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Characterising random partitions by random colouring
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Abstract

Let (X1, X2,...) be a random partition of the unit interval [0,1], i.e. X; > 0 and
> ;51 Xi =1, and let (e1, €2, ...) be i.i.d. Bernoulli random variables of parameter p €
(0,1). The Bernoulli convolution of the partition is the random variable Z = >ois1 X
The question addressed in this article is: Knowing the distribution of Z for some fixed
p € (0,1), what can we infer about the random partition (X1, X2, ...)? We consider
random partitions formed by residual allocation and prove that their distributions are
fully characterised by their Bernoulli convolution if and only if the parameter p is not
equal to /2.
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1 Introduction

Random partitions appear in the mathematical description of many natural systems,
such as particle clustering and condensation in physics [3]; dynamics of gene populations
in biology [8]; wealth distribution in economics [18]; etc. There is a vast amount of
possible probability laws of random partitions, but one often encounters convergence
to one of a few universal laws, most notably the Poisson-Dirichlet distribution with
parameter 6 > 0, henceforth denoted PD(A) and defined below after Eq. (1.5).

To show convergence of a tight sequence of random partitions it is often feasible to
show convergence of a derived quantity like the Bernoulli convolutions studied in this
paper. If the limit of the derived quantity characterises the law of the underlying random
partition among the class of possible limits, convergence is shown. It is therefore an
important question whether the distribution of a random partition can be identified from
its Bernoulli convolution, and in this paper we contribute to this problem.

We describe two scenarios that motivate this study in Sections 1.1 and 1.2. We
introduce the precise setting and our results in Section 1.3 — the definition of the
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Characterising random partitions

Bernoulli convolution can be found around Eq. (1.4). Sections 2 and 3 contain the
proofs of our two theorems. We make further comments in Section 4; it includes a
counterexample due to A. Holroyd, that sheds much light on these questions.

1.1 Random interchange model and quantum spin systems

The random interchange model is a process on permutations constructed as prod-
ucts of random transpositions. Namely, given integers n and k, we pick k pairs of
distinct integers (z1,41),. .., (Tk, yx) from {1,...,n} uniformly at random, and consider
the permutation

O=T)0-"+0Ty. (1.1)

Here, 7; = (z;,y;) denotes the transposition of z; and y;. The cycle structure (i.e. the
lengths of the permutation cycles) of o gives an integer partition of n; dividing by n gives
a partition of [0, 1].

Schramm [17] studied this model in the case where k = |cn| with ¢ > 1. He proved
that, with high probability as n — oo, there are cycles whose lengths are of order n. Let
L; denote the length of the ith largest cycle. The sum of cycles of length of order n is
kn(1+ o(1)) with k = x(c) fixed (and k — 1 when ¢ — o0); and the sequence (%, %, o)
converges (weakly) to PD(1), the Poisson-Dirichlet distribution with parameter 1.

One motivation for the random interchange model, pointed out and exploited by
Téth [20], is that it provides a probabilistic representation of the Heisenberg model of
quantum spins. For this representation the density of the random interchange model gets
an extra weight 2#°°l*s| which leads to a conjectured limit which is the Poisson-Dirichlet
distribution PD(2), see [10]. In this case the number of transpositions k is random, chosen
to be Poisson(cn). Recently, it was proved in [5] that, in the model with weight g#<veles,
0 =2,3,4,..., we have

lim IE, [H %(ehLi/n +0— 1)} — ot(1-r) Epp(p) {H %(ehfﬁXi 46— 1)}, (1.2)

n—oo
i>1 i>1

for some (deterministic) « € [0, 1] which depends on ¢ and # and is positive for ¢ large
enough; the above identity holds for all & € C. The last expectation in (1.2) is equal to the
moment generating function at hx of the Bernoulli convolution of PD(f) with parameter
p = 1/¢. The interpretation is that the system displays small (order 1) and large (order n)
cycles, and that the joint distribution of the lengths of large cycles is PD(#); see [5]
for more details. But is Eq. (1.2) enough to guarantee that the limiting sequence of
renormalised cycle lengths be equal to PD(#)? We prove here that, among the residual
allocation distributions, the answer is yes for § = 3,4, ..., but no for § = 2.

There are related loop models that include ‘double bars’ as well as the transposition
‘crosses’, that represent further quantum spin systems [1, 21]. Without weights, it was
proved in [6] that the joint distribution of the lengths of long loops is PD(1/2). With
weights 271°°PS | the result of [5] is that

nll_}n'olo E, {H cos(hLi/n)} = Ipp(1) [H cos(h/@Xi)} , (1.3)
i>1 i>1

for all h € C. The latter expectation is closely related to the moment generating function
of the Bernoulli convolution of PD(1) with parameter p = 1/2. Results of the present
article show that the above claim is not enough to guarantee that the limiting distribution
is PD(1), even if one assumes that the limiting distribution is a residual allocation.

1.2 Exchangeable divide-and-color models

In a recent paper by Steif and Tykesson [19], the authors introduce generalized
divide-and-color models as follows. Given a countable set S and p € (0, 1), one starts by

ECP 25 (2020), paper 4. http://www.imstat.org/ecp/
Page 2/12


https://doi.org/10.1214/19-ECP283
http://www.imstat.org/ecp/

Characterising random partitions

forming a random partition IT of S according to some rule; one then assigns to each part
of II a ‘color’ 0 or 1, independently and with probability p for 1. Letting each element of
S take the color of the part it belongs to and then forgetting about the original partition
I1, one ends up with a random element w € {0, 1}°. This construction is motivated by the
Fortuin-Kasteleyn representation of the Ising model, among other examples.

A particular case is when S = IN and when the random partition II is exchangeable,
i.e. its distribution is invariant under all finite permutations of IN. By Kingman’s famous
theorem [12], such a random partition of IN is uniquely encoded by a random vector
(X;)i>1 satisfying X; > X; 1 > 0foralli > 1and ) ,.; X; < 1; note that < 1 is allowed in
this case. On the other hand, the resulting color process w € {0, 1} is also exchangeable;
by de Finetti’s theorem, this means that there is some random variable ¢ € [0, 1] such
that, conditional on &, the w; are i.i.d. Bernoulli(¢). It is not hard to see that (when
Zi>1 X, = 1) £ equals the Bernoulli convolution of (X;);>1, see [19, Lemma 3.12]. Steif
and Tykesson ask whether the law of the random partition II can be recovered from the
law of w when p # 1/2. This is equivalent to asking whether the law of (X;);>1 can be
recovered from the law of its Bernoulli convolution. Our results on residual allocation
models show that the answer can be yes under additional assumptions on (X;);>1.

1.3 Framework and results
We define a Bernoulli convolution as follows.

Definition 1.1 (Bernoulli convolution). Let (X;);>1 be a random partition of [0, 1], i.e.
X;>0foralli>1and) ., X;=1. Let (¢;);>1 be a sequence of i.i.d. Bernoulli random
variables of parameter p € (0,1), independent of (X;);>1. Set

Z:ZeiXi. (1.4)

i>1
The law of Z, and sometimes the random variable Z itself, is called the Bernoulli(p)
convolution of the random partition (X;);>1.

We restrict our setting to random partitions obtained from residual allocation. Namely,
we consider the interval [0, 1] with the Borel o-algebra. Given a probability measure p on
[0,1], let (Y;);>1 be i.i.d. random variables distributed according to u, and consider the
sequence (X;);>1 defined by

Xl :Y17
Xz =(1-1)Ys,
X3=(1-Y)(1 - Y3)Y5,

etc...

(1.5)

Assuming that p({0}) < 1, it is not hard to prove that X; — 0 as ¢ — oo and that
> ;>1 Xi =1, almost surely. It is possible to rearrange the sequence (X;);>1 in decreasing
order if one wants an ordered partition, but this is not necessary here.

An important example of this construction is the Griffiths, Engen and McCloskey
distribution, GEM(#), obtained when ;. = Beta(1, ). If one orders the entries of a GEM(A)
sample by decreasing size, one obtains the famous Poisson-Dirichlet distribution PD(6),
see [11]. Another important example is the ‘classical’ Bernoulli convolution Zi>1 £\
with i.i.d. random signs; see the review [13]. This falls into our framework (take p = 6;_
for some fixed A € (0,1) so that X; = (1 — A\)A*~1), except that our Bernoulli coefficients
take value in {0, 1} instead of {—1,1}.

As a shorthand, since we only consider random partitions from residual allocation, we
will sometimes refer to Z (or its law) as the Bernoulli convolution of the measure u. The
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Bernoulli convolution is invariant under rearrangements of the sequence (X;);>1. The
cases p = 0 and p = 1 are trivial and uninteresting, since Z = 0 and Z = 1, respectively.

If 4 has an atom at O of value ¢ > 0, i.e. u({0}) = ¢, then the sequence (Y1,Ys,...) —
and therefore (X, Xo,...) — contains a density c¢ of elements that are equal to 0; this
does not affect Z. In other words, the Bernoulli convolutions of x and ¢dy + (1 — ¢)u are
the same for all ¢ € [0,1). We avoid this trivial degeneracy by restricting our attention to
measures that do not have an atom at 0.

Given p € (0,1), the question is whether the Bernoulli(p) convolution characterises
the random partition obtained from residual allocation. We show that it is the case
for p # 1/2.

Theorem 1.2 (Uniqueness for p # 1/2). Let p € (0,1)\ {!/2}. If u and v are two probability
measures on [0,1] such that u({0}) = v({0}) = 0, and the corresponding residual
allocation models have identical Bernoulli(p) convolution, then u = v.

We also show that Theorem 1.2 fails for p = /2. Our non-uniqueness results hold for
GEM (or Poisson-Dirichlet) measures of arbitrary parameters.

Theorem 1.3 (Non-uniqueness for p = 1/2). Let § > 0 and p = Beta(l,6). Then there
exist infinitely many v # p such that v({0}) = 0, and such that u and v have identical
Bernoulli(}/2) convolutions.

The non-uniqueness results are not explicit with the exception of GEM(2): We show
that if an (absolutely continuous) measure v satisfies

zdv(z) =(1—2z)dv(l —z) forallz € [0,1], (1.6)

then its residual allocation has the same Bernoulli convolution as = Beta(1,2). Note
that (1.6) holds true in the case p = Beta(l,2), for which du(z) = 2(1 — 2)dz. Another
example is the Dirac measure at z = /2, v = (51/2, which formally satisfies (1.6). We refer
to Proposition 3.4 for details including conditions on the regularity of measures.

We prove Theorems 1.2 and 1.3 with the help of a stochastic identity for the random
variable Z, see Lemma 2.1. This identity holds because of the self-similarity structure of
residual allocations. The proofs of Theorem 1.2 and 1.3 can be found in Sections 2 and 3,
respectively.

A natural question is whether Theorem 1.2 holds beyond residual allocations. Ob-
viously, the Bernoulli convolution (1.4) may be defined for arbitrary random partitions
(Xi)i>1. Alexander Holroyd has given an example showing that, in general, the Bernoulli
convolution does not determine the random partition, even if the former is known for all
p € (0,1); we explain Holroyd’s example in Section 4. One may also allow more general
random variables (g;);>1; in this generality, Z is sometimes called a random weighted
average. Pitman’s recent review [14] contains a wealth of information about the theory
of random weighted averages. In [14, Corollary 9] it is shown that the distributions of
the random weighted averages Z, as (¢;);>1 range over all i.i.d. sequences of random
variables with finite support, fully characterize the law of the random partition (X;);>1.
This holds without any assumptions about the properties of the random partition. It is
natural to ask whether the condition on the ¢; can be weakened.

2 Uniqueness when p # 1/2 (proof of Theorem 1.2)

The following lemma will be used both to establish uniqueness for p # !/2 and non-
uniqueness for p = 1/2. It is not new, see [9, Theorem 1] or [7, Theorem 7.11]; it is also
discussed in [14, (119)].

Lemma 2.1 (Stochastic identity). Let Y, Y1,Y5,... be i.i.d. random variables with values
in [0,1] and (X;);>1 defined by (1.5); €,e1,¢2,... be i.i.d. Bernoulli(p) random variables
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independent of the Y'’s; and Z and Z' be two identically distributed random variables
with values in [0,1], Z’ being independent of Y and e. The following stochastic identities
are equivalent:

(@ 25 Xy

i>1
M) ZLeYy +(1-Y)Z.
Proof. Assuming (a), we have

d Z X;
A 1)i>251_Y1

where the sequence (X;/(1 — Y7));>2 is independent of X; = Y; and has the same
distribution as (X;);>1, which gives (b).

Assuming (b), we construct a sequence of random variables which all have the
same distribution as Z and which converge weakly (in fact, almost surely) to > .., €; X;.
Observe that there exist Z; and Z, two independent copies of Z, independent of ¢; and
Y; such that

Zl g €1Y1 + (1 - Yl)Zl

2.1)
4 a1+ (1-Yy) [€2Y2 +(1- Yz)Zz]-
Iterating this further, we get (Z;);>1 such that for alln > 1,
SeXi+(1-11) (1= Y2, £ 2, (2.2)

i=1

where X; are as defined in (1.5). All terms in Z?zl €;X; are positive and the sums are
bounded by 1, hence the series converges to )., €;X;; the remainder (1 —Y;)--- (1 —
Y,.)Z, converges to 0 almost surely. As n — oo we obtain (a). O

We will show that all moments of Y ~ p are determined by the Bernoulli convolution
Z of the residual allocation model from p. This holds for p € (0,1) \ {1/2}. It does not hold
for p = 0 (the Bernoulli convolution is always 0) and p = 1 (it is always 1). It also does
not hold for p = 1/2, for reasons that are not obvious and that are discussed in Sect. 3.

Let us introduce numbers a,, ;, and ¢, that depend on the law of Z, and numbers b,
that depend on the law of Y. For n,k € IN with k£ < n, let

ons = (-1} B[ - 2)).

cn = (1= p)E[Z"], (2.3)
- 1-E[1-Y)"]

Note that by = 0, by = 1, and ay,; + ¢; = 0 since E[Z] = p. We have the following relations.
Proposition 2.2 (Recurrence relation). For allp € [0,1] and all n > 1, we have

n
Cnbn + Z an,kbk = 0.
k=1
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Proof. We expand E[Z"] in two different ways. First,

E[Z"] = (1-pBZ"] +pB[(1-(1-2))]

= (- Bz +p Y1 () Bl - 2 o
Second, using Lemma 2.1,
E[Z"] = B[(sY + (1-Y)2)"] = pE[(Y + (1= Y)2)"] + (1 = p)E[((1 - V) 2)"]
=1 -p)E[(1-Y)"|EZ"]+pE[1-(1-Y)(1-2))"] 2.5)

=(1-pE[(1-Y)"|E[Z"] +pZ(—1)k (Z)E[(l ~Y)ME[(1 - 2)"].
k=0
Equating these identities, we get
0=01-pE[Z"{1-E[1-Y)"]} —l—pZ(—l)k(Z)E[(l -2 {1-E[1-Y)*]}. (2.6)
k=0

We now divide by E[Y] and we obtain the claim of the proposition. O
The next lemma holds for p # 1/2 only.
Lemma 2.3 (Non-zero coefficient). Forp € (0,1) \ {!/2}, we have for all n > 2 that
Qpp + Cp 7é 0.

Proof. We have
ann+cn=1—-pEZ"] + (—1)"p]E[(1 — Z)”]. 2.7)

This is always positive for n even; we thus assume from now on that n > 3 is odd. From
the definitions (1.5) and (1.4), we have

EZ" = Y Elee, e, BX;, X, X5, ] (2.8)
i17i27---1i7121
Note that, if £ = #{i1,...,4,} denotes the number distinct indices among i1, ...,i, > 1,
then
E[ailaiz 5%] = pe7 (2.9)

since e¥ = ¢; for all k,i > 1. We thus get

E[Z"] =) p'E[Sn., (2.10)
=1
where S, = > X;, X;, --- X;, summed over all choices of indices i1,...,i, > 1 such

that #{41,...,i,} = £. Note that E[S,, ¢] > 0 for all £ > 1. Since, by definition, 1 — Z =
> i1 (1 —€:)X; we also have E[(1 — Z)"] = Y_)_, (1 — p)‘E[S,, /], and thus

n

tnp + o =p(L=p)E[Sne] D (P = (1—p)1). (2.11)
=1

While the term ¢ = 1 is zero, all other terms are non-zero and have the same sign, which
proves the claim since n > 1. O

We now turn to the proof of Theorem 1.2.
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Proof of Theorem 1.2. It follows from Proposition 2.2 and Lemma 2.3 that, for n > 2,
n—1
b = —(tnn +cn) "D ankbr. (2.12)
k=1

Recall that by = 0, by = 1. The above equation shows that the b,,’s are recursively
determined by the a, ;’s and ¢,’s, which only depend on the Bernoulli convolution Z.
As n — oo, the sequence (b,,) converges to 1/IE[Y] — here we use our assumption that
the measure i does not have an atom at 0. It follows that E[Y] and E[(1 — Y)"] are
determined by the Bernoulli convolution for all n. Then all moments of the original
measure p are known, hence the measure p itself (see [4, Theorem 1.2]). O

3 Non-uniqueness when p = 1/2 (proof of Theorem 1.3)

In this section we set p = 1/2, unless indicated otherwise. We also assume that
the Bernoulli convolution of parameter /2 has a density ¢(x) with respect to Lebesgue
measure, and that g(z) > 0 for all x € (0,1). This will hold in particular in the case of
GEM(0). Since p = /2 we then have that ¢(z) = ¢(1 — x) because Z 41-2z

Given a nonnegative measurable function p on [0, 1], we define the function Hp by

l—u/1—-u

Let R, be the cone of nonnegative measurable functions p such that the integral above
is finite for all 0 < =z < 1. H is a linear operator on R,. As it turns out, it gives a
relation between the density p of a probability measure on [0, 1], and the density ¢ of
the corresponding Bernoulli convolution. This may be seen by expanding the stochastic
identity of Lemma 2.1 (b) and making a suitable change of variables. More precisely, we
have:

Lemma 3.1 (Condition for non-uniqueness). Let q be a probability density function on
[0,1] such that g(x) > 0 on (0,1) and g(z) = q(1 — z). Let p € R,; we have

[Hp)(z) + [Hp](1 —x) =2, foralmost all z € [0,1], (3.2)
if and only if

(a) p is a probability density function on [0,1], and

(b) the Bernoulli(/2) convolution of the residual allocation model from p has density q.

Proof. Assume that (3.2) holds. For (a), we have, writing h(z) = [H p](x),

1 1 1 1
1:/0 q(x)%dmz/o q(a:)h(x)da:z/o dup(u)/ dzt-q(Z=2)

1 1 1 (3.3)
— [ dup(w) [ dvao) = [ duptu,
0 0 0
as claimed. (We used the change of variables v = sz.)
For (b), we use (3.2) to get

x 11—z
a(@) 2/0 q(lfu 1—u vt s 0 N1T—u)1—u™™ (3.4
ECP 25 (2020), paper 4. http://www.imstat.org/ecp/
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It follows that for all continuous function f, we have

/ (o) f () da

/01 fwldu/;CI(f_Z)f(x)dx-ﬁ-%/ol fwzldu/ol_uq(lxu)f(x)dx (3.5)
1 ! ! L 1 1
=1 [ otidn [ sl ()it [ ptwan [ 70 -t

We used Fubini’s theorem to get the second line, and the changes of variables y = =
and y = 1= (for fixed u) to get the third line. The left side gives the expectation IE[f(Z)]
for the random variable with density ¢. The right side gives E[f(¢Y + (1 — Y)Z)] for the
independent random variables ¢ ~ Bernoulli(%), Y with density p, and Z with density
q. We recognise the stochastic identity of Lemma 2.1 (b). Hence ¢ is the density of the
Bernoulli convolution of p.

The other implication can be checked similarly: (3.5) holds by (b), hence also (3.4)
for almost all x, which gives (3.2). O

N[ —=

The next step is to identify the Bernoulli convolution of GEM distributions. It turns out
to be equal to Beta random variables. We consider general parameters p, although we
only need the case p = 1/2 here.

Proposition 3.2 (Bernoulli convolution of GEM). Let § > 0 and p € [0,1]. Then the
Bernoulli convolution of GEM(), i.e. of the residual allocation model from Beta(1,6)
random variables, is the Beta(pd, (1 — p)f) distribution.

This result is not new, see e.g. [14, Prop. 27(iii)]. We sketch a proof using the
connection between GEM(#) and PD(6), Kingman’s characterization of PD() in terms
of the Gamma-subordinator, as well as the following well-known lemma (see e.g. [10,
Lemma 7.4]):

Lemma 3.3 (Beta-Gamma calculus). If Y7 and Y; are independent, with respective
distributions Gamma(f;, 1) and Gamma(6s, 1), then

1. Y7 + Y5 has distribution Gamma(6; + 6o, 1),
2. Y1/(Y1 + Ys) has distribution Beta(f;, 6,),
3. Y1 +Y; and Y, /(Y1 + Y2) are independent.

Proof of Proposition 3.2. Let £ = (&1,&2,...) be the points of a Poisson process with
intensity measure #z~'e “dxz on (0,00) in decreasing order. Let S = )., & and
X; =¢/S foralli > 1, then S ~ Gamma(#,1) and X = (X;, X»,...) is PD(#)-distributed
(see [2, Definition 2.5]). Let (&;);>1 be a sequence of i.i.d. Bernoulli(p) random variables.
Let £ be the collection (§;: ¢; = 1) and £© its complement (&;: €; = 0). Note that £ and
£© are independent Poisson processes with respective intensity measures pfz~'e ® dz
and (1 —p)fz—te *dx on (0,00). Set Vi =Y ,o, & and Yo = Y _,o, £, Then Y; and Yy
have distributions Gamma(pf, 1) and Gamma((1 — p)#, 1) respectively (this can be checked
using the Laplace transform and Campbell’s formula as in [10, Lemma 7.3]). Since
Z =Y1/(Yo + Y1), Lemma 3.3 implies that Z ~ Beta(pf, (1 — p)d), which concludes the
proof. O

We now consider a special case of Theorem 1.3, namely 6 = 2.

Proposition 3.4 (Non-uniqueness for GEM(2)). Let p be a probability density function on
[0, 1] such that fol ‘1’(%2 du < oo. Then the corresponding residual allocation model has the
same Bernoulli(1/2) convolution as GEM(2), if and only if

zp(z) = (1 —2)p(l —z) for almost all z € [0, 1]. (3.6)
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Note that there exist many solutions to (3.6): Starting from an arbitrary nonnegative
integrable function f on [0, ], one can set f(z) = =2f(1 — z) for z € (3,1] and take
p(x) = f(z)/ [ f. As mentioned before, the density of the Beta(1,2) random variable is
2(1 — z) and it satisfies Eq. (3.6).

Proof. The Bernoulli(!/2) convolution of GEM(2) is equal to Beta(l,1), i.e. the uniform
probability measure on [0, 1], by Proposition 3.2. The operator H takes a simpler form

and Eq. (3.2) becomes

x 11—z

/ p(u) du +/ p(u) du =2, (3.7)
o 1—u 0 1—-u

for all z € [0,1]. We get (3.6) by differentiating with respect to . This proves the “only
if” direction.
Conversely, if p is a probability density function on [0, 1] that satisfies Eq. (3.6), then

[Hp}(x)+[Hp}(1—$):/omp(u)du+/0 h p(u)du:/o f(iu)du

1—wu 1—wu —u

:/1p(“)(1—u+u)du:/1p(u)du+/1p(1_u)du:27 (3.8)
0 ; i

1—u
and (3.2) holds true. O

The case of the GEM(#) distribution with 6 # 2 is more complicated and we do not give
a full characterisation of all possibilities. We only prove the existence of many solutions.

We rely on the theory of fractional derivatives and integrals, see e.g. [16, Ch 1] for
an extended exposition. For a > 0, let Z® denote the fractional integral operator (in the
sense of Riemann-Liouville):

«@ ) = 1 ’ f(u) "
[ f)(z) = )/0( du, (3.9)

NG x—u)l—o

for all « € [0, 1] and all functions f such that the above integral converges absolutely. Its
inverse is the fractional derivative operator D®. Writing a = [a] + {a} with [a] € Ny and
{a} €]0,1), it is given by

o () — 1 dleltt o f()
D" 11) = S gy T, e (3.10)

We introduce the function ¢ on [0, 1] by

p(u)

p(u) = AT (3.11)

We now rewrite Eq. (3.2) using the fractional integral operator in the case where the
probability density ¢ is that of Beta(f/2,¢/2). Taking ¢(z) = Ffe(/i))z 2>=1(1 — 2)?>~1 in Eq.
(3.1), Lemma 3.1 can be reformulated as follows.

Lemma 3.5 (Non-uniqueness for GEM(6)). Let 8 > 0. Assume that ¢ is a nonnegative
function on [0, 1] that satisfies

1 1

6/ 2
1,9/2_1 [I @](m) + (1 _ 1,)9/2_1

[Z72¢)(1 — z) = Fy orallz € 0.1] (3.12)
Then p(z) = (1 — )% tp(z) is a probability function on [0,1] and the Bernoulli(!/2)
convolution of the residual allocation model from p has density Beta(9/2,9/2).

The claim about non-uniqueness, Theorem 1.3, is now a consequence of Lemma 3.5.

Proof of Theorem 1.3. We are looking for nonnegative solutions ¢ of (3.12); then p(z) =
(1 — )%~ 1p(z) is a solution. Let ¢ be a function on [0, 1] that is antisymmetric around 1/2,
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i.e. e(x) = —e(1 — z), and consider the equation
2
Z7¢)(x) = ) [ + 2"/ e(w)] (3.13)

with « € [0,1]. Solutions of this equation are also solutions of (3.12). Applying the
fractional derivative operator on both sides, and using D*Z“ = id, we get

2 0/o 6/2 0/9—
o(x) = g D7 [+ e@)] (@)
0 0 0/o_ (3.14)
7 2 dUPIL T 4 7 e()
- TR = {9/2}) dal”/21 /0 (x—t)to2r

Conversely, if we assume in addition that ¢(z) = O(z) at © = 0, we can use [16, Eq.
(2.60)] to verify that (3.13) is satisfied. Indeed, all derivatives in [16, Eq. (2.60)] vanish
atz =0.

The contribution of the term ¢/> can be calculated explicitly; it gives the constant 6.
We can also make the change of variables ¢ — ux and we get

2 al/z+1 Y e (ux)
- (%/2] el S 4
olx) =0+ T(0/2)T(1 = {9)2}) AP/l {x /0 A= 0) du} . (3.15)

The case € = 0 leads to ¢(z) = 6, i.e. p = Beta(l,6). But we can also choose ¢ # 0 to
be small and smooth enough such that the last term is uniformly bounded by 6. Then
p(z) >0 for all z € [0, 1]. O

4 Comments

4.1 Other examples of non-uniqueness for p = 1/2

For p = 1/2 there is another example of non-uniqueness of the Bernoulli convolution
for GEM(2), using the Brownian bridge. Namely, let X; > X5 > --- be a ranked list of the
excursion lengths away from 0 of a standard Brownian bridge on [0, 1], and let ¢; be the
indicator that the bridge is positive on the corresponding excursion. Then the ¢; are i.i.d.
Bernoulli(l/2), independent of the X;, and the Bernoulli(l/2) convolution Z =} .., £;X;
equals the time spent positive by the bridge. Lévy showed that the latter is uniformly
distributed on [0, 1], which as we saw coincides with the Bernoulli(l/2) convolution of
GEM(2). See e.g. [14, Section 2.4] for more information.

We can also use the Brownian pseudo-bridge to get an example of non-uniqueness of
the Bernoulli(!/2) convolution for GEM(1). Indeed, the ranked list of excursions is given by
the two-parameter Poisson-Dirichlet distribution PD(1/2,0) and the time spent positive is
Beta(l/2, 1/2); see [15].

4.2 Further questions

It would be interesting to investigate the extent to which Theorems 1.2 and 1.3 hold
for other classes of random partitions (X;);>; than those formed by residual allocation.
One could for example consider more general residual allocation models where the
sequence (Y;) is not i.i.d. but e.g. given by a discrete-time stochastic process. Another
natural class of random partitions are those built from subordinators (see [14, Section
5.2]). Briefly, in this case (X;);>1 is formed by normalising an exhaustive list of the jumps
of a subordinator with no drift component. We pose the following two questions:

Question 4.1. Are there analogs of Theorems 1.2 and 1.3 for random partitions built
from subordinators?
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Question 4.2. For p # 1/2, are there natural examples of random partitions whose
Bernoulli convolutions are identical to those of GEM(A), or other residual allocation
models?

4.3 Holroyd’s example

If one makes no assumptions about the structure of the partition (X;);>; then the
Bernoulli convolution does not determine the law of the random partition, even if the
former is known for all p € (0,1). This is shown by the following example due to
A. Holroyd.

The example deals with partitions of just three elements. We consider random
variables X, X5, X3 such that X; > X5 > X3 > 0 and X; + X2 + X3 = 1, as well as
independent Bernoulli(p) random variables €1, 2, 3. The first observation is that the
law of the Bernoulli(p)-convolution Z is determined by the marginals for X;, X5, and
X1 + X2 — no matter what the values of 1, €5, ¢35 are, the random variables X; and X»
appear in the above form. This holds for all p. It is thus enough to show that we can find
random variables X 1 and Xg, distinct from X;, X9, such that

X, 2 x,
X <x, 4.1)
X+ X2 X, + X,

Let f(z1,z2) denote the joint probability density function of (X7, X3). It is supported
on the set A € [0,1]? such that

12T >1—x21 — 220 20, (4.2)

see Fig. 1. We can find a square in the set A, and define the function g(z1, z2) that takes
values {—1,0,+1} as shown in Fig. 1. If f is positive on A, then f = f + ng is positive for
1 small enough. The function f is the probability density function for (X 1, X'Q).

The marginals for X7, X; are obtained by integrating 1 f along vertical lines. They
are clearly identical. Same for the marginals for X,, X, obtained by integrating along
horizontal lines. And same for the marginals for X; + X5, X1+ X>, obtained by integrating
along oblique lines of slope —1.

€2

1

2

0

0 1
Figure 1: Domain A characterised by (4.2) and the square that defines the function g.

Holroyd’s example can be generalised to random partitions with infinitely many
elements as follows. Leta € (%7 1]. Choose (X1, X2, X3) with the constraint X;+Xo+ X3 =
a; then choose an arbitrary random partition on the remaining interval [0,1 — a]. The
domain (4.2) is replaced by x1 > 22 > a — 1 — 2 > 1 — a (it is nonempty for a > 3/4).
The same argument then applies. It is also possible to take a to be random.
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