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Abstract

We investigate the problem of quantifying contraction coefficients of Markov tran-
sition kernels in Kantorovich (L1 Wasserstein) distances. For diffusion processes,
relatively precise quantitative bounds on contraction rates have recently been derived
by combining appropriate couplings with carefully designed Kantorovich distances. In
this paper, we partially carry over this approach from diffusions to Markov chains. We
derive quantitative lower bounds on contraction rates for Markov chains on general
state spaces that are powerful if the dynamics is dominated by small local moves. For
Markov chains on Rd with isotropic transition kernels, the general bounds can be used
efficiently together with a coupling that combines maximal and reflection coupling.
The results are applied to Euler discretizations of stochastic differential equations with
non-globally contractive drifts, and to the Metropolis adjusted Langevin algorithm for
sampling from a class of probability measures on high dimensional state spaces that
are not globally log-concave.
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1 Introduction

In recent years, convergence bounds for Markov processes in Kantorovich (L1 Wasser-
stein) distances have emerged as a powerful alternative to more traditional approaches
based on the total variation distance [36], spectral gaps and L2 bounds [27, 9, 10],
or entropy estimates [27, 9, 1]. In particular, Hairer, Mattingly and Scheutzow have
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Quantitative contraction rates for Markov chains

developed an analogue to Harris’ Theorem assuming only local strict contractivity in
a Kantorovich distance on the “small” set and a Lyapunov condition combined with
non-strict contractivity outside, cf. [22, 24]. Meanwhile there have been numerous
extensions and applications of their result [25, 6, 3, 11].

In [29], Joulin and Ollivier have shown that strict Kantorovich contractivity of the
transition kernel implies bounds for the variance and concentration estimates for ergodic
averages of a Markov chain. Their results have since been extended to cover more
general frameworks by Paulin [38]. More recently, Pillai and Smith [39] as well as Rudolf
and Schweizer [40] have developed a perturbation theory for Markov chains that are
contractive in a Kantorovich distance, cf. also Huggins and Zou [26] as well as Johndrow
and Mattingly [28] for related results. These works show that variants of the results in
[29] carry over to perturbations of the original chain, thus paving the way for a much
broader range of applications.

All the works mentioned above assume that, at least locally, strict contractivity
holds w.r.t. an L1 Wasserstein distance based on some underlying distance function on
the state space of the Markov chain. The contraction rate is the key quantity in the
resulting bounds, and it is hence important to develop applicable methods for quantifying
contraction rates.

Contractivity with respect to the L1 Wasserstein distance based on the Euclidean
distance in Rd is sometimes interpreted as non-negative Ricci curvature of the Markov
chain w.r.t. this metric [41, 29, 37]. This is a strong condition that is often not satis-
fied in applications. However, in many cases it is still possible to obtain contractivity
with respect to a Kantorovich distance in which the underlying distance function has
been modified accordingly. This allows for applying the results from [29] to a signifi-
cantly broader class of examples. For diffusion processes, a corresponding approach
to quantitative contraction rates in appropriately designed metrics has been developed
systematically in recent years in a series of papers [15, 17, 44, 19, 20], see also [4, 5, 42]
for previous results. The approach has been extended to Lévy driven SDEs in [32, 33],
see also [31, 43].

Below we propose a corresponding approach for Markov chains on general metric
state spaces. The approach is powerful in situations where the dynamics is dominated by
small, local moves. This will be demonstrated below for Euler schemes for non-globally
contractive stochastic differential equations, as well as for the Metropolis-adjusted
Langevin Algorithm (MALA). In these cases, the Ricci curvature condition required in
[29] is not satisfied in the standard L1 Wasserstein distance and hence the construction
of an alternative metric is required. For dynamics dominated by large or global moves,
our approach does not apply in the form presented here. Sometimes, related approaches
can be used nevertheless, see e.g. [2] for the construction of a contractive distance for
Hamiltonian Monte Carlo.

2 Main results

Let p(x, dy) be a Markov transition kernel on a separable metric space (S, d). To
study contraction properties of p we construct distance functions ρ : S × S → [0,∞)

by transforming the metric d in an appropriate way. Note that if f0 : [0,∞) → [0,∞)

is a concave, increasing function with f0(0) = 0 and f0(r) > 0 for r 6= 0, then ρ(x, y) =

f0(d(x, y)) is a metric on S. More generally, let a, δ ≥ 0 be non-negative constants, and
let V : S → [0,∞) be a non-negative measurable function on S. We set

f := f0 + a1(0,∞),
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Quantitative contraction rates for Markov chains

and we consider distance functions of the form

ρ(x, y) = f(d(x, y)) + δ (V (x) + V (y))1x 6=y

= f0(d(x, y)) + (a+ δV (x) + δV (y))1x 6=y .
(2.1)

We assume that f0 is continuous and in some of our results we will choose a = 0 and
V ≡ 0. Similar but slightly different classes of distance functions have been used e.g. in
[23, 24, 3, 19] to study properties of Markov chains and diffusion processes.

For probability measures µ and ν on S, the Kantorovich distance (L1 Wasserstein
distance)Wρ(µ, ν) based on the underlying distance function ρ is defined as

Wρ(µ, ν) = inf
X∼µ,Y∼ν

E[ρ(X,Y )]. (2.2)

Here the infimum is over all couplings of µ and ν, i.e., over all random variables X,Y
defined on a common probability space (Ω,A,P) such that P ◦X−1 = µ and P ◦ Y −1 = ν.

For f0 ≡ 0, a = 1 and V ≡ 0,Wρ coincides with the total variation distance dTV(µ, ν)

(or with dTV(µ, ν)/2, depending on the convention used in the definition of the total
variation distance), whereas for f0(r) = r, a = 0 and V ≡ 0, Wρ is the standard L1

Wasserstein distanceWd on (S, d). The distance functions we consider are in between
these two extremes. Notice, however, that if a > 0 then

dTV(µ, ν) ≤ a−1Wρ(µ, ν), (2.3)

and if f(r) ≥ br for some constant b > 0 then

Wd(µ, ν) ≤ b−1Wρ(µ, ν), (2.4)

Therefore, in these cases, contraction properties w.r.t.Wρ directly imply upper bounds
for the total variation and L1 Wasserstein distances w.r.t. the metric d.

We now assume that we are given a Markovian coupling of the transition probabilities
p(x, ·) (x ∈ S) in the form of measurable maps X ′, Y ′ : Ω→ S, defined on a measurable
space (Ω,A), and a probability kernel (x, y,A) 7→ Px,y(A) from S × S ×A to [0, 1] such
that for any x, y ∈ S,

X ′ ∼ p(x, ·) and Y ′ ∼ p(y, ·) under Px,y. (2.5)

For probability measures µ on S and γ on S×S let (µp)(B) =
∫
µ(dx)p(x,B) for B ∈ B(S),

and Pγ(A) =
∫
γ(dx dy)Px,y(A) for A ∈ A. Note that if γ is a coupling of two probability

measures µ and ν on S, then under Pγ the joint law of (X ′, Y ′) is a coupling of the
probability measures µp and νp, i.e.,

X ′ ∼ µp and Y ′ ∼ νp under Pγ . (2.6)

Our goal is to derive explicit bounds of the form

Ex,y[ρ(X ′, Y ′)] ≤ (1− c)ρ(x, y) for any x, y ∈ S, (2.7)

where c is a strictly positive constant. Here the choice of the metric ρ is adapted in order
to maximize the value of c in our bounds. If (2.7) holds, then the transition kernel p is a
strict contraction w.r.t. the distanceWρ.

Lemma 2.1. Suppose that (2.7) holds for all x, y ∈ S. Then

Wρ(µp, νp) ≤ (1− c)Wρ(µ, ν) for all µ, ν ∈ P(S). (2.8)
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Quantitative contraction rates for Markov chains

Proof. Let µ and ν be probability measures on S and suppose that γ is a coupling of µ
and ν. Then, under Pγ , the joint law of (X ′, Y ′) is a coupling of µp and νp. Therefore by
(2.7),

Wρ(µp, νp) ≤ Eγ [ρ(X ′, Y ′)] =

∫
Ex,y[ρ(X ′, Y ′)]γ(dx dy)

≤ (1− c)
∫
ρ(x, y)γ(dx dy).

The assertion follows by taking the infimum over all couplings of µ and ν.

In the terminology of Joulin and Ollivier [29], (2.8) says that the Markov chain has
a Ricci curvature lower bound c on the metric space (S, ρ). By general results, such
a bound has many important consequences including quantitative convergence to a
unique equilibrium [18], upper bounds on biases and variances as well as concentration
inequalities for ergodic averages [29, 38], a central limit theorem for ergodic averages
[30], robustness under perturbations [39, 40, 26, 28], etc. However, in applications, it is
usually not clear how to choose a distance function ρ such that we have good bounds for
c. This is the problem addressed in this paper for the case of a “local dynamics” where
the Markov chain is mainly making “small” moves. Depending on whether or not the
probability measures p(x, ·) and p(y, ·) have a significant overlap for x close to y, we
suggest two different approaches.

2.1 Contractivity with positive coupling probability

Our first two general results apply in situations where the probability measures p(x, ·)
and p(y, ·) have a significant overlap if x and y are sufficiently close. In this case we
can always consider a coupling ((X ′, Y ′),Px,y) of the transition probabilities such that
Px,y[X ′ = Y ′] > 0 for x close to y. This enables us to obtain strict contractivity in metrics
that have a total variation part, i.e., the function f defining the underlying distance has
a discontinuity a > 0 at 0.

To state the results, we fix a positive constant ε > 0 and couplings ((X ′, Y ′),Px,y) as
above. For x, y ∈ S we set

r = d(x, y), R′ = d(X ′, Y ′), ∆R = R′ − r, (2.9)

and we define

β(x, y) = Ex,y[∆R], (2.10)

α(x, y) = Ex,y
[
|(∆R)− ∧ ε|2

]
, (2.11)

π(x, y) = Px,y[R′ = 0], (2.12)

where (∆R)− = max(−∆R, 0). In particular,

α(x, y) ≥ Ex,y[(∆R)21{R′∈(r−ε,r)}]. (2.13)

One can think of β(x, y) as a drift for the coupling distance, whereas α(x, y) provides a
lower bound for fluctuations that decrease the distance and π(x, y) is the probability of
coupling successfully in the next step. Suppose that there exist functions β : (0,∞)→ R

and α, π : (0,∞)→ [0,∞) such that for any r > 0 and x, y ∈ S with d(x, y) = r,

β(x, y) ≤ β(r), α(x, y) ≥ α(r), and π(x, y) ≥ π(r). (2.14)

Hence β(r) is an upper bound for the expectation of the increase ∆R of the distance
during a single transition step of coupled Markov chains with initial states x and y such
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that d(x, y) = r. Similarly, α(r) is a lower bound for distance decreasing fluctuations
of ∆R, and π(r) is a lower bound for the coupling probability. We make the following
assumptions on α, β and π:

(A1) There exists a positive constant r0 ∈ (0,∞) such that

(a) infr∈(0,r0] π(r) > 0, and

(b) infr∈(r0,s) α(r) > 0 for any s ∈ (r0,∞).

(A2) supr∈(0,s) β(r) <∞ for any s ∈ (0,∞).

(A3) lim supr→∞ r−1β(r) < 0.

Theorem 2.2. Suppose that (A1), (A2) and (A3) are satisfied, and let

ρ(x, y) = f(d(x, y)) , (2.15)

where f : [0,∞)→ [0,∞) is the concave increasing function defined in (3.8) below. Then
for any x, y ∈ S,

Ex,y[ρ(X ′, Y ′)] ≤ (1− c)ρ(x, y) , (2.16)

where c is an explicit strictly positive constant defined in (3.13) below.

The proof is given in Section 3. Explicit expressions for the function f and the
contraction rate c depending only on α, β, π and ε are given in Subsection 3.1. Although
these expressions are somehow involved, they can be applied to derive quantitative
bounds in concrete models. In particular, the asymptotic dependence of the contraction
rate on parameters of the model can often be made explicit. This will be demonstrated
for the Euler scheme in Section 2.4.

By Lemma 2.1, Theorem 2.2 implies that the transition kernel p is contractive with
rate c w.r.t. theWρ distance on probability measures on S. Since the function f defined in
(3.8) is bounded from below by a multiple of both 1(0,∞) and of the identity, the theorem
yields quantitative bounds for convergence to equilibrium both w.r.t. the total variation
and the standard L1 Wasserstein distance.

The assumption (A3) imposed in Theorem 2.2 is sometimes too restrictive. By a
modification of the metric, it can be replaced by the following Lyapunov condition:

(A4) There exist a measurable function V : S → [0,∞) and C, λ ∈ (0,∞) s.t.

(a) pV ≤ (1− λ)V + C, and

(b) infd(x,y)=r
V (x)+V (y)

β(r)+
−→ ∞ as r →∞.

In ((A4)b) we use the convention that the value of the fraction is +∞ if β(r) ≤ 0.

Theorem 2.3. Suppose that (A1), (A2) and (A4) are satisfied, and let

ρ(x, y) = f(d(x, y)) +
M

2C
(V (x) + V (y))1x 6=y , (2.17)

where f : [0,∞)→ [0,∞) is the concave increasing function defined in (3.17) below, and
the constant M ∈ R+ is defined in (3.19). Then for any x, y ∈ S,

Ex,y[ρ(X ′, Y ′)] ≤ (1− c)ρ(x, y) , (2.18)

where c is an explicit strictly positive constant defined in (3.24) below.
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The proof of the theorem is given in Section 3 and explicit expressions for the function
f and the constants M and c in terms of α, β, π, ε, V, C and λ are provided in Subsection
3.2.

The idea of adding a Lyapunov function to the metric appears for example in [21]
and has been further worked out in the diffusion case in [19]. Theorem 2.3 can be
seen as a more quantitative version of Theorem 4.8 in [24], which is an extension of the
classical Harris’ Theorem. Note, however, that contractivity in our result is expressed
in an additive metric ρ, as opposed to the multiplicative semimetric used in [24]; see
also [19] for a more detailed discussion on these two types of metrics. An application of
Theorem 2.3 to the Euler scheme is given in Theorem 6.1 below.

2.2 Contractivity without positive coupling probability

The assumption that there is a significant overlap between the measures p(x, ·)
and p(y, ·) for x close to y is sometimes too restrictive. For example, it may cause a
bad dimension dependence of the resulting bounds in high dimensional applications.
Therefore, we now state an alternative contraction result that applies even when π(x, y) =

0 for all x and y.
For any r ∈ (0,∞) we consider an interval near r given by

Ir = (r − l(r), r + u(r)) (2.19)

where l(r), u(r) ≥ 0 and l(r) ≤ r. Similarly as in (2.10) and (2.11), we define

β(x, y) = Ex,y[∆R], (2.20)

α(x, y) = Ex,y
[
|(∆R ∧ u(r)) ∨ (−l(r))|2

]
, (2.21)

where r,R′ and ∆R are defined by (2.9). In particular,

α(x, y) ≥ Ex,y[(∆R)21{R′∈Ir}]. (2.22)

In Subsection 2.1, we have chosen l(r) = ε and u(r) = 0, i.e., Ir = (r− ε, r). Now, we will
assume instead that there is a finite constant r0 > 0 such that

u(r) = 0 for r ≥ r0, and u(r) = r0 for r < r0. (2.23)

As above, we assume that there exist functions β : (0,∞) → R and α : (0,∞) → (0,∞)

such that for any r > 0 and x, y ∈ S with d(x, y) = r,

β(x, y) ≤ β(r) and α(x, y) ≥ α(r). (2.24)

We now impose the following conditions on α and β:

(B1) inf
r∈(0,s)

α(r)
r > 0 for any s ∈ (0,∞),

(B2) sup
r∈(0,s)

β(r)
α(r) < ∞ for any s ∈ (0,∞),

(B3) lim supr→∞ r−1β(r) < 0.

Thus we no longer assume a positive coupling probability for r < r0. Instead,
we require in (B1) and (B2) that α(r) = Ω(r) and β(r)/α(r) = O(1) as r ↓ 0. These
assumptions can be verified for example for Euler schemes if the coupling is constructed
carefully. We will do this in Section 2.4 for Euler discretizations of SDEs with contractive
drifts, whereas for more general drifts we will follow a slightly different approach.
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Theorem 2.4. Suppose that (B1), (B2) and (B3) are satisfied, and let

ρ(x, y) = f(d(x, y)) , (2.25)

where f : [0,∞)→ [0,∞) is a continuous concave increasing function satisfying f(0) = 0

which is defined explicitly in (4.8) below. Then for any x, y ∈ S,

Ex,y[ρ(X ′, Y ′)] ≤ (1− c)ρ(x, y) , (2.26)

where c is an explicit strictly positive constant defined in (4.12) below.

The proof is given in Section 4. Notice that in contrast to Theorem 2.2 and Theorem
2.3, the function f in Theorem 2.4 does not have a jump at 0, i.e., the Kantorovich metric
Wρ does not contain a total variation part. This corresponds to the fact that under
Assumptions (B1), (B2) and (B3), it can not be expected in general that the coupled
Markov chains meet in finite time.

2.3 Stability under perturbations

Contractions in Kantorovich distances can sometimes be carried over to small per-
turbations of a given Markov chain. For instance, in Subsection 2.5 we will deduce
contractivity for the Metropolis adjusted Langevin algorithm from corresponding proper-
ties of the Euler proposal chain. Suppose as above that ((X ′, Y ′),Px,y) is a Markovian

coupling of the transition probabilities p(x, ·) and p(y, ·). Moreover, let ((X̃, Ỹ ),Px,y) be
a corresponding coupling of p̃(x, ·) and p̃(y, ·) for another (perturbed) Markov transition
kernel p̃ on S. Here we assume that for given x, y ∈ S, (X ′, Y ′) and (X̃, Ỹ ) are defined
on a common probability space. We start with a simple observation. If there exists a
metric ρ on S and a constant c ∈ (0,∞) such that for x, y ∈ S,

Ex,y[ρ(X ′, Y ′)] ≤ (1− c)ρ(x, y), and (2.27)

Ex,y[ρ(X̃, Ỹ )] ≤ Ex,y[ρ(X ′, Y ′)] +
c

2
ρ(x, y), then (2.28)

Ex,y[ρ(X̃, Ỹ )] ≤ (1− c/2) ρ(x, y). (2.29)

In applications it is often difficult or even impossible to verify Condition (2.28) for x very
close to y. If Px,y[X̃ = Ỹ ] > 0 for x close to y, then this condition can be relaxed.

Theorem 2.5. Suppose that ρ(x, y) = f(d(x, y)) for a concave increasing contraction
f : [0,∞) → [0,∞) satisfying f(0) = 0. Suppose that there exist constants c, b, p, r0 ∈
[0,∞) such that for all x, y ∈ S,

Ex,y[ρ(X ′, Y ′)] ≤ (1− c)ρ(x, y), (2.30)

Ex,y

[
(d(X̃, Ỹ )− d(X ′, Y ′))+

]
≤ b+

c

2
ρ(x, y), and (2.31)

Px,y[X̃ = Ỹ ] ≥ p if d(x, y) < r0. (2.32)

Assume that p > 0, b ≤ cf(r0)/4, and let ρ̃ be the metric defined by

ρ̃(x, y) = ρ(x, y) +
2b

p
1x 6=y. (2.33)

Then

Ex,y

[
ρ̃(X̃, Ỹ )

]
≤
(

1− 1

8
min(c, 2p)

)
ρ̃(x, y) for all x, y ∈ S. (2.34)

The proof is given in Section 5. In Section 7 we will apply Theorem 2.5 to our results
for the Euler scheme in order to obtain contractivity for the Metropolis adjusted Langevin
algorithm (MALA).
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Note that Theorem 2.5 is related to the perturbation results in [39, 40, 28]. In all
these papers, a Kantorovich contraction in some metric is assumed for the initially
given unperturbed Markov chain. Then, in [39], the authors obtain bounds on the
distance to equilibrium of a perturbed Markov chain in the same Kantorovich metric. In
[40, 28], the metric also remains unchanged, but the object of interest is a bound on the
distance between a perturbed and the unperturbed chain. A related result in continuous
time, giving bounds on the distance between invariant measures of a perturbed and
an unperturbed diffusion, has been obtained in [26]. In contrast to these results, we
consider a perturbed metric in Theorem 2.5, but we obtain a stronger result showing
that the perturbed Markov chain is again contractive w.r.t. the modified metric.

2.4 Application to Euler schemes

We now show how to apply the general methods developed above to Euler discretiza-
tions of stochastic differential equations of the form

dXt = b(Xt) dt+ dBt , (2.35)

where (Bt)t≥0 is a Brownian motion in Rd, and b : Rd → Rd is a Lipschitz continuous
vector field. Quantifying contraction rates for Euler discretizations is important in
connection with the derivation of error bounds for the unadjusted Langevin algorithm
(ULA), cf. [7, 14, 13, 12, 8] for corresponding results. Such applications of the techniques
presented below will be discussed in detail in the upcoming paper [34] by the second
author. The transitions of the Markov chain for the Euler scheme with step size h > 0

are given by

x 7→ x̂+
√
hZ, where x̂ := x+ hb(x) and Z ∼ N(0, Id). (2.36)

The corresponding transition probabilities are given by

p(x, ·) = N(x̂, hId) for any x ∈ Rd, (2.37)

i.e., the transition density from x is

p(x, x′) = φx̂,hId(x′) = (2πh)−d/2 exp

(
− 1

2h
|x′ − x̂|2

)
. (2.38)

In the case of b ≡ 0, the Markov chain is a Gaussian random walk with transitions
x 7→ x+

√
hZ.

The coupling

For x, y ∈ Rd let

ê =
x̂− ŷ
|x̂− ŷ|

if x̂ 6= ŷ, ê = 0 otherwise. (2.39)

We consider the coupling of two transitions of the Euler chain from x and y respectively
given by

X ′ = x̂+
√
hZ, Y ′ =

{
X ′ if U ≤ φŷ,hI(X ′)/φx̂,hI(X ′),
Y ′refl otherwise,

(2.40)

where Z ∼ N(0, Id) and U ∼ Unif(0, 1) are independent random variables, and

Y ′refl = ŷ +
√
h(Id − 2êêT )Z (2.41)

is obtained by adding to ŷ the increment
√
hZ added to x̂, reflected at the hyperplane

between x̂ and ŷ.
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X ′ Y ′refl

φŷ,hI(X
′)

φx̂,hI(X
′)

x̂ ŷ

Figure 1: Construction of the coupling of p(x, ·) and p(y, ·): Given the value of X ′, we set
Y ′ = X ′ with the maximal probability min(1, p(y,X ′)/p(x,X ′)), and Y ′ = Y ′refl otherwise.

Both (X ′, Y ′refl) and (X ′, Y ′) are couplings of the probability measures p(x, ·) and p(y, ·).
For the coupling (2.40), Y ′ = X ′ with the maximal probability min(1, p(y,X ′)/p(x,X ′)).
Furthermore, in the case where Y ′ 6= X ′, the coupling coincides with the reflection
coupling, i.e., Y ′ = Y ′refl. The resulting combination of reflection coupling and maximal
coupling is an optimal coupling of the Gaussian measures p(x, ·) and p(y, ·) w.r.t. any
Kantorovich distance based on a metric ρ(x, y) = f(|x− y|) with f concave, cf. [35] for
the one-dimensional case. We will not use the optimality here, but it shows that (2.40) is
an appropriate coupling to consider if we are interested in contraction properties for
single transition steps of the Markov chain.

Note that an analogous coupling construction still works if the Gaussian measure
above is replaced with an isotropic (i.e., rotationally symmetric) measure p(x, ·) such that
for any distinct points x, y ∈ Rd the measures p(x, ·) and p(y, ·) have sufficient overlap.
See [32] for a discussion on similar coupling constructions in the context of stochastic
differential equations driven by isotropic Lévy processes.

Remark 2.6 (Relation to reflection coupling of diffusion processes). A reflection cou-
pling of two copies of a diffusion process satisfying a stochastic differential equation of
the form (2.35) is given by

dXt = b(Xt) dt+ dBt,

dYt = b(Yt) dt+ (I − 2ete
T
t ) dBt for t < T, Xt = Yt for t ≥ T,

(2.42)

where et = (Xt − Yt)/|Xt − Yt| and T = inf{t ≥ 0 : Xt = Yt} is the coupling time. Hence
the noise increment is reflected up to the coupling time, whereas after time T , Xt and
Yt move synchronously. Our coupling in discrete time has a similar effect. If x̂ and ŷ

are far apart then the transition densities φx̂,hI and φŷ,hI have little overlap, and hence
reflection coupling is applied with very high probability. If, on the other hand, x̂ and ŷ
are sufficiently close, then with a non-negligible probability, X ′ = Y ′. Once both Markov
chains have reached the same position, they stick together since their transition densities
coincide subsequently. In this sense, the coupling (2.40) is a natural discretization of
reflection coupling. Indeed, we would expect that as h ↓ 0, the coupled Markov chains
with time rescaled by a factor h converge in law to the reflection coupling (2.42) of the
diffusion processes. On the other hand, a coupling of Markov chains in which jumps are
always reflected (i.e., a coupling without the positive probability of jumping to the same
point) would converge as h ↓ 0 to a reflection coupling of diffusions in which the coupled
processes do not follow the same path after the coupling time.

We assume that under the probability measure Px,y, (X ′, Y ′) is the coupling of p(x, ·)
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and p(y, ·) introduced above. We set

r0 :=
√
h, (2.43)

and we consider the intervals

Ir =

{
(0, r +

√
h) for r < r0,

(r −
√
h, r) for r ≥ r0.

(2.44)

Thus in the notation from Section 2.2, we set

u(r) :=
√
h1r<r0 , l(r) :=

√
h1r≥r0 . (2.45)

For given x, y ∈ Rd let r = |x− y|, r̂ = |x̂− ŷ|, R′ = |X ′ − Y ′|,

β̂(x, y) = Ex,y[R′ − r̂], (2.46)

α̂(x, y) = Ex,y
[
|((R′ − r̂) ∧ u(r̂)) ∨ (−l(r̂))|2

]
, and (2.47)

π(x, y) = Px,y[R′ = 0]. (2.48)

In particular,
α̂(x, y) ≥ Ex,y[(R′ − r̂)21{R′∈Ir̂}] . (2.49)

Notice that the definitions of β̂ and α̂ differ from those of β and α given in (2.20) and
(2.21), since β̂ and α̂ take into account only the coupled random walk transition step
from (x̂, ŷ) to (X ′, Y ′), but not the deterministic transition from (x, y) to (x̂, ŷ). We also
consider

β(x, y) = Ex,y[R′ − r] = β̂(x, y) + r̂ − r, and (2.50)

α(x, y) = Ex,y
[
|((R′ − r) ∧ u(r)) ∨ (−l(r))|2

]
. (2.51)

Assumptions

In our main result for the Euler scheme we assume that there exist constants J ∈ [0,∞)

and K,L,R ∈ (0,∞) such that the following conditions hold:

(C1) One-sided Lipschitz condition:

(x− y) · (b(x)− b(y)) ≤ J |x− y|2 for any x, y ∈ Rd.

(C2) Strict contractivity outside a ball:

(x− y) · (b(x)− b(y)) ≤ −K|x− y|2 if |x− y| ≥ R.

(C3) Global Lipschitz condition:

|b(x)− b(y)| ≤ L|x− y| for any x, y ∈ Rd.

Notice that by (C2) and (C3), L ≥ K. Of course, (C3) implies (C1) with J = L. Note,
however, that we can often choose J much smaller than L, e.g., we can even choose
J = 0 if b = −∇U for a convex function U ∈ C2(Rd). The global Lipschitz condition is
required for the stability of the Euler scheme, but the constant L will affect our lower
bound for the contraction rate only in a marginal way. On the other hand, our bound on
the contraction rate will depend in an essential way on the one-sided Lipschitz constant
J .

The bounds provided in the next lemma are crucial to apply the techniques developed
above to the Euler scheme.
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Lemma 2.7. Let x, y ∈ Rd, and let r = |x− y| and r̂ = |x̂− ŷ|. Then

(i) β̂(x, y) = 0,

(ii) α̂(x, y) ≥ c0 min(r̂,
√
h)
√
h, and

(iii) π(x, y) ≥ p01r̂≤2
√
h,

where c0, p0 ∈ (0, 1) are explicit universal constants (c0 ≥ 0.007, p0 ≥ 0.15). Furthermore,
if the assumptions (C1), (C2) and (C3) hold true, then

(iv) β(x, y) ≤ min(L, J + L2h/2)hr,

(v) β(x, y) ≤ −(K − L2h/2)hr if r ≥ R,

(vi) α(x, y) ≥ c̃0h1r≥
√
h if r ≤ 1/(4L

√
h), and

(vii) π(x, y) ≥ p01r≤
√
h if h ≤ 1/L.

Here c̃0 is an explicit universal constant (c̃0 ≥ 0.0005).

The proof of the lemma is contained in Section 6.

Contractive case

At first, we consider the case where the deterministic part of the Euler transition is a
contraction, i.e.,

r̂ = |x̂− ŷ| ≤ |x− y| = r for any x, y ∈ Rd. (2.52)

In this simple case, we can prove a rather sharp result. We choose a metric ρa : Rd×Rd →
R+ of type

ρa(x, y) = a1x6=y + fa(|x− y|), fa(r) =

∫ r

0

ga(s ∧R) ds. (2.53)

Here a is a non-negative constant, R is chosen as in Assumption (C2), and ga : [0,R]→ R

is an appropriately chosen decreasing function (see (6.14) for a = 0 and (6.20) for a 6= 0)
satisfying

ga(0) = 1 and ga(s) ∈ [1/2, 1] for any s ∈ [0,R]. (2.54)

Hence fa is a concave increasing function satisfying r/2 ≤ fa(r) ≤ r, and thus

a1x 6=y + |x− y|/2 ≤ ρa(x, y) ≤ a1x 6=y + |x− y| for any x, y ∈ Rd. (2.55)

In particular, the distance ρ0 is equivalent to the Euclidean distance.

Theorem 2.8 (Euler scheme, contractive case). Suppose that Conditions (C1), (C2), (C3)
and (2.52) are satisfied, and let h0 = 1

L min
(
K
L ,

1
2

)
. Suppose that a = 0 or a ≥

√
h, and

let ρa be defined by (2.53) with ga specified in (6.14), (6.20), respectively. Let

c1(0) =
1

4
min

(
K,

2c0

R2 + 2
√
hR+ 12h

)
and (2.56)

c1(a) =
1

4
min

(
K

1 + a/R
,

2c0

R2 + 2(a+
√
h)R

,
2p0

h

)
for a > 0, (2.57)

where c0 is the explicit constant in Lemma 2.7. Then (2.54) and (2.55) hold, and if
h ∈ (0, h0), then

Ex,y[ρa(X ′, Y ′)] ≤ (1− c1(a)h) ρa(x, y) for all x, y ∈ Rd. (2.58)
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The proof, based on Theorem 2.2 for a > 0 and Theorem 2.4 for a = 0, is given in
Section 6.

Remark 2.9 (Dependence on parameters and dimension). The lower bound for the
contraction rate in (2.58) is of the correct order Ω(hmin(R−2,K)). This corresponds to
the optimal contraction rate Θ(min(R−2,K)) for the corresponding diffusion process,
see [17, Lemma 1 and Remark 5]. Note also that the lower bound for the contraction
rate does not depend on the dimension d provided the parameters R,K and L can be
chosen independent of d.

General case

We now turn to the general, not globally contractive case. Here it is no longer possible to
obtain contractivity w.r.t. a metric satisfying (2.55), but we can still choose a metric that
is comparable to the Euclidean distance, and apply the theorems above. We illustrate
this at first by applying Theorem 2.2. Let

Λ = min(L, J + L2h/2). (2.59)

We now choose a metric ρa : Rd ×Rd → R+ of type

ρa(x, y) = a1x 6=y + fa(|x− y|), fa(r) =

∫ r

0

ga(s ∧ r2)ϕ(s ∧ r2) ds. (2.60)

Here a is a non-negative constant,

ϕ(r) = exp
(
−c̃−1

0 Λ
(

(r ∧R)2 + 2
√
h r ∧R

))
(2.61)

with R and c̃0 chosen as in Assumption (C2) and Lemma 2.7, respectively,

r2 = R+
√

2c̃0/K, (2.62)

and ga : [0, r2]→ R is an appropriately chosen decreasing function (see (6.20)) satisfying

ga(0) = 1 and ga(s) ∈ [1/2, 1] for any s ∈ [0, r2]. (2.63)

Theorem 2.10 (Euler scheme, general case I). Suppose that Conditions (C1), (C2) and
(C3) are satisfied, and let h0 = 1

L min(p02 ,
K
L ,

1
64Lr22

) with r2 specified in (2.62). Let

a ∈ [2
√
h,Φ(R)] where Φ(R) :=

∫R
0
ϕ(r) dr, let ρa be defined by (2.60) with ϕ and ga

specified in (2.61) and (6.20), respectively, and let

c2(a) =
1

8
min

(
K ϕ(R)

1 + (a+ /
√
h)
√

2K/c̃0
,

2 c̃0 ϕ(R)

R2 + 2(a+
√
h)R

,
4p0

h

)
. (2.64)

Then (2.63) holds, and if h ∈ (0, h0), then

Ex,y[ρa(X ′, Y ′)] ≤ (1− c2(a)h) ρa(x, y) for all x, y ∈ Rd.

Note that except for the additional factor ϕ(R) = exp(−c̃−1
0 Λ(R2 + 2

√
hR)), the

expression for the contraction rate c2(a) is similar to the one for the rate c1(a) in the
contractive case. The proof based on Theorem 2.2 is given in Section 6. If the interval
[2
√
h,Φ(R)] is empty, the theorem can still be applied withR replaced by a slightly larger

value. It is also possible to replace Condition (C2) by a Lyapunov condition and apply
Theorem 2.3 instead of Theorem 2.2. A corresponding result for the Euler scheme is
given in Section 6, cf. Theorem 6.1.
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Remark 2.11 (Dependence on parameters and dimension). The lower bound for the
contraction rate in (2.64) does not depend on the dimension d provided the parameters
R,K and Λ can be chosen independent of d. Moreover, by choosing h sufficiently
small, we can ensure that Λ is close to the one-sided Lipschitz constant J . Hence the
global Lipschitz constant L is only required for controlling the step size h, whereas the
contraction properties for sufficiently small h can be controlled essentially by one-sided
Lipschitz bounds. This is important since in many applications, only a one-sided Lipschitz
condition is satisfied globally. In this case, our approach can still be applied on a large
ball if the step size is chosen sufficiently small depending on the radius of the ball and
the growth of the local Lipschitz constant.

The explicit expression for the metric in Theorem 2.10 is a bit complicated. As an
alternative, we can use a simplified metric without a discontinuity that is sufficient to
derive bounds of similar order as for the metric used above, whenever condition (C2) is
satisfied. We assume hL ≤ 1/6, and we set

r1 := (1 + hL)R ≤ 7

6
R (2.65)

with R and L as in Assumptions (C2) and (C3). The choice of r1 ensures that

r̂ = |x̂− ŷ| ≤ (1 + hL)r ≤ r1 whenever r = |x− y| ≤ R. (2.66)

Let c0 denote the explicit constant in Lemma 2.7, and let

q = 7c−1
0 ΛR. (2.67)

We now consider a simplified metric of the form

ρ(x, y) = f(|x− y|), f(r) =

∫ r

0

exp(−q(s ∧ r1)) ds. (2.68)

Theorem 2.12 (Euler scheme, general case II). Suppose that Conditions (C1), (C2) and
(C3) are satisfied, and let ρ be defined by (2.68) with q specified in (2.67). Let

c2 = min

(
K

2
,

245

24c0
Λ2R2

)
exp

(
− 49

6c0
ΛR2

)
and (2.69)

h0 =
1

L
min

(
1

6
,
K

L
,

1

3
LR2,

c20
970

1

LR2

)
, (2.70)

where c0 is chosen as in Lemma 2.7. Then

Ex,y[ρ(X ′, Y ′)] ≤ (1− c2h)ρ(x, y) for any x, y ∈ Rd and h ∈ (0, h0]. (2.71)

The proof of the theorem is contained in Section 6.

Remark 2.13. Again, the lower bound c2 for the contraction rate only depends on R, K
and Λ. Furthermore, note that r exp(−qr1) ≤ f(r) ≤ r for all r ≥ 0, and hence the metric
ρ is comparable to the Euclidean distance. As a consequence, Theorem 2.12 implies
weak contractivity in the standard L1 Wasserstein distance. Note also that the function
f depends on the discretization parameter h via q and r1. It is, however, possible to
modify the definition of f so that it no longer depends on h, at the cost of getting a worse
constant c2. We refer the interested reader to [34], where similar bounds are used with
a metric independent of h.

Theorem 2.12 can be extended to cover pseudo metrics based on functions that
are strictly convex at infinity. This allows us to obtain upper L2 bounds for Euler
schemes under similar assumptions as above. Such bounds are applied to the analysis of
Multi-level Monte Carlo algorithms in the upcoming paper [34].
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2.5 Application to MALA

The Metropolis-adjusted Langevin Algorithm is a Metropolis-Hastings method for
approximate sampling from a given probability measure µ where the proposals are ob-
tained by an Euler discretization of an overdamped Langevin SDE. In [16], the dimension
dependence of contraction rates of MALA chains w.r.t. standard Kantorovich distances
has been studied for a class of strictly log-concave probability measures that have a
density w.r.t. a Gaussian reference measure. Our goal is to provide a partial extension
of these results to non log-concave measures. By considering the MALA transition step
as a perturbation of the Euler proposals, we obtain contraction rates w.r.t. a modified
Kantorovich distance provided the discretization time step is of order h = O(d−1).

We consider a similar setup as in [16]: µ is a probability measure on Rd given by

µ(dx) = Z−1 exp(−U(x)) dx = (2π)d/2Z−1 exp(−V (x))γd(dx) , (2.72)

where V is a function in C4(Rd),

U(x) =
1

2
|x|2 + V (x), (2.73)

γd denotes the d-dimensional standard normal distribution, and

Z =

∫
exp(−U(x)) dx.

We assume that we are given a norm ‖ · ‖− on Rd such that

‖x‖− ≤ |x| ≤ d‖x‖− for any x ∈ Rd, (2.74)

as well as finite constants Cn ∈ [0,∞), pn ∈ {0, 1, 2, . . .}, and Kc,Rc ∈ (0,∞) such that
the following conditions hold for any n ∈ {1, . . . , 4}:

|∂nξ1,...,ξnU(x)| ≤ Cn max(1, ‖x‖pn− )‖ξ1‖− · · · ‖ξn‖− ∀x, ξ1, . . . , ξn ∈ Rd. (2.75)

(∂ξξU)(x) ≥ Kc|ξ|2 ∀ x, ξ ∈ Rd : |x| ≥ Rc. (2.76)

Here (2.76) can be interpreted as strict convexity of U outside a Euclidean ball.

Remark 2.14. (i) For discretizations of infinite-dimensional models, ‖ · ‖− is typically
a finite-dimensional approximation of a norm that is almost surely finite w.r.t. the limit
measure in infinite dimensions, see for instance [16, Example 1.6]. Correspondingly,
we may assume that the measure concentrates on a ball of a fixed radius w.r.t. ‖ · ‖−.
This will be relevant for the application of Theorem 2.16 below, which states uniform
contractivity on such balls.

(ii) Condition (2.75) is the same condition that has been assumed in the strictly convex
case in [16].

(iii) In (2.76), we assume strict convexity outside a ball of fixed radius w.r.t. the Euclidean
norm and not w.r.t. ‖ · ‖−. Such a bound can be expected to hold with Rc independent of
the dimension if, for example, the non-convexity occurs only in finitely many directions.
The application of a coupling approach in situations where (2.76) does not hold requires
more advanced techniques, see e.g. [44].

The transition step of a Metropolis-Hastings chain with proposal density p(x, y) and
target distribution µ(dx) = µ(x) dx is given by

x̃ =

{
X ′ if Ũ ≤ α(x,X ′)

x otherwise.
, (2.77)
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where x is the previous position, X ′ is the proposed move,

α(x, y) = min

(
1,
µ(y)p(y, x)

µ(x)p(x, y)

)
is the Metropolis-Hastings acceptance probability, and Ũ ∼ Unif(0, 1) is a uniform
random variable that is independent of X ′. We consider the proposal

X ′ = x− h

2
x− h

2
∇V (x) +

√
h− h2

4
Z, Z ∼ N(0, Id) , (2.78)

where h ∈ (0, 2) is the step size of the time discretization. The corresponding proposal
kernel is ph(x, ·) = N(x − h

2x −
h
2∇V (x), (h − h2/4)Id). Substituting h = ε

1+ε/4 , we see
that the proposal is a transition step of the semi-implicit Euler discretization

X ′ = x− ε

2

X ′ + x

2
− ε

2
∇V (x) +

√
εZ (2.79)

for the Langevin SDE dXt = − 1
2Xt dt− 1

2∇V (Xt) dt+ dBt with invariant measure µ. The
reason for considering the semi-implicit instead of the explicit Euler approximation is
that under appropriate conditions, the acceptance probability

αh(x, y) = min

(
1,
µ(y)ph(y, x)

µ(x)ph(x, y)

)
(2.80)

for the corresponding Metropolis-Hastings scheme has a better dimension dependence.
Indeed, if V vanishes, then αh(x, y) = 1. More generally, if (2.75) holds, then the average
rejection probability is of order O(h

3
2 ).

Lemma 2.15 (Upper bounds for rejection probability). Suppose that (2.75) holds and let
k ∈ N. Then there exists an explicit polynomial Pk : R2 → R+ of degree max(p3+3, 3p2+2)

such that for any x ∈ R2 and h ∈ (0, 2),

E[(1− αh(x,X ′))k]
1
k ≤ Pk(‖x‖−, ‖x+∇V (x)‖−)h

3
2 .

The proof of the lemma is given in [16, Proposition 1.7]. The polynomials Pk are
explicit. Their coefficients depend only on the constants C2, C3, p2 and p3 in (2.75) and
on the moments

mn = E[‖Z‖n−], n ≤ kmax(p3 + 3, 2p2 + 2) .

Apart from replacing
√
h by

√
h− h2

4 , (2.78) coincides with the explicit Euler discretiza-

tion of the SDE dXt = b(Xt) dt+ dBt, where b(x) = − 1
2x−

1
2∇V (x).

Therefore, the results in the last section apply to the proposal chain, thus yielding
a contraction rate of order Ω(h). Since the rejection probability is of higher order, we
can then apply the perturbation result in (2.5) to prove a corresponding contractivity for
the MALA chain. To this end, we consider the coupling (X̃, Ỹ ) of transition steps of the
MALA chain from positions x, y ∈ Rd given by (2.77) and

Ỹ =

{
Y ′ if Ũ ≤ α(y, Y ′)

y otherwise.
(2.81)

where (X ′, Y ′) is the (optimal) coupling for the proposal steps considered in (2.40), and
Ũ ∼ Unif(0, 1) is independent of both X ′ and Y ′. Hence, the proposals are coupled
optimally and the same uniform random variable Ũ is used to decide about acceptance
or rejection for each of the steps. Nevertheless, in general (X̃, Ỹ ) is not an optimal
coupling of the corresponding MALA transition probabilities.
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Theorem 2.16 (Contraction rates for MALA). Suppose that conditions (2.75) and (2.76)
hold and fix R ∈ (0,∞). Then there exists a concave strictly increasing function
f̃ : [0,∞) → [0,∞) with f̃(0) = 0 and constants c3, h0 ∈ (0,∞) such that for any
h ∈ (0, h0d

−1) and for any x, y ∈ Rd with ‖x‖− ≤ R, ‖y‖− ≤ R,

Ex,y[f̃(|X̃ − Ỹ |)] ≤ (1− c3h)f̃(|x− y|) . (2.82)

The function f̃ and the constants c3 and h0 depend only on R and on the values of the
constants Cn, pn, Kc, Rc in assumptions (2.75), (2.76).

The proof of Theorem 2.16 is given in Section 7.

Remark 2.17. The theorem shows that by choosing the step size of order Θ(d), a
contraction rate of the same order holds on balls w.r.t. ‖ · ‖− provided conditions (2.75)
and (2.76) are satisfied. In the strictly convex case, it has been shown in [16] by a
synchronous coupling that a corresponding result holds even for step sizes of order Θ(1)

if the Euclidean norm in (2.82) is replaced by ‖ ·‖−. One could hope for a similar result in
the not globally convex case, but the combination of reflection coupling with a different
norm leads to further difficulties. A possibility to overcome these difficulties might be
the two-scale approach developed in [44].

3 Proofs of Theorems 2.2 and 2.3

In this section, we prove the first two theorems. We first specify the explicit choice of
the metric and the explicit values of the contraction rate c. The reason for choosing the
metric this way will become clear by the subsequent proofs of the theorems.

For r, s > 0, we consider the intervals

Ir = ((r − ε)+, r) (3.1)

and the dual intervals

Îs = {r > r0 : s ∈ Ir} = (s, s+ ε) ∩ (r0,∞) . (3.2)

For r ∈ (r0,∞) we set

γ(r) = 2β(r)/α(r) . (3.3)

Let γ̃ : [0,∞)→ [0,∞) be a function satisfying

sup
r∈Îs

γ(r) ≤ γ̃(s) for any s ∈ [0,∞), i.e., (3.4)

γ(r) ≤ γ̃(s) for any r > r0, s ∈ Ir . (3.5)

By assumptions (A1) and (A2), such a function exists. If (A3) holds, then we may assume
w.l.o.g. that γ̃(s) = 0 for large s.

3.1 Choice of the metric in Theorem 2.2

Suppose conditions (A1), (A2) and (A3) hold. We set

r1 := sup{r > 0 : γ̃(r) > 0}, (3.6)

where sup ∅ = 0. By Assumption (A3) we can choose γ̃ such that r1 is finite. We have

γ̃(r) = 0 , γ(r) ≤ 0 , β(r) ≤ 0 for any r ≥ r1 . (3.7)
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We also fix a constant r2 ∈ (r1,∞). The value of r2 will be determined in condition (3.12)
below. The underlying metric we consider is given by (2.15), where f : [0,∞)→ [0,∞) is
a concave increasing function defined by

f(r) = a1r>0 +

∫ r

0

ϕ(s ∧ r2)g(s ∧ r2) ds (3.8)

with decreasing differentiable functions ϕ and g such that ϕ(0) = g(0) = 1 and a constant
a ∈ (0,∞) that are all specified below. Hence, f is twice differentiable except at 0,
f(0+)− f(0) = a, f ′ = ϕg on (0, r2), and f ′ is constant on [r2,∞).

The function ϕ and the constant a are chosen such that

ϕ(r) = exp

(
−
∫ r

0

γ̃(s) ds

)
, and (3.9)

a ≥ r0 + 2 sup
|x−y|≤r0

β(x, y)

π(x, y)
. (3.10)

Notice that by (3.7), the function ϕ(r) is constant for r ≥ r1. Setting

Φ(r) =

∫ r

0

ϕ(s) ds , (3.11)

the constant r2 is chosen such that

− β(r)

a+ Φ(r)
≥ 1

2

(∫ r2

r1

Φ(s)

α(s)
ds

)−1

for all r ≥ r2 . (3.12)

Assumption (A3) ensures that such a constant exists. Indeed, for r ≥ r1, γ̃ vanishes,
whence ϕ is constant and Φ is linear. By definition of α, we see that α is uniformly
bounded by ε2. Therefore, the value on the right hand side of (3.12) goes to zero as
r2 →∞, and (3.12) holds for large r2 by (A3).

The contraction rate is now given by

c = min

1

2
inf
r≤r0

π(r),
1

4

(∫ r2

0

1

ϕ(s)
sup
u∈Îs

a+ Φ(u)

α(u)
ds

)−1
 (3.13)

and the function g is defined as

g(r) = 1− 2c

∫ r

0

1

ϕ(s)
sup
u∈Îs

a+ Φ(u)

α(u)
ds . (3.14)

Note that (3.13) guarantees that g(r) ≥ 1
2 for r ≤ r2.

3.2 Choice of the metric in Theorem 2.3

Now suppose that (A1), (A2) and (A4) hold. In this case we set

r1 := sup{d(x, y) : x, y ∈ S , V (x) + V (y) < 4C/λ} . (3.15)

By (A4)b and (A2), r1 is finite. Moreover, by (A4)a,

Ex,y[V (X ′) + V (Y ′)] ≤
(

1− λ

2

)
(V (x) + V (y)) if d(x, y) ≥ r1 . (3.16)

We also fix a constant r2 ∈ (r1,∞). The value of r2 will be determined by condition (3.21)
below.
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The function f : [0,∞)→ [0,∞) determining the metric in (2.17) is now defined by

f(r) = a1r>0 +

∫ r

0

ϕ(s ∧ r2)g(s ∧ r2) ds (3.17)

with decreasing differentiable functions ϕ and g such that ϕ(0) = g(0) = 1, and a
constant a ∈ (0,∞) that are all specified below. Hence, f is twice differentiable except
at 0, f(0+)− f(0) = a, f ′ = ϕg on (0, r2) and f ′ is constant on [r2,∞).

The function ϕ and the constants a and M in (2.17) are chosen such that

ϕ(r) = exp

(
−
∫ r

0

γ̃(s) ds

)
, (3.18)

M ≤ 1

4

(∫ r1

0

1

ϕ(s)
sup
u∈Îs

1

α(u)
ds

)−1

, (3.19)

a ≥ r0 + 2 sup
|x−y|≤r0

β(x, y) +M

π(x, y)
, (3.20)

β(r)ϕ(r) ≤ λM

16C
(V (x) + V (y)) if |x− y| ≥ r2 . (3.21)

By (A4)b and since ϕ ≤ 1, there always exists a finite r2 such that (3.21) holds. To
optimize the estimates, we choose r2 as small as possible, i.e., we set

r2 = r1 ∨ sup

{
d(x, y) = r : x, y ∈ S, V (x) + V (y) <

16C

λM
β(r)ϕ(r)

}
. (3.22)

Setting

Φ(r) =

∫ r

0

ϕ(s) ds , (3.23)

the contraction rate c is given by

c = min

1

2
inf
r≤r0

π(r),
λ

4
,
λM

16C
inf
r≥r2

V (x) + V (y)

Φ(r)
,

1

8

(∫ r2

0

1

ϕ(s)
sup
u∈Îs

a+ Φ(u)

α(u)
ds

)−1
 .

(3.24)
and the function g is defined as

g(r) = 1− 2c

∫ r

0

1

ϕ(s)
sup
u∈Îs

a+ Φ(u)

α(u)
ds−M

∫ r∧r1

0

1

ϕ(s)
sup
u∈Îs

1

α(u)
ds . (3.25)

Note that (3.24) and (3.19) guarantee that g(r) ≥ 1
2 for r ≤ r2. In the minimum defining

c, the first term guarantees contractivity for r ≤ r0, the second term is used for all r, the
third term guarantees contractivity for r ≥ r2 and the last term ensures contractivity
with rate c for r0 < r ≤ r1.

3.3 Proof of Theorem 2.2 and Theorem 2.3

Since the arguments are similar, we prove both theorems simultaneously, distinguish-
ing cases where needed. In the situation of Theorem 2.2, we set M = 0. Let x, y ∈ Rd
such that r = |x− y| > 0. Since f ′′(t) ≤ 0 for all t > 0,

f(R′)− f(r) = −a1R′=0 +

∫ R′

r

f ′(s) ds

= −a1R′=0 + (R′ − r)f ′(r) +

∫ R′

r

∫ s

r

f ′′(t) dt ds

≤ −a1R′=0 + (R′ − r)f ′(r) +
1

2
((R′ − r)− ∧ ε)2 sup

u∈Ir
f ′′(u),
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where Ir = ((r − ε)+, r). By taking expectations, we conclude that

Ex,y[f(R′)− f(r)] ≤ −aπ(x, y) + β(x, y)f ′(r) +
1

2
α(x, y) sup

u∈Ir
f ′′(u). (3.26)

Our goal is to compensate the second term by the first term for r ≤ r0 and by the last
term for r0 < r ≤ r2 (and possibly by a Lyapunov part for r ≥ r2). In order to verify
(2.16) and (2.18), we now distinguish three cases.

Case r ∈ (r0, r2). Since f ′ = gϕ on (0, r2), we have

sup
Ir

f ′′ ≤ sup
Ir

(g′ϕ) + sup
Ir

(gϕ′) . (3.27)

Note that both summands are negative since g and ϕ are decreasing. Now we note first
that our choice of ϕ guarantees that

1

2
α(x, y) sup

Ir

(gϕ′) + β(x, y)f ′(r) ≤ 0 . (3.28)

Indeed, (3.28) is satisfied provided

sup
Ir

(gϕ′) ≤ −γ(r)g(r)ϕ(r) . (3.29)

Since ϕ′ ≤ 0 and g is decreasing, we have

sup
Ir

(gϕ′) ≤ inf
Ir
g sup

Ir

ϕ′ ≤ g(r) sup
Ir

ϕ′.

Hence, (3.29) is satisfied if
sup
s∈Ir

ϕ′(s) ≤ −γ(r)ϕ(r). (3.30)

But indeed, by definition of ϕ and γ̃, we have for s ∈ Ir

ϕ′(s) = −γ̃(s)ϕ(s) ≤ −γ(r)ϕ(r) .

Next, we observe that our choice of g (in particular, g ≤ 1) guarantees that

1

2
α(x, y) sup

Ir

(g′ϕ) +M1r<r1 ≤ −cf(r) . (3.31)

Indeed, since f(r) ≤ a+ Φ(r) and f ′(r) ≤ 1, it is sufficient to show

sup
s∈Ir

(g′(s)ϕ(s)) ≤ −2c
a+ Φ(r)

α(r)
− M1r<r1

α(r)
if r0 < r < r2, (3.32)

or

g′(s)ϕ(s) ≤ −2c sup
r∈Îs

a+ Φ(r)

α(r)
− sup
r∈Îs

M1r<r1
α(r)

if 0 < s ≤ r2 . (3.33)

In (3.14), (3.25) respectively, the function g has been defined in such a way that this
condition is satisfied. Now, by combining (3.26), (3.28) and (3.31), and bounding the
term −aπ(x, y) in (3.26) by zero, we obtain for r ∈ (r0, r2):

Ex,y[f(R′)− f(r)] ≤ −M1r<r1 − cf(r) . (3.34)

In the setup of Theorem 2.2, we have chosen M = 0 and ρ(x, y) = f(d(x, y)). Hence,
(3.34) implies the assertion

Ex,y[ρ(X ′, Y ′)] ≤ (1− c)ρ(x, y) for r = d(x, y) ∈ (r0, r2) . (3.35)
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In the setup of Theorem 2.3, by Assumption (A4),

Ex,y[V (X ′) + V (Y ′)] ≤ (1− λ)(V (x) + V (y)) + 2C . (3.36)

Since ρ(x, y) = f(d(x, y)) + M
2C (V (x) + V (y))1x 6=y, we obtain for r ∈ (r0, r1):

Ex,y[ρ(X ′, Y ′)] (3.37)

≤ −M + (1− c)f(d(x, y)) +
M

2C
(1− λ)(V (x) + V (y)) +M

≤ (1− c)ρ(x, y).

Here the last inequality holds since λ ≥ c. On the other hand, for r ∈ [r1, r2), we have
V (x) + V (y) ≥ 4C/λ by (3.15). Hence in this case, by (3.36),

Ex,y[V (X ′) + V (Y ′)] ≤ (1− λ/2) (V (x) + V (y)) . (3.38)

Since c ≤ λ/2, (3.34) and (3.38) then again imply

Ex,y[ρ(X ′, Y ′)] ≤ (1− c)f(d(x, y)) +

(
1− λ

2

)
M

2C
(V (x) + V (y)) (3.39)

≤ (1− c)ρ(x, y) .

Case r ≤ r0. Noting that f ′′ ≤ 0 and f ′ ≤ 1 and applying (A2), we see that for
r ∈ (0, r0), (3.26) implies

Ex,y[f(R′)− f(r)] ≤ −aπ(x, y) + β(x, y) ≤ −M − c(a+ r0) ≤ −M − cf(r) (3.40)

provided c ≤ 1
2π(x, y) and

a

2
π(x, y) ≥ r0

2
π(x, y) +M + β(x, y) . (3.41)

This condition is satisfied by our choice of a, cf. (3.20). Again, using (3.36), and since
c ≤ λ/2, we obtain

Ex,y[ρ(X ′, Y ′)]

≤ −M + (1− c)f(r) + (1− λ)
M

2C
(V (x) + V (y)) + 2C

M

2C
≤ (1− c)ρ(x, y) .

Case r ≥ r2. Here, we use the bound f(R′)− f(r) ≤ (R′ − r)f ′(r) yielding

Ex,y[f(R′)− f(r)] ≤ β(x, y)f ′(r). (3.42)

Now, we consider first the setup of Theorem 2.2. Here, for r ≥ r2, we have

Ex,y[f(R′)− f(r)] ≤ β(r)f ′(r) ≤ β(r)
ϕ(r1)

2
,

where we have used that by (3.7), β(r) ≤ 0, f ′ ≥ ϕ/2 and ϕ is constant on [r1,∞). To
prove that the right hand side is bounded from above by −cf(r), it is sufficient to show

c(a+ Φ(r)) ≤ −β(r)
ϕ(r1)

2
for any r ≥ r2 .

We claim that this holds by the definition of r2. Indeed, by the definition of c,

c−1 ≥ 4

∫ r2

0

1

ϕ(s)
sup
u∈Îs

a+ Φ(u)

α(u)
ds ≥ 4

∫ r2

r1

Φ(s)

ϕ(s)α(s)
ds =

4

ϕ(r1)

∫ r2

r1

Φ(s)

α(s)
ds .

EJP 24 (2019), paper 26.
Page 20/36

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/19-EJP287
http://www.imstat.org/ejp/


Quantitative contraction rates for Markov chains

Hence, by (3.12),

c(a+ Φ(r)) ≤ 1

4

(∫ r2

r1

Φ(s)

α(s)
ds

)−1

(a+ Φ(r))ϕ(r1) ≤ −β(r)
ϕ(r1)

2
,

and thus
Ex,y[ρ(X ′, Y ′)− ρ(x, y)] ≤ −c(a+ Φ(r)) ≤ −cρ(x, y) .

Finally, we now show contractivity for r ≥ r2 under the conditions in Theorem 2.3.
Here, by (3.38) and (3.26),

Ex,y[ρ(X ′, Y ′)] = Ex,y[f(R′)] +
M

2C
Ex,y[V (X ′) + V (Y ′)] (3.43)

≤ f(r) + β(r)f ′(r) +
M

2C

(
1− λ

2

)
(V (x) + V (y)) .

Since c ≤ λ/4 by its definition, we obtain

Ex,y[ρ(X ′, Y ′)] ≤ (1− c)
(
f(r) +

M

2C
(V (x) + V (y))

)
= (1− c)ρ(x, y) (3.44)

provided

cf(r) + β(r)f ′(r) ≤ M

2C

λ

4
(V (x) + V (y)) . (3.45)

However, due to our choice of r2 in (3.22) and since f ′ ≤ ϕ, we have

β(r)f ′(r) ≤ λM

16C
(V (x) + V (y)) if |x− y| ≥ r2 .

Moreover, due to our choice of c in (3.24) and since f ≤ Φ, we get

cf(r) ≤ λM

16C
(V (x) + V (y)) if |x− y| ≥ r2 .

Hence (3.45) is indeed satisfied for r ≥ r2 and the proof is complete.

4 Proof of Theorem 2.4

For proving Theorem 2.4, we proceed in a similar way as in the proofs of Theorem
2.2 and Theorem 2.3 above. Suppose that conditions (B1), (B2) and (B3) hold. Now,
the intervals Ir, r ∈ (0,∞) are given by (2.19) and we consider the dual intervals Îs,
s ∈ (0,∞) defined by

Îs = {r ∈ (0,∞) : s ∈ Ir}. (4.1)

By (2.23), Ir = (r − `(r), r) for r ≥ r0 and Ir ⊆ (0, 2r0) for r < r0. Therefore

Îs = {r > s : r − `(r) < s} for s ≥ 2r0, and (4.2)

Îs ⊆ {r > s : r − `(r) < 2r0} for s < 2r0 . (4.3)

Let γ(r) = 2β(r)/α(r) as in (3.3). Similarly as in the proof of Theorem 2.2 and Theorem
2.3, we assume that γ̃ : [0,∞)→ [0,∞) is a function satisfying

sup
Îs

γ ≤ γ̃(s) for any s ∈ (0,∞) , (4.4)

4 sup
Îs

γ ≤ γ̃(s) for any s ∈ (0, 2r0) , and (4.5)∫ 2r0

0

γ̃(s) ds ≤ log 2 . (4.6)
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Note the additional factor 4 that has been introduced for technical reasons for s < 2r0.
In applications, this will usually not affect the bounds too much, as typically r0 is a small
constant. Condition (4.6) can always be satisfied by choosing r0 small enough. As in
(3.6), we set

r1 := sup{r > 0 : γ̃(r) > 0}, (4.7)

where sup ∅ = 0. Similarly as below (3.6), by Assumption (B3), we can choose γ̃ such that
r1 is finite. The metric is chosen similarly as in the proof of Theorem 2.2 above, where
now a = 0. We define

f(r) =

∫ r

0

ϕ(r ∧ r2)g(s ∧ r2) ds . (4.8)

Here

ϕ(r) = exp

(
−
∫ r

0

γ̃(s) ds

)
, Φ(r) =

∫ r

0

ϕ(s) ds, (4.9)

the constant r2 is chosen such that

−β(r)

Φ(r)
≥ 1

8

(∫ r2

r1

Φ(s)

α(s)
ds

)−1

for r ≥ r2, (4.10)

and

g(r) = 1− 2c

∫ r

0

1

ϕ(s)
sup
u∈Îs

Φ(u)

α(u)
ds, (4.11)

where the contraction rate c is given by

c =
1

4

(∫ r2

0

1

ϕ(s)
sup
u∈Îs

Φ(u)

α(u)
ds

)−1

. (4.12)

Proof of Theorem 2.4. Let x, y ∈ Rd and r = d(x, y).

For r ≥ r2, (2.26) follows in the same way as in the proof of Theorem 2.2 (with a = 0).
The crucial assumption for this is (4.10), which holds due to (B3), by analogy to (3.12) in
the proof of Theorem 2.2, which holds due to (A3).

Now assume that r < r2. To prove (2.26), we show that

Ex,y[f(R′)− f(r)] ≤ β(r)f ′(r) +
1

2
α(r) sup

Ir

f ′′ ≤ −cf(r) . (4.13)

The first inequality follows similarly as in the proof of Theorem 2.2, cf. (3.26). To prove
the second inequality, note that on (0, r2),

f ′ = gϕ , f ′′ = gϕ′ + g′ϕ and f ≤ Φ . (4.14)

By (4.14) it is sufficient to show that ϕ, g and c have been chosen in such a way that

sup
Ir

(gϕ′) ≤ −2
β(r)

α(r)
g(r)ϕ(r) (4.15)

sup
Ir

(g′ϕ) ≤ −2c
Φ(r)

α(r)
. (4.16)

Then, by (4.13) we can conclude that

Ex,y[ρ(X ′, Y ′)− ρ(x, y)] = Ex,y[f(R′)− f(r)] ≤ −cΦ(r) ≤ −cf(r) = −cρ(x, y) .

We first verify (4.15). This condition is satisfied provided

g(s)ϕ′(s) ≤ − sup
Îs

(γgϕ) for any s ≤ r2. (4.17)
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For s ≥ 2r0 we have

sup
Îs

(γgϕ) ≤

(
sup
Îs

γ

)(
sup
Îs

gϕ

)
≤ γ̃(s)g(s)ϕ(s) ,

because Îs ⊆ (s,∞) by (4.2) and since gϕ is decreasing. Hence, (4.17) holds by definition
of ϕ.

For s < 2r0 we have to argue differently, since, in general, Îs is not contained in
(s,∞) in this case. Observe first that if supÎs(γgϕ) ≤ 0, then (4.17) holds trivially since ϕ
is decreasing. Hence it is sufficient to consider the case of supÎs(γgϕ) > 0. Noting that
gϕ ≤ 1, we have by (4.5)

sup
Îs

(γgϕ) ≤ sup
Îs

γ+ ≤ 1

4
γ̃(s)

and hence, since g ≥ 1
2 ,

g(s)ϕ′(s) ≤ 1

2
ϕ′(s) = −1

2
γ̃(s)ϕ(s) ≤ −2ϕ(s) sup

Îs

(γgϕ) .

Thus, (4.17) holds for s < 2r0 since by (4.6),

ϕ(s) = exp

(
−
∫ s

0

γ̃(u) du

)
≥ 1

2
.

We thus have shown that (4.17) and hence (4.15) are satisfied. It remains to verify (4.16).
This condition holds provided

g′(s)ϕ(s) ≤ inf
Îs

−2cΦ

α
, for any s ≤ r2 (4.18)

or, equivalently,

g′(s) ≤ −2c
1

ϕ(s)
sup
Îs

Φ

α
, for any s ≤ r2 . (4.19)

The function g has been chosen in (4.11) in such a way that this condition is satisfied.

5 Proof of perturbation result

We now prove the perturbation result in Theorem 2.5. Let x, y ∈ S, x 6= y. By (2.33),
(2.30), (2.31) and (2.32),

Ex,y[ρ̃(X̃, Ỹ )− ρ̃(x, y)] ≤ Ex,y[ρ(X̃, Ỹ )− ρ(x, y)]− 2b

p
Px,y[X̃ = Ỹ ]

≤ Ex,y[(d(X̃, Ỹ )− d(X ′, Y ′))+] + Ex,y[ρ(X ′, Y ′)− ρ(x, y)]− 2b

p
Px,y[X̃ = Ỹ ]

≤ b− c

2
ρ(x, y)− 2b1d(x,y)<r0 .

Note that in the second inequality we have used that f is a contraction. For d(x, y) < r0

we obtain

Ex,y[ρ̃(X̃, Ỹ )− ρ̃(x, y)] ≤ −p
2

2b

p
− c

2
ρ(x, y) ≤ −1

2
min(c, p)ρ̃(x, y) . (5.1)

For d(x, y) ≥ r0, we use the fact that b = cf(r0)/4. Hence,

ρ̃(x, y) = ρ(x, y) +
2b

p
≤
(

1 +
c

2p

)
ρ(x, y) ≤ max

(
2,
c

p

)
ρ(x, y), and

Ex,y[ρ̃(X̃, Ỹ )− ρ̃(x, y)] ≤ b− c

2
ρ(x, y) ≤ − c

4
ρ(x, y) ≤ −1

8
min(c, 2p)ρ̃(x, y). (5.2)

The assertion of Theorem 2.5 follows from (5.1) and (5.2).
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6 Proof of results for the Euler scheme

In this section, we prove the contraction results for the Euler scheme.

Proof of Lemma 2.7 (i), (ii) and (iii). We start with reduction steps. At first, we observe
that the definitions of β̂(x, y), α̂(x, y) and π̂(x, y) only depend on r̂ = |x̂ − ŷ| and R′ =

|X ′ − Y ′|. Thus, the assertions (i) (ii), (iii) are statements about the coupled random
walk transition step (x̂, ŷ) → (X ′, Y ′) defined by (2.40), and we may assume w.l.o.g.
that (x̂, ŷ) = (x, y). Furthermore, r̂ and the law of R′ under Px,y are invariant under
translations and rotations of the underlying state space Rd. Therefore, we may even
assume w.l.o.g. that x̂ = x = 0 and ŷ = y = re1, where r = r̂ and e1, . . . , ed denotes the
canonical basis of Rd. Then

X ′ =
√
hZ, Y ′refl = re1 +

√
h(Id − 2e1e

T
1 )Z, and (6.1)

φŷ,hI(X
′)/φx̂,hI(X

′) = φr,h(X ′1)/φ0,h(X ′1) , (6.2)

where X ′i = eTi X
′. Thus, by (2.40), Y ′i = X ′i for i ≥ 2, and

Y ′1 =

{
X ′1 if U ≤ φr,h(X ′1)/φ0,h(X ′1),

r −
√
hZ otherwise.

(6.3)

In particular, R′ = |X ′ − Y ′| = |(X ′ − Y ′)e1| = |X ′1 − Y ′1 |. Since this is distributed as in
the one-dimensional case, we may assume w.l.o.g. d = 1.

We are now left with a simple one-dimensional problem where x = 0, y = r, and
r̂ = r = |x− y|. The coupling is given by

X ′ =
√
hZ, Y ′ =

{
X ′ if U ≤ φr,h(X ′)/φ0,h(X ′),

r −X ′ otherwise,
(6.4)

where Z ∼ N(0, 1) and U ∼ Unif(0, 1) are independent. Hence X ′ ∼ N(0, h), the
conditional probability given Z that Y ′ = X ′ is min(1, φr,h(X ′)/φ0,h(X ′)), and if Y ′ 6= X ′,
then R′ = |X ′ − Y ′| = |r − 2X ′|. Since φr,h(t) ≤ φ0,h(t) if and only if t ≤ r/2, we obtain

Ex,y[R′] =

∫ ∞
−∞
|r − 2t| (1− φr,h(t)/φ0,h(t))+ φ0,h(t) dt

=

∫ r/2

−∞
(r − 2t)(φ0,h(t)− φr,h(t)) dt

=
1

2

∫ ∞
−∞

(r − 2t)(φ0,h(t)− φr,h(t)) dt = r.

Here we have used in the third step that the integrand is symmetric w.r.t. t = r/2, i.e.,
invariant under the transformation t 7→ r − t. Thus β̂(x, y) = Ex,y[R′ − r] = 0, which
proves Assertion (i).

Next, we are going to prove the lower bound for α̂(x, y). Recall from (2.43) and (2.44)
that Ir = (0, r +

√
h) for r <

√
h and Ir = (r −

√
h, r) for r ≥

√
h. We first consider the
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case r ≥
√
h. Similarly as above, we obtain

α̂(x, y) ≥ E0,r[(R
′ − r)2;R′ ∈ Ir]

≥
∫ r/2

−∞
(r − 2t− r)21Ir (r − 2t) (φ0,h(t)− φr,h(t)) dt

= 4

∫ √h/2
0

t2 (1− e(rt−r2/2)/h)φ0,h(t) dt (6.5)

= 4h

∫ 1/2

0

u2 (1− e
r√
h

(u− r

2
√

h
)
)φ0,1(u) du

≥ 4h

∫ 1/2

0

u2 (1− eu−1/2)φ0,1(u) du.

Here we have used in the last step that s 7→ s(u − s/2) is decreasing for s ≥ u, and
r/
√
h ≥ 1 ≥ u for u ∈ [0, 1/2]. Note that in the second step we only use the reflection

behaviour of the coupling. This is due to the fact that the contribution from jumping to
the same point would be of negligible order in h. Now assume r <

√
h. Then r − 2t ∈ Ir

if and only if t ∈ (−
√
h

2 , r2 ). Thus,

α̂(x, y) ≥
∫ 0

−
√
h/2

(r − 2t− r)2 (φ0,h(t)− φr,h(t)) dt

= 4h

∫ 0

−1/2

u2 (1− e
r√
h

(u− r

2
√

h
)
)φ0,1(u) du (6.6)

≥ 4(1− e−1)h
r√
h

∫ 1/2

0

u3 φ0,1(u) du.

Here, we have used in the last step that for r <
√
h and u ∈ [−1/2, 0], we have s :=

r√
h

(u − r
2
√
h

) ∈ [−1, 0] and hence es − 1 ≤ (1 − e−1)s. By combining (6.5) and (6.6), we

obtain α̂(x, y) ≥ c0 min(r,
√
h)
√
h, where

c0 = 4 min

(∫ 1/2

0

u2(1− eu−1/2)φ0,1(u) du, (1− e−1)

∫ 1/2

0

u3φ0,1(u) du

)
≥ 0.007.

This proves Assertion (ii).

Finally, for X ′ ≥ r/2, we have φr,h(X ′) ≥ φ0,h(X ′), and hence Y ′ = X ′. Thus,

π(x, y) = Px,y[R′ = 0] = Px,y[X ′ = Y ′] ≥ Px,y[X ′ ≥ r/2]

=

∫ ∞
r/2

φ0,h(t) dt =

∫ ∞
r

2
√

h

φ0,1(t) dt ≥
∫ ∞

1

φ0,1(t) dt ≥ 0.15

provided r̂ = r ≤ 2
√
h. Therefore, Assertion (iii) holds as well.

Proof of Lemma 2.7 (iv), (v), (vi) and (vii). Note that unlike in the proof of assertions
(i)-(iii), here it is important to consider r̂ 6= r. Assertions (iv) and (v) are straightforward
consequences of Assertion (i). Indeed, by (2.50) and Lemma 2.7(i),

β(x, y) = β̂(x, y) + r̂ − r = r̂ − r. (6.7)

Assuming (C1) and (C3), this implies (iv), because

|r̂ − r| ≤ |(x̂− ŷ)− (x− y)| = |h(b(x)− b(y))| ≤ hLr, and (6.8)

r̂ =
√
|x− y|2 + 2h(x− y) · (b(x)− b(y)) + h2|b(x)− b(y)|2 (6.9)

≤ r
√

1 + 2hJ + h2L2 ≤ r(1 + hJ + h2L2/2),
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where we use
√

1 + x ≤ 1 + x/2 for x ≥ −1. Similarly, assuming (C2) and (C3), (6.7)
implies (v), since K ≤ L and thus −2hK + h2L2 ≥ −1 and

r̂ ≤ r
√

1− 2hK + h2L2 ≤ r
(
1− hK + h2L2/2

)
for r ≥ R. (6.10)

In order to prove (vi) we assume
√
h ≤ r ≤ 1/(4L

√
h). Then by (6.8), |r̂ − r| ≤

√
h/4.

Therefore, by a similar computation as in (6.5),

α(x, y) = E0,r[(R
′ − r)2;R′ ∈ (r −

√
h, r)] ≥ h

16
P0,r[R

′ ∈ (r −
√
h, r −

√
h

4
)]

≥ h

16
P0,r[R

′ ∈ (r̂ − 3
√
h

4
, r̂ −

√
h

2
)] ≥ h

16

∫ 3
√
h/8

√
h/4

(φ0,h(t)− φr̂,h(t)) dt

=
h

16

∫ 3/8

1/4

(1− e
r̂√
h

(u− r̂

2
√

h
)
)φ0,1(u) du ≥ h

16

∫ 3/8

1/4

(1− eu− 1
2 )φ0,1(u) du.

This shows that (vi) holds with c̃0 := 1
16

∫ 3/8

1/4
(1− eu−1/2)φ0,1(u) du ≥ 0.0005.

Finally, Assertion (vii) is a direct consequence of Assertion (iii), since by (6.8), |r̂−r| ≤
√
h

if r ≤
√
h and h ≤ 1/L.

The following proof of Theorem 2.8 follows the argumentation in the proofs of
Theorems 2.2 and 2.4 in the case r ≤ R. For r > R, the contractivity is shown by a direct
argument based on Lemma 2.7 (v).

Proof of Theorem 2.8. Let x, y ∈ Rd, h ∈ (0, h0] and a ∈ {0} ∪ [
√
h,∞).

(i). We first consider the case where r = |x − y| > R. By the choice of h0 in the
statement of the theorem, h ≤ K/L2. Therefore, by Lemma 2.7,

Ex,y[R′ − r] = β(x, y) ≤ −
(
K − L2h/2

)
hr ≤ −Khr/2.

Since fa is concave with f ′a ≥ 1/2, we immediately obtain

Ex,y[fa(R′)− fa(r)] ≤ f ′a(r)Ex,y[R′ − r] ≤ −Khr/4, (6.11)

and hence, as fa(r) ≤ r and r > R,

Ex,y[ρa(X ′, Y ′)− ρa(x, y)] ≤ −Khr/4
a+ fa(r)

ρa(x, y) ≤ −Kh/4
1 + a/R

ρa(x, y). (6.12)

(ii). Now suppose r ≤ R. Since r̂ ≤ r by (2.52), we have

Ex,y[ρa(X ′, Y ′)− ρa(x, y)] ≤ Ex,y[ρa(X ′, Y ′)− ρa(x̂, ŷ)] . (6.13)

We can now apply the arguments in the proofs of Theorems 2.2 and 2.4 with α and β

replaced by the corresponding quantities α̂ and β̂ for the coupled random walk transition
(x̂, ŷ) 7→ (X ′, Y ′), with r2 and r1 replaced by R. Indeed, note that since the case of
r > R has already been considered above, we only need to use the parts of the proofs of
Theorems 2.2 and 2.4 concerned with the case of r ≤ R and thus Assumptions (A3) and
(B3) are not required.

We consider first a = 0. In this case, we can proceed as in the proof of Theorem 2.4
with r0 =

√
h. By Lemma 2.7, we can choose α(r̂) = c0 min(r̂,

√
h)
√
h, β ≡ 0, γ ≡ 0, γ̃ ≡ 0,

ϕ ≡ 1,

Φ(u) = u, g0(u) = 1− 2c

∫ u

0

sup
Îs

Φ

α
ds, and c =

1

4

(∫ R
0

sup
Îs

Φ

α
ds

)−1

(6.14)
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in order to satisfy (4.4), (4.5), (4.6), (4.9), (4.11) and (4.12). Here Îs is defined by (4.1).
With these choices we obtain as in the proof of Theorem 2.4

Ex,y[f0(R′)− f0(r̂)] ≤ −cf0(r̂) for r̂ ≤ R, (6.15)

where f0 is defined by (2.53). Noting that r̂ ≤ r by (2.52), the bounds in (6.13) and (6.15)
now imply that for r ≤ R,

Ex,y[ρ0(X ′, Y ′)] = Ex,y[f0(R′)] ≤ (1− c)f0(r̂) ≤ (1− c)f0(r) = (1− c)ρ0(x, y). (6.16)

It only remains to show c ≥ c1(0)h. Suppose first that s < 2
√
h = 2r0. Then Îs ⊆ (0, 3

√
h).

Since Φ(u) = u and α(u) = c0 min(u,
√
h)
√
h ≥ c0u

√
h/3 for u < 3

√
h, we obtain

sup
Îs

Φ

α
≤ sup

u<3
√
h

u

α(u)
≤ 3c−1

0 h−1/2 for any s < 2
√
h. (6.17)

For s ≥ 2
√
h, Îs = (s, s+

√
h). Hence α ≡ c0h on Îs, and

sup
Îs

Φ

α
= c−1

0 h−1(s+
√
h) for any s ≥ 2

√
h. (6.18)

By (6.14), (6.17), (6.18) we see that

c−1 ≤ 24c−1
0 + 2c−1

0 h−1R2 + 4c−1
0 h−1/2R = 2c−1

0 h−1(R2 + 2h1/2R+ 12h). (6.19)

The assertion for a = 0 now follows by (6.11), (6.16) and (6.19).

Now consider the case a ≥
√
h. Here we can proceed as in the proof of Theorem 2.2

with r0 = ε =
√
h. We now choose the intervals Ir and the dual intervals Îs according

to (3.1) and (3.2), i.e., Ir = ((r −
√
h)+, r) and Îs = (max(s,

√
h), s+

√
h). By Lemma 2.7,

we can choose α, β, γ, γ̃, ϕ and Φ as above so that conditions (3.3), (3.4), (3.5), (3.7),
(3.9), (3.10), (3.11), (3.13) and (3.14) are satisfied. In particular, choosing a ≥

√
h = r0

guarantees that (3.10) is satisfied since β(x, y) ≤ 0 for all x, y ∈ Rd. Note that for u ∈ Îs
we have α(u) ≥ c0h, because u ≥

√
h. Setting

ga(u) = 1− 2c

∫ u

0

sup
Îs

a+ Φ

α
ds, c = min

p0

2
,

1

4

(∫ R
0

sup
Îs

a+ Φ

α
ds

)−1
 , (6.20)

we obtain
Ex,y[ρa(X ′, Y ′)] ≤ (1− c)ρa(x̂, ŷ) ≤ (1− c)ρa(x, y), (6.21)

where ρa is defined by (2.53). The bound c ≥ c1(a) follows as in (6.18) and (6.19).

Proof of Theorem 2.10. In order to apply Theorem 2.2, we set ε = r0 =
√
h, and hence

Ir = ((r −
√
h)+, r) and Îs = (s ∨

√
h, s +

√
h) for all r, s > 0. By Lemma 2.7, condition

(2.14) is satisfied for h ≤ h0 with

α(r) = c̃0h1√h≤r≤1/(4L
√
h), π(r) = p0 1r≤

√
h, and (6.22)

β(r) =

{
Λhr for r < R,
−Khr/2, for r ≥ R.

(6.23)

Here we have used that by the assumptions, h0L ≤ 1 and h0L
2 ≤ K. Moreover, the

assumption on h0 implies 1/(4L
√
h0) ≥ R since r2 > R. Hence by (3.3),

γ(r) = 2β(r)/α(r) = 2c̃−1
0 Λr for

√
h ≤ r < R,
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γ(r) ≤ 0 for r ≥ R, and thus (3.4), (3.6) and (3.9) are satisfied with

γ̃(r) = 2c̃−1
0 Λ(r +

√
h)1r<R, r1 = R, and

ϕ(r) = exp
(
−c̃−1

0 Λ
(

(r ∧R)2 + 2
√
h(r ∧R)

))
. (6.24)

For a ≥ 2
√
h, condition (3.10) is satisfied by (6.22), (6.23), and since by assumption,√

h + 2Λh3/2/p0 ≤ 2
√
h ≤ a for h ≤ h0. In order to verify (3.12) we need to choose

r2 ≥ r1 = R such that

2

∫ r2

R

Φ(s)

α(s)
ds ≥ a+ Φ(r)

−β(r)
for all r ≥ r2 . (6.25)

To this end, note that for r ≥ R, we have Φ(r) = Φ(R) + (r−R)ϕ(R). Furthermore, since
1/(4L

√
h) ≤ r2 by assumption, on [R, r2] we can use the formula for α given in (6.22).

Hence (6.25) is satisfied if

2Φ(R)

c̃0
(r2 −R) +

ϕ(R)(r2 −R)2

c̃0
≥ a+ Φ(R) + rϕ(R)

Kr/2
for r ≥ r2. (6.26)

Since we assume that a ≤ Φ(R), this condition holds if we choose

r2 = R+
√

2c̃0/K . (6.27)

Hence from Theorem 2.2 we obtain Ex,y[ρa(X ′, Y ′)] ≤ (1 − c)ρa(x, y) with c given by
(3.13), for ρa(x, y) = 1x 6=y + fa(|x− y|), where

fa(r) =

∫ r

0

ϕ(s ∧ r2)ga(s ∧ r2)ds (6.28)

with ϕ given by (6.24) and ga = g given by (3.14). Moreover, we can easily bound the
second quantity appearing in the definition (3.13) of c. Indeed, for s < r2 and u ∈ Îs we
have

√
h < u < r2 +

√
h ≤ 1/(4L

√
h) for h < h0. Therefore, α(u) ≥ c̃0h by (6.22). Since

ϕ(s) ≥ ϕ(R) and Φ(u) ≤ u, we obtain∫ r2

0

1

ϕ(s)
sup
u∈Îs

a+ Φ(u)

α(u)
ds ≤ 1

c̃0hϕ(R)

(
ar2 +

∫ r2

0

(s+
√
h)ds

)
,

and hence

c ≥ min

(
1

2
p0,

c̃0hϕ(R)

4r2(a+
√
h) + 2r2

2

)
.

This implies the assertion, since by (6.27),

r2
2 + 2r2(a+

√
h) ≤ 2 max(R2 + 2(a+

√
h)R , 2c̃0K

−1 + 2(a+
√
h)
√

2c̃0/K).

In the following variation of Theorem 2.10, Condition (C2) is replaced by a Lyapunov
condition:

Theorem 6.1 (Euler scheme, general case with Lyapunov condition).
Suppose that Conditions (C1) and (C3) are satisfied and that the transition kernel
p of the Euler scheme satisfies Assumption (A4)a with a Lyapunov function V , i.e.,
there exist constants C, λ > 0 such that pV ≤ (1 − λ)V + C. Moreover, assume that

limr→∞
V (x)+V (y)

r = ∞. Let h0 = min

((
2L
p0

+ c̃0ϕ(r1)
4(r1+1)

)−2

, (16L2r2
2)−1

)
, where r1, r2 > 0
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are constants specified in (6.31) and (6.35). Suppose further that a ∈ (2
√
h, r2) and let

ρa(x, y) = (a+ M
2C (V (x) + V (y)))1x 6=y + fa(|x− y|) with M given by (6.32) and fa defined

in (6.36). Let

c2(a) =
1

4
min

(
2p0

h
,
λ

h
, 4ϕ(r1)Λ,

c̃0ϕ(r2)

2r2(a+
√
h) + r2

2

)
with ϕ given by (6.30). Then for all h ∈ (0, h0) we have

Ex,y[ρa(X ′, Y ′)] ≤ (1− c2(a)h) ρa(x, y) for all x, y ∈ Rd.

Example 6.2. It is easy to see that if the drift b satisfies a linear growth condition
|b(x)|2 ≤ L0(1 + |x|2) for all x ∈ Rd with a constant L0 > 0 (which is implied by (C3) with
L0 = 2 max(L2, |b(0)|2)) and a dissipativity condition

〈b(x), x〉 ≤M1 −M2|x|2 for all x ∈ Rd (6.29)

with constants M1, M2 > 0, then the transition kernel p of the Euler scheme satisfies
the Lyapunov condition pV ≤ (1− λ)V + C with the Lyapunov function V (x) = |x|2 and
constants λ = 2hM2 − h2L0 and C = h2L0 + 2hM1 + hd, whenever h < 2M2/L0. Since
the quadratic function satisfies the growth condition required in Theorem 6.1 and the
dissipativity condition (6.29) is significantly weaker than Assumption (C2), we can apply
this result to more general cases than the ones covered by Theorems 2.10 and 2.12.

Proof of Theorem 6.1. Here we want to apply Theorem 2.3 and hence we need to verify
the conditions listed in Subsection 3.2. Exactly as in the proof of Theorem 2.10, we
choose ε = r0 =

√
h and we have the intervals Ir = ((r−

√
h)+, r) and Îs = (s∨

√
h, s+

√
h)

for all r, s > 0. By Lemma 2.15 we get

α(r) = c̃0h, β(r) = Λhr, and γ(r) =
2

c̃0
Λr.

Similarly as in the previous proof, the formula for α(r) is valid for all r ∈ (
√
h, r2) since

h0 ≤ (16L2r2
2)−1, although here r2 is given by (6.35). Moreover, we have

γ̃(s) =
2

c̃0
Λ(s+

√
h), and ϕ(r) = exp

(
− Λ

c̃0

(
r2 + 2

√
hr
))

. (6.30)

Now we choose r1 as in (3.15), based on Assumption (A4)a. Namely,

r1 := sup
{
|x− y| = r : x, y ∈ Rd , V (x) + V (y) < 4C/λ

}
. (6.31)

In order for (3.19) to be satisfied, it is sufficient to choose M such that

M ≤ 1

4

(∫ r1

0

1

ϕ(s)
sup
u∈Îs

1

c̃0h
ds

)−1

=
hc̃0
4

(∫ r1

0

1

ϕ(s)
ds

)−1

.

Note, however, that ϕ(s) ≥ ϕ(r1) for all s > 0 and hence

hc̃0
4

(∫ r1

0

1

ϕ(s)
ds

)−1

≥ hc̃0
4

(∫ r1

0

1

ϕ(r1)
ds

)−1

=
hc̃0
4

ϕ(r1)

r1
≥ hc̃0ϕ(r1)

4(r1 + 1)
.

Thus if we choose

M =
hc̃0ϕ(r1)

4(r1 + 1)
, (6.32)
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then condition (3.19) is indeed satisfied. Note that r1 + 1 is chosen here instead of r1

in order to prevent the value of M from being too large when r1 is very small (or even
zero). Now condition (3.20) reads as

a ≥
√
h+

2

p0

(
Λh3/2 +

hc̃0ϕ(r1)

4(r1 + 1)

)
. (6.33)

However, since we choose h ≤ h0 ≤
(

2L
p0

+ c̃0ϕ(r1)
4(r1+1)

)−2

, we see that (6.33) holds for all

a ≥ 2
√
h. It remains to verify condition (3.21), for which we need

V (x) + V (y) ≥ 16C

λM
ϕ(r)Λhr

to hold for all r ≥ r2. Since ϕ is decreasing, using the choice of M in (6.32), we see that
it is sufficient to have

V (x) + V (y) ≥ 16C

λ

4(r1 + 1)

c̃0
Λr for all r ≥ r2 . (6.34)

Since we assume that lim supr→∞
V (x)+V (y)

r =∞, we can indeed choose r2 large enough
so that (6.34) and hence (3.21) holds. More precisely, we can choose

r2 := sup

{
|x− y| = r : x, y ∈ Rd , V (x) + V (y)

r
<

64C(r1 + 1)Λ

λc̃0

}
. (6.35)

As a consequence, from Theorem 2.3 we get Ex,y[ρa(X ′, Y ′)] ≤ (1 − c)ρa(x, y) with
ρa(x, y) = (a+ M

2C (V (x) + V (y)))1x 6=y + fa(|x− y|), where c is given by (3.24) and

fa(r) =

∫ r

0

ϕ(s ∧ r2)g(s ∧ r2)ds (6.36)

with ϕ given by (6.30) and g given by (3.25). Now it only remains to prove the lower
bound on the constant c. Similarly as in the proof of Theorem 2.10, we have

1

8

(∫ r2

0

1

ϕ(s)
sup
u∈Îs

a+ Φ(u)

α(u)
ds

)−1

≥ c̃0hϕ(r2)

8r2(a+
√
h) + 4r2

2

,

since ϕ(s) ≥ ϕ(r2) for s ≤ r2. Moreover, due to our choice of M in (6.32), using Φ(r) ≤ r
and (6.34), we have

λM

16C

V (x) + V (y)

Φ(r)
≥ ϕ(r1)hΛ for all r ≥ r2 .

This finishes the proof.

Proof of Theorem 2.12. Let x, y ∈ Rd and set r = |x − y| and r̂ = |x̂ − ŷ|. We assume
h ∈ (0, h0] where h0 is given by (2.70).

We consider at first the case where r ≥ R. By the choice of h0, we have L2h ≤ K for
h ≤ h0. Therefore, for r ≥ R, the concavity of f and Lemma 2.7 (v) imply

Ex,y[f(R′)− f(r)] ≤ Ex,y[R′ − r]f ′(r) ≤ −K
2
hrf ′(r) ≤ −K

2
e−qr1hf(r). (6.37)

Here, we have used in the last step that f(r) ≤ r and f ′(r) ≥ exp(−qr1). The assertion
(2.71) now follows by the choice of r1 and q in (2.65) and (2.67).
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From now on, we assume r < R. Recall that

Ir̂ =

{
(0, r̂ +

√
h) if r̂ ≤

√
h,

(r̂ −
√
h, r̂) if r̂ >

√
h,

(6.38)

cf. (2.44), i.e., u(r̂) =
√
h1r̂<

√
h, l(r̂) =

√
h1r̂≥

√
h. Since by Taylor’s formula and by

concavity of f ,

f(R′)− f(r̂) =

∫ R′

r̂

f ′(s) ds = (R′ − r̂)f ′(r̂) +

∫ R′

r̂

∫ s

r̂

f ′′(t) dt ds

≤ (R′ − r̂)f ′(r̂) +
1

2
[((R′ − r̂) ∧ u(r̂)) ∨ (−l(r̂))]2 sup

Ir̂

f ′′,

we can conclude by Lemma 2.7 (i) and (ii) that

Ex,y[f(R′)− f(r)] = f(r̂)− f(r) + Ex,y[f(R′)− f(r̂)]

≤ (r̂ − r)f ′(r) +
1

2
c0 min(r̂

√
h, h) sup

Ir̂

f ′′. (6.39)

We are going to show that the expression on the right hand side of (6.39) is bounded
from above by −c2hf(r). Note first that by (6.8) and (6.9),

r̂ − r ≤ min(L, J + L2h/2)hr = Λhr. (6.40)

By the choice of q and h0 in (2.67) and (2.70), eqh0LR ≤ ec0/28 ≤ e1/28 ≤ 3/2. Therefore,

f ′(r) = e−qr = eq(r̂−r)f ′(r̂) ≤ eqLhrf ′(r̂) ≤ 3

2
f ′(r̂), and thus

(r̂ − r)f ′(r) ≤ 3

2
Λhr̂f ′(r̂). (6.41)

Here we have used that r̂ − r ≤ Λhr̂ by (6.40) if r ≤ r̂, whereas for r > r̂ (6.41)
is automatically satisfied and hence it holds for all r < R. Furthermore, by (2.70),
hL ≤ h0L ≤ 1/6. Therefore, r̂ − r ≤ Lhr ≤ r/6, and thus

f(r̂) ≥ f

(
5

6
r

)
≥ 5

6
f(r), (6.42)

because f is increasing and concave with f(0) = 0. Note that our choice of the bound
h0L ≤ 1/6 is to some extent arbitrary and a different choice would lead to 5/6 above being
replaced by a different factor. By (6.39), (6.41) and (6.42), we see that the contractivity
condition (2.71) holds provided

3

2
Λhr̂f ′(r̂) +

1

2
c0 min(r̂

√
h, h) sup

Ir̂

f ′′ ≤ −6

5
c2hf(r̂). (6.43)

Furthermore, by (6.40), r̂ ≤ (1 + Lh)R = r1. Since f ′′(r) = −qe−qr1r≤r1 is increasing,
(6.38) implies

sup
Ir̂

f ′′ =

{
−qe−q(r̂+

√
h) if r̂ ≤

√
h,

−qe−qr̂ if r̂ >
√
h.

(6.44)

We now consider these two cases separately:

(i) r̂ >
√
h. Noting that f ′(r̂) = e−qr̂ and f(r̂) = (1− e−qr̂)/q ≤ 1/q, we see that (6.43)

is satisfied in this case provided

3Λ r̂ − c0q ≤ −
12c2
5q

eqr̂ for r̂ < r1. (6.45)
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We have chosen q in (2.67) such that

c0q = 7ΛR ≥ 6Λ r1.

Therefore, the left hand side in (6.45) is bounded from above by −c0q/2, and thus (6.45)
and (6.43) are satisfied if

c2 ≤
5

24
c0q

2e−qr1 . (6.46)

By (2.65) and (2.67), we see that the constant c2 has been defined in (2.69) in such a
way that (6.46) holds true, and thus the assertion (2.71) is indeed satisfied.

(ii) r̂ ≤
√
h. Noting that f ′(r̂) ≤ 1 and f(r̂) ≤ r̂, we see by (6.44) that (6.43) is satisfied

for r̂ ≤
√
h provided

3Λh +
12

5
c2h ≤ c0q

√
he−2q

√
h. (6.47)

This condition holds if both

2q
√
h ≤ 1/2 and 3e1/2(Λ + c2)

√
h ≤ c0q. (6.48)

It can now be easily verified that our choice of h0 in (2.70) ensures that (6.48) holds for
h ≤ h0. Indeed, since q is given by (2.67), we have 2q

√
h = 14c−1

0 ΛR
√
h ≤ 1/2. Moreover,

since c2 ≤ 11c−1
0 Λ2R2, we obtain

c0q

3e1/2(Λ + c2)
=

7ΛR
3e1/2(Λ + c2)

≥ 7

3e1/2

R
1 + 11c−1

0 ΛR2
≥ 7

6e1/2
min

(
R, c0

22ΛR

)
.

Hence (6.43) holds true, and thus the assertion (2.71) is satisfied in this case as well.

7 Proof of results for MALA

Proof of Theorem 2.16. By (2.78)

X ′ = x+ h b(x) +
√
h− h2/4Z (7.1)

where b(x) = − 1
2∇U(x). By (2.75) and (2.74), b is Lipschitz continuous on B−R := {x ∈

Rd : ‖x‖− ≤ R}. Therefore conditions (C1) and (C3) in Section 2.4 hold when we restrict
to B−R . Moreover, by (2.76), condition (C2) is satisfied as well for appropriate values

of K and R depending on Kc and Rc. Noting that h < 2 implies h − h2

4 > h
2 , it is not

difficult to see that the proof of Theorem 2.12 carries over to our slightly modified setup.
Therefore, similarly to Theorem 2.12, we can find for any fixed R ∈ (0,∞) a concave
strictly increasing function f with f(0) = 0 and constants c2 > 0, h0 > 0 such that for
h ∈ (0, h0),

Ex,y[f(|X ′ − Y ′|)] ≤ (1− c2h)f(|x− y|), for any x, y ∈ B−R . (7.2)

We now want to apply the perturbation result in Theorem 2.5. Setting d(x, y) = |x− y|
and ρ(x, y) = f(|x − y|), we see that condition (2.30) holds with c = c2h. Moreover, by
Lemma 7.1 below, there exists a constant p > 0 depending only on R, such that for h0

sufficiently small and h ∈ (0, h0), condition (2.32) is satisfied for any x, y ∈ B−R with
r0 =

√
h. Thus, to apply Theorem 2.5, it remains to show that (2.31) holds with a constant

b ≥ 0 satisfying
b ≤ cf(r0)/4 = c2hf(

√
h)/4 . (7.3)

To this end notice that for x, y ∈ B−R ,

Ex,y[(|X̃ − Ỹ | − |X ′ − Y ′|)+] ≤ Ex,y[|X̃ −X ′|] + Ex,y[|Ỹ − Y ′|] . (7.4)
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Furthermore, since X̃ = X ′ if the proposal is accepted and X̃ = x otherwise, we obtain
by (7.1) and Lemma 2.15, that for any x ∈ B−R and h ∈ (0, 2),

Ex,y[|X̃ −X ′|] = Ex,y[|X ′ − x|; Ũ > αh(x,X ′)]

= Ex,y[|X ′ − x|(1− αh(x,X ′))]

≤ h|b(x)|Ex,y[1− αh(x,X ′)] +
√
hEx,y[|Z|(1− αh(x,X ′)]

≤ c′h 5
2 |b(x)|+ c′′h2Ex,y[|Z|2]

1
2 ,

where c′ and c′′ are finite constants. Noting that Ex,y[|Z|2] = d and

|b(x)| ≤ d‖b(x)‖− = d‖∇U(x)‖−/2

we see that there exists a finite constant c′′′ such that for x ∈ B−R and h ∈ (0, 2)

Ex,y[|X̃ −X ′|] ≤ c′′′h 3
2 (dh+ d

1
2h

1
2 ) .

A corresponding bound holds for Ex,y[|Ỹ − Y ′|] with y ∈ B−R . Hence, by (7.4), condition
(2.31) is satisfied with

b = 2c′′′h
3
2 (dh+ d

1
2h

1
2 ) .

Since the right hand side in (7.3) is of order Ω(h3/2), we conclude that (7.3) holds for
dh < h1 provided h1 ∈ (0,∞) is chosen sufficiently small. Hence, Theorem 2.5 applies
and by (2.34) we obtain

Ex,y[f̃(|X̃ − Ỹ |)] ≤ (1− c3h)f̃(|x− y|)

for any x, y ∈ B−R and h < h1d
−1, where c3 = min(c2/8, p/4h) and f̃(r) = f(r)+2bp−11r>0.

Lemma 7.1. For any fixed R ∈ (0,∞) there exist constants p, h0 ∈ (0,∞) such that

Px,y[X̃ = Ỹ ] ≥ p

for any h ∈ (0, h0) and x, y ∈ B−R with |x− y| ≤
√
h.

Proof. Let x̂ = x + hb(x) where b(x) = − 1
2∇U(x). By (2.75) and (2.74), b is Lipschitz

continuous on B−R . For x, y ∈ B−R and h ∈ (0, L−1
R )

|x̂− ŷ| ≤ (1 + hLR)|x− y| ≤ 2|x− y| ,

where LR ∈ (0,∞) is the Lipschitz constant of b on B−R . Hence, by Lemma 2.7, there
exists a constant p0 ∈ (0,∞) such that for any x, y ∈ B−R and h ∈ (0, L−1

R )

Px,y[X ′ = Y ′] ≥ p01|x̂−ŷ|≤2
√
h ≥ p01|x−y|≤

√
h . (7.5)

Furthermore,

Px,y[X̃ 6= Ỹ ] ≤ Px,y[X ′ 6= Y ′] + Px,y[X̃ 6= X ′] + Px,y[Ỹ 6= Y ′] . (7.6)

By (7.5), the first probability on the right hand side is bounded by 1− p0 for |x− y| ≤
√
h.

Moreover, by Lemma 2.15, there exists a finite constant c′ ∈ (0,∞) such that for any
x, y ∈ B−R and h ∈ (0, 2)

Px,y[X̃ 6= X ′] = Ex,y[1− αh(x,X ′)] ≤ c′h 3
2 . (7.7)

A corresponding upper bound holds for Px,y[Ỹ 6= Y ′]. Hence, by combining (7.5), (7.6)
and (7.7), we conclude that there exist constants h0 > 0 and p = p0

2 > 0 such that

Px,y[X̃ 6= Ỹ ] ≤ 1− p

for any h ∈ (0, h0) and x, y ∈ B−R with |x− y| ≤
√
h.
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