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Abstract

In this paper, we are interested in deriving non-asymptotic error bounds for the
multilevel Monte Carlo method. As a first step, we deal with the explicit Euler
discretization of stochastic differential equations with a constant diffusion coefficient.
We prove that, as long as the deviation is below an explicit threshold, a Gaussian-type
concentration inequality optimal in terms of the variance holds for the multilevel
estimator. To do so, we use the Clark-Ocone representation formula and derive bounds
for the moment generating functions of the squared difference between a crude Euler
scheme and a finer one and of the squared difference of their Malliavin derivatives.
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1 Introduction

We are interested in deriving non asymptotic error estimations for the multilevel
Monte Carlo estimators introduced by Giles [4]. In this paper, as a first step, we deal
with estimators of E [f(X7)] where f : R? — R is Lipschitz continuous with constant
[f]oe, T € (0,400) is a deterministic time horizon and X := (Xt)g<i<r is the Ré-valued
solution to the stochastic differential equation with additive noise

dX, = b(X,)dt +dW,, X, =z¢ € R, (1.1)
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driven by the d-dimensional Brownian motion W = (Wl, ceey Wd) and with Lipschitz drift
function b: R — R :

(Har) AC, < +o0, Va,y € R? [b(z) — b(y)| < Chlz —y|.

When d = 1, this additive noise setting is not restrictive. Indeed any stochastic differen-
tial equation dY; = o(Y;)dW, + n(Y;)dt with multiplicative noise given by some function
o : R — R such that % islocally integrable can be reduced to (1.1) by the Lamperti trans-

formation : for p(y) = [Y 2%, X, = ¢(Y;) solves (1.1) with b(z) = (ﬂ - %) (o~ ().

yo o(z) a
For n € IN*, we consider the simple Euler-Maruyama approximation X" with time

step T'/n and we introduce its continuous version given by

dX{ = b(X,, @)dt +dW;, n,(t) = {?J %, Xy = xo. (1.2)
When b is smooth, both the strong and the weak errors of this scheme converge to 0
with order 1 as n — oco. According to [4], the complexity for the multilevel Monte Carlo
estimator of E [f(X7)] based on this scheme to achieve a root mean square error ¢ is
O(¢72) in the limit ¢ — 0, the same as in a standard Monte Carlo method with i.i.d.
unbiased samples. For positive integers m and L and (N;)o<¢<r, the Multilevel Monte
Carlo method approximates the expectation of interest IE [f(X7)] by

No L Ny
Q= NL PIFCCIEDD Ni > (f(X?fz) - f(X?ff(l)) : (1.3)
0 k=0 —o Vi

The processes ((XZ,TLI:)OStST)k denote independent copies of the Euler scheme with time
step m ‘T for ¢ {0,---, L}. Here, it is important to point out that all these L + 1 Monte
Carlo estimators have to be based on different, independent samples. However, for fixed
k and ¢, the simulations f (X’T”j;) and f (X%j:l) have to be based on the same Brownian
path but with different times steps m T and m~ ¢~V T.

Our main motivation is the derivation of Gaussian type concentration inequalities for
Q — E[f(X7)], a natural question, which, to our knowledge has not been addressed in
the literature. Frikha and Menozzi [3] obtained concentration inequalities for f(X7) —
E[f(X7})]. Deriving estimations of the moment generating function of the differences
FXP™) — f(X3) —E[f(X7™) — f(X})] which are optimal in terms of their variances is a
much more delicate task and adapting their approach seems to be problematic. However,
the boundedness of the Malliavin derivatives DX7 and DX7'" in the additive noise setting
permits to follow the approach of Houdré and Privault [6] based on the Clark-Ocone
formula and this is one reason why we focus on this setting. Another reason is that for
stochastic differential equations with multiplicative noise, more sophisticated schemes,
like the Milstein scheme in the commutative case or the Giles and Szpruch [5] scheme
in the general case, are necessary to improve to two the order one of convergence of
Var[f(XFe) - f(X{FPl)} and recover the unbiased Monte Carlo complexity.

In Section 2, when b is €2, Lipschitz continuous and the Laplacians of its coordinates
have an affine growth, we first derive non-asymptotic estimates of the squared error
E[(Q — E[f(X7)])?] of the multilevel Monte Carlo estimator (MLMC) (1.3) for a Lipschitz
continuous test function f by computing explicit bounds for the bias E[f (X%?L) — f(X7)]
and variance Var[f(X%LZ) - f(X}"zfl)]. Then we optimize the parameters (L, (N¢)o<¢<r)
in order to minimize the computation cost needed to achieve a root mean square error
smaller than a given precision €. It turns out that, as ¢ — 0, the optimal bias is of order
O(£*/3), which, to our knowledge, has not been pointed out in the MLMC literature
so far. Notice that, for stochastic differential equations with a non constant diffusion
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coefficient (multiplicative noise), this property remains true for the multilevel Monte
Carlo estimator based on the Giles and Szpruch scheme [5], since it exhibits the same
orders of convergence of the bias and the variance within a given level as (1.3).

In Section 3, we state and derive our main result : as long as the deviation is below
an explicit threshold, a Gaussian-type concentration inequality optimal in terms of the
variance holds for the multilevel estimator (1.3). Denoting by Qs the multilevel Monte
Carlo estimator corresponding to the optimal choice of parameters discussed in Section
2.1, we obtain the existence of explicit positive constants ¢, co and c3 such that

02
Ve € (0,¢1), Ya € (0, c2%/3), P (|Q5 —Ef(X7)| > a) <2t @, (1.4)

In view of the last factor, this bound is optimal in terms of the precision ¢ (up to the
value of the multiplicative constant c3). For deviations a(e) depending on e and such

that lim,_,g O‘(j) = 00, the right-hand side of (1.4) converges to 0 far quicker than the one

of the bound P (|Qs —Ef(Xr)| > a) < (5722 consequence of the Markov inequality. We
show in Corollary 3.6 that the same inequality holds for deviations a up to the order
In(1/¢)~'/# with 3 > 1 for a multilevel estimator with increased numbers of simulations
in the high levels but with computation cost still of order O(¢~2) as ¢ — 0. Moreover,
we derive a comparison between the root mean square error (RMSE) and Orlicz norm
for both standard and multilevel Monte Carlo. It turns out that compared to standard
Monte Carlo, the MLMC estimator achieves the same complexity reduction for Orlicz
norm as for the RMSE (see Section 3.3). The limitation, mentioned above, on the
range of deviations « for which the Gaussian-type concentration inequality holds is
related to a corresponding limitation on the range of parameters for which we are able
to estimate (optimally in terms of the variance) the moment generating function of
Q —Ef(Xr). This comes from the quadratic contributions of the Brownian increments
that one obtains when applying It6’s formula twice to exhibit the order of the difference
f(Xmny — f(X2) for n € {1,m,...,mE~1}. Maybe these restrictions could be relaxed
when replacing the Brownian increments in the Euler schemes by Rademacher random
variables like in the weak MLMC method introduced by Belomestny and Nagapetyan [2].
Nonetheless the derivation of concentration bounds for the weak MLMC estimators would
require a different approach. Indeed, we use the Clark-Ocone formula as suggested in
Houdré and Privault [6], to relate the estimation of the moment generating function
of f(Xmm™) — f(X2) — E[f(X7) — f(X?)] for n € {1,m,...,mE"1}, to the ones of the
squared difference between the crude Euler scheme with n steps and the finer one with
mn steps and of the squared difference of their Malliavin derivatives. Such estimations
are respectively proved in sections 4 and 5 by using a clever decomposition of the
difference between the two schemes. They are combined in Section 6 to estimate the
moment generating function of Q — Ef (X7).

Notations Throughout this paper, we shall use the following notations.

* We denote by %poo(Rd, RY) the set of all infinitely differentiable functions g : R? —
R? such that g and all of its partial derivatives have at most polynomial growth.

+ For n € IN*, we denote by ¢ (R%,RY) the set of all n times continuously differen-
tiable functions g : R¢ — RY.

* Forg:R% — RY we denote by Vg the Jacobian matrix defined for alli,j € {1,...,d}
and z € R? by (Vg)ij(z) = 0, 9:(2).

* For g : R* » R? Ag : R — R? denotes the function obtained by applying the
Laplacian to each coordinate of g.
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* The ceiling function and floor function are denoted respectively by [-] and |-| (i.e.
for z € R, [z] represents the smallest integer no less than z; |z| represents the
largest integer no greater than x).

* For d € IN*, M, denotes the set of real d-square matrices with identity matrix 7.

 For any matrix sequence (Ax)ren € My, we use the following convention

ni
H Ak = Anz "'An17 vnhn? € Ns.t. ny <ny.

k:’l’bz

* The Euclidean inner product and the associated norm are respectively denoted by -
and |- |.

» For M € M,, the matrix norm induced by the Euclidean norm | - | is denoted by

IM]|= sup |Mz|.
z€R%:|z|=1

« For any adapted R¢-valued process (H;)o<;<7 and My-valued process (M (t))o<i<T,
we denote

T 1/2
\H| = H (/ |Ht|2dt)
0

where for A € My, AT and Tr[A] denote respectively the transpose and the trace
of matrix A.

T 1/2
and |M|:= H (/ Tr [ME)M®#)'] dt) ,
0

o0 oo

2 Non-asymptotic mean square error of the MLMC estimator

2.1 Assumptions and strong error analysis

It is well known that under assumption (H¢z) we have

(P)
n n KP(T) s
Vp > 1, sup |Xi|, sup |X{|€ LPand E| sup |X; — X7|P| < 5 with K(T') < oo.
0<t<T 0<t<T 0<t<T np/

Moreover, since the diffusion coefficient is constant, the Euler scheme coincides with the
Milstein scheme and if b belongs to ¢?(R¢, R¢) with bounded derivatives, then the strong
error estimation improves to I [supy<,<7|X; — XJ'|P] < M with K,(T) < oo (see for
instance [7]). In order to get a non-asymptotic control of the bias and the variance
of the multilevel Monte Carlo estimator, we are now going to state an explicit bound
for the terminal quadratic strong error E [| X" — X2|?] for (n,m) € N* x IN (with the
convention X™" = X for m = oo) under the following assumption. The constancy of
the diffusion coefficient ensures that the bias can be estimated with the right order of
convergence using this strong error analysis instead of the more complicated weak error
analysis.

Assumption (R1) The function b € ¢?(R% R?) and there exist finite constants [b]oo €
(0,400) and aap € [0, +00) such that

Vo e RY, | Vb()]| < [B]oo,

Vo € R, |Ab(z)| < 2ap5(1 + |2 — 20)). (2.1)
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Proposition 2.1. Assume (R1). Then, for all (n,m) € IN* x IN,

(m - 1)T2 —1)T?

E[|X5" - X2 < Kim —

2
where \/K1 ,, = Cuao)[b m= el T /m

- e [b]oo )
X (b(2 ) (aAb LESy 2[11)]—; + b T) +anp

oo

and E [ m,?X |XkT — |2} < K, m(

T+ 2 Va2, +aAb)T3/2)
and K, is defined like K, ,, but with Cy4.9) + VT replacing the constant Cug) =
\f_,_[] f elblos (T— ) .\/tdt.

In the estimations (and in the remaining of the paper), m only appears through ratios
which have a limit as m — co and when m = oo, we consider that they are equal to this
limit. The proof is postponed to Section 4.

2.2 MLMC parameters optimization revisited

In what follows let us assume that f € €' (R¢, R) is a Lipschitz continuous function
with constant [f]... For the Multilevel Monte Carlo estimator

~ 1 No L 1 Ne ) -1
Q=3 FH)+ > = > (Fx) - Fee )
0 =0 = =

defined in (1.3), the expectation leads to a telescoping summation so that

L . L 2 . T Kl

[ [£(xr) - Q]| = [E [£(xr) - r(x77)] | < [/l UXT—X’T” | } < [flom Lt
(2.2)

where we used Proposition 2.1 for the last inequality. On the other hand, again by

Proposition 2.1,

_112

s Ky m(m —1)T?
}g[f]?)ow.

Last, as X+ ~ N(xo + b(xo)T, T1,), we use the logarithmic Sobolev inequality for the
Gaussian measure and the Herbst’s argument (see e.g. propositions 5.5.1 and 5.4.1 in
[1]) to get for all A € R

var [f0ep) - 0] < % ||xp -

B exp (A7CXH) - BLAD) | < exp (W) . 23)

By performing Taylor expansions as A — 0, we easily deduce that Var [f(X%)] < [f]2 T.

oo

As a consequence, the following non-asymptotic estimation of the mean square error of
() holds.

Proposition 2.2. Under (R1),

E[(@_E[f(XT)])Q]s[f]é(KlﬁL N ZW)

According to the above proposition, to achieve a root mean square error € > 0, one
should choose

Wy H 0 VLK“”<51e L>| oT/K1s0/€)/In(m)] + 1. (2.4)

m

EJP 24 (2019), paper 12. http://www.imstat.org/ejp/
Page 5/34


http://dx.doi.org/10.1214/19-EJP271
http://www.imstat.org/ejp/

Non-asymptotic error bounds for the MLMC Euler method

For such a choice, one should then choose (N;)o<¢<r, such that
L

1 C? 1 2 K1
P k=), (2.5)
Nym?2t+1 N Ky mm?(m —1) \ [f]2. T2 m2L

{=1

where Cu5 = %, /#:11—1)7" minimizing the computation cost which is equal to Ny +

S35 Ne(m + 1)m*~1. Note that for ¢ € {1,...,L}, (m + ym~' = m’ + m’! is the
number of grid values of the Euler schemes which are computed for each Brownian path

. . e . _ Cas)
at the level ¢. This constrained minimization problem leads to No = N Conist. m—are
and N, = m 2/

N —"2+——— where the total number N of simulations is chosen in order
Cas+> o7, m—3¢/2
to achieve equality in (2.5) :

L —L/2
_ m-+1 1—-m
N = (C(2.5)+ E m 302) (0(2.5) + - X NG )

=1

Kl,mmz(m - 1)[Jé]goT2

X . . (2.6)
(m+1)(e? — [fI2T?K1,0om™2L)

Then the computation cost is given by Cost(m, m~%) where

_ m+1 1—x ’ Kl,mm2(m71)[f.]§oT2
Cost(m, z) = <C<2 5+ * m - 1> (m+1)(e? = [fI2,T2K} o01?)

Notice that for fixed m, Cost(m, x) is up to some positive multiplicative factor not depend-

ing on z equal to g(z) = (\/ﬁ; ‘[2 with /oo = 1+ &2 m+1 0(25) > 1land 5. = ﬂ%\/m

not depending on x. We thus want to find L € N minimizing g(m~=1) under the constraint
2

(2.4) which writes m~% < 3.. We have ¢'(z) = (ﬁz 12 z (2fx — a3 \ﬂf) Since, as

a> 1,z h(z) = 2y/az — 23/2 \B; is increasing on (0, 1],

* either 2y/a —1— 2 < 0, which implies 3. > 1 and inf¢[o1] g(z) = g(1) so that L = 0
solves the constrained minimization problem,

2
« or2ya—1— 2> 0 so that, since lim,_,o+ 2y/az — 23/2 — 55 = —oco and 2\/aB. —

3/2 _ &% = 28.(y/a —/B:) > 28.(1 — \/Be), there exists z¥ € (0,1 A ) such that

g is decreasing on (0, z}) and increasing on (z},1 A 8.) and the value of L solving

the constrained minimization problem belongs to {Lfﬂj [— Iz 1t

Inm J? Inm

We denote by L this optimal value of L, by N¢ (resp. N;) the corresponding total
number of samples (resp. number of samples in the level /) and by Q. the multi-
level Monte Carlo estimator (1.3) with those optimal parameters. Note that when

€2 < [fIAT?K) o (1 + m) which is equivalent to 2,/a — 1 — 32 > 0, since

B3 B2 3 B/?
h (W) = _2f < 0 and lnfxe(o 1] (.’,C) > 2f -3 > 0, we haVe 53/3 173
i/ B> B3 41In(1
2 < e + ayamas X ave- Hence, ase = 0, af ~ i, L8~ fpu and

the bias term [f]o.T\/K1.om =" behaves as O(¢*/3). More precisely, when ¢ < ¢; :=
1/2
o (1 i)

*
z :

> . )
m " 22/3m ([ fleT/Ki.00)/3(1 + %0(2.5))2/3

4/3

lna‘

meE > 67[7 e | Inm

(2.7)
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_LE _L_lnz Jnm m€4/3
m <e Tnm < mzxf < :
(1 + 202D 0 5) ([floo T/ K1,00)4/3

X <(1 + 2D O )3 (14 2y, 5))1/3>

2/3 4m 1
2%/ 1+ ,,\1/:1 1Cs)

(2.8)

We easily deduce that, as expected from [4], Cost(m,m L") = O(c=2) as ¢ — 0 for
fixed m and N = O(¢~2). One could also consider minimizing m + Cost(m, L¢(m))
numerically, where we used the notation L¢(m) to make the dependence on m explicit.

Remark 2.3. For this optimal choice which clearly differs from the one in [4], the
bias of the Multilevel Monte Carlo method is not of the same order of magnitude as
the precision ¢ but much smaller. To the best of our knowledge, such a 4/3 order of
convergence of the bias does not appear in the existing multilevel Monte Carlo methods
literature. Notice that, for stochastic differential equations with a non constant diffusion
coefficient (multiplicative noise), this property remains true for the multilevel Monte
Carlo estimator based on the Giles and Szpruch scheme [5], since it exhibits the same
orders of convergence of the bias and the variance within a given level as (1.3).

3 Concentration bounds for the MLMC Euler method

The main result of this paper is a concentration inequality for the Multilevel Monte
Carlo estimator Q defined in (1.3). To prove this result, we are going to estimate the mo-
ment generating function of Q — ]E[f(X;T”L)] = Z[@L:o Q¢, where Qq := Nio ijﬁl (X},k) -
Ef(X%) and, for £ > 1,

Ny
A 1 m( m[—l m[' m@—l
Qei= 5 2 (FOXL) — PR — BIFXE) - F(x3)).
k=1
3.1 Estimation of the moment generating function

We are first going to derive an exponential type upper bound with the optimal
rate of convergence for the moment generating function of the square of the error
Ur = X7 — X" between the Euler schemes with n and mn steps. The proof of the
following result is postponed to Section 4.

Theorem 3.1. Let (n,m) € IN* x N, t;, = % for k € {0,...,n} and p be a constant

satisfying
9mn?
0<p< - 2= p(3,1)n2,
4T2(m — 1) (Caa[bloo /3d@m — 1) fm + CaanyT32y/2(m — 1) /m
(3.1)
— ; T olbloo (T—1) i — Tl (]2 -
where 0(4.9) = \/T+ [b]oo fO e ﬁdt with C(4,11) =e€ ([b]oo + (IAb) and by con
vention "~ = =1 = | and 22=1 = 2 when m = co. Under assumption (R1), we have
forallxz >0
(m — 1)T% o wn ) Lm-nT
| exp {P(Zmn + 121]?%(” X5 = X, < exp PC(3.2)(1)W , with
(3.2)
. 3d(2m —1) 2(m —1)
C — [ Clamybloo ) Z2 = 4 Gy T2 [ 2
3.2)(7) ( @.9)[0] m + Claan -
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i 2In2 [d(2m — -nT
(C(4 9)|b \/ + Ca. 11)\/

(3d+1)(|b(z0)|+[b]oo + )2 4df(|b(xo)|+[] +i)  4dTIn2
( 1 i N =45))

[I')]?oe’[i’]ooT .
([b12,+aas)

To derive our main result, we need to reinforce our assumption (R1) since our
approach relies on Malliavin calculus that requires additional smoothness on the coeffi-
cient b.

and z =

Assumption (R2) The function b € ¢3(R4, R?) and satisfies assumption (R1). More-
over, there exist finite constants [b]o, € (0,+00) and ayap € [0, +00) such that

b .
vie{L....d}, v e BY | 200 < e
8$j
Ve € R, [|[VAb(x)|| < 2avap(l+ |z — z0]). (3.3)

To state our next results we introduce the following finite quantities.

Constants Notations (CN)

m2 3n2

P5.14) = 20(25'13)T2(m —1)2’ P(s.16) ‘= 4T2d[6]§o(2m —1)(m — 1),
Cis.13) := (Vd[b] oo [b]oo V [D)% + avas),

") V(b lbloe(T—7) _ o ’ elblocs s
1(r) = Y= 1. B = [ el

1— 2[b] o (T —7)
Py(r) == \/ € \/ /\/1fe2[bloc<t M dt,

P3.1) P(5.14) P(5.16)
R 3 (r) ®5(r) P3(r)
p(r) = 2
(\/9(3.1) \/P(5.14) + VP31 /P5.16) + VP (5.14) ﬂ(s.le))
Q1(r) P2(r) @1(r) P3(r) Q2(r) P3(r)

VPE.1) /P5.14) \/P(s 1) \/P(5.16) | /P(5.14) \/P(5.16)
o) = (S e o) 8:0) )

" r)Ces. 16 $2(r, ) n P1(r)Ciz.2(0) 2> 0
\/P(T\/m VPG \/P.16) VPG1a) \/P5.16) -

Q1(r) P@2(r) @1(r) @3(r) Qa(r) P3(r)
2
b . .
¢a(r,x) := ( 3d +1) <C’ [b(zo)] _|2_ [bloc 2 (eltleeT _ glbloory 4 x)
4 4dCe. 13)P2(r) b(x0)| + [Dos , it ol 2 a2 )
——=— | C - ettt — +x | +dln2C ®5(r) ),z >0,
Nz 619 =( ") 5.13P2(r)
. dT/T o200 (T—1) ., i 2d
= - o(t t
(6.7) ) (1) P.1) T ]

X sup Fliw V() Ca2) (2[0) o0 [ Flo /T flip) + [f]ooﬁ(T)‘I)(ﬁO)/\/P(?,.l)_
r€l0,T) Lf } VP@E.1) )+ 1f L,p\/ H(r)

The proof of the following theorem is postponed to Section 6.
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Theorem 3.2. Let assumption (R2) hold and f € €*(R%,R) be a Lipschitz continuous

function with constant [f]., and such that V f is also Lipchitz with constant [f]1ip. For all
A < Cminj<y<y, Ngml, where

1/2
C = PE.1) . ,
e2[bloc (T—t
2dm?T [f % ([ Joov/PaD + [flis (t)> dt
we have
. L C 172
E{GXP (A[Q—Ef(X?L )])} SeXP{AQ <2N0 +Z(6]7\)fmze1>}
=1

According to Section 2, the bias satisfies

EFOXR) — BF(Xp)] < B2 50" — ) < Ll R

so we easily deduce the following corollary.

Corollary 3.3. Under assumptions of Theorem 3.2, we have V |\| < C miny<y<y, Nym

E [exp (M@ - Bf(X7)])] <
T & — 1712 oo T /K1 o0
exp{AQ[f] <2No +Z (6']7\)522@—1) > + |/\\‘[f‘] mL - }
=1
3.2 Concentration bounds

Using the above corollary, for all A € [0,C minj<¢<7, m‘N,] and a > 0, we get

P (Q~Bf(Xr) > a) < exp{va(V)}, (3.4)
with

(=1

. T & Cenlm—1)T? [floeT/K1,00
Ya(N) = N[fI% <2No +Z<6]7\>&m2[_1> +A (Ll a) :

Now, when 0 < a < 2[f], (2]\,0 +30 IM

. [flocTy/K1,
Ny merT ) Cminy<p< mf Ny + —=—V—=

mL ’
. 2
( [floeTy/Kroe )
o— T
min wa()\) = - . t )
Al Cmim s N A% (o + T “pli®)
0 - 4
where ()4 = max(z,0) and otherwise
min o(A) =C min m‘N,
AE[0,C minj</<r mlzw]w ) 1<e<L ¢
[floeT/K1 00 Ci6.7) nH1? . ’
X<mL‘O‘+ +ZW ¢ win, m N

C minngSL mng
2

EJP 24 (2019), paper 12. http://www.imstat.org/ejp/
Page 9/34


http://dx.doi.org/10.1214/19-EJP271
http://www.imstat.org/ejp/

Non-asymptotic error bounds for the MLMC Euler method

Dealing with P (Q —Ef(Xr) < —a) in a symmetric way we end up with the concentra-
tion inequality,

Cen(m—1)T7° . [flocT
Y0 < a <2[f]% (2]\70 +;1 N/mﬂ I Clrgnelng Np+ T )

ml

(a - [f‘]ooz\/xl,oo>2

P (|Q —Ef(X7)| > o) < 2exp [ ——
( ) A1 (o + Sior Sttt

C(G 7) T2 . ¢ [f]ooT Kl,oo
> P A— S vV
Yo 2[ <2N0 + E ”gm” T Clmglng Ny + -7 ,

Cminy<p<; m*N,
— o).
2

P (1Q - Bf(Xr)| > a) < 2exp (_
Hence, we proved our main result, which we now state.

Theorem 3.4. Under assumptions of Theorem 3.2, the multilevel Monte Carlo esti-
mator (1.3) satisfies, V 0 < a < Q[f} (2No *Zz 1 M)CmmKKLm Ny +

Nngé
[f]ooT\/ Kl,oo

mL 7

mL

(a TV Eiw > ?
+

IP(|Q—IEf(XT)|>a)<2eXp - ,
- - ¢ L 2C .7 —1)T2
22 (75 + Sie, 25T

with ()4 = max(z,0).

2
Notice that the factor | f] ( Ny T Zz 1 %) in the denominator is closely

Klm m l)T

Nom ) of the variance

related to the non-asymptotic upper-bound [f]2, ( +Z, 1

of Q derived in Section 2.2. The only difference is the replacement of K ,, by 2Cs.7). Let
us now discuss the constraint on o under which we proved Gaussian type concentration
and see that in the limit ¢ — 0, for the optimal parameters discussed in Section 2.2, we
can choose a = O(¢2/3) i.e. much larger than the root mean square error .

Following the discussion and notations of Section 2.2, for ¢ > 0, we consider QE the
MLMC estimator (1.3) with the optimal parameters L%, N¢,

C m—3€/2
NE = N°® @) — and N = N° - > (3.5)
Cas) + Dy, m™3/2 Clas) + 2oy m34/2
. N Nsm—L5/2 1 . N m—L5/2
One has min;<¢<yc m"N; = Cont L m 2 and therefore Nz Wini<e<re m N = "e

As a consequence,

T«/ C 172 CIfIAT _;-
<2N5+Z‘6”%1)C min m'N; > C L1012

mL 1<¢<L¢ 0(2,5)
1/2
where, according to (2.7), when € < ¢; = o'/ K (1+ %) , the

right-hand side is larger than
¢ [f]?;oT
21/3C 0.5V m([floeTr/K1.00)%/3(1 m%Tl—l) Cias)) /3

6262/3 with ¢y :=
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Under the same condition on ¢, according to (2.8),

m€4/3

(14 20 Co ) ([floe T /K1 0) /2
x <( + %:11 Cas)/? (14 22mD) 1)(1(25))1/3)

[flooTv/K1oom™ <

22/3 1+ 4m(m\/J:1 1)0(25)
On the other hand, one has
LE
. T 2C6.7y(m — 1)T?
2 (6.7)
2[f1% (No +) e (3.6)

=1
4Ce.7\ | s12 K1 Ki,00T* Ky m(m—1)T? 4Ce7\ o

< (v e (T +ZW <. )T

(3.7)

according to the optimization of parameters which follows Proposition 2.2. Combining

the two last inequalities and the fact that for positive a and z, (o — )% > %2 — 22, we

obtain that for e < ¢y,

ml 2

o 2/3
)

— C4&
(12 T Le 2Ce7n(m—1)T? o 5‘2
212 (& + LI, 2T ) s

(a AxTyEi ) ?
+

with
80(5 7)
=14V .
@ ( Kl,m

_2( m
) (1 + ™70 o 5) ([floo T/ K1 ,00) /3

m—+1
x <(1 + 2l 0o 5) 3 (14 2l o 5))1/3>>

22/3 14 4m(m\/:1 1) Cas)

Then )
A~ e 4. 62/3
Ve € (0,¢1), Yo € (0,c26%/3), P (|Qs -Ef(X7)| > a) < ¢ wasZ T

Notice that the fact [f]ooT Kl_room*LE < ¢ that the bias is smaller than the precision ¢
leads, by a similar reasoning, to the following result.

Corollary 3.5. Under assumptions of Theorem 3.2, the multilevel Monte Carlo estimator
Q- (1.3) equipped with the optimal parameters (3.5) satisfies
2/3 A —d 2 pp /B
Ve € (0,¢1), Ya € (0,c¢*7), P (|QE - Ef(Xp)| > a) <2 esfecs .
At this stage, a natural question arises: is there an alternative choice of the parame-
ters that does not increase neither the root mean square error ¢ nor the order in ¢ of
the computational cost of the multilevel Monte Carlo estimator and for which the upper

bound on the deviation parameter « is larger than ¢;£2/3 ?
£—1

For 3 > 1, we set N{' = N xTifforée{l ., L} and

m 2
1 N
~ 4 £—1
Qe = 5= > F(XF Z 7 23 (s - 1) (3.8)
0 k=0 N3
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Since for each /, Nf’ﬁ > N;, the root mean square error and the statistical error
of Q. s are not greater than the ones of (). and therefore than ¢. The two estima-

i ; NS Nem~—'/2
tors share the same bias. Moreover, mini<y<re m N, > T (Con+ > F, m—3777)

. As a consequence,

SO

that

= C(zs)W(LE

T\/ 22 ( T Jrf:C(GJ)(””L—UTZ)C min meNsﬂ>C[ﬂi

ml 2N NEFm2e-1 1<0<Le = Cas/m(Le)P

(=1

where, when ¢ < c;, the right-hand side is larger than

. -8B
T R
csie 70(2_5)\/% 3lnm . 13

Reasoning like in the above derivation of concentration inequalities for QE, we easily get
the following result.

Corollary 3.6. Under assumptions of Theorem 3.2, the multilevel Monte Carlo estimator
Qe p (3.8) satisfies

3

Ve € (0,c1), o € (0,¢5(0)), P (1Qep — ESf (X1)| 2 a) < 2 ma g heel?

Moreover, the computational cost of QE, g is proportional to

1 N¢ 1
NOJFEZ ZN;’ﬁ: G (25)+m+ Z 7/\€ﬁ
moa Cas) + 24y m—3/2

Since 3 > 1, it is of the same order O(¢~2) as N¢ and therefore as the computational
cost of (). in the limit ¢ — 0.

3.3 Error control in Orlicz norm

In view of our previous results, it is natural and fruitful to generalize the RMS error
analysis developed in Section 2.2 by means of Young functions that are increasing convex
functions ¥ : RT™ — R* satisfying ¥(0) = 0 and lim,_, o, ¥(2) = +o0. For a given Young
function V¥ the associated Orlicz norm || X ||y of a random variable X is defined by

| X||w := inf{c > 0, : E[¥(X/c)] <1} with inf} = oco.
We set U.(z) := (e* —1) /(e — 1) as a fixed Young function. At first, let us deal with a

standard Monte Carlo algorithm that approximates E[f(X7)] by Q := NLO Zli\f:ol (X??: ).

Then, one can use Section 4 of [3] to bound E [exp(A(Q - IE[f(X{F”L)])} from above. More
precisely, taking advantage of the constant diffusion coefficient to improve the bound in
Proposition 4.1 of [3] to [fA]1 < [f]ecell=(T—4), we get

[exp( (Q —E[f(X} )])} < exp {/\2%3'9)} with Cz.9) = QS i:e [Bloe (T= )

0 2mL
k=1
(3.9)
With (2.2), we easily deduce that for all ¢ > 0
Q — E[f(X7)] 1 Cao . T VKl
E |V, (=] < exp + 1
C e—1 C2NO CmL
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and then

HQ_E[f(XT)H‘\I/e < m“gT VLK“’°+ ( o'/ K ) C’(ag)

2m NO '

Recall that the RMS error in this case is given by

By performing Taylor expansions as A — 0 in (3.9), we easily get Var [Q} < %ﬂ"” As a
consequence, we get

/2 [(Q - E[f(XT)DQ} < <[f]°°:;”LK1’°°) 1 XKoo (3.10)

No

Note that using

2
\/m <ty m \/“‘f 2 1), fora,b >0, (3.11)

we easily get

mL

([f]OOT\/ Kl,ao) + 20(39

<||Q- E[f(XT)]pre =

. 2
(3+V3) ([fkﬂ;{ﬁ) " 29 | (3.12)

4 No

2

Then the RMS error and the Orlicz norm of the standard Monte Carlo share, up to a
constant factor, the same order.

Now, we proceed similarly for the multilevel Monte Carlo algorithm and thanks to
Corollary 3.3 we write, for all ¢ > 1/(C minj<¢<y, Nym?)

5o, (Q - E[f(XT)}ﬂ o
c e—1
o« lex 1% +Z Ce.7(m —1)T? n [flooT /K00 1
P72 2N, — Ngm% 1 emt '
Hence, if
ooT K o3} T T L C m—1 T2
ITVRis, | (UTVES), g (13- Contn o) |
2m 2mL 2N, — Nym?2t-1
1
3.13
CminlggLNgmw ( )
then
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|- e, <
[flooT /K1 o oT/Ki o Cle.r 1)72
2mL + ( 2mL > + (/1% <2N0 T Z (6]\)7€m2£ 1 >

and thus by (3.11), we get

s e )

|@-Erca|,

mb

Ki,m

Note that the above upper bound is equal, up to a constant factor, to the upper bound
given by the RMS error estimate of Proposition 2.2. Combining this result with (3.10),
(3.12) and (3.14), we conclude that compared to the standard Monte Carlo method, under
constraint (3.13), the multilevel Monte Carlo estimator achieves the same complexity
reduction for the Orlicz norm || - ||y, as for the RMS error.

Now, it remains to check the validity of constraint (3.13) when choosing the multilevel
Monte Carlo algorithm optimal parameters derived in Section 2.2. Let us recall that in
this setting the RMS error upper bound is equal to €. On the one hand, using (3.11),
we deduce that the term in the left hand side of (3.13) is larger than cje, where ¢ :=

1/2
where ¢ := {(3+T\/§) (1 v @)] .

1/2 €
1 Cen ini ~ ENe — _ Nem /2
{(2 A Koo . On the other hand, combining min;</<z- m*N; = Cant> I m—37e

together with (2.6) and (2.7), we get forall0 <e < ¢

Ky mm?*(m — 1)[f)2,T?m /2 > cre /3
(m+1)e? - ’

C min Ngme > CC(2,5)
1<¢<L

K1mm®?(m—1)([f]oe T)*/*
21/3(m+1)(K1q,00)1/3 (14 /M=) "L(\/W 1) Cea. 5))1/3
condition (3.13) is satisfied and

where ¢; := CCs) Hence, forall0 < e < (cg07)3 Acy

|@- — Elrcxo|

< cge.

e

4 Error expansion and moment generating function of max ]kam—
1<k<n
n ’2
For (n,m) € IN* x N, we consider the Euler scheme X" on the grid (¢, = T)0<k<n and
the process X" which is the Euler scheme on the finer grid ( )O<j<mn when m is finite

and the solution to (1.1) when m = co. We introduce the d1fference Uy, = ng" X{L
between the two processes and define U} = maxo<p<n |Uy, |. For s € [0,T], we set

m(s) = V;J %, Mm(s) = ﬁj % when [ € IN* and 7 (s) = Moo (s) = s.

We have Uy = 0 and for all k € {0,...,n — 1},

tr41 T
Uiy = U + / DX o )ds — B(XT)

tr

T tet1
= Usy + — (b(X[™) = b(X7)) + / (b (o)) = b(X) ) ds.

122
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To deal with this induction equation, it is convenient to introduce the matrices

(b(xm™) — b(Xt’i)) Uy,
|Utk|

)

T
A =1Iq+ 1{Utk;£o}g X

Vi S k'7 .Afyg = AkAlcfl . ..Al and AZ+1 = Id.
This way, we have
tet1
Up,, = AUy, + / (b(Xm(s)) - b(X;’;")) ds. 4.1)
ty

Let us introduce V;, = fo ( bX" () — b(X;”’(LS))) ds. One can check by induction that

k—1
U, = > AL (A = 1) Vi, + Vs, (4.2)
=1
Indeed, since
k k—1
ZA?_I(AI - Id)‘/tl + ‘/tk+1 - (Ak - Id)‘/;gk + AK(ZAH_l Id)v;tl + ‘/tk>
=1 =1
- Ak‘/;fk + Vtk+1
= Ak(zAHl —I)Vy, + Vtk> + Vi — Vi

and Vi,,, — Vi, = [+ (b(Xg;nT; )~ b(X;;”(’S))) ds both sides of (4.2) statisfy the in-

duction equality (4.1). By It0’s formula and the integration by parts formula, for
kEe{l,...,n},

S xpmyyas + w(X;”")dWs) ,

Vo= [0 (oot )+
where v(s) = (1 (8) — fmn(s)). Therefore

Uy, = (U,S,j) + U2y with

tl tr
Ul = ZAZH 1) /O (&) VX)W, + /0 () V(X)W (4.3)
k—1 t 1
2 mn mn mn
and U2 = 37 A (A= To) [ (TG, )+ 5 AN
=1

tr 1
+ [ AT ) + FAX )t

respectively giving the contributions of the stochastic and the deterministic integrals.
One can take advantage of the simpler expression

k—1

I+1 fra
U = A [ (b ) = b)) ds
1=1 !

(also proved by induction) and the linearity of the decomposition into stochastic (w.r.t.
dW,) and standard (w.r.t. dt) integrals to rewrite

1
U = [ AP )+ A

EJP 24 (2019), paper 12. http://www.imstat.org/ejp/
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but the analogous expression of U}. does not make sense because of the non-adapted
factor A,lﬂ_iTT. This is the reason why we introduced the more complicated decomposition
(4.2). Notice however than n > T[b]oo, then the matrices A, and therefore A,lC are
invertible for k € {0,...,n} so that Ut(kl) = A, [ (At%ﬁj)’lv(t)Vb(Xtm”)th. With
Lemma 4.1 just below, we conclude that

Ur < U(*l) + U(*Q) where

* bOOT = b — h mn b mn
Uny = [l ]n D el (Tt /0 V() VH(X{™)dW,| + max /0 A () V(X dW,
k=1 SRS
(4.4)
T b oo (T 1
Ul = /0 elfl= ”v(t)’Vb(X?”)b(Xm(t)H2Ab(xgnn> dt. 4.5)

Let us state two lemmas that will be used to deal with U(*l) and U(*Q) in the proof
of Theorem 3.1. The first one follows from usual linear algebra arguments and the
submultiplicative property of the matrix norm.

Lemma 4.1. One hasVk € {1,...,n — 1},

b o T[b]oe
-t < 70y <1 T

n

and Vi€ {0,...,k}, |AFY| < elfl=Cte=t0) " (4.6)

Lemma 4.2. When b is Lipschitz continuous with constant [b]., € (0,+0o0), one has

1. Vvt € [0,T], sup,,e Sups<; | Xg — xo| < elbloot supg<; |[Wi| + e[bEZ]OLl |b(x0)],

2. 5D, S, [B(XD)| < et ([ sup, <, [Wi] + [b(a0)] ) -

3. Moreover, under (R1), we have

. Bloot _ 1
sup sup |Ab(X™)| < 2anp | =t sup [W;| + S |b(x0)] + 1
n€lN s<t s<t [b]oo

4. and under (R2), we have

. [b]oct -1
sup sup [VAB(X™)| < 2ayap [ =t sup [W,| + S |b(xo)| + 1 -
nelN s<t s<t [b]oc

Notice that the function b is Lipschitz continuous with constant [b]., under (R1).

Proof. For n € IN, one has

t
0

Since b is Lipschitz continuous with constant [b].,

vz e RY, |b(2)| < |b(z) — bxo)| + |b(x0)] < [Bloo|z — xo| + |bz0)]. (4.7)
One deduces that
t
; b
sup | X — @o| < sup [Ws| + [b]oo/ sup | X' — x| + | (.xo)|dr.
s<t s<t 0 s< [b]oo
EJP 24 (2019), paper 12. http://www.imstat.org/ejp/
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b(wo)|

i , one obtains that

Applying Gronwall’s lemma to the function ¢ > sup <, [ X7 — 20| + [bzo)l

. [B]Oot -1
Vt € [0,T], sup |X? — 20| < ellt sup |W,| + 6.7“)(3:0)\.
s<t s<t [b]oo
The second (resp. third and fourth) inequality follows by using (4.7) (resp. (2.1) and
(3.3)). O

Proof of Theorem 3.1. Let « > 0. Since maxi<i<n |Us,| = U < U(*l) + U(*Q), Jensen’s
inequality implies that

2 2 (m l)T T
(m—1)T?%x 4 omax |U,,]) < W) n (g T UG ))
2mn < K - 1 —q

)

where ¢ € (0,1) is a parameter to be optimized later. With Holder’s inequality, we deduce

that
—1)72 2 Ugy)?
exp{p((m 1)Tx+U%> } exp{p( (21)) H
2mn q

E < E*

2mn

4.8
(1-¢)? (4.8)

x B9 |exp

e First term. Let us first deal with the contribution of U(*l). Let us introduce the
quantities

n— 1

Blos (T—t+1) /7 . T
o \F+Z B ooe . \/7c<ﬁ+[b]oo/ e (T=0/dt .= Clagy,  (4.9)

0

i (bloo (T—tg 4 1)
D = g and p;, = (bl=Te o “UVIe for 1 < k < n — 1. Notice that > n_.pr = 1sothat

we have defined a probability measure. By (4.4),
Pk
U =0 Z

< C, —
> L (4.9) kz \/* 11<la<Xk

tr
N () V(X ™) dW, +7”1r<n]3§n / V() V(X )dWy

/tl Y(O)VO(X[™) AW | .

Applying Jensen’s inequality to the convex function R 3 z +— exp { } we deduce that

(2m —1)(m — 1).

/ OB
0

Pk - 0(4 9)P
B o { 0002 }] < B[ e {qt 122
k=1 ==

Now, using the periodicity of the function v with period ¢; = T'/n, we get

[ [ooxy ey < i, [ y2am = i
0 0

6(mn)?
Then, by the second assertion in Lemma A.1,
3 2
vp e [0 — (gmn) ]
46’(4 9)T d[b] (2m —1)(m —1)
EJP 24 (2019), paper 12. http://www.imstat.org/ejp/
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e Second term. On the other hand, by (4.5) and Lemma 4.2, one has

E

T
U(*2) < / fy(t)e[b]oo(T—t) (e[b]mt([b]go + aAb)(Slip|W5| + ‘ [2T0)> +aAb>dt.
0 s<t oo

Using fOT y(t)dt = (m=DT? 4 5 — [Blece T

Imn mw, one deduces that
(m = VT e i 2 /T ( b(@o)| + [b)oe + x>
e S (U £ sup W] + . dt
omn 2) S (1] Ab) ; y(t) SS};)\ | i
e (i ' ~ T2 |b(ro)| + [Fleo +
— T'[bloo b2 + / t Ws dt+ (m > 0 ! %)
’ (1l +aa) ( 0 7t )Ss?:t)l | 2mn [b] oo
. ) T _ 5 . B
= eT[b]x([b}io + aAb)/ ’Y(t) sup |Ws| + (m T]-)T \/g % |b($0)| + [b}oo +x dt,
0 sst 2mn [ /ry(r)dr D] oo

where we used the periodicity of v(¢) for the first equality. Setting Ca.11) = Tl (b2, +

aap) and using Jensen'’s inequality for the probability density p(t) = % on [0,7],
we obtain that ’

S+ Uy)? r PClan(foy v (r)dr)?
2 (2) x 4.11)\Jo
( <) E{p{ (1= g

LI (m —1)T? 1b(20)| + [Bloc + 7\
X (ﬁ 5§|Ws|+ 2mnfOT NCEYS X T ) Hp(t)dt. (4.11)

. d : d ;
Since sup < W] < \/Zi:l SUuPs<1 Wiz < Zi:l SUPs<1 |Wgl, for 6 > 0,

2 d d d 2
sup |Ws —|—(5> < sup |[WI2 +25 ) sup |[W! +6% < (su Wj—t—d) —(d —1)8%,
(supw S suplWif 420 3 s W]+ < 3 (sup v (d-1)

where the random variables in the sum in the right-hand side are independent. Setting
5 = (m-1)T? 5« [o@o) |+ [bloc +E

- , plugging this inequality in (4.11) after using the
2mn 5 /ry(r)dr [bloo
scaling property of the Brownian motion W, we deduce that

(m—1)T?x *
( Zm)n + U(2) )2

E |exp <
(1—-q)?
exp { (d=1)(m = 1)*pC 1y T (|b(wo)| + [P + ) }
4((1 = gymn)2[b]2,
C? T Jry(r)dr)? 2
x 4 [exp{p @1 f;l( Jdr) <sup Wi+ 5) }]
(1-4q) s<1
Using the fact that for each k € {1,...,n}, r = ~(r) is non-increasing on [t;_1, t;] while
r — 4/r is increasing, we obtain that
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T n te
/ Vry(r)dr = Z f’y )dr < Z / dr/ Vrdr
0 k=1"Ytk—1 tr—1 trp—
m—1)T m—1 T5/2
Ut | Vo=
T
Applying the first assertion in Lemma A.1 with |[H| =1 and p = pc@'ll’({g_\;?(r)dr)Q,
: 9((1—q)mn)?
we deduce that if 0 < p < WJW’ then
m— 2z *
,0(( 2717)5 U(Q)) PC(24,11)T4(m - 1)2
E |exp < exp 5
(1—q)? (1 —g)mn)
1 ' P2 4dVT ' i)  4dT1n?2
o (LDl e VT e 28) | T2
4[0]3, 3v/[bles 9
e Conclusion. We now choose ¢ = Caglbloc y/3d(2m—1)/m to obtain the

C(4_9)[b]oo \/3d(2m71)/m+C(4_11)T3/2\/2(m71)/m
same constraint on p for the two terms U;l) and Ug) and conclude by combining (4.8),

(4.10) and (4.12) that if 0 < p < : o =
p 4T2(m—1)(C(zx.gn[b]oo\/?)d(T—1)/’m+C(4.11)T3/2\/W)z

E [exp {p(U})*}] < exp {PC(&Z)(Q?)W} : H

Remark 4.3. * Whenn > [I}]OOT, one could consider using the alternative expression
Ut(kl) =A}_, t’“ (AL’”J) 7(t)Vb(X{"")dW; to replace in the first step U, by

b T

€ max

1<k<n

|ty amweeaw).

Lemma 4.1, implies that for k € {0,..., A <(- U’k—TT)*k. This leads to
replace C(4.9) by some constant not smaller than

. T .
BT (/ eQ[b]ootdt>
0

* In the last step of the derivation of (4.8), one could choose a constant ¢ € (0,1)

different from ¢ to obtain
exp LU{D)Q exp 7p(U(*2))2
qq 1-q)1=q) )]

but, following the reasoning in the above proof, this leads to the same upper-bound
but under a stronger constraint on p. Indeed, for a fixed value of ¢g, the maximal
value of (1 —¢)(1 —§) =1— (¢ + §) + ¢4 is attained for g = .

* On the other hand, if ¢(¢) is some probability density on [0,7] and (Y}).c[o,r] an
R?-valued process, applying Jensen’s inequality to the convex function R? 5 z —
exp {|z|?} leads to

1/2

. . T 3
> ell=T\/T = /T <1 + [b]oo/ e[b]‘”(T”dt> > Ca9).-
0

E [exp {p(U)?}] < E1 k-4

2

IE |exp

T T
/ Yig(tydt| | < / E [exp{|Yi[*}] a(t)dt
0 0
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whereas applying Jensen’s inequality to R? > = + |2|? then Holder’s inequality
leads to the upper-bound exp { fOT InE [exp{|Y;|*}] q(t)dt} which is smaller when

E [exp{|Yt|2}] is not constant dt¢ a.e.. Nevertheless, in the above proof, the repeated
use of Jensen’s inequality for z — exp {(z)?} did not worsen the final estimation
because this estimation relies on uniform in ¢ € [0,7] bounds for E [exp{|Y;|*}] .

Proof of Proposition 2.1. By (4.3) and Lemma 4.1,

Do <= 4 t T
\U}l)\g%Ze[b]“(T*tk“) / () V(X)W | + / () V(X)W | .
k—1 0 0

The difference between the right-hand side and the definition (4.4) of U(*l) is that in the
latter ‘fOT 'y(t)Vb(Xtm”)th’ is replaced by max;<j<p ‘fotk fy(t)Vb(X[””)th‘. Reasoning

like in estimation of the first term in the proof of Theorem 3.1, we obtain that for the
probability measure (px)1<k<n introduced in this estimation,
2]

p
E[JUH) < Cho 3 24|
k b 2 T
/ (1) I&[Vb(xg'm)vz;(x:@") }dt
0

ty
/ (B THX) W,
0

~

3

- I-

k
2
= C(4.9)

k

x>

Il

-
~

2m —1)(m —1)
6(mn)? '

< 0(24.9) [i’]gchQ( (4.13)
When estimating I {( (*1))2} one needs to apply Doob’s inequality to deal with the last
and different term. Modifying the probability by giving weights proportional to 2v/T for
[b)o Tl T tht1) /5

—~ forl <k <n-—11leadsto

k =n and to

. 2m —1)(m —1)
« 2] < a2 2 ( ' )
E [(U(l)) } < (Cag) + VT)2[B2.dT S’ (4.14)
On the other hand, by the Minkowski inequality and (4.5),
; T 4 Ab 2
E1/2 [(U(*2))2} < e[b]ocT (A e—[b]oos,y(s)El/Q IVb(Xsmn)b(X;:Z;(s)) + 7(‘X'Srrm) ds
(4.15)
Using Lemma 4.2 and that
-4 |
E? [sup |WT|} <E {sup Wf] <E Zsup(Wﬁ)Q =4d x s,
r<s r<s i—1 S<s
we have
—[I}]oosEl/Q Vb(an)b< mn )+ &(an)) ?
€ s Nimn (8) 2 s

1 — e [Bloes

< [0 (Q[E]W\/d X 5+ \b(:co)\) +any (2\/01 Ko+

Ib(zo)] + e’[w>

1— —[b)ocs . . )
< [b(ao)| (A[b} + [b]oo> T 2([B2, + ans) VAR + aape s
= g(s) + anpe =2
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Using the fact that for each k € {1,...,n}, s — g¢(s) is non-decreasing on [t;_1, t;;) while
s — 7(s) is non-increasing and bounded by M , we get that

n

_ii no [ bk m—-0T (T 4 .
e~ bl TR1/2 {(U(*?))ﬂ SZT/ 'y(s)ds/ g(S)dS“FCLAb%/ e~ bloos 7o
k

-1 tr—1 tr—1 g 0

m — r m — — e~ leT
— 7( Qm;lb)T/O g(s)ds + aAb( mnl)T X 1 [b]oo
m — T ' - e_[.]wT :
<Y <b<20> (m 0T [51}; BT MWT)
+ aAbl_[eb]_[b]OOT + %\/g([b}io + aAb)T3/2> .

The estimation of E [|Ur|?] (resp. E [|U;|?]) is obtained by plugging this inequality
together with (4.13) (resp. (4.14)) into the inequality

wfe] | efwn]
q

q w E |[U4)?] E (U]

1—¢q

E[|[Ur?] < resp. E [|UF?] <
for ¢ € (0,1) and optimizing over ¢ : for a,b > 0, minge(o,1) % + 12 = (Va+ vb)* attained

forq:ﬁ‘f\/g. O

5 Error expansion and moment generating function of its Malli-
avin derivative

5.1 Basic facts on Malliavin calculus

In this work, we follow the notations, definitions and results of [8]. Let (W})o<;<7 be a
d-dimensional Brownian motion defined on the filtered probability space (2, F, (F;):>o0, P).
Let D denote the Malliavin derivative operator taking values in the real separable
Hilbert space H := L?([0,T],R?) whose norm is denoted by | |ir. More precisely,
for h € H, we denote W (h) the Wiener integral W (h fo -dW;. Let S denote
the class of random variables of the form F' = f(W (hl) W(h”)), for n > 1, with
(h',---,h"™) € H®" and f € €5°(R™,R). Then, for F € S, the Malliavin derivative of F’
denoted DF = (D;F,0 <t <T,1 <i<d)is defined by

DiF = Z oo (W - W(RM)RE(®),

where h¥ denotes the i-th coordinate of h*. The operator D is closable as an operator
from L,(?) to L,(Q2, H), for any p > 1. Its domain with respect to the norm |F|; , :=
[E(|F ) + E(|DF|%,)]? is denoted by D*».

We now state some essential properties, which are going to be useful in the sequel.

Proposition 5.1 (Chain’s rule). Let ¢ € ¥*(R?, R) with bounded first order derivatives
and F = (F',--- ,F?) be an Ri-valued random vector with ¥ € D' fork = 1,...,q.
Then, ¢(F) € DY? and for eachi = 1,...,d

q
Dip(F Z ai )DiF7,
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Proposition 5.2 (Clark-Ocone formula). Let F' be a Fr-measurable random variable that
belongs to D'? for some p > 1. Then,

d T
F=E(F)+ Z/ E(D!F|F,)dW¢, a.s.
i=1"0

A preliminary essential result is on the boundedness of Malliavin’s derivative of the
diffusion and its Euler scheme given by (1.2)

Lemma 5.3. Let X = (X;).c[0,7] be the solution to Eq. (1.1), where the coefficient b
satisfies our global Lipschitz condition (Hgyr). Then, X;, X' € DY := n,>,;D'? for
any t € [0,T]. Moreover, assume that b € €'(R?, R%) with |Vb|| < [b], for some finite
constant [b].. Then, for all1 < j < d we have

Vr,t € [0,T], [DIX,|V sup [DIX]]) < 1gpcpyelllet=7),
nelN* -

Proof. Under our assumptions, for any ¢ € [0, 7], the random variables X, X;* belong
to D> (see [8], Section 2.2). The estimation of the Malliavin derivative of X; is
straightforward. We only give a proof for the estimation of the Malliavin derivative of
the Euler scheme. For r, ¢ € [0, 7],

Oift<r
DIX]=( e;ifr <t<[H]L (5.1)
t n iy n : rn
e + fr%]% VO(X] ())DIX] (yduift > [5R]T

where (e;);—1,. 4 denotes the canonical basis of R?. Hence DZXFMWZ = e; and for
T I'n
t= gl vee (7] [F]}

) . k+1)T kT ;
IDf‘Xi’fn/\(k+1)T = DfX& + (t A ! - ) Vb(X&)DinLT’
B n n n n n
so that
| ]
DIX = (La+ (t = m()VE(X], () (Id + = Vb(X iy )) e
k=% ]-1

[b] oo

n

P < (14 (= )l (14 2 )LTJ_W

5.2 Moment generating function of max |DiXm — DIX]|?
SRS
The next theorem states an exponential type upper bound for the moment generating
function of max |DIX "™ —DIX[ |, In what follows, we refer to constants notation (CN)
SRSNn
introduced in Section 3.1.
Theorem 5.4. Let assumption (R2) hold, (n,m) € N* x N, t;, = L for k € {0,...,n}

and p be a constant satisfying 0 < p < e~2tl=(T=") 5(7)n2. Then,

. . ; . —1)7?
B oxp {p (D227~ DL | < exp {pei= T 1) T 5

k ng

EJP 24 (2019), paper 12. http://www.imstat.org/ejp/
Page 22/34


http://dx.doi.org/10.1214/19-EJP271
http://www.imstat.org/ejp/

Non-asymptotic error bounds for the MLMC Euler method
Proof. Letj € {1,...,d} and r € [0,T]. By (5.1), for k € {0,..., %]}, DiU;, =0,

. A ()
DIl = / VH(XI'™ )DIXT ds (5.3)
il

o (7) Nmn T (5
and for k € {[7#],...,n — 1},

: , T ; T j
DiU,., =Dill, + —VH(X[™)DiUs, + —(VH(XE™) — Vb(X}))DIX},

Nmn () T nmn (s)

trey )
+ / Ub(X™™ YDIX™ — Ub(X[)DI X[ ds.
t

Setting
T
By =1+ ng(XZ:n),

and defining (V(k )) rzn]<k<n inductively by Vf(( 7 — 0 and

T

VD - VI =~ (Vb(Xp") - VB(X]L)) DIXG,

tht1

Nmn (s)

bt . .
+/t vo(xm )DIXT = V(X" ) DX ds, (5.4)
k

we deduce that for k € {[7Z],...,n -1},

DIy, — V") = ByDIU,, — V") = By(DiUy, — V) + (By, — IV,

41

equality similar to (4.1). Let us introduce
VI <k, Bj,:=ByBi_1...Biand By = I,.

One can check by induction on £ that for all £ € {[%#],...,n} and any sequence
(Vt( ’ ))["“\<k<n such that V,"7) = 0, we have

(rn
k—1

DJUtk _BIE 1—‘D]Ut(rn-‘ + Z Bl-l-l (T,J) thT,J))

l+1
l "rn“
+ Z Bl+1 )( (7" 7) V;ETJ)) + V'tirvj) _ ‘;;Efvj)' (5.5)
=[71+1
Let us explicit the right-hand side of (5.4). We have

— (Vb(X["™) — Vb(X,}")) DIX] = EH& U, DIX],

n

where for u € R, the I*" column of the d x d matrix (H}, u) is given by

(kau)_l ;:( 0 %Zlb(exg; (1 —9)Xg;;")d9)u.

Then, we write
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V(X" YDIX™" — VH(X™ YDIX™ = (Vb(X™" ) — Vb(X™" ))DIX™"

Nmn (s) Nmmn (s) Nn (s) nn (s) Nn (s) Nn (s)
+UB(X™" )(DIXTT - DIXTT ).

Nmn () T nn (s)

For the first term, by It6’s formula and the integration by parts formula,

th4+1
/ (VB(X™™ ) = VH(X™ )DIX™ ds

t Nn(s) nn ()

- /tml 7(5)((VQb(Xgnn)b(X,’]’Z‘n(s))+;V[Ab(X;"”)])Da xmn g

Nn (s)

+ V2(XMDIXT AW >

where 7(8) = (Hu(s) — nmn(s)) and for u € RY, the [*" columns of the d x d matrices
(V2b(X[")u) and ( X7 ) are given by

oOVb(X]) OAb(X])
2 n = 7t n = 7t < < .
(V b(X; )u)l o w and (V[Ab(}(t )])z FrA 1<1<d

Concerning the second term we use (5.1) to write

3 7777Ln( ) .
DIX™" —DIX™ = / V(X" () DIXI™ du + 14 ()<< ()} €5
Ui

Nmn (s) Nmn
n (5)

For k € {[%],. — 1}, remarking that ft MVL(X
using Fubini’s theorem we get

nm”( ))1{7]71 “)<7‘<7]mn(9)}e‘7 S - 0 and

Nmn (s) Mmn(s) N (s)

tr41 fin (8)
= mn mn P R—
B /tk /77 (s) Vb(Xnm”(“)) Vb(X Nmn (s ))D Xnmn( )d

te41
/ VbH(X™ Y (DIX™"  _DIX™ ds
123

Hence,

(i) _ iy _ [ 2 : -
VD v = [ VR DX AW+ HL U DIX,

tht1 :
k

tet+1
+ [ aehmnds

tr

1
with Gb™" .= <V2b(XSm")b( )+ 2V[Ab(X;”")]> DX

Laws>op [ O mn i ymn
’ (7(8) [mn(s) VO, ) | VX DX

Choosing f/t(kijl ) — f/t(,:’j ) equal to the sum of the second and third terms in the above
expression of Vt(;ﬂ) — Vt(:’j) and applying (5.5), we conclude that for k € {[%],...,n},

DiU,, = DU + DIUY + DIUP 4+ DIUL with (5.6)
DUy =BT Div,
, T k=l ,
pivy) == Y B H)U,DIX]
=[5
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) k—1 tii1
DIv?) = B / v(s)GY ™ ds
1= rzﬂ K
k— t
DIUY = Z Bt (B — 1) / ( )y(s)v%(x;”")pglxm)dws
= ﬂ 1+1 N (T

tr )
+ / () V(X TMDIX™ AW
Ain (1) "

Combining assumption (R2), standard linear algebra arguments and Lemma 5.3, we

easily prove the following result.

Lemma 5.5. One hasVk € {1,...,n— 1},

T[b]o
n

T .
Bl <1+ % Vi€ {0,... K}, |BEY| < elble (=t

1By — Ial| <
and Vs € [, (1), T)

mn b mn (8)—T 7 mn 1 mn 7
G| < e 010 (VLB o)+ SIVIABCX™] + B ).

Combining this result, (5.3) and Lemma 5.3, we easily get an upper bound for DiUt(E )
DIUE| < BT DIV | < el tr O [l 070 )
= [B]aoe!oe =)y (1), (5.7)

In the same way as in the previous section where we introduced U} = maxo<g<n |Uy, |,
we also define for all r € [0, T, the process DiUs = maxo<k<y |D Ut(f) +Di Ut( )+D3 Ut(z)

DﬁUt(f |. According to our assumption (R2) and by Lemmas 5.3 and 5.5, we have

DJU} < DIU + DIUYy + DiUf + DiUf,, with

. . ; - 1T
DUy < [Blacelil=r-n) (= DT (5.8)
mn
) T . n—1 )
DIUY, = Ee[b]x(T”’) Z e[b]“(T*t’“+1)||thkUtk||
k=[71

T _ A
Df;U(*Q) :/ e[b]oo(T—nn(S))|,Y(S)G!;,mn‘ds
7

. T — . . tk
DIUG) = — Do [plecelfl=TTIL [ () V(X DIX T AW
k=[t2]+1 A (1)
tr
" TﬂlTil}émnl/ ( )W(S)vz (XX, AWl (5.9)
T == T

By Jensen’s inequality we get
IDIUG) 1P IDIUG,) + DIUG, N DU 12
(1-4q) q(1—1q) aq '

where ¢, G € (0,1) are two parameters to be optimized later. Then, by Holder and Jensen
inequalities, we deduce that for all » € [0, T], we have

IDIUF|? <

B [oxp {7 )] < B [oxp { -2 iU P
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X E‘Z(l—‘j) [ex {p DiU* + DiU* 2}:|
b (1 —q)? | (0) (2)‘
x BT {exp {qZ’;ng;U(g)FH . (5.10)

e First term. In this part, we focus on the contribution of the term DiU, (*1). Note that
under assumption (R2) we have, for all k € {[*}],--- ,n— 1}

2

ot ovh 2 )
j=1 i
Therefore,
: TVd[b ; it S
Df.U(*l) < %U;e[b]m@ﬂ) Z elbloo (T—tit1)
k=[]

. T .
< V[ Ul T / el (T=0) g4

Mn(r)

< eltlee(T=r) Vilble (el T=7) _ 1)U = el (T, (7Y U (5.11)

[b]o

Hence, it follows that for all » € [0, 7], we have

, 2[B]OC(T—T)¢>2( )
p pe r
E |:eXp{(1q)2|D£U?'1)|2}:| S]E eXp{ (1 7q)2 1 |U§:|2}

As assumption (R1) is satisfied under (R2), then Theorem 3.1 applies and for all p €

[0 pen(1=g)°n? ]
" Rllee (T 32 (1) )

_ N 2l (T=1)§2 (1) Ci3. (0 m —1)T?
B9 [EXP{Q _pq)2|DiU(1)|2H < exp {P 11)Ce2(0) , { )

(1-19q) mn?
(5.12)

e Second term. By the second assertion of Lemma 5.5, we have

) T
DIty < ell=(T-n /

. mn 1 o .
iy (ﬂ[bloolb%mm)l + 5 IVIAT™] | + [b]oc) dt.

Moreover, thanks to Lemma 4.2, we get

DU < =T

T i . . x .
X / ( )V(t) <6[b]oot(\/&[b]oo[b]oo + avab) <ssti;t>|wg| i |b[§)] o)l) ¢ aon + [b]io> u

) T
< Cis el @) /

ﬁn("“)
where Cs.13) = (Vd[b]oo[D] oo V [B]2, + avas). With (5.8), we deduce that

_ T
DiU(*O) + DiU(B) < 0(5.13)6[b]°°(T_T) X /

y )v(t)e[b]wt(sup|ws|
Nn (T

s<t
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Vi o)+ Blee [T iy, Bleolm = DT
+fﬁi<,.n<s>emw§ds< bl /wﬂ“ B Caramn )>dt'

Therefore, using Jensen’s inequality for the probability density

Viy(t)ell=t
N

p(t) = te [ﬁn('r)»T}»

we obtain that
p . .
B [ow { o g PV + 2100 P <

T PC(25.13)€2[b]°°(T T)Unn r)’Y( ) ws\[ds)
E| exp 21— )
An (1) q q

sup| Wi + 6)2}}p<t>dt7

i (7 s<t
where § = ™ )7(8)16 e ('b(“‘fg}:[b]w ﬁTn(r) v(s)elbloesds 4 W) and by the scal-
fin (7

ing property for the Brownian motion W, we may replace - 77 SUDs<; |W| by sup,<q [Wsl.
In the same way as we did for the second term of Section 4, we use that

2 d A 2
(Sup |W| + 5) < Z <sup W] + 5> —(d—1)8?,
s<1

s<1 i=1

to get
P ) T TX ) TTx

eXp{md—l)qm el (7~ ’><b<xo>]+[b]oo [ ws)dzs]xsmV’]m(m‘lﬁf}

2(1—q)* (b i () Cs.13ymn
pCZ e2[ ]OO(T ) i, (s Oos\/gds 2 2
" Ed|:exp{ (5.13) (fn( )7 (s)el ) <sup|Wj| +5) H

q2(1 - Q)Q s<1

Applying the first assertion in Lemma A.1 with |H| = 1 and using that since s — /s elblocs
and s — elfl=* are non- decreasmg, f NERIC s)elloes /sds < Tl (T olbles, /5ds and

fﬁj;(r) ~y(s)eltl=sds < T(Q’;nl) X [Tb]*e[b]w , we deduce that if
2 =\2 2 T
peang’(l — q)*n? m / [b] oo
€ [0, == with and ®,(r) := ells, /sds,
pel 20 (T $2(r) ] P14 20(2513) 2(m — 1)2 2(r) ;
then

EI1-a) {exp{p 5|DIUG, + D U(2)|2H

¢*(1 - q)*
- {pe T (1, [i)o) | T*(m = 1) } (5.14)
q(1-q) mn®

where

Pa(r,x) = (mmi_l) ((3d+ 1) (C(S_B)W(e[b}wT _ e[i)]oor) n x)

oo
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4d P ;
s g ) o).

e Third term. Let us introduce the quantities

. +
2[b] oo ~ n

\/32[5]oo(Tﬁn(T))_1 nl T[b]ooe[ﬂoo”—tkﬂ)\/(e2ibloo<tk—ﬁn(r>>—1)/2[6]00
C =

3

1

k=[71+
. —2[b] oo (T—7 7 T 3 .
< e[b]oo(T*'f') 1 — € QFb] (T ) i [b]oo / 1— e,Q[b]m(t,r)dt = e[b]oc(T*’r‘)(b:;(,r,)7
- 2[b] oo 2,

(5.15)

S

Ao (T—m (M) —1 _ T[i,]ooe[iv]oo@ftwl)\/(ez[b]m(tkfﬁmr)),l)/z[b]w rn
e and p;, = o for [72]+1 <

k <n — 1. Notice that ZZ:[%]H pr = 1 so that we have defined a probability measure.
Therefore, by (5.9) we have

Cy/ 2B

n—1
D]Uf, = p '
(3) Z k \/eQ[b]m(tk_ﬁn(T)) -1

k=[%Z]4+1

tr )
/ 1(8)V2O(XTMDIX™ AW
Ain (1) "

C'\/2[b) oo
+ Pn = max
Ve2lbloo (T—iin(r)) — 1 [%]1+1<k<n

tr )
[ @i aw.
Nn (7) e

and so

/200

DgU* < P - max
(3) Z k \/62[b]oo(trﬁn(r)) _ 1 [5R1+1<I<k

k=[5 1+1

nn (s)

t; )
[ v a.
A (T)

Now, applying Jensen’s inequality to the convex function R > x — exp {% } we deduce
that for all r € [0, 7], we have

E [exp{2p2|DiU(*3)|2H < Z Dk
i k=141

Q[E]M(Tfr)q)2 9 1
x E {exp pe - 3(T) [Bloc max
q2q‘2(62[b]oo(trnn(r)) — 1) I 1+1<i<k

t )
/ A(OV(X)DIX AW
i (7) e

Now, using assumption (R2), Lemma 5.3, than the periodicity of the function v with
period ¢t; = T'/n, we get

tr ) )
/ ~(t)? T&"[V%(X;"")DiXW‘ (V2b(X ™) DI X ™" )T} dt
7

t t
n (T) nn (t) nn (t)

t L lovexmmy|® o . .
< [ awr Y |FEEE i Par < dli [ im0
)= : i (1)
k—1
iz g2 @m = Dm = DT =y
= d[b2.T? ll 20 oc (t1=10 (1))
6(mn)? n l—%W
- — - 2[bloo (tk—7n (1)) _
< d[b]goTz (2m 1)(”; 1) % € ' 1'
6(mn) 2[b) oo
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Then, by the second assertion in Lemma A.1,

22,2 3 2
Vp S [O, M], with P(5.16) = o m
e2bloe (T=) P2 (1) AT2d[b)2,(2m — 1)(m — 1)
- ) 2[1')]30(T7r)(b2 C, -1 T2
k29 [exp{QpﬂDiU(*g)FH < exp pe 73(71) ©19 (m 2) ,  (5.16)
qa°q qq mn

where 0(5_15) = %1D(2)d[b]2 M.

o m

e Conclusion. In order to have the same constraint on p for the three Laplace trans-
forms, we choose

VPG (BT | /T N
_ Py(r) \ Pa(r) D3 (r) and i — @2—@)
q VPB.1) \/P((5.14) _"_ v/ P@3.1) \/P(5.16) + P(5.14) \/p(5.16) q \/ P(5.14) + RV4 P(5.16) :
Q1(r) P2(r) Q1(r) Ps(r) Q2(r)  P3(r) D2 (r) @3(r)
Then, by combining (5.10), (5.12), (5.14) and (5.16), we deduce that if
P3.1) P(5.14) P(5.16)
0<p< 3 (r) 25(r) 23(r) % n2

62[1'7]00(T7r) (mm + VPGEL \/P5.16) + V/P(5.14) \/P(5.16))2
D1(r) Po(r) Py(r) P3(r) Po(r) Ps(r)

then as

oy (VP VPG | VPED VPGEIE) | V/P5.14) V/P(5.16)
®(r, [bloc) = (@1(7’) D, (r) + dy(r) P3(r) Pa(r)  P3(r) )

3(r)Cia6) | ¢2(r, (Do) | P3(r)Ciaz(0)
VPE1) /PG4y VP31 \/PG.16) VPe1n /P16 |’

P1(r) P2(r) @1(r) Ps(r) Oa(r)  P3(r)
we get
E [exp {p|DiUF|*}] < exp {peQ[b]“(T’”@(n [5100)(7”?;”12)T2} : O
6 Proof of Theorem 3.2
For A € R, by independence,
L
E [exp (/\[Q - Ef(X;?JL)]ﬂ -[IE {eXp(/\Qg)} , where (6.1)

£=0

E [eXp(/\Qe)} = <IE {exp {134 (f(X’T"Z) — f(xm

and E [exp()\Qo)} < exp {/\ZT[f]?’o} ,

1

- e - so ) )

2N,

where we used the Gaussian concentration bound (2.3) to get the last the inequality. For
te{l,...,L}, we set n € N* and define

T = f(X7") = f(XF) — BIf (X7") - f(X7)]-

mn?2

For )\ € R, we want to obtain an estimation of £ {exp(S\T)} of the form exp {C’:\2 M}

2
where C'is an explicit constant and % is the order of the variance of the centered
random variable Y according to Proposition 2.1. To do so, we assume that f € %} (R, R)
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is Lipschitz continuous with constant [f]., and such that Vf is also Lipschitz with

constant [f];i,. By Clarck’s Ocone formula we have

T
XY — FOXR) — BLF(XE™) — F(X3)] = / E[K,|F,] - dW,.

where, for j € {1,...,d}, the j*"-component of the d-dimensional vector K, is given by
K, ;= DIif(Xp") — Dif(X%). For p € (0,1), we use Holder’s inequality to get

e Xt
exXp 7/ E [KT|JT"T] : dWT - 72/ |E [KT|‘/T:T] |2d7“
D Jo 2p* Jo

2o 2
eXp{Qp(lp)/o |E K, |F] | dr}}.

E [exp(;\T)] < P

x E17P

Now, by the Malliavin chain rule we have

K, = D, X§"V f(XP") ~ D, X}V [(X}), 6.2)

where D, X = (DL X} )1<ij<a € R
According to Lemma 5.3 and under our assumption on the boundedness of V f, we
easily check that sup, (g 71 |[Kr|? < 4de?" Pl [f]2 . Therefore, the process

5\ t 5\2 t
exp f/ IE[KT|]-'T]-dWT—ﬁ/ | [K,|F,] |*dr
P Jo P~ Jo

is a martingale, which together with the choice p = 1/2 which minimizes ﬁ leads us

to
T
exp{25\2/ B [K,|F)] |2drH .
0

Applying Jensen’s inequality twice, and now denoting by p a measurable positive function

such that fOT p(r)dr = 1, we obtain that
INT
exp K, p(r)dr
{ I H (r

T T
exp{25\2/0 |E[KT|]-'T}|2d7~H g/o E
2N2T 2
exp{ o) | K| }] p(r)dr) . (6.3)

and deduce that
We now want to estimate the moment generating function of |K,|?. Setting

0<t<T

E [exp(S\T)} < EY?

E

E [exp(;\T)] < (/OTIE

Ur = X" — X2,

remarking that |D,Ur|? < Tr [D,Ur(D,Ur)"] = 3¢, [DiUr[? and, by Lemma 5.3,
| D, X727 || < Vdeltl=(*=7), we obtain that

(K| < (|Dp X7 [IV (X)) = VX + [ Dr X7 = D X7 |||V f(X7)]

1/2
d /

< V[ flipe= 07| + [floo | S DIULP | (6.4)

j=1
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A careful look at the proof of this theorem shows that, in the decomposition (5.6) of
D) UT, the sum DJ U(1 3) DJ U(l) +DJ U(2) —|—DJ U;B) goes to 0 as r — T whereas DJ U(O)
does not. This indicates that it is not optimal to combine Df,Uj(ﬂO) with DJ Uq(ﬂ ) as in this
proof. We also notice that under the same constraint on p as in the theorem,

) _ ; — 17?2
E [exp { D105 9P} < exp {peﬁb]w””cb(r, 0>(m)} .65

mn2

Since Ur does not depend on 7, it should be better to combine D’ Uéo) with it by replacing
(6.4) by the estimation

1/2 1/2
d d
(1] < V[ flipe = T00] + [floo | 3IDIUFE |+ flee | 2o 1PIUFTYP
Jj=1 j=1
1/2

2 d
M bleo (T—T) (m—-1)T"z ; jrr(1=3),2
< Vel (P2 VT 0 + [l LT

T[f]lip
which takes (5.7) into account. One deduces that for x(r) € (0, 1),

where x =

)

k() mn
Combining (6.3), Holder’s inequality and the convexity of the exponential function which

ensures that the exponential of the mean of d terms is not greater than the mean of the
exponentials, we deduce that

2aNT[f]2 Pl T=") /(1 — 1)T2 2
exp{ e G )

1 : i r_m (((m—1)T%x 2 f12 .
2 < ——dlff 2T )((2)+ UT) +(1[_L(T))Z|D5.U$ 2
j=1

E? [exp(S\T)} < /T E~()
0

5 . 1—k(r)
1 2d\2T[f)? i (1-3)
x | = E |exp{ —————=>2=|DJU, 2 p(r)dr. (6.6)
a2 {pm(l sy P )
We now choose k(r) = — Uiy vV OU) ___ to obtain the same constraint on ) for the two
[fleo vPED+If]y;, / A(T)
; 2
expectations at time r and then p(r) x % ([ Joov/Pa1) + [f ]1,p (T)) to ensure

that this common constraint does not depend on r. Notice that since the functions ®, are
continuous on [0, T, positive on [0,7") and such that ®,(r) = O(T —r), D2(r) = O(T —r)
and ®3(r) = O(VT —r) so that p(r) = O((T —r)~ ') as r — T—, the function p is bounded
and therefore integrable on [0, 7]. We conclude that if

P@3. 1)”2

R < :
207 [ 220 ([floy/am + [l VAW))

IN

)

E? [exp(;\T)} <

/Texp{WT by VA)Cl 2 (2l 1o /TS mwm 5(r)2(r.0)//pGD)
0 me+ o /AT)
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) /OTG””]“’(T“ (/1 + 1, V3D) dt fptr)in

p(t)
< exp { 20%(f]2.Cee. 7)2( - 1)1* } ’ 6.7)
where
T 2] (T—1) 2
Ci6.7) :dT/o T ( P(3.1) ﬂ Vp(t )) dt

« sup oo VA Ca2)2[0) o0 [floe /T Niip) + [flocp(r)®(r,0)/ /G0y
rel0,1) [f ]oox/P(31 + [ V/5(r)

is finite since, as r — T—, ¢2(r,0) = O((T — r)?) and ®(r,0) = O((T — r)). We complete
the proof using (6.1).

A Proofs of the technical lemmas

1/2
Lemma A.1. Let (H;);<r be an adapted R¢-valued process and |H| := ‘ (fOT |Ht|2dt) ’

ThenVé > 0, Vu € [O, ﬁ),

2
E (e“@“upte[or] f Hs~dWs|)2) < exp{ 20 5 } Bl + L ;
T 4u[HE [ \ Var(l — aplHP) * /1— aulHP

where the right-hand side is smaller than exp {4u (52 + %(ﬂH\ +|H|?In 2) } when more-

over i € {0, ﬁ} )

Y
oo

1/2
For (M (t));<r an adapted R%*?-valued process and | M |:= ’ (fOTTr(M(t)M*(t))dt)

I
VI — M

1 2
and Vu € |0, . E (e,usupte[o 7] |f0 MsdWs| ) 4u\M\ 1n2
8 { 8|M|2}

]. t 2
v 0, — ,]E( psupiepo, 1y | fo MsdWs| ) <
"e { 4|M2) ‘ ’ =

Remark A.2. Let h(t) = |||Hy|||« for t € [0,T]. Then
1 2 1
Yu € [O, } , sup (e“(f Hs.dWs) ) e —
2([rlI3] " e, 1—2ul[h|2’

where ||h]]3 = jo h2(t)dt > |H|?.

When ||h]|3 < +o0, this is a consequence of the convexity of x e and Jensen’s
inequality. Indeed introducing (on a possibly enlarged probability space) (5t)te[0,T] a
one-dimensional Brownian motion independent from FWV-H = o((H;, W,),t € [0,T]), we
obtain that for ¢ € [0, 7], fot Hs.dWS—i—fOt h2(s) — |Hs|?df; is a centered Gaussian random

variable with variance equal to fot h?(s)ds such that
¢
]—"W’H) = / H,.dW,.
0

t t
E (/ H,.dW, +/ R2(s) — [HaPdp
0 0
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Proof. The argument is based on the Dambins-Dubins-Schwarz (see e.g. [9]) theorem
which ensures the existence of a one-dimensional standard Brownian motion (5;);>0
such that V¢ > 0, fot Hy.dWs = ﬁfé |H,|2ds- Hence

E (eu(6+supte[o,ﬂ I fy Hs.dW3|)2> - (e/L((S—i-Supte[O,T] 1B lHSQdS|)2>
<E (e”(““psem,\m?] |ﬁs\)2)
<E (e“(‘”s“pse[owl?]ﬁs)zeﬂ@*inf clo. 2] Bs)? )
< E/2 (62#(5+Supse[0,\H\2] Bs)z) E1/2 (€2u(6—infseloy‘m2] 55)2>

) (62u<5+|ﬂmz\>2> 7

where we have used that sup ¢, i2) s and — infe(o, m|2) S5 have the same law as 812
for the last equality. Now, using the change of variables y = = — 4ud|H|?/(1 — 4u|H|) for
the second equality, we obtain that

2

o dx
E (ezu(smmlzn?) _ 2/ ox {2 S & }
| oxp (0 + ) 6] | [HVar
2p6° } - (1 —4pH )y dy
= 2exp { / exp§ —
L—AplH | J_aps\mp2 ) (1—ap H?) 2|H|? |H|v/2m

<ex{ 2062 }( 8ud|H| +/°°ex {_(1—4MH|2)y2} dy >
=P\ —am1E S \Var( = apmp) )P 2| H|” |H /2

{ 20102 } 8ud|H| 1

= exp 5 + .

1—4u|H| V2m(l —4p|H]2) /1 —4u|H|?

The concavity of the logarithm ensures that Vz € [0,1], In(1 — 2) > —2zIn2 so that

1 Lin(l—= x1n 2 1
——= = ¢ 2m(17%) < ¢vIn2, Therefore when y € {O, S‘le],

o2 V(s
PUT—4uHE [ \ Var(l — 4uH]) 1 4u[H]?
< et <+1 —_<e
- VT 1—4pH]? ~
Let now for ¢ € {1,...,d}, M;(t) denote the i-th line of the matrix M(¢) and |M;| :=
1/2
H fo Zg L ME(t )dt) H . For pu < ﬁ, we have

8ud|H|

4#526T64M|H|2 In2

E <elts‘1pte[0,T] ‘fot M(S)dWs|2) = (eﬂsuptE[O,T] Z?:1(fot Jwi(s)dws)2>

<E (eu Sy supseqo,r(fy MAs)dst)

d 2
<k (Z | Ul\;up SUPtelo, T](fo Mi(s)dWs)2>

1
1

< 7,
V1 —Ap[M[?

where we used Jensen’s inequality for the third inequality and the first statement of the
Lemma for the fourth. O
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