σ-field

Fi = σ [W(t, x) : 0 ≤ t ≤ i, x ∈ R]

F̃i = σ [W(t, x) : t 6∈ [i− 1, i] , x ∈ R] .

Then, we write

logZβ(T )− PZ [logZβ(T )] =

T∑
i=1

V Ti ,

where

V Ti = PZ [ logZβ(T )| Fi]− PZ [ logZβ(T )| Fi−1]

are martingale differences. Thus, it is enough to check (4.2) for {V Ti : 1 ≤ i ≤ T}. Here,
we introduce new random variables

Ẑβ(i, T ) = PZ

[
Zβ(T )| F̃i

]
=

∫
R2

Zβ (i− 1, x) ρ1(x, y)Z(i,y)
β (T ) dxdy.
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Since it is clear that

PZ

[
log Ẑβ(i, T )

∣∣∣Fi−1

]
= PZ

[
log Ẑβ(i, T )

∣∣∣Fi] ,
we have

V Ti = PZ

[
log
Zβ(T )

Ẑβ(i, T )

∣∣∣∣∣Fi
]
− PZ

[
log
Zβ(T )

Ẑβ(i, T )

∣∣∣∣∣Fi−1

]

Also, we consider a new probability measure on R2 by

µ
(i)
T (x, y) dxdy

=
1

Ẑβ(i, T )
Zβ (i− 1, x) ρ1(x, y)Z(i,y)

β (T ) dxdy.

We should remark that {µ(i)
T (x, y) : (x, y) ∈ R2} is F̃i-measurable.

Then, it is clear that

Zβ(T )

Ẑβ(i, T )
=

∫
R2

Zβ (i− 1, x; i, y)

ρ1(x, y)
µ

(i)
T (x, y)dxdy,

and

PZ

[
Zβ(T )

Ẑβ(i, T )

∣∣∣∣∣Fi−1

]
= PZ

[
PZ

[
Zβ(T )

Ẑβ(i, T )

∣∣∣∣∣ F̃i
]∣∣∣∣∣Fi−1

]
= 1.

Thus, Jensen’s inequality implies from Theorem 4.1 (ii) and (iv) that

0 ≤ −PZ

[
log
Zβ(T )

Ẑβ(i, T )

∣∣∣∣∣Fi−1

]
≤ −PZ

[
log
Zβ (0, 0; 1, 0)

p1(0)

]
≤ C6,

where we have used that

−PZ
[
log
Zβ (0, 0; 1, 0)

pt(0)

]
≤ C6

(see Corollary 4.3).
Thus, we have from Jensen’s inequality that

PZ [ exp (Vi(T ))| Fi−1] ≤ eC6PZ

[
PZ

[
Zβ(T )

Ẑβ(i, T )

∣∣∣∣∣Fi
]∣∣∣∣∣Fi−1

]
= eC6 .

Also, Jensen’s inequality implies that

PZ [ exp (−Vi(T ))| Fi−1] ≤ PZ

[
PZ

[
Ẑβ(i, T )

Zβ(T )

∣∣∣∣∣Fi
]∣∣∣∣∣Fi−1

]

≤ PZ

[
PZ

[∫
R2

(
Zβ (i− 1, x; i, y)

ρ1(x, y)

)−1

µ
(i)
T (x, y)dxdy

∣∣∣∣∣Fi
]∣∣∣∣∣Fi−1

]
≤ C7,

where we have used that

PZ

[(
Zβ (0, x; 1, y)

ρ1(x, y)

)−1
]
≤ C7.

Thus, we have confirmed (4.2) so that we have proved (4.3).
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We can find that the above proof is true when we replace Zβ(T ) by Zβ(T, 0). Therefore,
we have the following corollary from (4.3).

Corollary 4.6. We have

lim
T→∞

1

T
PZ [|logZβ(T )− PZ [logZβ(T )]|] = 0

and

lim
T→∞

1

T
PZ [|logZβ(T, 0)− PZ [logZβ(T, 0)]|] = 0.

In particular, we have from (4.1) and Theorem 4.2 that

lim
T→∞

1

T
logPZ [Zβ(T, 0)] = −β

4

24
.

Now, we can prove a part of Lemma 2.2.

Proof of (2.2) in Lemma 2.2. Here, we prove the existence of the limit FZ(β) in Lemma
2.2 and give the lower bound. The upper bound will be given in the end of this subsection.

We should remark that the integrability of logZβ(t) follows from Theorem 4.1 (i) and
Corollary 4.3. Then, we have that for any s, t > 0

PZ [logZβ(s+ t)] = PZ [logZβ(s)]

+ PZ

[
log

∫
R

Zβ(s, x)

Zβ(s)
Z(s,x)
β (s+ t)dx

]
≥ PZ [logZβ(s)] + PZ [logZβ(t)] ,

where we have used Theorem 4.1 (vii) in the first line and Jensen’s inequality and Theo-
rem 4.1 (ii) in the last line. Thus, for any t > 0, {PZ [logZβ(nt)] : n ∈ N} is superadditive
and hence

F
(t)
Z (β) = lim

n→∞

1

nt
PZ [logZβ(nt)] = sup

n≥1

1

nt
PZ [logZβ(nt)]

exists.
The independence of F (t)

Z (β) in t > 0 is easy. Fix t > 0. Then, for any T > t, there
exists n ∈ N such that nt ≤ T < (n+ 1)t and hence

nt

T

1

nt
(PZ [logZβ(nt)] + PZ [logZβ(T − nt)])

≤ 1

T
PZ [logZβ(T )]

=
1

T
(PZ [logZβ(nt)]

+ PZ

[
log

∫
R

Zβ(nt, x)

Zβ(nt)
Z(nt,x)
β (T )dx

])
≤ nt

T

1

nt
PZ [logZβ(nt)] ,

where we have used Jensen’s inequality and Theorem 4.1 (i) in the last line. Also, we
know from Jensen’s inequality and Theorem 4.1 (i) and (vii) that for any s ∈ (0, 1)

PZ [logZβ(1)] = PZ [logZβ(s)] + PZ

[
log

∫
R

Zβ(s, x)

Zβ(s)
Z(s,x)
β (1)dx

]
≤ PZ [logZβ(s)] ≤ logPZ [Zβ(s)] = 0.
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Thus, taking limit in T → ∞, we find the limit FZ(β) = lim
T→∞

1

T
PZ [logZβ(T )] exists

and that FZ(β) = sup
T>0

1

T
PZ [logZβ(T )].

Remark 4.7. We are almost ready to give the proof of Lemma 2.5. The idea is similar to
the proofs of Lemma 2.3 and Lemma 2.4. However, it is difficult to prove Lemma 2.5 by
applying (3.7) to the continuous function {Zx√

2
(T ) : x ∈ [−1, 1]} directly .

Indeed, if we apply (3.7) to {Zx√
2
(T ) : x ∈ [−1, 1]} for p ≥ 1, q > 0 with pq > 2, then

we have

PZ

[
sup

x∈[−1,1]

Zx√
2
(T )θ

]

≤ PZ
[
Z√2(T )θ

]
+ Cp,qPZ


∫ 1

−1

∫ 1

−1

∣∣∣Zx√
2
(T )θ −Zy√

2
(T )θ

∣∣∣p
|x− y|pq

dxdy

1/p .
We know the first term in the right hand side decays exponentially from Lemma 4.4. The
simplest way to estimate the second term in the right hand side is the second moment

PZ

[(
Zx√

2
(T )−Zy√

2
(T )
)2
]

which we can calculate

PZ

[(
Zx√

2
(T )−Zy√

2
(T )
)2
]

=
∑
n≥1

2
n
2

∫
∆n(0,T )

∫
Rn

(∫
R

(ρρρn(t,x|0, x;T,w)− ρρρn(t,x|0, y;T,w)) dw

)2

dtx

=
∑
n≥1

2
n
2

∫
∆n(0,T )

∫
Rn

(ρt1(x, x1)− ρt1(y, x1))2
n∏
i=1

ρti−ti−1
(xi−1, xi)

2dtdx.

From (A.5), (A.7), and (A.10), it is bounded from above by

∑
n≥1

C8
|x− y|T n−1

2

2
n−2
2 Γ

(
n+1

2

)
which diverges exponentially in T .

In the following proofs of Lemmas, we will write only the important parts and
postpone the bothersome parts with hard calculations as the propositions to section 5.

Proof of Lemma 2.5. We write

Zx√
2
(T ) =

∫
R

Zx√
2
(1, w)Z(1,w)√

2
(T )dw

=

∫
A(T )

Zx√
2
(1, w)Z(1,w)√

2
(T )dw +

∫
A(T )c

Zx√
2
(1, w)Z(1,w)√

2
(T )dw

=: I1(T, x) + I2(T, x),

where A(T ) = [−2T − 1, 2T + 1]. Hereafter, we will look at I1(T, x) and I2(T, x).
We will show in the lemmas below that

lim
θ→0

lim
T→∞

1

θT
logPZ

[
sup

x∈[−1,1]

I1(T, x)θ

]
≤ lim
T→∞

1

T
PZ
[
logZ√2(T )

]
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and

lim
T→∞

1

T
logPZ

[
sup

x∈[−1,1]

I2(T, x)θ

]
= −∞.

Thus, we complete the proof.

Lemma 4.8. We have that

lim
θ→0

lim
T→∞

1

θT
logPZ

[
sup

x∈[−1,1]

I1(T, x)θ

]
≤ lim
T→∞

1

T
PZ
[
logZ√2(T )

]
Lemma 4.9. We have that for any θ ∈ (0, 1)

lim
T→∞

1

T
logPZ

[
sup

x∈[−1,1]

I2(T, x)θ

]
= −∞.

Finally, we will give the proof of (2.3) in Lemma 2.2.

Proof of (2.3). It is easy to see that for any t > 0

PZ [logZβ(t)] = PZ

[
log

∫
R

Zβ(t, x)

ρt(x)
ρt(x)dx

]
≥
∫
R

PZ

[
log

∫
R

Zβ(t, x)

ρt(x)

]
ρt(x)dx

= PZ

[
log
Zβ(t, 0)

ρt(0)

]
,

where we have used Jensen’s inequality in the second line, and used Theorem 4.1 (v)
and (4.1) in the last line.

Thus, we have from Corollary 4.6 that for any t > 0 and β > 0

FZ(β) ≥ −β
4

24
.

Hereafter, we will look at the opposite inequality. The proof is a modification of the
proof of Lemma 2.5.

It is easy to see that for a′(T ) ∈ [0,∞)

PZ
[
Zβ(T )θ

]
≤

a′(T )∑
k=−a′(T )

PZ

(∫ 2k+1

2k−1

Zβ(T, x)dx

)θ
+ PZ

[∫ −a′(T )

−∞
Zβ(T, x)dx

]θ
+ PZ

[∫ ∞
a′(T )

Zβ(T, x)dx

]θ
.

If limT→∞
a′(T )
T 3 > 0, then for any θ ∈ (0, 1)

lim
T→∞

1

T
log

PZ [∫ −a′(T )

−∞
Zβ(T, x)dx

]θ
+ PZ

[∫ ∞
a′(T )

Zβ(T, x)dx

]θ = −∞.

We denote

exp (Aβ(T, x)) =
Zβ(T, x)

ρT (x)
, T > 0, x ∈ R.
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We remark that for fixed T > 0, the distribution of Aβ(T, x) is stationary in x ∈ R by
Theorem 4.1 (v). Thus, we find that

PZ

(∫ 2k+1

2k−1

Zβ(T, x)dx

)θ = PZ

[(∫ 1

−1

exp (Aβ(T, x+ 2k)) ρT (x+ 2k)dx

)θ]

≤ PZ

[
sup

x∈[−1,1]

exp (θAβ(T, x))

](∫ 1

−1

ρT (x+ 2k)dx

)θ
.

Since

∞∑
k=−∞

(∫ 1

−1

ρT (x+ 2k)dx

)θ
<∞,

it is enough to show that

lim
θ→0

lim
T→∞

1

Tθ
logPZ

[
sup

x∈[−1,1]

exp (θAβ(T, x))

]
≤ −β

4

24
.

When we consider the time reversal, it is enough to show that

lim
θ→0

lim
T→∞

1

Tθ
logPZ

[
sup

x∈[−1,1]

Zxβ (T, 0)θ

]
≤ −β

4

24
.

We know

Zx√
2
(T, 0) =

∫
A(T )

Zxβ (1, w)

∫
R

Zβ(1, w;T, 0)dw

+

∫
A(T )c

Zxβ (1, w)

∫
R

Zβ(1, w;T, 0)dw

= I ′1(T, x) + I ′2(T, x)

in a similar manner to the proof of Lemma 2.5. Then, we find that

PZ

[(
Zxβ (T, x)

)θ] ≤ PZ [ sup
x∈[−1,1]

|I ′1(T, x)|θ
]

+ PZ

[
sup

x∈[−1,1]

|I ′2(T, x)|θ
]

and we obtain by using the same argument as the proof of Lemma 2.5 (we will omit the
proof) that

lim
θ→0

lim
T→∞

1

Tθ
logPZ

[
sup

x∈[−1,1]

|I ′1(T, x)|θ
]
≤ lim
T→∞

1

T
PZ [logZβ(T, 0)] = −β

4

24

and

lim
θ→0

lim
T→∞

1

Tθ
logPZ

[
sup

x∈[−1,1]

|I ′2(T, x)|θ
]

= −∞.
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4.3 Proof of Lemma 4.9

It is easy to see from Theorem 4.1 (i) that

lim
T→∞

1

T
logPZ

[
I2(T, 0)θ

]
≤ lim
T→∞

θ

T
log

∫
A(T )c

ρ1(0, w)dw = −∞.

Thus, it is enough to show that

lim
T→∞

1

T
logPZ

[
sup

x,y∈[−1,1]

∣∣I2(T, x)θ − I2(T, y)θ
∣∣] = −∞.

Applying (3.7) to the continuous function I2(T, x)θ with d = 1, x = 0, Hölder’s
inequality yields that

PZ

[
sup

y∈[−1,1]

∣∣I2(T, y)θ − I2(T, 0)θ
∣∣]

≤ Cp,q

∫ 1

−1

∫ 1

−1

PZ

[
|I2(T, u)− I2(T, v)|θp

]
|u− v|pq

dudv


1
p

.

for some p > 1, q > 0 with pq > 2.

We will show that for θ ∈ (0, 1), there exist p ≥ 1 and q > 0 with pq > 2 and pθ > 1

such that

lim
T→∞

1

T
log

∫ 1

−1

∫ 1

−1

PZ

[
|I2(T, u)− I2(T, v)|θp

]
|u− v|pq

dudv


1
p

= −∞.

Proof of Lemma 4.9. We have from the definition that

I2(T, u)− I2(T, v) =

∫ ∞
2T+1

(Zu√
2
(1, w)−Zv√

2
(1, w))Z(1,w)√

2
(T )dw

+

∫ −2T−1

−∞
(Zu√

2
(1, w)−Zv√

2
(1, w))Z(1,w)√

2
(T )dw

=: JT1 (u, v) + JT2 (u, v)

and therefore it is enough to show that for θ ∈ (0, 1), there exist p ≥ 1 and q > 0 with
pq > 2 such that

lim
T→∞

1

T
log

∫ 1

−1

∫ 1

−1

PZ

[∣∣JT1 (u, v)
∣∣θp]

|u− v|pq
dudv


1
p

= −∞. (4.4)
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We have from Hölder’s inequality that for θp > 1

PZ

[∣∣JT1 (u, v)
∣∣θp] = PZ

[∣∣∣∣∫ ∞
2T+1

(Zu√
2
(1, w)−Zv√

2
(1, w))Z(1,w)√

2
(T )dw

∣∣∣∣θp
]

≤ PZ

∫ ∞
2T+1

∣∣∣∣∣Z
u√

2
(1, w)−Zv√

2
(1, w)

ρ1(2, w)

∣∣∣∣∣
θp

Z(1,w)√
2

(T )θpρ1(2, w)dw


×
(∫ ∞

2T+1

ρ1(2, w)dw

)θp−1

=

∫ ∞
2T+1

PZ

∣∣∣∣∣Z
u√

2
(1, w)−Zv√

2
(1, w)

ρ1(2, w)

∣∣∣∣∣
θp
 ρ1(2, w)dw

× PZ
[
Z√2(T − 1)θp

](∫ ∞
2T+1

ρ1(2, w)dw

)θp−1

,

where we have used Theorem 4.1 (ii) and (vi) in the last equality.
Since we have that for any θp > 1

lim
T→∞

1

T
log

(∫ ∞
2T+1

ρ1(2, w)dw

)θp−1

= −∞,

we obtain (4.4) from the following propositions.

Proposition 4.10. For any r ≥ 2, we have that

lim
T→∞

1

T
logPZ

[
Z√2(T − 1)r

]
<∞.

Proposition 4.11. Let θ ∈ (0, 1). For p =
10

θ
> 1 and q =

3θ

10
,

sup
T≥1

∫ ∞
2T+1

∫ 1

−1

∫ 1

−1

PZ


∣∣∣Zu√

2
(1, w)−Zv√

2
(1, w)

∣∣∣θp
|u− v|pq

 ρ1(2, w)1−θpdudvdw <∞.

The proofs of these propositions are postponed to section 5.

4.4 Proof of Lemma 4.8

We recall the definition of I1(T, x):

I1(T, x) =

∫ 2T+1

−2T−1

Zx√
2
(1, w)Z(1,w)√

2
(T )dw

=

∫ 2T+1

−2T−1

Zx√
2
(1, w)

ρ1(x,w)
Z(1,w)√

2
(T )ρ1(x,w)dw.

Proof of Lemma 4.8. We have

|I1(T, x)|θ ≤
T∑

k=−T

(∫ 2k+1

2k−1

Zx√
2
(1, w)Z(1,w)√

2
(T )dw

)θ

:=

T∑
k=−T

I
(k)
1 (T, x)θ,

EJP 24 (2019), paper 50.
Page 30/43

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP292
http://www.imstat.org/ejp/


Free energy of 1 + 1 DPRE

where we have used (x+ y)θ ≤ xθ + yθ for x, y ≥ 0.

It is clear that

sup
x∈[−1,1]

|I(k)
1 (T, x)|θ ≤ sup

x∈[−1,1],w∈[2k−1,2k+1]

∣∣∣∣∣ Z
x√

2
(1, w)

ρL(n(k), w)

∣∣∣∣∣
θ

×
(∫

R

ρL(n(k), u)Z(1,u)√
2

(T )du

)θ
,

where L ∈ N is taken large later and n(k) =


1, k ≥ 1

0, k = 0

−1, k ≤ −1

.

Thus, we have that

PZ

[
sup

x∈[−1,1]

|I1(T, x)|θ
]
≤

T∑
k=−T

PZ

 sup
x∈[−1,1],w∈[2k−1,2k+1]

∣∣∣∣∣ Z
x√

2
(1, w)

ρL(n(k), w)

∣∣∣∣∣
θ


× PZ

[(∫
R

ρL(n(k), u)Z(1,u)√
2

(T )du

)θ]
.

We will prove the following proposition:

Proposition 4.12. There exist L and a constant C9 > 0 such that for k ∈ Z

PZ

[
sup

x∈[−1,1],w∈[2k−1,2k+1]

∣∣∣∣∣ Z
x√

2
(1, w)

ρL(n(k), w)

∣∣∣∣∣
]
≤ C9. (4.5)

Then, we have

PZ

[
sup

x∈[−1,1]

|I1(T, x)|θ
]

≤ Cθ9
T∑

k=−T

PZ

[(∫
R

ρL(n(k), u)Z(1,u)√
2

(T )du

)θ]

and therefore

lim
θ→0

lim
T→∞

1

Tθ
logPZ

[
sup

x∈[−1,1]

|I1(T, x)|θ
]

≤ lim
θ→0

lim
T→∞

1

Tθ
log

T∑
k=−T

PZ

[(∫
R

ρL(n(k), u)Z(1,u)√
2

(T )du

)θ]
.
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Also, we can obtain that

PZ

[(∫
R

ρL(n(k), u)Z(1,u)√
2

(T )du

)θ]

= PZ


Zn(k)√

2
(T + L)

1∫
R

Zn(k)√
2

(L, u)

ρL(n(k), u)
ν(n(k),L)(u)du


θ

≤ PZ
[(
Zn(k)√

2
(T + L)

) θ
1−θ
]1−θ

PZ

 1∫
R

Zn(k)√
2

(L, u)

ρL(n(k), u)
ν(n(k),L)(u)du


θ

≤ PZ
[(
Zn(k)√

2
(T + L)

) θ
1−θ
]1−θ

PZ

ρL(n(k), 0)

Zn(k)√
2

(L, 0)

θ

≤ CLPZ
[(
Zn(k)√

2
(T + L)

) θ
1−θ
]1−θ

,

where ν(n(k),L)(u) is the probability density function on R given by

ν(n(k),L)(u) =
1∫

R

ρL(n(k), u)Z(L,u)√
2

(T + L)du

ρL(n(k), u)Z(L,u)√
2

(L+ T ),

we have used Theorem 4.1 (v) in the second inequality, and CL is a constant comes from
Corollary 4.3. Thus, we have from Lemma 4.4 that

lim
θ→0

lim
T→∞

1

Tθ
logPZ

[(∫
R

ρL(u− 1)Z(1,u)√
2

(T )du

)θ]
≤ FZ(

√
2)

and we can complete the proof of Lemma 2.5.

5 Proof of propositions

In this section, we give a proof of propositions given in section 4.
Throughout this section, we often use the following hypercontractivity of Wiener

chaos, where we omit definition of some notations and change the statement of Theorem
to adjust our purpose:

Theorem 5.1. [26, Theorem 5.10] Let X ∈ L2(Ω,F , P ) with Gaussian Hilbert space H.
Then, X has the following Wiener chaos decomposition

X =

∞∑
n=0

Xn, Xn ∈ H :n:.

Then, we have that for any r ≥ 2 and for n ≥ 0

P [|Xn|r]
1
r ≤ (r − 1)

n
2 P
[
|Xn|2

] 1
2 .
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In addition, if we assume that X ∈ Lr(Ω,F , P ) for some 2 ≤ r <∞, then we have that

P [|X|r]
1
r ≤

∑
n≥0

(r − 1)nP [|Xn|2]

 1
2

Also, we will usually use the equations and the inequalities in appendix.

5.1 Proof of Proposition 4.10

Proof of Proposition 4.10. Z√2(T − 1) has the following Wiener chaos decomposition:

Z√2(T − 1)

= 1 +
∑
n≥1

2n/2
∫

∆n(0,T−1)

∫
Rn

(∫
R

ρρρn(t,x|0, x;T, y)dy

)
W(dt1dx1) · · ·W(dtndxn)

=:

∞∑
n=0

K(n)(T − 1).

Then, we have from (A.9) that

PZ

[
K(n)(T − 1)2

]
=

(T − 1)n/2

Γ
(
n+1

2

)
and hence, hypercontractivity of Wiener chaos (Theorem 5.1) yields that for r ≥ 2

PZ

[∣∣∣K(n)(T − 1)
∣∣∣r]1/r ≤ (r − 1)n/2PZ

[
K(n)(T − 1)2

]1/2
=

(r − 1)n/2(T − 1)n/4

Γ
(
n+1

2

)1/2 .

Thus, we have that for r ≥ 2

PZ
[
Z√2(T − 1)r

]
≤

∑
n≥0

(r − 1)n/2(T − 1)n/4

Γ
(
n+1

2

)1/2
r

.

It is easy to see from (3.16) that

lim
t→∞

1

T
logPZ

[
Z√2(T − 1)r

]
<∞. (5.1)

Remark 5.2. In a similar way, we can prove that for any r ≥ 2, β ∈ R, x ∈ R and T > 0,
Zβ(T ),Zβ(T, x) ∈ Lr. Thus, we may applies the latter part in Theorem 5.1 to any linear
combinations of Zβ(T ) and Zβ(T, x).

5.2 Proof of Proposition 4.11

The proof of Proposition 4.11 is almost the same as the one of Proposition 4.10.
We remark that Zu√

2
(1, w)−Zv√

2
(1, w) has the following Wiener chaos expansion:

Zu√
2
(1, w)−Zv√

2
(1, w)

= ρ1(u,w)− ρ1(v, w)

+
∑
n≥1

2n/2
∫

∆n(0,1)

∫
Rn

(ρρρn(t,x|0, u; 1, w)− ρρρn(t,x|0, v; 1, w))W(dt1dx1) · · ·W(dtndxn)

=:

∞∑
n=0

L(n)(u, v;w).
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Then, we have that for u, v ∈ [−1, 1]

PZ

[
L(n)(u, v;w)2

]
=

(ρ1(u,w)− ρ1(v, w))2, n = 0

2n
∫

∆n(0,1)

∫
Rn

(ρρρn(t,x|0, u; 1, w)− ρρρn(t,x|0, v; 1, w))2dtdx, n ≥ 1
.

We will prove that there exists a polynomial H with degree 4 such that for any n ≥ 0 and
for u, v ∈ [−1, 1], w ≥ 2T + 1

PZ

[
L(n)(u, v;w)2

]
≤ |u− v||H(w)|ρ1(2, w)2

Γ
(
n
2 ∨ 1

) . (5.2)

If (5.2) holds, then Proposition 4.11 follows. Indeed, hypercontractivity of Wiener
chaos (Theorem 5.1) yields that

PZ

[∣∣∣∣∣
∞∑
n=0

L(n)(u, v;w)

∣∣∣∣∣
r]
≤

( ∞∑
n=0

(r − 1)n/2PZ

[
|L(n)(u, v;w)|2

]) r
2

.

Then, we have that

PZ

[
|Zu√

2
(1, w)−Zv√

2
(1, w)|r

]
≤ |u− v| r2 |H(w)|r/2ρ1(2, w)r

∑
n≥0

(r − 1)n

Γ
(
n
2 ∨ 1

)
r/2

.

Thus, taking r = pθ = 10 and pq = 3, we have that

∫ ∞
2T+1

∫ 1

−1

∫ 1

−1

PZ


∣∣∣Zu√

2
(1, w)−Zv√

2
(1, w)

∣∣∣10

|u− v|3

 ρ1(2, w)1−10dudvdw

≤ C10

∫ ∞
T

|H(w)|5ρ1(2, w)dw.

(5.2) for n = 0

(A.3), (A.13), (A.14), and (A.15) yield that

L(0)(u, v;w)2 = ρ2(0)ρ 1
2
(u,w) + ρ2(0)ρ 1

2
(v, w)− 2ρ2(u, v)ρ 1

2

(
u+ v

2
, w

)
≤ |u− v|

2

8
√
π

(
ρ 1

2
(u,w) + ρ 1

2
(v, w)

)
+ ρ2(u, v)

(
ρ 1

2
(u,w) + ρ 1

2
(v, w)− 2ρ 1

2

(
u+ v

2
, w

))
≤ |u− v|

2

4
√
π

ρ 1
2
(2, w) + |u− v|2 |h(w)|ρ 1

2
(2, w)

≤ |u− v||H1(w)|ρ1(2, w)2

for u, v ∈ [−1, 1] and w ≥ 2T + 1, where H1(w) is a polynomial with degree 4.

(5.2) for n ≥ 1
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We have that for n ≥ 1

PZ

[
L(n)(u, v;w)2

]
= 2n

∫ 1

0

dt0

∫
R

dx(ρt0(u, x)− ρt0(v, x))2

(∫
∆n−1(t0,1)

∫
Rn−1

ρρρn−1(t,x|t0, x; 1, w)2dtdx

)
(A.8)
=

∫ 1

0

dt0

∫
R

dx(ρt0(u, x)− ρt0(v, x))2 (1− t0)
n−2
2

Γ
(
n
2

) ρ 1−t0
2

(x,w)

(A.13)
=

∫ 1

0

dt0

∫
R

dx
(
ρ t0

2
(u, x)+ρ t0

2
(v, x)

)(
ρ2t0(0)−ρ2t0

(
u− v

2

)) (1− t0)
n−2
2 ρ 1−t0

2
(x,w)

Γ
(
n
2

)
+

∫ 1

0

dt0

∫
R

dxρ2t0(u, v)

(
ρ t0

2
(u, x)+ρ t0

2
(v, x)−2ρ t0

2

(
u+ v

2
, x

)) (1− t0)
n−2
2 ρ 1−t0

2
(x,w)

Γ
(
n
2

)
(A.4)
=

(
ρ 1

2
(u,w) + ρ 1

2
(v, w)

)∫ 1

0

(
ρ2t0(0)− ρ2t0

(
u− v

2

))
(1− t0)

n−2
2

Γ
(
n
2

) dt0

+

(
ρ 1

2
(u,w) + ρ 1

2
(v, w)− 2ρ 1

2

(
u+ v

2
, w

))∫ 1

0

ρ2t0(u, v)(1− t0)
n−2
2

Γ
(
n
2

) dt0

(A.14)

≤ 2ρ 1
2
(2, w)

∫ 1

0

(
ρ2t0(0)− ρ2t0

(
u− v

2

))
(1− t0)

n−2
2

Γ
(
n
2

) dt0

+
|u− v|2

4
Gu,v,w,w

(
u− v

2

)∫ 1

0

t
− 1

2
0 (1− t0)

n−2
2

2
√
πΓ
(
n
2

) dt0

Thus, we have from (A.1), (A.12), and (A.15) that for n = 1

PZ

[
L(n)(u, v;w)2

]
≤ |u− v||H2(w)|ρ1(2, w)2

and from (A.1), (A.10), and (A.15) that for n ≥ 2

PZ

[
L(n)(u, v;w)2

]
≤

2ρ 1
2
(2, w)

Γ
(
n
2

) ∫ 1

0

(
ρ2t0(0)− ρ2t0

(
u− v

2

))
dt0 +

√
πρ 1

2
(2, w)

Γ
(
n+1

2

) |u− v|2Gu,v,w,w (u− v
2

)
≤ |u− v|

Γ
(
n
2

) |H3(w)| ρ1(2, w)2

for u, v ∈ [−1, 1] and w ≥ 2T + 1, where H2(w) and H3(w) are polynomials with degree 4.

5.3 Proof of Proposition 4.12

Proof. We will see only the case k ≥ 1. The case k ≤ −1 follows by symmetry and the
case k = 0 is proved by modification.

We consider a function on [−1, 1]× [1,∞)

f(x,w) =
Zx√

2
(1, w)

ρL(1, w)
.

Then, we have from Lemma 4.1 (i) that

PZ [f(x,w)] =
ρ1(x,w)

ρL(1, w)
≤ CL.
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From (3.8), it is enough to show that for some p ≥ 1 and q > 0 with pq > 4, there exist
ηp > pq − 2 and C11 > 0 such that

PZ [|f(x,w)− f(x′, w′)|p] ≤ C11|(x,w)− (x′, w′)|ηp , (5.3)

where we should remark that C11 is a constant independent of x, x′ ∈ [−1, 1], w,w′ ∈
[2k − 1, 2k + 1], and k ≥ 1.

Indeed,

PZ

[∣∣∣∣∣ sup
x∈[−1,1],w∈[2k−1,2k+1]

|f(x,w)|

∣∣∣∣∣
]

≤ PZ [|f(0, 2k)|] + PZ

[∣∣∣∣∣ sup
x,y∈[−1,1],w,w′∈[2k−1,2k+1]

|f(x,w)− f(y, w′)|

∣∣∣∣∣
]

≤ CL + Cp,q,22−
4
p

(∫
B2((0,2k))

∫
B2((0,2k))

PZ

[
|f(x,w)− f(y, w′)|p

|(x,w)− (y, w′)|pq

]
d(x,w)d(y, w′)

) 1
p

≤ CL + Cp,q,22−
4
pC12

(∫
B2((0,2k))

∫
B2((0,2k))

|(x,w)− (y, w′)|ηp−pqd(x,w)d(y, w′)

) 1
p

≤ C12,

where C12 is a constant independent of k ≥ 1, and therefore Proposition 4.12 follows.
If w,w′ ∈ [2k − 1, 2k + 1], then we have

|f(x,w)− f(x′, w′)| ≤

∣∣∣∣∣Z
x√

2
(1, w)−Zx′√

2
(1, w′)

ρL(1, w)

∣∣∣∣∣+ Zx
′
√

2
(1, w′)

∣∣∣∣ρL(1, w)− ρL(1, w′)

ρL(1, w)ρL(1, w′)

∣∣∣∣
≤

∣∣∣∣∣Z
x√

2
(1, w)−Zx′√

2
(1, w′)

ρL(1, w)

∣∣∣∣∣+
1

L

|w − w′||w + w′ − 2|
ρL(1, w ∨ w′)

Zx
′
√

2
(1, w′)

for x, x′ ∈ [−1, 1].
To prove (5.3), we will show that for every p > 2, there exist Cp,1 > 0 and Cp,2 > 0

such that

PZ

[∣∣∣Zx√2
(1, w)−Zx

′
√

2
(1, w′)

∣∣∣p] ≤ Cp,1|(x,w)− (x′, w′)|p/2ρ1(2, w ∧ w′)p (5.4)

and

PZ

∣∣∣∣∣ Z
x′√

2
(1, w′)

ρL(1, w ∨ w′)

∣∣∣∣∣
p
 ≤ Cp,2, (5.5)

for x, x′ ∈ [−1, 1], w,w′ ∈ [2k − 1, 2k + 1], and k ≥ 1. Then, (5.3) follows for some
L = L(p) ≥ 2 large enough.
Zx√

2
(1, w) has the Wiener chaos expansion

Zx√
2
(1, w) = ρ1(w − x) +

∑
n≥1

2
n
2

∫
∆n(1)

ρρρn(t,x|0, x; 1, w)W (t1, x1) · · ·W (tn, xn)

=
∑
n≥0

2
n
2M (n)(x,w).

Then, we have from (A.8) that

PZ

[(
M (n)(x,w)

)2
]

=
1

2n+1Γ
(
n+1

2

)ρ 1
2
(x,w),
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and Theorem 5.1 implies that for p ≥ 2

PZ

[
Zx
′
√

2
(1, w′)p

]
≤

∑
n≥0

(p− 1)n2n

(
1

2n+1Γ
(
n+1

2

)ρ 1
2
(x′, w′)

)
p
2

≤ Cp,3ρ1(x′, w′)p.

Thus, (5.5) holds for L large enough.

For (5.4), we can estimate from (A.13) and (A.15) that

∣∣∣M (0)(x,w)−M (0)(x′, w′)
∣∣∣2

(A.14)

≤ |(w − w′)− (x− x′)|2

8
√
π

(
ρ 1

2
(x,w) + ρ 1

2
(x′, w′)

)
+ ρ2(x− x′, w − w′)

∣∣∣∣ (w − w′)− (x− x′)
2

∣∣∣∣2Gx,x′,w,w′ (w − x− w′ + x′

2

)
≤ |w − w′ − (x− x′)| |H4 (w + w′)| ρ 1

2
(2, w ∧ w′),

where H4 is a polynomial with degree 4 and also

PZ

[∣∣∣M (1)(x,w)−M (1)(x′, w′)
∣∣∣2]

=

∫ 1

0

∫
R

(ρs(x, y)ρ1−s(y, w)− ρs(x′, y)ρ1−s(y, w
′))2dsdy

(A.1),(A.3)
=

∫ 1

0

∫
R

(
ρ2s(0)ρ2(1−s)(0)

(
ρ s

2
(x, y)ρ 1−s

2
(y, w) + ρ s

2
(x′, y)ρ 1−s

2
(y, w′)

)
−2ρ2s(x, x

′)ρ2(1−s) (w,w′) ρ s
2

(
x+ x′

2
, y

)
ρ 1−s

2

(
y,
w + w′

2

))
dsdy

(A.4)
=

∫ 1

0

(
ρ2s(0)ρ2(1−s)(0)

(
ρ 1

2
(x,w) + ρ 1

2
(x′, w′)

)
−2ρ2s(x, x

′)ρ2(1−s) (w,w′) ρ 1
2

(
x+ x′

2
,
w + w′

2

))
ds

=
(
ρ 1

2
(x,w) + ρ 1

2
(x′, w′)

)∫ 1

0

ds ρ2s(0)
(
ρ2(1−s)(0)− ρ2(1−s) (w,w′)

)
+
(
ρ 1

2
(x,w) + ρ 1

2
(x′, w′)

)∫ 1

0

ds (ρ2s(0)− ρ2s(x, x
′)) ρ2(1−s)(w,w

′)

+

(
ρ 1

2
(x,w) + ρ 1

2
(x′, w′)− 2ρ 1

2

(
x+ x′

2
,
w + w′

2

))∫ 1

0

dsρ2s(x, x
′)ρ2(1−s) (w,w′)

≤
(
ρ 1

2
(x,w) + ρ 1

2
(x′, w′)

)∫ 1

0

(2ρ2s(0)− ρ2s(x, x
′)− ρ2s(w,w

′)) ρ2−2s(0)ds

+

∣∣∣∣w − x− w′ + x′

2

∣∣∣∣2Gx,x′,w,w′ (w − x− w′ + x′

2

)∫ 1

0

dsρ2s(x, x
′)ρ2(1−s) (w,w′)

(A.12),(A.15)

≤ (|w − w′|+ |x− x′|)|H5(w + w′)|ρ 1
2

(2, w ∧ w′)

for x, x′ ∈ [−1, 1] and w,w′ ∈ [2k−1, 2k+1] (k ≥ 1), where H5 is a polynomial with degree
4.
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Also, we have that for n ≥ 2

PZ

[∣∣∣M (n)(x,w)−M (n)(x′, w′)
∣∣∣2]

=

∫
∆n(0,1)

∫
Rn

(ρt1(x, x1)ρ1−tn(xn, w)− ρt1(x′, x1)ρ1−tn(xn, w
′))

2

× ρρρn−2(t′,x′|t1, x1; tn, xn)2dtdx,

where t′ = (t2, · · · , tn−1), x′ = (x2, · · · , xn−1) for t = (t1, · · · , tn) and x = (x1, · · · , xn).
Thus, we have from (A.1), (A.3), and (A.8) that

PZ

[∣∣∣M (n)(x,w)−M (n)(x′, w′)
∣∣∣2]

=

∫ 1

0

dt1

∫ 1

t1

dtn

∫
R2

dx1dxn
(tn − t1)

n−3
2 ρ tn−t1

2
(x1, xn)

2n−1Γ
(
n−1

2

)
×
(
ρ2t1(0)ρ2(1−tn)(0)ρ t1

2
(x, x1)ρ 1−tn

2
(xn, w) + ρ2t1(0)ρ2(1−tn)(0)ρ t1

2
(x′, x1)ρ 1−tn

2
(xn, w

′)

− 2ρ2t1(x, x′)ρ t1
2

(
x+ x′

2
, x1

)
ρ2(1−tn)(w,w

′)ρ 1−tn
2

(
xn,

w + w′

2

))
=

∫ 1

0

ds

∫ 1

s

dt
(t− s)n−3

2

2n−1Γ
(
n−1

2

)
×
(
ρ2s(0)ρ2(1−t)(0)ρ 1

2
(x,w)

+ρ2s(0)ρ2(1−t)(0)ρ 1
2
(x′, w′)

−2ρ2s(x, x
′)ρ2(1−t)(w,w

′)ρ 1
2

(
x+ x′

2
,
w + w′

2

))
=:

∫ 1

0

∫ 1

s

(t− s)n−3
2

2n−1Γ
(
n−1

2

) (N1
s,t(x, x

′w,w′) +N2
s,t(x, x

′w,w′) +N3
s,t(x, x

′w,w′))dtds,

where we set

N1
s,t(x, x

′w,w′) = ρ2s(0)ρ2(1−t)(0)

(
ρ 1

2
(x,w) + ρ 1

2
(x′, w′)− 2ρ 1

2

(
x+ x′

2
,
w + w′

2

))
N2
s,t(x, x

′w,w′) = 2ρ 1
2

(
x+ x′

2
,
w + w′

2

)
ρ2s(0)

(
ρ2(1−t)(0)− ρ2(1−t)(w,w

′)
)

N3
s,t(x, x

′w,w′) = 2ρ 1
2

(
x+ x′

2
,
w + w′

2

)
ρ2(1−t)(w,w

′) (ρ2s(0)− ρ2s(x, x
′)) .

Thus, we have that∫ 1

0

∫ 1

s

(t− s)n−3
2

2n−1Γ
(
n−1

2

)N1
s,t(x, x

′w,w′)dtds

=
1

2n+1Γ
(
n+1

2

) (ρ 1
2
(x,w) + ρ 1

2
(x′, w′)− 2ρ 1

2

(
x+ x′

2
,
w + w′

2

))
=

1

2n+1Γ
(
n+1

2

) ∣∣∣∣w − x− w′ + x′

2

∣∣∣∣2Gx,x′,w,w′ (w − x− w′ + x′

2

)
,

∫ 1

0

∫ 1

s

(t− s)n−3
2

2n−1Γ
(
n−1

2

)N2
s,t(x, x

′w,w′)dtds

=
2

2nΓ
(
n
2

)ρ 1
2

(
x+ x′

2
,
w + w′

2

)∫ 1

0

t
n−2
2

(
ρ2(1−t)(0)− ρ2(1−t)(w,w

′)
)
dt,
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and ∫ 1

0

∫ 1

s

(t− s)n−3
2

2n−1Γ
(
n−1

2

)N3
s,t(x, x

′w,w′)dtds

≤ 2

2nΓ
(
n
2

)ρ 1
2

(
x+ x′

2
,
w + w′

2

)∫ 1

0

(1− s)
n−2
2 (ρ2s(0)− ρ2s(w,w

′)) ds.

Thus, we have from (A.10) and (A.15) that

PZ

[∣∣∣M (n)(x,w)−M (n)(x′, w′)
∣∣∣2] ≤ (|w − w′|+ |x− x′|)|H6(w + w′)|ρ 1

2
(2, w ∧ w′)

for for x, x′ ∈ [−1, 1] and w,w′ ∈ [2k − 1, 2k + 1] (k ≥ 1), where H6 is a polynomial with
degree 4.

We should remark that H4, H5, and H6 can be chosen independent of k ≥ 1.
Then, hypercontractivity of Wiener chaos (Theorem 5.1) implies that

PZ

[∣∣∣Zx√2
(1, w)−Zx

′
√

2
(1, w′)

∣∣∣p]
≤ |(w − w′)− (x− x′)|p/2

∑
k≥0

(p− 1)n

(
H7(w + w′)

2n−1Γ
(
n−1

2 ∨ 1
)ρ 1

2
(2, w ∧ w′)

)
p
2

≤ Cp(|w − w′|+ |x− x′|)p/4ρ1(2, w ∧ w′)p

for x, x′ ∈ [−1, 1], w,w′ ∈ [2k − 1, 2k + 1], and for k ≥ 1, so (5.4) follows.

A Heat kernel

A.1 Some formulas of heat kernel

Here, we give some formulas on heat kernels for calculations in this paper. We set

ρt(x− y) = ρt(x, y) =
1√
2πt

exp

(
− (y − x)2

2t

)
for x, y ∈ R and t > 0 and

ρρρ0(t,x|s, x; t, y) = ρt−s(x, y)

ρρρ1(t,x|s, x; t, y) = ρt1−s(x, x1)ρt−t1(x1, y)

ρρρn(t,x|s, x; t, y) = ρt1−s(x, x1)

(
n−1∏
i=1

ρti+1−ti(xi, xi+1)

)
ρt−tn(xn, y)

for x, y ∈ R, x = (x1, · · · , xn) ∈ Rn, 0 ≤ s < t and for

t ∈ ∆n(s, t) = {t = (t1, · · · , tn) : s < t1 < · · · < tn ≤ t},

where we may regard t = s, x = x for n = 0. Then, we have that for w, x, y, z ∈ R and
s, t ∈ [0,∞)

ρt(x)2 =
1

2
√
πt
ρ t

2
(x) = ρ2t(0)ρ t

2
(x), (A.1)

and

ρt(x,w)ρt(y, z) = ρ2t (x− y, w − z) ρ t
2

(
x+ y

2
,
w + z

2

)
. (A.2)
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In particular,

ρt(x,w)ρt(y, w) = ρ2t(x, y)ρ t
2

(
x+ y

2
, w

)
, (A.3)

and ∫
R

ρs(x, y)ρt(y, z)dy = ρt+s(x, z). (A.4)

Therefore, we have that∫
R

(ρt(x,w)− ρt(y, w))2dw = 2 (ρ2t(0)− ρ2t(x, y)) (A.5)∫
Rn
ρρρn(t,x|t0, x; tn+1, y)2dx =

1

2n+1π
n+1
2

ρ tn+1−t0
2

(x, y)

n∏
i=0

1√
ti+1 − ti

, (A.6)

and∫
Rn

(∫
R

ρρρn(t,x|t0, x; tn+1, y)dy

)2

dx =
1

2nπ
n
2

n−1∏
i=0

1√
ti+1 − ti

, (A.7)

for n ≥ 1, x, y ∈ R, 0 ≤ t0 < tn+1, t = (t1, · · · , tk) ∈ ∆n(t0, tn+1).
Also, since for 0 < a < b and for α, β ∈ (0,∞),∫ b

a

(x− a)α−1(b− x)β−1dx = (b− a)α+β−1B(α, β) = (b− a)α+β−1 Γ(α)Γ(β)

Γ(α+ β)
,

we have ∫
∆n(t0,tn+1)

∫
Rn
ρρρn(t,x|t0, x; tn+1, y)2dtdx =

(tn+1 − t0)
n−1
2

2n+1Γ
(
n+1

2

) ρ tn+1−t0
2

(x, y), (A.8)∫
∆n(t0,tn+1)

∫
Rn

(∫
R

ρρρn(t,x|t0, x; tn+1, y)dy

)2

dtdx =
(tn+1 − t0)

n
2

2nΓ
(
n+2

2

) . (A.9)

A.2 Inequalities on heat equation

We have the following inequalities:∫ t

0

(ρs(0)− ρs(x)) ds =
|x|

2
√
π

∫ ∞
|x|2
2t

1

u
3
2

(1− exp (−u)) du

≤ |x|
2
√
π

∫ ∞
0

u−
3
2 (1 ∧ u)du =

2|x|√
π
, (A.10)∫ t

0

ρs(x)ds ≤
∫ t

0

ρs(0)ds =

√
2t

π
(A.11)

for any t > 0 and x ∈ R and therefore it follows that∫ t

0

(ρs(0)− ρs(x))(t− s)− 1
2 ds

=

∫ t
2

0

(ρs(0)− ρs(x))(t− s)− 1
2 ds+

∫ t

t
2

(ρs(0)− ρs(x))(t− s)− 1
2 ds

≤
(
t

2

)− 1
2
∫ t

0

(ρs(0)− ρs(x)) ds+
x2

√
πt3/2

∫ t

t
2

(t− s) 1
2 ds

≤ 2

√
2

π

|x|√
t

+

√
2

π

|x|2

t
. (A.12)
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Also, we have

(ρt(x,w)− ρt(y, w′))2

= (ρ2t(0)− ρ2t(x− y, w − w′))
(
ρ t

2
(x,w) + ρ t

2
(y, w′)

)
+ ρ2t(x− y, w − w′)

(
ρ t

2
(x,w) + ρ t

2
(y, w′)− 2ρ t

2

(
x+ y

2
,
w + w′

2

))
≤ |(w − w

′)− (x− y)|2

8
√
πt3

(
ρ t

2
(x,w) + ρ t

2
(y, w′)

)
+ ρ2t(x− y, w − w′)

(
ρ t

2
(x,w) + ρ t

2
(y, w′)− 2ρ t

2

(
x+ y

2
,
w + w′

2

))
(A.13)

for t > 0 and w,w′, x, y ∈ R.
Throughout this paper, we need to estimate (A.13) only for t = 1, x, y ∈ [−1, 1] and

|w − w′| ≤ 2. Applying Taylor’s theorem to fx,y,w,w′(u) = ρ 1
2

(
u,
w + w′ − x− y

2

)
, there

exist θ1 and θ2 ∈ (0, 1) such that

fx,y,w,w′ (u) + fx,y,w,w′ (−u)− 2fx,y,w,w′(0)

= f ′′x,y,w,w′(0)u2 +
1

6

(
f

(3)
x,y,w,w′ (θ1u)− f (3)

x,y,w,w′ (−θ2u)
)
u3

= u2

((
−2 + (w + w′ − x− y)2

)
fx,y,w,w′(0)

+ u

(
2(θ1u−

w + w′ − x− y
2

)−
4(θ1u− w+w′−x−y

2 )3

3

)
fx,y,w,w′(θ1u)

−u

(
2(−θ2u−

w + w′ − x− y
2

)−
4(−θ2u− w+w′−x−y

2 )3

3

)
fx,y,w,w′(−θ2u)

)
=: u2Gx,y,w,w′(u). (A.14)

We remark that there exists a polynomial h with degree 4 such that∣∣∣∣Gx,y,w,w′ ( (w − x)− (w′ − y)

2

)∣∣∣∣
≤
∣∣∣∣h(w + w′

2

)∣∣∣∣ ρ 1
2

(|w − 2| ∧ |w + 2| ∧ |w′ − 2| ∧ |w′ + 2|) , (A.15)

for x, y ∈ [−1, 1], and for w,w′ ∈ R with |w − w′| ≤ 2.
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