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Abstract

This paper studies the problem of equivalence of Gaussian measures induced by
Gaussian random fields (GRFs) with stationary increments and proves a sufficient
condition for the equivalence in terms of the behavior of the spectral measures at
infinity. The main results extend those of Stein (2004), Van Zanten (2007, 2008)
and are applicable to a rich family of nonstationary space-time models with possible
anisotropy behavior.
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1 Introduction

Space-time models have become increasingly popular in scientific studies such as ge-
ology, climatology, geophysics, environmental and atmospheric sciences, etc ([7], [9] and
[30]). Gaussian random fields (GRFs) are ubiquitous in space-time modeling due to the
prevalence of central limit theorems and the mathematical/computational amenability
of the multivarite normal distributions. Most of the parametric models proposed in the
literature are GRFs with specific parametric covariance structure (see [8], [14], [32], and
[15] for rich families of space-time covariance functions). One of the main objectives in
statistics then is to find consistent estimates for the parameters, and finally use them for
prediction of the underlying random field at unobserved locations. Given a parametric
family of Gaussian random fields, an important question is to determine whether all the
parameters are consistently estimable. First step to answer this question demands an
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Spectral conditions for equivalence of GRFs with stationary increments

investigation on the equivalence or singularity of the corresponding Gaussian measures
induced by this family of GRFs on their space of sample functions, since if two sets of
parameters in the Gaussian models give equivalent Gaussian distributions, then it is
impossible to find consistent estimators for these parameters involved regardless of
the method chosen for estimation (see for example [40] for a discussion on inconsis-
tent estimation in Matérn covariance functions under the framework of fixed domain
asymptotics). Another application of equivalence of Gaussian measures comes from
covariance structure misspecification, and its effect on spatial interpolation (see [30]).
Therefore, finding explicit conditions for deciding whether two Gaussian random fields
induce equivalent Gaussian distributions on their spaces of sample functions has direct
impact in evaluating the prediction error in interpolation of spatial data, and thus proving
asymptotically optimal prediction under misspecified covariance structure. There are
other applications of equivalence and perpendicularity of GRFs in spatial modeling. For
example, we refer to [12], [18], [27], [26], and [4] for the application in covariance
tapering.

Equivalence of Gaussian measures is a classical problem in probability theory that
has been studied since the 1950’s. We refer to the books [13], [17], [38], [21] and
references therein for systematic accounts. Necessary and sufficient conditions for the
equivalence of Gaussian measures induced by stationary Gaussian processes in terms of
their mean and covariance functions are given in [17]. Their extensions to stationary
isotropic Gaussian random fields are proved in [28] and [38].

However, investigation on the equivalence of nonstationary GRFs has been limited
to some special cases. For instance, we refer to [6] on mixed fractional Brownian
motion, [3] on Volterra processes, [29] on Gaussian random fields that are equivalent to
fractional Brownian sheets, [31] on a family of intrinsic random functions with power
law generalized covariance functions (including fractional Brownian fields), and [33, 34]
and [36] on certain Gaussian processes/fields with stationary increments. Also, there are
some recent results on equivalence of measures for multivariate GRFs [25], for GRFs on
spheres [1], and for self-similar GRFs [20].

Our work is mainly motivated by [31] and by [33, 34] where explicit sufficient
conditions for the equivalence of Gaussian processes with stationary increments in terms
of their spectral densities similar to the criterion in [17] for the stationary case have been
established. The main purpose of this paper is to extend their results to the setting of
Gaussian random fields with stationary increments which may have different regularities
in each direction. Besides of theoretical interest, our results are applicable to anisotropic
nonstationary space-time Gaussian models.

The rest of the paper is organized as follows. We start Section 2 by introducing some
useful Hilbert spaces connected to the frequency domain, and study their structure. In
Section 3, we state the main results of the paper, which are sufficient conditions for
equivalence of GRFs with stationary increments using the tail behavior of their spectral
densities. In the last section, we apply the main results (Theorems 3.5 and 3.6) to a rich
family of anisotropic nonstationary spatio-temporal Gaussian models.

2 Preliminary

Let X = {Xt : t ∈ Rd} be a centered GRF with stationary increments. The covariance
structure of X is fully described by [39]. For simplicity, we assume that X(0) = 0 and
the covariance function of X can be written as

C(t, s) = E(XtXs) =

∫
Rd

(
ei〈t,λ〉 − 1

)(
e−i〈s,λ〉 − 1

)
F (dλ), (2.1)
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Spectral conditions for equivalence of GRFs with stationary increments

where F is a non-negative symmetric measure on Rd \ {0}, called the spectral measure
of X, that satisfies ∫

Rd

|λ|2

1 + |λ|2
F (dλ) <∞. (2.2)

It follows from (2.1) that X has the following spectral representation:

X(t)
d
=

∫
Rd

(
ei〈t,λ〉 − 1

)
W (dλ), (2.3)

where W is a complex-valued Gaussian random measure with mean 0 and control
measure F .

If the spectral measure F is absolutely continuous with respect to the Lebesgue
measure on Rd, we will call its Radon-Nikodym derivative, denoted by f(λ), the spectral
density of X. We will give conditions for the equivalence of GRFs with stationary
increments in terms of their spectral densities, but first, we recall the definition of
equivalence of GRFs.

Definition 2.1. For a fixed set D ⊆ Rd, we call two GRFs X = {Xt : t ∈ Rd}, Y =

{Yt : t ∈ Rd} equivalent on D if they induce equivalent measures1 on the measurable
space

(
RD,B

(
RD
))

, in which B
(
RD
)

is the σ-field generated by the cylinder subsets2 of
RD. Moreover, we call X and Y locally equivalent if they are equivalent on all bounded
subsets of Rd.

The spectral representation (2.1) makes an important bridge between the problem of
equivalence of GRFs and the description of the space generated by the linear combina-
tions of the kernel functions. For that purpose, in this section we define for a fixed and
bounded setD ⊆ Rd, an incomplete Hilbert space LeD = span

{
et(λ) := ei〈t,λ〉 − 1 : t ∈ D

}
with the inner product

〈et, es〉F =

∫
Rd
et(λ)es(λ)F (dλ).

We denote the closure of LeD in L2(F ) by LD(F ). Also, for T > 0, denote by ΠT = [−T, T ]d

the cube with side 2T .
Observe that the functions in LeD are entire functions defined on Cd (see [24] for

definition and more properties), and they are of finite exponential type. Recall that an
entire function ϕ on Cd is called of finite exponential type if

lim sup
r→∞

1

r
max
‖z‖=r

log
∣∣ϕ(z)

∣∣ <∞.
However, in general, the elements in the completed Hilbert space, LD(F ), may not have
the same properties as the functions in LeD. This problem is discussed in details in
[22, 23]. In this paper, we assume that the spectral measure F has a density function
f(λ) that satisfies the following condition:

(C1) There exist constants c, k, η > 0 such that f(λ) ≥ c
|λ|η for all λ ∈ Rd with

|λ| > k.

This assumption on the spectral density will imply the elements in LD(F ) to be entire
functions of finite exponential type. These properties enable us to apply the Paley-Wiener
type theorems to get nice description of the elements in the Hilbert space LD(F ) for
D = ΠT .

1Two measures defined on the same measurable space are called equivalent if they are mutually absolutely
continuous with respect to each other.

2A cylinder subset of RD is a set of the form {f ∈ RD : f(t1) ∈ B1, . . . , f(tn) ∈ Bn}, where t1, . . . , tn ∈ D
and B1, . . . , Bn are Borel sets in R.
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Spectral conditions for equivalence of GRFs with stationary increments

The next two lemmas will prove these statements. The following lemma is taken from
[35] and we state it here again for completeness.

Lemma 2.2. Suppose that the spectral density f satisfies (C1). Then for fixed T > 0,
there exists positive constants C and M such that for all functions φ of the form

φ(λ) =

n∑
k=1

ak
(
ei〈t

k,λ〉 − 1
)
, (2.4)

where ak ∈ R and tk ∈ ΠT , we have for all z ∈ Cd

|φ(z)| ≤ C ‖φ‖F exp{M |z|}. (2.5)

Moreover, for fixed C1 > 0, there exists a positive constant C2 such that for all functions
of the form (2.4), we have

|φ(z)| ≤ C2 |z| ‖φ‖F (2.6)

for all |z| ≤ C1.

One can use (2.5) to define the limiting functions in LΠT (F ) in such a way that they
also satisfy both (2.5) and (2.6). We will prove this in the next Lemma.

Lemma 2.3. Suppose that the spectral density f satisfies (C1). Then, for each T > 0,
the space LΠT (F ) consists of the restriction to Rd of entire functions on Cd of finite
exponential type. Moreover, (2.6) holds for all functions φ ∈ LΠT (F ).

Proof. The idea of the proof is similar to [23], p. 304. Take a sequence φn ∈ LeΠT , such
that ‖φn − φ‖F → 0 for some φ ∈ LΠT (F ). Then, it is a Cauchy sequence in L2(F ), and
using (2.5), we get

|φn(z)− φm(z)| ≤ C ‖φn − φm‖F exp{M |z|} (2.7)

This means for each fixed z ∈ Cd, the sequence {φn(z), n ≥ 1} is a Cauchy sequence in C.
So, it is convergent and, moreover, the convergence is locally uniform. Denote the limit
by φ̃(z). Now, since limit in L2(F ) sense implies the almost everywhere convergence for
a subsequence, φ = φ̃ a.e. with respect to F . From now on, we will take φ̃ as our favorite
version of the limits of functions in LeΠT . Therefore, the elements in the space LΠT (F ),
are not only the L2(F ) limits of functions in LeΠT , but also the pointwise limits as well.
Thus, both (2.5) and (2.6) are true for all the elements in LΠT (F ). The only thing left
to prove is that these functions φ̃ are entire functions on Cd. But this is true since any
element of the space LΠT (F ) is the locally uniform limit of functions of the form (2.4)
which are obviously entire functions, and thus, they are entire functions as well (This is
called the Weirerstrass Theorem; see, for example, Proposition 2.8 on p. 52 of [11]).

This lemma shows that if the spectral density satisfies the assumption (C1), we can
complete the space LeΠT in such a way that the resulting functions are locally uniform
limits of entire functions, and hence, they are entire functions of finite exponential type.
Furthermore, since (2.5) is true for all the elements in the Hilbert space LΠT (F ), we can
see that the point evaluators, i.e. the functionals on LΠT (F ) of the form φ 7→ φ(z) for
each fixed z ∈ Cd are bounded operators. Now, we can apply the Riesz Representation
Theorem (See [16], Theorem 3. p. 31) to prove that the space LΠT (F ) is a Reproducing
Kernel Hilbert Space (RKHS) in the sense of [2]. This means that there exists a function
KT (·, ·) : Rd ×Rd → C such that (i) KT (ω, ·) ∈ LΠT (F ) for all ω ∈ Rd, and (ii) for every
φ ∈ LΠT (F ) and ω ∈ Rd, we have the following kernel property

〈φ,KT (ω, ·)〉F =

∫
Rd
φ(λ)KT (ω, λ)F (dλ) = φ(ω). (2.8)
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Spectral conditions for equivalence of GRFs with stationary increments

Also, it is worthwhile to mention that the set of all functions {KT (ω, ·) : ω ∈ Rd}
is dense in LΠT (F ) (To see this, note that if φ ∈ LΠT (F ) is orthogonal to KT (ω, ·) for
all ω ∈ Rd, then φ(ω) = 〈φ,KT (ω, ·)〉F = 0, which implies φ = 0). Futhermore, for all
ψ ∈ L2(F ), the function

ω 7→ 〈ψ,KT (ω, .)〉F (2.9)

is the orthogonal projection of ψ on LΠT (F ) (See the proof in [2], p. 345). We denote
this projection by πLΠT

(F )ψ.

Finding explicit forms of the reproducing kernels is not an easy job. However, in
order to prove the results in Section 3, we only need to establish upper bounds for the
growth rate of the diagonal elements of the reproducing kernels at origin and also at
infinity. The following proposition proves an important growth rate for the diagonal
elements in the reproducing kernels.

Proposition 2.4. Suppose that the spectral density f(λ) of F satisfies (C1). Then, for
fixed T > 0 and C1 > 0, there exists a positive constant C2 such that

KT (ω, ω) ≤ C2 |ω|2 (2.10)

for all ω ∈ Rd with |ω| < C1.

Proof. Since for any fixed ω ∈ Rd, KT (ω, .) ∈ LΠT (F ), we can apply Lemma 2.3 to these
functions. It follows from (2.6) that

|KT (ω, λ)| ≤ C2 |λ| ‖KT (ω, .)‖F = C2 |λ|(KT (ω, ω))
1/2

for all ω ∈ Rd and λ ∈ Cd with |λ| < C1. By taking λ = ω, we obtain the desired result.

We also need to define another Hilbert space based on the tensor product of the
elements in LΠT (F ). For this purpose, first we define LeΠT ⊗ L

e
ΠT

to be the span of

functions (et ⊗ es)(ω, λ) := et(ω)es(λ) with t, s ∈ ΠT . Now, denote by LΠT (F ) ⊗ LΠT (F )

the closure in L2(F ⊗ F ) of the space LeΠT ⊗ L
e
ΠT

. According to Theorem 1 on p. 361 of
[2], the new Hilbert space LΠT (F )⊗ LΠT (F ) is also a RKHS with reproducing kernel

((ω1, λ1), (ω2, λ2)) 7→ KT (ω1, ω2)KT (λ1, λ2). (2.11)

This implies that for ψ ∈ LΠT (F )⊗ LΠT (F ),

〈ψ,KT (ω, .)⊗KT (λ, .)〉F⊗F = ψ(ω, λ). (2.12)

We finish this section by a lemma stating that the norm of the elements in spaces
LΠT (F ) depends essentially on the tail behavior of the spectral measure F . To this end,
we define the following notation. For two functions f, g : Rd 7→ R, we write f(λ) � g(λ)

as |λ| → ∞, if the ratio f(λ)/g(λ) is bounded from below and above by positive and finite
constants which are independent of λ as |λ| → ∞.

Lemma 2.5. Suppose f0 and f1 are two spectral densities satisfying the condition (C1),
and further f0(λ) � f1(λ) as |λ| → ∞. Then, LΠT (f0) = LΠT (f1), and further there exist
positive constants C3 and C4 such that

C3 ‖φ‖f1
≤ ‖φ‖f0

≤ C4 ‖φ‖f1

for all φ ∈ LΠT (f0).
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Proof. Suppose g ∈ LΠT (f0). There exists functions gn of the form (2.4) such that
‖g − gn‖f0

→ 0 as n→∞. Now, using Lemma 2.3, we get

‖g − gn‖2f1
=

∫
Rd
|g(λ)− gn(λ)|2f1(λ) dλ

≤ C2 ‖g − gn‖2f0

∫
|λ|<C1

|λ|2f1(λ) dλ

+ C ‖g − gn‖2f0

(2.13)

which implies g ∈ LΠT (f1). Thus LΠT (f0) ⊆ LΠT (f1). Similarly we have LΠT (f1) ⊆
LΠT (f0). Finally one can see that (2.13) holds if we replace g − gn by φ ∈ LΠT (f0) This
leads to the second part of the lemma.

3 Main results

In this section, we study the equivalence of GRFs with stationary increments, and
clarify its connection to the Hilbert spaces constructed in Section 2. In particular, the
role of the reproducing kernels of the RKHS LΠT (F ) will be emphasized. We start this
section by an extension of Theorem 5 on p. 84 in [17] (Theorem 1 on p. 149 in [38])
for stationary Gaussian processes (fields) to Gaussian random fields with stationary
increments. Some extensions of the criteria for equivalence of stationary Gaussian
processes (fields) have also been obtained by [33, 34] and [36]. The following theorem is
an extension of Theorems 3.3.9 and 3.3.10 in [36] and also Theorem 4.3 in [33].

Theorem 3.1. Two centered GRFs with stationary increments and spectral measures F0

and F1 are equivalent on D if and only if:

(i) ‖φ‖F0
� ‖φ‖F1

,∀φ ∈ LeD, and

(ii) There exists a function ψ ∈ LD(F0)⊗ LD(F0) such that for all t, s ∈ D

〈et, es〉F0
− 〈et, es〉F1

= 〈ψ, et ⊗ es〉F0⊗F0
. (3.1)

Proof. The proof is essentially a reconstruction of the proof of the Theorem 5, p. 84
of [17], and is given here for the sake of completeness. The starting point is however,
Theorem 4 on p. 80 of the same reference. The proof there can be adapted to our
context with little change since it only involves the “entropy distance” between the
Gaussian measures, and thus is true for general GRFs (See also [5], Theorem 4.1, 4.4 pp.
180-185 ). After doing so, we get that two GRFs with stationary increments and spectral
measures F0 and F1 are equivalent on D ⊆ Rd, if and only if

‖φ‖F0
� ‖φ‖F1

, ∀φ ∈ LeD,

and ∆ = I − A∗A is a Hilbert-Schmidt operator in LD(F0), in which I is the identity
operator on LD(F0), and A : LD(F0) 7→ LD(F1) with Aφ = φ for all φ ∈ LD(F0). Now,
since ∆ is a self-adjoint operator, if it is also a Hilbert-Schmidt operator, by the Spectral
Theorem (See [10], Corollary 5 p. 905 ), we can conclude that there exists an orthonormal
basis for LD(F0) consisting of the eigenvectors of ∆, denoting them by φj , j = 1, 2, ...,
with corresponding eigenvalues λj , j = 1, 2, ... with

∑
j λ

2
j <∞. Note that we can write∑

j λ
2
j =

∑
j,k 〈∆φj , φk〉

2
F0

. The square root of this quantity is called the Hilbert-Schmidt
norm. This norm doesn’t depend on the choice of the orthonormal basis (See [10],
Lemma 2, p. 1010). Therefore, we can rephrase Theorem 4 in the following form: two
GRFs with stationary increments and spectral measures F0 and F1 are equivalent on
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D, if and only if, ‖φ‖F0
� ‖φ‖F1

,∀φ ∈ LeD, and
∑
j,k 〈∆φj , φk〉

2
F0
<∞ for any orthonormal

basis for LD(F0).

Now, take an arbitrary orthonormal basis for LD(F0), φ1, φ2, ..., and suppose∑
j,k 〈∆φj , φk〉

2
F0

< ∞. Define ψ0(ω, λ) =
∑
j,k 〈∆φj , φk〉F0

φj(ω)φk(λ). We can see that

‖ψ0‖2F0⊗F0
=
∑
j,k 〈∆φj , φk〉

2
F0
<∞, and thus by the form of ψ0, it’s clear that it belongs

to LD(F0)⊗ LD(F0). Also, observe that

〈ψ0, φj ⊗ φk〉F0⊗F0
= 〈∆φj , φk〉F0

= 〈(I −A∗A)φj , φk〉F0

= 〈φj , φk〉F0
− 〈φj , φk〉F1

.

This shows that (3.1) holds for orthonormal basis of the space LD(F0). Therefore, by
continuity of inner product (3.1) will be true for all the elements in LD(F0), especially
for et and es when t, s ∈ D.

Conversely, suppose there exists a function ψ0∈LD(F0)⊗LD(F0), such that 〈φj , φk〉F0
−

〈φj , φk〉F1
= 〈ψ0, φj ⊗ φk〉F0⊗F0

for an orthonormal basis φj ’s for LD(F0). Then, we have

∑
j,k

〈∆φj , φk〉2F0
=
∑
j,k

(
〈φj , φk〉F0

− 〈φj , φk〉F1

)2

=
∑
j,k

〈ψ0, φj ⊗ φk〉2F0⊗F0

≤ ‖ψ0‖2F0⊗F0
<∞.

This completes the proof.

Theorem 3.1 is stated in a general form for GRFs with stationary increment, with
no restriction on their spectral measures. However, verifying the second condition in
this theorem, which involves finding a function ψ ∈ LD(F0)⊗ LD(F0) with the property
(3.1), seems to be hard. If we put the condition (C1) on one of the spectral measures
(say, F0), we get the following theorem using the reproducing kernels of LΠT (F0). In
fact, this theorem clarifies what must be the function ψ in Theorem 3.1.

Theorem 3.2. Two centered GRFs with stationary increments, and spectral measures
F0 and F1, with F0 satisfying assumption (C1), are equivalent on ΠT for some T > 0 if
and only if:

(i) ‖φ‖F0
� ‖φ‖F1

,∀φ ∈ LeΠT ,

(ii) ψ(ω, λ) = K0
T (ω, λ) −

∫
Rd
K0
T (ω, γ)K0

T (λ, γ)F1(dγ) ∈ LΠT (F0) ⊗ LΠT (F0), where
K0
T (., .) are the reproducing kernels of the space LΠT (F0).

Proof. First, assume that the measures induced by them are equivalent. Then, by
Theorem 3.1, there exists a function ψ ∈ LΠT (F0) ⊗ LΠT (F0) such that (3.1) holds.
Now, because of bilinearity and continuity of inner product together with the fact that
LΠT (F0) = LΠT (F1), we get

〈φ1, φ2〉F0
− 〈φ1, φ2〉F1

= 〈ψ, φ1 ⊗ φ2〉F0⊗F0
(3.2)

for all φ1, φ2 ∈ LΠT (F0) = LΠT (F1). Now, simply choose for fixed ω, λ ∈ Rd, φ1(γ) =

K0
T (ω, γ) and φ2(γ) = K0

T (λ, γ), and replace them in (3.2) to get

ψ(ω, λ) = K0
T (ω, λ)−

∫
Rd
K0
T (ω, γ)K0

T (λ, γ)F1(dγ).
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Conversely, since ψ ∈ LΠT (F0) ⊗ LΠT (F0), by the reproducing kernel property we
get ψ(ω, λ) = 〈ψ,K0

T (ω, .)⊗K0
T (λ, .)〉F0⊗F0

. Also, note that by the form of ψ, we have
ψ(ω, λ) = 〈K0

T (ω, .),K0
T (λ, .)〉F0

−〈K0
T (ω, .),K0

T (λ, .)〉F1
. Combining them together, we get

〈K0
T (ω, .),K0

T (λ, .)〉F0
− 〈K0

T (ω, .),K0
T (λ, .)〉F1

= 〈ψ,K0
T (ω, .)⊗K0

T (λ, .)〉F0⊗F0
. (3.3)

Now, since the span{K0
T (ω, .);ω ∈ Rd} is dense in LΠT (F0)(= LΠT (F1)), Equality (3.3)

holds true for all the elements in LΠT (F0).

Checking the first assumption in Theorem 3.2 may not be easy in general since we
need to compare the norms of all the elements in the space LeΠT under two different
measures. For that purpose, in the following, we will find equivalent conditions which
may be easier to verify in application.

It is well known (See [10], p. 1009 ) that for ψ ∈ L2(F ⊗ F ), a Hilbert-Schmidt
operator on L2(F ) can be defined as follows

(ψφ) (ω) =

∫
Rd
ψ(ω, λ)φ(λ)F (dλ) (3.4)

for every φ ∈ L2(F ). If we use specifically the ψ in Theorem 3.2, and restrict the domain
to LΠT (F ), we will have again a Hilbert-Schmidt operator on LΠT (F ). Note that the
image of the operator ψ is in fact inside the LΠT (F ). To prove this, observe that for
φ ∈ LΠT (F ),

(
πLΠT

(ψφ)
)
(ω) =

∫
Rd

(ψφ)(x)KT (ω, x)F (dx)

=

∫
Rd

∫
Rd
φ(y)ψ(x, y)KT (ω, x)F (dx)F (dy)

=

∫
Rd

∫
Rd

∫
Rd
φ(y)KT (x, γ)KT (y, γ)KT (ω, x)F (dx)F (dy)

× (F (dγ)− F1(dγ))

=

∫
Rd

∫
Rd
φ(y)KT (ω, γ)KT (y, γ) (F (dγ)− F1(dγ))F (dy)

=

∫
Rd
φ(y)ψ(ω, y)F (dy) = (ψφ)(ω).

This argument shows that ψφ ∈ LΠT (F ) for any φ ∈ LΠT (F ). Also, observe that since
ψ(ω, λ) = ψ(λ, ω), the operator ψ is self-adjoint. This fact together with compactness of
this operator (Since ψ is a Hilbert-Schmidt operator, it is already compact, see [10], p.
1009) enable us to use the Spectral Theorem for compact normal operators (See [10],
Corollary 5, p. 905), which we will use in the proof of the next theorem. In fact, the next
theorem is an extension of Theorem 4.3 in [33] to the setting of random fields and shows
that the first condition in Theorem 3.2 can be replaced by 1 /∈ σ(ψ), where σ(ψ) is the
spectrum of the operator ψ. Recall that σ(ψ) is the set of all λ ∈ C such that λI − ψ is
not an invertible operator where I is the identity operator (cf. [10], p. 902).

Theorem 3.3. Two GRFs with stationary increments and spectral measures F0 and F1

with F0 satisfying the condition (C1), are equivalent on ΠT if and only if the function
defined by

ψ(ω, λ) = K0
T (ω, λ)−

∫
Rd
K0
T (ω, γ)K0

T (λ, γ)F1(dγ) (3.5)

belongs to LΠT (F0)⊗ LΠT (F0), and 1 /∈ σ(ψ).
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Spectral conditions for equivalence of GRFs with stationary increments

Proof. From (3.2), by putting φ1 = φ2 = φ, and the definition of the operator ψ in (3.4),
we get

‖φ‖2F1

‖φ‖2F0

= 1−
〈ψφ, φ〉F0

‖φ‖2F0

(3.6)

for all φ ∈ LΠT (F0). This simply implies that first σ(ψ) ⊆ (−∞, 1], and second there exists
a finite positive constant C such that ‖φ‖F1

≤ C‖φ‖F0
for all φ ∈ LeΠT since ψ is a bounded

operator. This fact shows that proving ψ ∈ L2(F0 ⊗ F0) is helping us to verify half of
what we need in the first condition of Theorem 3.2 as well. What remains is to show that
1 /∈ σ(ψ) if and only if there exists a positive constant c such that ‖φ‖F0

≤ c‖φ‖F1
for all

φ ∈ LeΠT .
First, suppose that ‖φ‖F0

≤ c ‖φ‖F1
for some c > 0. If 1 ∈ σ(ψ), it means that

there exists φ ∈ LΠT (F0) with ‖φ‖F0
= 1 such that ψφ = φ. Putting it in (3.6), we

get ‖φ‖F1
= 0 which is contradiction. Conversely, suppose 1 /∈ σ(ψ), and also there

exists a sequence φn ∈ LeΠT such that ‖φn‖F0
= 1 for all n ≥ 1, and ‖φn‖F1

→ 0 as
n → ∞. Since ψ is a self-adjoint compact operator, by Corollary 5 on p. 905 in [10],
there exists a countable orthonormal basis for LΠT (F0) consisting of eigenvectors of
ψ, denoting them by gj , j = 1, 2, ... with corresponding eigenvalues λj . Now, each
φn has the representation φn =

∑∞
j=1 anjgj for anj ∈ R. Putting this sequence (3.6),

we get that 〈ψφn, φn〉F0
→ 1 which means

∑∞
j=1 a

2
njλj → 1 as n → ∞. Now, since

1 = ‖φn‖2F0
=
∑∞
j=1 a

2
nj , we can rewrite the above equation as 0 ≤

∑∞
j=1 a

2
nj(1− λj)→ 0

(This quantity is non-negative since all the eigenvalues are bounded above by 1). Since
1 /∈ σ(ψ), and {λj , j = 1, 2, ...} has no accumulation points in C except possibly 0 (See
[10], Corollary 5, p. 905), there exists ε > 0 such that sup {λj , j ≥ 1} = 1− ε. However,
this implies that

∑∞
j=1 a

2
nj(1− λj) ≥ ε

∑∞
j=1 a

2
nj = ε for all n ∈ N, which is contradiction

by the fact that this sequence must go to 0 when n goes to ∞. This completes the
proof.

Remark 3.1. Notice that based on the proof of Theorem 3.3, we can change the first
condition in Theorem 3.2 to

(i)
′ There exists a positive constant c such that ‖φ‖F0

≤ c ‖φ‖F1
for all φ ∈ LeΠT .

As Lemma 2.5 emphasizes that the behavior of the spectral measure at origin does
not affect the structure of the space LΠT (F ), one might expect the same formation
in terms of the equivalence of Gaussian measures. The following theorem shows that
changing the spectral measure on bounded subsets of Rd will not affect the equivalence
of the corresponding GRFs. In other words, for checking the equivalence of GRFs, only
the behavior of their spectral measures at infinity is important.

Theorem 3.4. Suppose two GRFs with stationary increments have spectral measures F0

and F1 such that F0 satisfies the condition (C1), and F0 = F1 on I
c, where I is a bounded

subset of Rd. Then, these two GRFs are locally equivalent.

Proof. Define F̃1(dλ) = 1Ic(λ)F0(dλ). First, we show that F0 and F̃1 will produce locally
equivalent GRFs with stationary increments. For that, fix T > 0. We will investigate the
equivalence of measures on ΠT . The function ψ appearing in Theorem 3.3 in this case is
given by

ψ(ω, λ) =

∫
I

K0
T (ω, γ)K0

T (λ, γ)F0(dγ).

Notice that by the reproducing kernel property,

ψ(ω, λ) = πLΠT

(
K0
T (ω, .)1I(.)

)
(λ) = πLΠT

(K0
T (λ, .)1I(.)) (ω) (3.7)
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Spectral conditions for equivalence of GRFs with stationary increments

The specific representation of the function ψ(ω, λ) in (3.7) helps us to show that ψ(ω, λ) ∈
LΠT (F0)⊗ LΠT (F0). The idea of the proof is to first show that ψ(ω, λ) ∈ L2 (F0 ⊗ F0) and
then, use the projection technique to further derive that ψ(ω, λ) ∈ LΠT (F0)⊗ LΠT (F0).
Note that

‖ψ‖2F0⊗F0
=

∫
Rd

∥∥πLD(F0)

(
K0
T (ω, .)1I(.)

)∥∥2

F0
F0(dω)

≤
∫
Rd

∥∥K0
T (ω, .)1I(.)

∥∥2

F0
F0(dω)

=

∫
Rd

(∫
Rd
|K0

T (ω, γ)|21I(γ)F0(dγ)

)
F0(dω)

=

∫
Rd

1I(γ)K0
T (γ, γ)F0(dγ)

≤ C
∫
I

|γ|2F0(dγ) < +∞.

(3.8)

The second inequality in (3.8) is based on Proposition 2.4 and the fact that I is
bounded. Now, we prove that the projection of ψ(ω, λ) to the space LΠT (F0)⊗ LΠT (F0)

is in fact itself. This verifies that ψ(ω, λ) ∈ LΠT (F0)⊗ LΠT (F0). To this end, observe that

(
πLΠT

(F0)⊗LΠT
(F0)(ψ)

)
(ω, λ) =

〈
ψ,K0

T (ω, .)⊗K0
T (λ, .)

〉
F0⊗F0

=

∫
Rd

∫
Rd
ψ(x, y)K0

T (ω, x)K0
T (λ, y)F0(dy)F0(dx)

=

∫
Rd

∫
Rd
πLΠT

(
K0
T (x, .)1I(.)

)
(y)K0

T (ω, x)K0
T (λ, y)

× F0(dy)F0(dx)

=

∫
Rd
πLΠT

(K0
T (λ, .)1I(.)) (x)K0

T (ω, x)F0(dx)

= πLΠT
(K0

T (λ, .)1I(.)) (ω)

= ψ(ω, λ).

This implies ψ ∈ LΠT (F0)⊗ LΠT (F0).

It remains to show that 1 /∈ σ(ψ). For that purpose, take an arbitrary φ ∈ LΠT (F0),
and observe that (We use the fact that K0

T (ω, λ) = K0
T (λ, ω), see [2], p. 344.)

(ψφ) (λ) =

∫
Rd
φ(ω)ψ(λ, ω)F0(dω)

=

∫
Rd
φ(ω)

(∫
I

K0
T (λ, γ)K0

T (ω, γ)F0(dγ)

)
F0(dω)

=

∫
I

∫
Rd
φ(ω)K0

T (λ, γ)K0
T (γ, ω)F0(dω)F0(dγ)

=

∫
I

φ(γ)K0
T (λ, γ)F0(dγ)

= πLΠT
(F0)

(
φ1I
)

(λ).

Therefore, if ψφ = φ, it implies in particular that ‖φ‖F0
≤ ‖φ1I‖F0

. This means φ = 0

almost everywhere with respect to F0 in Ic. Hence, since φ is an entire function, this
implies that φ = 0. Thus, 1 cannot be in the spectrum of ψ.
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Spectral conditions for equivalence of GRFs with stationary increments

So far, we proved GRFs with spectral measures F0 and F̃1 are locally equivalent, but
since F0 = F1 on I, similarly, we can say that F1 and F̃1 produce locally equivalent GRFs.
Putting these two together, we get the desired result.

Theorems 3.2 and 3.3 give necessary and sufficient conditions for equivalence of
GRFs with stationary increments, but it might be difficult to verify the conditions in these
theorems. In the literature, there are sufficient conditions for equivalence of certain
GRFs in terms of their spectral densities. These conditions are easily verifiable once
the two spectral densities are known. For example, we refer to [17], Theorem 17, p.
104, [28], Theorem 4, and [38], theorem 4, p. 156 for stationary GRFs; and to [33, 34],
and [31] for some nonstationary cases. The following is the main theorem of this paper
which gives an explicit sufficient condition in terms of the spectral measures for the
equivalence of GRFs with stationary increments.

Theorem 3.5. Suppose that the spectral measure F0 and F1 have positive densities f0

and f1 with respect to the Lebesgue measure, and F0 satisfies the condition (C1). If
there exists a finite constant C > 0 such that ‖φ‖F0

≤ C‖φ‖F1
for all φ ∈ LeΠT , and

∫
|λ|>k

(
f1(λ)− f0(λ)

f0(λ)

)2

K0
T (λ, λ)f0(λ) dλ <∞ (3.9)

for some k > 0, then GRFs with stationary increments and spectral measures F0 and F1

are equivalent on ΠT .

Proof. Applying Theorem 3.4, we can change the value of f1 on any bounded set, without
having any consequences on the equivalence. So, we assume here that f0 = f1 on |λ| ≤ k.
The function ψ in Theorem 3.3 here will be of the form

ψ(ω, λ) =

∫
Rd
K0
T (ω, γ)K0

T (λ, γ)

(
f0(γ)− f1(γ)

)
dγ

= πLΠT
(F0)

(
K0
T (ω, .)

f0 − f1

f0

)
(λ).

(Since
∣∣K0

T (ω, λ)
∣∣2 ≤ K0

T (ω, ω)K0
T (λ, λ), (3.9) implies that K0

T (ω, .) f0−f1

f0
∈ L2(F0) for all

ω ∈ Rd. Hence using the orthogonal projection is eligimate). Now, it follows that

∫
Rd

∫
Rd
|ψ(ω, λ)|2 F0(dλ)F0(dω) =

∫
Rd

∥∥∥∥πLD(F0)

(
K0
T (ω, .)

f0 − f1

f0

)∥∥∥∥2

F0

F0(dω)

≤
∫
Rd

∥∥∥∥K0
T (ω, .)

f0 − f1

f0

∥∥∥∥2

F0

F0(dω)

=

∫
Rd

(∫
Rd
|K0

T (ω, γ)|2
(
f0(γ)− f1(γ)

f0(γ)

)2

F0(dγ)

)
F0(dω)

=

∫
Rd

(
f0(γ)− f1(γ)

f0(γ)

)2

K0
T (γ, γ)f0(γ) dγ

=

∫
|γ|>k

(
f1(γ)− f0(γ)

f0(γ)

)2

K0
T (γ, γ)f0(γ) dγ <∞

by the integrability assumption (3.9). Hence ψ ∈ L2(F0 ⊗ F0).
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Spectral conditions for equivalence of GRFs with stationary increments

Now, we apply similar arguments as in the proof of Theorem 3.4 to show that in fact
ψ ∈ LΠT (F0)⊗ LΠT (F0). To this end, observe that(
πLΠT

(F0)⊗LΠT
(F0)(ψ)

)
(ω, λ) =

〈
ψ,K0

T (ω, .)⊗K0
T (λ, .)

〉
F0⊗F0

=

∫
Rd

∫
Rd
ψ(x, y)K0

T (ω, x)K0
T (λ, y)F0(dy)F0(dx)

=

∫
Rd

∫
Rd
πLΠT

(F0)

(
K0
T (x, ·)f0 − f1

f0

)
(y)K0

T (ω, x)K0
T (λ, y)

× F0(dy)F0(dx)

=

∫
Rd
πLΠT

(F0)

(
K0
T (λ, ·)f0 − f1

f0

)
(x)K0

T (ω, x)F0(dx)

= πLΠT
(F0)

(
K0
T (λ, ·)f0 − f1

f0

)
(ω)

= πLΠT
(F0)

(
K0
T (ω, ·)f0 − f1

f0

)
(λ) = ψ(ω, λ).

This completes the proof.

In (3.9), in addition to the behavior of the spectral densities at infinity, the growth
rate of the diagonal elements of the reproducing kernels of the space LΠT (F0) at infinity
also plays an important role. Since finding explicit forms of reproducing kernels are
difficult, we need at least to find upper bounds for the growth rate of the diagonal terms.
The following condition on spectral density helps us to accomplish this task:

(C2) For spectral density f , there exist an entire function φ0 on Cd of finite
exponential type such that f(λ) � |φ0(λ)|2 as |λ| → ∞ on Rd.

The following lemma shows that under (C2) we have an upper bound for the behavior
of the reproducing kernels on the diagonal at infinity.

Lemma 3.2. Suppose f0 is a spectral density such that it satisfies (C1) and (C2) for
some entire function φ0. Then, for T > 0, there exists a finite constant C > 0 such that
the reproducing kernel K0

T of LΠT (f0) satisfies

∣∣K0
T (ω, λ)

∣∣2 ≤ CK0
T (ω, ω)

f0(λ)

for all ω, λ ∈ Rd with |λ| large enough. In particular,

∣∣K0
T (λ, λ)

∣∣ ≤ C

f0(λ)
(3.10)

for all λ ∈ Rd with |λ| large enough.

Proof. The idea of the proof is similar to the one in Lemma 3 in [34]. Put f(λ) = |φ0(λ)|2.
Since f and f0 are comparable at ∞, and f is bounded around 0, it is clear that f is
satisfying both conditions (2.2) and (C1). This means we can define LΠT (f) the same way,
and this space is also a RKHS. Consider an arbitrary orthonormal basis for this space,
and denote them by ψk, k = 1, 2, ... . Now, by Lemma 2.3, they are entire functions on Cd

with finite exponential type which doesn’t depend on k. Further, we know ψkφ0 ∈ L2(Rd)

since ∫
Rd
|ψk(λ)φ0(λ)|2 dλ =

∫
Rd
|ψk(λ)|2f(λ) dλ = 1 <∞.
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Spectral conditions for equivalence of GRFs with stationary increments

Therefore, we can apply the Paley-Wiener Theorem ([24], Theorem 3.4.2, p. 171) to get
ψkφ0 = ĝk for certain functions gk ∈ L2(B) where B is a bounded subset of Rd (Here ĥ
stands for the Fourier transform of h). By Parseval’s identity, we can deduce that gk’s
are orthonormal in L2(B). It follows from Bessel’s inequality that∑

k

|ψk(λ)|2f(λ) =
∑
k

∣∣∣∣∫
B

e−i〈t,λ〉gk(t) dt

∣∣∣∣2
≤
∫
B

∣∣∣ei〈t,λ〉∣∣∣2 dt = m(B),

where m(B) is the Lebesgue measure of B. Therefore,∑
k

|ψk(λ)|2 ≤ m(B)/f(λ) ≤ C/f0(λ)

for λ ∈ Rd with |λ| large enough. Now, consider the reproducing kernels of LΠT (f0),
denoting them by K0

T (ω, .). Since f(λ) � f0(λ) as |λ| → ∞, by Lemma 2.5, K0
T (ω, .)

belong to LΠT (f) as well for ll ω ∈ Rd. Thus, we can expand it using the basis ψk, and
get K0

T (ω, λ) =
∑
k 〈K0

T (ω, .), ψk〉fψk(λ), and then by Cauchy-Schwarz and Lemma 2.5,
we get

|K0
T (ω, λ)|2 ≤ ‖K0

T (ω, .)‖2f
∑
k

|ψk(λ)|2

≤ c ‖K0
T (ω, .)‖2f0

∑
k

|ψk(λ)|2

= cK0
T (ω, ω)

∑
k

|ψk(λ)|2,

which makes the proof complete.

Theorem 3.5 in combination with Lemma 3.2 leads to an appealing result. If the
relative difference between two spectral densities is square integrable at infinity, then
the corresponding GRFs with stationary increments will be locally equivalent. We finish
this section by proving this fact.

Theorem 3.6. Suppose that the spectral measures F0 and F1 have positive densities f0

and f1 with respect to the Lebesgue measure, with f0 satisfying (C1) and (C2) for some
entire function φ0 on Cd of finite exponential type. If there exists a finite constant k > 0

such that ∫
|λ|>k

(
f1(λ)− f0(λ)

f0(λ)

)2

dλ <∞, (3.11)

then GRFs with stationary increments having spectral measures F0 and F1 are locally
equivalent.

Proof. Thanks to Lemma 3.2 and Theorem 3.5, it is sufficient to prove that 1 /∈ σ(ψ). In
spirit of Theorem 3.4, we can assume that f0 = f1 on |λ| ≤ k. Now, take an arbitrary
element φ ∈ LD(f0), and observe that by using the multidimensional Paley-Wiener
Theorem ([24], Theorem 3.4.2. p. 171), we derive that φφ0 is the inverse Fourier
transform of a squared integrable function g with bounded support, B in Rd. This implies
that

|φ(λ)φ0(λ)|2 =

∣∣∣∣∫
B

e−i〈λ,γ〉g(γ) dγ

∣∣∣∣2
≤
∫
B

g2(λ) dλ <∞
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Spectral conditions for equivalence of GRFs with stationary increments

for all λ ∈ Rd. This means φφ0 is bounded on Rd. This fact together with (3.11) imply
that φ f0−f1

f0
∈ L2(f0). Now, observe that

(ψφ) (λ) =

∫
Rd
φ(ω)ψ(λ, ω)F0(dω)

=

∫
Rd
φ(ω)

(∫
|γ|>k

K0
T (λ, γ)K0

T (ω, γ)

(
f0(γ)− f1(γ)

f0(γ)

)
F0(dγ)

)
F0(dω)

=

∫
|γ|>k

∫
Rd
φ(ω)K0

T (λ, γ)K0
T (γ, ω)

(
f0(γ)− f1(γ)

f0(γ)

)
F0(dω)F0(dγ)

=

∫
|γ|>k

φ(γ)

(
f0(γ)− f1(γ)

f0(γ)

)
K0
T (λ, γ)F0(dγ)

= πLΠT
(F0)

(
φ
f0 − f1

f0
1{|γ|>k}

)
(λ).

Now, similar to the proof of Theorem 3.4, if ψφ=φ, we get that ‖φ‖F0
≤
∥∥∥φ f0−f1

f0
1{|γ|>k}

∥∥∥
F0

.

Letting k →∞, by the Dominated Convergence Theorem, we get ‖φ‖F0
= 0. This implies

that φ = 0. Thus, 1 cannot be in the spectrum of ψ and this concludes proof.

4 Application

In this section, we apply the results in Section 3 to some anisotropic GRFs with
stationary increments. In particular, we consider GRFs with stationary increments and
spectral density of the form

f(λ) =
1(∑d

j=1 |λj |βj
)γ , (4.1)

where λ = (λ1, ..., λd) ∈ Rd\{0}, βj > 0 for all j = 1, ..., d, and γ >
∑d
j=1

1
βj

. The latter
condition guaranties the integrability condition in (2.2) for spectral measures (See
Proposition 2.1 in [37]). Fractal and smoothness properties of this family of GRFs are
discussed in [37]. Now we apply Theorem 3.6 to determine the equivalence of Gaussian
measures induced by these GRFs.

To this end, first notice that (C1) is obviously satisfied for spectral densities of the
form (4.1). The next lemma shows that these spectral densities also satisfy (C2).

Lemma 4.1. Spectral density functions of the form (4.1) satisfy condition (C2).

Proof. First of all, it is obvious that

1(∑d
j=1 |λj |βj

)γ � 1(
1 +

∑d
j=1 |λj |βj

)γ ,
as |λ| → ∞. Therefore, it suffices to prove the lemma for functions of the form on the
right hand side. Now, similar to the construction made in the proof of Lemma 2.3 in [19],
we can find a function φ ∈ L2(B) for some bounded subset B ⊆ Rd such that

1(
1 +

∑d
j=1 |λj |βj

)γ � ∣∣φ̂(λ)
∣∣2,

as |λ| → ∞, which φ̂ is the Fourier transform of φ. By the Paley-Wiener Theorem ([24],
Theorem 3.4.2. p. 171), φ̂ is actually the restriction on Rd of an entire function on Cd

with finite exponential type. This finishes the proof.
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Spectral conditions for equivalence of GRFs with stationary increments

The next theorem proves that, under certain conditions, the mixture of spectral
densities of the form (4.1) will be equivalent to the one with the lowest decay rate
at infinity. Similar results of this type have been proved by [33] and [6] for linear
combinations of independent fractional Brownian motions.

Theorem 4.1. Suppose X and Y are two independent centered GRFs with stationary
increments with spectral densities of the form (4.1) with parameters (βj , γ) and (β′j , γ

′),
respectively. Then, if

γ′ >
1

2

d∑
j=1

(
1

β′j

)
+ max

1≤j≤d

{
βj
β′j

}
γ, (4.2)

then X and X + Y are locally equivalent.

Proof. Using Lemma 4.1 and Theorem 3.6, we only need to show

∫
|λ|>1

(∑d
j=1 |λj |

βj
)2γ

(∑d
j=1 |λj |

β′
j

)2γ′ dλ <∞. (4.3)

By using the inequality (a+ b)
p ≤ 2p(ap + bp), we can break the integral in (4.3) into

d integrals. Thus, it’s enough to show for each fixed j = 1, ..., d

Ij :=

∫
|λ|>1

|λj |2βjγ(∑d
k=1 |λk|

β′
k

)2γ′ dλ <∞. (4.4)

Since |λ| > 1, this implies that |λk| > 1/
√
d for some k ∈ {1, ..., d}. We distinguish two

cases: Case I is when k = j, and Case II is when k 6= j. In both cases, we use the
following fact that, for positive constants β and γ, and nonnegative constant b, there
exists a finite positive constant c such that for all a > 0∫ ∞

0

xb

(a+ xβ)
γ dx = a−(γ− 1

β−
b
β )
∫ ∞

0

yb

(1 + yβ)
γ dy

=

{
c a−(γ− 1

β−
b
β ) if βγ − b > 1,

∞ if βγ − b ≤ 1.

(4.5)

First, let’s consider case I. By applying (4.5) d times, we have

Ij ≤
∫ ∞

1√
d

|λj |2βjγ
∫ ∞

0

...

∫ ∞
0︸ ︷︷ ︸

d−1

dλ(∑d
r=1 |λr|

β′
r

)2γ′

≤ c′
∫ ∞

1√
d

|λj |2βjγ(
|λj |β

′
j

)2γ′−
∑
r 6=j

1
β′r

dλj <∞

since β′j

(
2γ′ −

∑
r 6=j

1
β′
r

)
> 2βjγ + 1 due to condition (4.2).

Next, we consider case II, where k 6= j. Similar to case I, we use (4.5) iteratively, but
we take the integration in different order. Denote the integration in λi for i 6= j, k by
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dλ\j,k, and observe

Ij ≤
∫ ∞

1√
d

dλk

∫ ∞
0

...

∫ ∞
0︸ ︷︷ ︸

d−1

|λj |2βjγ(∑d
r=1 |λr|

β′
r

)2γ′ dλjdλ\j,k

≤ c
∫ ∞

1√
d

dλk

∫ ∞
0

...

∫ ∞
0︸ ︷︷ ︸

d−2

1(∑d
r=1 |λr|

β′
r

)2γ′− 1
β′
j
−

2βjγ

β′
j

dλ\j,k

≤ c′
∫ ∞

1√
d

1(
|λk|β

′
k

)2γ′−
2βjγ

β′
j
−
∑
r 6=k

1
β′r

dλk <∞,

where the second and the third inequality follow since 2γ′β′j > 2βjγ + 1 and

β′k

(
2γ′ − 2βjγ

β′
j
−
∑
r 6=k

1
β′
r

)
> 1, respectively using the assumption (4.2). This finishes

the proof.

Next, we consider a similar situation as in Theorem 4.1, but this time we put discrete
spectral measure mixed with the ones of the form (4.1). For that purpose, consider
discrete spectral measure of the form

F ({−γn}) = F ({γn}) = αn, (4.6)

where γn ∈ Rd, αn ≥ 0, for n ≥ 1, and
∑∞
n=1

|γn|2

1+|γn|2αn < ∞. If {γn, n = 1, 2, ...} is a

bounded subset of Rd, then in view of Theorem 3.4, this spectral measure will not affect
the equivalence of Gaussian measures. Therefore, we consider here only the case where
|γn| → ∞ as n→∞.

Theorem 4.2. Let X and Y be two independent centered GRFs with stationary incre-
ments with spectral measures FX and FY . Suppose FX has density with respect to
Lebesgue measure on Rd, denoted by f , which satisfies both conditions (C1) and (C2),
and FY is a discrete measure of the form (4.6). Then, if∑

n>N

αn
f(γn)

<∞, (4.7)

for some N ≥ 1, then X and X + Y are locally equivalent.

Proof. First of all, using Theorem 3.4, we can assume αn = 0 for n = 1, ..., N , without
having any consequences on the equivalence of Gaussian measures. Second, observe
that for all φ ∈ LeΠT , ‖φ‖FX ≤ ‖φ‖FX+FY

, which by Remark 3.1, is equivalent to condition
(i) in Theorem 3.2.

All we need to prove is then to show that the function ψ in Theorem 3.2 is in
LΠT (f)⊗ LΠT (f). For that, note that the function ψ can be written as

ψ(ω, γ) =
∑
n>N

αnKT (ω, γn)KT (λ, γn). (4.8)

Observe that functions of the form KT (., γn)KT (., γn) belong to the space LeΠT ⊗ L
e
ΠT

since KT (., γn)’s are the reproducing kernel elements of LeΠT . Therefore, if we can show

that ‖ψ‖2f⊗f < +∞, it implies that the function ψ defined in (4.8) is the L2(f ⊗ f) limit of
the partial sums and hence, ψ ∈ LΠT (f)⊗ LΠT (f) since LΠT (f)⊗ LΠT (f) is the closure
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in L2(f ⊗ f) of the space LeΠT ⊗ L
e
ΠT

. To this end, observe that

‖ψ‖f⊗f ≤
∑
n>N

‖αnKT (., γn)KT (., γn)‖f⊗f

=
∑
n>N

αnKT (γn, γn)

≤ C
∑
n>N

αn
f(γn)

< +∞,

by the assumption (4.7). The proof is complete.

Finally, we give another application of Theorem 3.6. We consider the spectral
densities of the following form

f(λ) =
1(∑d

j=1 |λj |Hj
)Q+2

, (4.9)

where λ = (λ1, ..., λd) ∈ Rd\{0}, 0 < Hj < 1 for all j = 1, ..., d, and Q =
∑d
j=1

1
Hj

.
According to Remark 2.2 in [37], every positive function of the form (4.1) is comparable
to a function of the form (4.9) as |λ| → ∞. See [37] for the explicit relationship between
the parameters (β1, . . . , βd, γ) in (4.1) and (H1, . . . ,Hd) in (4.9). [37] proved that the
smoothness and fractal properties of a Gaussian random field with spectral density (4.1)
is characterized by the corresponding parameters (H1, . . . ,Hd). The following theorem
shows that a similar phenomenon occurs for equivalence of these Gaussian random
fields.

Theorem 4.3. Suppose f0 and f1 are spectral densities of the form (4.9) with parameters
H0
j andH1

j (j = 1, ..., d), respectively. Then, GRFs with stationary increments and spectral
densities f0 and f1 are locally equivalent if and only if H0

j = H1
j for all j = 1, ..., d.

Proof. The sufficiency is obvious, so we only need to prove the necessity. Suppose for
some k ∈ {1, ..., d}, H0

k < H1
k . By Lemma 3.2 in [37], there exist c1, c2 > 0, such that for

all t ∈ Rd

c1

d∑
j=1

|t|2H
i
j ≤ ‖et‖2fi ≤ c2

d∑
j=1

|t|2H
i
j , (4.10)

for i = 0, 1. If we simply choose t ∈ Rd with tk = l, and tj = 0 for j 6= k, we get

‖et‖2f1

‖et‖2f0

≤ c2
c1
l2(H

1
k−H

0
k) → 0 as l→ 0.

This violates the necessary condition for equivalence of Gaussian measures in Theorem
3.1.
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