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Abstract

We present precise multilevel exponential concentration inequalities for polynomials
in Ising models satisfying the Dobrushin condition. The estimates have the same form
as two-sided tail estimates for polynomials in Gaussian variables due to Latata. In
particular, for quadratic forms we obtain a Hanson-Wright type inequality.

We also prove concentration results for convex functions and estimates for nonneg-
ative definite quadratic forms, analogous as for quadratic forms in i.i.d. Rademacher
variables, for more general random vectors satisfying the approximate tensorization
property for entropy.
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1 Introduction

Since its introduction in [26], the Ising model has been a source of numerous math-
ematical questions. In addition to its physical importance it is appealing to mathe-
maticians, providing an easy to formulate, yet challenging model of dependent random
variables and serving as testing ground for many probabilistic ideas. Recently in the
context of finite graphs, the Ising model attracted also attention of statisticians and
theoretical computer scientists interested, e.g., in estimating the parameters of the
model, learning the underlying graph structure or testing some properties of the model
in a computationally efficient way (see, e.g., [15, 37, 38, 16]). In particular in the last two
decades several authors studied the Ising model from the point of view of concentration
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Concentration for polynomials in the Ising model

of measure phenomena, see, e.g., [31, 12, 30, 13]. While most effort has been devoted to
concentration inequalities for functions satisfying appropriate Lipschitz type conditions,
recently several papers appeared related to variance bounds or stronger, exponential
concentration inequalities for polynomials, to mention the work by Daskalakis, Dikkala,
Kamath [15, 14], Gheissari, Lubetzky and Peres [19], GOotze, Sambale and Sinulis [21].
Motivation for these developments ranged from statistical and algorithmic (efficient
discrimination between samples drawn from an Ising model and i.i.d. samples) to purely
probabilistic ones (searching for counterparts of inequalities known in the i.i.d. case).

In this note we complement the results proved in the aforementioned papers by
obtaining exponential inequalities for polynomials of the same form as in bounds for
polynomials in independent Gaussian (or more generally subgaussian) random variables,
which were introduced originally by Latala [28] and subsequently studied, e.g., by
Adamczak and Wolff [5]. Such inequalities are expressed in terms of appropriate injective
tensor product norms of averaged derivatives of the polynomials in question and in the
Gaussian case are known to be optimal up to constants depending only on the degree of
the polynomial. Optimality is understood here in a strong sense - the inequalities can
be up to constants reversed. Moreover, they are known to imply other, more classical
inequalities for multilinear forms, such as Bonami-Nelson inequalities [10, 34]. In
particular, for polynomials of degree d they provide multilevel type concentration, of the
form exp(—ct?) for small values of ¢ up to exp(—c't*/?) for larger values (as opposed to
the inequalities from the aforementioned results for the Ising model, which do not yield
precise multilevel concentration but rather give weaker bounds of the form exp(—c”t?/%)
for all t). As a consequence our estimates imply the previous ones and provide a more
accurate description of the tail behavior.

Our approach is similar to the one by Gotze, Sambale and Sinulis in that it builds
on general Aida-Stroock type moment estimates those Authors obtained for the Ising
model in [21], and uses them as a tool in an inductive argument. However, the details
are different, while in [21] one works with moments of Euclidean norms of discrete
iterated derivatives of multilinear forms, we adapt an argument from [5], linearizing the
Euclidean norms with an auxiliary Gaussian sequence, which allows us to treat general
functions (seen by the Fourier-Walsh theory as tetrahedral polynomials) and pass from
discrete gradients to classical derivatives.

The argument we present may be seen as a method of reduction of concentration
properties for polynomials from the Ising model to the i.i.d. Gaussian case. Since the
random variables considered in the Ising model take only values +1, one could expect a
similar reduction to polynomials in i.i.d. Rademacher variables. We are able to obtain
such estimates for positive definite quadratic forms, by passing through concentration
properties for convex functions which are of independent interest.

The organization of the article is as follows. First, in Section 2 we present our main
result (Theorem 2.2) and discuss its relation to known inequalities for the Ising model as
well as to the estimates for the i.i.d. case. Next, in Section 3 we discuss the approximate
tensorization of entropy (as studied recently by Marton [32] and Caputo, Menz, Tetali
[11]) and Aida-Stroock type moment estimates obtained by Gotze, Sambale and Sinulis
[21]. Using these tools, in Section 4 we present the proof of the main result. The final
Section 5 presents estimates for convex functions and Rademacher-type inequalities for
quadratic forms.

2 Gaussian type inequality for polynomials

2.1 Basic definitions and notation

Let us begin by introducing the general form of the Ising model on a finite set.
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Definition 2.1 (Ising model). Let n be a positive integer and let . be the measure on
{—1,1}", having density with respect to the uniform distribution of the form

u(o) = %exp (% Z Jijoioj — Z hiai), (2.1)
i=1

ij=1
for any o € {—1,1}", where J = (J;;): j<n IS a symmetric matrix with vanishing diagonal,
h = (h;)i<n € R" and Z is a normalizing constant.

In physical terms the coupling matrix J corresponds to interactions between particles
and the vector h describes an external field. The order of magnitude of the constants J;;
reflects the temperature (the higher the temperature the smaller the coefficients, which
corresponds to weaker interactions), however, as our results will be expressed solely
in terms of the coefficients J;; and h;, we will not incorporate the temperature into the
notation.

To obtain concentration inequalities, one needs some control over the coupling
constants and the external field, which will allow for sufficient proximity to the i.i.d.
case. The conditions we will impose on the model are classical and in the context of
concentration of measure appeared already in [32, 19, 21].

Main assumptions. We will assume that

|h]oo := rr1<ax|hi| <a (2.2)

and the coupling constants satisfy Dobrushin’s condition:
<1 = .
mgale |Jijl <1—p (2.3)
j:

for some p > 0.

In order to formulate concentration of measure estimates for polynomials of the
Ising model, which correspond to inequalities obtained by Latata for polynomials in
independent Gaussian random variables, we will need to introduce a family of injective
tensor product norms on d-index matrices (d-tensors).

To provide transparent notation for multi-indices we will use the following convention.
For a positive integer n we will denote [n] = {1,...,n}. The cardinality of a set I will
be denoted by |I|. Fori = (iy,...,iq) € [n]¢ and I C [d] we write i; = (ix)rer. We will
also denote |i| = max;<q¢; and |i;| = max;csi;. We will often deal with homogeneous
polynomials, defined in terms of multi-indexed matrices (tensors). We will say that a
d-indexed matrix A = (a;);c[n)¢ is symmetric if for every permutation o of the set [d] and

every i = (i,...,iq) € [n], we have a; = ai,,, ..., - When d is fixed, we will write
simply A = (a;)jij<,. We will say that a d-indexed matrix A = (a;)};j<, has vanishing
generalized diagonals if a; = 0 for all i = (iy,...,i4) such that there exist k # [ with
ik = 1.

Let now Py be the set of partitions of [d] into nonempty, pairwise disjoint sets. For a
partition 7 = {Iy,..., I} € Py and a d-indexed matrix A = (a;);c[,)«, define

k
l l
JAllz =sup { 3" aillj[lxglf; Il < 1,1 <1<k, (2.4)

i€[n]d
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where (2, )ll2 = /325, 1<n :ciQIl. Thus, e.g.,
||(aij)i,j§nH{1,2} = SUP{ Z QijTij: Z x?j < 1} = . Z a%j = [l(aij)ij<nll s,
,j<n

,j<n B,j<n
[(aij)ij<nlliiyrey = Sup{ > agmiys > ai <1y yr < 1} = [[(aij)ij<nlleg—eg
,j<n i<n j<n
[(@iji)ijr<nll(12y{3) = sup{ Z QijkTij Yk * Z x?j <1, Z yl% < 1}-
i,7,k<n ,j<n k<n

Note that for simplicity in the notation we skip the outer brackets and commas in the
subscript and write, e.g., || - |l{1}¢2} instead of || - [[{{1},4213-

In particular for d = 2, || - [[{1,2y and || - |l{13¢2} coincide with the Hilbert-Schmidt
and operator norm of a matrix respectively. Note that for every d and Z € P; we have

[Allz < [[Allgay = /2 )51<n af. The norm |[|Al|{;qy can be considered a counterpart of
the Hilbert-Schmidt norm for higher order tensors.

We will use the standard notation || X|, = (E|X|?)!/? for a random variable X.
Sometimes, when dealing with independent random variables X,Y, we will use the
notation Ex for the expectation with respect to the variable X (i.e., the conditional
expectation given Y)).

In what follows, we will write, e.g., ¢4, C, or ¢,(b) to denote constants depending
only on the parameters a or a, b respectively. The values of such constants may change
between occurrences.

By the Fourier-Walsh expansion (see, e.g., [35]), every function f: {-1,1}" — R
can be written in a unique way as a tetrahedral polynomial, i.e., a polynomial which is
affine with respect to every variable (in particular the degree of the polynomial is at
most n). Therefore in what follows we will restrict our attention to this representation.
In particular, when we speak about gradients V f or higher order derivatives V* f, we
always think of the usual derivatives of the polynomial function on R™ given by the
tetrahedral representation of f.

2.2 Main result
The main result of this section is

Theorem 2.2. Let i be defined by (2.1) and assume that the inequality (2.2) and the
Dobrushin condition (2.3) hold. Let X be a random vector distributed according to p.
Then for d > 1 there exist constants ¢ = ¢(d, «, p) such that for any tetrahedral polynomial
f:{-1,1}" — R of degree d, and any t > 0,

P(f(X)-Ef(X)| >1t) <2 i i ! 2/ 2.5
1500) = Bf )| 2 0) <200 (— e min, win (porroer-) ) @9

Remark 2.3.If h = O and f(2) = > j;<, @i [T, a;, for some symmetric d-indexed matrix
with vanishing generalized diagonals, then for any Z € P, we can estimate

n

g M d 2
BT FCOIE < BV SOl = (o) & (X wk I %)

150yt =1  Tpy1,..0,8a=1 I=k+1
d
S((dfk)!) X (X W I xa)
11yt =1 Chg1semsbg=1 l=k+1
EJP 24 (2019), paper 42. http://www.imstat.org/ejp/

Page 4/22


https://doi.org/10.1214/19-EJP280
http://www.imstat.org/ejp/

Concentration for polynomials in the Ising model

By (the proof of) Lemma 3.1. in[19], E(3>_" H;i:k-&-l X:)? < Cy(p) max; |a;|*nd=*.

Tht1ye-estd=1 G
As a consequence, |[EV*f(X)|z < C4(p)n?/? max; |a;| and Theorem 2.2 (after adjustment
of constants) implies

2/d
P(If(X) ~ BA(X)| > 1) < 2exp (~ o )

nmax; |a;|2/?

(2.6)

for some new constant ¢ = ¢4(p). This inequality was proved by Gétze, Sambale, Sinulis
in [21] and earlier, up to some additional logarithmic in n factors in the exponent, by
Gheissari, Lubetzky and Peres in [19].

Remark 2.4. An inequality analogous to (2.5) for polynomials in Gaussian variables
has been obtained in [5]. In this case the inequality can be reversed up to numerical
constants depending only on d (in front of and inside the exponent). The proof relied on
a reduction to the special case of tetrahedral multilinear forms in independent standard
Gaussian variables obtained by Latata [28]. The proof of Theorem 2.2 presented below is
a simple adaptation of this idea. The inequality (2.5) is also known to hold for polynomials
in i.i.d. subgaussian random variables [5].

Example 2.5. In this example and the following ones we will let ¢ denote a constant
which may depend on the parameters « and p. Its value may change between occur-
rences.

For f(x) = 3. ;_ aijz;x;, where A = (a;;); j<n is @ symmetric matrix with zeros on
the diagonal, we obtain

P(f(X)-Ef(X)]>1t) <2ex (— min( 2 " ))
- T A s + S (S 0K Al ey

Note that if A~ = 0 then EX; = 0 (as the distribution of X is symmetric) and the right
hand side simplifies to

, 12 t
P(|f(X) = Ef(X)| 2 1) < 2exp ( — cmin (H A A||Wg>>’ 2.7)
which gives a counterpart of the Hanson-Wright inequality known for quadratic forms in
independent sub-Gaussian random variables [24], which turned out to be useful, e.g.,
in random-matrix theory and statistics (see, e.g., [43]). A version of this inequality for
strongly mixing Ising models on a lattice was proved by Marton [31].
If one further estimates the operator norm by the Hilbert-Schmidt norm, one obtains
a weaker tail bound of the form

P(f(X) ~ Ef(X)] > ) < 2exp (e ). (2.8)
| All s
For quadratic form in independent Rademacher variables such an inequality (together
with counterparts for higher order forms) was for the first time established by Bonami
[10], Beckner [7] and Gross [23] in the context of hypercontractivity of semigroups. A
counterpart of (2.8) for quadratic forms of the Ising model has been recently obtained in
[21].

Example 2.6. Consider now f(z) = El<i,j,k<n a;jkT;T;TE, Where A = (aijk)i%kgn is
symmetric with vanishing generalized diagonals. Assume also that h = 0.
In this case Theorem 2.2 gives

P(f(X)] = 1) (2.9)
t? t £2/3
1A 2,0y + 206 @i BX X0 1Al 2br AN 10y

< Zexp(—cmin(
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where we again used the equality EX; = 0.
One can wonder if it is possible to obtain estimates just in terms of the norm || A||{1,2 3},

e.g., of the form P(|f(X)| > t) < 2exp(—ct2/3/||A||?{32 5y) as in the independent case or in
the case of quadratic forms discussed above. Clearf}/: this is true if one can estimate the
quantity Y-, ;,, (EX;X;)* by a constant independent of n. However it turns out that if one
assumes only the Dobrushin condition (2.3), then the coefficient >, (3_,, a;;xEX;X;)? in
general cannot be discarded. To see this consider the Ising model on the one-dimensional
interval, e.g., with J; ;41 = Jiy1, = 1/3fori =1,...,n — 1 and J;; = 0 otherwise. In
this case (2.3) is clearly satisfied with p = 1/3 and the Hamiltonian is of the form
—% Z;:ll 0;0;+1. Since under the uniform measure on the discrete cube, o; and the
products 0;0;41, © = 1,...,n — 1 are independent Rademacher variables, one can see
that under the measure p given by (2.1), the products o;0;1, are i.i.d. random variables
with distribution

1

woigipr =1) =1 - p(oioip1 = —1) = 123"

In particular I,0;0,41 = a > 0 is independent of n. Consider now a symmetric 3-indexed
matrix A = (a;jk ) j k<n With vanishing generalized diagonals and coefficients a;;;; defined
for i < j < k with the formula

aijr = Liicj=k—1}-

One can easily see that ||A|{1 2,3} is of order n (as A has O(n?) nonzero coefficients).
However, if X is distributed according to p, then for f(X) = Ei,j,kgn @i X X Xk,
\/Var f(X) = || f(X)]|2 is of order n%/? (as can be checked by using that EX;X; X}, = 0,
expanding the product Ef(X)? and performing some elementary combinatorics). This
shows that an estimate of the form P(|f(X)| > t) < 2exp(—c(t/[|A[|{1,2,31)") cannot hold
with ¢, k independent of n. Of course, by (2.6) we do have the inequality P(]f(X)| > t) <
2 exp(—ct?/? /n). However, (2.9) leads to an improvement of this inequality. As one can
easily check ||Al[{1,2}(3} is of the same order as ||A[ {1,2,3}, i.e., of order n, || Al|{1}{2}¢3}
is of order \/n and 3, (3 ;4 aijr EX; X )2 is of order n3. Together with some elementary
calculations, this gives

P(lf(X)]>1t) < Zexp<— cmin (i—:;ﬁ—f;))

Remark 2.7. In [21], Gotze, Sambale and Sinulis propose an appropriate re-centering
of a d-linear form f(x) = st” a; HZ:1 x;, by a polynomial of lower degree, resulting
in a (nonhomogeneous) polynomial f4 ¢ such that EV'f(X) =0foralli=1,...,d— 1.
They prove that then

£2/d )

¢ 27d
AT 4

P(|faa(X) = Efaa(X)| 2 1) < 2exp -

with some ¢ = ¢(«, p,d). Since Theorem 2.2 applies to general (not necessarily homoge-
neous) polynomials, it yields a refinement of the above inequality, of the form

. t N2/l
P(|fa,a(X) —Efaqa(X)] >1t) <2exp ( —epmn (m) )

Example 2.6 shows that in general one cannot eliminate passing to fa 4, i.e., the
above inequality may not hold for the original polynomial f.
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3 Approximate tensorization of entropy and moment estimates

In this section we will present basic tools (coming mostly from the work by Marton
[32] and Gotze, Sambale, Sinulis [21]) which we will need for the proof of Theorem 2.2
and also in Section 5 to obtain concentration for convex functions and Rademacher-type
bounds for quadratic forms.

Let X =[], Xi, where X; are Polish spaces with their Borel o-fields and let x be a
probability distribution on X.

For each I C [?’l], and r = (331, . ,xn) € X denote x; = (.Ij)je[, T =T = (.13j)j¢[ €
I1 a1 X;. Let u; be the marginal of i corresponding to the coordinates indexed by I
and p;(-|Z) denote the regular conditional distribution of z; given Z; on the probability
space (X, u). Thus for any Borel set A C [],.; i, we have

M(AXHXj):/

JEI [ere X

el
ur(AJE ) e (dzr) = /X (Al ) p(d).

If I = {i} we will write, e.g., Z;, u; instead of Z;;, ;).

Recall that for a probability measure i and a nonnegative function f, the entropy of
[ relative to p is defined as Ent,(f) = E, flog f — E, flogE, f whenever E, f log f < oo
and Ent,(f) = oo otherwise.

The following definition will play a crucial part in what follows.

Definition 3.1 (Approximate tensorization of entropy). We will say that ;1 has the ap-
proximate tensorization property with constant C' (abbrev. AT (C)) if for every function
f: X —=10,00),
Ent,(f) < CE, ZEntm(-\ii)(ﬁ
i=1
It is well known that product measures satisfy AT'(1), see, e.g., [29, Proposition 5.6].

Recently Marton [32] (see also [11, 21]) proved the following sufficient condition for
tensorization of entropy in discrete product spaces.

Theorem 3.2 (Marton, G6tze-Sambale-Sinulis). Let i be a measure with full support on
X. Set

pr— 1 1 Z l 7,L 3-1

B = minmin i ({2:}|7:) (3.1)
Let also A = (a;;); j<n Satisfy a;; = 0 for all i and fori # j,
[ (-12:) — i (-7) |l 7v < aij

for every z,y € X which differ only at the j-th coordinate. Assume moreover that
|Alley ~ey < 1. Then the measure ;i has the approximate tensorization property with

-9 1
constant C' = 2[3(1_HAH23%3)2 -

In particular in [21] the Authors verify that under our main assumptions the approxi-
mate tensorization property is satisfied by the Ising model.

Corollary 3.3 (G6tze-Sambale-Sinulis). If a measure p on {—1,1}" is defined by (2.1)
then for any distinct i, j € [n| and any z,y € X™ differing only at the j-th coordinate

sup i (|Z:) — paC|9:) lrv < |Ji5]
w:ye%'"
5=7;

In particular if the condition (2.3) is satisfied, then

1A

e <[ Jlersen <1 —p.

EJP 24 (2019), paper 42. http://www.imstat.org/ejp/
Page 7/22


https://doi.org/10.1214/19-EJP280
http://www.imstat.org/ejp/

Concentration for polynomials in the Ising model

If additionally the vector h satisfies (2.2), then the coefficient 3 defined in (3.1), satisfies

1
Cap

<B<Cap

where C, , depends only on « and p. As a consequence the measure p satisfies AT(C)
with C' depending only on p and «.

We will also need the definition of the discrete gradient on X, induced by the measure
w. To this end we will slightly abuse the notation and write (z;, y;) for the sequence z
such that z; = y; and z; = Z;.

Following [21] let us introduce
Definition 3.4. For a measurable function f: X — R and i € [n], define

ouf@) = (5 [ (@)~ Flaw)Putasinn)

1 ~ 2 1/2
- (§E((f(X) —f(Xl,...7XZ-,1,X1-,XZ-+1,...,X”)) ’X :;v)) ,
where X = (X1,...,Xp,) is distributed according to p and the conditional distribution of
X, given X = x equals to p;(-|z;).

We will denote df(x) = (0;f(x));e[n) and regard this vector as an element of R"
endowed with the standard Euclidean norm | - |.
Definition 3.5. We will say that p satisfies the logarithmic Sobolev inequality with
constant C (abbrev. LSI(C)) if for every f: X — R,

Ent,(f?) < 2CE[pf|*. (3.2)

Remark 3.6. The notion of logarithmic Sobolev inequality introduced above can be
interpreted as the usual logarithmic Sobolev inequality equivalent to hypercontractivity
of the related Glauber dynamics/Gibbs sampler (see, e.g., [11, 32, 21]), however, we will
not use this interpretation in the sequel.

Using the approximate tensorization property together with a log-Sobolev inequality
for two point distributions [17] and a Herbst-type argument of Aida and Stroock [6] (see
also [9, 5, 2]), Gotze, Sambale and Sinulis [21] proved

Theorem 3.7. Let i be a measure on {—1,1}", defined by (2.1), and assume that the
inequality (2.2) and the Dobrushin condition (2.3) are satisfied. Then there exists a
constant C = C(«, p) such that p satisfies the LSI(C). As a consequence, if X is a
random vector distributed according to y, then for any p > 2,

IF G < IF I3 +2C (0 = 2)[PS (X))

Combining the above result with the well known fact that the logarithmic Sobolev
inequality (3.2) implies the Poincaré inequality with constant C, i.e.,

Var, f < CE[pf(X)|?,

we immediately obtain

Corollary 3.8. Under the assumptions and notation of Theorem 3.7, for every
f+{-1,1}* - R, and any p > 2,

[F(X) = Ef(X)|lp < V2Cp[[0f(X)]lp-

This inequality will be the basis of our inductive argument in the proof of Theorem 2.2.
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4 Proof of Theorem 2.2

Proof of Theorem 2.2. The proof will be an adaptation of arguments from [5] (see also
[2]) to the discrete case. To carry it out it will be convenient to introduce an inner
product (-, -) on the space of k-tensors with the formula

<A,B> = Z aibi,
li|<n
where A = (ai)jij<n, B = (bi)jij<n. Let us also recall the notation z! ® -+ ® z¥F =
(z} a2 - ak )i, i.<n for any vectors 2/ = (z1,...,23), j=1,... k.

We will first prove by induction on d that for any positive integer d, and any function
f:{-1,1}" =R,

d—1
1F O =Ef ), KV (X),Gro--- @ Ga)llp+ ) KIExV F(X),Gr©--- @ Gy,
i=1

(4.1)

where K is a constant depending only on «, p and G4, ..., G4 are i.i.d. standard Gaussian
vectors in R™ independent of X. Here by Ex we denote expectation with respect to
the random vector X and (as explained in Section 2) the derivatives V'f denote the
derivatives of the tetrahedral polynomial coming from the Fourier-Walsh expansion of f.
We remark that d does not necessarily coincide with the degree of f.

To prove (4.1) we will proceed by induction. Consider thus f(z) = Ao—i—ZkD:l(Ak, x®F),
where D < n, Ay € Rand for k = 1,...,D, A* = (aF)j;<, are k-indexed symmetric
matrices with zeros on generalized diagonals (note that by using the Fourier-Walsh
decomposition one can uniquely represent any function on {—1,1}" in this form).

Let X;, i =1,...,n be {-1,1}-valued random variables (possibly defined on some
extension of the original probability space) such that the conditional distribution of )Z'l
given X = x equals p;(-|Z;).

Recall that for¢ < n,

1

0, f(z) = (iE((f(X) -~ f(le---7Xi—1a)?i7Xi+1a'~-,X7L))2'X - 3;))1/2’

hence by Corollary 3.8, using the notation X; = (X j)j+: we have for any p > 2,

1/p

1£(X) = EF(X)], < v/Cp(E| iE(U(X )~ (X X)) X) !M)
=1

Using Jensen’s inequality for the conditional expectation, we can further write

2 _ o~ L |P/2\1/p
1F(X) = BFON, < v/Cp(B| S (7(X) = £(X:, X2 )
i=1
efine now for £k = 1,...,dand 7 = 1,...,n the — 1)-indexed matrices 4=
Defi fork =1,...,dand i = 1 he (k — 1)-indexed matrices A*
(af’l)mgn = (a’&’i))‘i‘gn, where fori = (i1,...,ixk—1) we write (i,1) = (4,41, ...,ix—1). Using

the fact that the generalized diagonals of the matrices A* vanish together with the
symmetry of A¥, we get

D
_ o~ ~ . ~_ 0
FX) = f(X5, Xi) = (X — Xi) Zk<Ak’ZvX®(k_l)> = (X — Xi)a f(X).
T
k=1
EJP 24 (2019), paper 42. http://www.imstat.org/ejp/

Page 9/22


https://doi.org/10.1214/19-EJP280
http://www.imstat.org/ejp/

Concentration for polynomials in the Ising model

Since | X; — )N(Z| < 2, by combining this equality with the previous estimate, we obtain

1£(X) = Ef(X)|l, < 2¢/Cp(E[Vf(X)[P)!/7.

Using the fact that if g is a standard Gaussian variable, then for p > 1 we have
VPM~' < |lgll, < M,/p, where M is a universal constant, we can write the above
inequality as

1F(X) = EF Ol < K[ (V). G)

(4.2)

p

for a standard n-dimensional Gaussian vector (=, independent of X, {)?i}ign and K =
2+/C M. This establishes (4.1) for d = 1.

The induction step follows just by the case d = 1 and the triangle inequality in
L,. Indeed, assuming that (4.1) holds for d, by the triangle inequality and linearity of
expectation we get

1£(X) = EF ()], <K/(VIF(X),G1@ - ®Ga) = Ex(VIf(X),G1® - @ Ga)ly
d
+ZKi||<EXVif(X)7G1 Q- ®Gi>”p7
=1

Applying now (conditionally on G4, ...,Gy) the inequality (4.2) to the first term on the
right hand side and using the Fubini theorem we obtain

(VIF(X),G1®: - @Ga)~Ex (VI F(X), G180 --©Ga)ll, < K[(V*F(X), G1& @G as1)p

(note that (VIf(X),G1 ® --- ® Gy) is tetrahedral as a polynomial in X, moreover
(VHVIF(X),G1®...@ Gy),Gar1) = (VITF(X),G1 ® ... ® Ggi1)).

This ends the induction step and establishes (4.1).

If f is a polynomial of degree d, then V¢ f(X) is deterministic (and thus equal to its
expectation) so (4.1) can be written in a more concise way

d
IF(X) = EFX)p < Y KIEXV F(X),G1® - @ Gi)llp

i=1

We will now use a result by Latala [28], which asserts the existence of constants Cj,
depending only on k&, such that for any k-indexed matrix A, and p > 2,

(A, Gr® - @ Gp)ll, < Cr > p2)|Allz,
ZePy

which yields
d
IF(X) =Bf(X)p, <CY > pH2IEVF£(X)]1,

k=1Z€Py

where C depends on p, a, d.
By Chebyshev’s inequality in L, this gives for p > 0,

d
P(If(X) ~Ef(X0)] > Ce Y 3 pHPBVHF(X)|lr) < 7

k=17ZeP,

(the additional factor e? on the right hand side allows to extend the estimate from p > 2
to all p > 0). The theorem follows now by a change of variables and adjustment of
constants. O

EJP 24 (2019), paper 42. http://www.imstat.org/ejp/
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5 Convex concentration and improved estimates for positive defi-
nite quadratic forms

The estimates of Theorem 2.2 are of Gaussian nature, i.e., they have the same form
as two-sided estimates valid for polynomials in independent Gaussian variables. Since
the values of the random variables in the Ising model are 41, it is natural to look for
estimates resembling those known for polynomials in independent Rademacher variables.
However, in this case the situation is more complicated, as two-sided bounds are known
only for polynomials of degree at most 3 (see [20, 27, 3]).

Below in Theorem 5.11 we present estimates similar in nature to those for Rademacher
sequences for quadratic forms (AX, X), where A is a non-negative definite matrix and
X is a random vector with bounded coefficients satisfying the approximate tensorization
property. In some situations they improve on the bounds one can get for the Ising model
from Theorem 2.2, however, in general they are not comparable to them, because they
involve norms of the matrix A and not just its off-diagonal part (note that in the case of
the Ising model, the contribution from the diagonal is deterministic). It is natural to con-
jecture that (similarly as for the i.i.d. case) the assumption of non-negative definiteness
is an artefact of our proof and can be actually dropped, however, at present we are not
able to obtain such more general bounds.

5.1 Convex concentration

As a tool for proving estimates for quadratic forms we will derive concentration
inequalities for convex Lipschitz functions for measures on products of compact sets,
satisfying the approximate tensorization property, which are of independent interest.
In particular this will allow us to obtain concentration for linear combinations with
vector coefficients (see Proposition 5.5), which generalizes estimates obtained in the
Rademacher case by Dilworth and Montgomery-Smith [18] (see also [27]).

Recall that a random vector X in R"™ has the convex concentration property with
constant K if for any L-Lipschitz convex function f: R™ — R, and any ¢ > 0,

P(|f(X) — Med f(X)| > t) < 2exp(—t*/K*L?). (5.1)

It is well known that the above property is up to constant equivalent to concentration
around the mean, i.e.,

P(|f(X) - BEf(X)| > t) < 2exp(—t?/K?L?), (5.2)

i.e., the inequalities (5.1) and (5.2) imply each other and the constants K and K depend
only on one another. We will say that a random vector Z satisfies the dimension-
free convex concentration property with constant K if for any N, the random vector
X =(Xy,...,XnN), where X; are i.i.d. copies of Z, satisfies (5.1).

We will now relate the approximate tensorization property of measures on [—1, 1] to
the convex concentration property, showing in particular that if the distribution of X
is given by (2.1), where ||, < a and Ji; satisfy the Dobrushin condition (2.3), then X
satisfies the dimension-free convex concentration property with a constant depending
only on a and p (Proposition 5.4 below). Next we will prove that convex concentration
property for measures on products of compact sets can be in fact improved by taking
into account the uniform bounds on the components of X. Finally, we will illustrate this
phenomenon with applications to linear forms with vector coefficients and quadratic
non-negatively definite forms (Proposition 5.5 and Theorem 5.11).

In order to pass from approximate tensorization of entropy to dimension-free convex
concentration property, we will use weak transportation inequalities, introduced recently
by Gozlan, Roberto, Samson and Tetali [22].

EJP 24 (2019), paper 42. http://www.imstat.org/ejp/
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Let us denote by P;(R") the set of all probability measures on R™ with finite first
moment.

Definition 5.1. Let i and v be probability measures on R". Assume that v € P;(R").
For a convex, lower semicontinuous function §: R" — [0, oc], such that 6(0) = 0 define
the weak transport cost between p and v as

Totl) =it [ 0(z = [ upuld)utae),

where the infimum is taken over all couplings m between n and v (i.e., measures on
R™ x R™ with marginals u,v) and for x € R", p,(-) is the conditional measure defined
(u-almost surely) by 7(dzdy) = p.(dy)p(dzx).

Using probabilistic notation one can write

To(v|p) = (;{n}f/) EO(X — E(Y|X)), (5.3)

where the infimum is taken over all pairs of random vectors (X, Y') with values in R™ xR",
such that X is distributed according to ; and Y according to v.

Recall also that if u, v are two probability measures then the relative entropy of v
with respect to p is given by the formula

H(v|p) = E, log (%:)

if v is absolutely continuous with respect to p and H(v|u) = oo otherwise.

Definition 5.2. Let u € P;(R"™) and 6: R™ — [0, o0] be a convex lower semicontinuous
function with 6(0) = 0. We will say that y satisfies the inequality Ty if for every probability
measure v € P1(R"),

max (To(vlpe), To(ulv)) < Hvlp). (5.4)

The following theorem established in [22] describes connections between dimension-
free convex concentration, weak transportation inequalities and log-Sobolev inequalities
for convex and concave functions.

Theorem 5.3. Let X be a random vector in R"™ with distribution p. The following
conditions are equivalent.

(i) There exists K such that X has the dimension-free convex concentration property
with constant K.

(ii) There exists c such that . satisfies the inequality Ty with 0(z) = c|z|>.

(iii) There exist D,\ > 0 such that for every C'-smooth convex Lipschitz function
f: R™ — R bounded from below and every C'-smooth concave Lipschitz function
f: R™ — R bounded from above such that f(-) + \| - |? is convex,

Ent /) < DE|V f(X)|%e/X). (5.5)

Moreover, for any two assertions above the constants in one of them may be taken to
depend only on the constants in the other one.

Using the above result we can easily obtain the following proposition, which may be
useful, e.g., in statistical applications, when dealing with i.i.d. samples drawn from the
measure u (see, e.g., [15] for a discussion of applications related to the Ising model).

EJP 24 (2019), paper 42. http://www.imstat.org/ejp/
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Proposition 5.4. If X is a [-1, 1]"-valued random vector with law p, which satisfies the
approximate tensorization AT(C), then X satisfies the dimension-free convex concentra-
tion inequality with constant K, depending only on C.

Proof. The celebrated convex distance inequality by Talagrand (see, e.g., [40, 41])
asserts that any random variable with support in [—1, 1] satisfies the dimension-free
convex concentration property with a universal constant. In particular by Theorem 5.3 it
satisfies the log-Sobolev inequality (5.5) with some universal constants D, A. Consider
any function f: R™ — R, as in point (iii) of Theorem 5.3. It is easy to see that the function
x; — f(Z;,x;) also satisfies the conditions of point (iii), this time in dimension one. We
can thus apply to this function and to the measure yu;(-|Z;) the one-dimensional version
of (5.5), which together with the condition AT(C') gives (5.5) with constants C'D and ).
The proof is now concluded by another application of Theorem 5.3. O

It is easy to see that if a measure y supported on [—1, 1]" satisfies Ty with () = c|z|?
then it actually satisfies a stronger inequality T, with v(z) = |z|? if |2|c < 2 and
~v(x) = oo otherwise. Indeed for the right-hand side to be finite v must be also supported
on [—1,1]", in which case by (5.3) To(ulv) = T-(ulv) and To(v|p) = T, (v|p). In fact,
weak transportation inequalities with such strengthened cost functions can hold only
for compactly supported measures (see [39]). The interest in such strengthening lies
in the fact that by taking into account the boundedness of random variables, it implies
concentration inequalities stronger than the subgaussian bound given by (5.2) (see, e.g.,
[4] for concentration results corresponding to various cost functions #). As shown in the
next proposition, such inequalities can be also easily inferred just at the level of convex
concentration. To formulate this result let us introduce a family of norms on R" given
for p > 0 by the formula

ey, = sup { 3" @i Iyl < VB Iyl < 1. (5.6)

i=1
It is not difficult to see that

21y < D2y + VB, [ (@) < 2]l 1) (5.7)

1<p i>p

where (:cf)lgn is the nonincreasing rearrangement of the sequence (|x;|);<,. In fact one
has

max (St VB[S @H?) < el (5.8)
i<p i>p

Such norms are equivalent to interpolation norms between the spaces ¢; and ¢} and
in a probabilistic context appeared for the first time in [33, 25], where it is shown that if
€1,...,En are independent Rademacher variables, then for x € R™ and p > 2,

1 n
Glellays <|| Y| < Clallon
=1

where C is a universal constant. The meaning of the subscript {1} will become clear
when we define counterparts of this norm for matrices. To keep uniform notation, we
introduce it already here.

We are now ready to state the strengthened concentration result.

EJP 24 (2019), paper 42. http://www.imstat.org/ejp/
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Proposition 5.5. Let X be a random vector with values in [—1, 1]", satisfying the convex
concentration property (5.1). Then for any smooth convex Lipschitz function f: R — R
and any p > 0,

P(1£(X) = M| > Csup VS (@)|g1),) < dexp(-p/K?). (5.9)

where M is the mean or the median of f(X) and C is a universal constant.

This improves on what can be obtained from (5.2) since as one can see from (5.6),
2]l {1y, < V/Pl2l.
Remark 5.6. By standard regularization arguments (see, e.g., [36, p. 429]) one can
drop the smoothness assumptions on f by replacing sup, ||V f(z)[/{1}, with the Lip-
schitz constant of f with respect to the norm dual to || - |1}, One can also as-
sume that f is defined on [—1,1]™ since one can extend it to R™ with the formula
fy) = sup,e(—1,1)- (f() + (Vf(z),y — z)) without altering the Lipschitz constant (here
V f(z) denotes some subgradient of f at z).

Before proving the above proposition, let us illustrate it with examples to show how
it improves on the usual subgaussian convex concentration (5.2).

In view of Remark 5.6, Proposition 5.5 yields the following corollary.
Corollary 5.7. Let X = (X3,...,X,,) be a [-1, 1]"-valued random vector satisfying the
convex concentration property (5.1). Let (E, ||-||) be a Banach space with dual (E*,||-|.),

v1,...,0p € E and let
n
i=1

)
then for every p > 0,

]P<|Z —-EZ| > sup ||(g0(vi))i§nH{1}1p) < 4e P/ K7 (5.10)

PEE", |lplla<1
Remark 5.8. In [18], Dilworth and Montgomery-Smith proved that if X is a vector of in-
dependent Rademacher variables, then P(Z > 2EZ +sup,cg- o). <1 [[(@(vi))i<nl {1}.p) <

2¢~°P, The fact that one can improve this statement to concentration around mean seems
to have become by then a part of the folklore.

Example 5.9. Let us now provide a simple one-dimensional example. For illustration
purposes it will be more convenient to state it in terms of infinite sequences of random
variables. Let thus X7, X, ... be centered random variables with values in [—1, 1], such
that for all n, the vector X = (Xi,...,X,) satisfies (5.1) with K = 1 (for simplicity).
Define the random variable Z = Zfil %XZ (note that thanks to (5.2) this sequence
converges in Ly). Then by (5.2), we get P(|Z]| > t) < 2exp(—ct?) for some ¢ > 0.
However, it is easy to see that ||(1/7)72,/{1},, = logp (up to multiplicative constants) for
p > 2 thus by Proposition 5.5 (after adjusting the constants) we obtain

P(Z] > 1) < 4e— ",

This Gumbel type tail decay is clearly much faster than Gaussian. Note that thanks to
the one-dimensional nature this example can be in fact easily recovered directly from
(5.2) by combining it with obvious pointwise bounds on the variables X;. Since (5.10)
can be equivalently restated as

P(1Z - BZ| = sup|jely ) < 4e 7/
zeT

for any bounded set T of vectors and Z = sup,cr | Y, 2;X;|, one can easily create more

complicated examples with various types of tail decay.
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Proof of Proposition 5.5. The idea of the proof goes back to Talagrand and is by now
classical. The main additional observation one needs to make is that exploring the
boundedness of the support may lead to improved inequalities for general convex
Lipschitz functions rather than just for linear functions.

We will start by proving the inequality in question with the median. Let thus M =
Med f and consider first the convex set A = {z € [-1,1]": f(x) < M}, so that P(X €
A) > 1/2. Define g(x) = dist(x, A), then Med g(X) = 0 and by convexity of 4, g is a
convex function. Note that if for z € [-1,1]", f(z) > M + 3sup, ||V f(z)|/{1},p, then by
convexity for any y € A,

M +3|V ()l < f(2) < fy) +(z =y, VF(2))

0 1 0
<M+ Qg(axif(z))i + %|Z —ylvp ;((amif(z))ih
1
<M+ 2|Vl + %V = ylIVF(@) e

(where we used (5.8)) and so |z — y| > /p- Taking infimum over all y € A, and recalling
that Med g(X) = 0, we obtain
P(£(X) > M +35up [ VF (@)l 1) ) < P(g(X) = Medg(X) + V) < 2exp(—p/K?),
(5.11)

where in the last inequality we used (5.1).
As for the lower tail, we can clearly assume that f is not constant. In particular
sup, |V f(z)|/{13,, > 0. Then, denoting

A={z e [-11]" f(@) < M =350 [VI@)] 1), }-

by similar estimates as above one obtains that for z € [-1,1]", if dist(z, A) < ,/p, then
f(2) <M. Thus, denoting B={x e R": f(z)> M} we get AC{z€[-1,1]": dist(z, B) >
V/P}. Since A C B® we can also assume that B # (). The function g(z) = dist(z, B)
is 1-Lipschitz, concave on the complement of B and can be extended to a function
g(x) = inf,epe(g9(2) + (Vg(z),z — z)), which is 1-Lipschitz, concave on R" and non-
positive on B. Moreover g = g on B¢. Thus Med g(X) < 0 and so

AC{ze[-1,1]":g(x) > p} C{z € [-1,1]": g(z) > Med g(X) + /p}.

As a consequence P(X € A) < 2exp(—p/K?), which together with (5.11) proves that

P(17CX) = Med FCX)| = 35up [V (@)l 1) < 4077/

To pass from the median to the mean, we notice that for¢ > 1,
so applying the above estimate with #?p instead of p, we get

P(17(X) = Med f(X)| > 3tsup [V (@)l 1)) < dexp(~12p/K?).

2llg1y.p < VIl 0

In particular by Jensen'’s inequality and integration by parts this yields

[Ef(X) = Med f(X)| < E|f(X) = Med f(X)| < 3+ C'Kp~"/?)sup |V f ()1},
for some universal constant C’, which gives
P(1£(X) = Bf ()] 2 (6+ C'Kp~ /) sup |V f(2)l| 1) ) < 4exp(—p/K?).

If p > K2, this gives (5.9) for M = Ef(X) with C = 6 + C’, otherwise (5.9) is trivial,
as the right hand side exceeds one. O
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5.2 Quadratic forms

We will now pass to quadratic forms. In order to formulate tail estimates in this case,
we need to introduce two additional norms of a symmetric matrix. Following [27] we
define

[All1.2.0 = 1(Ad)i<nll1y.p5
where 4; = /3", a7; and

lAll gy ey = s { D @iy lol yl < V. [2locs Iyl < 1}

i,j=1
We note that by (5.7),
JAll 2y < 3 AL+ vB( 3 (4D <2 Al 1,29 .
i<p i>p
which gives a simpler expression if one is interested in concentration up to dimension-

free constants.

Remark 5.10. It is easy to see that

n n
. 2
1Al {1,230 = Sup{ > agry: [elazy < Vb, I{lgalexij < 1}7
J:

ij=1

which justifies the subscript {1,2} used in the notation. It is also clear that [|A[ {12}, <
VPIAllg 2y = VPl Allas and [[All1ygey,p < PIAl1 2y = PlIAlleg ez

In [27] Latala proved that there exists a universal constant C such that if X =
(e1,...,en), where ¢;’s are independent Rademacher variables, then for any symmetric
matrix with vanishing diagonal and any p > 2, one has

C AN ,20 + 1Ay 21,0) < IKAX, Xl < CUI ANl 1,23, + 1A 13 £20,0)5

similar bounds were also obtained for cubic forms in [3]. As a consequence, by Cheby-
shev’s and Paley-Zygmund inequalities (see [27]), in this case for any p > 0,

P(KAX, X)| = Ce(|All1,21,5 + 14l 1y 21.0)) < €7

and
P(IAX, X)| = el All 12y, + 14l 1) 23.) ) = min(e, ).
The result we obtain for quadratic forms in dependent random variables is

Theorem 5.11. Let X be a centered random vector with values in [—1,1]", satisfying
the convex concentration property with constant K and let A = (a;;); j<» be a symmetric
nonnegative definite matrix. Then there exists a constant Cx, depending only on K,
such that for any p > 0,

P((AXJQ — B(AX, X) > Ok ([|All{1,21,0 + ||A||{1}{2},p)) <de”? (5.12)
and
P((AX, X) ~ B(AX, X) < —Cx min(|All 1,21, + 4]l (1) 23,0 VI Al (12))) < 477

(5.13)
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Remark 5.12. The mean zero assumption in the above theorem is introduced only to
simplify its formulation. Clearly, in the general case one can recenter the vector and
handle the linear correction by Proposition 5.5.

Remark 5.13. For the Ising model the norms ||A[{1,2} , and [|A[/{1}{2}, introduce un-
necessary contribution from the diagonal of A, which does not influence the value of
(AX, X)—-E(AX, X). However, for random variables not supported on {—1, 1}, in general
this contribution has to be taken into account. It is not difficult to see that up to constants
it corresponds to the || - [|{1} , norm of the vector consisting of diagonal elements from A,
which is consistent with estimates of Proposition 5.5 as well as tail bounds for sums of
independent bounded random variables.

As already mentioned at the beginning of the section, one expects that the assumption
of nonnegative definiteness of the matrix A is not needed in Theorem 5.11. In [1] it is
shown that the convex concentration property (5.2) implies the Hanson-Wright inequality
(2.7) (with ¢ depending on K) for arbitrary matrices by splitting the matrix into the sum
of its positive and negative definite parts and treating each of them separately (using
convexity). This strategy does not work here, since the | - ||z, norms are not invariant
under conjugation and the norms of positive and negative parts can be of greater order
than the corresponding norms of the original matrix. This can be seen, e.g., with a
matrix A = (a;;);, j<n such that a;; = a;; = 1 for i # 1 and all the other coefficients are
zero. In this case for 1 < p < n we get || Al|;12),, + [|All{13{2}.p = v/Pv7n, Whereas if A
is the positive/negative part of A, then || AL | (1,2} p + [[Ax|l{1312},p = PV7.

For the Ising model one may hope that the assumption of nonnegative definiteness
of the matrix A in Theorem 5.11 could be removed by a repetition of the proof of
Theorem 2.2 with auxiliary Rademacher variables, instead of Gaussian ones, i.e., by
proving that for every f (seen as a tetrahedral polynomial) and p > 2,

1£0X) ~ EF O, < O(BIVAX)IR,,)

(actually if one is interested only in quadratic forms, it is enough to prove it for polyno-
mials of degree 2). We do not know if such inequality is satisfied under the assumptions
of Theorem 2.2.

Example 5.14. Let us now present an example of a matrix A for which Theorem 5.11
gives a substantially better tail estimate that the one given by the Hanson-Wright
inequality. One possibility is to tensorize Example 5.9, i.e., to consider the matrix
Apn = (aiz)};—1 given by a;; = % for large values of n. Noting that (AX, X) = (v, X)?
for v = (1,1/2,...,1/n) one can argue that this example is still rather about linear
combinations than quadratic forms. Let us therefore leave the details to the Reader
and instead consider the matrix A,, given by a;; = ﬁ It is easy to see that for any
n, A, is positive definite (e.g., by noting that for a standard exponential variable Y and
t > 0 we have Ee~ Y = l%rt and using basic properties of the Laplace transform). Now
both ||A,| zs and ||A,ley ¢y are of order (1) as n — oo, and so, if X,, is a sequence of
centered random vectors in [—1, 1)" satisfying (5.2) with K independent of n, then the
Hanson-Wright type inequalities (2.7) give

P({A,Xn, Xpn) —E(A, X, Xpn)| > t) < 2exp(—ct)

for some dimension independent constant c. On the other hand, it is not difficult to check
that we have [|A, |12y, < C and ||A,][{1}42},, < Clogp for some dimension-independent
constant C'. Thus Theorem 5.11 gives

c't

P({ApXn, Xpn) —E(AX,, X,)| >t) <2e7°¢ | (5.14)
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where ¢’ is another dimension independent constant and we again obtain a strengthened
Gumbel type behavior.

The above example is primarily an illustration of the difference between the norms
VPl Allzs + pl|Allep —ep, used in the Hanson-Wright inequality and the norms || Al {12}, +
| All{13{2},p used in estimates of Rademacher type given in Theorem 5.11, but in fact one
can recover (5.14) by splitting appropriately the matrix A into a sum of two matrices,
applying the Hanson-Wright inequality to one of them and the trivial pointwise bound
to the other one (similarly as in the one-dimensional case of Example 5.9, where one
can apply the pointwise bounds together with the Khintchine inequality). However, this
strategy is limited, as in general there does not exist a constant C, independent of p and
n, such that for all n x n matrices A and p > 2,

inf{\/p||Bllars + pl|Blleg—ey + (1D

meny: B+D=A} <C(|Allq1.2y.0 + 1 All{13423.)5

where |[(dij)ijllepep) = 2; j<n |dij|- To see this one can consider, e.g., the matrix given
in Remark 5.13 or matrices of the form A = vv”, where v has one coordinate equal to
1 and the remaining ones equal to p/n, and p — oo with n at an appropriate speed (we
leave the details to the Reader). This shows that estimates of the form (5.12) do improve
on the Hanson-Wright inequality.

Proof of Theorem 5.11. Denote f(z) = (Az,x). By our assumptions this is a convex
function and therefore, similarly as in the proof of Proposition 5.5, we can write for any
T,y € [71? 1]71'

(@) — fly) < (Vi(@).z—y) < 2+ \}ﬁ —DIVF@) Ny
Therefore (denoting M = Med f(X)), if f(x) > M + 3|V f(x)||{1},p then

g(@) = dist(z{y € [-L,1]": fy) < M}) > Vb

and thus by the convex concentration assumption applied to the function g (note that g
is convex and Med g(X) = 0), we get

P(F(X) = M 2 3IVF(X) 1y ) < 2677/

(observe that here we bound f(X) — M by a random quantity).
As Vf(X) =2AX, we can apply Corollary 5.7 to the norm || - ||}, to obtain

_ 2
P(IVF (X1 = 2BIAX (1) p + CllAll (13 (21,p) < e/ 5

for some universal constant C'. Combining the two last inequalities we obtain for some
(new) constant C,

P((AX,X) 2 M + C(EIAX]|1 + [ All 1y 2y,0)) < 6775 (5.15)

To get a bound on the upper tail (above the median) it thus suffices to estimate
E[|AX|/{1},p- In [27] Latata proved that in the case when Y is a vector of independent
Rademacher variables,

E[|AY [[11yp < C(1All 1230 + 1 All113 423 0)-

In [3] it is mentioned (see the remark before Lemma 8.4) that this inequality can be
proved by a chaining argument, relying on concentration properties of vector valued
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linear combinations of Rademacher variables. Since X is a centered random vector,
satisfying analogous concentration properties as Y, one could follow this approach to
recover the above inequality for X. However, the formulations and proofs in [27, 3]
are given for general independent variables with log-concave tails and translating the
arguments of [3], even if straightforward, is quite tedious. Therefore, instead we will
use a recent deep result of Bednorz and Latata [8] concerning suprema of Rademacher
processes, which will allow to directly reduce estimates for X to the case of random
signs. Their Theorem 1.1 (in a finite dimensional formulation suitable for our purposes)
asserts that if 7' C R™ then there exist 71,75 C R™ such that T' C T + T3,

n n
su t;| < CEsu eit;
pZ| z|7 teg; (1%}

e ;—
and . .
EE sup Z git; < CEsup Z gitq,

teTy T teT i—
where ¢;, g; are sequences of i.i.d. resp. Rademacher and Gaussian variables, and C is a
universal constant.

Since our X satisfies convex concentration property, it is in particular subgaussian
with constant K and by another deep result, Talagrand’s Majorizing Measure Theorem
(see [42]), we have

n n
E sup Z X;t; < CKE sup Z giti
teTy T teTy =4
for any set 7. Therefore, expressing | AX||;1},, as a supremum of linear combinations
of X;’s and using the above estimates together with the inequality | X;| < 1, we see that

E|AX |1y, < C(L+ K)B|AY |1y, < C"(1+ K)([All 1,230 + [All 1y 23,0)  (5:16)

for some universal constants C, C’. Going back to (5.15) we obtain
P((AX, X) 2 M+ C(1+ K)([All 1,21, + 41l 1323 ) < 667/ (5.17)

for some (new) universal constant C. Using the fact that || A (12}.¢p < V|| A {1,2},, and
Al 11342360 < tllAll{1342},» fOr t > 1, we can easily replace the right hand side by 4e™"
at the cost of changing C(1 4+ K) to some constant Cx (which can be clearly expressed
explicitly in terms of C' and K).

As for the lower tail, [4, Theorem 6.5 (ii)] implies that under (5.9), for any smooth
convex function f: [-1,1]" — R,

P(£(X) < Med (X) — CkEI|V£(X) ] 1y.) < 4™

(formally this theorem is stated for norms of the form ||z|| = sup{(z,y): 0(y) < p} with
0: R" — R, whereas by (5.6) ||-||{1},, corresponds to 6(y) = |y|? if [y|oc <1 and f(y) = 0o
otherwise, but the proof given in [4] does not use the finiteness of § and in fact one can
also deduce the result by approximating 6 with finite-valued functions). In particular, the

above inequality for f(z) = (Az,x) gives
IP((AX, X) < M- CKIE||AX||{1}7P) < e P

The inequality (5.13) with the mean replaced by the median follows now by (5.16)
and from the observation that

E[AX |1y, < VPEIAX] < /pVE[AX]? < CK /DAl (1,2},
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where the last inequality follows easily by (5.2) and integration by parts.
Now, (5.12) and (5.13) with the median instead of the mean yield

P([{AX, X) — M| > Cxt|[All{1)) < 4e™,

which by another integration by parts gives [|E(AX,X) — M| < C%|Al/{1,23. Since
for p > 2, [|[Al{1,2y < C||A|/{1,23,p, this easily allows to pass from concentration around
median to concentration around mean (at the cost of increasing the values of the constant
Ck). O
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